Science.gov

Sample records for cells identified ultrastructurally

  1. Effects of ultrasound upon endothelial cell ultrastructure

    NASA Astrophysics Data System (ADS)

    Rodemer, Claus; Jenne, Jürgen; Fatar, Marc; Hennerici, Michael G.; Meairs, Stephen

    2012-11-01

    A number of new brain applications for therapeutic ultrasound are emerging including drug delivery through BBB opening, enhancement of angiogenesis, sonothrombolysis and neuromodulation. Safety remains important as alterations in the cytoskeleton and tight junctions of endothelial cells have been described. In this study we characterize the in vitro effects of ultrasound on cell morphology using a new human brain cell line (hCMEC/D3). Changes in ultrastructure were analyzed with antibodies against tubulin, actin and catenin. Transport was analyzed by measuring transferrin uptake. No significant changes were seen after continuous wave ultrasound treatment of hCMEC/D3 cells grown in Opticell{trade mark, serif} chambers. We could not observe disassembled actin stress fibers or variations in the microtubule network. However, severe damage occurred in cells cultured in petri dishes.

  2. Brush cells in the human duodenojejunal junction: an ultrastructural study

    PubMed Central

    Morroni, Manrico; Cangiotti, Angela Maria; Cinti, Saverio

    2007-01-01

    Brush cells have been identified in the respiratory and gastrointestinal tract mucosa of many mammalian species. In humans they are found in the respiratory tract and the gastrointestinal apparatus, in both the stomach and the gallbladder. The function of brush cells is unknown, and most morphological data have been obtained in rodents. To extend our knowledge of human brush cells, we performed an ultrastructural investigation of human small intestine brush cells. Six brush cells identified in five out of more than 300 small intestine biopsies performed for gastrointestinal tract disorders were examined by transmission electron microscopy. Five brush cells were located on the surface epithelium and one in a crypt. The five surface brush cells were characterized by a narrow apical pole from which emerged microvilli that were longer and thicker than those of enterocytes. The filamentous core extended far into the cell body without forming the terminal web. Caveolae were abundant. Filaments were in the form of microfilaments and intermediate filaments. Cytoplasmic projections containing filaments were found on the basolateral surface of brush cells. In a single cell, axons containing vesicles and dense core granules were in close contact both with the basal and the lateral surface of the cell. The crypt brush cell appeared less mature. We concluded that human small intestine brush cells share a similar ultrastructural biology with those of other mammals. They are polarized and well-differentiated cells endowed with a distinctive cytoskeleton. The observation of nerve fibres closely associated with brush cells, never previously described in humans, lends support to the hypothesis of a receptor role for these cells. PMID:17509089

  3. A Model of the Ultrastructure of a Cell.

    ERIC Educational Resources Information Center

    Bushell, Jean

    2001-01-01

    Presents a project for modeling cellular ultrastructure for 14-17 year old students that helps to develop concepts of measurement and scaling in addition to supporting student understanding of cell biology. (Author/YDS)

  4. The ultrastructure of separated and cultured cell of Porphyra yezoensis

    NASA Astrophysics Data System (ADS)

    Mei, Jun-Xue; Fei, Xiu-Geng

    2001-03-01

    There are many reports that cells (protoplasts) separated from the thallus of Porphyra by enzyme can develop to normal leafy thalli in the same way as monospores. But there are few investigations on the subcellular structure of the isolated vegetative cell for comparison with the subcellular structure of monospores. To clarify whether the separated and cultured cells undergo the same or similar ultrastructure changes during culture and germination as monospores undergo in their formation and germination, we observed their ultrastructure, compared them with those of the monospore and found that the ultrastructure of separated and cultured cells did not have the characteristic feature as that of monospore formation, such as production of small and large fibrous vesicles, but was accompanied by vacuolation and starch mobilization like that in monospore germination. The paper also discusses the relations between monospores and separated and cultured cells.

  5. Ultrastructure study of apple meristem cells during cryopreservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ultrastructure of apple (Malus x domestica Borkh.) meristem cells was studied before and after cold acclimation (CA) and during the steps of PVS2 vitrification. We compared cells of in vitro grown shoots of two cultivars, Grushovka Vernenskaya and Voskhod. Cells of the two cultivars were simila...

  6. Ultrastructure Study of Apple Meristem Cells During Cryopreservation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ultrastructure of apple (Malus x domestica Borkh.) meristem cells was studied before and after cold acclimation (CA) and during the steps of PVS2 vitrification. We compared cells of in vitro grown shoots of two cultivars, Grushovka Vernenskaya and Voskhod. Cells of the two cultivars were simila...

  7. Ultrastructural identification of interstitial cells of Cajal in hen oviduct.

    PubMed

    Gandahi, J A; Chen, S F; Yang, P; Bian, X G; Chen, Q S

    2012-06-01

    The interstitial cells of Cajal (ICC) are widely believed to be neuroeffector cells of smooth muscle activity in all tubular organs, including the oviduct. The avian oviduct involves the secretion, sheathing, and transportation of a large-sized egg, but there is no information available on ICC in this special organ. We have demonstrated the presence of ICC in different segments throughout the oviduct in the laying hen and provided details on their ultrastructure by transmission electron microscopy technique, for the first time. The observed ICC appeared bipolar and multipolar cells of different shapes, with varying nuclear morphologies, a thin rim of electron-dense cytoplasm, and an infrequent basal lamina. They showed moniliform primary processes with one or 2 secondary or terminal processes. We found ICC near smooth muscle cells, nerve fibers, and the epithelia, where they make specialized contacts in the form of close membrane associations or gap-like junctions and peg-and-socket-like junctions. Intricate labyrinthine-type networking contacts were also present in ICC processes. Moreover, we report for the first time, that ICC in avian oviduct make interdigitating contacts with the epithelium. Cytoplasmic organelles identified in ICC include numerous well-developed mitochondria, abundant rough endoplasmic reticulum, and dispersed intermediate filaments. Many caveolae and vesicles were also present. Golgi bodies and centrioles were rare. Fibroblasts, on the other hand, were distinct cells with larger cytoplasmic area, more rough endoplasmic reticulum, and less mitochondrial content. No basal lamina, intermediate filaments, or caveolae were present in fibroblasts. Their processes were shorter and showed no contacts with smooth muscle cells or nerves. We conclude that these ICC might also have a key role in the regulatory mechanisms of motility and transportation in the hen oviduct, as already proved in mammalian oviduct. Such role of ICC might also be responsible

  8. Ulcerative colitis: ultrastructure of interstitial cells in myenteric plexus.

    PubMed

    Rumessen, J J; Vanderwinden, J-M; Horn, T

    2010-10-01

    Interstitial cells of Cajal (ICC) are key regulatory cells in the gut. In the colon of patients with severe ulcerative colitis (UC), myenteric ICC had myoid ultrastructural features and were in close contact with nerve terminals. In all patients as opposed to controls, some ICC profiles showed degenerative changes, such as lipid droplets and irregular vacuoles. Nerve terminals often appeared swollen and empty. Glial cells, muscle cells, and fibroblast-like cells (FLC) showed no alterations. FLC enclosed macrophages (MLC), which were in close contact with naked axon terminals. The organization and cytological changes may be of pathophysiological significance in patients with UC. PMID:20568987

  9. Ultrastructure of organic cell walls in Proterozoic microalgae

    NASA Astrophysics Data System (ADS)

    Moczydlowska-Vidal, M.

    2009-04-01

    The antiquity of life has been well appreciated since the discoveries of microfossils and confirmation of their authenticity, as well as the recognition of geochemical signs of biogenicity in the Archean successions. Resolving the biological affinities of early biota is essential for the unravelling the changes that led to modern biodiversity, but also for the detection of possible biogenic records outside of the terrestrial biosphere. Advanced techniques in microscopy, tomography and spectroscopy applied to examine individual microfossils at the highest attainable spatial resolution have provided unprecedented insights into micro- and nano-scale structure and composition of organic matter. Transmission and scanning electron microscopy studies of the wall ultrastructure of sphaeromorphic and ornamented acritarchs have revealed complex, single to multilayered walls, having a unique texture in sub-layers and an occasionally preserved trilaminar sheath structure (TLS) of the cell wall. A variety of optical characteristics, the electron density and texture of fabrics of discrete layers, and the properties of biopolymers may indicate the polyphyletic affiliations of such microfossils and/or the preservation of various stages (vegetative, resting) in their life cycle. I evaluate the morphological features of organic-walled unicellular microfossils in conjunction with their cell wall ultrastructure to infer their life cycle and to recognize various developmental stages represented among microfossils attributed to a single form-taxon. Several cases of fine wall ultrastructure in microfossils have been documented and have had a conclusive influence on understanding their affinities. Some Proterozoic and Cambrian leiosphaerids are of algal affinities. Certain specimens represent chlorophyceaens, having the multilayered composite wall with TLS structure known from vegetative and resting cells in modern genera of the Chlorococcales and Volvocales. The wall ultrastructure of

  10. Vanadium induced ultrastructural changes and apoptosis in male germ cells.

    PubMed

    Aragón, M A; Ayala, M E; Fortoul, T I; Bizarro, P; Altamirano-Lozano, M

    2005-01-01

    Vanadium is a transition metal that is emitted to the atmosphere during combustion of fossil fuels. In the environment, vanadium occurs in the (V) oxidized form, but in the body it is found exclusively in the (IV) oxidized form. Vanadium tetraoxide is an inorganic chemical species in the (IV) oxidized form that has been shown to induce toxic effects in vitro and in vivo. The reproductive toxicity of vanadium in males was studied through monitoring germ cell apoptosis during spermatogenesis. We analyzed ultrastructural damage, and testosterone and progesterone concentrations following vanadium tetraoxide administered to male mice for 60 days. Spermatogenesis stages I-III and X-XII frequently showed apoptotic germ cells in control and treated animals; vanadium tetraoxide treatment induced an increase in the number of germ cell apoptosis in stages I-III and XII at 9.4 and 18.8 mg/kg, respectively. Although spermatogenesis is regulated by testosterone, in our study this hormone level was not modified by vanadium administration; thus, germ cell death was not related with testosterone concentration. At the ultrastructural level, we observed inclusion structures that varied as to location and content in the Sertoli and germ cells. PMID:15808796

  11. The ultrastructural study of tumorigenic cells using nanobiomarkers.

    PubMed

    Pavon, Lorena Favaro; Marti, Luciana Cavalheiro; Sibov, Tatiana Tais; Malheiros, Suzana M F; Oliveira, Daniela Mara; Guilhen, Daiane Donna; Camargo-Mathias, Maria Izabel; Amaro Junior, Edson; Gamarra, Lionel Fernel

    2010-06-01

    Despite recent advances, patients with malignant brain tumors still have a poor prognosis. Glioblastoma (WHO grade 4 astrocytoma), the most malignant brain tumor, represents 50% of all astrocytomas, with a median survival rate of <1 year. It is, therefore, extremely important to search for new diagnostic and therapeutic approaches for patients with glioblastoma. This study describes the application of superparamagnetic nanoparticles of iron oxide, as well as monoclonal antibodies, of immunophenotypic significance, conjoined to quantum dots for the ultrastructural assessment of glioblastoma cells. For this proposal, an immunophenotypic study by flow cytometry was carried out, followed by transmission electron microscopy analysis. The process of tumor cell labeling using nanoparticles can successfully contribute to the identification of tumorigenic cells and consequently for better understanding of glioblastoma genesis and recurrence. In addition, this method may help further studies in tumor imaging, diagnosis, and prognostic markers detection. PMID:20578834

  12. How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells?

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    Columella cells of seedlings of Zea mays L. cv. Bear Hybrid grown in the microgravity of orbital flight allocate significantly larger relative-volumes to hyaloplasm and lipid bodies, and significantly smaller relative-volumes to dictyosomes, plastids, and starch than do columella cells of seedlings grown at 1 g. The ultrastructure of columella cells of seedlings grown at 1 g and on a rotating clinostat is not significantly different. However, the ultrastructure of cells exposed to these treatments differs significantly from that of seedlings grown in microgravity. These results indicate that the actions of a rotating clinostat do not mimic the ultrastructural effects of microgravity in columella cells of Z. mays.

  13. Effects of soft x-ray irradiation on cell ultrastructure

    NASA Astrophysics Data System (ADS)

    Ford, Thomas W.; Page, Anton M.; Foster, Guy F.; Stead, Anthony D.

    1993-01-01

    The future of x-ray microscopy lies mainly in its potential for imaging fresh, hydrated biological material at a resolution superior to that of light microscopy. For the image to be accepted as representing the cellular organization of the living cell, it is essential that artefacts are not introduced as a result of the image collection system. One possible source of artefacts is cellular damage resulting form the irradiation of the material with soft x rays. Cells of the unicellular alga Chlorella have been examined by transmission electron microscopy (TEM) following exposure to different doses of monochromatic (380 eV) soft x rays. Extreme ultrastructural damage has been detected following doses of 103 - 104 Gy, in particular loss of cellular membranes such as the internal thylakoid membranes of the chloroplast. This is discussed in relation to dosage commonly used for imaging by soft x-ray microscopy.

  14. Stromal cells in the human gut show ultrastructural features of fibroblasts and smooth muscle cells but not myofibroblasts.

    PubMed

    Eyden, Brian; Curry, Alan; Wang, Guofeng

    2011-07-01

    The free spindled cells of the lamina propria of the gut have been reported as showing fibroblastic, smooth-muscle and myofibroblastic differentiation. A precise understanding of the differentiation of these cells is essential for appreciating their functions, and this paper addresses this question using ultrastructural analysis. Histologically normal samples from different areas of the gastrointestinal tract were studied. Both subepithelial stromal cells, lying immediately beneath the basal lamina, and the deeper interstitial stromal cells, were studied. Subepithelial and interstitial cells had comparable features, reinforcing the idea that these formed a single reticulum of cells. Two major cell types were identified. Some were smooth-muscle cells, on the basis of abundant myofilaments with focal densities, glycogen, an irregular cell surface, focal lamina and multiple attachment plaques alternating with plasmalemmal caveolae. Some cells had a lesser expression of these markers, especially of myofilaments, and were regarded as poorly differentiated smooth-muscle cells and descriptively referred to as 'myoid'. Other cells were fibroblastic to judge by prominent rough endoplasmic reticulum, an absence of myofilaments and lamina, but presence of focal adhesions. The fibronexus junctions of true myofibroblasts were not seen. The study emphasises that the smooth-muscle actin immunoreactivity in this anatomical site resides in smooth-muscle cells and not in myofibroblasts, a view consistent with earlier ultrastructural and immunostaining results. The recognition that these cells are showing smooth-muscle or fibroblastic but not true myofibroblastic differentiation should inform our understanding of the function of these cells. PMID:20662992

  15. Dexamethasone induced ultrastructural changes in cultured human trabecular meshwork cells.

    PubMed

    Wilson, K; McCartney, M D; Miggans, S T; Clark, A F

    1993-09-01

    Glucocorticoid-induced ocular hypertension has been demonstrated in both animals and humans. It is possible that glucocorticoid-induced changes in trabecular meshwork (TM) cells are responsible for this hypertension. In order to elaborate further the effect of glucocorticoids on the trabecular meshwork, the ultrastructural consequences of dexamethasone (DEX) treatment were examined in three different human TM cell lines. Confluent TM cells were treated with 0.1 microM of DEX for 14 days, and then processed for light, epifluorescent microscopy or transmission electron microscopy (TEM). The effect of DEX treatment on TM cell and nuclear size was quantified using computer assisted morphometrics. Morphometric analysis showed a significant increase in both TM cell and nuclear size after 14 days of DEX treatment. Epifluorescent microscopy of rhodamine-phalloidin stained, control TM cells showed the normal arrangement of stress fibers. In contrast, DEX-treated TM cells showed unusual geodesic dome-like cross-linked actin networks. Control TM cells had the normal complement and arrangement of organelles as well as electron dense inclusions and large vacuoles. DEX-treated TM cells showed stacked arrangements of smooth and rough endoplasmic reticulum, proliferation of the Golgi apparatus, pleomorphic nuclei and increased amounts of extracellular matrix material. The DEX-induced alterations observed in the present study may be an indication of the processes that are occurring in the in vivo disease process. PMID:8261790

  16. Photodynamic therapy on the ultrastructure of glioma cell

    NASA Astrophysics Data System (ADS)

    Hu, Shaoshan; Zhang, Ruyou; Zheng, Yongri

    2005-07-01

    OBJECTIVE :the main purpose of this experiment was to study the change of C6 glioma cells' ultrastructure treated by photodynamic therapy(PDT), observe the change of morphology METHOD :Make the model of rat glioma by transplanted C6 glioma cells into caudate nucleus,treated the glioma rat by PDT after two weeks. Observed the difference of subcellular structure before and after PDT by electron microscope. RESULT : Apoptosis and necrosis can be seen after treated by PDT in the C6 glioma, basal membrance damaged ,number of cellular organ of endothelial cell of blood capillary declined,tight junction of endothelial cell lengthen and the gap enlarge. The PDT has slightly effect on the nomorl rat"s subcellular structue. CONCLUSION: PDT can induce the apoptosis and necrosis of C6 glioma cell. The damage of the ultramicrostructure of mitochondria and endoplasmic reticulum was the foundmentol of the change. PDT initiate the damage of BBB of the C6 glioma cell and weeken the function、and makes it a useful way of treating the glioma combained with chemotherapy.

  17. Melatonin action in tumor skeletal muscle cells: an ultrastructural study.

    PubMed

    Burattini, S; Battistelli, M; Codenotti, S; Falcieri, E; Fanzani, A; Salucci, S

    2016-04-01

    Melatonin (Mel), or N-acetyl-5-methoxytryptamine, is a circadian hormone that can diffuse through all the biological membranes thanks to its amphiphilic structure, also overcoming the blood-brain barrier and placenta. Although Mel has been reported to exhibit strong antioxidant properties in healthy tissues, studies carried out on tumor cultures gave a different picture of its action, often describing Mel as effective to trigger the cell death of tumor cells by enhancing oxidative stress. Based on this premise, here Mel effect was investigated using a tumor cell line representative of the human alveolar rhabdomyosarcoma (ARMS), the most frequent soft tissue sarcoma affecting childhood. For this purpose, Mel was given either dissolved in ethanol (EtOH) or dimethyl sulfoxide (DMSO) at different concentrations and time exposures. Cell viability assays and ultrastructural observations demonstrated that Mel was able to induce a dose- and time-dependent cell death independently on the dissolution solvent. Microscopy analyses highlighted the presence of various apoptotic and necrotic patterns correlating with the increasing Mel dose and time of exposure. These findings suggest that Mel, triggering apoptosis in ARMS cells, could be considered as a promising drug for future multitargeted therapies. PMID:26953151

  18. Ultrastructure and calcium balance in meristem cells of pea roots exposed to extremely low magnetic fields

    NASA Astrophysics Data System (ADS)

    Belyavskaya, N. A.

    2001-01-01

    Investigations of low magnetic field (LMF) effects on biological systems have attracted attention of biologists due to planned space flights to other planets where the field intensity does not exceed 10 -5 Oe. Pea ( Pisum sativum L.) seeds were grown in an environment of LMF 3 days. In meristem cells of roots exposed to LMF, one could observe such ultrastructural peculiarities as a noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids. Mitochondria were the most sensitive organelle to LMF application. Their size and relative volume in cells increased, matrix was electron-transparent, and cristae reduced. Because of the significant role of calcium signalling in plant responses to different environmental factors, calcium participation in LMF effects was investigated using a pyroantimonate method to identify the localization of free calcium ions. The intensity of cytochemical reaction in root cells after LMF application was strong. The Ca 2+ pyroantimonate deposits were observed both in all organelles and in a hyaloplasm of the cells. Data obtained suggest that the observed LMF effects on ultrastructure of root cells were due to disruptions in different metabolic systems including effects on Ca 2+ homeostasis.

  19. Cadmium-induced ultrastructural changes in Euglena cells

    SciTech Connect

    Duret, S.; Bonaly, J.; Bariaud, A.; Vannereau, A.; Mestre, J.C.

    1986-02-01

    The ultrastructure of Euglena gracilis grown in the presence of Cd showed only numerous myelin-like structures in mitochondria, chloroplasts altered in shape, and thylakoid arrangement and increase of osmiophilic plastoglobuli. These alterations indicate that respiratory processes are the initial target of Cd toxicity.

  20. Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure

    PubMed Central

    Wacker, Irene; Chockley, Peter; Bartels, Carolin; Spomer, Waldemar; Hofmann, Andreas; Gengenbach, Ulrich; Singh, Sachin; Thaler, Marlene; Grabher, Clemens; SCHRÖDER, RASMUS R

    2015-01-01

    For 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells. In addition, arrays were used for quantification of cell populations with respect to the various cell types they contained. The detection of immunological synapses in cocultures of cell populations from thymus or WKM with cancer cells helped to identify the cytotoxic nature of these cells. Our results demonstrate the practicality and benefit of AT for high-throughput ultrastructural imaging of substantial volumes. Lay Description To look at immune cells from zebrafish we employed array tomography, a technique where arrays of serial sections deposited on solid substrates are used for imaging. Cell populations were isolated from the different organs of zebrafish involved in haematopoiesis, the production of blood cells. They were chemically fixed and centrifuged to concentrate them in a pellet that was then dehydrated and embedded in resin. Using a custom-built handling device it was possible to place hundreds of serial sections on silicon wafers as well ordered arrays. To image a whole cell at a resolution that would allow identifying all the organelles (i.e. compartments surrounded by membranes) inside the cell, stacks of usually 50–100 images were recorded in a scanning electron microscope (SEM). This recording was either done manually or automatically using the newly released Atlas Array Tomography platform on a ZEISS SEM. For the imaging of the sections a pixel size of about 5 nm was chosen, which defines membrane boundaries very well and allows segmentation of the membrane topology. After alignment of the

  1. Morphologic, molecular, and ultrastructural characterization of a feline synovial cell sarcoma and derived cell line.

    PubMed

    Cazzini, Paola; Frontera-Acevedo, Karelma; Garner, Bridget; Howerth, Elizabeth; Torres, Bryan; Northrup, Nicole; Sakamoto, Kaori

    2015-05-01

    A 2.5-year-old, male, neutered cat presented with a 5-month history of progressive right hind limb lameness and an enlarged right popliteal lymph node. Radiographs revealed significant bony lysis of the tarsus and distal tibia, and fine-needle aspirate of the bone lesion and lymph node revealed a neoplastic population of cells with uncertain origin. Amputation was elected, and the mass was submitted for histology and cellular culture for better characterization. Histologic examination revealed a mixture of spindle-shaped cells and larger, round to polygonal cells. All cells were immunoreactive for vimentin, and only the larger polygonal cells were also positive for cytokeratin. All cells were negative for desmin, smooth muscle actin, cluster of differentiation (CD)3, CD18, CD79a, macrophage antibody (MAC)387, and glial fibrillary acidic protein. Cultured neoplastic cells failed to express CD18, and were not able to secrete the pro-inflammatory cytokines tumor necrosis factor-α, interleukin-1 (IL-1)β, and IL-6 when stimulated by lipopolysaccharide, disproving that the cells originated from the macrophage or monocyte line. Ultrastructurally, neoplastic cells were characterized by abundant rough endoplasmic reticulum, interdigitating cellular processes, and membrane condensations. Based on location and cytologic, histologic, ultrastructural, and functional studies, this neoplasm was considered a synovial cell sarcoma. PMID:25901004

  2. Ultrastructural analysis of cell component distribution in the apical cell of Ceratodon protonemata

    NASA Technical Reports Server (NTRS)

    Walker, L. M.; Sack, F. D.

    1995-01-01

    A distinctive feature of tip-growing plant cells is that cell components are distributed differentially along the length of the cell, although most ultrastructural analyses have been qualitative. The longtitudinal distribution of cell components was studied both qualitatively and quantitatively in the apical cell of dark-grown protonemata of the moss Ceratodon. The first 35 micrometers of the apical cell was analyzed stereologically using transmission electron microscopy. There were four types of distributions along the cell's axis, three of them differential: (1) tubular endoplasmic reticulum was evenly distributed, (2) cisternal endoplasmic reticulum and Golgi vesicles were distributed in a tip-to-base gradient, (3) plastids, vacuoles, and Golgi stacks were enriched in specific areas, although the locations of the enrichments varied, and (4) mitochondria were excluded in the tip-most 5 micrometers and evenly distributed throughout the remaining 30 micrometers. This study provides one of the most comprehensive quantitative, ultrastructural analyses of the distribution of cell components in the apex of any tip-growing plant cell. The finding that almost every component had its own spatial arrangement demonstrates the complexity of the organization and regulation of the distribution of components in tip-growing cells.

  3. Ultrastructural features of goat oviductal secretory cells at follicular and luteal phases of the oestrous cycle

    PubMed Central

    ABE, HIROYUKI; ONODERA, MASAKAZU; SUGAWARA, SHICHIRO; SATOH, TAKESHI; HOSHI, HIROYOSHI

    1999-01-01

    The aim of the present study was to investigate the ultrastructure of secretory cells in the various regions of the goat oviduct during the follicular and luteal phases of the oestrous cycle. During the follicular phase in the fimbriae, the secretory cells contained small secretory granules with electron-dense matrices. In the luteal phase, the secretory granules disappeared and cytoplasmic protrusions, extending beyond the luminal border of the ciliated cells and often containing the nucleus, were predominant. During the follicular phase in ampullary secretory cells, numerous secretory granules with moderately electron-dense matrices were present in the supranuclear cytoplasm and exocytosis of secretory granules was observed. The number of secretory granules was dramatically reduced in the ampullary secretory cells at the luteal phase. Conspicuous cytoplasmic protrusions of secretory cells were observed similar to those of the fimbrial epithelium. Isthmic cells were almost free of secretory granules and lysosome-like bodies were found both at the follicular and luteal phases. In conclusion, our ultrastructural observations of goat oviduct revealed marked cyclic changes in the ultrastructural features of secretory cells and the ultrastructural features and the numbers of secretory granules were distinctive for each particular segment. PMID:10634690

  4. Pollen and microsporangium development in Hovenia dulcis (Rhamnaceae): a different type of tapetal cell ultrastructure.

    PubMed

    Gotelli, Marina M; Galati, Beatriz G; Zarlavsky, Gabriela; Medan, Diego

    2016-07-01

    Despite that there is some literature on pollen morphology of Rhamnaceae, studies addressing general aspects of the microsporogenesis, microgametogenesis, and anther development are rare. The aim of this paper is to describe the ultrastructure of pollen grain ontogeny with special attention to tapetum cytology in Hovenia dulcis. Anthers at different stages of development were processed for transmission and scanning electron microscopy, bright-field microscopy, and fluorescence microscopy. Different histochemical reactions were carried out. The ultrastructural changes observed during the development of the tapetal cells and pollen grains are described. Large vesicles containing carbohydrates occur in the tapetal cell cytoplasm during the early stages of pollen development. Its origin and composition are described and discussed. This is the first report on the ontogeny and ultrastructure of the pollen grain and related sporophytic structures of H. dulcis. PMID:26277353

  5. Inflammation and Cell Death in Age-Related Macular Degeneration: An Immunopathological and Ultrastructural Model.

    PubMed

    Ardeljan, Christopher P; Ardeljan, Daniel; Abu-Asab, Mones; Chan, Chi-Chao

    2014-01-01

    The etiology of Age-related Macular Degeneration (AMD) remains elusive despite the characterization of many factors contributing to the disease in its late-stage phenotypes. AMD features an immune system in flux, as shown by changes in macrophage polarization with age, expression of cytokines and complement, microglial accumulation with age, etc. These point to an allostatic overload, possibly due to a breakdown in self vs. non-self when endogenous compounds and structures acquire the appearance of non-self over time. The result is inflammation and inflammation-mediated cell death. While it is clear that these processes ultimately result in degeneration of retinal pigment epithelium and photoreceptor, the prevalent type of cell death contributing to the various phenotypes is unknown. Both molecular studies as well as ultrastructural pathology suggest pyroptosis, and perhaps necroptosis, are the predominant mechanisms of cell death at play, with only minimal evidence for apoptosis. Herein, we attempt to reconcile those factors identified by experimental AMD models and integrate these data with pathology observed under the electron microscope-particularly observations of mitochondrial dysfunction, DNA leakage, autophagy, and cell death. PMID:25580276

  6. Involution of human fetal Leydig cells. An immunohistochemical, ultrastructural and quantitative study.

    PubMed Central

    Codesal, J; Regadera, J; Nistal, M; Regadera-Sejas, J; Paniagua, R

    1990-01-01

    The testes of stillborn fetuses (from 13 to 28 weeks of gestational age), fetuses born alive (from 29 weeks of gestational age) who died a few days later, and infants dying 1 to 8 months after birth were processed for light and electron microscopy. Paraffin-embedded material was stained with the avidin-biotin peroxidase complex (ABC) method for immunohistochemical detection of testosterone (T) in order to quantify the age-related changes in the number of T-positive interstitial cells. This number decreased progressively from the 24th week of gestation up to birth and remained unchanged up to the second month of postnatal life. During the third month of age, the number of T-positive cells rose markedly but fell again from the fourth month to the end of the study. The ultrastructural study revealed the following types of interstitial cells at all ages studied: fibroblast-like cells, myofibroblast-like cells, developed fetal Leydig cells, degenerating fetal Leydig cells and infantile Leydig cells with a multilobed nucleus and focal cytoplasmic accumulations of smooth endoplasmic reticulum and lipid droplets. Quantitative ultrastructural studies revealed that the changes in the number of fetal Leydig cells with age were similar to those found in the number of T-positive cells although, for each age studied, absolute values were higher in the ultrastructural study. The number of infantile Leydig cells increased with age. Images Figs. 1-4 Figs. 5-9 Figs. 10-11 PMID:2272896

  7. Long clinostation influence on the ultrastructure of Funaria hygrometrica moss protonema cells

    NASA Astrophysics Data System (ADS)

    Nedukha, E. M.

    Changes in the ultrastructure of protonema cells of Funaria hygrometrica, cultivated during 20 days on a horizontal clinostat (2 rev/min), were determined by the electron microscopy method. About 20% of the cells were almost identical to those in the control, 20% were destructive cells, and in 60% ultrastructure changes were observed. The heterogeneity of the reaction demonstrated the evidence of sensitive cells on the clinostation process. Changes affected the ultrastructure of plastids, wall of the cell, and the form of the nucleus as well. Starch disappeared from chloroplasts practically completely, thylakoids swelled, granas frequently disappeared from plastids. Peroxisomes number in cells increased appreciably, width of cell walls decreased by almost half their size. Ca++-binding sites were revealed in cytoplasma of cells. Electronocytochemical exposure of ATPases activity with the presence of Mg++ and Ca++ ions showed that Mg2+-ATPase activity localization in clinosted cells was not too different from the control, while Ca2+-ATPase location presented differences in plasmalemma and Ca-sites. These changes are perhaps connected with the membranes permeability breaking and affect the plant cells adaptation to the influence of hypogravitation.

  8. Ultrastructure of Zika virus particles in cell cultures.

    PubMed

    Barreto-Vieira, Debora Ferreira; Barth, Ortrud Monika; Silva, Marcos Alexandre Nunes da; Santos, Carolina Cardoso; Santos, Aline da Silva; F, Joaquim Batista; Filippis, Ana Maria Bispo de

    2016-08-01

    Zika virus (ZIKV) has infected thousands of Brazilian people and spread to other American countries since 2015. The introduction of ZIKV brought a strong impact to public health in Brazil. It is of utmost importance to identify a susceptible cell line that will enable the isolation and identification of the virus from patient samples, viral mass production, and testing of drug and vaccine candidates. Besides real-time reverse transcriptase polymerase chain reaction diagnosis for detecting the viral genome, virus isolation in cell lines was useful in order to study the structure of the viral particle and its behaviour inside cells. Analysis of ZIKV infected cell lines was achieved using transmission electron microscopy (TEM). Blood was obtained from a Brazilian patient during the first days after presenting with signs of the disease, and ZIKV from the patient's blood was isolated in the C6/36 mosquito cell line. Afterwards, Vero cells were inoculated with the viral suspension, fixed six days after inoculation, embedded in polymers, and ultra-thin cut. Like dengue viruses, this flavivirus showed numerous virus particles present inside cellular vesicles thereby confirming the susceptibility of the Vero cell line to ZIKV replication. TEM is a unique technique available to make the virus visible. PMID:27581122

  9. Ultrastructure of Zika virus particles in cell cultures

    PubMed Central

    Barreto-Vieira, Debora Ferreira; Barth, Ortrud Monika; da Silva, Marcos Alexandre Nunes; Santos, Carolina Cardoso; Santos, Aline da Silva; F, Joaquim Batista; de Filippis, Ana Maria Bispo

    2016-01-01

    Zika virus (ZIKV) has infected thousands of Brazilian people and spread to other American countries since 2015. The introduction of ZIKV brought a strong impact to public health in Brazil. It is of utmost importance to identify a susceptible cell line that will enable the isolation and identification of the virus from patient samples, viral mass production, and testing of drug and vaccine candidates. Besides real-time reverse transcriptase polymerase chain reaction diagnosis for detecting the viral genome, virus isolation in cell lines was useful in order to study the structure of the viral particle and its behaviour inside cells. Analysis of ZIKV infected cell lines was achieved using transmission electron microscopy (TEM). Blood was obtained from a Brazilian patient during the first days after presenting with signs of the disease, and ZIKV from the patient’s blood was isolated in the C6/36 mosquito cell line. Afterwards, Vero cells were inoculated with the viral suspension, fixed six days after inoculation, embedded in polymers, and ultra-thin cut. Like dengue viruses, this flavivirus showed numerous virus particles present inside cellular vesicles thereby confirming the susceptibility of the Vero cell line to ZIKV replication. TEM is a unique technique available to make the virus visible. PMID:27581122

  10. Ultrastructural characteristics of type A epithelioid cells during BCG-granulomatosis and treatment with lysosomotropic isoniazid.

    PubMed

    Shkurupii, V A; Kozyaev, M A; Nadeev, A P

    2006-04-01

    We studied BCG-granulomas, their cellular composition, and ultrastructure of type A epithelioid cells in the liver of male BALB/c mice with spontaneous granulomatous inflammation. The animals received free isoniazid or isoniazid conjugated with lysosomotropic intracellularly prolonged matrix (dialdehyde dextran, molecular weight 65-75 kDa). Lysosomotropic isoniazid was accumulated in the vacuolar apparatus of epithelioid cells and produced a stimulatory effect on plastic processes in these cells. PMID:17152378

  11. Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall

    PubMed Central

    Scholz, Matthew J.; Weiss, Taylor L.; Jinkerson, Robert E.; Jing, Jia; Roth, Robyn; Goodenough, Ursula; Posewitz, Matthew C.

    2014-01-01

    Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (∼75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes. PMID:25239976

  12. Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells

    SciTech Connect

    Bhargava, U.; Bar-Lev, M.; Bellows, C.G.; Aubin, J.E.

    1988-01-01

    When cells enzymatically digested from 21 d fetal rat calvaria are grown in ascorbic acid and Na beta-glycerophosphate, they form discrete three-dimensional nodular structures with the histological and immunohistochemical appearance of woven bone. The present investigation was undertaken to verify that bone-like features were identifiable at the ultrastructural level. The nodules formed on top of a fibroblast-like multilayer of cells. The upper surface of the nodules was lined by a continuous layer of cuboidal osteoblastic cells often seen to be joined by adherens junctions. Numerous microvilli, membrane protrusions, and coated pits could be seen on the upper surface of these cells, their cytoplasm contained prominent RER and Golgi membranes, and processes extended from their lower surfaces into a dense, highly organized collagenous matrix. Some osteocyte-like cells were completely embedded within this matrix; they also displayed RER and prominent processes which extended through the matrix and often made both adherens and gap junctional contacts with the processes of other cells. The fibroblastic cells not participating in nodule formation were surrounded by a less dense collagenous matrix and, in contrast to the matrix of the nodules, it did not mineralize. An unmineralized osteoid-like layer was seen directly below the cuboidal top layer of cells. A mineralization front was detectable below this in which small, discrete structures resembling matrix vesicles and feathery mineral crystals were evident and frequently associated with the collagen fibrils. More heavily mineralized areas were seen further into the nodule. Electron microprobe and electron and X-ray diffraction analysis confirmed the mineral to be hydroxyapatite.

  13. Clear cell papillary renal cell carcinoma: a clinicopathological study emphasizing ultrastructural features and cytogenetic heterogeneity.

    PubMed

    Shi, Shan-Shan; Shen, Qin; Xia, Qiu-Yuan; Tu, Pin; Shi, Qun-Li; Zhou, Xiao-Jun; Rao, Qiu

    2013-01-01

    Clear cell papillary renal cell carcinoma (CCPRCC) is a recently recognized renal neoplasm, which was initially described in end-stage renal disease (ESRD), but some cases have been reported in otherwise normal kidneys. We report a series of 11 CCPRCC (age range, 33-72 years; male-to-female ratio, 8:3). Follow-up was available for 8 patients. No patients developed local recurrence, distant or lymph-node metastasis, or cancer death. Histologically, all tumors exhibit morphologic features typical of CCPRCC including a mixture of cystic and papillary components, covered by small to medium-sized cuboidal cells with abundant clear cytoplasm. All 11 cases exhibited moderate to strong positivity for CK7, CA9, Vim, and HIF-1α, coupled with negative reactions for CD10, P504S, and RCC. We did not find any VHL gene mutations in all 11 cases. Losses of chromosomes 3 (monoploid chromosome 3) was detected in 3 cases. Ultrastructurally, the tumor cells composed of numerous glycogens with scanty cell organelles, reminiscent of clear cell renal cell carcinoma (CCRCC). In conclusion, the coexpression of CA9 and HIF-1α in the absence of VHL gene abnormalities in CCPRCC suggests activation of the HIF pathway by mechanisms independent of VHL gene mutation. Losses of chromosomes 3 (monosomies chromosome 3) was detected in 3 cases suggesting that at least some of these lesions have demonstrated abnormalities of chromosomes 3. Ultrastructurally, CCPRCC composed of numerous glycogens with scanty cell organelles, reminiscent of CCRCC suggesting the close pathogenesis relationship of CCPRCC with CCRCC. PMID:24294381

  14. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus

    PubMed Central

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  15. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus.

    PubMed

    Ma, Shengli; Zhao, Yingnan; Xia, Xue; Dong, Xue; Ge, Wenyu; Li, Hui

    2015-01-01

    Candida albicans (C.a) and Candida tropicalis (C.t) were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin), respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05) after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin. PMID:26064919

  16. Peculiarities of ultrastructure of Chlorella cells growing aboard the Bion-10 during 12 days

    NASA Astrophysics Data System (ADS)

    Popova, A. F.; Sytnik, K. M.

    The ultrastructure of Chlorella cells grown in darkness on a solid agar medium with organic additions aboard the Bion-1O biosatellite was studied. Certain differences in submicroscopic organization of organelles in the experimental cells were revealed compared to the Earth control. The changes are registered mainly in ultrastructure of energetic organelles - mitochondria and plastids of the experimental cells, in particular, an increase of mitochondria and their cristae size, as well as an increase of the total volume of mitochondrion per cell were established. The decrease of the starch amount in the plastid stroma and the electron density of the latter was also observed. In many experimental cells, the increase of condensed chromatin in the nuclei has been noted. Ultrastructural rearrangements in cells after laboratory experiment realized according to the thermogram registered aboard the Bion-10 were insignificant compared to the flight experiment. Data obtained are compared to results of space flight experiments carried out aboard the Bion-9 (polycomponent aquatic system) and the orbital station Mir (solid agar medium).

  17. Ultrastructural studies on erythropoiesis in the avian thymus. I. Description of cell types.

    PubMed

    Kendall, M D; Frazier, J A

    1979-06-01

    Thymus lobes from three species of birds, Quelea quelea, Passer domesticus and Sturnus vulgaris, have been examined ultrastructurally. The component cell types are compared with their counterparts in mammalian thymus glands, and found to be similar. Greater differences between small, intermediate and enlarged lobes of one species than exist between species. Developing erythroid cells are present in most enlarging and some enlarged glands. They appear to be developing at the expense of lymphoid cells in some birds. The origin of these cells is discussed. Cells that are possible candidates for the production of some thymic hormones are also described. PMID:466697

  18. Ultrastructural study of mouse adipose-derived stromal cells induced towards osteogenic direction.

    PubMed

    Tsupykov, Oleg; Ustymenko, Alina; Kyryk, Vitaliy; Smozhanik, Ekaterina; Yatsenko, Kateryna; Butenko, Gennadii; Skibo, Galina

    2016-06-01

    We investigated the ultrastructural characteristics of mouse adipose-derived stem/stromal cells (ASCs) induced towards osteogenic lineage. ASCs were isolated from adipose tissue of FVB-Cg-Tg(GFPU)5Nagy/J mice and expanded in monolayer culture. Flow cytometry, histochemical staining, and electron microscopy techniques were used to characterize the ASCs with respect to their ability for osteogenic differentiation capacity. Immunophenotypically, ASCs were characterized by high expression of the CD44 and CD90 markers, while the relative content of cells expressing CD45, CD34 and CD117 markers was <2%. In assays of differentiation, the positive response to osteogenic differentiation factors was observed and characterized by deposition of calcium in the extracellular matrix and alkaline phosphatase production. Electron microscopy analysis revealed that undifferentiated ASCs had a rough endoplasmic reticulum with dilated cisterns and elongated mitochondria. At the end of the osteogenic differentiation, the ASCs transformed from their original fibroblast-like appearance to having a polygonal osteoblast-like morphology. Ultrastructurally, these cells were characterized by large euchromatic nucleus and numerous cytoplasm containing elongated mitochondria, a very prominent rough endoplasmic reticulum, Golgi apparatus and intermediate filament bundles. Extracellular matrix vesicles of variable size similar to the calcification nodules were observed among collagen fibrils. Our data provide the ultrastructural basis for further studies on the cellular mechanisms involved in osteogenic differentiation of mouse adipose-derived stem/stromal cells. Microsc. Res. Tech. 79:557-564, 2016. © 2016 Wiley Periodicals, Inc. PMID:27087359

  19. Distribution and ultrastructural characteristics of dark cells in squamous metaplasias of the respiratory tract epithelium. [Rats

    SciTech Connect

    Klein-Szanto, A.J.P.; Nettesheim, P.; Pine, A.; Martin, D.

    1981-05-01

    Dark epithelial basal cells were found in both carcinogen-induced and non-carcinogen-induced squamous metaplasias of the tracheal epithelium. Formaldehyde-induced squamous metaplasias exhibited 4% dark cells in the basal layer. Metaplasias induced by vitamin A deficiency and those induced by dimethylbenz(a)anthracene (DMBA) without atypia showed 18-20% basal dark cells. DMBA-induced metaplasias with moderate to severe atypia exhibited 50% basal dark cells. The labeling index of basal cells in metaplastic epithelia, regardless of the inducing agent, was 16-18%, ie, the same as that of the normal esophageal stratified squamous epithelium. The percentage of labeled dark basal cells per total dark cell population was approximately 19% in the non-carcinogen-induced metaplasias and in the DMBA-induced metaplasias without atypia. In the atypical metaplasias induced by DMA this percentage increased to 26. On the basis of ultrastructural observations, five types of dark epithelial cells could be distinguished in the metaplastic epithelia. Each type of squamous metaplasia could thus be recognized by a determined numerical distribution of dark cells in the basal layer and a specific pattern of distribution of the ultrastructurally defined dark cell categories.

  20. Biochemistry and cell ultrastructure changes during senescence of Beta vulgaris L. leaf.

    PubMed

    Romanova, Alla K; Semenova, Galina A; Ignat'ev, Alexander R; Novichkova, Natalia S; Fomina, Irina R

    2016-05-01

    The comparative study of biochemical and ultrastructure features in senescing sugar beet (Beta vulgaris L.) leaves was carried out. One group of plants was grown under normal conditions in washed river sand and poured in turn with nitrate-containing mineral solution or water (N plants). Another group of plants, after 1 month of normal growth, was further grown with nitrate omitted in the nutritive solution (defN plants). The starting point of normal leaf senescence in N plants was identified by the maximal content of soluble protein. Soluble carbohydrate pools were statistically constant in senescing N plants, whereas glucose pools varied noticeably. A decrease in the contents of soluble protein and chlorophyll (a + b) in the course of senescing was typical for N plant leaves. The cell membrane in N plant leaves remained mostly intact; the central vacuoles in the leaf cells were large, and their membranes remained intact. The chloroplasts and mitochondria in senescing N plant leaves became swollen. The vesicles that were present in the cytoplasm of N plant leaves were especially large in the oldest leaves. It was concluded that senescing of sugar beet leaves at sufficient nitrate nutrition occurs according to a "vacuolar" scenario. In the case of nitrate deficiency, the content of soluble carbohydrates in defN leaves first reached maximum and then decreased in older leaves; the protein and chlorophyll (a + b) contents were totally lower than those in normal leaves and continuously decreased during the experiments. Chloroplasts in mesophyll cells of defN plant leaves became more rounded; starch grains in chloroplasts degraded and the number and size of lipid globules increased. The multitude of membrane impairments and lots of large vesicles-"crystals" appeared during the experiment. The results showed the controlling action of nitrogen nutrition in the senescing of sugar beet leaves. PMID:26666552

  1. Ultrastructural changes in muscle cells of patients with collagen VI-related myopathies.

    PubMed

    Tagliavini, Francesca; Sardone, Francesca; Squarzoni, Stefano; Maraldi, Nadir Mario; Merlini, Luciano; Faldini, Cesare; Sabatelli, Patrizia

    2013-10-01

    Collagen VI is an extracellular matrix protein expressed in several tissues including skeletal muscle. Mutations in COL6A genes cause Bethlem Myopathy (BM), Ullrich Congenital Muscular Dystrophy (UCMD) and Myosclerosis Myopathy (MM). Collagen VI deficiency causes increased opening of the mitochondrial permeability transition pore (mPTP), leading to ultrastructural and functional alterations of mitochondria, amplified by impairment of autophagy. Here we report for the first time ultrastructural studies on muscle biopsies from BM and UCMD patients, showing swollen mitochondria with hypodense matrix, disorganized cristae and paracrystalline inclusions, associated with dilated sarcoplasmic reticulum and apoptotic changes. These data were supported by scanning electron microscopy analysis on BM and UCMD cultured cells, showing alterations of the mitochondrial network. Morphometric analysis also revealed a reduced short axis and depicted swelling in about 3% of mitochondria. These data demonstrate that mitochondrial defects underlie the pathogenetic mechanism in muscle tissue of patients affected by collagen VI myopathies. PMID:24596691

  2. GABAergic and glycinergic pathways to goldfish retinal ganglion cells: an ultrastructural double label study

    SciTech Connect

    Muller, J.F.

    1987-01-01

    An ultrastructural double label has been employed to compare GABAergic and glycinergic systems in the inner plexiform layer (IPL) of the goldfish retina. Electron microscope autoradiography of /sup 3/H-GABA and /sup 3/H-glycine uptake was combined with retrograde HRP-labeling of ganglion cells. When surveyed for distribution, GABAergic and glycinergic synapses were found onto labeled ganglion cells throughout the IPL. This reinforces previous physiological work that described GABAergic and glycinergic influences on a variety of ganglion cells in goldfish and carp; These physiological effects often reflect direct inputs.

  3. Ultrastructural evidence for divergent and alternating differentiations in spindle cell sarcoma xenografts.

    PubMed

    Schmidt, U; Stüben, G; Stuschke, M; Donhuijsen, K

    1997-04-01

    Seven spindle cell sarcomas, 5 poorly differentiated ones and 2 moderately well differentiated ones, were established on nude mice and long term passaging was done. Sarcoma strains were analysed electron microscopically in an attempt to get further insight in spindle cell sarcoma differentiation pathways. Ultrastructurally, the tumours were classified as malignant peripheral nerve sheath tumour (3/7), leiomyosarcoma (2/7), rhabdomyosarcoma (1/7), and spindle cell sarcoma not otherwise classifiable (1/7). Undifferentiated tumour cells including fibroblastoid ones predominated in most xenografts, whereas cells harbouring cytoplasmic specificities tended to be few in number. Nevertheless, divergent differentiations exhibiting unusual double or triple patterns could be documented ultrastructurally in 12/30 xenografts with juxtaposed myomatous as well as nerve sheath-like cells and, in addition, histiocytoid (MFH-like) elements in 3 of the xenografts. Moreover, sarcoma strains alternated fine structural constellations in the course of passaging, whereby different phenotypes, myomatous, nerve sheath-like, unspecific, or mixed ones, succeeded one another. These findings pursue recent immunohistochemical data on multidirectional sarcoma differentiation by means of electron microscopy. They, furthermore, fit well into the concept of multipotential stem cells as progenitors in mesenchymal differentiation and suggest microenvironment to play a modifying role in the expression of cell differentiation. PMID:9165712

  4. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    DOE PAGESBeta

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-06-24

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and themore » overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. In conclusion, to our knowledge, this is the first direct evidence, delineated by

  5. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability.

    PubMed

    Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P

    2016-01-01

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that

  6. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    PubMed Central

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-01-01

    The composition, integrity, and architecture of the macromolecular matrix of cell walls, collectively referred to as cell wall ultrastructure, exhibits variation across species and organs and among cell types within organs. Indirect approaches have suggested that modifications to cell wall ultrastructure occur in response to abiotic stress; however, modifications have not been directly observed. Glycome profiling was used to study cell wall ultrastructure by examining variation in composition and extractability of non-cellulosic glycans in cell walls of stem wood, roots, and needles of loblolly pine saplings exposed to high and low soil moisture. Soil moisture influenced physiological processes and the overall composition and extractability of cell wall components differed as a function of soil moisture treatments. The strongest response of cell wall ultrastructure to soil moisture was increased extractability of pectic backbone epitopes in the low soil moisture treatment. The higher abundance of these pectic backbone epitopes in the oxalate extract indicate that the loosening of cell wall pectic components could be associated with the release of pectic signals as a stress response. The increased extractability of pectic backbone epitopes in response to low soil moisture availability was more pronounced in stem wood than in roots or needles. Additional responses to low soil moisture availability were observed in lignin-associated carbohydrates released in chlorite extracts of stem wood, including an increased abundance of pectic arabinogalactan epitopes. Overall, these results indicate that cell walls of loblolly pine organs undergo changes in their ultrastructural composition and extractability as a response to soil moisture availability and that cell walls of the stem wood are more responsive to low soil moisture availability compared to cell walls of roots and needles. To our knowledge, this is the first direct evidence, delineated by glycomic analyses, that

  7. Ultrastructural Aspects of the Prenatal Bovine Ovary Differentiation with a Special Focus on the Interstitial Cells.

    PubMed

    Kenngott, R A-M; Scholz, W; Sinowatz, F

    2016-10-01

    The aim of this investigation was to study the ultrastructural features during the development of fetal bovine ovaries (crown rump length ranging from 11.4 to 94.0 cm). An interesting observation was the occurrence of big elongated cells containing a variety of electron dense granules and light homogenous vacuoles/bodies. They were located between the stroma cells surrounding the germ cell cord ends, adjacent to the first formed primordial follicles, typically situated near blood vessels. ER alpha and ER beta receptor positive cells could be detected in the same regions by means of immunohistochemistry. Intercellular bridges linked the germ cells nests oogonia. Germ cell cords consisted of centrally located, large, pale oogonia, surrounded by elongated somatic cells with very long cytoplasm extensions. Primordial follicles with flat pale follicular cells could be observed on the inner end of the cords. Extrusions of the outer nuclear membrane could often been recognised in voluminous oocytes. PMID:27439665

  8. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize.

    PubMed

    Ren, Baizhao; Cui, Haiyan; Camberato, James J; Dong, Shuting; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2016-08-01

    A field experiment was conducted to study the effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of two summer maize hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking (R1) to physiological maturity (R6) (S1), from the sixth leaf stage (V6) to R1 (S2), and from seeding to R6 (S3), respectively. The net photosynthetic rate (P n) was significantly decreased after shading. The greatest reduction of P n was found at S3 treatment, followed by S1 and S2 treatments. P n of S3 was decreased by 59 and 48 % for DH605, and 39 and 43 % for ZD958 at tasseling and milk-ripe stages, respectively, compared to that of CK. Additionally, leaf area index (LAI) and chlorophyll content decreased after shading. In terms of mesophyll cell ultrastructure, chloroplast configuration of mesophyll cells dispersed, and part of chloroplast swelled and became circular. Meanwhile, the major characteristics of chloroplasts showed poorly developed thylakoid structure at the early growth stage, blurry lamellar structure, loose grana, and a large gap between slices and warping granum. Then, plasmolysis occurred in mesophyll cells and the endomembrane system was destroyed, which resulted in the dissolution of cell membrane, karyotheca, mitochondria, and some membrane structures. The damaged mesophyll cell ultrastructure led to the decrease of photosynthetic capacity, and thus resulted in significant yield reduction by 45, 11, and 84 % in S1, S2, and S3 treatments, respectively, compared to that of CK. PMID:27437706

  9. Improved sectioning and ultrastructure of bacteria and animal cells embedded in Lowicryl.

    PubMed

    Bénichou, J C; Fréhel, C; Ryter, A

    1990-04-01

    Lowicryl K4M-embedded Gram-positive and Gram-negative bacteria have a tendency to separate between the cell surface and the resin. This often leads to distortion of bacteria and more especially of mycobacteria. We describe attempts made to overcome this technical problem. Different assays were made on Bacillus subtilis, Escherichia coli, and Mycobacterium avium: 1) Modification of the bacterial surface by coating of bacteria with proteinic compounds; 2) treatment of bacteria with metallic salts known to modify cell wall polysaccharides; and 3) comparison between Lowicryl K4M and HM20. Conditions have been found in which the separation of all bacterial species from the resin is abolished. The most important factor appeared to be the treatment of bacteria before dehydration, with 0.5% uranyl acetate for 30 min. The second most important factor, especially for M. avium and to a lower extent for Gram-negative bacteria, was the use of Lowicryl HM20. No differences were observed with Gram-positive bacteria between K4M and HM20. Pre-embedding in gelatin instead of agar improved sectioning of M. avium, but had no effects on the other bacterial species. These conditions applied to macrophages infected with Shigella dysenteriae or M. avium also gave excellent results. In addition to sectioning improvement of bacteria, uranyl acetate improved the ultrastructure of bacteria and macrophages. All organelles were more clearly delineated and, hence, more easily identified. Finally, it was shown that UA treatment did not affect immunogold labeling of a variety of antigens. PMID:2110246

  10. Tumour Angiogenesis: Ultrastructure of Endothelial Cells in Mitosis

    PubMed Central

    Warren, B. A.; Greenblatt, M.; Kommineni, V. R. C.

    1972-01-01

    Under the influence of a diffusible factor or factors from melanoma tumour tissue and neonatal hamster renal tissue, which passed through millipore filters, the endothelial cells of capillaries and small venules in the adult hamster were found to undergo mitotic division. Occasional endothelial cells in mitosis were noted in small arteries. Endothelial cells within the same vessel did not undergo mitosis in a synchronous fashion. During mitosis they retained intact their intercellular junctions with adjacent endothelial cells. No specific orientation of the mitotic spindle to the long axis of the vessel was noted. The usual appearance of cells in division was observed in this specific instance of endothelial cells in an adult animal undergoing mitotic division. In particular the formation of chromosomes and the various changes that ensue in the nuclear membrane were traced within endothelial cells. Typical spindle lamellae were found in cells during the formation of the membranes of the daughter nuclei. ImagesFig. 7Fig. 1Figs. 2-3Figs. 4-5Fig. 6 PMID:4555714

  11. Ultrastructural Analysis of Different Human Mesenchymal Stem Cells After in Vitro Expansion: A Technical Review

    PubMed Central

    Danišovič, Ľ.; Majidi, A.; Varga, I.

    2015-01-01

    Transmission electron microscopy reveals ultrastructural details of cells, and it is a valuable method for studying cell organelles. That is why we used this method for detailed morphological description of different adult tissue-derived stem cells, focusing on the morphological signs of their functions (proteosynthetic activity, exchange with external environment, etc.) and their comparison. Preparing a specimen from the cell culture suitable for transmission electron microscopy is, however, much more challenging than routine tissue processing for normal histological examination. There are several issues that need to be solved while working with cell pellets instead of solid tissue. Here we describe a simple protocol for the isolation and culture of mesenchymal stem cells from different adult tissues, with applications to stem cell biology and regenerative medicine. Since we are working with population of cells that was obtained after many days of passaging, very efficient and gentle procedures are highly necessary. We demonstrated that our semi-conservative approach regarding to histological techniques and processing of cells for transmission electron microscopy is a well reproducible procedure which results in quality pictures and images of cell populations with minimum distortions and artifacts. We also commented about riskiest steps and histochemical issues (e.g., precise pH, temperature) while preparing the specimen. We bring full and detailed procedures of fixation, post-fixation, infiltration, embedding, polymerization and contrasting of cell obtained from in vitro cell and tissue cultures, with modifications according to our experience. All this steps are essential for us to know more about adult stem cells derived from different sources or about other random cell populations. The knowledge about detailed ultra-structure of adult stem cells cultured in vitro are also essential for their using in regenerative medicine and tissue engineering. PMID:26708176

  12. Ultrastructural comparison of porcine putative embryonic stem cells derived by in vitro fertilization and somatic cell nuclear transfer.

    PubMed

    Yoo, Hyunju; Kim, Eunhye; Hwang, Seon-Ung; Yoon, Junchul David; Jeon, Yubyeol; Park, Kyu-Mi; Kim, Kyu-Jun; Jin, Minghui; Lee, Chang-Kyu; Lee, Eunsong; Kim, Hyunggee; Kim, Gonhyung; Hyun, Sang-Hwan

    2016-04-22

    The ultrastructure of porcine putative embryonic stem cells and porcine fetal fibroblasts (PFFs) was analyzed by transmission electron microscopy. The aim of this study was to compare the features of organelles in in vitro fertilization (IVF) derived porcine embryonic stem cells (IVF-pESCs) and somatic cell nuclear transfer (SCNT) derived pESCs (SCNT-pESCs). Also, the features of organelles in high-passage IVF-pESCs were compared with those in low-passage cells. The ultrastructure of PFFs showed rare microvilli on the cell surfaces, polygonal or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, elongated mitochondria, rich lysosomes and rich phagocytic vacuoles. IVF-pESCs showed rare microvilli on the cell surfaces, round or irregular nuclei with one to two reticular-shaped nucleoli and euchromatin, low cytoplasm-to-nucleus ratios, rich ribosomes, long stacks of rough endoplasmic reticulum, elongated mitochondria, rare lysosomes and rare autophagic vacuoles. By contrast, SCNT-pESCs showed rich microvilli with various lengths and frequencies on the cell surfaces, polygonal nuclei with one reticular shaped nucleoli and heterochromatin, high cytoplasm-to-nucleus ratios, rare ribosomes, rare rough endoplasmic reticulum, round mitochondria, rich lysosomes and rich phagocytic vacuoles with clear intercellular junctions. Furthermore, high-passage IVF-pESCs showed irregularly shaped colonies, pyknosis and numerous lysosomes associated with autophagic vacuoles showing signs of apoptosis. In conclusion, this study confirms that the ultrastructural characteristics of pESCs differ depending on their origin. These ultrastructural characteristics might be useful in biomedical research using pESCs, leading to new insights regarding regenerative medicine and tissue repair. PMID:26821870

  13. Adaptive response to starvation in the fish pathogen Flavobacterium columnare: cell viability and ultrastructural changes

    PubMed Central

    2012-01-01

    Background The ecology of columnaris disease, caused by Flavobacterium columnare, is poorly understood despite the economic losses that this disease inflicts on aquaculture farms worldwide. Currently, the natural reservoir for this pathogen is unknown but limited data have shown its ability to survive in water for extended periods of time. The objective of this study was to describe the ultrastructural changes that F. columnare cells undergo under starvation conditions. Four genetically distinct strains of this pathogen were monitored for 14 days in media without nutrients. Culturability and cell viability was assessed throughout the study. In addition, cell morphology and ultrastructure was analyzed using light microscopy, scanning electron microscopy, and transmission electron microscopy. Revival of starved cells under different nutrient conditions and the virulence potential of the starved cells were also investigated. Results Starvation induced unique and consistent morphological changes in all strains studied. Cells maintained their length and did not transition into a shortened, coccus shape as observed in many other Gram negative bacteria. Flavobacterium columnare cells modified their shape by morphing into coiled forms that comprised more than 80% of all the cells after 2 weeks of starvation. Coiled cells remained culturable as determined by using a dilution to extinction strategy. Statistically significant differences in cell viability were found between strains although all were able to survive in absence of nutrients for at least 14 days. In later stages of starvation, an extracellular matrix was observed covering the coiled cells. A difference in growth curves between fresh and starved cultures was evident when cultures were 3-months old but not when cultures were starved for only 1 month. Revival of starved cultures under different nutrients revealed that cells return back to their original elongated rod shape upon encountering nutrients. Challenge

  14. ULTRASTRUCTURE OF THE NUCLEOLUS DURING THE CHINESE HAMSTER CELL CYCLE

    PubMed Central

    Noel, J. S.; Dewey, W. C.; Abel, J. H.; Thompson, R. P.

    1971-01-01

    Changes in the structure of the nucleolus during the cell cycle of the Chinese hamster cell in vitro were studied. Quantitative electron microscopic techniques were used to establish the size and volume changes in nucleolar structures. In mitosis, nucleolar remnants, "persistent nucleoli," consisting predominantly of ribosome-like granular material, and a granular coating on the chromosomes were observed. Persistent nucleoli were also observed in some daughter nuclei as they were leaving telophase and entering G1. During very early G1, a dense, fibrous material characteristic of interphase nucleoli was noted in the nucleoplasm of the cells. As the cells progressed through G1, a granular component appeared which was intimately associated with the fibrous material. By the middle of G1, complete, mature nucleoli were present. The nucleolar volume enlarged by a factor of two from the beginning of G1 to the middle of S primarily due to the accumulation of the granular component. During the G2 period, there was a dissolution or breakdown of the nucleolus prior to the entry of the cells into mitosis. Correlations between the quantitative aspects of this study and biochemical and cytochemical data available in the literature suggest the following: nucleolar reformation following division results from the activation of the nucleolar organizer regions which transcribe for RNA first appearing in association with protein as a fibrous component (45S RNA) and then later as a granular component (28S and 32S RNA). PMID:4933472

  15. Histopathologic, immunohistochemical and ultrastructural features of a granular cell tumour in an Australian parakeet (Melopsittacus undulatus).

    PubMed

    Hernández, V; Carrera, E; Méndez, A; Morales, J C; Morales, E; Sánchez, F D

    2012-10-01

    An adult male Australian parakeet (Melopsittacus undulatus) presented a firm nodular lesion in the lateral metacarpal region of the right wing. Microscopically, there were neoplastic cells, round and polyhedral in shape, with abundant, slightly eosinophilic granular cytoplasm; they were strongly periodic-acid Schiff-positive and resistant to diastase digestion. Some groups of neoplastic cells were immunopositive for smooth muscle actin and desmin. There was no immunopositivity for S-100 protein, CD68 and cytokeratin. Ultrastructurally, the neoplastic cells were round and polygonal in shape, and they were characterized by abundant cytoplasm with numerous homogeneous osmophilic bodies covered by an electron-dense membrane (lysosomes). The histopathologic, immunohistochemical and ultrastructural features of the neoplastic tissue are consistent with a granular cell tumour, which has been described in different animal species and anatomic locations; however, this seems to be an infrequent neoplasm in Australian parakeets. The immunopositivity of the neoplastic cells for smooth muscle actin and desmin, as well as slight positivity for muscle with Masson's trichrome, suggest that this is a tumour of myogenic origin. PMID:22913601

  16. Ultrastructural similarity between bat and human mast cell secretory granules.

    PubMed

    Oliani, S M; Vugman, I; Jamur, M C

    1993-01-01

    Mast cells in the tongue of the bat (Artibeus lituratus) show a well-developed Golgi area and abundant mitochondria in the granule-free perinuclear cytoplasm. Rough endoplasmic reticulum profiles, free ribosomes, mitochondria, bundles of filaments and a great number of secretory granules are found throughout the remaining cytoplasm. The granules, of various shapes and sizes, are simple containing an electron-dense, homogeneous matrix, coarse particles or cylindrical scrolls, or combinations (cylindrical scrolls with either electron-dense, homogeneous matrix or coarse particle contents). Up to now, scroll-containing granules have been considered to be a unique feature of human mast cells. PMID:8453310

  17. Ultrastructural changes in tracheal epithelial cells exposed to oxygen

    NASA Technical Reports Server (NTRS)

    Philpott, D. E.; Harrison, G. A.; Turnbill, C.; Black, S.

    1977-01-01

    White albino rats were sacrificed after 24, 36, 48, 72, and 96 h of exposure to 100% O2 at 1 atm. Tissue was prepared for the scanning electron microscope (SEM) by Critical Point Drying and for the transmission electron microscope (TEM) by plastic embedding. Scanning microscopy showed a loss of microvilli after 48 h of exposure. Cilia appeared relatively normal with SEM, but TEM revealed changes in the outer membrane. In TEM, nonciliated cells appeared swollen and often encroached on the ciliated cells. A heavy mucous blanket remained even after processing. All the changes observed that are induced by oxygen exposure contribute to mucostasis, reducing and/or halting mucociliary clearance.

  18. Ultrastructural aspects of foreign body giant cells generated on different substrates.

    PubMed

    Ten Harkel, Bas; Koopsen, Jelle; van Putten, Sander M; van Veen, Henk; Picavet, Daisy I; de Vries, Teun J; Bank, Ruud A; Everts, Vincent

    2016-07-01

    Implantation of biomaterials into the body, e.g. for tissue engineering purposes, induces a material-dependent inflammatory response called the foreign body reaction (FBR). A hallmark feature of this response is the formation of large multinucleated cells: foreign body giant cells (FBGCs). Biomaterials like cross-linked and non-cross-linked collagen often induce the formation of FBGCs. It is unknown whether different biomaterials result in the formation of different FBGCs. To investigate this, we implanted cross-linked and non-cross-linked dermal sheep collagen subcutaneously in mice. After 21 days the implanted material was collected and prepared for ultrastructural analysis. More FBGCs formed on and between implants of cross-linked collagen compared to non-cross-linked material. The ultrastructural aspects of the FBGCs present on the two types of implants proved to be similar. On both materials, they formed long slender protrusions on the basolateral membrane, they were very rich in mitochondria, contained numerous nuclei, and showed signs of the presence of a clear zone facing the implanted material. Similar clear zones, that resemble osteoclastic features, were also seen in FBGCs generated in vitro on bone slices, but these cells did not form a ruffled border. However, similarities in ultrastructure such as the occurrence of slender protrusions and high mitochondrion content were also found in the FBGCs generated in vitro. These data indicate that FBGCs formed on different substrates share many morphological characteristics. The formation of long finger-like protrusions seemed typical for the FBGCs, in vivo as well as in vitro, however the function of these structures needs further analysis. PMID:27155321

  19. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1990-01-01

    The object of this research was to determine how effectively the actions of a clinostat and a fluid-filled, slow-turning lateral vessel (STLV) mimic the ultrastructural effects of microgravity in plant cells. We accomplished this by qualitatively and quantitatively comparing the ultrastructures of cells grown on clinostats and in an STLV with those of cells grown at 1 g and in microgravity aboard the Space Shuttle Columbia. Columella cells of Brassica perviridis seedlings grown in microgravity and in an STLV have similar structures. Both contain significantly more lipid bodies, less starch, and fewer dictyosomes than columella cells of seedlings grown at 1 g. Cells of seedlings grown on clinostats have significantly different ultrastructures from those grown in microgravity or in an STLV, indicating that clinostats do not mimic microgravity at the ultrastructural level. The similar structures of columella cells of seedlings grown in an STLV and in microgravity suggest that an STLV effectively mimics microgravity at the ultrastructural level.

  20. Spray-freezing freeze substitution (SFFS) of cell suspensions for improved preservation of ultrastructure.

    PubMed

    Fields, S D; Strout, G W; Russell, S D

    1997-08-01

    Some unicellular organisms present challenges to chemical fixations that lead to common, yet obvious, artifacts. These can be avoided in entirety by adapting spray-freezing technology to ultrarapidly freeze specimens for freeze substitution. To freeze specimens, concentrated suspensions of cells ranging in diameter from 0.5-30 pm were sprayed with an airbrush at 140-200 kPa (1.05-1.5 torr; 20.3-29.0 psi) into a nylon mesh transfer basket submerged in liquid propane. After freezing, the mesh basket containing the frozen sample was lifted out of the chamber, drained and transferred through several anhydrous acetone rinses at 188 K (-85 degrees C). Freeze substitution was conducted in 1% tannic acid/1% anhydrous glutaraldehyde in acetone at 188 K (-85 degrees C), followed by 1% OsO4/acetone at 277 K (4 degrees C). Freeze substitution was facilitated using a shaking table to provide gentle mixing of the substitution medium on dry ice. High quality freezing was observed in 70% of spray-frozen dinoflagellate cells and in 95% of spray-frozen cyanobacterial cells. These could be infiltrated and observed directly; however, overall ultrastructural appearance and membrane contrast were improved when the freeze-substituted cells were rehydrated and post-fixed in aqueous OSO4, then dehydrated and embedded in either Spurr's or Epon resin. Ultrastructural preservation using this ultrarapid freezing method provided specimens that were consistently superior to those obtainable in even the best comparable chemical fixations. PMID:9264343

  1. Ultrastructure of the Epidermal Cell Wall and Cuticle of Tomato Fruit (Solanum lycopersicum L.) during Development1[OPEN

    PubMed Central

    Segado, Patricia; Domínguez, Eva

    2016-01-01

    The epidermis plays a pivotal role in plant development and interaction with the environment. However, it is still poorly understood, especially its outer epidermal wall: a singular wall covered by a cuticle. Changes in the cuticle and cell wall structures are important to fully understand their functions. In this work, an ultrastructure and immunocytochemical approach was taken to identify changes in the cuticle and the main components of the epidermal cell wall during tomato fruit development. A thin and uniform procuticle was already present before fruit set. During cell division, the inner side of the procuticle showed a globular structure with vesicle-like particles in the cell wall close to the cuticle. Transition between cell division and elongation was accompanied by a dramatic increase in cuticle thickness, which represented more than half of the outer epidermal wall, and the lamellate arrangement of the non-cutinized cell wall. Changes in this non-cutinized outer wall during development showed specific features not shared with other cell walls. The coordinated nature of the changes observed in the cuticle and the epidermal cell wall indicate a deep interaction between these two supramolecular structures. Hence, the cuticle should be interpreted within the context of the outer epidermal wall. PMID:26668335

  2. Immunocytochemical localization and ultrastructural study of gonadotroph cells in the female desert lizard Uromastyx acanthinura.

    PubMed

    Hammouche, S; Gernigon, T; Exbrayat, J M

    2007-02-01

    The pars distalis from the pituitary gland of adult female desert lizards (Uromastyx acanthinura), captured during vitellogenesis (late may) and hivernal period, was studied with immunocytochemical methods using specific antisera against human FSH (hFSH) and LH (hLH). The immunostaining with anti-hLH and anti-hFSH allowed the identification of only FSH-like containing cells. The FSH-like immunoreactive cells were affected differently by a physiological stage and showed some heterogenous cytological characteristics. During vitellogenesis, four aspects of rostral FSH-like immunoreactive cells could be recognized. The expression of FSH-like in mainly immunoreactive cells was parallel to an intense synthetic activity and to the presence of ultrastructural features indicating an intense release of the hormone. This release was considerably altered in winter, the immunoreactive cells stored an important amount of secretion granules which increased in size and undergo a crinophagic process. PMID:17098269

  3. Ultrastructural interaction between spermatozoon and human oviductal cells in vitro.

    PubMed

    Vigil, Pilar; Salgado, Ana María; Cortés, Manuel E

    2012-04-01

    The oviduct is an important organ for successful mammalian reproduction. In this work, human oviducts were inseminated and their explants analyzed using scanning electron microscopy in order to study, at a finer ultrastructual level, the interaction between spermatozoon and oviduct in vitro. Results show unequivocally a spermatozoon tightly attached through the acrosomal region of its head to several cilia of the human tubal epithelial cells. This finding proves that spermatozoa do indeed adhere to the endosalpinx, a fact of utmost relevance for the physiology of the reproductive process, since it supports the idea of a spermatozoa reservoir being formed in the oviduct, which is also briefly discussed. PMID:22355149

  4. Ultrastructure of the Bacteroides nodosus cell envelope layers and surface.

    PubMed Central

    Every, D; Skerman, T M

    1980-01-01

    The surface structure and cell envelope layers of various virulent Bacteroides nodosus strains were examined by light microscopy and by electron microscopy by using negative staining, thin-section, and freeze-fracture-etch techniques. Three surface structures were described: pili and a diffuse material, both of which emerged from one or both poles of the bacteria (depending on the stage of growth and division), and large rodlike structures (usually 30 to 40 nm in diameter) associated with a small proportion of the bacterial population. No capsule was detected. The cell envelope consisted of four layers: a plasma membrane, a peptidoglycan layer, an outer membrane, and an outermost additional layer. The additional layer was composed of subunits, generally hexagonally packed with center-to-center spacing of 6 to 7 nm. The outer membrane and plasma membrane freeze-fractured through their hydrophobic regions revealing four fracture faces with features similar to those of other gram-negative bacteria. However, some unusual features were seen on the fracture faces of the outer membrane: large raised ring structure (11 to 12 nm in diameter) on cw 3 at the poles of the bacteria; complementary pits or ring-shaped depressions on cw 2; and small raised ring structures (7 to 8 nm in diameter) all over cw 2. Images PMID:6154040

  5. Ultrastructural analysis of midgut cells from Culex quinquefasciatus (Diptera: Culicidae) larvae resistant to Bacillus sphaericus.

    PubMed

    de Melo, Janaina Viana; Vasconcelos, Romero Henrique Teixeira; Furtado, André Freire; Peixoto, Christina Alves; Silva-Filha, Maria Helena Neves Lobo

    2008-12-01

    The larvicidal action of the entomopathogen Bacillus sphaericus towards Culex quinquefasciatus is due to the binary (Bin) toxin present in crystals, which are produced during bacterial sporulation. The Bin toxin needs to recognize and bind specifically to a single class of receptors, named Cqm1, which are 60-kDa alpha-glucosidases attached to the apical membrane of midgut cells by a glycosylphosphatidylinositol anchor. C. quinquefasciatus resistance to B. sphaericus has been often associated with the absence of the alpha-glucosidase Cqm1 in larvae midgut microvilli. In this work, we aimed to investigate, at the ultrastructural level, the midgut cells from C. quinquefasciatus larvae whose resistance relies on the lack of the Cqm1 receptor. The morphological analysis showed that midgut columnar cells from the resistant larvae are characterized by a pronounced production of lipid inclusions, throughout the 4th instar. At the end of this stage, resistant larvae had an increased size and number of these inclusions in the midgut cells, while only a small number were observed in the cells from susceptible larvae. The morphological differences in the midgut cells of resistant larvae found in this work suggested that the lack of the Cqm1 receptor, which also has a physiological role as being an alpha-glucosidase, can be related to changes in the cell metabolism. The ultrastructural effects of Bin toxin on midgut epithelial cells from susceptible and resistant larvae were also investigated. The cytopathological alterations observed in susceptible larvae treated with a lethal concentration of toxin included breakdown of the endoplasmic reticulum, mitochondrial swelling, microvillar disruption and vacuolization. Some effects were observed in cells from resistant larvae, although those alterations did not lead to larval death, indicating that the receptor Cqm1 is essential to mediate the larvicidal action of the toxin. This is the first ultrastructural study to show differences

  6. Comparison of nonciliated tracheal epithelial cells in six mammalian species: ultrastructure and population densities.

    PubMed

    Plopper, C G; Mariassy, A T; Wilson, D W; Alley, J L; Nishio, S J; Nettesheim, P

    1983-12-01

    Three types of nonciliated epithelial cells in mammalian conducting respiratory airways are thought to be secretory: mucous (goblet) cells, serous epithelial cells, and Clara cells. Mucous and serous cells are considered to be the secretory cells of the trachea. Clara cells are considered to be the secretory cells of the most distal conducting airways or bronchioles. To ascertain if mucous and serous epithelial cells are common to the tracheal epithelium of mammalian species, we characterized the ultrastructure and population densities of tracheal epithelial cells in six species: hamster (H), rat (Rt), rabbit (Rb), cat (C), Bonnet monkey (M. radiata) (B), and sheep (S). Following fixation by airway infusion with glutaraldehyde/paraformaldehyde, tracheal tissue was processed for light and electron microscopy (EM) by a selective embedding technique. Tracheal epithelium over cartilage was quantitated by light microscopy and characterized by transmission EM. Mucous cells were defined by abundant large nonhomogeneous granules, numerous Golgi complexes, basally located nuclei and granular endoplasmic reticulum (GER). The percentage of mucous cells in the tracheal epithelium was: H (0%), Rt (0.5%), Rb (1.3%), C (20.2%), B (8%), S (5.1%). Serous cells had homogeneous, electron-dense granules and extensive GER. Serous cells were present only in rats (39.2%). Clara cells had homogeneous electron-dense granules, abundant agranular endoplasmic reticulum (AER) and basal GER. Clara cells were found in hamsters (41.4%) and rabbits (17.6%). In sheep trachea, 35.9% of the epithelial cells had small electron-lucent granules, abundant AER and numerous Golgi complexes. In Bonnet monkey trachea, 16% of the epithelial cells had small electron-lucent granules, numerous polyribosomes, perinuclear Golgi apparatus and moderate GER. In cat trachea, 5.4% of the epithelial cells lacked granules, and had moderate numbers of mitochondria, moderate amounts of polyribosomes, a central nucleus, and

  7. Effect of storage media and storage time on histological and ultrastructural changes in cat epididymal cells.

    PubMed

    Tittarelli, C M; Jurado, S B; Nuñez-Favre, R; Bonaura, M C; de la Sota, R L; Stornelli, M A

    2012-12-01

    The aim of this study was to assess the histological and ultrastructural changes in cat epididymides (n = 22) stored at 4 °C in two different media [saline solution (SAL) or tris-egg yolk (TEY)]. Our hypothesis was that epididymides stored in TEY would have delayed epithelial cell autolysis. Four epididymides were fixed and processed immediately, and the remaining 18 epididymides were stored at 4 °C in SAL or TEY for 24, 48 or 72 h. In histological sections, the nuclear features and stereocilia morphology were scored from 0 to 3. Ultrastructurally, nuclear chromatin and stereocilia morphology were scored from 0 to 3. In addition, using transmission electron microscopy nuclear number, nuclear area, mitochondrial number and mitochondrial area were recorded. In the histological study, parameters changed with time and media (p < 0.01). A significant effect of time was observed (p < 0.01), and the morphological changes were greatest when the storage time increased. Morphological changes were higher in SAL compared with TEY (p < 0.01). In the ultrastructural study, nuclear chromatin and stereocilia morphology decreased with time and media as in the histological study (p < 0.01). In addition, nuclear number and nuclear area changed with time (p < 0.004; p < 0.001) but not with media. Conversely, mitochondrial number and mitochondrial area did not change with media or time (p > 0.05). In conclusion, these results show that TEY preserved epididymal epithelial cells better than SAL; this finding could help improve sperm quality of stored epididymides. PMID:23279519

  8. Ultrastructural effects of radiation on cells and tissues: concluding remarks

    SciTech Connect

    Seed, T.M.; Carr, K.E.

    1982-01-01

    Concluding remarks which condense the subject matter covered in the preceding series of reports which indicate the complex nature of the biological response to ionizing radiation and the inherent difficulties associated with developing unifying concepts and definitions. The multiplicity of the major response variables, i.e., specimen type, radiation parameters, analytical approach and endpoints measured, is undoubtedly a major problem. In these studies, the specimens analyzed ranged from eucaryotic algae grown in vitro in suspension cultures to brain tissue of cancer patients. Specimens were irradiated with now fewer than seven types of ionizing radiation, which varied both in quality (i.e., high and low LET) and quantity (i.e., doses from 0.1 to 90 Gy). Exposure regimens included single, fractionated, and chronic exposures. Further, there were major differences in the analytical approach employed (e.g., structural and functional assays) and end-points measured (e.g., lethality, cell growth, surface topography, etc.).

  9. The influenza fingerprints: NS1 and M1 proteins contribute to specific host cell ultrastructure signatures upon infection by different influenza A viruses

    SciTech Connect

    Terrier, Olivier; Moules, Vincent; Carron, Coralie; Cartet, Gaeelle; Frobert, Emilie; Yver, Matthieu; Traversier, Aurelien; Wolff, Thorsten; Naffakh, Nadia; and others

    2012-10-10

    Influenza A are nuclear replicating viruses which hijack host machineries in order to achieve optimal infection. Numerous functional virus-host interactions have now been characterized, but little information has been gathered concerning their link to the virally induced remodeling of the host cellular architecture. In this study, we infected cells with several human and avian influenza viruses and we have analyzed their ultrastructural modifications by using electron and confocal microscopy. We discovered that infections lead to a major and systematic disruption of nucleoli and the formation of a large number of diverse viral structures showing specificity that depended on the subtype origin and genomic composition of viruses. We identified NS1 and M1 proteins as the main actors in the remodeling of the host ultra-structure and our results suggest that each influenza A virus strain could be associated with a specific cellular fingerprint, possibly correlated to the functional properties of their viral components.

  10. Morphology and ultrastructure of the somatic cells in Astacus leptodactylus ovary.

    PubMed

    Petrescu, Ana-Maria; Moldovan, Lucia; Zarnescu, Otilia

    2016-01-01

    We defined the somatic environment in which female germinal cells develop, and performed ultrastructural analyses of various somatic cell types, with particular reference to muscle cells and follicle cells, that reside within the ovary at different stages of oogenesis. Our findings show that ovarian wall of the crayfish is composed of long muscle cells, blood cells, blood vessels and hemal sinuses. The follicle and germinal cells lie within a common compartment of ovarian follicles that is defined by a continuous basal matrix. The follicle cells form branching cords and migrate to surround the developing oocytes. A thick basal matrix separates the ovarian interstitium from ovarian follicles compartment. Transmission electron microscopy shows that inner layer of basal matrix invaginates deeply into the ovarian compartment. Our results suggest that before being surrounded by follicle cells to form follicles, oogonia and early previtellogenic oocytes reside within a niche surrounded by a basal matrix that separates them from ovarian interstitium. We found coated pits and coated vesicles in the cortical cytoplasm of previtellogenic and vitellogenic oocytes, suggesting the receptor mediated endocytosis for transfer of material from the outside of the oocytes, via follicle cells. The interstitial compartment between the inner muscular layer of the ovarian wall and the basal matrix of the ovarian follicle compartment contains muscle cells, hemal sinuses, blood vessels and blood cells. Granular hemocytes, within and outside the vessels, were the most abundant cell population in the ovarian interstitium of crayfish after spawning and in the immature ovary. PMID:26453477

  11. Immunocytochemical and ultrastructural characterization of mammosomatotrope-, growth hormone-, and prolactin-cells from the gilthead sea bream (Sparus aurata l., Teleostei): an ontogenic study.

    PubMed

    Villaplana, Mariano; García Ayala, Alfonsa; García Hernández, Maria Pilar; Agulleiro, Blanca

    2003-03-01

    Growth hormone (GH), prolactin (PRL), and mammosomatotrope (MS) cells of gilthead sea bream, Sparus aurata, a teleost fish, were studied in specimens from hatching to 15 months (adults) using conventional electron microscopy and an immunogold method using anti-tilapia GH sera and anti-chum salmon PRL serum. MS cells, immunoreactive to both anti-GH sera and anti-PRL sera, had been first identified in fish in a previous study in newly hatched larvae and in older larvae and juvenile specimens of Sparus aurata by light microscopic immunocytochemistry. In the present work, MS cells reacted positively to immunogold label only in older larvae and juveniles and their secretory granules immunoreacted with both GH and PRL antisera or with only one of them. MS cells were ultrastructurally similar to the PRL cells, with which they coincided in time. This is the first report on the ultrastructural characterization of MS cells in fish. In adults, the secretory granules of GH cells (immunoreactive to anti-GH serum) were mainly round, of variable size, and had a homogeneous, highly electron-dense content. Irregularly shaped secretory granules were also present. PRL cells (immunoreactive to anti-PRL serum) were usually observed in a follicular arrangement; they showed few, small, and mainly round secretory granules with a homogeneous and high or medium electron-dense content. Some oval or elongated secretory granules were also observed. GH and PRL cells that showed involutive features were also found. In newly hatched larvae, GH, PRL, and MS cells could not be distinguished either by their ultrastructure or by the immunogold labeling of the secretory granules. In 1-day-old larvae, presumptive GH and PRL cells were observed according to their position in the pituitary gland. In 2-day-old larvae, a few cells showed some of the ultrastructural features described for GH and PRL cells of adults. During development, the number, size, and shape of the secretory granules in both cell types

  12. Abiotic and enzymatic degradation of wheat straw cell wall: a biochemical and ultrastructural investigation.

    PubMed

    Lequart, C; Ruel, K; Lapierre, C; Pollet, B; Kurek, B

    2000-07-14

    The action of an abiotic lignin oxidant and a diffusible xylanase on wheat straw was studied and characterized at the levels of the molecular structures by chemical analysis and of the cell wall ultrastructure by transmission electron microscopy. While distinct chemical changes in the target polymers were observed when each system was used separately, a combination of the two types of catalysts did not significantly increase either lignin oxidation or hemicellulose hydrolysis. Microscopic observations however revealed that the supramolecular organization of the cell wall polymers was significantly altered. This suggests that the abiotic Mn-oxalate complex and the xylanase cooperate in modifying the cell wall architecture, without noticeably enhancing the degradation of the constitutive polymers. PMID:10949315

  13. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids.

    PubMed

    Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona

    2015-11-01

    Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern

  14. Ultrastructure of single cells, callus-like and monospore-like cells in Porphyra yezoensis ueda on semisolid culture medium

    NASA Astrophysics Data System (ADS)

    Mei, Junxue; Shen, Songdong; Jiang, Ming; Fei, Xiugeng

    2003-06-01

    It had been demonstrated that individual cells or protoplasts isolated from Porphyra thallus by enzyme could develop into normal leafy thalli in the same way as monospores, and that isolated cells develop in different way in liquid and on semi-solid media. The authors observed the ultrastructure of isolated vegetative cells cultured on semi-solid media and compared them with those of monospores and isolated cells cultured in liquid media. The results showed that subcellular structures were quite different among cells in different conditions. In their development, isolated cells on semi-solid media did not show the characteristic subcellular feature of monospore formation, such as production of fibrous vesicles. Callus-like cells formed on semi-solid media underwent a distinctive modification in cellular organization. They developed characteristic cell inclusions and a special 2-layer cell covering. Golgi bodies, ER, starch grains, mitochondria. Vacuoles were not commonly found in them.

  15. Ultrastructural changes produced in Ehrlich ascites carcinoma cells by ultraviolet-visible radiation in the presence of melanins

    SciTech Connect

    Lea, P.J.; Pawlowski, A.; Persad, S.D.; Menon, I.A.; Haberman, H.F.

    1988-01-01

    Irradiation of Ehrlich ascites carcinoma (EAC) cells in the presence of pheomelanin, i.e., red hair melanin (RHM), has been reported to produce extensive cell lysis. Irradiation in the presence of eumelanin, i.e., black hair melanin (BHM), or irradiation in the absence of either type of melanin did not produce this effect. We observed that RHM particles penetrated the cell membrane without apparent structural damage to the cell or the cell membrane. Irradiation of the cells in the absence of melanin did not produce any changes in the ultrastructure of the cells. Incubation of the cells in the dark in the presence of RHM produced only minor structural, mainly cytoplasmic changes. Irradiation of the cells in the presence of RHM produced extensive ultrastructural changes prior to complete cell lysis; these changes were more severe than the effects of incubation of the cells in the dark in the presence of RHM. When the cells incubated in the dark or irradiated in the presence of latex particles or either one of the eumelanins particles, viz. BHM or synthetic dopa melanin, these particles did not penetrate into the cells or produce any ultrastructural changes. These particles were in fact not even ingested by the cells.

  16. Ultrastructural evaluation of parathyroid glands and thyroid C cells of cattle fed Solanum malacoxylon.

    PubMed Central

    Collins, W. T.; Capen, C. C.; Döbereiner, J.; Tokarnia, C. H.

    1977-01-01

    Fine structural alterations of thyroid C cells and parathyroid chief cells were evaluated after feeding dried leaves of the calcinogenic plant, Solanum malacoxylon, to cattle for 1, 6 and 32 days. Thyroid C cells initially were degranulated in response to the hypercalcemia, and parathyroid chief cells accumulated secretory granules. There was hypertrophy of thyroid C cells with well-developed secretory organelles but few secretory granules in the cytoplasm after 6 days of feeding S. malacoxylon. Inactive chief cells with dispersed profiles of endoplasmic reticulum and increased lysosomal bodies predominated in the parathyroid glands. Multiple foci of soft tissue mineralization were present in the heart, lung, and kidney. Thyroid C cells underwent hypertrophy and hyperplasia after 32 days of S. malacoxylon, and parathyroid chief cells were inactive or atrophic in response to the long-term hypercalcemia. Severe soft tissue mineralization was present throughout the cardiovascular system, lung, kidney, and spleen. These ultrastructural changes in thyroid C cells and parathyroid chief cells plus the widespread soft tissue mineralization observed after feeding cattle small amounts of S. malacoxylon are consistent with the recent evidence that leaves of this plant are a potent source of the active metabolite, 1,25-dihydroxycholecalciferol, of vitamin D. Images Figure 7 Figure 8 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:869016

  17. Ultrastructural evaluation of parathyroid glands and thyroid C cells of cattle fed Solanum malacoxylon.

    PubMed

    Collins, W T; Capen, C C; Döbereiner, J; Tokarnia, C H

    1977-06-01

    Fine structural alterations of thyroid C cells and parathyroid chief cells were evaluated after feeding dried leaves of the calcinogenic plant, Solanum malacoxylon, to cattle for 1, 6 and 32 days. Thyroid C cells initially were degranulated in response to the hypercalcemia, and parathyroid chief cells accumulated secretory granules. There was hypertrophy of thyroid C cells with well-developed secretory organelles but few secretory granules in the cytoplasm after 6 days of feeding S. malacoxylon. Inactive chief cells with dispersed profiles of endoplasmic reticulum and increased lysosomal bodies predominated in the parathyroid glands. Multiple foci of soft tissue mineralization were present in the heart, lung, and kidney. Thyroid C cells underwent hypertrophy and hyperplasia after 32 days of S. malacoxylon, and parathyroid chief cells were inactive or atrophic in response to the long-term hypercalcemia. Severe soft tissue mineralization was present throughout the cardiovascular system, lung, kidney, and spleen. These ultrastructural changes in thyroid C cells and parathyroid chief cells plus the widespread soft tissue mineralization observed after feeding cattle small amounts of S. malacoxylon are consistent with the recent evidence that leaves of this plant are a potent source of the active metabolite, 1,25-dihydroxycholecalciferol, of vitamin D. PMID:869016

  18. The ultrastructure of the Sertoli cell of the vervet monkey, Chlorocebus aethiops.

    PubMed

    Lebelo, S L; van der Horst, G

    2010-12-01

    The ultrastructure of the Sertoli cell of the vervet monkey was studied using both scanning and transmission electron microscopic techniques. SEM micrographs revealed perforated sleeve-like processes which encased mature elongated spermatids which are ready for spermiation. TEM micrographs showed a large Sertoli cell nucleus characterized by many lobes (4-5) and consisting of a homogenous nucleoplasm and a distinctive nucleolus. The nucleus occupies a significant portion of the basal region of the cell. The distribution of chromatin clearly shows high activity of these cells. Lipid droplets and free ribosomes are also found scattered throughout the cytoplasm. Well-developed Golgi apparatus is found in the basal region of the cell. There is phagocytic activity in the Sertoli cells as revealed by the presence of numerous phagosomes. Numerous mitochondria with well-developed tubular cristae are found on the basal side of the nucleus, whereas few mitochondria are located on the apical side of the nucleus. Distinct desmosomes are located between cells. A well-developed smooth endoplasmic reticulum and granular endoplasmic reticulum are frequently found in the cytoplasm of the Sertoli cells. The results of this investigation showed that Sertoli cells of the vervet monkey are almost similar to those of humans and show many similarities with other mammalian species. PMID:20828773

  19. Ultrastructural evidence for differentiation in a human glioblastoma cell line treated with inhibitors of eicosanoid metabolism

    SciTech Connect

    Wilson, D.E.; Anderson, K.M. ); Seed, T.M. )

    1990-01-01

    Human glioblastoma cells incubated in the presence of inhibitors of eicosanoid biosynthesis show decreased cellular proliferation without cytotoxicity. The authors studied the ultrastructural morphology of a human glioblastoma cell line cultured with nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, or 5,8,11,14-eicosatetraynoic acid, a cyclooxygenase and lipoxygenase inhibitor. When glioblastoma cells were treated for 3 days with antiproliferative concentrations of either agent, they shared many morphological characteristics, including evidence for increased astrocytic differentiation with only limited signs of toxicity. The inhibited glioma cells demonstrated an increase in the number and length of astrocytic processes containing greater numbers of glial filaments, and the NDGA-treated cells also demonstrated extensive lateral pseudopod formation along the processes. The glioblastoma cell shape also become more elongated, losing the usual nuclear lobularity and nuclear inclusions, especially in NDGA-treated cells. Many cytoplasmic organelles packed the cytosol of the inhibited glioma cells, including prominent Golgi apparatus, dilated smooth endoplasmic reticulum evolving into dilated vesicles, cytoplasmic vacuoles, and numerous concentric laminations. There was limited evidence for toxicity, however, as the mitochondria were more pleomorphic with some mitochondrial distension and disruption of the cristae along with an increase in cytoplasmic vacuolization. The authors conclude that the inhibitors of eicosanoid biosynthesis. NDGA and 5,8,11,14-eicosatetraynoic acid, not only suppress glioblastoma cell proliferation, but also include increased astrocytic differentiation.

  20. Changes in cell wall ultrastructure induced by sudden flooding at 25{degrees}C in Pisum sativum (Fabaceae) primary roots.

    PubMed

    Sarkar, Purbasha; Niki, Teruo; Gladish, Daniel K

    2008-07-01

    Cellular degeneration is essential for many developmental and stress acclimation processes. Undifferentiated parenchymatous cells in the central vascular cylinder of pea primary roots degenerate under hypoxic conditions created by flooding at temperatures >15°C, forming a long vascular cavity that seems to provide a conduit for longitudinal oxygen transport in the roots. We show that specific changes in the cell wall ultrastructure accompanied previously detected cytoplasmic and organellar degradation in the cavity-forming roots. The degenerating cells had thinner primary cell walls, less electron-dense middle lamellae, and less abundant cell wall homogalacturonans in altered patterns, compared to healthy cells of roots grown under cold, nonflooded conditions. Cellular breakdown and changes in wall ultrastructure, however, remained confined to cells within a 50-μm radius around the root center, even after full development of the cavity. Cells farther away maintained cellular integrity and had signs of wall synthesis, perhaps from tight regulation of wall metabolism over short distances. These observations suggest that the cell degeneration might involve programmed cell death. We also show that warm, nonflooded or cold, flooded conditions that typically do not induce vascular cavity formation can also induce variations in cell wall ultrastructure. PMID:21632404

  1. Pollen ultrastructure in anther cultures of Datura innoxia. I. Division of the presumptive vegetative cell.

    PubMed

    Dunwell, J M; Sunderland, N

    1976-12-01

    Ultrastructural features of embryogenic pollen in Datura innoxia are described, just prior to, during, and after completion of the first division of the presumptive vegetative cell. In anther cultures initiated towards the end of the microspore phase and incubated at 28 degrees C in darkness, the spores divide within 24 h and show features consistent with those of dividing spores in vivo. Cytokinesis is also normal in most of the spores and the gametophytic cell-plate curves round the presumptive generative nucleus in the usual highly ordered way. Further differentiation of the 2 gametophytic cells does not take place and the pollen either switches to embryogenesis or degenerates. After 48-72 h, the remaining viable pollen shows the vegetative cell in division. The cell, which has a large vacuole and thin layer of parietal cytoplasm carried over from the microspore, divides consistently in a plane parallel to the microspore division. The dividing wall follows a less-ordered course than the gametophytic wall and usually traverses the vacuole, small portions of which are incorporated into the daughter cell adjacent to the generative cell. The only structural changes in the vegetative cell associated with the change in programme appear to be an increase in electron density of both plastids and mitochondria and deposition of an electron-dense material (possibly lipid) on the tonoplast. The generative cell is attached to the intine when the vegetative cell divides. Ribosomal density increases in the generative cell and exceeds that in the vegetative cell. A thin electron-dense layer also appears in the generative-cell wall. It is concluded that embryogenesis commences as soon as the 2 gametophytic cells are laid down. Gene activity associated with postmitotic synthesis of RNA and protein in the vegetative cell is switched off. The data are discussed in relation to the first division of the embryogenic vegetative cells in Nicotiana tabacum. PMID:1018041

  2. Changes in lung morphology and cell number in radiation pneumonitis and fibrosis: a quantitative ultrastructural study

    SciTech Connect

    Vergara, J.A.; Raymond, U.; Thet, L.A.

    1987-05-01

    We used stereologic-morphometric techniques to obtain a detailed quantitative picture of the changes in lung ultrastructure of rats at 12 and 26 weeks after unilateral thoracic irradiation with 3000 cGy. At 12 weeks post-radiation, the total number type 1 epithelial cells, type 2 epithelial cells and capillary endothelial cells were decreased 50-70%, total type 1 epithelial and capillary surface areas were decreased 55-60%, and the total volume of intracapillary blood was decreased 75%. The interstitial cells and matrix together accounted for more than 9% of the peripheral lung tissue volume including air, compared to 3% in controls. The numerical density of interstitial cells was increased to 3-fold the control value. The numerical density of interstitial cells was increased to 3-fold the control value. Although fibroblasts still comprised the largest interstitial cell subgroup, the numerical density of mast cells was increased over 150-fold and other inflammatory and immune cells were increased to a lesser extent. At 26 weeks post-radiation, the number, volume, and surface area of the type 1 epithelium and capillary endothelium had further decreased to only 5-10% of control values. The total number of type 2 epithelial cells was reduced by 75% but the volume density was actually increased because of a 4-fold increase in the mean cell volume. The interstitial cells and matrix now comprised over 77% of total peripheral lung tissue volume including air as compared to 6% in controls. Mast cells and plasma cells comprised 11% and 19% of all interstitial cells respectively and the densities of these cells were 540 and 180-fold the control value respectively. The relation of these morphometric findings to the results of previous morphologic studies is discussed.

  3. On the mechanism of cell internalization of chrysotile fibers: An immunocytochemical and ultrastructural study

    SciTech Connect

    Malorni, W.; Iosi, F.; Falchi, M.; Donelli, G. )

    1990-08-01

    Human breast carcinoma cells (CG5) and human laryngeal carcinoma cells (HEp-2) were exposed to 10 and 50 {mu}ml (about 5 {mu}m) chrysotile asbestos fibers. Morphological and ultrastructural changes were evaluated by means of immunocytochemistry and by scanning and transmission electron microscopy. The authors attention was focused on the mechanisms of cell internalization and on transport of chrysotile fibers. The fibers appeared to penetrate the cell cytoplasm and to be translocated in proximity of the nucleus. Small chrysotile fibers could also be found inside the nucleus of interphase cells. Involvement of the main cytoskeletal components, i.e., microfilaments, intermediate filaments, and microtubules, in the cytotoxicity of chrysotile fibers was also evaluated. Their findings suggest that after fiber penetration, a rearrangement of the cytoskeletal apparatus occurs. It has also been observed that small fibers remain associated with the cytoskeletal framework, which can thus play a role in asbestos intracytoplasmic translocation in epithelial cells. Furthermore, after the cell has completely recovered its morphology, fiber internalization ultimately seems to lead to the formation of giant multinucleated cells. These data could be indicative of an interaction occurring between asbestos fibers and the normal mitotic process.

  4. Ultrastructural and phenotypic characterization of CABA I, a new human ovarian cancer cell line.

    PubMed

    Dolo, V; Ginestra, A; Violini, S; Miotti, S; Festuccia, C; Miceli, D; Migliavacca, M; Rinaudo, C; Romano, F M; Brisdelli, F; Canevari, S; Pavan, A; Vittorelli, M L

    1997-01-01

    We have established an ovarian cancer cell line (CABA I) from ascitic fluid obtained from a patient with papillary adenocarcinoma of the ovary prior to drug treatment. The epithelial origin of the cell line was confirmed by morphology and by immunofluorescence analysis using anticytokeratin antibodies. Ultrastructural analysis revealed a very irregular membrane surface and a clear cytoplasm rich in electron-lucent vesicles. CABA I cells grow rapidly in culture (doubling time 18 h) in an anchorage-independent manner. Exogenously added beta-estradiol and epidermal growth factor (EGF) treatments did not influence cell growth rate. FACS analysis to determine the phenotypic profile of tumor-associated antigen, membrane receptor, and adhesion molecule expression indicated that the cell line was positive for different members of the c-erbB family, for alpha 6 and beta 1 integrin receptors, and intensively positive for HLA class I antigens and the folate receptor. Molecular characterization revealed no mutations for c-myc and c-k-ras genes, but did detect an exon 5 mutation in the p53 gene. CABA I cells grew poorly as heterotransplants in nude mice, and tumors showed long latency periods. Because early (15-20) and late (55-60) passage cells maintain the same growth and phenotypic characteristics, the CABA I cell line might provide a good in vitro model system to investigate the cellular and molecular events involved in ovarian carcinogenesis. PMID:9220498

  5. Ultrastructure of tracheal epithelial cells migrating in an in vivo environment.

    PubMed

    Sawada, Hajime; Tanaka, Hideo; Ono, Michio

    2008-12-01

    The tracheal epithelium can be induced to move as a cellular sheet by heterotopic transplantation, which offers the opportunity to observe migrating cells as a group in an in vivo environment. We therefor investigated the ultrastructural characteristics of migrating tracheal epithelial cells with special reference to the moving front using this transplantation. The migrating epithelial cells underwent squamous metaplasia and lost their differentiated characteristics such as cilia or secretory granules. Several unique observations were made concerning the mechanism of mobility: one is that epithelial cells in the front were elongated in a direction perpendicular to the course of movement, different from previous reports in vitro. The second is that lamellipodia, which are regarded as the major locomotive machinery in the adult wound epithelium, did not make up the major part of the front; the major portion of the anterior fringe of the moving front was usually smooth and gently curved, and actin cables parallel to the elongated cells were observed by confocal laser microscopy, indicating that the purse-string mechanism of epithelial wound healing takes place. The third finding is that the cells in the front had irregular bleb-like structures on their antero-basal surface, which were formed even in the portion where the cells did not attach to the matrix. Few organelles were recognized in these structures. From their location, one might propose that these bleb-like structures play a role in the recognition of the substrate and thus the movement of the cell sheet. PMID:19359805

  6. Functional canine dendritic cells can be generated in vitro from peripheral blood mononuclear cells and contain a cytoplasmic ultrastructural marker.

    PubMed

    Ibisch, C; Pradal, G; Bach, J M; Lieubeau, B

    2005-03-01

    For physiological and practical reasons the dog is a large animal model used increasingly to study the pathogenesis of human diseases and new therapeutic approaches, in particular for immune disorders. However, some immunological resources are lacking in this model, especially concerning dendritic cells. The aim of our study was to develop an efficient method to generate dendritic cells (DC) in vitro from dog peripheral blood mononuclear cells (PBMC) and to characterize their functional, structural and ultrastructural properties. PBMC were cultured in vitro with IL-4 and GM-CSF. After 1 week of culture, a great proportion of non-adherent cells displayed typical cytoplasmic processes, as evidenced both by optical and electron microscopy. Cytometric analysis revealed the presence of 41.7+/-24.6% CD14+ cells expressing both CD11c and MHC class II molecules. Allogeneic mixed lymphocyte reactions confirmed the ability of these cultures to stimulate the proliferation of allogeneic lymphocytes as already reported as a characteristic of DC in other species. In addition, we describe for the first time the presence in canine DC of cytoplasmic periodic microstructures (PMS) that could represent ultrastructural markers of canine DC. In conclusion, our study provides an easy method to generate DC from PBMC in sufficient numbers for immunological in vitro investigations in dogs, a pre-clinical model for many human diseases. PMID:15847807

  7. Ultrastructural study of the mast cells of the human duodenal mucosa.

    PubMed

    Moneret-Vautrin, D A; de Korwin, J D; Tisserant, J; Grignon, M; Claudot, N

    1984-09-01

    The ultrastructure of the process of degranulation of mast cells of human duodenal mucosa was examined. In normal controls little degranulation was seen, but in persons with false food allergy (pseudo-allergy) considerable degranulation of mast cells was detected. This is consistent with the hypothesis that some persons have an abnormal fragility of duodenal mast cells in the presence of histamine-releasing substances. Incubation of duodenal biopsy material with various histamine-releasing agents (compound 48/80, Concanavalin A, the calcium ionophore A 23187, and anti-IgE) confirmed the susceptibility of duodenal mast cells for antigen non-specific release of histamine, or that mediated by IgE. In a group of patients with immediate-type, anaphylactic, food allergy, mast cells in the absence of antigen are in a normal state, but degranulation occurs on exposure in vitro or in vivo to specific antigen. The susceptibility to degranulation continues in persons cured of their food allergy. This suggests that a clinical cure is not due to a change of susceptibility of duodenal mast cells to release histamine, but is possibly associated with formation of blocking antibodies, and/or a modification in reactivity of basophils and mast cells of other organs. PMID:6207955

  8. Ultrastructural and Chemical Evidence That the Cell Wall of Green Cotton Fiber Is Suberized 1

    PubMed Central

    Yatsu, L. Y.; Espelie, Karl E.; Kolattukudy, P. E.

    1983-01-01

    Green cotton (Gossypium hirsutum L.) fibers were shown by electron microscopy to have numerous thin concentric rings around the lumen of the cell. These rings possessed a lamellar fine structure characteristic of suberin. LiA1D4 depolymerization and gas chromatography-mass spectrometry analysis showed the presence of a suberin polymer in the green cotton with the major aliphatic monomers being ω-hydroxydocosanoic acid (70%) and docosanedoic acid (25%). Ordinary white cotton was shown by chemical and ultrastructural examination to be encircled by a thin cuticular polymer containing less than 0.5% of the aliphatic components found in green cotton. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16663251

  9. Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy

    PubMed Central

    Rafsanjani, Ahmad; Stiefel, Michael; Jefimovs, Konstantins; Mokso, Rajmund; Derome, Dominique; Carmeliet, Jan

    2014-01-01

    We document the hygroscopic swelling and shrinkage of the central and the thickest secondary cell wall layer of wood (named S2) in response to changes in environmental humidity using synchrotron radiation-based phase contrast X-ray tomographic nanoscopy. The S2 layer is a natural fibre-reinforced nano-composite polymer and is strongly reactive to water. Using focused ion beam, micropillars with a cross section of few micrometres are fabricated from the S2 layer of the latewood cell walls of Norway spruce softwood. The thin neighbouring cell wall layers are removed to prevent hindering or restraining of moisture-induced deformation during swelling or shrinkage. The proposed experiment intended to get further insights into the microscopic origin of the anisotropic hygro-expansion of wood. It is found that the swelling/shrinkage strains are highly anisotropic in the transverse plane of the cell wall, larger in the normal than in the direction parallel to the cell wall's thickness. This ultrastructural anisotropy may be due to the concentric lamellation of the cellulose microfibrils as the role of the cellulose microfibril angle in the transverse swelling anisotropy is negligible. The volumetric swelling of the cell wall material is found to be substantially larger than the one of wood tissues within the growth ring and wood samples made of several growth rings. The hierarchical configuration in wood optimally increases its dimensional stability in response to a humid environment with higher scales of complexity. PMID:24671938

  10. Ultrastructural assessment of the differentiation potential of human multipotent mesenchymal stromal cells.

    PubMed

    Pasquinelli, Gianandrea; Valente, Sabrina

    2013-10-01

    Mesenchymal stromal (stem) cells (MSCs) are defined by plastic adherent growth, multiple phenotype expressions, and tripotential mesodermal capability. The authors report examples where electron microscopy (EM) plays a role in stem cell research. MSCs isolated from human arteries are ultrastructurally heterogeneous and become more homogenous after plastic adhesion. EM shows a moderate complement of organelles, mainly mitochondria, rough endoplasmic reticulum, and glycogen aggregates. Clear vacuoles and vesicles are prominent when cells are recovered from plates using an enzymatic method. Since the mesengenic plasticity is the single most important criterion to define a cell as mesenchymal stromal, the authors induced experimentally adipogenic, leiomyogenic, cardiomyogenic, osteo-chondrogenic differentiations. In no case did EM reveal the achievement of complete differentiation. The authors obtained multivacuolated pre-adipocytes and never univacuolated adipocytes typical of mature white fat; myofibroblast and rhabdomyoblast morphotypes, where contractile filaments were not organized to form functional complexes, i.e., dense bodies and sarcomeres. Chondrogenesis and osteogenesis assays resulted in extracellular matrix changes. Collagen and proteoglycan filament/particle deposition was seen when chondrogenesis was promoted. Hydroxyapatite crystals, psammoma bodies, and plaque-like calcified matrix deposits were found in the osteogenic matrix. EM provides detailed structural information on the degree of differentiation induced in stem cells and demonstrates that the methods so far developed are not able to promote complete cell differentiation. These observations contribute to explain why clinical applications with hMSCs have produced results far lower than initial expectations. PMID:24047349

  11. Ultrastructure and Membrane Traffic During Cell Division in the Marine Pennate Diatom Phaeodactylum tricornutum

    PubMed Central

    Tanaka, Atsuko; De Martino, Alessandra; Amato, Alberto; Montsant, Anton; Mathieu, Benjamin; Rostaing, Philippe; Tirichine, Leila; Bowler, Chris

    2015-01-01

    The marine pennate diatom Phaeodactylum tricornutum has become a model for diatom biology, due to its ease of culture and accessibility to reverse genetics approaches. While several features underlying the molecular mechanisms of cell division have been described, morphological analyses are less advanced than they are in other diatoms. We therefore examined cell ultrastructure changes prior to and during cytokinesis. Following chloroplast division, cleavage furrows are formed at both longitudinal ends of the cell and are accompanied by significant vesicle transport. Although neither spindle nor microtubules were observed, the nucleus appeared to be split by the furrow after duplication of the Golgi apparatus. Finally, centripetal cytokinesis was completed by fusion of the furrows. Additionally, F-actin formed a ring structure and its diameter became smaller, accompanying the ingrowing furrows. To further analyse vesicular transport during cytokinesis, we generated transgenic cells expressing yellow fluorescent protein (YFP) fusions with putative diatom orthologs of small GTPase Sec4 and t-SNARE protein SyntaxinA. Time-lapse observations revealed that SyntaxinA-YFP localization expands from both cell tips toward the center, whereas Sec4-YFP was found in the Golgi and subsequently relocalizes to the future division plane. This work provides fundamental new information about cell replication processes in P. tricornutum. PMID:26386358

  12. Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model.

    PubMed

    Birkelbach, Bastian; Lutz, Dennis; Ruppert, Clemens; Henneke, Ingrid; Lopez-Rodriguez, Elena; Günther, Andreas; Ochs, Matthias; Mahavadi, Poornima; Knudsen, Lars

    2015-07-01

    Chronic injury of alveolar epithelial type II cells (AE2 cells) represents a key event in the development of lung fibrosis in animal models and in humans, such as idiopathic pulmonary fibrosis (IPF). Intratracheal delivery of amiodarone to mice results in a profound injury and macroautophagy-dependent apoptosis of AE2 cells. Increased autophagy manifested in AE2 cells by disturbances of the intracellular surfactant. Hence, we hypothesized that ultrastructural alterations of the intracellular surfactant pool are signs of epithelial stress correlating with the severity of fibrotic remodeling. With the use of design-based stereology, the amiodarone model of pulmonary fibrosis in mice was characterized at the light and ultrastructural level during progression. Mean volume of AE2 cells, volume of lamellar bodies per AE2 cell, and mean size of lamellar bodies were correlated to structural parameters reflecting severity of fibrosis like collagen content. Within 2 wk amiodarone leads to an increase in septal wall thickness and a decrease in alveolar numbers due to irreversible alveolar collapse associated with alveolar surfactant dysfunction. Progressive hypertrophy of AE2 cells and increase in mean individual size and total volume of lamellar bodies per AE2 cell were observed. A high positive correlation of these AE2 cell-related ultrastructural changes and the deposition of collagen fibrils within septal walls were established. Qualitatively, similar alterations could be found in IPF samples with mild to moderate fibrosis. We conclude that ultrastructural alterations of AE2 cells including the surfactant system are tightly correlated with the progression of fibrotic remodeling. PMID:25957292

  13. Histochemical and ultrastructural characterization of serotonin-containing cells in rabbit tracheal epithelium

    SciTech Connect

    Dey, R.D.; Shannon, W.A. Jr.; Hagler, H.K.; Said, S.I.

    1983-04-01

    Tracheal endocrine cells (TECs) that contain serotonin have been characterized previously by staining with ferric ferricyanide. In the present article, the ferric ferricyanide staining reaction has been used to locate the TECs in deplasticized thick sections of Epon-embedded rabbit tracheas. Adjacent thin sections of the same cell were subsequently observed by electron microscopy. The TECs were filled with dense-core vesicles (DCVs) located in the cytoplasm between the nucleus and the lumen and also lateral to the nucleus. In a separate experiment, pieces of rabbit trachea were treated with a solution of glutaraldehyde-dichromate to demonstrate the presence of amines. High levels of chromium were detected in the DCVs by energy-dispersive X-ray analysis. The results from these studies have correlated the ultrastructure of a serotonin-containing endocrine cell present in rabbit tracheal epithelium with a cell type previously characterized only by light and fluorescence histochemical methods. The results also indicate that serotonin in these cells is stored in the DCVs.

  14. Conversion of a rabbit proximal convoluted tubule (PCT) into a cell monolayer: ultrastructural study of cell dedifferentiation and redifferentiation.

    PubMed

    Koechlin, N; Pisam, M; Poujeol, P; Tauc, M; Rambourg, A

    1991-04-01

    The evolution of a primary culture of kidney proximal convoluted tubule (PCT) cells was followed step by step from the plating time of an isolated tubule to the 39th day of culture. During the first 48 h, the structural remodeling of PCT, leading to the formation of a cell monolayer without cell division, is accompanied by intracytoplasmic changes indicating cell dedifferentiation. Numerous autophagic vacuoles are observed inside the cells, and the ultrastructural features characteristic of in situ PCT cells are progressively lost. Despite these drastic modifications, cell polarity, as observed by immunocytochemical detection of the leucine aminopeptidase, remains unaltered. Starting at 48 h, the peripheral cells divide, and the culture proliferates in a centrifugal direction while newly formed cells differentiate. From 6 days onwards, glycogen granules, never encountered in in situ PCT cells, appear in cultured cells and progressively accumulate. At the optimal stage of the culture (12-17 days old), cells somewhat resemble PCT cells, but their apical brush borders remain rudimentary, and basal cytoplasmic interdigitations surrounding densely packed mitochondria are poorly developed. Subsequently, the cells become overloaded with glycogen and lipid inclusions and resemble degenerating cells. PMID:1879437

  15. Effects of Waterlogging on Leaf Mesophyll Cell Ultrastructure and Photosynthetic Characteristics of Summer Maize.

    PubMed

    Ren, Baizhao; Zhang, Jiwang; Dong, Shuting; Liu, Peng; Zhao, Bin

    2016-01-01

    A field experiment was performed to study the effects of waterlogging on the leaf mesophyll cell ultrastructure, chlorophyll content, gas exchange parameters, chlorophyll fluorescence, and malondialdehyde (MDA) content of summer maize (Zea mays L.) hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The waterlogging treatments were implemented for different durations (3 and 6 days) at the third leaf stage (V3), the sixth leaf stage (V6), and the 10th day after the tasseling stage (10VT). Leaf area index (LAI), chlorophyll content, photosynthetic rate (Pn), and actual photochemical efficiency (ΦPSII) were reduced after waterlogging, indicating that waterlogging significantly decreased photosynthetic capacity. The chloroplast shapes changed from long and oval to elliptical or circular after waterlogging. In addition, the internal structures of chloroplasts were degenerated after waterlogging. After waterlogging for 6 d at V3, the number of grana and grana lamellae of the third expanded leaf in DH605 were decreased by 26.83% and 55.95%, respectively, compared to the control (CK). Those in ZD958 were reduced by 30.08% and 31.94%, respectively. Waterlogging increased MDA content in both hybrids, suggesting an impact of waterlogging on membrane integrity and thus membrane deterioration. Waterlogging also damaged the biological membrane structure and mitochondria. Our results indicated that the physiological reactions to waterlogging were closely related to lower LAI, chlorophyll content, and Pn and to the destruction of chloroplast ultrastructure. These negative effects resulted in the decrease of grain yield in response to waterlogging. Summer maize was the most susceptible to damage when waterlogging occurred at V3, followed by V6 and 10VT, with damage increasing in the wake of waterlogging duration increasing. PMID:27583803

  16. Immunocytochemical and ultrastructural identification of pituitary cell types in the protogynous Thalassoma duperrey during adult sexual ontogeny

    USGS Publications Warehouse

    Parhar, I.S.; Nagahama, Y.; Grau, E.G.; Ross, R.M.

    1998-01-01

    Protogynous wrasses (Thalassoma duperrey): females (F), primary males (PM) along with a few terminal-phase males (TM) and sex-changed males (SM), were used to characterize the topographical organization of the pituitary. In general, immunocytochemical and ultrastructural features of the adenohypophyseal cell types of the saddleback wrasse pituitary resemble those of other teleosts. In the rostral pars distalis (RPD), corticotropic cells were found bordering the neurohypophysis (NH) and surrounding the centroventrally located prolactin cells. Thyrotropic cells formed a small group in the anteriodorsal part of the rostral and proximal pars distalis (PPD). The somatotropic cells were distributed in large clusters, mostly organized in cell cords around the interdigitations of the NH of the dorsal PPD. Cells containing gonadotropin I?? subunit were localized in the dorsal parts of the PPD, in close association with somatotropic cells and gonadotropin II?? subunit containing cells were seen in the centroventral parts of the PPD and along the periphery of the pars intermedia (PI). The pars intermedia was composed of melanotropic cells and somatolactin cells that lined the neurohypohysis. Distinct ultrastructural differences in corticotropic and somatotropic cells were not observed between the four groups. In all groups, prolactin cells in the ventral-most RPD could be immature cells or actively secreting prolactin. Gonadotropic II cells of PM and F had relatively higher incidence of "nuclear budding" and cell organelles compared to TM and SM. Besides gonadotropic, the active melanotropic and somatolactin cells might be associated with some aspect(s) of reproduction.

  17. Structure of xanthan gum and cell ultrastructure at different times of alkali stress

    PubMed Central

    de Mello Luvielmo, Márcia; Borges, Caroline Dellinghausen; de Oliveira Toyama, Daniela; Vendruscolo, Claire Tondo; Scamparini, Adilma Regina Pippa

    2016-01-01

    The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24 h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on gum purification are required to remove excess sodium, verify the efficiency loss and the consequent increase in the polymer viscosity. Alkali stress altered the structure of xanthan gum from a polygon-like shape to a star-like form. At the end of the fermentation, early structural changes in the bacterium were observed. After alkali stress, marked structural differences were observed in the cells. A more vacuolated cytoplasm and discontinuities in the membrane cells evidenced the cell lysis. Xanthan was observed in the form of concentric circles instead of agglomerates as observed prior to the alkali stress. PMID:26887232

  18. Structure of xanthan gum and cell ultrastructure at different times of alkali stress.

    PubMed

    Luvielmo, Márcia de Mello; Borges, Caroline Dellinghausen; Toyama, Daniela de Oliveira; Vendruscolo, Claire Tondo; Scamparini, Adilma Regina Pippa

    2016-01-01

    The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on gum purification are required to remove excess sodium, verify the efficiency loss and the consequent increase in the polymer viscosity. Alkali stress altered the structure of xanthan gum from a polygon-like shape to a star-like form. At the end of the fermentation, early structural changes in the bacterium were observed. After alkali stress, marked structural differences were observed in the cells. A more vacuolated cytoplasm and discontinuities in the membrane cells evidenced the cell lysis. Xanthan was observed in the form of concentric circles instead of agglomerates as observed prior to the alkali stress. PMID:26887232

  19. Characterization of uterine granular cell tumors in B6C3F1 mice: a histomorphologic, immunohistochemical, and ultrastructural study.

    PubMed

    Veit, A C; Painter, J T; Miller, R A; Hardisty, J F; Dixon, D

    2008-09-01

    The granular cell tumor is most often a benign neoplasm of uncertain origin. Four uterine granular cell tumors in control and treated female B6C3F1 mice were identified in chronic studies at the National Toxicology Program. Two tumors occurred in untreated control animals and 2 in treated animals receiving different compounds. Tissue sections were evaluated histologically and stained with hematoxylin and eosin, periodic acid-Schiff with diastase resistance, Masson's trichrome, toluidine blue, phosphotungstic acid-hematoxylin, and stained immunohistochemically with a panel of antibodies to muscle (desmin, alpha smooth muscle actin), neural (S-100, neuron specific enolase), epithelial (wide-spectrum cytokeratin), and macrophage (F4/80) markers. The main histomorphologic feature of tumor cells was the presence of abundant cytoplasmic eosinophilic granules that stained positive for periodic acid-Schiff with diastase resistance. Tumors varied in appearance and were comprised of sheets and nests of round to polygonal cells with distinct borders. Nuclei were hyperchromatic, pleomorphic, and centrally to eccentrically located and often contained single nucleoli. Occasional multinucleated giant cells were observed. Tumors were pale pink and homogeneous with trichrome stain and negative with toluidine blue. Three tumors had positive to weakly positive immunoreactivity for desmin, and 1 was positive for alpha smooth muscle actin. Expression of S-100, wide-spectrum cytokeratin, and neuron-specific enolase was negative for all tumors. Ultrastructurally, prominent electron-dense cytoplasmic granules were abundant and contained secondary lysosomes with heterogeneous lysosomal contents. The characteristics of these uterine granular cell tumors were suggestive of a myogenic origin. PMID:18725470

  20. Effects of docosahexaenoic acid and sardine oil diets on the ultrastructure of jejunal absorptive cells in adult mice.

    PubMed

    Tamura, M; Suzuki, H

    1996-01-01

    The influence of docosahexaenoic acid (DHA) and sardine oil diets on the ultrastructure of jejunal absorptive cells was studied. Adult male Crj:CD-1 (ICR) mice were fed a fat-free semisynthetic diet supplemented with 5% (by weight) purified DHA ethyl ester, refined sardine oil, or palm oil. The mice received the DHA or palm oil diets for 7 days (groups 1 and 2) and the refined sardine oil or palm oil diets for 30 days (groups 3 and 4). There were significant ultrastructural changes in the jejunal absorptive cells between the mice fed on the palm oil diet and those receiving the DHA and sardine oil diets. The endoplasmic reticulum and Golgi apparatus of some jejunal absorptive cells in the mice fed on the palm oil diet for 7 and 30 days developed vacuolation on the upper site of the nucleus. In contrast, many granules, which appeared to be lipid droplets, were observed in the endoplasmic reticulum and Golgi apparatus of the jejunal absorptive cells in the DHA and sardine oil diet groups. These results suggest that ultrastructural differences in the jejunal absorptive cells between mice in the omega-3 fatty acid and palm oil diet groups may be associated with the changes in lipid metabolism. PMID:9001686

  1. Ultrastructural characteristics of three undifferentiated mouse embryonic stem cell lines and their differentiated three-dimensional derivatives: a comparative study.

    PubMed

    Alharbi, Suzan; Elsafadi, Mona; Mobarak, Mohammed; Alrwili, Ali; Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Al-Qudsi, Fatma; Karim, Saleh; Al-Nabaheen, May; Aldahmash, Abdullah; Mahmood, Amer

    2014-04-01

    The fine structures of mouse embryonic stem cells (mESCs) grown as colonies and differentiated in three-dimensional (3D) culture as embryoid bodies (EBs) were analyzed by transmission electron microscopy. Undifferentiated mESCs expressed markers that proved their pluripotency. Differentiated EBs expressed different differentiation marker proteins from the three germ layers. The ultrastructure of mESCs revealed the presence of microvilli on the cell surfaces, large and deep infolded nuclei, low cytoplasm-to-nuclear ratios, frequent lipid droplets, nonprominent Golgi apparatus, and smooth endoplasmic reticulum. In addition, we found prominent juvenile mitochondria and free ribosomes-rich cytoplasm in mESCs. Ultrastructure of the differentiated mESCs as EBs showed different cell arrangements, which indicate the different stages of EB development and differentiation. The morphologies of BALB/c and 129 W9.5 EBs were very similar at day 4, whereas C57BL/6 EBs were distinct from the others at day 4. This finding suggested that differentiation of EBs from different cell lines occurs in the same pattern but not at the same rate. Conversely, the ultrastructure results of BALB/c and 129 W9.5 ESCs revealed differentiating features, such as the dilated profile of a rough endoplasmic reticulum. In addition, we found low expression levels of undifferentiated markers on the outer cells of BALB/c and 129 W9.5 mESC colonies, which suggests a faster differentiation potential. PMID:24606239

  2. A comparative ultrastructural study of the parotid gland acinar cells of nine wild ruminant species (mammalia, artiodactyla).

    PubMed

    Stolte, M; Ito, S

    1996-01-01

    The ultrastructural similarities and differences of the parotid gland acinar cells of nine wild ruminants (roe deer, nyala, tahr, Eld's deer, red deer, Pere David's deer, European mouflon, African buffalo, sable antelope) representing three feeding types i.e. concentrate selectors (CS), grass and roughage eaters (GR) and intermediate feeders (IM) were compared. The parotid acinar cells of the CS contained more granular endoplasmic reticulum, Golgi-complexes and secretory granules than those of the GR. The acinar cells of the latter were characterized by numerous mitochondria, folded plasma membranes and intercellular secretory canaliculi. The ultrastructure of the secretory granules varied in different species but their morphology was not related to feeding type. An unusual feature of the parotid acinar cells of all feeding types was the evidence of an apocrine-like mode of secretion. A typical morphological change of some parotid acinar cells was the compression of the nucleus by large vacuoles. No distinctive differences were found in the ultrastructure of the parotid gland of wild and captive ruminants. PMID:9090994

  3. Yeast and fungal cell-wall polysaccharides can self-assemble in vitro into an ultrastructure resembling in vivo yeast cell walls.

    PubMed

    Kopecká, Marie

    2013-06-01

    Polysaccharides account for more than 90% of the content of fungal cell walls, but the mechanism underlying the formation of the architecture of the cell walls, which consist of microfibrils embedded in an amorphous wall matrix, remains unknown. We used electron microscopy to investigate ten different fungal cell-wall polysaccharides to determine whether they could self-assemble into the fibrillar or amorphous component of fungal cell walls in a test tube without enzymes. The ultrastructures formed by precipitating β-1,3-glucan and β-1,6-glucan are different depending on the existence of branching in the molecule. Linear β-1,3-glucan and linear β-1,6-glucan precipitate into a fibrillar ultrastructure. Branched β-1,6-glucan, mannan and glycogen precipitates are amorphous. Branched β-1,3-glucan forms a fibrillar plus amorphous ultrastructure. Self-assembly among combinations of different linear and branched cell-wall polysaccharides results in an ultrastructure that resembles that of a yeast cell wall, which suggests that self-assembly of polysaccharides may participate in the development of the three-dimensional architecture of the yeast cell wall. PMID:23160360

  4. Immunophenotypic, immunocytochemistry, ultrastructural, and cytogenetic characterization of mesenchymal stem cells from equine bone marrow.

    PubMed

    Maia, Leandro; Landim-Alvarenga, Fernanda C; Da Mota, Ligia S L Silveira; De Assis Golim, Marjorie; Laufer-Amorim, Reneé; De Vita, Bruna; Barberini, Danielle Jaqueta; Listoni, Amanda Jeronimo; De Moraes, Carolina Nogueira; Heckler, Marta Cristina Thomas; Amorim, Rogério Martins

    2013-06-01

    The aim of this study was to isolate, culture, and characterize mesenchymal stem cells (MSCs) from horse bone marrow (BM) using the techniques of flow cytometry, immunocytochemistry, cytogenetics, and electron microscopy. Immunophenotypic analysis revealed the presence of MSCs with high expression of the CD90 marker, lower expression of the CD44 marker, and absent expression of the CD34 marker. In assays of differentiation, the positive response to osteogenic (OST), chondrogenic (CDG), and adipogenic (ADP) differentiation signals was observed and characterized by deposition of calcium-rich extracellular matrix (OST), proteoglycans and collagen II (CDG) and intracellular deposition of fat drops (ADP). In immunocytochemical characterization, MSCs were immunopositive for CD44, vimentin, and PCNA, and they were negative for CD13. In the ultrastructural analysis of MSCs, the most outstanding characteristic was the presence of rough endoplasmic reticulum with very dilated cisterns filled with a low electrodensity material. Additionally, MSCs had normal karyotypes (2n = 64) as evidenced by cytogenetic analysis, and aneuploidy in metaphase was not observed. The protocols for isolating, culturing, and characterizing equine MSCs used in this study were shown to be appropriate for the production of a cell population with a good potential for differentiation and without aneuploidy that can be used to study future cellular therapies. PMID:23533133

  5. Ultrastructural characterization of goblet-shaped particles from the cell wall of Flexibacter polymorphus.

    PubMed

    Ridgway, H F

    1977-09-01

    The ultrastructure of submicroscopic goblet-shaped particles ("goblets') from the cell wall of the marine-gliding microbe Flexibacter polymorphus was investigated. The goblets, which were partially purified by CsCl density-gradient centrifugation, were rich in protein, exhibiting a single absorption maximum in the ultraviolet at about 276 nm; they also contained a small amount of carbohydrate. As determined by electron microscopy, goblets negatively contrasted with ammonium molybdate were about 30 nm in diameter by 36 nm in length. When viewed in profile, each apparently consisted of five morphologically distinct kinds of components: the C-1, C-2, and C-3 subunits which formed the cup-shaped moiety of the goblet; a globular base unit; and a tubular stem-like structure connecting the cup with the base unit. In addition, a long fiber emerged from the interior of some goblets. The fine structural evidence suggested that goblets may be constructed from three stacked subunit rings (each composed of repeating C-1, C-2, or C-3 protomers) arranged concentrically. X-ray images of a clay model closely resembled electron micrographs of negatively stained goblets; thereby lending support to the proposed structure. It is speculated that goblets function in vivo as macromolecular pores through the outer membrane which mediate extrusion of extracellular fibers, possibly of importance in gliding motility or in attachment of cells to solid surfaces. PMID:907917

  6. Differentiation of chronic lymphocytic leukemia cells: correlation between the synthesis and secretion of immunoglobulins and the ultrastructure of the malignant cells

    SciTech Connect

    Rubartelli, A.; Sitia, R.; Zicca, A.; Grossi, C.E.; Ferrarini, M.

    1983-08-01

    The capacity of synthesizing and secreting Ig molecules was studied in 11 patients with B-cell chronic lymphocytic leukemia (B-CLL) whose cells expressed surface IgM, in 3 patients with surface IgG-bearing cells, and in 2 IgM prolymphocytic leukemias (IgM-PLL). Three types of mu chains were detected by SDS-polyacrylamide gel electrophoresis analysis of the endogenously labeled molecules isolated by specific immunoprecipitation. Two of them were isolated from the cell lysates and were identified as the membrane mu chain and the precursor of the secreted molecules, respectively. The latter also possibly contained precursors of the membrane molecules. The third type of molecule was detected only in the culture medium and was identified as secretory mu chain. Not all of the malignant clones possessed the three types of mu chains. Only 7/13 of the IgM-bearing malignant cell clones were capable of secretion, whereas the remaining synthesized the secretory mu chains but degraded them intracellularly. Two types of molecules (membrane and secreted) were found in the IgG-bearing CLL cells from three patients. In all of them, secretion was detected. Ultrastructural analysis demonstrated that cells from the secreting clones had the features of more mature lymphocytes than the cells from nonsecreting clones. These features were represented by a developed Golgi apparatus, various types of vesicles (smooth and coated), and strands of the rough endoplasmic reticulum. A certain heterogeneity of the degree of maturation of the cells was observed within these clones. The data are consistent with the hypothesis that CLL clones are heterogeneous and can be distinguished through the different degrees of maturation of their cell components.

  7. Ultrastructural characterization of porcine oocytes and adjacent follicular cells during follicle development: lipid component evolution.

    PubMed

    Silva, Renata C; Báo, Sônia N; Jivago, José Luiz P R; Lucci, Carolina M

    2011-12-01

    The objective of this study was to characterize the morphometry and ultrastructure of porcine preantral and antral follicles, especially the lipid component evolution. Ovarian tissue was processed for light microscopy. Ovarian tissue and dissected antral follicles (< 2, 2-4, and 4-6 mm) were also processed for transmission electron microscopy using routine methods and using an osmium-imidazole method for lipid detection. Primordial follicles (34 ± 5 μm in diameter, mean ± SD) had one layer of flattened-cuboidal granulosa cells around the oocyte, primary follicles (40 ± 7 μm) had a single layer of cuboidal granulosa cells around the oocyte, and secondary follicles (102 ± 58 μm) had two or more layers of cuboidal granulosa cells around the oocyte. Preantral follicle oocytes had many round mitochondria and both rough and smooth endoplasmic reticulum. In oocytes of primordial and primary follicles, lipid droplets were abundant and were mostly located at the cell poles. In secondary and antral follicles, the zona pellucida completely surrounded the oocyte, whereas some microvilli and granulosa cells projected through it. Numerous electron-lucent vesicles and vacuoles were present in the oolemma of secondary and antral follicles. Based on osmium-imidazole staining, most of these structures were shown to be lipid droplets. As the follicle developed, the appearance of the lipid droplets changed from small and black to large and gray, dark or dark with light streaks, suggesting that their nature may change over time. In summary, although porcine follicles and oocytes had many similarities to those of other mammalian species, they were rich in lipids, with lipid droplets with varying morphological patterns as the follicle developed. PMID:21835450

  8. [ULTRASTRUCTURAL CHANGES OF THE STEM CELLS IN THE CYCLE MONOLAYER--SPHERES--MONOLAYER].

    PubMed

    Martynova, M G; Krylova, T A; Bystrova, O A

    2016-01-01

    Sphere formation can be used to prepare stem cells (SCs) prior to transplantation. Here SCs isolated from human subepicardial adipose tissue were analyzed at different stages of the monolayer-spheres-monolayer cycle by transmission electron microscopy. The results obtained with both adherent-induced and hanging-drop induced spheres were similar. At first 2-3 passages (stage 1), isolated SCs displayed embryonal cell-like ultrastructure. With increasing passage times (stage 2), SCs became bigger and more electron-dark with a multilobed nucleus, well-developed rough endoplasmic reticulum (RER), prominent Golgi apparatus and numerous vacuoles. After 2 h from the initiation of the formation of spheres (stage 3), SCs gathered into clusters and formed desmosome-like intercellular contacts. Their nucleus possessed a large loose fibrillo-granular nucleoli, the cytoplasm was densely packed with disintegrated cisternae of RER, Golgi apparatus was not detected. After 24 h from the initiation of spheres (stage 4), SCs in well-formed spheres exhibited large dense nucleoli and poorly developed Golgi apparatus and RER. One day after sphere dissociating (stage 5), SCs were embryonal cell-like and morphologically similar to the cells of the first stage except for the presence of a large nucleolus and numerous Golgi complexes. After 48 h from sphere dissociating (stage 6), SCs became electron-dark and resembled the SCs of the second stage by the presence of irregularly shaped nuclei and the cetoplasm filled with RER. We interpreted the results as senescence of the SCs with the number of passages after isolation from tissue and a day after dissociation of the spheres and as rejuvenation of the SCs just after sphere dissociation. Further research is needed to reveal the genetic, biochemical and physiological parameters of the SCs on established morphologically distinct stages in order to provide higher-quality cellular material for disease cell therapy. PMID:27220247

  9. Spent metal working fluids produced alterations on photosynthetic parameters and cell-ultrastructure of leaves and roots of maize plants.

    PubMed

    Grijalbo, Lucía; Fernandez-Pascual, Mercedes; García-Seco, Daniel; Gutierrez-Mañero, Francisco Javier; Lucas, Jose Antonio

    2013-09-15

    In this work we assess the capacity of maize (Zea mays) plants to phytoremediate spent metal working fluids (MWFs) and its effects on photosynthesis and ultrastructure of mesophyll and root cells. A corn-esparto fibre system patented by us has been used to phytoremediate MWFs in hydroponic culture. Furthermore, a plant growth promoting rhizobacteria (PGPR) has been used to improve the process. The results show that this system is capable of significantly reducing the chemical oxygen demand, under local legislation limits. However, plant systems are really damaged, mainly its photosynthetic system, as shown by the photosynthetical parameters. Nevertheless, strain inoculated improves these parameters, especially Hill reaction. The ultrastructure of photosynthetic apparatus was also affected. Chloroplast number decreased and becomes degraded in the mesophyll of MWFs treated plants. In some cases even plasmolysis of chloroplast membrane was detected. Early senescence symptoms were detected in root ultrastructural study. Severe cellular damage was observed in the parenchymal root cells of plants grown with MWFs, while vascular bundles cell remained unchanged. It seems that the inoculation minimises the damage originated by the MWFs pollutants, appearing as less degenerative organelles and higher chloroplast number than in non-inoculated ones. PMID:23770488

  10. Single-prolonged stress induce different change in the cell organelle of the hippocampal cells: A study of ultrastructure.

    PubMed

    Wan, JunLai; Liu, Dongjuan; Zhang, Jie; Shi, Yuxiu; Han, Fang

    2016-01-01

    MRI studies have revealed structural and functional changes in the hippocampus of post-traumatic stress disorder (PTSD) patients. Previous studies conducted by us in a PTSD animal model found that single prolonged stress (SPS) induced abnormal morphological changes in hippocampal cells. The effects of SPS on cellular organelles of the hippocampal neurons remain unknown; however, these changes have been involved in SPS-induced abnormal hippocampal function. The aim of the present study is to examine ultrastructural changes in cellular organelles, including the lysosomes, mitochondria (Mit), Golgi apparatus, and endoplasmic reticulum (ER), following SPS exposure using transmission electron microscopy, enzyme histochemistry, and enzyme cytochemistry. First, morphological changes of the hippocampal cells and ultrastructural changes in cellular organelles, including lysosomes, ER, and Mit-induced by SPS were observed. Results from histo- and cytochemistry demonstrated that the Mit marker enzyme, cytochrome c oxidase (COX), and the lysosomal enzyme acid phosphatase, (ACP), increased following exposure to SPS. SPS induced COX release from Mit and led to a wider distribution of ACP in round lysosomes, NLY, and the Golgi. In addition, we found that SPS increased the presence of autophagosomes and induced changes in the autophagy-related protein, Beclin. These results indicated the differential effects of SPS on cellular organelles, that is, a positive effect on lysosomes as well as a negative effect on the Mit and ER. Increased lysosomal function may serve as protection against SPS-induced cell damage. Structural changes in the Mit and ER may be involved in SPS-induced disorders of energy metabolism and protein synthesis and export. PMID:26589383

  11. Simultaneous Ultrastructural Analysis of Fluorochrome-Photoconverted Diaminobenzidine and Gold Immunolabelling in Cultured Cells

    PubMed Central

    Malatesta, M.; Zancanaro, C.; Costanzo, M.; Cisterna, B.; Pellicciari, C.

    2013-01-01

    Diaminobenzidine photoconversion is a technique by which a fluorescent dye is transformed into a stably insoluble, brown, electrondense signal, thus enabling examination at both bright field light microscopy and transmission electron microscopy. In this work, a procedure is proposed for combining photoconversion and immunoelectron microscopy: in vitro cell cultures have been first submitted to photoconversion to analyse the intracellular fate of either fluorescent nanoparticles or photosensitizing molecules, then processed for transmission electron microscopy; different fixative solutions and embedding media have been used, and the ultrathin sections were finally submitted to post-embedding immunogold cytochemistry. Under all conditions the photoconversion reaction product and the target antigen were properly detected in the same section; Epon-embedded, osmicated samples required a pre-treatment with sodium metaperiodate to unmask the antigenic sites. This simple and reliable procedure exploits a single sample to simultaneously localise the photoconversion product and a variety of antigens allowing a specific identification of subcellular organelles at the ultrastructural level. PMID:24085275

  12. Morphology and ultrastructure of Interfilum and Klebsormidium (Klebsormidiales, Streptophyta) with special reference to cell division and thallus formation

    PubMed Central

    Mikhailyuk, Tatiana; Holzinger, Andreas; Massalski, Andrzej; Karsten, Ulf

    2014-01-01

    Representatives of the closely related genera, Interfilum and Klebsormidium, are characterized by unicells, dyads or packets in Interfilum and contrasting uniseriate filaments in Klebsormidium. According to the literature, these distinct thallus forms originate by different types of cell division, sporulation (cytogony) versus vegetative cell division (cytotomy), but investigations of their morphology and ultrastructure show a high degree of similarity. Cell walls of both genera are characterized by triangular spaces between cell walls of neighbouring cells and the parental wall or central space among the walls of a cell packet, exfoliations and projections of the parental wall and cap-like and H-like fragments of the cell wall. In both genera, each cell has its individual cell wall and it also has part of the common parental wall or its remnants. Therefore, vegetative cells of Interfilum and Klebsormidium probably divide by the same type of cell division (sporulation-like). Various strains representing different species of the two genera are characterized by differences in cell wall ultrastructure, particularly the level of preservation, rupture or gelatinization of the parental wall surrounding the daughter cells. The differing morphologies of representatives of various lineages result from features of the parental wall during cell separation and detachment. Cell division in three planes (usual in Interfilum and a rare event in Klebsormidium) takes place in spherical or short cylindrical cells, with the chloroplast positioned perpendicularly or obliquely to the filament (dyad) axis. The morphological differences are mainly a consequence of differing fates of the parental wall after cell division and detachment. The development of different morphologies within the two genera mostly depends on characters such as the shape of cells, texture of cell walls, mechanical interactions between cells and the influence of environmental conditions. PMID:26504365

  13. Biomarkers to identify and isolate senescent cells.

    PubMed

    Matjusaitis, Mantas; Chin, Greg; Sarnoski, Ethan Anders; Stolzing, Alexandra

    2016-08-01

    Aging is the main risk factor for many degenerative diseases and declining health. Senescent cells are part of the underlying mechanism for time-dependent tissue dysfunction. These cells can negatively affect neighbouring cells through an altered secretory phenotype: the senescence-associated secretory phenotype (SASP). The SASP induces senescence in healthy cells, promotes tumour formation and progression, and contributes to other age-related diseases such as atherosclerosis, immune-senescence and neurodegeneration. Removal of senescent cells was recently demonstrated to delay age-related degeneration and extend lifespan. To better understand cell aging and to reap the benefits of senescent cell removal, it is necessary to have a reliable biomarker to identify these cells. Following an introduction to cellular senescence, we discuss several classes of biomarkers in the context of their utility in identifying and/or removing senescent cells from tissues. Although senescence can be induced by a variety of stimuli, senescent cells share some characteristics that enable their identification both in vitro and in vivo. Nevertheless, it may prove difficult to identify a single biomarker capable of distinguishing senescence in all cell types. Therefore, this will not be a comprehensive review of all senescence biomarkers but rather an outlook on technologies and markers that are most suitable to identify and isolate senescent cells. PMID:27212009

  14. 3D Ultrastructural Organization of Whole Chlamydomonas reinhardtii Cells Studied by Nanoscale Soft X-Ray Tomography

    PubMed Central

    Hummel, Eric; Guttmann, Peter; Werner, Stephan; Tarek, Basel; Schneider, Gerd; Kunz, Michael; Frangakis, Achilleas S.; Westermann, Benedikt

    2012-01-01

    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology. PMID:23300909

  15. Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells

    PubMed Central

    Costello, M. Joseph; Brennan, Lisa A.; Gilliland, Kurt O.; Johnsen, Sönke; Kantorow, Marc

    2016-01-01

    An unresolved issue in structural biology is how the encapsulated lens removes membranous organelles to carry out its role as a transparent optical element. In this ultrastructural study, we establish a mechanism for nuclear elimination in the developing chick lens during the formation of the organelle-free zone. Day 12–15 chick embryo lenses were examined by high-resolution confocal light microscopy and thin section transmission electron microscopy (TEM) following fixation in 10% formalin and 4% paraformaldehyde, and then processing for confocal or TEM as described previously. Examination of developing fiber cells revealed normal nuclei with dispersed chromatin and clear nucleoli typical of cells in active ribosome production to support protein synthesis. Early signs of nuclear degradation were observed about 300 μm from the lens capsule in Day 15 lenses where the nuclei display irregular nuclear stain and prominent indentations that sometimes contained a previously undescribed macromolecular aggregate attached to the nuclear envelope. We have termed this novel structure the nuclear excisosome. This complex by confocal is closely adherent to the nuclear envelope and by TEM appears to degrade the outer leaflet of the nuclear envelope, then the inner leaflet up to 500 μm depth. The images suggest that the nuclear excisosome separates nuclear membrane proteins from lipids, which then form multilamellar assemblies that stain intensely in confocal and in TEM have 5 nm spacing consistent with pure lipid bilayers. The denuded nucleoplasm then degrades by condensation and loss of structure in the range 600 to 700 μm depth producing pyknotic nuclear remnants. None of these stages display any classic autophagic vesicles or lysosomes associated with nuclei. Uniquely, the origin of the nuclear excisosome is from filopodial-like projections of adjacent lens fiber cells that initially contact, and then appear to fuse with the outer nuclear membrane. These filopodial

  16. Identification and Ultrastructural Characterization of a Novel Nuclear Degradation Complex in Differentiating Lens Fiber Cells.

    PubMed

    Costello, M Joseph; Brennan, Lisa A; Mohamed, Ashik; Gilliland, Kurt O; Johnsen, Sönke; Kantorow, Marc

    2016-01-01

    An unresolved issue in structural biology is how the encapsulated lens removes membranous organelles to carry out its role as a transparent optical element. In this ultrastructural study, we establish a mechanism for nuclear elimination in the developing chick lens during the formation of the organelle-free zone. Day 12-15 chick embryo lenses were examined by high-resolution confocal light microscopy and thin section transmission electron microscopy (TEM) following fixation in 10% formalin and 4% paraformaldehyde, and then processing for confocal or TEM as described previously. Examination of developing fiber cells revealed normal nuclei with dispersed chromatin and clear nucleoli typical of cells in active ribosome production to support protein synthesis. Early signs of nuclear degradation were observed about 300 μm from the lens capsule in Day 15 lenses where the nuclei display irregular nuclear stain and prominent indentations that sometimes contained a previously undescribed macromolecular aggregate attached to the nuclear envelope. We have termed this novel structure the nuclear excisosome. This complex by confocal is closely adherent to the nuclear envelope and by TEM appears to degrade the outer leaflet of the nuclear envelope, then the inner leaflet up to 500 μm depth. The images suggest that the nuclear excisosome separates nuclear membrane proteins from lipids, which then form multilamellar assemblies that stain intensely in confocal and in TEM have 5 nm spacing consistent with pure lipid bilayers. The denuded nucleoplasm then degrades by condensation and loss of structure in the range 600 to 700 μm depth producing pyknotic nuclear remnants. None of these stages display any classic autophagic vesicles or lysosomes associated with nuclei. Uniquely, the origin of the nuclear excisosome is from filopodial-like projections of adjacent lens fiber cells that initially contact, and then appear to fuse with the outer nuclear membrane. These filopodial

  17. Ultrastructure of Polyangium cellulosum.

    PubMed Central

    Lampky, J R

    1976-01-01

    Polyangium cellulosum was examined with the transmission electron microscope and the scanning electron microscope. Freeze-fracturing and critical-point-drying techniques were employed with the latter instrument. Critical-point drying seemed to eliminate the distortion of cells and fruiting bodies. These instruments and techniques allowed for a detailed comparison of cell and fruiting-body ultrastructure. Lipid storage materials and mesosomes were found to be constant cell particulates in both vegetative cells and in the shortened myxospores. Images PMID:820686

  18. Ultrastructural maturation of human bone marrow mesenchymal stem cells-derived cardiomyocytes under alternative induction of 5-azacytidine.

    PubMed

    Piryaei, Abbas; Soleimani, Masoud; Heidari, Mohammad Hassan; Saheli, Mona; Rohani, Razieh; Almasieh, Mohammadali

    2015-05-01

    Adult cardiomyocytes lack the ability to proliferate and are unable to repair damaged heart tissue, therefore differentiation of stem cells to cardiomyocytes represents an exceptional opportunity to study cardiomyocytes in vitro and potentially provides a valuable source for replacing damaged tissue. However, characteristic maturity of the in vitro differentiated cardiomyocytes and methods to achieve it are yet to be optimized. In this study, differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs) into cardiomyocytes is accomplished and the process investigated ultrastructurally. The hBM-MSCs were alternatively treated with 5 μM of 5-azacytidine (5-aza) for 8 weeks resulting in differentiation to cardiomyocytes. Expressions of cardiomyocyte-specific genes [cardiac α-actinin, cardiac β-myosin heavy chain (MHC) and connexin-43] and proteins (cardiac α-actinin, cardiac troponin and connexin-43) were confirmed in a time-dependent manner from the first to the fifth weeks post-induction. Ultrastructural maturation of hBM-MSCs-derived cardiomyocyte (MSCs-CM) corresponded with increase in number and organization of myofilaments in cells over time. Starting from week five, organized myofibrils along with developing sarcomeres were detectable. Later on, MSCs-CM were characterized by the presence of sarcoplasmic reticulum, T-tubules and diads as cardiomyocytes connected to each other by intercalated disc-like structures. Here, we showed the potential of hBM-MSCs as a source for the production of cardiomyocytes and confirmed mature ultrastructural characteristics of these cells using our alternative incubation method. PMID:25573851

  19. Immunohistochemical and ultrastructural characteristics of interstitial cells of Cajal in the rabbit duodenum. Presence of a single cilium

    PubMed Central

    Junquera, Concepción; Martínez-Ciriano, Carmen; Castiella, Tomás; Serrano, Pedro; Azanza, María Jesús; Ramón y Cajal Junquera, Santiago

    2007-01-01

    Abstract Santiago Ramón y Cajal discovered a new type of cell related to the myenteric plexus and also to the smooth muscle cells of the circular muscle layer of the intestine. Based on their morphology, relationships and staining characteristics, he considered these cells as primitive neurons. One century later, despite major improvements in cell biology, the interstitial cells of Cajal (ICCs) are still controversial for many researchers. The aim of study was to perform an immunohistochemical and ultrastructural characterization of the ICCs in the rabbit duo-denum. We have found interstitial cells that are positive for c-Kit, CD34 and nestin and are also positive for Ki67 protein, tightly associated with somatic cell proliferation. By means of electron microscopy, we describe ICCs around enteric ganglia. They present triangular or spindle forms and a very voluminous nucleus with scarce per-inuclear chromatin surrounded by a thin perinuclear cytoplasm that expands with long cytoplasmic processes. ICC processes penetrate among the smooth muscle cells and couple with the processes of other ICCs located in the connective tissue of the circular muscle layer and establish a three-dimensional network. Intercellular con-tacts by means of gap-like junctions are frequent. ICCs also establish gap-like junctions with smooth muscle cells. We also observe a population of interstitial cells of stellate morphology in the connective tissue that sur-rounds the muscle bundles in the circular muscle layer, usually close to nervous trunks. These cells establish different types of contacts with the muscle cells around them. In addition, the presence of a single cilium show-ing a structure 9 + 0 in an ICC is demonstrated for the first time. In conclusion, we report positive staining c-kit, CD34, nestin and Ki 67. ICCs fulfilled the usual transmission electron microscopy (TEM) criteria. A new ultrastructural characteristic of at least some ICCs is demonstrated: the presence of a single

  20. An ultrastructural study of goblet cells in rat nasal mucosa as revealed by the quick-freezing method.

    PubMed Central

    Shimomura, S; Hisamatsu, K; Fujii, Y; Ohno, S

    1996-01-01

    In order to clarify the natural ultrastructure of goblet cells in the rat nasal mucosa, they were examined by the quick-freezing and freeze-substitution (QF-FS) or deep-etching (QF-DE) methods for comparison with conventional fixation methods. Some nasal mucosal tissues were unstimulated; others were stimulated with acetylcholine or substance P. The QF-FS method yielded fewer artefacts on transmission electron microscopy than conventional fixation methods. In the stimulated goblet cells, most of the secretory granules appeared to be loose in the matrix and more distorted in shape. By the QF-DE method, they were observed 3-dimensionally to be larger in size and aggregated together. In contrast, the secretory granules in the unstimulated goblet cells were mostly round and small, and separate from each other. It is concluded that the ultrastructure of secretory granules is artefactually modified by conventional fixation methods and that granule structure in goblet cells alters during the secretory process. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8763482

  1. High resolution imaging of the ultrastructure of living algal cells using soft x-ray contact microscopy

    SciTech Connect

    Ford, T.W.; Cotton, R.A.; Page, A.M.; Tomie, T.; Majima, T.; Stead, A.D.

    1995-12-31

    Soft x-ray contact microscopy provides the biologist with a technique for examining the ultrastructure of living cells at a much higher resolution than that possible by various forms of light microscopy. Readout of the developed photoresist using atomic force microscopy (AFM) produces a detailed map of the carbon densities generated in the resist following exposure of the specimen to water-window soft x-rays (2--4nm) produced by impact of a high energy laser onto a suitable target. The established high resolution imaging method of transmission electron microscopy (TEM) has inherent problems in the chemical pre-treatment required for producing the ultrathin sections necessary for this technique. Using the unicellular green alga Chlamydomonas the ultrastructural appearance of the cells following SXCM and TEM has been compared. While SXCM confirms the basic structural organization of the cell as seen by TEM (e.g., the organization of the thylakoid membranes within the chloroplast; flagellar insertion into the cytoplasm), there are important differences. These are in the appearance of the cell covering and the presence of carbon-dense spherical cellular inclusions.

  2. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize.

    PubMed

    Vaculík, Marek; Pavlovič, Andrej; Lux, Alexander

    2015-10-01

    Silicon was shown to alleviate the negative effects of various biotic and abiotic stresses on plant growth. Although the positive role of Si on toxic and heavy metal Cd has been already described, the mechanisms have been explained only partially and still remain unclear. In the present study we investigated the effect of Si on photosynthetic-related processes in maize exposed to two different levels of Cd via measurements of net photosynthetic rate (AN), chlorophyll a fluorescence and pigment analysis, as well as studies of leaf tissue anatomy and cell ultrastructure using bright-field and transmission electron microscopy. We found that Si actively alleviated the toxic syndromes of Cd by increasing AN, effective photochemical quantum yield of photosystem II (ϕPSII) and content of assimilation pigments, although did not decrease the concentration of Cd in leaf tissues. Cadmium did not affect the leaf anatomy and ultrastructure of leaf mesophyll's cell chloroplasts; however, Cd negatively affected thylakoid formation in chloroplasts of bundle sheath cells, and this was alleviated by Si. Improved thylakoid formation in bundle sheath's cell chloroplasts may contribute to Si-induced enhancement of photosynthesis and related increase in biomass production in C4 plant maize. PMID:26036417

  3. Ultrastructural and autoradiographic investigations of cell cultures derived from tendons or ligamentous material from patients with fibromatous disorders.

    PubMed

    Neumüller, J; Tohidast-Akrad, M; Ammer, K; Hakimzadeh, A; Stransky, G; Weis, S; Partsch, G; Eberl, R

    1988-01-01

    Cell cultures were derived from tendons or ligamentous material from patients with carpal tunnel syndrome (CTS), Dupuytren's contracture (DP), tendopathia nodosa (TN) and hallux valgus (HV). The ultrastructure of the operation specimens as well as of the cell monolayers was investigated, using a floating sheet method in order to preserve both cell-to-cell contacts and the orientation of the monolayers. The histologic features of the tissues obtained in the operations were correlated with the ultrastructure of the cells in culture derived from these specimens. In DP, above all in the nodules, an activation of the capillary endothelium in the vicinity of myofibroblasts and mast cells was observed. In CTS the collagen fibrils varied extremely in diameter. In DP and TN biopsies a splicing process of helicoidly arranged fibrils could be seen. A disintegration of elastic fibers in the fibrillar and amorphous components was found in DP nodules, HV and TN tissues. Transitional forms between fibroblasts and myofibroblasts were observed not only in DP but also-though in a smaller percentage--in the cultures derived from the other patients. The cells showed organelles for active protein synthesis and transport. Autophagocytosis and the formation of multilamellated bodies took place in TN and HV cultures. In CTS, DP and TN cultures cells were connected via gap junctions. In some cultures, above all in those derived from CTS, monocilia were found. In CTS cultures the formation of intracellular collagen occurred. Growth parameters were rather low in HV cultures. PLmax (maximal pulse labelling index) values were higher in TN cultures than in DP and HV cultures. Plating efficiency (PE) values were higher in cultures derived from cell-rich and capillarized tissues than in biopsies with few cells. PMID:3229549

  4. Morphological and ultrastructural characterization of ionoregulatory cells in the teleost Oreochromis niloticus following salinity challenge combining complementary confocal scanning laser microscopy and transmission electron microscopy using a novel prefixation immunogold labeling technique.

    PubMed

    Fridman, Sophie; Rana, Krishen J; Bron, James E

    2013-10-01

    Aspects of ionoregulatory or mitochondria-rich cell (MRC) differentiation and adaptation in Nile tilapia yolk-sac larvae following transfer from freshwater to elevated salinities, that is, 12.5 and 20 ppt are described. Investigations using immunohistochemistry on whole-mount Nile tilapia larvae using anti- Na⁺/K⁺-ATPase as a primary antibody and Fluoronanogold™ (Nanoprobes) as a secondary immunoprobe allowed fluorescent labeling with the high resolution of confocal scanning laser microscopy combined with the detection of immunolabeled target molecules at an ultrastructural level using transmission electron microscopy (TEM). It reports, for the first time, various developmental stages of MRCs within the epithelial layer of the tail of yolk-sac larvae, corresponding to immature, developing, and mature MRCs, identifiable by their own characteristic ultrastructure and form. Following transfer to hyperosmotic salinities the density of immunogold particles and well as the intricacy of the tubular system appeared to increase. In addition, complementary confocal scanning laser microscopy allowed identification of immunopositive ramifying extensions that appeared to emanate from the basolateral portion of the cell that appeared to be correlated with the localization of subsurface tubular areas displaying immunogold labeled Na⁺/K⁺-ATPase. This integrated approach describes a reliable and repeatable prefixation immunogold labeling technique allowing precise visualization of NaK within target cells combined with a 3D imaging that offers valuable insights into MRC dynamics at an ultrastructural level. PMID:23873584

  5. Phenotypic, ultra-structural and functional characterization of bovine peripheral blood dendritic cell subsets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dendritic cells (DC) are multifunctional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets...

  6. Antioxidant activity and ultrastructural changes in gastric cancer cell lines induced by Northeastern Thai edible folk plant extracts

    PubMed Central

    2013-01-01

    Background Phytochemical products have a critical role in the drug discovery process. This promising possibility, however, necessitates the need to confirm their scientific verification before use. Hence, this study aims to evaluate (1) the antioxidant activity, (2) cytotoxicity potential, and (3) the effect on ultrastructural alteration in gastric cancer cell lines through exposure to fractions of three local Northeastern Thai edible plants. Methods Plants, Syzygium gratum, Justicia gangetica and Limnocharis flava were extracted with ethyl acetate, and each crude extract analysed for their total phenolics content by Folin-Ciocalteu method. Their antioxidant activity was assessed using the ABTS system. The extracts were then assayed for cytotoxicity on two gastric cancer cell lines Kato-III and NUGC-4, and compared with Hs27 fibroblasts as a control using the MTT assay. The cell viability (%), IC50 values, as well as the ultrastructural alterations were evaluated after treatment with one way analysis of variance (ANOVA). Results The total phenolic values of the ethyl acetate extracts were well correlated with the antioxidant capacity, with extracted product of S. gratum displaying the highest level of antioxidant activity (a 10-fold greater response) over J. gangetica and L. flava respectively. Exposure of S. gratum and J. gangetica extracts to normal cell lines (Hs27) resulted in marginal cytotoxicity effects. However, through a dose-dependent assay S. gratum and J. gangetica extracts produced cytotoxicological effects in just over 75 percent of Kato-III and NUGC-4 cell lines. In addition, apoptotic characteristic was shown under TEM in both cancer cell lines with these two extracts, whereas characteristics of autophagy was found in cell lines after post exposure to extracts from L. flava. Conclusions From these three plants, S. gratum had the highest contents of phenolic compounds and antioxidant capacity. All of them found to contain compound(s) with

  7. ABCB5 identifies immunoregulatory dermal cells

    PubMed Central

    Schatton, Tobias; Yang, Jun; Kleffel, Sonja; Uehara, Mayuko; Barthel, Steven R.; Schlapbach, Christoph; Zhan, Qian; Dudeney, Stephen; Mueller, Hansgeorg; Lee, Nayoung; de Vries, Juliane C.; Meier, Barbara; Vander Beken, Seppe; Kluth, Mark A.; Ganss, Christoph; Sharpe, Arlene H.; Waaga-Gasser, Ana Maria; Sayegh, Mohamed H.; Abdi, Reza; Scharffetter-Kochanek, Karin; Murphy, George F.; Kupper, Thomas S.; Frank, Natasha Y.; Frank, Markus H.

    2015-01-01

    Summary Cell-based strategies represent a new frontier in the treatment of immune-mediated disorders. However, the paucity of markers for isolation of molecularly-defined immunomodulatory cell populations poses a barrier to this field. Here we show that ATP-binding cassette member B5 (ABCB5) identifies dermal immunoregulatory cells (DIRCs) capable of exerting therapeutic immunoregulatory functions through engagement of programmed cell death 1 (PD-1). Purified Abcb5+ DIRCs suppressed T-cell proliferation, evaded immune rejection, homed to recipient immune tissues and induced Tregs in vivo. In fully MHC-mismatched cardiac allotransplantation models, allogeneic DIRCs significantly prolonged allograft survival. Blockade of DIRC-expressed PD-1 reversed the inhibitory effects of DIRCs on T-cell activation, inhibited DIRC-dependent Treg induction, and attenuated DIRC-induced prolongation of cardiac allograft survival, indicating that DIRC immunoregulatory function is mediated, at least in part, through PD-1. Our results identify ABCB5+ DIRCs as a distinct immunoregulatory cell population and suggest promising roles of this expandable cell subset in cellular immunotherapy. PMID:26321644

  8. Acute respiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in Rhesus monkeys exposed to ozone

    SciTech Connect

    Castleman, W.L.; Dungworth, D.L.; Schwartz, L.W.; Tyler, W.S.

    1980-03-01

    The pathogenesis of acute respiratory bronchiolitis was examined in Rhesus monkeys exposed to 0.8 ppM ozone for 4 to 50 hours. Epithelial injury and renewal were qualitatively and quantitatively characterized by correlated techniques of scanning and transmission electron microscopy as well as by light-microscopic autoradiography following labeling with tritiated thymidine. Extensive degeneration and necrosis of Type 1 epithelial cells occurred on the respiratory bronchiolar wall during the initial 4 to 12 hours of exposure. Increased numbers of labeled epithelial cells were present in this region after 18 hours of exposure, and the highest labeling index (18%) was measured after 50 hours of exposure. Most (67 to 80%) of the labeled cells and all the mitotic epithelial cells (22) observed ultrastructurally were cuboidal bronchiolar epithelial cells. Of the labeled epithelial cells, 20 to 33% were Type 2 epithelial cells. After 50 hours of exposure the respiratory bronchiolar epithelium was hyperplastic. The predominant inflammatory cell in respiratory bronchiolar exudate was the alveolar macrophage. Monkeys that were exposed for 50 hours and allowed to recover in unozonized air for 7 days had incomplete resolution of respiratory bronchiolar epithelial hyperplasia. The results indicate that Type 1 epithelial cells lining respiratory bronchioles are the cell types most sensitive to injury and that both cuboidal bronchiolar epithelial cells and Type 2 epithelial cells function as stem cells in epithelial renewal.

  9. Ultrastructural study of sperm cells in Acanthocolpidae: the case of Stephanostomum murielae and Stephanostomoides tenuis (Digenea)

    PubMed Central

    Bakhoum, Abdoulaye J.S.; Justine, Jean-Lou; Bray, Rodney A.; Bâ, Cheikh T.; Marchand, Bernard

    2015-01-01

    The mature spermatozoa of Stephanostomum murielae and Stephanostomoides tenuis are described by transmission electron microscopy. They present several ultrastructural features previously reported in other digeneans. Their spermatozoa possess two axonemes of different length showing the 9 + ‘1’ trepaxonematan pattern, four attachment zones, two mitochondria (with an anterior moniliform one in S. murielae), a nucleus, two bundles of parallel cortical microtubules, external ornamentation of the plasma membrane, spine-like bodies and granules of glycogen. The main differences between the mature spermatozoon of S. murielae and S. tenuis are the maximum number of cortical microtubules, the morphology of the anterior spermatozoon extremity and the anterior mitochondrion. This study is the first concerning members of the family Acanthocolpidae. The main ultrastructural characteristics discussed are the morphology of the anterior and posterior spermatozoon extremities, antero-lateral electron dense material, external ornamentations, spine-like bodies and number and morphology of mitochondria. In addition, the phylogenetic significance of all these ultrastructural features is discussed and compared to molecular results in order to highlight the complex relationships in the Digenea. PMID:25699200

  10. Interrelationship among testicular cells in wall lizard Hemidactylus flaviviridis (Rüppell): an ultrastructural seasonal and experimental study.

    PubMed

    Khan, U W; Rai, Umesh

    2004-04-01

    The present study was aimed at investigating ultrastructure of different testicular cells and their interactions through various junctional specializations during different phases of reproductive cycle in wall lizard H. flaviviridis to develop an integrated approach of cell-cell interaction in control of testicular functions. Specialized steroid synthesizing cell organelles such as smooth endoplasmic reticulum (SER) and long slender mitochondria with tubulo-vesicular cristae were predominantly seen in Leydig as well as Sertoli cells during spermatogenically active phase, suggesting their active involvement in steroid biosynthesis. Peritubular cells also exhibited marked seasonal variations. Multi-layered fibroblast-like peritubular cells during regressed phase became single layered myoid-like during spermatogenically active phase. The presence of various types of junctions, including gap and tight junctions (occluding junctions) and adhering junctions such as desmosomes, septate-like junction, ectoplasmic specializations and tubulo-bulbar complexes, were demonstrated among testicular cells in wall lizard H. flaviviridis. However, the nature and degree of junctional (environmental) interaction varied with the reproductive state of the wall lizard. Further, administration of dihydrotestosterone in wall lizards during regressed phase resulted in increase of lipid droplets in Leydig cells and accumulation of germ cell debris in seminiferous tubules. Some of the Sertoli cells were seen darker in response to testosterone treatment probably due to its inhibitory effect on lipid metabolism. These results suggest that testosterone either directly or via inhibiting pituitary basal gonadotropin secretion has suppressive effect on testicular cells. PMID:15088688

  11. Sperm-cell ultrastructure of North American sturgeons. IV. The pallid sturgeon (Scaphirhynchus albus Forbes and Richardson, 1905)

    USGS Publications Warehouse

    DiLauro, M.N.; Walsh, R.A.; Peiffer, M.; Bennett, R.M.

    2001-01-01

    Sperm-cell morphology and ultrastructure in the pallid sturgeon (Scaphirhynchus albus) were examined using transmission and scanning electron microscopy. Metrics and structure were compared with similar metrics obtained from other published descriptions of sturgeon sperm cells. General morphology was found to be similar to that of sperm cells of the white (Acipenser transmontanus), lake (A. fulvescens), stellate (A. stellatus), Chinese (A. sinensis), Russian (A. gueldenstaedti colchicus), and shortnose (A. brevirostrum) sturgeons, which all shared a gradual tapering of the nuclear diameter from posterior to anterior, unlike that of the Atlantic sturgeon (A. oxyrhynchus). The sperm cell of the pallid sturgeon was similar in size to that of the Atlantic sturgeon, being only slightly larger. The sperm cell of the pallid sturgeon differed from those of other sturgeons chiefly in the acrosomal region, where the posterolateral projections (PLP) have the shape of an acute triangle and are arranged in a spiral about the longitudinal axis of the cell. The PLP were longer than those of other sturgeons, being twice the length of those of the Atlantic sturgeon and 58% longer than those of the lake sturgeon. Also, in cross section the acrosome had the shape of a hollow cone rather than the cap of an oak tree acorn, as was found in ultrastructural studies of other sturgeons. In addition, we were able to confirm that the structural arrangement of the distal centriole of the midpiece is identical with that of the proximal centriole: nine sets of microtubular triplets around the periphery of the centriole. This information is of potential use to fishery biologists, forensic biologists, zoologists, reproductive physiologists, taxonomists, evolutionary biologists, and aquaculturists.

  12. Studies on the effects of microgravity on the ultrastructure and functions of cultured mammalian cells (L-6)

    NASA Technical Reports Server (NTRS)

    Sato, Atsushige

    1993-01-01

    The human body consists of 10(exp 13) cells. Understanding the mechanisms by which the cells sense and respond to microgravity is very important as the basis for space biology. The cells were originally isolated aseptically from mammalian bodies and cultured in vitro. A set of cell culture vessels was developed to be applied to three kinds of space flight experiments. Experiment 1 is to practice the cell culture technique in a space laboratory and obtain favorable growth of the cells. Aseptic handling in tryspin treatment and medium renewal will be tested. The cells, following space flight, will be returned to the ground and cultured continuously to investigate the effects of space flight on the cellular characteristics. Experiment 2 is to examine the cytoskeletal structure of the cells under microgravity conditions. The cytoskeletal structure plays essential roles in the morphological construction, movements, axonal transport, and differentiation of the cells. The cells fixed during space flight will be returned and the cytoskeleton and ultrastructure observed using electron microscopy and fluorescence microscopy. Experiment 3 is to study the cellular productivity of valuable substances. The waste medium harvested during space flight are returned and quantitated for the cellular products. The effects of microgravity on mammalian cells will be clarified from the various aspects.

  13. Ultrastructural Studies of Germ Cell Development and the Functions of Leydig Cells and Sertoli Cells associated with Spermatogenesis in Kareius bicoloratus (Teleostei, Pleuronectiformes, Pleuronectidae)

    PubMed Central

    Kang, Hee-Woong; Kim, Sung Hwan; Chung, Jae Seung

    2016-01-01

    The ultrastructures of germ cells and the functions of Leydig cells and Sertoli cells during spermatogenesis inmale Kareius bicoloratus (Pleuronectidae) were investigated by electron microscope observation. Each of the well-developed Leydig cells during active maturation division and before spermiation contained an ovoid vesicular nucleus, a number of smooth endoplasmic reticula, well-developed tubular or vesicular mitochondrial cristae, and several lipid droplets in the cytoplasm. It is assumed that Leydig cells are typical steroidogenic cells showing cytological characteristics associated with male steroidogenesis. No cyclic structural changes in the Leydig cells were observed through the year. However, although no clear evidence of steroidogenesis or of any transfer of nutrients from the Sertoli cells to spermatogenic cells was observed, cyclic structural changes in the Sertoli cells were observed over the year. During the period of undischarged germ cell degeneration after spermiation, the Sertoli cells evidenced a lysosomal system associated with phagocytic function in the seminiferous lobules. In this study, the Sertoli cells function in phagocytosis and the resorption of products originating from degenerating spermatids and spermatozoa after spermiation. The spermatozoon lacks an acrosome, as have been shown in all teleost fish spermatozoa. The flagellum or sperm tail of this species evidences the typical 9+2 array of microtubules. PMID:27294207

  14. Glucan-associated protein modulations and ultrastructural changes of the cell wall in Candida albicans treated with micafungin, a water-soluble, lipopeptide antimycotic.

    PubMed

    Angiolella, L; Maras, B; Stringaro, A R; Arancia, G; Mondello, F; Girolamo, A; Palamara, A T; Cassone, A

    2005-08-01

    The composition of glucan-associated proteins (GAP) in the cell wall of Candida albicans was strongly affected by treatment with a sub-MIC yet beta-glucan synthesis inhibitory concentration (0.01 microg/ml) of FK463 (micafungin). Namely, a decrease in enzymes of glucose metabolism (mostly enolase and a novel 40 kDaltons component, here identified as the enzyme fructose-1,6-biphosphate aldolase) was observed, and this was coupled with an increase in two beta1-3 exo-glucanase isoforms (34 and 44 kDa, respectively). No GAP changes were detected in the same strain of the fungus made resistant to the drug, attesting to the specificity of the observed cell wall protein modulation. In addition, GAP changes were accompanied by marked ultrastructural alterations upon treatment with the sub-MIC dose of the drug, the majority of which was an aberrant cell surface morphology and a derangement of the normal layering of the cell wall. Our data demonstrate that sub-MIC doses of micafungin do critically affect not only the beta-glucan synthetic machinery but also protein composition and the whole cell wall structure of Candida albicans. PMID:16167521

  15. Ultrastructural localization of F-actin using phalloidin and quantum dots in HL-60 promyelocytic leukemia cell line after cell death induction by arsenic trioxide.

    PubMed

    Izdebska, Magdalena; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2013-06-01

    Quantum dots (QDs) are fluorescent nanocrystals whose unique properties are fundamentally different from organic fluorophores. Moreover, their cores display sufficient electron density to be visible under transmission electron microscopy (TEM). Here, we report a technique for phalloidin-based TEM detection of F-actin. The ultrastructural reorganization of F-actin after arsenic trioxide (ATO) treatment was estimated using a combination of pre- and post-embedding techniques with biotinylated phalloidin and QD-streptavidin conjugates or colloidal gold (AU) conjugated to streptavidin. Ultrastructural studies showed ATO-induced apoptosis of HL-60 cells. Moreover, different patterns of QD-labeled F-actin after ATO treatment were seen. In the case of AU labeling, only a few gold particles were seen and it was impossible to see any difference in F-actin distribution. TEM imaging experiments using QDs and colloidal gold (AU) showed that the strategy of bioconjugation of nanoprobes is the most important factor in biotinylated phalloidin detection of F-actin using streptavidin-coated nanoparticles, especially at the ultrastructural level. Additionally, the results presented in present study confirm the essential role of F-actin in chromatin reorganization during cell death processes. PMID:23312591

  16. Ultrastructure and cytochemical localization of laccase in two strains of Leptosphaerulina briosiana (Pollaci) Graham and Luttrell.

    PubMed Central

    Simon, L T; Bishop, D S; Hooper, G R

    1979-01-01

    Substrate specificity tests were used to identify the presence of laccase in two strains of Leptosphaerulina briosiana (Poll.) Graham and Luttrell, an ascomycete which causes leaf spot in alfalfa. Cytochemical localization of monophenol monooxygenase (laccase) as well as the ultrastructures of the two strains were investigated. Laccase was observed in the outer layers of the cell walls of both strains. The ultrastructures of vegetative hyphae of both strains were typical of those found in most ascomycetes. Images PMID:104971

  17. Quantitative and qualitative morphologic, cytochemical and ultrastructural characteristics of blood cells in the Crested Serpent eagle and Shikra.

    PubMed

    Salakij, Chaleow; Kasorndorkbua, Chaiyan; Salakij, Jarernsak; Suwannasaeng, Pimsuda; Jakthong, Pattarapong

    2015-08-01

    The Crested Serpent eagle (Spilornis cheela) is a bird of prey found in the tropical rain forest in Thailand. The Shikra (Accipiter badius) is a sparrow hawk and common resident in Thailand. Blood samples from 9 Crested Serpent eagles and 12 Shikras were obtained from September 2010 to November 2014. They were clinically healthy and negative for blood parasites detectable by light microscopy and molecular techniques (partial cytochrome b gene for avian malaria and partial 18S rRNA gene for trypanosome). Cytochemical staining (Sudan black B, peroxidase, α-naphthyl acetate esterase, and β-glucuronidase) and transmission electron microscopy were performed. Hematological results were reported as the mean ± standard deviation and median. Heterophils were the most prevalent leukocytes in the Crested Serpent eagle, but in the Shikra, lymphocytes were the most prevalent leukocytes. In the Shikra, some vacuoles were observed in the cytoplasm of the eosinophils. All blood cells in both types of raptors stained positively for β-glucuronidase but negatively for peroxidase. The ultrastructure of heterophils showed more clearly differentiate long rod granules in Crested Serpent eagle and spindle-shaped granules in Shikra. The ultrastructure of the eosinophils in the Crested Serpent eagle revealed varied electron-dense, round-shaped granules with round, different electron-dense areas in the centers of some granules, which differed from the structure reported for other raptors. These quantitative results may be useful for clinical evaluations of Crested Serpent eagles and Shikras that are undergoing rehabilitation for release. PMID:26563029

  18. Immunohistochemical and Ultrastructural Study of the Lamellae of Oocytes in Atretic Follicles in Relation to Different Processes of Cell Death

    PubMed Central

    Escobar, M.L.; Echeverría, O.M.; García, G.; Ortiz, R.; Vázquez-Nin, G.H.

    2015-01-01

    Atresia is the process through which non-selectable oocytes are eliminated; it involves apoptosis and/or autophagy. This study used immunohistochemical and ultrastructural techniques to characterize the lamellae present in the cytoplasm of oocytes in follicles in the process of atresia in prepubertal and adult Wistar rats. The results indicate that the lamellae are positive to tubulin and myosin immunodetection under light and electron microscopy. Labeling is greater with anti-tubulin and lesser with anti-myosin. Our observations indicate that lamellae are present in oocytes at the initial antral stage in prepubertal rats; that is, from day 14 post-birth to adult age. We were able to determine that the increase in altered lamellae principally occurs in the apoptotic cells rather than in the autophagic cells. PMID:26428888

  19. Phenotypic, Ultra-Structural, and Functional Characterization of Bovine Peripheral Blood Dendritic Cell Subsets

    PubMed Central

    Sei, Janet J.; Ochoa, Amanda S.; Bishop, Elizabeth; Barlow, John W.; Golde, William T.

    2014-01-01

    Dendritic cells (DC) are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR) agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c−. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC), and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle. PMID:25295753

  20. Schwann cell LRP1 regulates Remak bundle ultrastructure and axonal interactions to prevent neuropathic pain

    PubMed Central

    Orita, Sumihisa; Henry, Kenneth; Mantuano, Elisabetta; Yamauchi, Kazuyo; De Corato, Alice; Ishikawa, Tetsuhiro; Feltri, M. Laura; Wrabetz, Lawrence; Gaultier, Alban; Pollack, Melanie; Ellisman, Mark; Takahashi, Kazuhisa; Gonias, Steven L.; Campana, W. Marie

    2013-01-01

    Trophic support and myelination of axons by Schwann cells in the PNS are essential for normal nerve function. Herein, we show that deletion of the LDL receptor-related protein-1 (LRP1) gene in Schwann cells (scLRP1−/−) induces abnormalities in axon myelination and in ensheathment of axons by non-myelinating Schwann cells in Remak bundles. These anatomical changes in the PNS were associated with mechanical allodynia, even in the absence of nerve injury. In response to crush injury, sciatic nerves in scLRP1−/− mice showed accelerated degeneration and Schwann cell death. Remyelinated axons were evident 20 days after crush injury in control mice, yet were largely absent in scLRP1−/− mice. In the partial nerve ligation model, scLRP1−/− mice demonstrated significantly increased and sustained mechanical allodynia and loss of motor function. Evidence for central sensitization in pain processing included increased p38MAPK activation and activation of microglia in the spinal cord. These studies identify LRP1 as an essential mediator of normal Schwann cell-axonal interactions and as a pivotal regulator of the Schwann cell response to PNS injury in vivo. Mice in which LRP1 is deficient in Schwann cells represent a model for studying how abnormalities in Schwann cell physiology may facilitate and sustain chronic pain. PMID:23536074

  1. Ultrastructural changes and programmed cell death of trophocytes in the gonad of Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada, Eutardigrada, Isohypsibiidae).

    PubMed

    Poprawa, Izabela; Hyra, Marta; Kszuk-Jendrysik, Michalina; Rost-Roszkowska, Magdalena Maria

    2015-03-01

    The studies on the fates of the trophocytes, the apoptosis and autophagy in the gonad of Isohypsibius granulifer granulifer have been described using transmission electron microscope, light and fluorescent microscopes. The results presented here are the first that are connected with the cell death of nurse cells in the gonad of tardigrades. However, here we complete the results presented by Węglarska (1987). The reproductive system of I. g. granulifer contains a single sack-like hermaphroditic gonad and a single gonoduct. The gonad is composed of three parts: a germarium filled with proliferating germ cells (oogonia); a vitellarium that has clusters of female germ cells (the region of oocytes development); and a male part filled with male germ cells in which the sperm cells develop. The trophocytes (nurse cells) show distinct alterations during all of the stages of oogenesis: previtello-, vitello- and choriogenesis. During previtellogenesis the female germ cells situated in the vitellarium are connected by cytoplasmic bridges, and form clusters of cells. No ultrastructural differences appear among the germ cells in a cluster during this stage of oogenesis. In early vitellogenesis, the cells in each cluster start to grow and numerous organelles gradually accumulate in their cytoplasm. However, at the beginning of the middle of vitellogenesis, one cell in each cluster starts to grow in order to differentiate into oocyte, while the remaining cells are trophocytes. Eventually, the cytoplasmic bridges between the oocyte and trophocytes disappear. Autophagosomes also appear in the cytoplasm of nurse cells together with many degenerating organelles. The cytoplasm starts to shrink, which causes the degeneration of the cytoplasmic bridges between trophocytes. Apoptosis begins when the cytoplasm of these cells is full of autophagosomes/autolysosomes and causes their death. PMID:25543879

  2. Response of the common cutworm Spodoptera litura to lead stress: changes in sex ratio, Pb accumulations, midgut cell ultrastructure.

    PubMed

    Shu, Yinghua; Zhou, Jialiang; Lu, Kai; Li, Keqing; Zhou, Qiang

    2015-11-01

    When cutworm Spodoptera litura larvae were fed on the diets with different lead (Pb) concentrations for one or five generations, changes in growth and food utilization were recorded; Pb accumulations were detected by Atomic Absorption Spectrophotometer; changes in midgut cell ultrastructure were observed by Transmission Electron Microscopy (TEM). The effects of Pb stress on S. litura growth and food utilization differed significantly between insects of the 1st and 5th generation. The male-female rate of 200mgkg(-1) Pb treatment from the 1st generation and 50mgkg(-1) Pb treatment from the 5th generation was significantly higher than control. No significant difference of Pb accumulations was found in larvae, pupae and adults between the 1st and 5th generation. No significant difference of Pb accumulations in corresponding tissues of larvae was found between male and female. Compared to fat body, hemolymph, head, foregut and hindgut, the highest Pb accumulation was found in migut of larvae exposed to 200mgkg(-1) Pb. TEM showed that expanded intercellular spaces were observed in Pb-treated midgut cells. The nuclei were strongly destroyed by Pb stress, evidenced by chromatin condensation and destroyed nuclear envelope. Mitochondria became swollen with some broken cristae after exposure to Pb. Therefore, neither gender nor progeny difference was present in Pb accumulations of S. litura, although effects of Pb stress on S. litura growth and food utilization differed from different generations and genders. Pb accumulations in midgut caused pathological changes in cells ultrastructure, possibly reflected the growth and food utilization of S. litura. PMID:26248226

  3. Identifying cancer origin using circulating tumor cells

    PubMed Central

    Lu, Si-Hong; Tsai, Wen-Sy; Chang, Ying-Hsu; Chou, Teh-Ying; Pang, See-Tong; Lin, Po-Hung; Tsai, Chun-Ming; Chang, Ying-Chih

    2016-01-01

    ABSTRACT Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK+ and CK18+ CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7+ or TTF-1+, (CK20/ CDX2)+, or (PSA/ PSMA)+ corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin. PMID:26828696

  4. Identifying cancer origin using circulating tumor cells.

    PubMed

    Lu, Si-Hong; Tsai, Wen-Sy; Chang, Ying-Hsu; Chou, Teh-Ying; Pang, See-Tong; Lin, Po-Hung; Tsai, Chun-Ming; Chang, Ying-Chih

    2016-04-01

    Circulating tumor cells (CTCs) have become an established clinical evaluation biomarker. CTC count provides a good correlation with the prognosis of cancer patients, but has only been used with known cancer patients, and has been unable to predict the origin of the CTCs. This study demonstrates the analysis of CTCs for the identification of their primary cancer source. Twelve mL blood samples were equally dispensed on 6 CMx chips, microfluidic chips coated with an anti-EpCAM-conjugated supported lipid bilayer, for CTC capture and isolation. Captured CTCs were eluted to an immunofluorescence (IF) staining panel consisting of 6 groups of antibodies: anti-panCK, anti-CK18, anti-CK7, anti-TTF-1, anti-CK20/anti-CDX2, and anti-PSA/anti-PSMA. Cancer cell lines of lung (H1975), colorectal (DLD-1, HCT-116), and prostate (PC3, DU145, LNCaP) were selected to establish the sensitivity and specificity for distinguishing CTCs from lung, colorectal, and prostate cancer. Spiking experiments performed in 2mL of culture medium or whole blood proved the CMx platform can enumerate cancer cells of lung, colorectal, and prostate. The IF panel was tested on blood samples from lung cancer patients (n = 3), colorectal cancer patients (n = 5), prostate cancer patients (n = 5), and healthy individuals (n = 12). Peripheral blood samples found panCK(+) and CK18(+) CTCs in lung, colorectal, and prostate cancers. CTCs expressing CK7(+) or TTF-1(+), (CK20/ CDX2)(+), or (PSA/ PSMA)(+) corresponded to lung, colorectal, or prostate cancer, respectively. In conclusion, we have designed an immunofluorescence staining panel to identify CTCs in peripheral blood to correctly identify cancer cell origin. PMID:26828696

  5. Quantitative ultrastructural analysis of the human parietal cell during acid inhibition and increase of gastric potential difference by glucagon.

    PubMed Central

    Ivey, K J; Tarnawski, A; Sherman, D; Krause, W J; Ackman, K; Burks, M; Hewett, J

    1980-01-01

    Glucagon inhibits gastric acid secretion and increases the negativity of gastric mucosal potential difference (PD) in man. To test the hypothesis that the increased negativity of PD after glucagon in man could be due to decreased parietal cell canalicular membrane area, a quantitative ultrastructural analysis was carried out. Four healthy volunteers with normal gastric mucosa were submitted to biopsy before and 20 minutes after intravenous injection of 2 mg glucagon (G). This time corresponded with the maximal change in PD and a decrease in gastric acid secretion. Canalicular and tubulovesicular membrane area of 80 parietal cells (40 cells before glucagon and 40 cells after glucagon) were quantified by the Loud morphometric method. After glucagon, the oxyntic cell canalicular membrane area was reduced by one-fourth (P less than 0.05), while tubulovesicular membrane area showed an increase (P less than 0.05) at the same time. The decrease in the area of parietal cell canalicular membrane caused by glucagon may in part be responsible for increased negativity of the gastric PD caused by this hormone. Images Fig. 2 PMID:7364316

  6. A case of primary clear cell hepatocellular carcinoma in a non-cirrhotic liver: an immunohistochemical and ultrastructural study

    PubMed Central

    Clayton, Erica Fan; Furth, Emma Elizabeth; Ziober, Amy; Xu, Theodore; Yao, Yuan; Hwang, Pil Gyu; Bing, Zhanyong

    2012-01-01

    The clear cell variant of hepatocellular carcinoma is a rare entity, occurring at a frequency of less than 10% of hepatocellular carcinoma, with a female prevalence and usually associated with hepatitis C and cirrhosis. We reported a case of primary clear cell hepatocellular carcinoma occurring in a non-cirrhotic liver without history of hepatitis. Our examination included gross pathology, histopathology, immunohistochemistry, special stains, and electron microscopy evaluation. The tumor was composed of sheets of medium-to-large cells with foamy and reticulated cytoplasm and small-to-medium sized nuclei with variably prominent nucleoli. Oil red O stain showed abundant intracellular lipid. Periodic Acid-Schiff stain confirmed the presence of abundant glycogen deposition. Immunohistochemically the tumor cells were positive for Hep Par1, negative for epithelial membrane antigen, steroidogenic factor-1, HMB45, melan A, CK7 and CK20. Electron microscopy study was performed, which was first done in a clear cell hepatocellular carcinoma occurring in a non-cirrhotic liver without elevation of liver function tests. Ultrastructural evaluation of the clear cells showed scarce cellular organelles, cytoplasmic lipid vacuoles and swollen mitochondria. PMID:22826786

  7. Identified nerve cells and insect behavior.

    PubMed

    Comer, C M; Robertson, R M

    2001-03-01

    Studies of insect identified neurons over the past 25 years have provided some of the very best data on sensorimotor integration; tracing information flow from sensory to motor networks. General principles have emerged that have increased the sophistication with which we now understand both sensory processing and motor control. Two overarching themes have emerged from studies of identified sensory interneurons. First, within a species, there are profound differences in neuronal organization associated with both the sex and the social experience of the individual. Second, single neurons exhibit some surprisingly rich examples of computational sophistication in terms of (a) temporal dynamics (coding superimposed upon circadian and shorter-term rhythms), and also (b) what Kenneth Roeder called "neural parsimony": that optimal information can be encoded, and complex acts of sensorimotor coordination can be mediated, by small ensembles of cells. Insect motor systems have proven to be relatively complex, and so studies of their organization typically have not yielded completely defined circuits as are known from some other invertebrates. However, several important findings have emerged. Analysis of neuronal oscillators for rhythmic behavior have delineated a profound influence of sensory feedback on interneuronal circuits: they are not only modulated by feedback, but may be substantially reconfigured. Additionally, insect motor circuits provide potent examples of neuronal restructuring during an organism's lifetime, as well as insights on how circuits have been modified across evolutionary time. Several areas where future advances seem likely to occur include: molecular genetic analyses, neuroecological syntheses, and neuroinformatics--the use of digital resources to organize databases with information on identified nerve cells and behavior. PMID:11163685

  8. [Bone Cell Biology Assessed by Microscopic Approach. Bone mineralization by ultrastructural imaging].

    PubMed

    Hasegawa, Tomoka

    2015-10-01

    Bone mineralization can be divided into two phases ; one is primary mineralization associated with osteoblastic bone formation, and the other is secondary mineralization which gradually increases mineral density of bone matrix after the primary mineralization. Primary mineralization is initiated by matrix vesicles synthesized by mature osteoblasts. Crystalline calcium phosphates are nucleated inside these matrix vesicles, and then, get out of them forming spherical mineralized nodule, which can grow more by being supplied with Ca2+ and PO4(3-) (matrix vesicle mineralization). Thereafter, the mineralized nodules make contacts with surrounding collagen fibrils, extending mineralization along with their longitudinal axis from the contact points (collagen mineralization). In this review, the ultrastructural findings on bone mineralization, specially, primary mineralization will be provided. PMID:26412723

  9. Ultrastructural analysis of olfactory ensheathing cells derived from olfactory bulb and nerve of neonatal and juvenile rats.

    PubMed

    Gómez, Rosa M; Ghotme, Kemel; Botero, Lucía; Bernal, Jaime E; Pérez, Rosalía; Barreto, George E; Bustos, Rosa Helena

    2016-02-01

    Olfactory nerve derived and olfactory bulb derived olfactory ensheathing cells (OECs) have the ability to promote axonal regeneration and remyelination, both of which are essential in a successful cell transplant. Thus, morphological identification of OECs is a key aspect to develop an applicable cell therapy for injuries to the nervous system. However, there is no clear definition regarding which developmental stage or anatomical origin of OECs is more adequate for neural repair. In the present study, an ultrastructural comparison was made between OECs recovered from primary cultures of olfactory nerve and bulb in two developmental stages. The most notorious difference between cells obtained from olfactory nerve and bulb was the presence of indented nuclei in bulb derived OECs, suggesting a greater ability for possible chemotaxis. In neonatal OECs abundant mitochondria, lipid vacuoles, and smooth endoplasmic reticulum were detected, suggesting an active lipid metabolism, probably involved in synthesis of myelin. Our results suggest that neonatal OECs obtained from olfactory bulb have microscopic properties that could make them more suitable for neural repair. PMID:26254553

  10. A new nidovirus (NamDinh virus NDiV): Its ultrastructural characterization in the C6/36 mosquito cell line

    SciTech Connect

    Thuy, Nguyen Thanh; Huy, Tran Quang; Nga, Phan Thi; Morita, Kouichi; Dunia, Irene; Benedetti, Lucio

    2013-09-15

    We describe the ultrastructure of the NamDinh virus (NDiV), a new member of the order Nidovirales grown in the C6/36 mosquito cell line. Uninfected and NDiV-infected cells were investigated by electron microscopy 24–48 h after infection. The results show that the viral nucleocapsid-like particles form clusters concentrated in the vacuoles, the endoplasmic reticulum, and are scattered in the cytoplasm. Mature virions of NDiV were released as budding particles on the cell surface where viral components appear to lie beneath and along the plasma membrane. Free homogeneous virus particles were obtained by ultracentrifugation on sucrose gradients of culture fluids. The size of the round-shaped particles with a complete internal structure was 80 nm in diameter. This is the first study to provide information on the morphogenesis and ultrastructure of the first insect nidovirus NDiV, a missing evolutionary link in the emergence of the viruses with the largest RNA genomes. - Highlights: • NamDinh virus (NDiV), a new member of the order Nidovirales was tested in cultured cell line. • The morphogenesis and ultrastructure of NDiV were investigated by electron microscopy. • The viral nucleocapsid-like particles clustered and scattered in the cytoplasm. • NDiVs were released as budding particles on the cell surface. • The size of the viral particles with a complete internal structure was 80 nm in diameter.

  11. The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis

    NASA Technical Reports Server (NTRS)

    Guisinger, M. M.; Kiss, J. Z.

    1999-01-01

    The ultrastructure of root cap columella cells was studied by morphometric analysis in wild-type, a reduced-starch mutant, and a starchless mutant of Arabidopsis grown in microgravity (F-microgravity) and compared to ground 1g (G-1g) and flight 1g (F-1g) controls. Seedlings of the wild-type and reduced-starch mutant that developed during an experiment on the Space Shuttle (both the F-microgravity samples and the F-lg control) exhibited a decreased starch content in comparison to the G-1g control. These results suggest that some factor associated with spaceflight (and not microgravity per se) affects starch metabolism. Elevated levels of ethylene were found during the experiments on the Space Shuttle, and analysis of ground controls with added ethylene demonstrated that this gas was responsible for decreased starch levels in the columella cells. This is the first study to use an on-board centrifuge as a control when quantifying starch in spaceflight-grown plants. Furthermore, our results show that ethylene levels must be carefully considered and controlled when designing experiments with plants for the International Space Station.

  12. Correlative Light and Scanning Electron Microscopy for Observing the Three-Dimensional Ultrastructure of Membranous Cell Organelles in Relation to Their Molecular Components.

    PubMed

    Koga, Daisuke; Kusumi, Satoshi; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Ushiki, Tatsuo

    2015-12-01

    Although the osmium maceration method has been used to observe three-dimensional (3D) structures of membranous cell organelles with scanning electron microscopy (SEM), the use of osmium tetroxide for membrane fixation and the removal of cytosolic soluble proteins largely impairs the antigenicity of molecules in the specimens. In the present study, we developed a novel method to combine cryosectioning with the maceration method for correlative immunocytochemical analysis. We first immunocytochemically stained a semi-thin cryosection cut from a pituitary tissue block with a cryo-ultramicrotome, according to the Tokuyasu method, before preparing an osmium-macerated specimen from the remaining tissue block. Correlative microscopy was performed by observing the same area between the immunostained section and the adjacent face of the tissue block. Using this correlative method, we could accurately identify the gonadotropes of pituitary glands in various experimental conditions with SEM. At 4 weeks after castration, dilated cisternae of rough endoplasmic reticulum (RER) were distributed throughout the cytoplasm. On the other hand, an extremely dilated cisterna of the RER occupied the large region of the cytoplasm at 12 weeks after castration. This novel method has the potential to analyze the relationship between the distribution of functional molecules and the 3D ultrastructure in different composite tissues. PMID:26374827

  13. Quantification of endocrine cells and ultrastructural study of insulin granules in the large intestine of opossum Didelphis aurita (Wied-Neuwied, 1826).

    PubMed

    dos Santos, Daiane Cristina Marques; Cupertino, Marli do Carmo; Fialho, Maria do Carmo Queiroz; Barbosa, Alfredo Jose Afonso; Fonseca, Cláudio Cesar; Sartori, Sirlene Souza Rodrigues; da Matta, Sérgio Luis Pinto

    2014-02-01

    This study aimed to investigate the distribution of argyrophil, argentaffin, and insulin-immunoreactive endocrine cells in the large intestine of opossums (Didelphis aurita) and to describe the ultrastructure of the secretory granules of insulin-immunoreactive endocrine cells. Fragments of the large intestine of 10 male specimens of D. aurita were collected, processed, and subjected to staining, immunohistochemistry, and transmission electron microscopy. The argyrophil, the argentaffin, and the insulin-immunoreactive endocrine cells were sparsely distributed in the intestinal glands of the mucous layer, among other cell types of the epithelium in all regions studied. Proportionally, the argyrophil, the argentaffin, and the insulin-immunoreactive endocrine cells represented 62.75%, 36.26%, and 0.99% of the total determined endocrine cells of the large intestine, respectively. Quantitatively, there was no difference between the argyrophil and the argentaffin endocrine cells, whereas insulin-immunoreactive endocrine cells were less numerous. The insulin-immunoreactive endocrine cells were elongated or pyramidal, with rounded nuclei of irregularly contoured, and large amounts of secretory granules distributed throughout the cytoplasm. The granules have different sizes and electron densities and are classified as immature and mature, with the mature granules in predominant form in the overall granular population. In general, the granule is shown with an external electron-lucent halo and electron-dense core. The ultrastructure pattern in the granules of the insulin-immunoreactive endocrine cells was similar to that of the B cells of pancreatic islets in rats. PMID:24359801

  14. Ultrastructural analysis of primary human urethral epithelial cell cultures infected with Neisseria gonorrhoeae.

    PubMed

    Harvey, H A; Ketterer, M R; Preston, A; Lubaroff, D; Williams, R; Apicella, M A

    1997-06-01

    In men with gonococcal urethritis, the urethral epithelial cell is a site of infection. To study the pathogenesis of gonorrhea in this cell type, we have developed a method to culture primary human urethral epithelial cells obtained at the time of urologic surgery. Fluorescent analysis demonstrated that 100% of the cells stained for keratin. Microscopic analyses indicated that these epithelial cells arrayed in a pattern similar to that seen in urethral epithelium. Using immunoelectron and confocal microscopy, we compared the infection process seen in primary cells with events occurring during natural infection of the same cell type in men with gonococcal urethritis. Immunoelectron microscopy studies of cells infected with Neisseria gonorrhoeae 1291 Opa+ P+ showed adherence of organisms to the epithelial cell membrane, pedestal formation with evidence of intimate association between the gonococcal and the epithelial cell membranes, and intracellular gonococci present in vacuoles. Confocal studies of primary urethral epithelial cells showed actin polymerization upon infection. Polyclonal antibodies to the asialoglycoprotein receptor (ASGP-R) demonstrated the presence of this receptor on infected cells in the primary urethral cell culture. In situ hybridization using a fluorescent-labeled probe specific to the ASGP-R mRNA demonstrated this message in uninfected and infected cells. These features were identical to those seen in urethral epithelial cells in exudates from males with gonorrhea. Infection of primary urethral cells in culture mimics events seen in natural infection and will allow detailed molecular analysis of gonococcal pathogenesis in a human epithelial cell which is commonly infected. PMID:9169783

  15. Stem cell banking: between traceability and identifiability

    PubMed Central

    2010-01-01

    Stem cell banks are increasingly seen as an essential resource of biological materials for both basic and translational research. Stem cell banks support transnational access to quality-controlled and ethically sourced stem cell lines from different origins and of varying grades. According to the Organisation for Economic Co-operation and Development, advances in regenerative medicine are leading to the development of a bioeconomy, 'a world where biotechnology contributes to a significant share of economic output'. Consequently, stem cell banks are destined to constitute a pillar of the bioeconomy in many countries. While certain ethical and legal concerns are specific to the nature of stem cells, stem cell banking could do well to examine the approaches fostered by tissue banking generally. Indeed, the past decade has seen a move to simplify and harmonize biological tissue and data banking so as to foster international interoperability. In particular, the issues of consent and of traceability illustrate not only commonalities but the opportunity for stem cell banking to appreciate the lessons learned in biobanking generally. This paper analyzes convergence and divergence in issues surrounding policy harmonization, transnational sharing, informed consent, traceability and return of results in the context of stem cell banks. PMID:20923580

  16. Fluorescence and ultrastructural localization of actin distribution patterns in the nucleus of HL-60 and K-562 cell lines treated with cytostatic drugs.

    PubMed

    Grzanka, Alina; Grzanka, Dariusz; Orlikowska, Magdalena

    2004-04-01

    Actin has been studied extensively for decades, but so far its well-defined role has been found localized to the cytoplasm. The present study characterizes the distribution pattern of actin in the nucleus of HL-60 and K-562 cell lines treated with etoposide and doxorubicin. F-actin labeled with TRITC-phalloidin was found in the nucleus in both cell lines independently of the cytostatic drugs used. Using confocal microscopy F-actin is seen in the center of the nucleus showed labeling of the nucleoli by phalloidin. There are also distinct tracts of F-actin seen from nucleoli to the nuclear envelope in some sections. HL-60 cells treated with 200 micro M etoposide and 5, 10 micro M doxorubicin showed cells with characteristic features of apoptosis at the ultrastructural level. Intense immunogold labeling for actin was seen in nucleus of HL-60 cells with compaction and margination of chromatin. In K-562 cells more intense labeling was often found in the cytoplasm of the cells. Positive labeling for actin was not found after control incubations. F-actin is present in the nucleus and there is labeling of nucleoli by phalloidin. The observation at the ultrastructural level suggests that actin can be involved in chromatin reorganization during the process of apoptosis. Increase of labeling at the ultrastructural level in the nucleus of HL-60 cells in relation with compaction and margination of nuclear chromatin might also suggest translocation of actin from cytoplasm to the nucleus in connection with chromatin reorganization. PMID:15010870

  17. Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata

    NASA Technical Reports Server (NTRS)

    Vasilenko, A.; McDaniel, J. K.; Conger, B. V.

    2000-01-01

    Somatic embryos initiate and develop directly from single mesophyll cells in in vitro-cultured leaf segments of orchardgrass (Dactylis glomerata L.). Embryogenic cells establish themselves in the predivision stage by formation of thicker cell walls and dense cytoplasm. Electron microscopy observations for embryos ranging from the pre-cell-division stage to 20-cell proembryos confirm previous light microscopy studies showing a single cell origin. They also confirm that the first division is predominantly periclinal and that this division plane is important in establishing embryo polarity and in determining the embryo axis. If the first division is anticlinal or if divisions are in random planes after the first division, divisions may not continue to produce an embryo. This result may produce an embryogenic cell mass, callus formation, or no structure at all. Grant numbers: NAGW-3141, NAG10-0221.

  18. Identify multiple myeloma stem cells: Utopia?

    PubMed Central

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-01

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs. PMID:25621108

  19. Identify multiple myeloma stem cells: Utopia?

    PubMed

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-26

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs. PMID:25621108

  20. Effects of long-term space condition on cell ultrastructure and the molecular level change of the tomato

    NASA Astrophysics Data System (ADS)

    Jinying, L.; Min, L.; Huai, X.; Yi, P.; Chunhua, Z.; Nechitalo, G.

    Effects of long-term exposure to physical factors of space flight on dormant seeds were studied on plants derived from tomato seeds flown for 6 years on board of the space station MIR Upon return to the Earth the seeds were germinated and grown to maturity Samples of plants were compared to plants from parallel ground-based controls Various differences of ultrastructure of the tomato leaf cell were observed with an electron microscope One plant carried by space station has the anatomy of leaves with a three-layered palisade tissue and other plants similar with ground controls have the anatomy of leaves with a one-layered palisade tissue The number of starch grains per chloroplast of every space-treated tomato leaf increased significantly compared with that of the ground control The leaf cell walls of two plants carried by space station became contracted and deformed The size of chloroplast in some space-treated plants was larger and the lamellae s structure of some chloroplasts turned curvature and loose The results obtained point out to significant changes occurring on the molecular level among the space-flight treated seedlings and the ground control The leaves of plants were used for AFLP Amplification Fragment Length Polymorphism analysis For the first generation space-flight treated tomato plants among 64 pairs of primers used in this experiment 43 primers generated the same DNA bands type and 21 primers generated a different DNA band type 2582 DNA bands were produced among which 34 DNA bands were polymorphic with the percentage

  1. Ultra-Structural Alterations in In Vitro Produced Four-Cell Bovine Embryos Following Controlled Slow Freezing or Vitrification.

    PubMed

    Cavusoglu, T; Popken, J; Guengoer, T; Yilmaz, O; Uyanikgil, Y; Ates, U; Baka, M; Oztas, E; Zakhartchenko, V

    2016-08-01

    Cryopreservation is the process of freezing and preserving cells and tissues at low temperatures. Controlled slow freezing and vitrification have successfully been used for cryopreservation of mammalian embryos. We investigated the effect of these two cryopreservation methods on in vitro produced four-cell stage bovine embryos which were classified according to their quality and separated into three groups. The first group was maintained as untreated controls (n = 350). Embryos of the second (n = 385) and the third (n = 385) groups were cryopreserved either by controlled slow freezing or by vitrification. Embryos in groups 2 and 3 were thawed after 1 day. Hundred embryos were randomly selected from the control group, and 100 morphologically intact embryos from the second and third group were thawed after 1 day and cultured to observe the development up to the blastocyst stage. The blastocyst development rate was 22% in the control group, 1% in the slow-freezing group and 3% in the vitrification group. Remaining embryos of all three groups were examined by light microscopy, transmission electron microscopy and immunofluorescence confocal microscopy with subsequent histological staining procedures. Cryopreservation caused degenerative changes at the ultra-structural level. Compared with vitrification, slow freezing caused an increased mitochondrial degeneration, cytoplasmic vacuolization, disruption of the nuclear and plasma membrane integrity, organelle disintegration, cytoskeletal damage, a reduced thickness of the zona pellucida and a formation of fractures in the zona pellucida. Further studies are required to understand and decrease the harmful effects of cryopreservation. PMID:26293816

  2. Ultrastructure observation on the cells at different life history stages of Cryptocaryon irritans (Ciliophora: Prostomatea), a parasitic ciliate of marine fishes.

    PubMed

    Ma, Rui; Ni, Bing; Fan, Xinpeng; Warren, Alan; Yin, Fei; Gu, Fukang

    2016-09-01

    Cells of Cryptocaryon irritans at different life history stages were studied using both light and electron microscopy. The characteristics of several organelles were revealed for the first time at the ultrastructural level. It was confirmed that the cytostome of trophonts, protomonts and theronts was surrounded by cilium-palp triplets rather than ciliary triplets. The nematodesmata underlying the circumoral dikinetids were single bundles, whereas these were always paired in Prorodontids. Toxicysts were present in late-stage tomonts and theronts, but were absent in trophonts and protomonts. We posited that toxicysts might play a role in infection and invasion of host-fish tissue by theronts. The adoral brosse was unlike that of any other family of the class Prostomatea based on its location and morphology. Membranous folds were present in trophonts, protomonts and theronts. These folds were longer and more highly developed in C. irritans than in exclusively free-living prostome ciliates suggesting that they might be linked to parasitism in C. irritans. Trophonts, protomonts and theronts had multiple contractile vacuoles. The basic ultrastructure of the contractile vacuole of C. irritans was similar to that of other kinetofragminophoran ciliates. They might play different roles in different stages of the life cycle since their ultrastructure varied among trophonts, protomonts and theronts. PMID:27460894

  3. Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype.

    PubMed Central

    Anderson, J; Mihalik, R; Soll, D R

    1990-01-01

    Cells of Candida albicans WO-1 switch frequently and reversibly between two colony-forming phenotypes, white and opaque. In the white form, budding cells appear similar to those of most other strains of C. albicans, but in the opaque form, budding cells are larger, are bean shaped, and possess pimples on the wall. These pimples exhibit a unique and complex morphology. With scanning electron microscopy, a central pit can be discerned, and in many cases, a bleb can be observed emerging from the pimple center. With transmission electron microscopy, channels are evident in some pimples and vesicles are apparent under the pimple in the cytoplasm, in the actual wall of the pimple, or emerging from the tip of the pimple. A large vacuole predominates in the opaque-cell cytoplasm. This vacuole is usually filled with spaghettilike membranous material and in a minority of cases is filled with vesicles, many of which exhibit a relatively uniform size. An antiserum to opaque cells recognizes three opaque-cell-specific antigens with molecular masses of approximately 14.5, 21, and 31 kilodaltons (kDa). Absorption with nonpermeabilized opaque cells demonstrated that only the 14.5-kDa antigen is on the cell surface; indirect immunogold labeling demonstrated that it is localized in or on the pimple. The possibility is suggested that the vacuole of opaque cells is the origin of membrane-bound vesicles which traverse the wall through specialized pimple structures and emerge from the pimple with an intact outer double membrane, a unique phenomenon in yeast cells. The opaque-cell-specific 14.5-kDa antigen either is in the pimple channel or is a component of the emerging vesicle. The functions of the unique opaque-cell pimple and emerging vesicle are not known. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7A-7B FIG. 7C-7D PMID:2403540

  4. An ultrastructural study of sinuatrial node cells in the embryonic rat heart.

    PubMed Central

    Domenech-Mateu, J M; Boya-Vegué, J

    1975-01-01

    Sinuatrial nodal tissue, obtained from rat embryos of 15, 16 and 17 days, was examined with the electron microscope. Embryonic nodal cells were generally similar to adult cells except that (1) they showed thick prolongations of the cytoplasm which insinuated themselves between neighbouring cells; (2) they possessed osmiophilic granules with a predeliction for the region of the Golgi complex; (3) they exhibited a lesser and variable degree of pinocytosis. Images Fig. 1 Fig. 2 Fig. 3 PMID:1133091

  5. Antiproliferative effect of linalool on RPMI 7932 human melanoma cell line: ultrastructural studies.

    PubMed

    Cerchiara, Teresa; Straface, Serafina Vittoria; Brunelli, Elvira; Tripepi, Sandro; Gallucci, Maria Caterina; Chidichimo, Giuseppe

    2015-04-01

    Linalool, a small monoterpene molecule, is used widely for its flavoring and fragrant properties in many cosmetic products. In this work, we investigated the antiproliferative effect of two different linalool solutions on RPMI 7932 human melanoma and NCTC 2544 normal keratinocites cell lines using the trypan blue method. Morphological changes in cells were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, apoptosis was evaluated using caspase 3-antibody. Linalool showed a selective inhibitory effect on the growth of melanoma cells in a concentrationdependent manner, inducing several morphological changes, as revealed by SEM and TEM analysis. Moreover, the labelling for caspase-3 is abundant in the melanoma cells and almost absent in the normal keratinocites cells. The results suggest that linalool could be used as drug and/or as model drug for developing potential therapeutic agents for melanoma. PMID:25973472

  6. Ultra-structural changes and expression of chondrogenic and hypertrophic genes during chondrogenic differentiation of mesenchymal stromal cells in alginate beads

    PubMed Central

    Dashtdar, Havva; Selvaratnam, Lakshmi; Balaji Raghavendran, Hanumantharao; Suhaeb, Abdulrazzaq Mahmod; Ahmad, Tunku Sara

    2016-01-01

    Chondrogenic differentiation of mesenchymal stromal cells (MSCs) in the form of pellet culture and encapsulation in alginate beads has been widely used as conventional model for in vitro chondrogenesis. However, comparative characterization between differentiation, hypertrophic markers, cell adhesion molecule and ultrastructural changes during alginate and pellet culture has not been described. Hence, the present study was conducted comparing MSCs cultured in pellet and alginate beads with monolayer culture. qPCR was performed to assess the expression of chondrogenic, hypertrophic, and cell adhesion molecule genes, whereas transmission electron microscopy (TEM) was used to assess the ultrastructural changes. In addition, immunocytochemistry for Collagen type II and aggrecan and glycosaminoglycan (GAG) analysis were performed. Our results indicate that pellet and alginate bead cultures were necessary for chondrogenic differentiation of MSC. It also indicates that cultures using alginate bead demonstrated significantly higher (p < 0.05) chondrogenic but lower hypertrophic (p < 0.05) gene expressions as compared with pellet cultures. N-cadherin and N-CAM1 expression were up-regulated in second and third weeks of culture and were comparable between the alginate bead and pellet culture groups, respectively. TEM images demonstrated ultrastructural changes resembling cell death in pellet cultures. Our results indicate that using alginate beads, MSCs express higher chondrogenic but lower hypertrophic gene expression. Enhanced production of extracellular matrix and cell adhesion molecules was also observed in this group. These findings suggest that alginate bead culture may serve as a superior chondrogenic model, whereas pellet culture is more appropriate as a hypertrophic model of chondrogenesis. PMID:26966647

  7. Novel Identified Receptors on Mast Cells

    PubMed Central

    Migalovich-Sheikhet, Helena; Friedman, Sheli; Mankuta, David; Levi-Schaffer, Francesca

    2012-01-01

    Mast cells (MC) are major participants in the allergic reaction. In addition they possess immunomodulatory roles in the innate and adaptive immune reactions. Their functions are modulated through a number of activating and inhibitory receptors expressed on their surface. This review deals with some of the most recently described receptors, their expression patterns, ligand(s), signal transduction mechanisms, possible cross-talk with other receptors and, last but not least, regulatory functions that the MC can perform based on their receptor expression in health or in disease. Where the receptor role on MC is still not clear, evidences from other hematopoietic cells expressing them is provided as a possible insight for their function on MC. Suggested strategies to modulate these receptors’ activity for the purpose of therapeutic intervention are also discussed. PMID:22876248

  8. Ultrastructural patterns of the activated cell death programs in the human brain.

    PubMed

    Pais, Viorel; Danaila, Leon; Pais, Emil

    2013-04-01

    The authors analyzed by transmission electron microscopy (TEM) neurosurgical samples obtained from patients with cerebral tumors, neurotrauma, cerebral ischemia, Moyamoya disease, encephalitis, etc. Their observations concern a variety of dying cell types by different programmed death pathways, including apoptosis, paraptosis, autophagy, autoschizis, programmed necrosis, as well as combined and coexisting forms. This ample work pointed out not only the role of TEM in cell death diagnosis, but the biological differences in cell behavior and beneficial or detrimental effects of suicides for homeostasis, survival, or normal functioning of a tissue, like the integrated vascular tissue and brain parenchyma. PMID:23573891

  9. [Effect of chitosan on the cell ultrastructure and activity of hydrolases in tobacco leaves].

    PubMed

    Nagorskaia, V P; Reunov, A V; Lapshina, L A; Davydova, V N; Ermak, I M

    2012-01-01

    Effect of chitosan on the mesophyll cell ultrastucture and activity of hydrolases in leaves of tobacco cv. Samsun was studied. It was shown that, in many cells, chitosan treatment stimulated the protein-synthesizing apparatus (nucleolus dimension and amount of both mitochondria and rough endoplasmic reticulum membranes increased) and, at the same time, caused some activation of lytic compartment expressed in the stimulation of the formation of dictyosomes, smooth ER elements and cytoplasmic vacuoles, which are all prominent constituents of this compartment. In biochemical experiments, it was established that chitosan substantially enhanced activity of hydrolases (acid phosphatase, RNase, proteases) in the leaves as compared to untreated leaves. In some cells chitosan treatment caused considerable destructive changes (condensation of nuclear chromatin, collapse of cytoplasm and so on) that can be classified as a result of programmed cell death development. PMID:23461036

  10. Ultrastructural and biochemical studies of two dynamically expressed cell surface determinants on Candida albicans.

    PubMed Central

    Brawner, D L; Cutler, J E

    1986-01-01

    Variability in the expression of two different cell surface carbohydrate determinants was examined with two agglutinating immunoglobulin M monoclonal antibodies (H9 and C6) and immunoelectron microscopy during growth of three strains of Candida albicans. A single strain of Candida parapsilosis did not express either antigen at any time during growth. Antigens were detected on the surface of C. albicans by agglutination tests with either H9 or C6 over a 48-h growth period. The difference in specificities of the monoclonal antibodies was demonstrated by Ouchterlony double-diffusion tests with solubilized antigens and by variabilities in the reactivity of the agglutinins among yeast strains. The antigenic determinants were isolated by specific immunoprecipitation and protease digestion and characterized by methods including high-pressure liquid chromatography, gas-liquid chromatography, and mass spectroscopy with both chemical and electron ionization. These determinants both contain mannose and glucose. In the case of antigen H9, an additional carbohydrate was detected with gas chromatography and mass spectroscopy. The location of antigens on individual cells was determined by indirect labeling of the determinants, first reacting cells with H9 or C6 followed by goat anti-mouse antibody conjugated with 20-nm colloidal gold particles. Transmission electron microscopy was used to examine cells. The antigens that were reactive with the monoclonal antibodies were associated with a flocculent surface layer. Expression of this layer and expression of the antigens is a dynamic process which is growth phase and strain dependent. The antigens were not expressed on very young cells and disappeared from the cell surface of most C. albicans strains with age. The use of monoclonal antibody to cell surface determinants may allow characterization of cell surface antigens of C. albicans and be helpful in establishing receptors which mediate adherence. Images PMID:3510174

  11. Ultrastructural changes during the fatigue of bone

    NASA Astrophysics Data System (ADS)

    Kohn, David H.

    2006-07-01

    Repetitive mechanical loading of bone can lead to ultrastructural-level damage, which can lead to fracture if not repaired. Skeletal fractures result not only from a loss in bone mass, but also because of alterations in tissue quality. Therefore, it is important to also delineate how changes in tissue ultrastructure affect the mechanistic response of bone to its physical environment. In this overview, factors affecting tissue quality, in particular fatigue resistance, are reviewed, followed by examples of recent work that has identified ultrastructural and compositional changes that occur in bone during fatigue.

  12. Evolution of foam cells in subcutaneous rabbit carrageenan granulomas: I. Light-microscopic and ultrastructural study.

    PubMed Central

    Schwartz, C. J.; Ghidoni, J. J.; Kelley, J. L.; Sprague, E. A.; Valente, A. J.; Suenram, C. A.

    1985-01-01

    With an increasing interest in the role of the monocyte-macrophage in the pathogenesis of atherosclerosis and as a progenitor of plaque intimal foam cells, a model for the study of foam-cell differentiation in an extravascular environment has been developed. Granulomas were induced in 25 normocholesterolemic (NC) and 28 hypercholesterolemic (HC) rabbits by the subcutaneous injection of 15 ml of 1% carrageenan. Granuloma tissue was harvested at 4, 7, 14, and 28 days and studied by light and transmission electron microscopy. Macrophages and foam cells were isolated by enzymic dispersion with collagenase and cultured for further characterization by scanning electron microscopy, nonspecific esterase (NSE), and oil red O (ORO) staining. Granuloma macrophages from NC rabbits were consistently ORO-negative, contrasting with those from HC rabbits which were strongly ORO-positive, even at 4 and 7 days. With an increasing duration of exposure to hypercholesterolemia, macrophages accumulated increasing amounts of stainable lipid, and in the 28-day HC granulomas, large foam cells distended by lipid inclusions accounted for 70% of the cells present. This model has established that NSE-positive macrophages in HC granulomas accumulate lipid and assume the morphologic characteristics of atheromatous intimal foam cells. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 10 PMID:3966533

  13. The digestive cells of the hepatopancreas in Aplysia depilans (Mollusca, Opisthobranchia): ultrastructural and cytochemical study.

    PubMed

    Lobo-da-Cunha, A

    2000-02-01

    Digestive cells are the most abundant cell type in the digestive diverticula of Aplysia depilans. These are tall columnar or club shaped cells, covered with microvilli on their apical surface. A large number of endocytic vesicles containing electron-dense substances can be found in the apical zone, but the presence of many heterolysosomes of large diameter is the main feature of these cells. Glycogen particles and some lipid droplets were also observed. Peroxisomes with a circular or oval profile were common, but crystalline nucleoids were not detected in them, although a dense spot in the matrix was observed in a few cases. These organelles were strongly stained after cytochemical detection of catalase activity. The Golgi stacks are formed by 4 or 5 cisternae, with dilated zones containing electron dense material. Arylsulphatase activity was detected in the Golgi stacks and also in lysosomes. Cells almost entirely occupied by a very large vacuole containing a residual dense mass seem to be digestive cells in advanced stages of maturation. The observation of semithin and ultrathin sections indicates that these very large vacuoles are the result of a fusion among the smaller lysosomes. Some images suggest that the content of these large vacuoles is extruded into the lumen of the digestive diverticula. PMID:10798317

  14. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice

    PubMed Central

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-01-01

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  15. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice.

    PubMed

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-06-28

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  16. Anatomical structure and ultrastructure of the endocarp cell walls of Argania spinosa (L.) Skeels (Sapotaceae).

    PubMed

    Sebaa, H S; Harche, M Kaid

    2014-12-01

    The anatomical and histochemical study of young and adult endocarps of Argania spinosa (sampled from Tindouf; Algeria) shows a general structure that is similar to that of majority of stone fruits. These samples consist of tissues that contain lignified and cellulosic cell walls. The majority of the tissues are composed of sclerenchyma cells; with very thick lignified cell walls and conducting tissues. Coniferyl lignins are abundant in the majority of the lignified tissues. However, the coniferyl lignins appear at the primary xylem during lignification. Syringyl lignins are present in small quantities. The electron microscopy observation of the sclerenchyma cell walls of the young endocarp shows polylamellate strates and, cellular microfibrils in arced patterns. This architecture is observed in the cell walls of the adult endocarp only after the incubation of the tissue in methylamine. These configurations (arcs) are the result of a regular and complete rotation with a 180° variation in the microfibril angle; the complete and symmetrical arcs show a helicoidal mode of construction. The observation of the sclerenchyma cells revealed the capacity of helicoidal morphogenesis to adjust itself under the influence of topological constraints, such as the presence of a large number of pit canals, which maintain symplastic transport. PMID:25125280

  17. Diamine oxidase-gold ultrastructural localization of histamine in human skin biopsies containing mast cells stimulated to degranulate in vivo by exposure to recombinant human stem cell factor.

    PubMed

    Dvorak, A M; Costa, J J; Morgan, E S; Monahan-Earley, R A; Galli, S J

    1997-10-15

    Stem cell factor (SCF) has a major role in hematopoiesis and in the regulation of mast cell development and function. For example, recombinant human SCF (rhSCF) can induce the development of human mast cells from precursor cells in vitro, stimulate mediator release from human skin mast cells in vitro, and promote both the development and functional activation of human skin mast cells in vivo. In the present study, we used a new ultrastructural enzyme-affinity method, employing diamine oxidase (DAO)-conjugated gold particles (DAO-gold), to detect histamine in skin biopsies obtained from patients with breast carcinomas who were receiving daily subcutaneous (SC) injections of rhSCF in a phase I study of this cytokine. We examined control biopsies obtained at sites remote from rhSCF injection as well as biopsies of rhSCF-injected skin that were obtained within 2 hours and 30 minutes of the SC injection of rhSCF at that site. The rhSCF-injected sites (which clinically exhibited a wheal-and-flare response), but not the control sites, contained mast cells undergoing regulated secretion by granule extrusion. The DAO-gold-affinity method detected histamine in electron-dense granules of mast cells in control and injected skin biopsies; however, the altered matrix of membrane-free, extruded mast cell granules was largely unreactive with DAO-gold. Notably, DAO-gold bound strongly to fibrin deposits and collagen fibers that were adjacent to degranulated mast cells. These findings represent the first morphologic evidence of histamine secretion by classical granule exocytosis in human mast cells in vivo. PMID:9376568

  18. Distribution of chitin in the yeast cell wall. An ultrastructural and chemical study.

    PubMed

    Molano, J; Bowers, B; Cabib, E

    1980-05-01

    The distribution of chitin in Saccharomyces cervisiae primary septa and cell walls was studied with three methods: electron microscopy of colloidal gold particles coated either with wheat germ agglutinin or with one of two different chitinases, fluorescence microscopy with fluorescein isothiocyanate derivatives of the same markers, and enzymatic treatments of [14C]glucosamine-labeled cells. The septa were uniformly and heavily labeled with the gold-attached markers, an indication that chitin was evenly distributed throughout. To study the localization of chitin in lateral walls, alkali-extracted cell ghosts were used. Observations by electron and fluorescence microscopy suggest that lectin-binding material is uniformly distributed over the whole cell ghost wall. This material also appears to be chitin, on the basis of the analysis of the products obtained after treatment of 14C-labeled cell ghosts with lytic enzymes. The chitin of lateral walls can be specifically removed by treatment with beta-(1 leads to 6)-glucanase containing a slight amount of chitinase. During this incubation approximately 7% of the total radioactivity is solubilized, about the same amount liberated when lateral walls of cell ghosts are completely digested with snail glucanase yield primary septa. It is concluded that the remaining chitin, i.e., greater than 90% of the total, is in the septa. The facilitation of chitin removal from the cell wall by beta-(1 leads to 6)-glucanase indicates a strong association between chitin and beta-(1 leads to 6)-glucan. Covalent linkages between the two polysaccharides were not detected but cannot be excluded. PMID:6989839

  19. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line.

    PubMed

    Śmieszek, Agnieszka; Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marędziak, Monika; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  20. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line

    PubMed Central

    Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  1. [Transmission electron microscopy image of wear particles of joint endoprostheses and ultrastructural cell changes].

    PubMed

    Bos, I; Johannisson, R

    2003-01-01

    Wear particles from joint endoprostheses vary considerably in size, and may be detectable in tissue only by electron microscopy. Wear debris plays a central role in the non-infectious late loosening of prostheses, and it has been estimated that the submicron particles induce increased liberation of mediators of osteolysis by activated macrophages. From the types of prostheses currently in use, bone cement and polyethylene particles greatly predominate over metallic and ceramic particles. Since it had formerly not been possible to reliably identify wear particles in the transmission electron microscopy, and descriptions of them in the literature varied considerably, we analysed ultrathin sections obtained from periprosthetic tissue containing wear particles previously identified by laser microprobe mass analysis. Using this method, it proved possible to classify almost all the wear particles detected in the electron microscope, to determine their size range and to represent the cellular alterations caused by them. PMID:12655845

  2. Native Ultrastructure of the Red Cell Cytoskeleton by Cryo-Electron Tomography

    PubMed Central

    Nans, Andrea; Mohandas, Narla; Stokes, David L.

    2011-01-01

    Erythrocytes possess a spectrin-based cytoskeleton that provides elasticity and mechanical stability necessary to survive the shear forces within the microvasculature. The architecture of this membrane skeleton and the nature of its intermolecular contacts determine the mechanical properties of the skeleton and confer the characteristic biconcave shape of red cells. We have used cryo-electron tomography to evaluate the three-dimensional topology in intact, unexpanded membrane skeletons from mouse erythrocytes frozen in physiological buffer. The tomograms reveal a complex network of spectrin filaments converging at actin-based nodes and a gradual decrease in both the density and the thickness of the network from the center to the edge of the cell. The average contour length of spectrin filaments connecting junctional complexes is 46 ± 15 nm, indicating that the spectrin heterotetramer in the native membrane skeleton is a fraction of its fully extended length (∼190 nm). Higher-order oligomers of spectrin were prevalent, with hexamers and octamers seen between virtually every junctional complex in the network. Based on comparisons with expanded skeletons, we propose that the oligomeric state of spectrin is in a dynamic equilibrium that facilitates remodeling of the network as the cell changes shape in response to shear stress. PMID:22098732

  3. Ocimum sanctum extracts attenuate hydrogen peroxide induced cytotoxic ultrastructural changes in human lens epithelial cells.

    PubMed

    Halder, Nabanita; Joshi, Sujata; Nag, Tapas Chandra; Tandon, Radhika; Gupta, Suresh Kumar

    2009-12-01

    Hydrogen peroxide (H2O2) is the major oxidant involved in cataract formation. The present study investigated the effect of an aqueous leaf extract of Tulsi (Ocimum sanctum) against H2O2 induced cytotoxic changes in human lens epithelial cells (HLEC). Donor eyes of the age range 20-40 years were procured within 5-8 h of death. After several washings with gentamicin (50 mL/L) and betadine (10 mL/L), clear transparent lenses (n=6 in each group) were incubated in Dulbecco's modified Eagle's medium (DMEM) alone (normal) or in DMEM containing 100 microm of H2O2 (control) or in DMEM containing both H2O2 (100 microm) and 150 microg/mL of Ocimum sanctum extract (treated) for 30 min at 37 degrees C with 5% CO2 and 95% air. Following incubation, the semi-hardened epithelium of each lens was carefully removed, fixed and processed for electron microscopic studies. Thin sections (60-70 mm) were contrasted with uranyl acetate and lead citrate and viewed under a transmission electron microscope. Normal epithelial cells showed intact, euchromatic nucleus with few small vacuoles (diameter 0.58+/-0.6 microm) in well-demarcated cytoplasm. After treatment with H2O2, they showed pyknotic nuclei with clumping of chromatin and ill-defined edges. The cytoplasm was full of vacuoles (diameter 1.61+/-0.7 microm). The overall cellular morphology was typical of dying cells. Treatment of cells with Ocimum sanctum extract protected the epithelial cells from H2O2 insult and maintained their normal architecture. The mean diameter of the vacuoles was 0.66+/-0.2 microm. The results indicate that extracts of O. sanctum have an important protective role against H2O2 injury in HLEC by maintaining the normal cellular architecture. The protection could be due to its ability to reduce H2O2 through its antioxidant property and thus reinforcing the concept that the extracts can penetrate the HLEC membrane. PMID:19441070

  4. Scrotal angiokeratoma (Fordyce): histopathological and ultrastructural findings.

    PubMed

    Gioglio, L; Porta, C; Moroni, M; Nastasi, G; Gangarossa, I

    1992-01-01

    Bioptic findings related to four cases of scrotal angiokeratoma-Fordyce, were studied under light and electron microscopy. A particular heterogeneity of the structural and ultrastructural patterns typical of this lesion was thus observed. Light microscopy study pointed out, in particular, different degrees of dilation of papillary vessels, whereas ultrastructural study highlighted marked alterations of endothelial cells with structural and quantitative modifications of cytoplasmic organelles. PMID:1576434

  5. Arsenic induces sustained impairment of skeletal muscle and muscle progenitor cell ultrastructure and bioenergetics.

    PubMed

    Ambrosio, Fabrisia; Brown, Elke; Stolz, Donna; Ferrari, Ricardo; Goodpaster, Bret; Deasy, Bridget; Distefano, Giovanna; Roperti, Alexandra; Cheikhi, Amin; Garciafigueroa, Yesica; Barchowsky, Aaron

    2014-09-01

    Over 4 million individuals in the United States, and over 140 million individuals worldwide, are exposed daily to arsenic-contaminated drinking water. Human exposures can range from below the current limit of 10 μg/L to over 1mg/L, with 100 μg/L promoting disease in a large portion of those exposed. Although increased attention has recently been paid to myopathy following arsenic exposure, the pathogenic mechanisms underlying clinical symptoms remain poorly understood. This study tested the hypothesis that arsenic induces lasting muscle mitochondrial dysfunction and impairs metabolism. Compared to nonexposed controls, mice exposed to drinking water containing 100 μg/L arsenite for 5 weeks demonstrated impaired muscle function, mitochondrial myopathy, and altered oxygen consumption that were concomitant with increased mitochondrial fusion gene transcription. There were no differences in the levels of inorganic arsenic or its monomethyl and dimethyl metabolites between controls and exposed muscles, confirming that arsenic does not accumulate in muscle. Nevertheless, muscle progenitor cells isolated from exposed mice recapitulated the aberrant myofiber phenotype and were more resistant to oxidative stress, generated more reactive oxygen species, and displayed autophagic mitochondrial morphology, compared to cells isolated from nonexposed mice. These pathological changes from a possible maladaptive oxidative stress response provide insight into declines in muscle functioning caused by exposure to this common environmental contaminant. PMID:24960579

  6. Effects of Electroacupuncture on Interstitial Cells of Cajal (ICC) Ultrastructure and Connexin 43 Protein Expression in the Gastrointestinal Tract of Functional Dyspepsia (FD) Rats.

    PubMed

    Zhang, Guoshan; Xie, Shen; Hu, Wei; Liu, Yuer; Liu, Mailan; Liu, Mi; Chang, Xiaorong

    2016-01-01

    BACKGROUND Gastrointestinal motility disorder is the main clinical manifestation in functional dyspepsia (FD) patients. Electroacupuncture is effective in improving gastrointestinal motility disorder in FD; however, the underlying mechanism remains unclear. It has been demonstrated that interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract, and the pacemaker potential is transmitted to nearby cells through gap junctions between ICC or ICC and the smooth muscle. Therefore, this study aimed to assess the effects of electroacupuncture on ICC ultrastructure and expression of the gap junction protein connexin 43 (Cx43) in FD rats. MATERIAL AND METHODS The animals were randomized into 3 groups: control, model, and electroacupuncture. Electroacupuncture was applied at Zusanli (ST36) in the electroacupuncture group daily for 10 days, while no electroacupuncture was applied to model group animals. RESULTS Ultrastructure of ICC recovered normally in gastric antrum and small intestine specimens was improved, with Cx43 expression levels in these tissues significantly increased in the electroacupuncture group compared with the model group. CONCLUSIONS These findings indicated that electroacupuncture is effective in alleviating ICC damage and reduces Cx43 levels in FD rats, and suggest that ICC and Cx43 are involved in electroacupuncture treatment in rats with FD to improve gastrointestinal motility disorders. PMID:27297942

  7. Effects of Electroacupuncture on Interstitial Cells of Cajal (ICC) Ultrastructure and Connexin 43 Protein Expression in the Gastrointestinal Tract of Functional Dyspepsia (FD) Rats

    PubMed Central

    Zhang, Guoshan; Xie, Shen; Hu, Wei; Liu, Yuer; Liu, Mailan; Liu, Mi; Chang, Xiaorong

    2016-01-01

    Background Gastrointestinal motility disorder is the main clinical manifestation in functional dyspepsia (FD) patients. Electroacupuncture is effective in improving gastrointestinal motility disorder in FD; however, the underlying mechanism remains unclear. It has been demonstrated that interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract, and the pacemaker potential is transmitted to nearby cells through gap junctions between ICC or ICC and the smooth muscle. Therefore, this study aimed to assess the effects of electroacupuncture on ICC ultrastructure and expression of the gap junction protein connexin 43 (Cx43) in FD rats. Material/Methods The animals were randomized into 3 groups: control, model, and electroacupuncture. Electroacupuncture was applied at Zusanli (ST36) in the electroacupuncture group daily for 10 days, while no electroacupuncture was applied to model group animals. Results Ultrastructure of ICC recovered normally in gastric antrum and small intestine specimens was improved, with Cx43 expression levels in these tissues significantly increased in the electroacupuncture group compared with the model group. Conclusions These findings indicated that electroacupuncture is effective in alleviating ICC damage and reduces Cx43 levels in FD rats, and suggest that ICC and Cx43 are involved in electroacupuncture treatment in rats with FD to improve gastrointestinal motility disorders. PMID:27297942

  8. Ultrastructural effects of lysozymes on the cell wall of Caryophanon latum.

    PubMed

    Trentini, W C; Murray, R G

    1975-02-01

    When Caryophanon latum was exposed to egg white lysozyme in isotonic sucrose and observed by phase-contrast microscopy, protoplasts emerged along the length of the trichomes, apparently at sites corresponding to cross septa. Electron microscopy of sections revealed that this enzyme initially attacked the core of the septal peptidoglycan and delamination of septa resulted. The inner densely staining layer of the lateral and polar wall (considered to contain peptidoglycan as the major component) remained intact except for destruction at the advancing tip of partial septa; protoplasts or cell debris could escape from the gaps formed at developing septa. Treatment of intact trichomes with pronase, a lipase - phospholipase C mixture, EDTA, glutaraldehyde, or heat, before exposure to egg white lysozyme did not alter this pattern nor did it render the remaining peptidoglycan more susceptible to attack. The wall material external to the peptidoglycan was solubilized by pronase. The peptidoglycan remaining after lysozyme treatment was not morphologically changed by treatment with pronase. Lysozyme derived from Chalaropsis hydrolyzed incomplete septa initially, while the lateral and polar wall and complete septa were degraded later. Therefore, it is most probable that the inner dense layer does contain the peptidoglycan component and that some biochemical maturation distinguishes the substrate for these enzymes in the lateral wall and septa. PMID:803400

  9. Morphological and ultrastructural changes in the cell structure of enterohaemorrhagic Escherichia coli O157:H7 following treatment with Quercus infectoria nut galls.

    PubMed

    Suwalak, Sakol; Voravuthikunchai, Supayang P

    2009-10-01

    Some information is available on the oak (Quercus infectoria) nut gall as an effective medicinal plant against Shiga toxin-producing Escherichia coli (STEC) O157:H7. However, its antibacterial mechanisms have not yet been elucidated. In this study, some antibacterial actions against STEC O157:H7 were investigated by observing cell viability as well as morphological and ultrastructural changes. An ethanolic extract of Q. infectoria demonstrated inhibitory and bactericidal effects on all of the strains tested with minimal inhibition concentrations (MICs) at 0.78-1.56 mg ml(-1) and minimal bactericidal concentrations (MBCs) at 1.56-3.12 mg ml(-1). Cell numbers treated with 4MIC of the extract decreased at least two log-fold within 4 h and were completely killed within 12 h. Scanning electron microscopy illustrated a complete loss of surface appendages and pronounced morphological changes at MIC and 2MIC. The whole cell collapsed at 4MIC. Ultrastructural changes from corresponding transmission electron micrographs further verified that damages in the treated cells increased with the increase in the extract concentrations. At MIC (0.78 mg ml(-1)), there was some evidence that the cytoplasmic membranes of the treated E. coli were bulging and/or ruptured, and the cells appeared to be discharging intracellular materials. At 2MIC, the outer membrane of the treated E. coli which was attached to the cell wall became separated from the wall. Disruption in the outer wall and cytoplasmic membranes, especially at the polar regions of the cells occurred and some vacuolization appeared. At 4MIC, the damage to E. coli cells was extensive, and there was loss of their cellular integrity. PMID:19451663

  10. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study.

    PubMed

    Awasthi, Bhanu Priya; Kathuria, Manoj; Pant, Garima; Kumari, Neema; Mitra, Kalyan

    2016-08-01

    Naphthoquinones are known to exhibit a broad range of biological activities against microbes, cancer and parasitic diseases and have been widely used in Indian traditional medicine. Plumbagin is a plant-derived naphthoquinone metabolite (5-hydroxy-2-methyl-1,4-naphthoquinone) reported to inhibit trypanothione reductase, the principal enzyme and a validated drug target involved in detoxification of oxidative stress in Leishmania. Here, we report the mechanistic aspects of cell death induced by plumbagin including physiological effects in the promastigote form and ultrastructural alterations in both promastigote and amastigote forms of Leishmania donovani which till now remained largely unknown. Our observations show that oxidative stress induced by plumbagin resulted in depolarization of the mitochondrial membrane, depletion in ATP levels, elevation of cytosolic calcium, increase in caspase 3/7-like protease activity and lipid peroxidation in promastigotes. Apoptosis-like cell death induction post plumbagin treatment was confirmed by biochemical assays like Annexin V/FITC staining, TUNEL as well as morphological and ultrastructural studies. These findings collectively highlight the mode of action and importance of oxidative stress inducing agents in effectively killing both forms of the Leishmania parasite and opens up the possibility of exploring plumbagin and its derivatives as promising candidates in the chemotherapy of Leishmaniasis. PMID:27315817

  11. ULTRASTRUCTURAL CYTOCHEMISTRY

    PubMed Central

    Leduc, Elizabeth H.; Bernhard, Wilhelm

    1961-01-01

    Selective extraction of specific cell components by enzyme or acid hydrolysis is possible from ultrathin sections for electron microscopy and parallel 2 µ sections for light microscopy of tissues fixed in formalin and embedded in a water-soluble polyepoxide, product X133/2097. Normal rat tissues fixed 15 minutes in formalin at 3°C are more rapidly digested by proteinases than those fixed for the same length of time at 20°C. Trypsin selectively attacks the nuclear chromatin and the ribonucleoprotein particles of the ergastroplasm, whereas mitochondria and zymogen granules resist tryptic digestion. Pepsin rapidly attacks the mitochondria and zymogen granules. The ergastoplasm and nucleus at first resist peptic digestion, but in time the entire cytoplasm and interchromatinic portion of the nucleus are attacked. Ribonuclease abolishes cytoplasmic basophilia in 2 µ sections, but parallel ultra-thin sections, stained with uranyl acetate and examined in the electron microscope, show no change in the ribonucleoprotein particles of the ergastoplasm. Desoxyribonuclease alone had no effect, but after pretreatment of the sections with pepsin or hydrochloric acid, desoxyribonuclease specifically attacked the nuclear chromatin. Nucleic acid-containing structures in the sections are gradually disintegrated by perchloric acid or hydrochloric acid. PMID:13760208

  12. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    PubMed Central

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N. W.; Walters, Christina

    2014-01-01

    Background and Aims Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Methods Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Key Results Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. Conclusions The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches. PMID:24368198

  13. Expression dynamics and ultrastructural localization of epitope-tagged Abutilon mosaic virus nuclear shuttle and movement proteins in Nicotiana benthamiana cells

    SciTech Connect

    Kleinow, Tatjana; Tanwir, Fariha; Kocher, Cornelia; Krenz, Bjoern; Wege, Christina; Jeske, Holger

    2009-09-01

    The geminivirus Abutilon mosaic virus (AbMV) encodes two proteins which are essential for viral spread within plants. The nuclear shuttle protein (NSP) transfers viral DNA between the nucleus and cytoplasm, whereas the movement protein (MP) facilitates transport between cells through plasmodesmata and long-distance via phloem. An inducible overexpression system for epitope-tagged NSP and MP in plants yielded unprecedented amounts of both proteins. Western blots revealed extensive posttranslational modification and truncation for MP, but not for NSP. Ultrastructural examination of Nicotiana benthamiana tissues showed characteristic nucleopathic alterations, including fibrillar rings, when epitope-tagged NSP and MP were simultaneously expressed in leaves locally infected with an AbMV DNA A in which the coat protein gene was replaced by a green fluorescent protein encoding gene. Immunogold labelling localized NSP in the nucleoplasm and in the fibrillar rings. MP appeared at the cell periphery, probably the plasma membrane, and plasmodesmata.

  14. CD39 Expression Identifies Terminally Exhausted CD8+ T Cells

    PubMed Central

    Adland, Emily; Yates, Kathleen; Pauken, Kristen E.; Cosgrove, Cormac; Ledderose, Carola; Junger, Wolfgang G.; Robson, Simon C.; Wherry, E. John; Alter, Galit; Goulder, Philip J. R.; Klenerman, Paul; Sharpe, Arlene H.; Lauer, Georg M.; Haining, W. Nicholas

    2015-01-01

    Exhausted T cells express multiple co-inhibitory molecules that impair their function and limit immunity to chronic viral infection. Defining novel markers of exhaustion is important both for identifying and potentially reversing T cell exhaustion. Herein, we show that the ectonucleotidse CD39 is a marker of exhausted CD8+ T cells. CD8+ T cells specific for HCV or HIV express high levels of CD39, but those specific for EBV and CMV do not. CD39 expressed by CD8+ T cells in chronic infection is enzymatically active, co-expressed with PD-1, marks cells with a transcriptional signature of T cell exhaustion and correlates with viral load in HIV and HCV. In the mouse model of chronic Lymphocytic Choriomeningitis Virus infection, virus-specific CD8+ T cells contain a population of CD39high CD8+ T cells that is absent in functional memory cells elicited by acute infection. This CD39high CD8+ T cell population is enriched for cells with the phenotypic and functional profile of terminal exhaustion. These findings provide a new marker of T cell exhaustion, and implicate the purinergic pathway in the regulation of T cell exhaustion. PMID:26485519

  15. Node-like cells in the myocardial layer of the pulmonary vein of rats: an ultrastructural study.

    PubMed Central

    Masani, F

    1986-01-01

    The myocardial layer of the pulmonary vein of adult rats was examined by electron microscopy. Among ordinary myocardial cells resembling those of the atrial myocardium, clear cells with structural features similar to those of sinus node cells were identified. They were distributed in the intrapulmonary, preterminal portion of the pulmonary vein. They appeared singly or in small groups among the ordinary myocardial cells. Their cytoplasm was characterised by a paucity of myofilaments, irregular disposition of myofilament bundles, small and oval mitochondria, absence of atrial specific granules and a wide cytoplasmic matrix between intracellular organelles. The intercalated discs of node-like cells were composed of small junctional specialisations. Nerve fibres containing small and large vesicles with and without dense cores were juxtaposed to the node-like cells over an intercellular space of more than 200 nm. Taking into consideration physiological data, the possibility is discussed that the node-like cells may have a potential pacemaking activity and represent an ectopic pacemaker centre in the pulmonary vein. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:3429299

  16. Proteome Profiling and Ultrastructural Characterization of the Human RCMH Cell Line: Myoblastic Properties and Suitability for Myopathological Studies.

    PubMed

    Kollipara, Laxmikanth; Buchkremer, Stephan; Weis, Joachim; Brauers, Eva; Hoss, Mareike; Rütten, Stephan; Caviedes, Pablo; Zahedi, René P; Roos, Andreas

    2016-03-01

    Studying (neuro)muscular disorders is a major topic in biomedicine with a demand for suitable model systems. Continuous cell culture (in vitro) systems have several technical advantages over in vivo systems and became widely used tools for discovering physiological/pathophysiological mechanisms in muscle. In particular, myoblast cell lines are suitable model systems to study complex biochemical adaptations occurring in skeletal muscle and cellular responses to altered genetic/environmental conditions. Whereas most in vitro studies use extensively characterized murine C2C12 cells, a comprehensive description of an equivalent human cell line, not genetically manipulated for immortalization, is lacking. Therefore, we characterized human immortal myoblastic RCMH cells using scanning (SEM) and transmission electron microscopy (TEM) and proteomics. Among more than 6200 identified proteins we confirm the known expression of proteins important for muscle function. Comparing the RCMH proteome with two well-defined nonskeletal muscle cells lines (HeLa, U2OS) revealed a considerable enrichment of proteins important for muscle function. SEM/TEM confirmed the presence of agglomerates of cytoskeletal components/intermediate filaments and a prominent rough ER. In conclusion, our results indicate RMCH as a suitable in vitro model for investigating muscle function-related processes such as mechanical stress burden and mechanotransduction, EC coupling, cytoskeleton, muscle cell metabolism and development, and (ER-associated) myopathic disorders. PMID:26781476

  17. Activation of cortical and inhibited differentiation of medullary epithelial cells in the thymus of lymphotoxin-beta receptor-deficient mice: an ultrastructural study

    PubMed Central

    Milićević, N M; Nohroudi, K; Milićević, Ž; Westermann, J

    2008-01-01

    The reciprocal influences of thymic lymphocyte and nonlymphocyte populations, i.e. thymic cross-talk, are necessary for the proper maturation of thymocytes and the development/maintenance of thymic stromal microenvironments. Although the molecular influences exerted by thymic stromal cells on maturing thymocytes have been extensively studied, the identity of signalling molecules used by thymocytes to influence the thymic stromal cells is still largely unknown. Our study provides the first ultrastructural evidence that the functional lymphotoxin-beta receptor (LTβR) signalling pathway is engaged in the cross-talk between thymocytes and the thymic stromal cell population. We show that LTβR signalling is of the utmost significance for the preservation of the subcellular integrity of all thymic epithelial cells. In the absence of LTβR there is (1) hypertrophy and activation of cortical thymic epithelial cells, (2) the complete loss of fully differentiated medullary thymic epithelial cells, and (3) the inhibited differentiation of remaining medullary thymic epithelial cells with the appearance of prominent intercellular cysts in the thymic medulla. PMID:18194204

  18. Influence of inorganic and organic selenium on number of living mycelial cells and their ultrastructure in culture of Hericium erinaceum (Bull.: Fr. Pers.).

    PubMed

    Slusarczyk, Joanna; Malinowska, Eliza; Krzyczkowski, W; Kuraś, M

    2013-03-01

    Mycelium of the white-rot fungus (Hericium erinaceum (Bull.: Fr. Pers.) produces polysaccharides showing anticancer and immunostimulating activity. In our previous works, we have shown that organic selenitetriglycerides (Selol) contribute to the increase of biosynthesis of exopolysaccharides (EPS) having antioxidative properties and containing large amounts of selenium. The present work is a study of influence of inorganic and organic form of selenium on viability of H. erinaceum mycelium and on ultrastructural changes taking place during its development in submerged culture. The mycelium was grown on media containing sodium selenite (Na2SeO3), a mixture of Na2SeO3 + Selol2% and on control medium (no selenium added). It was shown that mycelium cultured for 3 days in control conditions on standard media contained almost 100% of living cells, with over 80% after 24 days. Treatment with 100 ppm of Na2SeO3 lowered the number of viable cells to 11.8% and 9.1% after 3 and 24 days, respectively. The addition of 2% Selol caused the amounts of living cells to remain at ca 90%. Apparently, Selol helped the cells to cope with the toxic activity of inorganic selenium ions. The addition of sodium selenite induced degradative changes in cell organelles. Such changes were not observed in the case of Na2SeO3 + Selol mixture, in which case cells contained numerous ribosomes and small lipid bodies. PMID:23567834

  19. Ultrastructural studies of unstable angina in living man

    SciTech Connect

    Gotlieb, A.I.; Freeman, M.R.; Salerno, T.A.; Lichtenstein, S.V.; Armstrong, P.W. )

    1991-01-01

    Nineteen patients with refractory unstable angina who were undergoing aortocoronary bypass were studied to assess the extent of platelet aggregation present in the microvasculature. Ultrastructural findings on the morphology of cardiac muscle and microvasculature were correlated with the findings on coronary angiograms and thallium scans. There were no significant correlations. The presence of platelet aggregates was identified in four biopsies, two of which had thrombus by angiographic criteria. Biopsy in areas with thallium defects revealed an increased prevalence of white blood cells without acute myocardial infarction. This study confirms the presence of platelet aggregates in patients with unstable angina, albeit at a reduced frequency when compared with autopsy studies.

  20. Ultrastructural Characterization and Three-Dimensional Architecture of Replication Sites in Dengue Virus-Infected Mosquito Cells

    PubMed Central

    Junjhon, Jiraphan; Pennington, Janice G.; Edwards, Thomas J.; Perera, Rushika; Lanman, Jason

    2014-01-01

    ABSTRACT During dengue virus infection of host cells, intracellular membranes are rearranged into distinct subcellular structures such as double-membrane vesicles, convoluted membranes, and tubular structures. Recent electron tomographic studies have provided a detailed three-dimensional architecture of the double-membrane vesicles, representing the sites of dengue virus replication, but temporal and spatial evidence linking membrane morphogenesis with viral RNA synthesis is lacking. Integrating techniques in electron tomography and molecular virology, we defined an early period in virus-infected mosquito cells during which the formation of a virus-modified membrane structure, the double-membrane vesicle, is proportional to the rate of viral RNA synthesis. Convoluted membranes were absent in dengue virus-infected C6/36 cells. Electron tomographic reconstructions elucidated a high-resolution view of the replication complexes inside vesicles and allowed us to identify distinct pathways of particle formation. Hence, our findings extend the structural details of dengue virus replication within mosquito cells and highlight their differences from mammalian cells. IMPORTANCE Dengue virus induces several distinct intracellular membrane structures within the endoplasmic reticulum of mammalian cells. These structures, including double-membrane vesicles and convoluted membranes, are linked, respectively, with viral replication and viral protein processing. However, dengue virus cycles between two disparate animal groups with differing physiologies: mammals and mosquitoes. Using techniques in electron microscopy, we examined the differences between intracellular structures induced by dengue virus in mosquito cells. Additionally, we utilized techniques in molecular virology to temporally link events in virus replication to the formation of these dengue virus-induced membrane structures. PMID:24522909

  1. Methods To Identify Aptamers against Cell Surface Biomarkers

    PubMed Central

    Cibiel, Agnes; Dupont, Daniel Miotto; Ducongé, Frédéric

    2011-01-01

    Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment). During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  2. Alterations of leaf cell ultrastructures and AFLP DNA profiles in Earth-grown tomato plants propagated from long-term six years Mir-flown seeds

    NASA Astrophysics Data System (ADS)

    Liu, Min; Xue, Huai; Pan, Yi; Zhang, Chunhua; Lu, Jinying

    Leaf cell ultrastructures and DNA variations in the firstand the second-generation of Earthgrown tomato (Lycopersicon esculentun Mill) plants that had been endured a long-term six years spaceflight in the Mir were compared to their ground-based control plants, under observations with a Transmission Electron Microscope and the Amplification Fragment Length Polymorphism (AFLP) analysis. For alterations in the morphological ultrastructures, one plant among the 11 first-generation plants generated from 30 Mir-flown seeds had a three-layered palisade cell structure, while other 10 first-generation plants and all ground-based controls had one-layered palisade cell structure in leaves. Starch grains were larger and in clusters, numbers of starch grains increased in the chloroplasts in the Mir-flown plants. Leaf cells became contracted and deformed, and cell shape patterns were different in the Mir-flown plants. For the leaf genomic DNA alterations, 34 DNA bands were polymorphic with a 1.32% polymorphism among 2582 DNA bands in the first-generation Mir-flown plants. Band types in the spaceflight treated plants were also different from those in the ground-based control. Of 11 survived first-generation plants, 7 spaceflight treated plants (Plant Nos. 1-6 and No. 9) had a same 7 polymorphic bands and a same 0.27%DNA mutation. The DNA mutation rate was greatest in Plants No.10 and No.7 (0.90% and 0.94%), less in Plant No.11 (0.31%) and least in Plant No.8 (0.20%). For the 38 send-generation plants propagated from the No. 5 Mir-flown seed, 6 DNA bands were polymorphic with a 0.23% polymorphism among 2564 amplified DNA bands. Among those 38 second-generation plants amplified by primer pair (E4: ACC, M8: CTT), one DNA band disappeared in 29 second-generation plants and in the original Mir-flown No. 5 plant, compared to the ground-base controls. Among the 38 second-generation plants generated from the Mir-flown No. 5 seed, the DNA band types of 29 second-generation plants were

  3. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy

    PubMed Central

    Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  4. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy.

    PubMed

    Vincent, Amy E; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M; McFarland, Robert; Gorman, Grainne S; Taylor, Robert W; Turnbull, Doug M; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  5. The Newly Identified T Helper 22 Cells Lodge in Leukemia

    PubMed Central

    Azizi, Gholamreza; Rastegar Pouyani, Mohsen; Navabi, Shadi sadat; Yazdani, Reza; Kiaee, Fatemeh; Mirshafiey, Abbas

    2015-01-01

    Leukemia is a hematological tumor in which the malignant myeloid or lymphoid subsets play a pivotal role. Newly identified T helper cell 22 (Th22) is a subset of CD4+ T cells with distinguished gene expression, function and specific properties apart from other known CD4+ T cell subsets.Th22 cells are characterized by production of a distinct profile of effector cytokines, including interleukin (IL)-22, IL-13, and tumor necrosis factor-α (TNF-α). The levels of Th22 and cytokine IL-22 are increased and positively related to inflammatory and autoimmune disorders. Recently, several studies have reported the changes in frequency and function of Th22 in acute leukemic disorders as AML and ALL. This review discusses the role of Th22 and its cytokine IL-22 in the immunopathogenesis of leukemic disease. PMID:26261700

  6. Intra- and interspecific diversity of ultrastructural markers in Scedosporium.

    PubMed

    Stepanova, Amaliya A; de Hoog, G Sybren; Vasilyeva, Nataliya V

    2016-02-01

    Ultrastructural features of conidia, lateral walls of aerial and submerged hyphal cells, and of septal pore apparatus of Scedosporium apiospermum, S. boydii, Pseudallescheria angusta and Scedosporium aurantiacum were studied. Submerged hyphal cells possessed a thick extracellular matrix. Crystalline satellites accessory to the septal pore apparatus were revealed. Fundamental ultrastructural features appeared to be heterogeneous at low taxonomic levels. The closely interrelated members of the S. apiospermum complex showed quantitative ultrastructural variability, but the unambiguously different species S. aurantiacum deviated qualitatively by markers of conidial wall structure, Woronin bodies morphology and presence/absence of crystalline satellites of the septal pore apparatus. PMID:26781370

  7. [The ultrastructural manifestations of the regenerative processes in the Sertoli cells under the action of low-intensity electromagnetic radiation in the rats subjected to stress].

    PubMed

    Korolev, Yu N; Geniatulina, M S; Nikulina, L A; Mikhailik, L V

    2015-01-01

    The experiments on the outbred female rats using the electron microscopic technique have demonstrated that the application of ultrahigh frequency low-intensity electromagnetic radiation (LIEMR) with a flux density below 1 mCW/Cm2 and a frequency of approximately 1,000 MHz in the regime of primary prophylaxis and therapeutic-preventive action suppressed the development of the post-stress pathological ultrastructural changes and increased the activity of the regenerative processes in the Sertoli cells. It was shown that the developing adaptive and compensatory changes in the Sertoli cells most frequently involve the energy-producing structures (mitochondria) that undergo the enlargement of their average and total dimensions. Simultaneously, the amount of granular endoplasmic reticulum and the number of ribosomes increased while the intracellular links between the organelles strengthened and the reserve potential of the cells improved. It is concluded that the observed effects may be due to the action of both local and systemic regulation mechanisms. PMID:26285333

  8. Criteria for the diagnosis of primary endocrine carcinoma of the skin (Merkel cell carcinoma). A histological, immunohistochemical and ultrastructural study of 13 cases.

    PubMed

    Leong, A S; Phillips, G E; Pieterse, A S; Milios, J

    1986-10-01

    Thirteen cases of primary endocrine carcinoma of the skin (Merkel cell carcinoma) were reviewed with the aim of defining the morphological, immunohistochemical and ultrastructural criteria for diagnosis. The tumour cells were characterized by their scanty cytoplasm, generally small uniform nuclei with finely dispersed chromatin and multiple small nucleoli. Nuclear shapes varied from round to spindle, with larger and pleomorphic forms predominating in 2 tumours. A striking feature seen in 12 tumours was the occurrence of a "ball-in-mitt" pattern represented by 1 or 2 crescentic tumour cells closely wrapped around an oval cell. Staining for neuron-specific enolase was the most consistent marker of the tumour and the characteristic juxtanuclear globular staining for keratin and cytokeratin and the occasional coexpression of neurofilament set this tumour apart from other cutaneous neoplasms, in particular, metastatic carcinoid tumours and oat cell carcinoma from the lung. The fine structural features of note were striking paranuclear or juxtanuclear whorls of intermediate filaments, seen in 7 cases, the presence of variable numbers of membrane-bound dense core granules of 80-150 nm diameter in all cases and cytoplasmic spinous or microvillous projections containing microfilaments in 4 cases. Less consistent characteristics of primary endocrine carcinomas of the skin included cell moulding, argyrophilia and immunohistochemical staining for ACTH, VIP and calcitonin. The high frequency of vessel invasion in this series is in keeping with the high rate of local recurrence, lymph node metastases and visceral dissemination reported. The distinction from other similar appearing tumours in the skin is discussed. PMID:2434904

  9. Identifying Francisella tularensis Genes Required for Growth in Host Cells

    PubMed Central

    Brunton, J.; Steele, S.; Miller, C.; Lovullo, E.; Taft-Benz, S.

    2015-01-01

    Francisella tularensis is a highly virulent Gram-negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cells, including, but not limited to, macrophages and epithelial cells. We developed a luminescence reporter system to facilitate a large-scale transposon mutagenesis screen to identify genes required for growth in macrophage and epithelial cell lines. We screened 7,454 individual mutants, 269 of which exhibited reduced intracellular growth. Transposon insertions in the 269 growth-defective strains mapped to 68 different genes. FTT_0924, a gene of unknown function but highly conserved among Francisella species, was identified in this screen to be defective for intracellular growth within both macrophage and epithelial cell lines. FTT_0924 was required for full Schu S4 virulence in a murine pulmonary infection model. The ΔFTT_0924 mutant bacterial membrane is permeable when replicating in hypotonic solution and within macrophages, resulting in strongly reduced viability. The permeability and reduced viability were rescued when the mutant was grown in a hypertonic solution, indicating that FTT_0924 is required for resisting osmotic stress. The ΔFTT_0924 mutant was also significantly more sensitive to β-lactam antibiotics than Schu S4. Taken together, the data strongly suggest that FTT_0924 is required for maintaining peptidoglycan integrity and virulence. PMID:25987704

  10. Some physiological properties of identified mammalian neuroglial cells

    PubMed Central

    Dennis, M. J.; Gerschenfeld, H. M.

    1969-01-01

    Mammalian glial cells were identified and studied in the optic nerves of anaesthetized rats. Cells with membrane potentials of 77-85 mV were located in the optic nerve with capillary micropipettes. These were shown to be neuroglia by iontophoretic injection of a fluorescent dye through the recording electrode, followed by histological verification of the location of the dye. No distinction was made between astroglia and oligodendroglia. Neuroglial cells gave no impulse activity. Their membrane potential was studied in isolated optic nerves by varying the ionic composition of the bathing fluid. The glial membrane potential depends predominantly on a transmembrane gradient of potassium ions. ImagesFig. 1Fig. 2 PMID:5821876

  11. Identifying genes that mediate anthracyline toxicity in immune cells

    PubMed Central

    Frick, Amber; Suzuki, Oscar T.; Benton, Cristina; Parks, Bethany; Fedoriw, Yuri; Richards, Kristy L.; Thomas, Russell S.; Wiltshire, Tim

    2015-01-01

    The role of the immune system in response to chemotherapeutic agents remains elusive. The interpatient variability observed in immune and chemotherapeutic cytotoxic responses is likely, at least in part, due to complex genetic differences. Through the use of a panel of genetically diverse mouse inbred strains, we developed a drug screening platform aimed at identifying genes underlying these chemotherapeutic cytotoxic effects on immune cells. Using genome-wide association studies (GWAS), we identified four genome-wide significant quantitative trait loci (QTL) that contributed to the sensitivity of doxorubicin and idarubicin in immune cells. Of particular interest, a locus on chromosome 16 was significantly associated with cell viability following idarubicin administration (p = 5.01 × 10−8). Within this QTL lies App, which encodes amyloid beta precursor protein. Comparison of dose-response curves verified that T-cells in App knockout mice were more sensitive to idarubicin than those of C57BL/6J control mice (p < 0.05). In conclusion, the cellular screening approach coupled with GWAS led to the identification and subsequent validation of a gene involved in T-cell viability after idarubicin treatment. Previous studies have suggested a role for App in in vitro and in vivo cytotoxicity to anticancer agents; the overexpression of App enhances resistance, while the knockdown of this gene is deleterious to cell viability. Further investigations should include performing mechanistic studies, validating additional genes from the GWAS, including Ppfia1 and Ppfibp1, and ultimately translating the findings to in vivo and human studies. PMID:25926793

  12. Use of energy-filtering transmission electron microscopy for routine ultrastructural analysis of high-pressure-frozen or chemically fixed plant cells.

    PubMed

    Lütz-Meindl, U; Aichinger, N

    2004-06-01

    In the present study energy-filtering transmission electron microscopy by use of an in-column spectrometer is employed as a powerful tool for ultrastructural analysis of plant cells. Images of unstained very thin (50 nm) and thick (140 nm) sections of the unicellular green alga Micrasterias denticulata, as a model system for a growing plant cell, taken by conventional transmission electron microscopy are compared to those obtained from filtering at zero energy loss (elastic bright field) and to those generated by energy filtering below the carbon-specific absorption edge at about 250 eV. The results show that the high-contrast images produced by the latter technique are distinctly superior in contrast and information content to micrographs taken at conventional transmission electron microscopy mode or at elastic bright field. Post- or en bloc staining with heavy metals, which is indispensable for conventional bright-field transmission electron microscopy, can be completely omitted. Delicate structural details such as membranous or filamentous connections between organelles, organelle interactions, or vesicle and vacuole contents are clearly outlined against the cytoplasmic background. Also, immunoelectron microscopic localization of macromolecules benefits from energy-filtering transmission electron microscopy by a better and more accurate assignment of antigens and structures and by facilitating the detection of immunomarkers without renunciation of contrast. PMID:15221520

  13. Abnormal pulmonary macrophages in lysinuric protein intolerance. Ultrastructural, morphometric, and x-ray microanalytic study.

    PubMed

    Parto, K; Mäki, J; Pelliniemi, L J; Simell, O

    1994-05-01

    Pediatric patients with lysinuric protein intolerance are predisposed to develop alveolar hemorrhage and pulmonary alveolar proteinosis. We evaluated the ultrastructural features of pulmonary alveolar proteinosis and the potential abnormality of pulmonary macrophages in lysinuric protein intolerance. Lung tissue specimens obtained at autopsy were examined by transmission electron microscopy. Pulmonary macrophages from bronchoalveolar lavages were studied by electron microscopy, morphometry, and x-ray microanalysis and compared with control cells. The macrophages of patients with lysinuric protein intolerance contained significantly more multilamellar structures than did control cells and showed electron-dense material identified to contain excess iron. The predisposition to develop alveolar proteinosis and the abnormal ultrastructure of pulmonary macrophages suggest altered phospholipid metabolism in patients with lysinuric protein intolerance. The marked intramacrophageal accumulations of iron might indicate altered iron metabolism or subclinical hemorrhages in lung tissue. PMID:8192561

  14. Forecasting hailfall using parameters for convective cells identified by radar

    NASA Astrophysics Data System (ADS)

    Rigo, Tomeu; Carmen Llasat, M.

    2016-03-01

    The main goal of the present paper is to propose some new criteria that will improve the diagnosis for hail at the surface in real-time, so that they can be applied to surveillance tasks and for nowcasting purposes. The criteria are based on a better knowledge of convective cells that produce hail during their life cycle and better distinguishing between these cells and cells that do not produce hail on the surface. The work focused on a region in the northeast of the Iberian Peninsula, selecting hail events that occurred in the 2004-2012 period and using the information provided by the Meteorological Service of Catalonia's weather radar network. The methodology deals with the analysis of the level of reflectivity associated with the maximum values, which can be considered as the core of the convective vertical development. The chosen radar parameters are operative and they take into consideration the following: the reflectivity, the vertically integrated liquid, the highest altitude at which radar echoes have been observed over a determined reflectivity threshold, as well as the direction and the duration of the convective cells. This work aims to complement all the previous work carried out by different authors, in order to better identify hail in the chosen region.

  15. Identifying Essential Cell Types and Circuits in Autism Spectrum Disorders

    PubMed Central

    Maloney, Susan E.; Rieger, Michael A.; Dougherty, Joseph D.

    2014-01-01

    Autism spectrum disorder (ASD) is highly genetic in its etiology, with potentially hundreds of genes contributing to risk. Despite this heterogeneity, these disparate genetic lesions may result in the disruption of a limited number of key cell types or circuits –information which could be leveraged for the design of therapeutic interventions. While hypotheses for cellular disruptions can be identified by postmortem anatomical analysis and expression studies of ASD risk genes, testing these hypotheses requires the use of animal models. In this review, we explore the existing evidence supporting the contribution of different cell types to ASD, specifically focusing on rodent studies disrupting serotonergic, GABAergic, cerebellar and striatal cell types, with particular attention to studies of the sufficiency of specific cellular disruptions to generate ASD-related behavioral abnormalities. This evidence suggests multiple cellular routes can create features of the disorder, though it is currently unclear if these cell types converge on a final common circuit. We hope that in the future, systematic studies of cellular sufficiency and genetic interaction will help to classify patients into groups by type of cellular disruptions which suggest tractable therapeutic targets. PMID:24290383

  16. Effect of colchicine on the Golgi apparatus and on GERL of rat jejunal absorptive cells. Ultrastructural localization of thiamine pyrophosphatase and acid phosphatase activity.

    PubMed

    Pavelka, M; Ellinger, A

    1981-04-01

    Ultrastructural localization of thiamine pyrophosphatase (TTP) and acid phosphatase (AcPase) activity was performed on jejunal absorptive cells of rats pretreated with the antimicrotubular agent colchicine and of control animals. Demonstration of TPP activity showed that most of the dislocated Golgi stacks after colchicine application lacked positively staining cisternae of the mature side. This cytochemical finding is in agreement with the morphologically demonstrable changes of the Golgi stacks resulting in a loss of polarity and give evidence for a colchicine-induced deficiency of the Golgi apparatus. The cytochemical localization of AcPase activity showed deposits of reaction product over lysosomes and GERL and demonstrated a dislocation of GERL occurring concomitantly with the changes of the Golgi apparatus. The antimicrotubular effect of colchicine is well documented; thus the morphological and cytochemical changes of the Golgi apparatus and of GERL might be due to a disturbed microtubular function after application of this agent suggesting an influence of microtubules in the maintenance of the integrity of these organelles. This hypothesis includes the possibility of an involvement of microtubules in formation and differentiation of Golgi stacks and GERL as well as a kind of "skeletal"function being responsible for their characteristic structure and fashion. PMID:6113143

  17. Long-Term Spinal Ventral Root Reimplantation, but not Bone Marrow Mononuclear Cell Treatment, Positively Influences Ultrastructural Synapse Recovery and Motor Axonal Regrowth

    PubMed Central

    Barbizan, Roberta; Castro, Mateus V.; Ferreira Jr., Rui Seabra; Barraviera, Benedito; Oliveira, Alexandre L. R.

    2014-01-01

    We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and “g” ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion. PMID:25353176

  18. Identifying States along the Hematopoietic Stem Cell Differentiation Hierarchy with Single Cell Specificity via Raman Spectroscopy.

    PubMed

    Ilin, Yelena; Choi, Ji Sun; Harley, Brendan A C; Kraft, Mary L

    2015-11-17

    A major challenge for expanding specific types of hematopoietic cells ex vivo for the treatment of blood cell pathologies is identifying the combinations of cellular and matrix cues that direct hematopoietic stem cells (HSC) to self-renew or differentiate into cell populations ex vivo. Microscale screening platforms enable minimizing the number of rare HSCs required to screen the effects of numerous cues on HSC fate decisions. These platforms create a strong demand for label-free methods that accurately identify the fate decisions of individual hematopoietic cells at specific locations on the platform. We demonstrate the capacity to identify discrete cells along the HSC differentiation hierarchy via multivariate analysis of Raman spectra. Notably, cell state identification is accurate for individual cells and independent of the biophysical properties of the functionalized polyacrylamide gels upon which these cells are cultured. We report partial least-squares discriminant analysis (PLS-DA) models of single cell Raman spectra enable identifying four dissimilar hematopoietic cell populations across the HSC lineage specification. Successful discrimination was obtained for a population enriched for long-term repopulating HSCs (LT-HSCs) versus their more differentiated progeny, including closely related short-term repopulating HSCs (ST-HSCs) and fully differentiated lymphoid (B cells) and myeloid (granulocytes) cells. The lineage-specific differentiation states of cells from these four subpopulations were accurately identified independent of the stiffness of the underlying biomaterial substrate, indicating subtle spectral variations that discriminated these populations were not masked by features from the culture substrate. This approach enables identifying the lineage-specific differentiation stages of hematopoietic cells on biomaterial substrates of differing composition and may facilitate correlating hematopoietic cell fate decisions with the extrinsic cues that

  19. Thymosin Beta 4 May Translocate from the Cytoplasm in to the Nucleus in HepG2 Cells following Serum Starvation. An Ultrastructural Study

    PubMed Central

    Piludu, Marco; Piras, Monica; Pichiri, Giuseppina; Coni, Pierpaolo; Orrù, Germano; Cabras, Tiziana; Messana, Irene; Faa, Gavino; Castagnola, Massimo

    2015-01-01

    Due to its actin-sequestering properties, thymosin beta-4 (Tβ4) is considered to play a significant role in the cellular metabolism. Several physiological properties of Tβ4 have been reported;, however, many questions concerning its cellular function remain to be ascertained. To better understand the role of this small peptide we have analyzed by means of transmission immunoelectron microscopy techniques the ultrastructural localization of Tβ4 in HepG2 cells. Samples of HepG2 cells were fixed in a mixture of 3% formaldehyde and 0.1% glutaraldehyde in 0.1 M cacodylate buffer and processed for standard electron microscopic techniques. The samples were dehydrated in a cold graded methanol series and embedded in LR gold resin. Ultrathin sections were labeled with rabbit antibodies to Tβ4, followed by gold-labeled goat anti-rabbit, stained with uranyl acetate and bismuth subnitrate, observed and photographed in a JEOL 100S transmission electron microscope. High-resolution electron microscopy showed that Tβ4 was mainly restricted to the cytoplasm of HepG2 growing in complete medium. A strong Tβ4 reactivity was detected in the perinuclear region of the cytoplasmic compartment where gold particles appeared strictly associated to the nuclear membrane. In the nucleus specific Tβ4 labeling was observed in the nucleolus. The above electron microscopic results confirm and extend previous observations at light microscopic level, highlighting the subcellular distribution of Tβ4 in both cytoplasmic and nuclear compartments of HepG2 cells. The meaning of Tβ4 presence in the nucleolus is not on the best of our knowledge clarified yet. It could account for the interaction of Tβ4 with nucleolar actin and according with this hypothesis, Tβ4 could contribute together with the other nucleolar acting binding proteins to modulate the transcription activity of the RNA polymerases. PMID:25835495

  20. Ultrastructural alterations during embryonic rats' lung development caused by ozone.

    PubMed

    López, Irma; Sánchez, Ivonne; Bizarro, Patricia; Acevedo, Sandra; Ustarroz, Martha; Fortoul, Teresa

    2008-01-01

    Ozone (O3) is an oxidizing agent that acts on phospholipids, proteins and sugars of cellular membranes producing free radicals, which cause oxidative damages. The O3 exposure has been used as a model to study oxidative stress, in which the respiratory airways represent the entrance to the organism. In this study, ultrastructural alterations were identified at the bronchiolar level during the intra-uterine lung development, using an O3 exposure model in pregnant rats during 18, 20 and 21 days of gestation. Twelve pregnant Wistar rats, six controls and six exposed to 1 ppm O3 inhalation during 12 h per day, were used. The rats were sacrificed at gestational days 18, 20 and 21; the fetuses were obtained and their lungs dissected. The ultrastructural analysis evidenced swollen mitochondria, cytoplasmic vacuolization of the epithelial cells and structural disorder caused by the oxidative stress. At gestation day 20, flake-off epithelial cells and laminar bodies in the bronchiolar lumen were observed. In the 21-gestation-day group, the mitochondria were edematous and their cristae were disrupted by the damage caused in mitochondrial membranes. PMID:18083976

  1. [Changes in the ultrastructure of the stomach mucous membrane parietal cells caused by inhibitors of hydrochloric acid secretion].

    PubMed

    Dondukova, G V; Morozov, I A

    2002-01-01

    The study of the action of phamotidine and omeprazol on the stomach parietal cells in patients with duodenal ulcer has shown that phamotidin results in changes of secretory membrane of the parietal cells increasing its secretory potential while omeprazol reduces energetic metabolism of the lining cell by the impact on its mitochondrial apparatus. Both in children and adults with duodenal ulcer more developed mitochondrial cell activity was found after omeprazol treatment. PMID:15338718

  2. Functional screen identifies regulators of murine hematopoietic stem cell repopulation.

    PubMed

    Holmfeldt, Per; Ganuza, Miguel; Marathe, Himangi; He, Bing; Hall, Trent; Kang, Guolian; Moen, Joseph; Pardieck, Jennifer; Saulsberry, Angelica C; Cico, Alba; Gaut, Ludovic; McGoldrick, Daniel; Finkelstein, David; Tan, Kai; McKinney-Freeman, Shannon

    2016-03-01

    Understanding the molecular regulation of hematopoietic stem and progenitor cell (HSPC) engraftment is paramount to improving transplant outcomes. To discover novel regulators of HSPC repopulation, we transplanted >1,300 mice with shRNA-transduced HSPCs within 24 h of isolation and transduction to focus on detecting genes regulating repopulation. We identified 17 regulators of HSPC repopulation: Arhgef5, Armcx1, Cadps2, Crispld1, Emcn, Foxa3, Fstl1, Glis2, Gprasp2, Gpr56, Myct1, Nbea, P2ry14, Smarca2, Sox4, Stat4, and Zfp251. Knockdown of each of these genes yielded a loss of function, except in the cases of Armcx1 and Gprasp2, whose loss enhanced hematopoietic stem cell (HSC) repopulation. The discovery of multiple genes regulating vesicular trafficking, cell surface receptor turnover, and secretion of extracellular matrix components suggests active cross talk between HSCs and the niche and that HSCs may actively condition the niche to promote engraftment. We validated that Foxa3 is required for HSC repopulating activity, as Foxa3(-/-) HSC fails to repopulate ablated hosts efficiently, implicating for the first time Foxa genes as regulators of HSPCs. We further show that Foxa3 likely regulates the HSC response to hematologic stress. Each gene discovered here offers a window into the novel processes that regulate stable HSPC engraftment into an ablated host. PMID:26880577

  3. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry.

    PubMed

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte; Corbeil, Denis; Hoflack, Bernard

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  4. Cell Surface Proteome of Dental Pulp Stem Cells Identified by Label-Free Mass Spectrometry

    PubMed Central

    Niehage, Christian; Karbanová, Jana; Steenblock, Charlotte

    2016-01-01

    Multipotent mesenchymal stromal cells (MSCs) are promising tools for regenerative medicine. They can be isolated from different sources based on their plastic-adherence property. The identification of reliable cell surface markers thus becomes the Holy Grail for their prospective isolation. Here, we determine the cell surface proteomes of human dental pulp-derived MSCs isolated from single donors after culture expansion in low (2%) or high (10%) serum-containing media. Cell surface proteins were tagged on intact cells using cell impermeable, cleavable sulfo-NHS-SS-biotin, which allows their enrichment by streptavidin pull-down. For the proteomic analyses, we first compared label-free methods to analyze cell surface proteomes i.e. composition, enrichment and proteomic differences, and we developed a new mathematical model to determine cell surface protein enrichment using a combinatorial gene ontology query. Using this workflow, we identified 101 cluster of differentiation (CD) markers and 286 non-CD cell surface proteins. Based on this proteome profiling, we identified 14 cell surface proteins, which varied consistently in abundance when cells were cultured under low or high serum conditions. Collectively, our analytical methods provide a basis for identifying the cell surface proteome of dental pulp stem cells isolated from single donors and its evolution during culture or differentiation. Our data provide a comprehensive cell surface proteome for the precise identification of dental pulp-derived MSC populations and their isolation for potential therapeutic intervention. PMID:27490675

  5. Ultrastructural and cytochemical aspects of the basophilic cells in the hepatopancreas ofAplysia depilans(Mollusca, Opisthobranchia).

    PubMed

    Lobo-da-Cunha, A

    1999-02-01

    The basophilic cells ofAplysia depilanshave a pyramidal shape and a large nucleus usually located near the center or in the basal half of the cell. The nucleus possesses several clumps of condensed chromatin and a prominent nucleolus. The great profusion of rough endoplasmic reticulum cisterns in a major feature of these cells. Secretion granules are accumulated in the apical zone, and arylsulphatase was detected in some of them. In some basophilic cells a very substantial part of the cell volume was occupied by clear vacuoles, some of them reaching 9 mum. However, in other cells only a few vacuoles were observed. Probably the cells with just a few vacuoles are still young, and after a progressive accumulation, the vacuoles become abundant in old cells. The presence of a dark nucleus in the cells with a large number of vacuoles suggests that they are in a final stage of their life. Arylsulphatase was detected in the vacuoles and also in small secondary lysosomes containing substances in digestion. Bundles of tubules with 50 nm in diameter were found within some cisterns of rough endoplasmic reticulum. A cell fraction enriched in mannitol oxidase, extracted from the hepatopancreas of a terrestrial slug, consisted in very similar tubular structures. Using a histochemical method, mannitol oxidase was detected in the basophilic cells ofA. depilans, and it may be associated with the tubular structures of the endoplasmic reticulum. This is the first report of mannitol oxidase in opisthobranch molluscs. Almost spherical peroxisomes with a small nucleoid were abundant in these cells. The nucleoids presented a rectangular section, but a crystalline structure was not evident. The peroxisomes were stained after the cytochemical detection of catalase activity. PMID:18627851

  6. Ultrastructural Analysis of ICP34.5− Herpes Simplex Virus 1 Replication in Mouse Brain Cells In Vivo▿

    PubMed Central

    Mehta, Hina; Muller, Jacqueline; Markovitz, Nancy S.

    2010-01-01

    Replication-competent forms of herpes simplex virus 1 (HSV-1) defective in the viral neurovirulence factor infected cell protein 34.5 (ICP34.5) are under investigation for use in the therapeutic treatment of cancer. In mouse models, intratumoral injection of ICP34.5-defective oncolytic HSVs (oHSVs) has resulted in the infection and lysis of tumor cells, an associated decrease in tumor size, and increased survival times. The ability of these oHSVs to infect and lyse cells is frequently characterized as exclusive to or selective for tumor cells. However, the extent to which ICP34.5-deficient HSV-1 replicates in and may be neurotoxic to normal brain cell types in vivo is poorly understood. Here we report that HSV-1 defective in ICP34.5 expression is capable of establishing a productive infection in at least one normal mouse brain cell type. We show that γ34.5 deletion viruses replicate productively in and induce cellular damage in infected ependymal cells. Further evaluation of the effects of oHSVs on normal brain cells in animal models is needed to enhance our understanding of the risks associated with the use of current and future oHSVs in the brains of clinical trial subjects and to provide information that can be used to create improved oHSVs for future use. PMID:20702618

  7. Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: Cell types and their role in the innate immunity.

    PubMed

    Wu, Gongqing; Liu, Yi; Ding, Ying; Yi, Yunhong

    2016-08-01

    Galleria mellonella larvae have been widely used as a model to study the virulence of various human pathogens. Hemocytes play important roles in the innate immune response of G. mellonella. In this study, the hemocytes of G. mellonella larvae were analyzed by transmission electron microscope, light microscope, and cytochemistry. The cytological and morphological analyses revealed four types of hemocytes; Plasmatocytes, granular cells, spherule cells and oenocytoids. Differential hemocyte counts showed that under our conditions plasmatocytes and granular cells were the most abundant circulating cell types in the hemolymph. We also investigated the role of different types of hemocytes in the cellular and humoral immune defenses. The in-vivo experiment showed that plasmatocytes, granular cells and oenocytoids phagocytized FITC-labelled Escherichia coli bacteria in larvae of G. mellonella, whereas the granular cells exhibited the strongest phagocytic ability against these microbial cells. After incubation with L-DOPA, plasmatocytes, granular cells and oenocytoids are stained brown, indicating the presence of phenoloxidase activity. These results shed new light on our understanding of the immune function of G. mellonella hemocytes. PMID:27378036

  8. A cell-based phenotypic assay to identify cardioprotective agents

    PubMed Central

    Guo, Stephanie; Olm-Shipman, Adam; Walters, Andrew; Urciuoli, William R.; Devito, Stefanie; Nadtochiy, Sergiy M.; Wojtovich, Andrew P.; Brookes, Paul S.

    2012-01-01

    Rationale Tissue ischemia/reperfusion (IR) injury underlies several leading causes of death such as heart-attack and stroke. The lack of clinical therapies for IR injury may be partly due to the difficulty of adapting IR injury models to high-throughput screening (HTS). Objective To develop a model of IR injury that is both physiologically relevant and amenable to HTS. Methods and Results A micro-plate based respirometry apparatus was used. Controlling gas flow in the plate head space, coupled with the instrument’s mechanical systems, yielded a 24 well model of IR injury in which H9c2 cardiomyocytes were transiently trapped in a small volume, rendering them ischemic. Following initial validation with known protective molecules, the model was used to screen a 2000 molecule library, with post IR cell death as an endpoint. pO2 and pH monitoring in each well also afforded metabolic data. Ten protective, detrimental and inert molecules from the screen were subsequently tested in a Langendorff perfused heart model of IR injury, revealing strong correlations between the screening endpoint and both recovery of cardiac function (negative r2=0.66), and infarct size (positive, r2=0.62). Relationships between the effects of added molecules on cellular bioenergetics, and protection against IR injury, were also studied. Conclusion This novel cell-based assay can predict either protective or detrimental effects on IR injury in the intact heart. Its application may help identify therapeutic or harmful molecules. PMID:22394516

  9. Ultrastructure of gingival epithelium in chronic gingivitis.

    PubMed

    Lushnikova, E L; Nepomnyashchikh, L M; Oskolsky, G I; Jurkevich, N V

    2012-03-01

    We studied ultrastructural reorganization of the gingival mucosa in chronic gingivitis. It was found that chronic inflammation leads to significant intracellular reorganization of epitheliocytes in the basal and prickle cell layers of gingival epithelium and their pronounced structural and functional heterogeneity. The main ultrastructural alterations of epitheliocytes in the basal and prickle cell layers include pronounced vacuolization of the perinuclear zone (partial necrosis), formation of thick tonofilament bundles, focal lysis and sequestration of glycogen, and destruction and reduction of intracellular junctions in some cases accompanied by acantholytic alterations. Chronic inflammation in the gingival mucosa induced extensive remodeling of the lamina propria manifested in multiplication of the basement membrane and obturation of blood vessels with collagen fibrils. PMID:22803154

  10. CCDC65 Mutation Causes Primary Ciliary Dyskinesia with Normal Ultrastructure and Hyperkinetic Cilia

    PubMed Central

    Horani, Amjad; Brody, Steven L.; Ferkol, Thomas W.; Shoseyov, David; Wasserman, Mollie G.; Ta-shma, Asaf; Wilson, Kate S.; Bayly, Philip V.; Amirav, Israel; Cohen-Cymberknoh, Malena; Dutcher, Susan K.; Elpeleg, Orly; Kerem, Eitan

    2013-01-01

    Background Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by impaired ciliary function, leading to chronic sinopulmonary disease. The genetic causes of PCD are still evolving, while the diagnosis is often dependent on finding a ciliary ultrastructural abnormality and immotile cilia. Here we report a novel gene associated with PCD but without ciliary ultrastructural abnormalities evident by transmission electron microscopy, but with dyskinetic cilia beating. Methods Genetic linkage analysis was performed in a family with a PCD subject. Gene expression was studied in Chlamydomonas reinhardtii and human airway epithelial cells, using RNA assays and immunostaining. The phenotypic effects of candidate gene mutations were determined in primary culture human tracheobronchial epithelial cells transduced with gene targeted shRNA sequences. Video-microscopy was used to evaluate cilia motion. Results A single novel mutation in CCDC65, which created a termination codon at position 293, was identified in a subject with typical clinical features of PCD. CCDC65, an orthologue of the Chlamydomonas nexin-dynein regulatory complex protein DRC2, was localized to the cilia of normal nasal epithelial cells but was absent in those from the proband. CCDC65 expression was up-regulated during ciliogenesis in cultured airway epithelial cells, as was DRC2 in C. reinhardtii following deflagellation. Nasal epithelial cells from the affected individual and CCDC65-specific shRNA transduced normal airway epithelial cells had stiff and dyskinetic cilia beating patterns compared to control cells. Moreover, Gas8, a nexin-dynein regulatory complex component previously identified to associate with CCDC65, was absent in airway cells from the PCD subject and CCDC65-silenced cells. Conclusion Mutation in CCDC65, a nexin-dynein regulatory complex member, resulted in a frameshift mutation and PCD. The affected individual had altered cilia beating patterns, and no detectable

  11. Ultrastructural studies on erythropoiesis in the avian thymus. II. A stereological analysis of the lymphoid and erythroid cells.

    PubMed

    Kendall, M D

    1979-06-01

    The cortex of enlarging thymic lobes from adult haemorrhaged Quelea quelea were found to be similar to those of wild birds where the thymic enlargement was occurring naturally. A detailed stereological analysis of cells broadly designated as lymphoid, and the construction of models to account for the results, indicates that the enlarging thymic lobe contains both large and small blast cells, a heterogenous group of medium lymphocytes, erythroid cells, and two types of very small lymphocytes. The distinction between early erythroid cells and some lymphocytes, despite this detailed analysis is very difficult, but it is possible in enlarging thymic lobes that up to 42% of the lymphoid cells may have erythroid characteristics. PMID:466698

  12. Ultrastructural evidence for nerve fibers within all vital layers of the human epidermis.

    PubMed

    Hilliges, M; Wang, L; Johansson, O

    1995-01-01

    To prove the existence of human intraepidermal nerve fibers at the electron microscopic level, we used both conventional and immunohistochemical ultrastructural techniques. Specimens were obtained from skin of the back, one of the most densely innervated areas of the human epidermis. The immunohistochemical marker protein gene product 9.5 was chosen because it is highly potent in labeling nerves. Thin nerve fibers were found in the basal, spinous, and granular layers of the epidermis with both techniques used, although it was more difficult to identify the nervous structures with the conventional method. The nerves appeared in the intercellular spaces and contacted keratinocyte cell bodies or cilia by membrane-membrane apposition, but without any specialized structures. Nerve fibers in the very superficial part of the vital human epidermis have not been described before at the ultrastructural level. PMID:7798631

  13. Ultrastructural and immunohistochemical studies of rat epididymis.

    PubMed

    Francavilla, S; De Martino, C; Scorza Barcellona, P; Natali, P G

    1983-01-01

    The anatomical distribution of smooth muscle actin, myosin, fibronectin and basement membrane has been investigated immunohistochemically, using the indirect immunofluorescence technique, in the rat epididymis. The findings were correlated with the ultrastructural organization of the organ. Actin was found to be distributed in the stereociliary region of the epithelial principal cells and in the terminal web region. Actin was also visible along the base of the epithelium. Myosin was detected in the terminal web and in the terminal bar regions of the epithelium. The contractile cells showed a strong stain for both proteins. Basement membrane immunoreactivity was distributed along the epithelial basement membrane and around the contractile cells of the wall. In the cauda, between the epithelium and the contractile cell layers, the lamina propria, containing blood vessels and a thin layer of cells, was negative for all antigens investigated. Fibronectin showed a granular distribution around the contractile cells, mainly in the cauda. The ultrastructural study showed only thin (5-6 nm in diameter) filaments in the stereocilia and terminal web region. Thin filaments were also visible in the cytoplasm of the basal cells, thus suggesting a contractile function of this cell type. The heterogeneous appearance of the contractile cells of the wall seemed to support the different contractile pattern of the epididymal regions: caput, corpus and cauda. The cells present in the lamina propria showed cytoplasmic vesicles with dark granules resembling the "A" cell granules of the endocrine pancreas and gut mucosa cells. PMID:6354463

  14. The interaction of microgravity and ethylene on the ultrastructure cell and Ca2+ localization in soybean hook hypocotyl

    NASA Technical Reports Server (NTRS)

    Nedukha, O. M.; Kordyum, E. L.; Brown, C.; Chapman, D.

    2001-01-01

    Calcium ions are secondary messenger in numerous cellular processes of plant grown at 1 g. Ca2+ are connected with oxygen atoms, of pectin carboxy groups and/or with H(+)-groups of protein (Roux and Slocum, 1982; Hepler and Wayne, 1985). The influence of altered gravity on the calcium balance in some cells is established. The increased synthesis of ethylene in plant grown in microgravity caused the change of the structural-functional organization of cell (Hensel and Iversen, 1980; Hilaire et al., 1996). Available data put the new question: how do high ethylene level and microgravity influence on the redistribution of Ca2+ in cell of seedling in early stage of growth? Therefore, the goal of our data was the comparable study of the cell ulltrastructure and localization of Ca2+ in hook hypocotyl of soybean seedling under interaction of microgravity and ethylene.

  15. Effects of Stevia rebaudiana (Bertoni) extract and N-nitro-L-arginine on renal function and ultrastructure of kidney cells in experimental type 2 Diabetes.

    PubMed

    Ozbayer, Cansu; Kurt, Hulyam; Kalender, Suna; Ozden, Hilmi; Gunes, Hasan V; Basaran, Ayse; Cakmak, Ecir A; Civi, Kismet; Kalender, Yusuf; Degirmenci, Irfan

    2011-10-01

    Diabetes is the leading cause of chronic renal failure. Our purpose was to determine the effects of N-nitro-l-arginine (l-NNA) and an extract of Stevia rebaudiana (Bertoni) (SrB) leaves on renal function in streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats. Rats were divided into seven groups. Three of these groups were controls. Diabetes was induced by STZ-NA in the other four. Diabetic rats were treated with SrB (200 mg/kg), L-NNA (100 mg/kg), or SrB + L-NNA for 15 days after 5-8 weeks of diabetes. At the end of the experiments, urine and blood samples were collected from the rats, and kidney tissue samples were collected with the animals under ether anesthesia. Renal filtration changes were determined by measuring urine pH, urine volume, and serum and urine creatinine. Nitric oxide synthase (NOS) activity was measured in kidney homogenates. Alterations in kidney ultrastructure were determined by electron microscopy, and histological changes were examined by hematoxylin and eosin staining. No statistical differences were observed in urine creatinine or creatinine clearance. Even so, we observed higher NOS activity in SrB-treated diabetic rats. SrB-treated diabetic rats had less mitochondrial swelling and vacuolization in thin kidney sections than other diabetic groups. The control groups showed normal histological structure, whereas in the diabetic groups, membrane thickening, tubular epithelial cells, and cellular degeneration were observed. Thus, SrB has beneficial effects on diabetes compared with l-NNA. Our results support the validity of SrB for the management of diabetes as well as diabetes-induced renal disorders. PMID:21663490

  16. Plural light chains in a single plasma cell of a monoclonal gammopathy undetermined significance case: an ultrastructural study.

    PubMed

    Saito, Nagahito; Konishi, Kohei; Ohta, Shuichi; Kondo, Takeshi; Kato, Mototsugu; Hashino, Satoshi; Takeda, Hiroshi; Asaka, Masahiro; Ooi, Hong-Kean

    2007-02-01

    A 44-year-old man was found to have M-proteins of IgG consisting of kappa- and lambda-chains in serum without lymphadenopathy or splenomegaly. The serum concentrations of IgG, IgA and IgM were within normal limits. Bone marrow examination showed normal cellular marrow containing 6.3% of plasma cells with no abnormal features. No chromosomal abnormality was observed at all. The patient was diagnosed as having monoclonal gammopathy of undetermined significance. The bone marrow plasma cells possessed free kappa- and lambda-chains in Golgi apparatus, rough endoplasmic reticula and cytoplasmic matrices. Plural light chains were simultaneously produced with the same heavy chain in a plasma cell by immunoelectron microscopy. This is the first report in the world of a monoclonal gammopathy of undetermined significance producing plural light chains with the same heavy chain. PMID:17506772

  17. Transcriptional Profiling of Bipotential Embryonic Liver Cells to Identify Liver Progenitor Cell Surface Markers

    PubMed Central

    Ochsner, Scott A.; Strick-Marchand, Hélène; Qiu, Qiong; Venable, Susan; Dean, Adam; Wilde, Margaret; Weiss, Mary C.; Darlington, Gretchen J.

    2010-01-01

    The ability to purify to homogeneity a population of hepatic progenitor cells from adult liver is critical for their characterization prior to any therapeutic application. As a step in this direction, we have used a bipotential liver cell line from 14 days postcoitum mouse embryonic liver to compile a list of cell surface markers expressed specifically by liver progenitor cells. These cells, known as bipotential mouse embryonic liver (BMEL) cells, proliferate in an undifferentiated state and are capable of differentiating into hepatocyte-like and cholangiocyte-like cells in vitro. Upon transplantation, BMEL cells are capable of differentiating into hepatocytes and cholangiocytes in vivo. Microarray and Gene Ontology (GO) analysis of gene expression in the 9A1 and 14B3 BMEL cell lines grown under proliferating and differentiating conditions was used to identify cell surface markers preferentially expressed in the bipotential undifferentiated state. This analysis revealed that proliferating BMEL cells express many genes involved in cell cycle regulation, whereas differentiation of BMEL cells by cell aggregation causes a switch in gene expression to functions characteristic of mature hepatocytes. In addition, microarray data and protein analysis indicated that the Notch signaling pathway could be involved in maintaining BMEL cells in an undifferentiated stem cell state. Using GO annotation, a list of cell surface markers preferentially expressed on undifferentiated BMEL cells was generated. One marker, Cd24a, is specifically expressed on progenitor oval cells in livers of diethyl 1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate-treated animals. We therefore consider Cd24a expression a candidate molecule for purification of hepatic progenitor cells. PMID:17641245

  18. Satellited 4q identified in amniotic fluid cells

    SciTech Connect

    Miller, I.; Hsieh, C.L.; Songster, G.

    1995-01-16

    Extra material was identified on the distal long arm of a chromosome 4 in an amniotic fluid specimen sampled at 16.6 weeks of gestational age. There was no visible loss of material from chromosome 4, and no evidence for a balanced rearrangement. The primary counseling issue in this case was advanced maternal age. Ultrasound findings were normal, and family history was unremarkable. The identical 4qs chromosome was observed in cells from a paternal peripheral blood specimen and appeared to be an unbalanced rearrangement. This extra material was NOR positive in lymphocytes from the father, but was negative in the fetal amniocytes. Father`s relatives were studied to verify the familial origin of this anomaly. In situ hybridization with both exon and intron sequences of ribosomal DNA demonstrated that ribosomal DNA is present at the terminus of the 4qs chromosome in the fetus, father, and paternal grandmother. This satellited 4q might have been derived from a translocation event that resulted in very little or no loss from the 4q and no specific phenotype. This derivative chromosome 4 has been inherited through at least 3 generations of phenotypically normal individuals. 8 refs., 3 figs.

  19. Immunophenotypic and Ultrastructural Analysis of Mast Cells in Hermansky-Pudlak Syndrome Type-1: A Possible Connection to Pulmonary Fibrosis

    PubMed Central

    Kirshenbaum, Arnold S.; Cruse, Glenn; Desai, Avanti; Bandara, Geethani; Leerkes, Maarten; Lee, Chyi-Chia R.; Fischer, Elizabeth R.; O’Brien, Kevin J.; Gochuico, Bernadette R.; Stone, Kelly; Gahl, William A.; Metcalfe, Dean D.

    2016-01-01

    Hermansky-Pudlak Syndrome type-1 (HPS-1) is an autosomal recessive disorder caused by mutations in HPS1 which result in reduced expression of the HPS-1 protein, defective lysosome-related organelle (LRO) transport and absence of platelet delta granules. Patients with HPS-1 exhibit oculocutaneous albinism, colitis, bleeding and pulmonary fibrosis postulated to result from a dysregulated immune response. The effect of the HPS1 mutation on human mast cells (HuMCs) is unknown. Since HuMC granules classify as LROs along with platelet granules and melanosomes, we set out to determine if HPS-1 cutaneous and CD34+ culture-derived HuMCs have distinct granular and cellular characteristics. Cutaneous and cultured CD34+-derived HuMCs from HPS-1 patients were compared with normal cutaneous and control HuMCs, respectively, for any morphological and functional differences. One cytokine-independent HPS-1 culture was expanded, cloned, designated the HP proMastocyte (HPM) cell line and characterized. HPS-1 and idiopathic pulmonary fibrosis (IPF) alveolar interstitium showed numerous HuMCs; HPS-1 dermal mast cells exhibited abnormal granules when compared to healthy controls. HPS-1 HuMCs showed increased CD63, CD203c and reduced mediator release following FcɛRI aggregation when compared with normal HuMCs. HPM cells also had the duplication defect, expressed FcɛRI and intracytoplasmic proteases and exhibited less mediator release following FcɛRI aggregation. HPM cells constitutively released IL-6, which was elevated in patients’ serum, in addition to IL-8, fibronectin-1 (FN-1) and galectin-3 (LGALS3). Transduction with HPS1 rescued the abnormal HPM morphology, cytokine and matrix secretion. Microarray analysis of HPS-1 HuMCs and non-transduced HPM cells confirmed upregulation of differentially expressed genes involved in fibrogenesis and degranulation. Cultured HPS-1 HuMCs appear activated as evidenced by surface activation marker expression, a decrease in mediator content and

  20. Immunophenotypic and Ultrastructural Analysis of Mast Cells in Hermansky-Pudlak Syndrome Type-1: A Possible Connection to Pulmonary Fibrosis.

    PubMed

    Kirshenbaum, Arnold S; Cruse, Glenn; Desai, Avanti; Bandara, Geethani; Leerkes, Maarten; Lee, Chyi-Chia R; Fischer, Elizabeth R; O'Brien, Kevin J; Gochuico, Bernadette R; Stone, Kelly; Gahl, William A; Metcalfe, Dean D

    2016-01-01

    Hermansky-Pudlak Syndrome type-1 (HPS-1) is an autosomal recessive disorder caused by mutations in HPS1 which result in reduced expression of the HPS-1 protein, defective lysosome-related organelle (LRO) transport and absence of platelet delta granules. Patients with HPS-1 exhibit oculocutaneous albinism, colitis, bleeding and pulmonary fibrosis postulated to result from a dysregulated immune response. The effect of the HPS1 mutation on human mast cells (HuMCs) is unknown. Since HuMC granules classify as LROs along with platelet granules and melanosomes, we set out to determine if HPS-1 cutaneous and CD34+ culture-derived HuMCs have distinct granular and cellular characteristics. Cutaneous and cultured CD34+-derived HuMCs from HPS-1 patients were compared with normal cutaneous and control HuMCs, respectively, for any morphological and functional differences. One cytokine-independent HPS-1 culture was expanded, cloned, designated the HP proMastocyte (HPM) cell line and characterized. HPS-1 and idiopathic pulmonary fibrosis (IPF) alveolar interstitium showed numerous HuMCs; HPS-1 dermal mast cells exhibited abnormal granules when compared to healthy controls. HPS-1 HuMCs showed increased CD63, CD203c and reduced mediator release following FcɛRI aggregation when compared with normal HuMCs. HPM cells also had the duplication defect, expressed FcɛRI and intracytoplasmic proteases and exhibited less mediator release following FcɛRI aggregation. HPM cells constitutively released IL-6, which was elevated in patients' serum, in addition to IL-8, fibronectin-1 (FN-1) and galectin-3 (LGALS3). Transduction with HPS1 rescued the abnormal HPM morphology, cytokine and matrix secretion. Microarray analysis of HPS-1 HuMCs and non-transduced HPM cells confirmed upregulation of differentially expressed genes involved in fibrogenesis and degranulation. Cultured HPS-1 HuMCs appear activated as evidenced by surface activation marker expression, a decrease in mediator content and

  1. Ultrastructural Study of Salmonella typhimurium Treated with Membrane-Active Agents: Specific Reaction of Dansylchloride with Cell Envelope Components

    PubMed Central

    Schindler, Peter R. G.; Teuber, Michael

    1978-01-01

    Amino groups of cell envelope proteins, lipids, and lipopolysaccharides cannot be labeled in intact cells of Salmonella typhimurium G 30 by using 5-dimethylaminonaphthalene-1-sulfonylchloride incorporated in lecithin-cholesterol vesicles. However, application of membrane-interacting agents like tris(hydroxymethyl)aminomethane (Tris)-hydrochloride, ethylenediaminetetraacetate (Na salt) (EDTA), divalent cations, and sublethal doses of the cationic antibacterial agents polymyxin B and chlorhexidine induced specific fluorescent labeling of envelope proteins and lipids but not of cytoplasmic compounds, with the exception of a soluble protein with a molecular weight of 46,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Treatment with Tris-hydrochloride buffer produced labeling of the heat-modifiable protein B/B+ and of proteins with molecular weights of 26,000, 22,000, and below 17,000. A combination of Tris-hydrochloride and EDTA induced additional dansylation of the major protein A and of proteins of molecular weights 80,000, 60,000, and 44,000. Polymyxin B and chlorhexidine caused similar labeling patterns. In every case, except with divalent cation treatment, protein B/B+ was the most prominently labeled species. Phosphatidylethanolamine was dansylated up to 30%. Lipopolysaccharide was not reactive under any condition or treatment. In addition, the peptidoglycan-bound lipoprotein did not react with dansylchloride in either intact or Tris-hydrochloride-treated cells. The results are discussed with regard to a possible localization of labeled and unlabeled compounds of the cell envelope on the basis of a model placing cell envelope amino groups into ion-ion interactions with anionic components of other envelope compounds like phosphate and carboxyl groups. Images PMID:97268

  2. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle.

    PubMed

    Uezumi, Akiyoshi; Nakatani, Masashi; Ikemoto-Uezumi, Madoka; Yamamoto, Naoki; Morita, Mitsuhiro; Yamaguchi, Asami; Yamada, Harumoto; Kasai, Takehiro; Masuda, Satoru; Narita, Asako; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi; Fukada, So-Ichiro; Nishino, Ichizo; Tsuchida, Kunihiro

    2016-08-01

    Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases. PMID:27509136

  3. [Ultrastructural findings in the liver due to long-term retinol (isotretinoin) treatment. Significance of the perisinusoidal (Ito) cells].

    PubMed

    Kapp, Pál; Bély, Miklós; Nemesánszky, Elemér

    2004-01-25

    A twenty year old, foreign-born sportsman visited the Out-patient Clinic of our Hospital with complaints of progressive arthralgia, hepatomegaly and increasingly abnormal liver function tests of six months duration. Tests for virus hepatitis were negative, alcohol abuse or drug addiction could be excluded. An open needle biopsy of the liver was performed and the tissue was examined with the light and electron microscope. On routine light microscopy no abnormality was recognized. Electron microscopic examination revealed changes characteristic of vitamin A toxicity: hyperplasia of the perisinusoidal (Ito) cells with evidence of their activation and transformation, increased storage of lipids and vitamin A, perisinusoidal fibrosis, damage of the sinusoidal wall, partial necrosis in hepatocytes and an increased number of lysosomes, megalysosomes and smooth endoplasmic reticulum (SER), the signs of cholestasis as well as an increased number of Kupffer cells in the lobules etc. Histochemical examination showed a high content of vitamin A in the transitional (Ito) cells and in hepatocytes. These data led to further questioning of the patient who disclosed that he had acne conglobata which had been treated with Isotretionin, 20 mg/day, for more than half a year. After the therapy was stopped, the symptoms of polyarthralgia improved and after a few months they ceased entirely, however, the laboratory data returned to normal only after a long period of time. This case indicates that electron microscopic examination of the liver biopsy may play an important role in the recognition of vitamin A intoxication. It also illustrates that symptoms of joint disease may be caused by long-term retinoid treatment. The authors have presented the latest clinical and experimental data concerning the changes in the liver, joints and skeleton caused by retinoid intoxication. PMID:14978883

  4. Ultrastructural characterization and Fourier analysis of fiber cell cytoplasm in the hyperbaric oxygen treated guinea pig lens opacification model.

    PubMed

    Freel, Christopher D; Gilliland, Kurt O; Mekeel, Harold E; Giblin, Frank J; Costello, M Joseph

    2003-04-01

    The structural characteristics of differentiated fiber cells in control and hyperbaric oxygen (HBO)-treated guinea pig lenses were examined by transmission electron microscopy (TEM). Emphasis was placed on cell damage, membrane integrity, and cytoplasmic texture. Given the faint gross opacities observed in HBO-treated lenses in previous studies, it was hypothesized that subtle but significant morphological differences due to oxidative damage exist between control and treated animals. Experimental animals received either 70 or 85 treatments with HBO (2.5 atm of 100% O(2) for 2.5 hr, 3 times per week for 5-7 months). All specimens were obtained within 24 hr of death. Freshly cut Vibratome lens sections were fixed and processed for low and high-magnification thin-section TEM analysis. Cytoplasmic texture was analyzed using Fourier and autocorrelation image processing techniques. Low-magnification analysis revealed relatively insignificant differences in general appearance between the fiber cells of the inner fetal and embryonic nuclei in control and HBO-treated guinea pigs. Both groups demonstrated cells of similar morphology with equivalent membrane complexity and homogeneous cytoplasmic texture. Evidence of any major cellular damage or extracellular space debris was not obvious. High-magnification analysis of the cytoplasm of the treated lenses exhibited a mild, yet detectable increase in texture compared with controls and was confirmed by Fourier analysis. Cytoplasmic texture increased in complexity with additional treatments. The absence of major cellular damage in the lenses of HBO-treated animals suggests a less conspicuous source of light scattering. The small changes in cytoplasmic organization observed between treated and control animals may entirely account for the increase in nuclear light scattering observed by slit lamp. The results obtained with this guinea pig/HBO model parallel many of the morphological data associated with human nuclear cataracts. The

  5. Fact or fiction - identifying the elusive multiple myeloma stem cell

    PubMed Central

    2013-01-01

    Multiple Myeloma (MM) is a debilitating disease of proliferating and malignant plasma cells that is currently incurable. The ability of monoclonal recurrence of disease suggests it might arise from a stem cell-like population capable of self-renewal. The difficulty to isolate the cancer stem-like cell in MM has introduced confusion toward this hypothesis. However, recent evidence has suggested that MM originates from the B cell lineage with memory-B cell like features, allowing for self-renewal of the progenitor-like status and differentiation to a monoclonal plasma cell population. Furthermore, this tumor-initiating cell uses signaling pathways and microenvironment similar to the hematopoietic stem cell, though hijacking these mechanisms to create and favor a more tumorigenic environment. The bone marrow niche allows for pertinent evasion, either through avoiding immunosurveillance or through direct interaction with the stroma, inducing quiescence and thus drug resistance. Understanding the interaction of the MM stem cell to the microenvironment and the mechanisms utilized by various stem cell-like populations to allow persistence and therapy-resistance can enable for better targeting of this cell population and potential eradication of the disease. PMID:24314019

  6. Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage

    PubMed Central

    Yu, Yin; Zheng, Hongjun; Buckwalter, Joseph A.; Martin, James A.

    2014-01-01

    Objective To date, no approved clinical intervention successfully prevents the progressive degradation of injured articular cartilage that leads to osteoarthritis (OA). Stem/progenitor cell populations within tissues of diarthrodial joint have shown their therapeutic potential in treating OA. However, this potential has not been fully realized due in part to the heterogeneity of these subpopulations. Characterization of clonal populations derived from a single cell may help identify more homogenous stem/progenitor populations within articular cartilage. Moreover, chondrogenic potential of clonal populations from different zones could be further examined to elucidate their differential roles in maintaining articular cartilage homeostasis. Method We combined FACS (Fluorescence-activated cell sorting) and clonogenicity screening to identify stem/progenitor cells cloned from single cells. High-efficiency colony-forming cells (HCCs) were isolated, and evaluated for stem/progenitor cell characteristics. HCCs were also isolated from different zones of articular cartilage. Their function was compared by lineage-specific gene expression, and differentiation potential. Results A difference in colony-forming efficiency was observed in terms of colony sizes. HCCs were highly clonogenic and multipotent, and overexpressed stem/progenitor cell markers. Also, proliferation and migration associated genes were over-expressed in HCCs. HCCs showed zonal differences with deep HCCs more chondrogenic and osteogenic than superficial HCCs. Conclusion Our approach is a simple yet practical way to identify homogeneous stem/progenitor cell populations with clonal origin. The discovery of progenitor cells demonstrates the intrinsic self-repairing potential of articular cartilage. Differences in differentiation potential may represent the distinct roles of superficial and deep zone stem/progenitor cells in the maintenance of articular cartilage homeostasis. PMID:25038490

  7. Ultrastructural modifications in the mitochondrion of mouse Sertoli cells after inhalation of lead, cadmium or lead-cadmium mixture.

    PubMed

    Bizarro, Patricia; Acevedo, Sandra; Niño-Cabrera, Geraldine; Mussali-Galante, Patricia; Pasos, Francisco; Avila-Costa, Maria Rosa; Fortoul, Teresa I

    2003-01-01

    CD-1 mice inhaled 0.01 M lead acetate, 0.006 M cadmium chloride or Pb-Cd mixture during 1h twice a week during 4 weeks. Testes were processed for transmission electron microscopic analysis. The percentage of damaged mitochondria was related to exposure time and the type of metal inhaled, noticing more damage when the mixture was administered. A dose-time relationship was found. Cadmium chloride caused the most severe mitochondrial alteration compared to lead acetate, whereas the mixture was more aggressive compared with each metal alone. Our results suggest that the changes in Sertoli cell could lead to a transformation process that may interfere with spermatogenesis. PMID:14555194

  8. Ultrastructural radioautography and cytochemistry of lead absorption.

    PubMed Central

    Parmley, R. T.; Barton, J. C.; Conrad, M. E.; Austin, R. L.

    1979-01-01

    Lead is a universal environmental contaminant absorbed largely through the gastrointestinal tract by unknown mechanisms. Because lead absorption is influenced by iron content in the body and diet, we used ultrastructural radioautography and cytochemistry to study absorption of physiologic lead doses in the rat duodenal epithelial cell and compared these findings to those previously reported for iron absorption. Rat duodenal loops exposed in vivo to 210Pb for 1 minute demonstrated the majority of labels on the microvilli, terminal web, and apical cytoplasm. Specimens exposed to radiolead for 10 minutes demonstrated more abundant labeling with a relative increase in labeling of epithelial cell mitochondria, nuclei and basal cytoplasm, as well as phagocytic cells, endothelial cells, and circulating erythrocytes of the lamina propria. Timm's sulfide-silver method localized trace metals in epithelial cells. After administration of lead, a significant increase in staining was observed in microvilli, mitochondria, non-membrane-bound cytoplasm, and nuclear chromatin. The rapid appearance of absorbed lead in epithelial cell mitochondria and nuclei, as well as phagocytic cells in the lamina propria, was distinctly different from that reported for absorbed iron and suggests different mechanisms for the subcellular transport of these cations. The combination of radioautography and Timm's sulfide-silver staining provides the specificity and resolution needed for ultrastructural evaluation of lead absorption and should be useful in further studies of lead metabolism. Images Figure 10 Figure 11 Figure 12 Figure 4 Figure 5 Figure 6 Figure 7 Figure 3 Figure 8 Figure 9 Figures 1-2 PMID:464028

  9. Platelets: production, morphology and ultrastructure.

    PubMed

    Thon, Jonathan N; Italiano, Joseph E

    2012-01-01

    Platelets are anucleate, discoid cells, roughly 2-3 μm in diameter that function primarily as regulators of hemostasis, but also play secondary roles in angiogensis and innate immunity. Although human adults contain nearly one trillion platelets in circulation that are turned over every 8-10 days, our understanding of the mechanisms involved in platelet production is still incomplete. Platelets stem from large (30-100 μm) nucleated cells called megakaryocytes that reside primarily in the bone marrow. During maturation megakaryocytes extend long proplatelet elongations into sinusoidal blood vessels from which platelets ultimately release. During this process, platelets develop a number of distinguishable structural elements including: a delimited plasma membrane; invaginations of the surface membrane that form the open canalicular system (OCS); a closed-channel network of residual endoplasmic reticulum that form the dense tubular system (DTS); a spectrin-based membrane skeleton; an actin-based cytoskeletal network; a peripheral band of microtubules; and numerous organelles including α-granules, dense-granules, peroxisomes, lysosomes, and mitochondria. Proplatelet elongation and platelet production is an elaborate and complex process that defines the morphology and ultrastructure of circulating platelets, and is critical in understanding their increasingly numerous and varied biological functions. PMID:22918725

  10. T cell receptor gene deletion circles identify recent thymic emigrants in the peripheral T cell pool

    PubMed Central

    Kong, Fan-kun; Chen, Chen-lo H.; Six, Adrien; Hockett, Richard D.; Cooper, Max D.

    1999-01-01

    Progenitor cells undergo T cell receptor (TCR) gene rearrangements during their intrathymic differentiation to become T cells. Rearrangements of the variable (V), diversity (D), and joining (J) segments of the TCR genes result in deletion of the intervening chromosomal DNA and the formation of circular episomes as a byproduct. Detection of these extrachromosomal excision circles in T cells located in the peripheral lymphoid tissues has been viewed as evidence for the existence of extrathymic T cell generation. Because all of the T cells in chickens apparently are generated in the thymus, we have employed this avian model to determine the fate of the V(D)J deletion circles. In normal animals we identified TCR Vγ-Jγ and Vβ-Dβ deletion circles in the blood, spleen, and intestines, as well as in the thymus. Thymectomy resulted in the gradual loss of these DNA deletion circles in all of the peripheral lymphoid tissues. A quantitative PCR analysis of Vγ1-Jγ1 and Vβ1-Dβ deletion circles in splenic γδ and Vβ1+ αβ T cells indicated that their numbers progressively decline after thymectomy with a half-life of approximately 2 weeks. Although TCR deletion circles therefore cannot be regarded as reliable indicators of in situ V(D)J rearrangement, measuring their levels in peripheral T cell samples can provide a valuable index of newly generated T cells entering the T cell pool. PMID:9990059

  11. COMPASS identifies T-cell subsets correlated with clinical outcomes

    PubMed Central

    Lin, Lin; Finak, Greg; Ushey, Kevin; Seshadri, Chetan; Hawn, Thomas R.; Frahm, Nicole; Scriba, Thomas J.; Mahomed, Hassan; Hanekom, Willem; Bart, Pierre-Alexandre; Pantaleo, Giuseppe; Tomaras, Georgia D.; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Michael, Nelson L.; Kim, Jerome H.; Robb, Merlin L.; O’Connell, Robert J.; Karasavvas, Nicos; Gilbert, Peter; DeRosa, Stephen; McElrath, M. Juliana

    2015-01-01

    Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells and allowed interrogation of cell population heterogeneity. Computational tools to take full advantage of these technologies are lacking. Here, we present COMPASS, a computational framework for unbiased polyfunctionality analysis of antigen-specific T-cell subsets. COMPASS uses a Bayesian hierarchical framework to model all observed functional cell subsets and select those most likely to exhibit antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, while subject-level responses are quantified by two novel summary statistics that can be correlated directly with clinical outcome, and describe the quality of an individual’s (poly)functional response. Using three clinical datasets of cytokine production we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals novel cellular correlates of protection in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software. PMID:26006008

  12. COMPASS identifies T-cell subsets correlated with clinical outcomes.

    PubMed

    Lin, Lin; Finak, Greg; Ushey, Kevin; Seshadri, Chetan; Hawn, Thomas R; Frahm, Nicole; Scriba, Thomas J; Mahomed, Hassan; Hanekom, Willem; Bart, Pierre-Alexandre; Pantaleo, Giuseppe; Tomaras, Georgia D; Rerks-Ngarm, Supachai; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Pitisuttithum, Punnee; Michael, Nelson L; Kim, Jerome H; Robb, Merlin L; O'Connell, Robert J; Karasavvas, Nicos; Gilbert, Peter; C De Rosa, Stephen; McElrath, M Juliana; Gottardo, Raphael

    2015-06-01

    Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software. PMID:26006008

  13. Ultrastructure of the Subcutaneous Primo-Vascular System in Rat Abdomen.

    PubMed

    Lim, Chae Jeong; Lee, So Yeong; Ryu, Pan Dong

    2016-01-01

    Recently, we identified the primo-vascular system (PVS), a novel vascular network, in rat subcutaneous tissues. Little is known about the subcutaneous PVS (sc-PVS). Here, we examined the ultrastructure of the sc-PVS in the hypodermis at the rat abdominal midline by electron microscopy. On the surface of sc-PVS, we observed three types of cells: microcells (5-6 μm), large elliptical cells (>20 μm), and erythrocyte (3-4 μm). The inside of the sc-PVS was filled with numerous cells, which can be classified into three major groups: leucocytes, mast cells, and erythrocytes. The dense leucocytes and mast cells were easily noticed. The extracellular matrix of the sc-PVS was mainly composed of extensive fibers (79 ± 6.5 nm) tightly covered by micro- (0.5-1 μm) and nanoparticles (10-100 nm). In conclusion, the ultrastructural features, such as the resident cells on and in the sc-PVS and fiber meshwork covered by particles, indicate that sc-PVS might act as a circulatory channel for the flow and delivery of numerous cells and particles. Our findings will help understand the nature of various sc-PVS beneath-the-skin layers and how they relate to acupuncture meridians. PMID:27526159

  14. Ultrastructural and morphological changes in Leishmania (Viannia) braziliensis treated with synthetic chalcones.

    PubMed

    de Mello, Tatiane F P; Cardoso, Bruna M; Bitencourt, Heriberto R; Donatti, Lucélia; Aristides, Sandra M A; Lonardoni, Maria V C; Silveira, Thais G V

    2016-01-01

    Cutaneous leishmaniasis has an estimated incidence of 1.5 million new cases per year and the treatment options available are old, expensive, toxic, and difficult to administer. Chalcones have shown good activity against several species of Leishmania. However few studies have discussed the mechanisms of action and drug target of this group of compounds in Leishmania. The synthetic chalcones that were evaluated in the present study were previously shown to exhibit activity against Leishmania (Viannia) braziliensis. The objective of the present study was to identify ultrastructural and morphological changes in L. (V.) braziliensis after treatment with three synthetic chalcones (1-3). Promastigotes were treated with chalcones 1-3 and evaluated by transmission and scanning electron microscopy. Cellular and nuclear morphology of the parasites, changes in membrane permeability, and DNA fragmentation in agarose electrophoresis gel were also investigated after exposure to synthetic chalcones. All three synthetic chalcones (1-3) induced ultrastructural alterations in mitochondria, intense vacuolization, two nuclei with rounding of parasites, and cellular and nuclear shrinkage. Chalcones 1-3 also induced no changes in membrane permeability, and presence of nucleosome-sized DNA fragments. Synthetic chalcones 1-3 induced ultrastructural and morphological changes, suggesting that chalcones 1-3 induce apoptosis-like cell death. Further studies should be conducted to elucidate other aspects of the action of these chalcones against Leishmania spp. and their use for the treatment of cutaneous leishmaniasis. PMID:26632504

  15. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  16. Attempts to identify viruses in rheumatoid synovial cells.

    PubMed Central

    Norval, M; Marmion, B P

    1976-01-01

    Synovial fibroblast cell strains derived from the synovial membranes of 7 patients with rheumatoid arthritis were examined for the presence of viruses, in particular leucoviruses. Seven similar synovial strains derived from patients with other arthritic conditions were used as a control group. Evidence of the presence of a virus or a viral genome was looked for by several methods of induction followed by 3H-uridine labelling of the cultures. In addition, the culture supernatant, after induction and after the synovial strains had been co-cultivated with a variety of cell lines from several species, was assayed for the presence of viral RNA-dependent DNA polymerase activity. The DNA-polymerase activity of the synovial cells themselves was also determined. No evidence was found by any of these techniques to indicate the presence of virus or viral information within the synovial fibroblasts. Images PMID:60087

  17. Electron Microscope and Autoradiographic Study of Ultrastructural Aspects of Competence and Deoxyribonucleic Acid Absorption in Bacillus subtilis: Ultrastructure of Competent and Noncompetent Cells and Cellular Changes During Development of Competence

    PubMed Central

    Vermeulen, C. A.; Venema, G.

    1974-01-01

    By means of electron microscope autoradiography of component cultures of Bacillus subtilis exposed to [3H]thymidine-labeled transforming deoxyribonucleic acid competent and noncompetent cells can be distinguished. Competence is not limited to a specific phase of the cell division cycle. With serial section electron microscopy of competent and noncompetent cells, two types of mesosomal structures are observed: mesosomes connected to the plasma membrane only (plasma membrane mesosomes) and mesosomes which are additionally connected to the nuclear bodies (nuclear mesosomes). The two types show different cellular distributions. Especially the number of nuclear mesosomes is higher in competent than in noncompetent cells. This, and the observation that the increase and decrease of competence is correlated with both the number of cells carrying nuclear mesosomes and the number of nuclear mesosomes per cell, suggests that mesosomes are involved in the acquisition of competence. PMID:4208130

  18. Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells

    PubMed Central

    Zou, Li; Kidwai, Fahad K.; Kopher, Ross A.; Motl, Jason; Kellum, Cory A.; Westendorf, Jennifer J.; Kaufman, Dan S.

    2015-01-01

    Summary We generated a RUNX2-yellow fluorescent protein (YFP) reporter system to study osteogenic development from human embryonic stem cells (hESCs). Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development. PMID:25680477

  19. Use of RUNX2 expression to identify osteogenic progenitor cells derived from human embryonic stem cells.

    PubMed

    Zou, Li; Kidwai, Fahad K; Kopher, Ross A; Motl, Jason; Kellum, Cory A; Westendorf, Jennifer J; Kaufman, Dan S

    2015-02-10

    We generated a RUNX2-yellow fluorescent protein (YFP) reporter system to study osteogenic development from human embryonic stem cells (hESCs). Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP(+) cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP(+) cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development. PMID:25680477

  20. The ultrastructure of the muscle coat of human gastro-oesophageal junction, with special reference to “interstitial cells of Cajal”†

    PubMed Central

    Faussone-Pellegrini, Maria-Simonetta; Cortesini, Camillo; Romagnoli, Paolo

    2013-01-01

    richly innervated by varicose nerve fibers that were densely packed with synaptic vesicles; many close junctions to nerve endings were also detected. These morphological data lead us to assume that the interstitial cells demonstrated by the electron microscope do not correspond to the cells initially identified by Cajal and cannot even be considered connective tissue cells. We propose that they are specialized smooth muscle cells that are involved in generating spontaneous, myogenic electrical activity in the gastrointestinal tract. PMID:23576949

  1. Premature ovarian failure: morphological and ultrastructural aspects.

    PubMed

    Haidar, M A; Baracat, E C; Simões, M J; Focchi, G R; Evêncio Neto, J; de Lima, G R

    1994-01-01

    The authors documented by means of light and transmission electron microscopy that the ovaries of women with premature ovarian failure (POF) displayed dense connective tissue and rare corpora albicantia. Eight of the ten studied cases did not present ovarian follicles; in two cases, it was verified the presence of ovarian follicles, atypical primordial follicles and in one case, a corpus luteum was identified (after stimulation with exogenous gonadotrophin). Regarding the ultrastructural analysis, it was noted that the fibroblasts were united one to each other by cellular prolongations that formed a woof, constituting a cellular syncicius. PMID:7610321

  2. Ultrastructural hepatocytic alterations induced by silver nanoparticle toxicity.

    PubMed

    Almansour, Mansour; Sajti, Laszlo; Melhim, Walid; Jarrar, Bashir M

    2016-01-01

    Silver nanoparticles (SNPs) are widely used in nanomedicine and consuming products with potential risk to human health. While considerable work was carried out on the molecular, biochemical, and physiological alterations induced by these particles, little is known of the ultrastructural pathological alterations that might be induced by nanosilver materials. The aim of the present work is to investigate the hepatocyte ultrastructural alterations that might be induced by SNP exposure. Male rats were subjected to a daily single dose (2 mg/kg) of SNPs (15-35 nm diameter) for 21 days. Liver biopsies from all rats under study were processed for transmission electron microscopy examination. The following hepatic ultrastructural alterations were demonstrated: mitochondria swelling and crystolysis, endoplasmic reticulum disruption, cytoplasmic vacuolization, lipid droplets accumulation, glycogen depletion, karyopyknosis, apoptosis, sinusoidal dilatation, Kupffer cells activation, and myelin figures formation. The current findings may indicate that SNPs can induce hepatocyte organelles alteration, leading to cellular damage that may affect the function of the liver. These findings might indicate that SNPs potentially trigger heptocyte ultrastructural alterations that may affect the function of the liver with potential risk on human health in relation to numerous applications of these particles. More work is needed to elucidate probable ultrastructural alterations in the vital organs that might result from nanosilver toxicity. PMID:26934218

  3. [The ultrastructure of mixed mammary gland tumors in bitches. IV. The incidence of myoepithelial cells in formation of spindle cells (author's transl)].

    PubMed

    von Bomhard, D; von Sandersleben, J

    1976-09-21

    Spindle cells of myomatous formations of 19 canine mixed mammary tumors were studied by light and electron microscopy. The EM findings indicate that the spindle-shaped tumor cells are mostly of myoepithelial origin. However there were also formations of spindle cells which consisted of fibroblasts or fibrocytes. By light microscopy they are not always clearly distinguishable. PMID:823695

  4. Barium cardiotoxicity: Relationship between ultrastructural damage and mechanical effects.

    PubMed

    Delfino, G; Amerini, S; Mugelli, A

    1988-01-01

    The ultrastructural damage in guinea-pig ventricular strips caused by barium was analysed. At a concentration of 1 mmol/litre, barium chloride caused a dramatic increase in the developed tension associated with the onset of automaticity. The ultrastructural analysis demonstrated that barium caused notable and consistent alterations which affected most myocyte components. Various degenerative aspects were observed in mitochondria and in the contractile apparatus. Glycogen deposits were completely depleted. Preparations driven at 4 Hz (i.e. the rate of spontaneous firing of barium-treated preparations) showed moderate ultrastructural alterations, thus demonstrating that the increase in the rate of beating is not the only determinant of the observed damage. These results suggest that the myocardial toxicity of barium is due not only to the well-known modifications in membrane permeability, but possibly also to alterations in cell function. PMID:20702358

  5. Structural and ultrastructural features of the agouti tongue (Dasyprocta aguti Linnaeus, 1766)

    PubMed Central

    Ciena, Adriano Polican; Bolina, Cristina de Sousa; de Almeida, Sonia Regina Yokomizo; Rici, Rose Eli Grassi; de Oliveira, Moacir Franco; da da Silva, Marcelo Cavenaghi Pereira; Miglino, Maria Angélica; Watanabe, Ii-sei

    2013-01-01

    The agouti (Dasyprocta aguti Linnaeus, 1766) is a wild rodent belonging to the family Dasyproctidae that is found throughout Brazil and feeds on fruits and seeds. The aim of the present study was to describe the following features of the tongue of agouti: its morphological structures, the three-dimensional characteristics of the lingual papillae surface, the connective tissue cores (CTCs) and the epithelial cell ultrastructure. Four types of papillae were observed on the dorsal surface of the tongue with a triangular shape: filiform, fungiform, foliate and vallate. Filiform papillae were distributed throughout the tongue surface, and removal of the epithelial surface revealed conical CTCs and multifilaments. Fungiform papillae were observed in the rostral and middle regions, whereas foliate papillae developed in pairs on the lateral margin of the caudal region. Removal of the epithelium in these regions revealed CTCs with parallel laminar conformation. Vallate papillae were arranged in a V-shape in the caudal region, and their CTCs ranged in shape from elongate to ovoid. The ultrastructural components of the dorsal epithelium were the basal, spinous, granular and keratinised layers. A broad area with cytoplasmic projections was identified in the interface region between the lamina propria and the basal layer. Flattened cells with intermediate filaments were observed in the transitional region between spinous and granular layers. The keratinised layer was composed of superimposed epithelial cells where desmosomes and cell-surface microridges were observed. These structural features, including the three-dimensional aspects of the lingual papillae, the CTCs and the epithelial ultrastructure, indicate that when compared with other animals, particularly other rodent species, the morphological features of the tongue of agouti are relatively well developed, especially regarding foliate and vallate papillae. PMID:23701183

  6. Correlative microscopy for phylogenetic and ultrastructural characterization of microbial communities

    PubMed Central

    Knierim, Bernhard; Luef, Birgit; Wilmes, Paul; Webb, Richard I.; Auer, Manfred; Comolli, Luis R.; Banfield, Jillian F.

    2014-01-01

    Transmission electron microscopy (TEM) can provide ultrastructural information for cells in microbial community samples and phylogenetic information can be recovered via molecular surveys. Here we report an approach to link these datasets by coupling fluorescence in situ hybridization (FISH) with either conventional biological or cryogenic TEM. The method could revolutionize understanding of the organization and functioning of microbial communities in natural systems. PMID:23757227

  7. Hypertextual Ultrastructures: Movement and Containment in Texts and Hypertexts

    ERIC Educational Resources Information Center

    Coste, Rosemarie L.

    2009-01-01

    The surface-level experience of hypertextuality as formless and unbounded, blurring boundaries among texts and between readers and writers, is created by a deep structure which is not normally presented to readers and which, like the ultrastructure of living cells, defines and controls texts' nature and functions. Most readers, restricted to…

  8. Ultrastructural study of thyroid capillaries after IR laser radiation

    NASA Astrophysics Data System (ADS)

    Vidal, Lourdes; Perez de Vargas, I.; Carrillo, F.; Parrado, C.; Pelaez, A.

    1994-02-01

    Laser radiation causes microscopical changes in the follicular cells relative to dose intensity. So, we have observed focal degenerative phenomena, at maximal doses, and activation of cellular function similar to the ones observed after stimulation with TSH, at minimal doses. In order to evaluate the evolution of these changes we have planned an ultrastructural study of rats thyroid capillaries treated with IR laser radiation.

  9. Molecular and Ultrastructural Properties of Maize White Line Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports the complete nucleotide sequence of the genome of Maize white line mosaic virus (MWLMV) and describes the ultrastructural features of infected maize cells. The viral genome is an RNA molecule 4293 nt in size with the same structural organization of members of the Aureusvirus and ...

  10. Newly identified interfibrillar collagen crosslinking suppresses cell proliferation and remodelling.

    PubMed

    Marelli, Benedetto; Le Nihouannen, Damien; Hacking, S Adam; Tran, Simon; Li, Jingjing; Murshed, Monzur; Doillon, Charles J; Ghezzi, Chiara E; Zhang, Yu Ling; Nazhat, Showan N; Barralet, Jake E

    2015-06-01

    Copper is becoming recognised as a key cation in a variety of biological processes. Copper chelation has been studied as a potential anti-angiogenic strategy for arresting tumour growth. Conversely the delivery of copper ions and complexes in vivo can elicit a pro-angiogenic effect. Previously we unexpectedly found that copper-stimulated intraperitoneal angiogenesis was accompanied by collagen deposition. Here, in hard tissue, not only was healing accelerated by copper, but again enhanced deposition of collagen was detected at 2 weeks. Experiments with reconstituted collagen showed that addition of copper ions post-fibrillogenesis rendered plastically-compressed gels resistant to collagenases, enhanced their mechanical properties and increased the denaturation temperature of the protein. Unexpectedly, this apparently interfibrillar crosslinking was not affected by addition of glucose or ascorbic acid, which are required for crosslinking by advanced glycation end products (AGEs). Fibroblasts cultured on copper-crosslinked gels did not proliferate, whereas those cultured with an equivalent quantity of copper on either tissue culture plastic or collagen showed no effect compared with controls. Although non-proliferative, fibroblasts grown on copper-cross-linked collagen could migrate, remained metabolically active for at least 14 days and displayed a 6-fold increase in Mmps 1 and 3 mRNA expression compared with copper-free controls. The ability of copper ions to crosslink collagen fibrils during densification and independently of AGEs or Fenton type reactions is previously unreported. The effect on MMP susceptibility of collagen and the dramatic change in cell behaviour on this crosslinked ECM may contribute to shedding some light on unexplained phenomena as the apparent benefit of copper complexation in fibrotic disorders or the enhanced collagen deposition in response to localised copper delivery. PMID:25907046

  11. A functional genomic screen in planarians identifies novel regulators of germ cell development

    PubMed Central

    Wang, Yuying; Stary, Joel M.; Wilhelm, James E.; Newmark, Phillip A.

    2010-01-01

    Germ cells serve as intriguing examples of differentiated cells that retain the capacity to generate all cell types of an organism. Here we used functional genomic approaches in planarians to identify genes required for proper germ cell development. We conducted microarray analyses and in situ hybridization to discover and validate germ cell-enriched transcripts, and then used RNAi to screen for genes required for discrete stages of germ cell development. The majority of genes we identified encode conserved RNA-binding proteins, several of which have not been implicated previously in germ cell development. We also show that a germ cell-specific subunit of the conserved transcription factor CCAAT-binding protein/nuclear factor-Y is required for maintaining spermatogonial stem cells. Our results demonstrate that conserved transcriptional and post-transcriptional mechanisms regulate germ cell development in planarians. These findings suggest that studies of planarians will inform our understanding of germ cell biology in higher organisms. PMID:20844018

  12. Gonadoblastoma: ultrastructural evidence for testicular origin.

    PubMed

    Ishida, T; Tagatz, G E; Okagaki, T

    1976-04-01

    A gonadoblastoma arising in the dysgenetic gonad of a virilized 17-year-old Caucasian with a female phenotype and with a 45,X0/46, X-ring-Y genotype was studied by light microscopic histochemistry, electron microscopy, and ultrastructural histochemistry. The gonadoblastoma was composed of nests of cells containg large germ cells and small "granulosa-Sertoli-like cells," and stromal tissue containing "Leydig-like cells." The germ cells were identical to those found in normal fetal gonads and in germ cell tumors. Charcot-Böttcher crystalloids present in the "granulosa-Sertoli-like cells" strongly suggest that they are, in fact, Sertoli cells. Multilayered basal laminae located in the periphery of the tumor nests and in "hyaline bodies" were identical to those surrounding the seminiferous tubules of the adult testis. The "Leydig-like cells" present in the stroma contained occasional dense bodies and crystalloids which characterize the Leydig cells of the fetal testis. Delta 5-3 beta hydroxysteroid dehydrogenase activity was demonstrated in the periphery of lipid droplets and lysosome-like dense bodies of the Leydig cells, and in some Sertoli cells. The findings support the theory that gonadoblastoma arises in a dysgenetic testis rather than in a dysgenetic ovary. PMID:1260688

  13. Comparative sperm ultrastructure in Nemertea.

    PubMed

    von Döhren, J; Beckers, P; Vogeler, R; Bartolomaeus, T

    2010-07-01

    Although the monophyly of Nemertea is strongly supported by unique morphological characters and results of molecular phylogenetic studies, their ingroup relationships are largely unresolved. To contribute solving this problem we studied sperm ultrastructure of 12 nemertean species that belong to different subtaxa representing the commonly recognized major monophyletic groups. The study yielded a set of 26 characters with an unexpected variation among species of the same genus (Tubulanus and Procephalothrix species), whereas other species varied in metric values or only one character state (Ramphogordius). In some species, the sperm nucleus has grooves (Zygonemertes virescens, Amphiporus imparispinosus) that may be twisted and give a spiral shape to the sperm head (Paranemertes peregrina, Emplectonema gracile). To make the characters from sperm ultrastructure accessible for further phylogenetic analyses, they were coded in a character matrix. Published data for eight species turned out to be sufficiently detailed to be included. Comparative evaluation of available information on the sperm ultrastructure suggests that subtaxa of Heteronemertea and Hoplonemertea are supported as monophyletic by sperm morphology. However, the data do not provide information on the existing contradictions regarding the internal relationships of "Palaeonemertea." Nevertheless, our study provides evidence that sperm ultrastructure yields numerous potentially informative characters that will be included in upcoming phylogenetic analyses. PMID:20544873

  14. Ultrastructural features of endometrial-myometrial interface and its alteration in adenomyosis.

    PubMed

    Zhang, Ying; Zhou, Li; Li, Tin C; Duan, Hua; Yu, Pei; Wang, Hong Y

    2014-01-01

    The endometrial-myometrial interface (EMI) is a specific functional region of uterus. However, our knowledge on EMI ultrastructure both in normal uterus and adenomyosis is far from enough to understand its pathology. In this study, used the samples of EMI and outer myometrium (OM) from the adenomyosis hysterectomy specimens and the subjects from the control uteri, we prospectively compared the ultrastructure of myocytes from EMI and OM, the ultrastructural changes of EMI between the proliferative and secretory phases, and the ultrastructural difference of EMI between adenomyosis and the control group. In both adenomyosis and control group, there were differences in ultrastructure between myocytes from EMI and OM. Specifically, the myocytes from EMI were rich in organelles. In contrast, the myocytes from OM had abundant contractile structural components. In the proliferative phase, the myocytes from EMI in adenomyosis had significantly smaller cell and nucleus diameter than those from the control group, but in the secretory phase, the difference was not significant. In the control group, the various ultrastructural features of myocytes from EMI including the mean diameter of cell and nuclei and the myofilaments/cytoplasm ratio exhibited cyclical changes, but in adenomyosis, the normal cyclical changes were absent. In conclusions, there are significant ultrastructural differences between the myocytes from EMI and OM. The myocytes in women with adenomyosis were significantly different to the control subjects, primarily because the normal cyclical changes were absent. PMID:24817942

  15. Ultrastructural features of endometrial-myometrial interface and its alteration in adenomyosis

    PubMed Central

    Zhang, Ying; Zhou, Li; Li, Tin C; Duan, Hua; Yu, Pei; Wang, Hong Y

    2014-01-01

    The endometrial-myometrial interface (EMI) is a specific functional region of uterus. However, our knowledge on EMI ultrastructure both in normal uterus and adenomyosis is far from enough to understand its pathology. In this study, used the samples of EMI and outer myometrium (OM) from the adenomyosis hysterectomy specimens and the subjects from the control uteri, we prospectively compared the ultrastructure of myocytes from EMI and OM, the ultrastructural changes of EMI between the proliferative and secretory phases, and the ultrastructural difference of EMI between adenomyosis and the control group. In both adenomyosis and control group, there were differences in ultrastructure between myocytes from EMI and OM. Specifically, the myocytes from EMI were rich in organelles. In contrast, the myocytes from OM had abundant contractile structural components. In the proliferative phase, the myocytes from EMI in adenomyosis had significantly smaller cell and nucleus diameter than those from the control group, but in the secretory phase, the difference was not significant. In the control group, the various ultrastructural features of myocytes from EMI including the mean diameter of cell and nuclei and the myofilaments/cytoplasm ratio exhibited cyclical changes, but in adenomyosis, the normal cyclical changes were absent. In conclusions, there are significant ultrastructural differences between the myocytes from EMI and OM. The myocytes in women with adenomyosis were significantly different to the control subjects, primarily because the normal cyclical changes were absent. PMID:24817942

  16. Echinococcus multilocularis Leuckart, 1863 (Taeniidae): new data on sperm ultrastructure.

    PubMed

    Miquel, Jordi; Świderski, Zdzisław; Azzouz-Maache, Samira; Pétavy, Anne-Françoise

    2016-06-01

    The present study establishes the ultrastructural organisation of the mature spermatozoon of Echinococcus multilocularis, which is essential for future research on the location of specific proteins involved in the sperm development in this species and also in Echinococcus granulosus. Thus, the ultrastructural characteristics of the sperm cell are described by means of transmission electron microscopy. The spermatozoon of E. multilocularis is a filiform cell, which is tapered at both extremities and lacks mitochondria. It exhibits all the characteristics of type VII spermatozoon of tapeworms, namely a single axoneme, crested bodies, spiralled cortical microtubules and nucleus, a periaxonemal sheath and intracytoplasmic walls. Other characteristics observed in the male gamete are the presence of a >900-nm long apical cone in its anterior extremity and only the axoneme in its posterior extremity. The ultrastructural characters of the spermatozoon of E. multilocularis are compared with those of other cestodes studied to date, with particular emphasis on representatives of the genus Taenia. The most interesting finding concerns the presence of two helical crested bodies in E. multilocularis while in the studied species of Taenia, there is only one crested body. Future ultrastructural studies of other species of the genus Echinococcus would be of particular interest in order to confirm whether or not the presence of two crested bodies is a characteristic of this genus. PMID:26960958

  17. Ultrastructural changes in LGMD1F.

    PubMed

    Cenacchi, Giovanna; Peterle, Enrico; Fanin, Marina; Papa, Valentina; Salaroli, Roberta; Angelini, Corrado

    2013-06-01

    A large Italo-Spanish kindred with autosomal-dominant inheritance has been reported with proximal limb and axial muscle weakness. Clinical, histological and genetic features have been described. A limb girdle muscular dystrophy 1F (LGMD1F) disease locus at chromosome 7q32.1-32.2 has been previously identified. We report a muscle pathological study of two patients (mother and daughter) from this family. Muscle morphologic findings showed increased fiber size variability, fiber atrophy, and acid-phosphatase-positive vacuoles. Immunofluorescence against desmin, myotilin, p62 and LC3 showed accumulation of myofibrils, ubiquitin binding protein aggregates and autophagosomes. The ultrastructural study confirmed autophagosomal vacuoles. Many alterations of myofibrillar component were detected, such as prominent disarray, rod-like structures with granular aspect, and occasionally, cytoplasmic bodies. Our ultrastructural data and muscle pathological features are peculiar to LGMD1F and support the hypothesis that the genetic defect leads to a myopathy phenotype associated with disarrangement of the cytoskeletal network. PMID:23279333

  18. How methylglyoxal kills bacteria: An ultrastructural study.

    PubMed

    Rabie, Erika; Serem, June Cheptoo; Oberholzer, Hester Magdalena; Gaspar, Anabella Regina Marques; Bester, Megan Jean

    2016-01-01

    Antibacterial activity of honey is due to the presence of methylglyoxal (MGO), H2O2, bee defensin as well as polyphenols. High MGO levels in manuka honey are the main source of antibacterial activity. Manuka honey has been reported to reduce the swarming and swimming motility of Pseudomonas aeruginosa due to de-flagellation. Due to the complexity of honey it is unknown if this effect is directly due to MGO. In this ultrastructural investigation the effects of MGO on the morphology of bacteria and specifically the structure of fimbriae and flagella were investigated. MGO effectively inhibited Gram positive (Bacillus subtilis; MIC 0.8 mM and Staphylococcus aureus; MIC 1.2 mM) and Gram negative (P. aeruginosa; MIC 1.0 mM and Escherichia coli; MIC 1.2 mM) bacteria growth. The ultrastructural effects of 0.5, 1.0 and 2 mM MGO on B. substilis and E. coli morphology was then evaluated. At 0.5 mM MGO, bacteria structure was unaltered. For both bacteria at 1 mM MGO fewer fimbriae were present and the flagella were less or absent. Identified structures appeared stunted and fragile. At 2 mM MGO fimbriae and flagella were absent while the bacteria were rounded with shrinkage and loss of membrane integrity. Antibacterial MGO causes alterations in the structure of bacterial fimbriae and flagella which would limit bacteria adherence and motility. PMID:26986806

  19. Processing biological tissues for ultrastructural study.

    PubMed

    Mascorro, José A; Bozzola, John J

    2007-01-01

    Biological tissues are passed through numerous procedures before they can be studied at the ultrastructural level with the electron microscope. Chemical fixation is widely used as a method for preserving structural detail and can be performed by simple immersion or total body vascular perfusion. A 2 to 4% solution of glutaraldehyde buffered with 0.1 M sodium phosphate, or a combination of similarly buffered glutaraldehyde and paraformaldehyde, can be used successfully to preserve the fine structure of biological tissues. The material next is washed briefly in the buffer vehicle and then secondarily fixed in 1% osmium tetroxide (osmic acid), which also is buffered with sodium phosphate. The tissue then is thoroughly dehydrated in solutions of ethanol at increasing concentrations of 50%, 70%, 95%, and 100%. After dehydration, tissues are infiltrated for a prescribed time interval with an epoxy embedding medium. After infiltration, specimens are transferred into fresh epoxy resin and polymerized at 60 to 70 degrees C for several hours. This orderly process ultimately yields fixed tissues that are encased in hardened blocks that can be thin-sectioned with an ultramicrotome. The thin sections are counterstained with solutions of heavy metals to add contrast. The material then can be subjected to the electron beam in an electron microscope to produce useful images for ultrastructural study. This overall procedure has been used successfully since the advent of biological electron microscopy to define the minute details of cells and tissues. PMID:17656744

  20. Ultrastructure of internal jugular vein defective valves

    PubMed Central

    Tisato, V; Menegatti, E; Mascoli, F; Gianesini, S; Salvi, F; Secchiero, P

    2015-01-01

    Objectives To study the ultrastructure of intraluminal defects found in the internal jugular vein by using a scanning electron microscopy. Methods Using a scanning electron microscopy, intraluminal septa and/or defective valves blocking the flow in the distal internal jugular vein of seven patients were studied together with the adjacent wall and compared with control specimen. Results The internal jugular veins’ wall showed a significant derangement of the endothelial layer as compared to controls. Surprisingly, no endothelial cells were found in the defective cusps, and the surface of the structure is covered by a fibro-reticular lamina. Conclusions Although the lack of endothelial cells in the internal jugular vein intraluminal obstacles is a further abnormality found in course of chronic cerebrospinal venous insufficiency, our investigation cannot clarify whether this finding is primary or caused by progressive loss of endothelium in relation to altered haemodynamic forces and/or to a past post-thrombotic/inflammatory remodelling. PMID:24972760

  1. Ultrastructure and phylogeny of Ustilago coicis *

    PubMed Central

    Zhang, Jing-ze; Guan, Pei-gang; Tao, Gang; Ojaghian, Mohammad Reza; Hyde, Kevin David

    2013-01-01

    Ustilago coicis causes serious smut on Coix lacryma-jobi in Dayang Town, Jinyun County, Zhejiang Province of China. In this paper, ultrastructural assessments on fungus-host interactions and teliospore development are presented, and molecular phylogenetic analyses have been done to elucidate the phylogenetic placement of the taxon. Hyphal growth within infected tissues was both intracellular and intercellular and on the surface of fungus-host interaction, and the fungal cell wall and the invaginated host plasma membrane were separated by a sheath comprising two distinct layers between the fungal cell wall and the invaginated host plasma membrane. Ornamentation development of teliospore walls was unique as they appeared to be originated from the exosporium. In addition, internal transcribed spacer (ITS) and large subunit (LSU) sequence data showed that U. coicis is closely related to Ustilago trichophora which infects grass species of the genus Echinochloa (Poaceae). PMID:23549851

  2. Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography.

    PubMed

    Sherman, Shachar; Kirchenbuechler, David; Nachmias, Dikla; Tamir, Adi; Werner, Stephan; Elbaum, Michael; Elia, Natalie

    2016-01-01

    Mammalian cytokinetic abscission is mediated by the ESCRT membrane fission machinery. While much has been clarified on the topology and kinetics of abscission through high-resolution microscopy, key questions regarding the mechanism of abscission remain open. Here we apply cryogenic soft-X-ray tomography to elucidate new ultrastructural details in the intercellular membrane bridge connecting cells undergoing abscission. In particular, we resolve defined ring-like structures inside the midbody dark zone that have been inaccessible to EM, and identify membrane extrusions at the abscission sites. In cells at late stages of abscission we resolve a complex array of helical spirals, extending the structural information obtained by EM. Our results highlight the advantages of soft-X-ray tomography and emphasize the importance of using complementary approaches for characterizing cellular structures. Notably, by providing new structural data from intact cells we present a realistic view on the topology of abscission and suggest new mechanistic models for ESCRT mediated abscission. PMID:27282220

  3. Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography

    PubMed Central

    Sherman, Shachar; Kirchenbuechler, David; Nachmias, Dikla; Tamir, Adi; Werner, Stephan; Elbaum, Michael; Elia, Natalie

    2016-01-01

    Mammalian cytokinetic abscission is mediated by the ESCRT membrane fission machinery. While much has been clarified on the topology and kinetics of abscission through high-resolution microscopy, key questions regarding the mechanism of abscission remain open. Here we apply cryogenic soft-X-ray tomography to elucidate new ultrastructural details in the intercellular membrane bridge connecting cells undergoing abscission. In particular, we resolve defined ring-like structures inside the midbody dark zone that have been inaccessible to EM, and identify membrane extrusions at the abscission sites. In cells at late stages of abscission we resolve a complex array of helical spirals, extending the structural information obtained by EM. Our results highlight the advantages of soft-X-ray tomography and emphasize the importance of using complementary approaches for characterizing cellular structures. Notably, by providing new structural data from intact cells we present a realistic view on the topology of abscission and suggest new mechanistic models for ESCRT mediated abscission. PMID:27282220

  4. Machine learning based methodology to identify cell shape phenotypes associated with microenvironmental cues.

    PubMed

    Chen, Desu; Sarkar, Sumona; Candia, Julián; Florczyk, Stephen J; Bodhak, Subhadip; Driscoll, Meghan K; Simon, Carl G; Dunkers, Joy P; Losert, Wolfgang

    2016-10-01

    Cell morphology has been identified as a potential indicator of stem cell response to biomaterials. However, determination of cell shape phenotype in biomaterials is complicated by heterogeneous cell populations, microenvironment heterogeneity, and multi-parametric definitions of cell morphology. To associate cell morphology with cell-material interactions, we developed a shape phenotyping framework based on support vector machines. A feature selection procedure was implemented to select the most significant combination of cell shape metrics to build classifiers with both accuracy and stability to identify and predict microenvironment-driven morphological differences in heterogeneous cell populations. The analysis was conducted at a multi-cell level, where a "supercell" method used average shape measurements of small groups of single cells to account for heterogeneous populations and microenvironment. A subsampling validation algorithm revealed the range of supercell sizes and sample sizes needed for classifier stability and generalization capability. As an example, the responses of human bone marrow stromal cells (hBMSCs) to fibrous vs flat microenvironments were compared on day 1. Our analysis showed that 57 cells (grouped into supercells of size 4) are the minimum needed for phenotyping. The analysis identified that a combination of minor axis length, solidity, and mean negative curvature were the strongest early shape-based indicator of hBMSCs response to fibrous microenvironment. PMID:27449947

  5. Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on Cassia sophera L. and Allium cepa L.

    PubMed

    Gulzar, Aasifa; Siddiqui, M B; Bi, Shazia

    2016-09-01

    The allelopathic potential of leaf aqueous extract (LAE) of Calotropis procera on growth behavior, ultrastructural changes on Cassia sophera L., and cytological changes on Allium cepa L. was investigated. LAE at different concentrations (0.5, 1, 2, and 4 %) significantly reduced the root length, shoot length, and dry biomass of C. sophera. Besides, the ultrastructural changes (through scanning electron microscopy, SEM) induced in epidermal cells of 15-day-old seedlings of Cassia leaf were also noticed. The changes induced were shrinking and contraction of epidermal cells along with the formation of major grooves, canals, and cyst-like structures. The treated samples of epidermal cells no longer seem to be smooth as compared to control. LAE at different concentrations induces chromosomal aberrations and variation in shape of the interphase and prophase nucleus in A. cepa root tip cells when compared with control groups. The mitotic index in treated onion root tips decreased with increasing concentrations of the extracts. The most frequent aberrations were despiralization at prophase with the formation of micronuclei, sticky anaphase with bridges, sticky telophase, C-metaphase, etc. The results also show the induction of ghost cells, cells with membrane damage, and cells with heterochromatic nuclei by extract treatment. Upon HPLC analysis, nine phenolic acids (caffeic acid, gentisic acid, catechol, gallic acid, syringic acid, ellagic acid, resorcinol, p-coumaric acid, and p-hydroxy benzoic acid) were identified. Thus, the phenolic acids are mainly responsible for the allelopathic behavior of C. procera. PMID:26387115

  6. Parameter identifiability of cardiac ionic models using a novel CellML least squares optimization tool.

    PubMed

    Hui, Ben B B; Dokos, Socrates; Lovell, Nigel H

    2007-01-01

    Published models of excitable cells can be used to fit to a range of action potential experimental data. CellML is a well-defined standard for publishing and exchanging such models, but currently there is a lack of software that utilizes CellML for parameter analysis. In this paper, we introduce a Java-based utility capable of performing model simulation, identifiability analysis, and parameter optimization of ionic cardiac cell models written in CellML. Identifiability analysis was performed in seven CellML models. Parameter identifiability was consistently improved by using the compensatory membrane current as opposed to the membrane voltage as the residual. as well as through the introduction of an additional stimulus set used in the fitting process. PMID:18003205

  7. The Effect of Spaceflight on the Ultrastructure of the Cerebellum

    NASA Technical Reports Server (NTRS)

    Holstein, Gay R.; Martinelli, Giorgio P.

    2003-01-01

    In weightlessness, astronauts and cosmonauts may experience postural illusions as well as motion sickness symptoms known as the space adaptation syndrome. Upon return to Earth, they have irregularities in posture and balance. The adaptation to microgravity and subsequent re-adaptation to Earth occurs over several days. At the cellular level, a process called neuronal plasticity may mediate this adaptation. The term plasticity refers to the flexibility and modifiability in the architecture and functions of the nervous system. In fact, plastic changes are thought to underlie not just behavioral adaptation, but also the more generalized phenomena of learning and memory. The goal of this experiment was to identify some of the structural alterations that occur in the rat brain during the sensory and motor adaptation to microgravity. One brain region where plasticity has been studied extensively is the cerebellar cortex-a structure thought to be critical for motor control, coordination, the timing of movements, and, most relevant to the present experiment, motor learning. Also, there are direct as well as indirect connections between projections from the gravity-sensing otolith organs and several subregions of the cerebellum. We tested the hypothesis that alterations in the ultrastructural (the structure within the cell) architecture of rat cerebellar cortex occur during the early period of adaptation to microgravity, as the cerebellum adapts to the absence of the usual gravitational inputs. The results show ultrastructural evidence for neuronal plasticity in the central nervous system of adult rats after 24 hours of spaceflight. Qualitative studies conducted on tissue from the cerebellar cortex (specifically, the nodulus of the cerebellum) indicate that ultrastructural signs of plasticity are present in the cerebellar zones that receive input from the gravity-sensing organs in the inner ear (the otoliths). These changes are not observed in this region in cagematched

  8. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes

    PubMed Central

    Ackermann, Amanda M.; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H.

    2016-01-01

    Objective Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. Methods We sorted human α- and β-cells and performed the “Assay for Transposase-Accessible Chromatin with high throughput sequencing” (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. Results We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The “group specific protein” (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. Conclusions

  9. Correlative light and electron microscopy enables viral replication studies at the ultrastructural level.

    PubMed

    Hellström, Kirsi; Vihinen, Helena; Kallio, Katri; Jokitalo, Eija; Ahola, Tero

    2015-11-15

    Electron microscopy (EM) is a powerful tool to study structural changes within cells caused e.g. by ectopic protein expression, gene silencing or virus infection. Correlative light and electron microscopy (CLEM) has proven to be useful in cases when it is problematic to identify a particular cell among a majority of unaffected cells at the EM level. In this technique the cells of interest are first identified by fluorescence microscopy and then further processed for EM. CLEM has become crucial when studying positive-strand RNA virus replication, as it takes place in nanoscale replication sites on specific cellular membranes. Here we have employed CLEM for Semliki Forest virus (SFV) replication studies both by transfecting viral replication components to cells or by infecting different cell types. For the transfection-based system, we developed an RNA template that can be detected in the cells even in the absence of replication and thus allows exploration of lethal mutations in viral proteins. In infected mammalian and mosquito cells, we were able to find replication-positive cells by using a fluorescently labeled viral protein even in the cases of low infection efficiency. The fluorescent region within these cells was shown to correspond to an area rich in modified membranes. These results show that CLEM is a valuable technique for studying virus replication and membrane modifications at the ultrastructural level. PMID:25916619

  10. Pulmonary ultrastructure of the late aspects of human paraquat poisoning.

    PubMed Central

    Dearden, L. C.; Fairshter, R. D.; McRae, D. M.; Smith, W. R.; Glauser, F. L.; Wilson, A. F.

    1978-01-01

    The pulmonary ultrastructure of the late aspects of a case of human paraquat poisoning is investigated and compared with normal human pulmonary ultrastructure. Alveoli in the paraquat patient are numerically reduced in comparison to the control. They are filled with edematous proteinaceous plasma-like fluid containing erythrocytes, macrophages, leukocytes, fibroblast-like cells, platelets, and fibrin. These alveoli are lined by granular pneumocytes. Interstitial areas in the paraquat patient are greatly expanded and there are no alveolar septums. Interstitial areas contain proteinaceous plasma-like material, collagen, fibrin, platelets, mature fibroblasts, plasma cells, many leukocytes, numerous erythrocytes, and capillaries. Capillary permeability seems to be enhanced in the paraquat patient either by vesicles forming transendothelial channels or pores or by disruption of endothelial cells. Images Figure 1 Figure 2 Figures 3-7 Figure 8 Figure 9 Figure 10 Figure 11 PMID:213978

  11. Single-cell mRNA profiling identifies progenitor subclasses in neurospheres.

    PubMed

    Narayanan, Gunaseelan; Poonepalli, Anuradha; Chen, Jinmiao; Sankaran, Shvetha; Hariharan, Srivats; Yu, Yuan Hong; Robson, Paul; Yang, Henry; Ahmed, Sohail

    2012-12-10

    Neurospheres are widely used to propagate and investigate neural stem cells (NSCs) and neural progenitors (NPs). However, the exact cell types present within neurospheres are still unknown. To identify cell types, we used single-cell mRNA profiling of 48 genes in 187 neurosphere cells. Using a clustering algorithm, we identified 3 discrete cell populations within neurospheres. One cell population [cluster unsorted (US) 1] expresses high Bmi1 and Hes5 and low Myc and Klf12. Cluster US2 shows intermediate expression of most of the genes analyzed. Cluster US3 expresses low Bmi1 and Hes5 and high Myc and Klf12. The mRNA profiles of these 3 cell populations correlate with a developmental timeline of early, intermediate, and late NPs, as seen in vivo from the mouse brain. We enriched the cell population for neurosphere-forming cells (NFCs) using morphological criteria of forward scatter (FSC) and side scatter (SSC). FSC/SSC(high) cells generated 2.29-fold more neurospheres than FSC/SSC(low) cells at clonal density. FSC/SSC(high) cells were enriched for NSCs and Lewis-X(+ve) cells, possessed higher phosphacan levels, and were of a larger cell size. Clustering of both FSC/SSC(high) and FSC/SSC(low) cells identified an NFC cluster. Significantly, the mRNA profile of the NFC cluster drew close resemblance to that of early NPs. Taken together, data suggest that the neurosphere culture system can be used to model central nervous system development, and that early NPs are the cell population that gives rise to neurospheres. In future work, it may be possible to further dissect the NFCs and reveal the molecular signature for NSCs. PMID:22834539

  12. Stage-specific embryonic antigen-4 identifies human dental pulp stem cells.

    PubMed

    Kawanabe, Noriaki; Murata, Satoko; Fukushima, Hiroaki; Ishihara, Yoshihito; Yanagita, Takeshi; Yanagita, Emmy; Ono, Mitsuaki; Kurosaka, Hiroshi; Kamioka, Hiroshi; Itoh, Tomoo; Kuboki, Takuo; Yamashiro, Takashi

    2012-03-10

    Embryonic stem cell-associated antigens are expressed in a variety of adult stem cells as well as embryonic stem cells. In the present study, we investigated whether stage-specific embryonic antigen (SSEA)-4 can be used to isolate dental pulp (DP) stem cells. DP cells showed plastic adherence, specific surface antigen expression, and multipotent differentiation potential, similar to mesenchymal stem cells (MSC). SSEA-4+ cells were found in cultured DP cells in vitro as well as in DP tissue in vivo. Flow cytometric analysis demonstrated that 45.5% of the DP cells were SSEA-4+. When the DP cells were cultured in the presence of all-trans-retinoic acid, marked downregulation of SSEA-3 and SSEA-4 and the upregulation of SSEA-1 were observed. SSEA-4+ DP cells showed a greater telomere length and a higher growth rate compared to ungated and SSEA-4- cells. A clonal assay demonstrated that 65.5% of the SSEA-4+ DP cells had osteogenic potential, and the SSEA-4+ clonal DP cells showed multilineage differentiation potential toward osteoblasts, chondrocytes, and neurons in vitro. In addition, the SSEA-4+ DP cells had the capacity to form ectopic bone in vivo. Thus, our results suggest that SSEA-4 is a specific cell surface antigen that can be used to identify DP stem cells. PMID:22266579

  13. Ultrastructure processing of advanced ceramics

    SciTech Connect

    Mackenzie, J.D.; Ulrich, D.R.

    1988-01-01

    Experimental investigations and applications of advanced ceramics are discussed in reviews and reports presented at the Third International Conference on Ultrastructure Processing of Ceramics, Glasses, and Composites held in San Diego in February 1987. Sections are devoted to precursors and chemistry for ultrastructure processing; sol-gel science and technology; powders and colloids; advanced ceramics; and composites, new materials, and techniques. Particular attention is given to silicon oxynitride and sialon ceramics from organosilicon powders, fluoropolymer-modified silicate glasses, Raman and FTIR spectroscopy of rapid sol-gel processes, a low-temperature route to high-purity Ti/Zr/Hf diboride powders and films, and sol-gel methods for SiO2 optical-fiber coatings. Diagrams, drawings, graphs, micrographs, and tables of numerical data are included.

  14. Ultrastructural aspects of previtellogenic oocyte growth in hermaphrodite sharpsnout seabream, Diplodus puntazzo (Teleostei, Sparidae).

    PubMed

    Gülsoy, Nagihan; Çolak, Sibel

    2009-06-01

    This paper describes various aspects of previtellogenic oocyte growth in sharpsnout seabream, Diplodus puntazzo , is an important marine culture fish species in the Mediterranean. The ultrastructural characteristics of nuclear morphology, nuclear-cytoplasmic ratio and the starting of the follicle envelope formation were described in detail. These cells do not significantly differ from those of the other teleost species. The ultrastructural aspects provide new information on the reproductive biology of Sparidae. PMID:19584025

  15. Comparison of the effects of Origanum vulgare with LHRH-A2 and 17β-estradiol on the ultrastructure of gonadotroph cells and ovarian oogenesis in immature Trichogaster trichopterus.

    PubMed

    Bagheri Ziari, Sedigheh; Naji, Tahereh; Hosseinzadeh Sahafi, Homayoun

    2015-10-01

    Origanum vulgare is a plant of the mint family that contains phytoestrogens. This study compared the effects of O. vulgare, LHRH-A2, and 17β-estradiol on the ultrastructure of gonadotroph cells and ovarian oogenesis in immature Trichogaster trichopterus. Fish (5.1±0.032cm and 2.1±0.043g, n=150) were randomly divided into four treatment groups (three hormonal treatments and control) and treated intramuscularly at four levels with 17β-estradiol or O. vulgare at 10, 20, 30 and 50mg/kg body weight and with LHRH-A2 at 0.001, 0.002, 0.003, and 0.005mg/kg body weight. There were three control treatments: saline, ethanol and placebo. Fish were kept in 15 tanks, with 10 fish per tank, injected a total of seven doses over 13 days. Gonadosomatic index (GSI) and oocyte diameter were lower (P≤0.05) in the control than in the three hormonal treatments. The highest GSI and oocyte diameter responses were observed in fish treated with 17β-estradiol (2.76±0.23%, 149.8±15.43mm) followed by O. vulgare (1.86±0.18%, 104.3±11.5mm) and LHRH-A2 (1.52±0.12%, 91.75±9.02mm) (P≤0.05). Moreover, there was a significant effect of dose level within all the hormonal treatments (P≤0.05). The effect of treatment on the length and weight was likely GSI. Ovarian tissue results showed faster oogenesis of oocytes in fish treated with O. vulgare, after 17β-estradiol. Ultrastructure of gonadotroph cells demonstrated less stimulation by O. vulgare than by 17β-estradiol and LHRH-A2. This study suggests that compared with the two hormonal treatments, O. vulgare dose-dependently affects ovarian oogenesis and gonadotroph cells. PMID:26324391

  16. Ultrastructural observations on feeding appendages and gills of Alvinella pompejana (Annelida, Polychaeta)

    NASA Astrophysics Data System (ADS)

    Storch, V.; Gaill, F.

    1986-09-01

    The feeding appendages of Alvinella pompejana obtained from a deep-sea hydrothermal vent environment are described. They are characterized by a ciliated groove, the cells of which have a very distinctive ultrastructure, by groups of bipolar receptor cells and by several kinds of gland cells. Among these, one cell type is in an upside down position suggesting a function completely different from other epidermal secretory cells. The gills differ considerably from the feeding appendages on the basis of their ultrastructure. Their epidermis is very irregular in height; basal infoldings give the blood access to a space coming very near to the external medium. The blood vascular system is open. On the other hand, the gills of Amphicteis gunneri are not effective sites of gas exchange, since their columnar epithelium is underlain with muscle cells. The cells composing the feeding appendages and gills of Alvinella pompejana are characterized by ultrastructurally very different mitochondria.

  17. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  18. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  19. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies.

    PubMed

    Rennert, Robert C; Januszyk, Michael; Sorkin, Michael; Rodrigues, Melanie; Maan, Zeshaan N; Duscher, Dominik; Whittam, Alexander J; Kosaraju, Revanth; Chung, Michael T; Paik, Kevin; Li, Alexander Y; Findlay, Michael; Glotzbach, Jason P; Butte, Atul J; Gurtner, Geoffrey C

    2016-01-01

    Current progenitor cell therapies have only modest efficacy, which has limited their clinical adoption. This may be the result of a cellular heterogeneity that decreases the number of functional progenitors delivered to diseased tissue, and prevents correction of underlying pathologic cell population disruptions. Here, we develop a high-resolution method of identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional analysis and advanced bioinformatics. When combined with high-throughput cell surface marker screening, this approach facilitates the rational selection of surface markers for prospective isolation of cell subpopulations with desired transcriptional profiles. We establish the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes diabetic wound healing rates following allogeneic application. We believe this work presents a logical framework for the development of targeted cell therapies that can be customized to any clinical application. PMID:27324848

  20. Comparative Analysis of the Morphology, Ultrastructure, and Glycosylation Pattern of the Jejunum and Ileum of the Wild Rodent Lagostomus maximus.

    PubMed

    Tano De La Hoz, María Florencia; Flamini, Mirta Alicia; Díaz, Alcira Ofelia

    2016-05-01

    Morphological and histochemical analyses were performed to characterize the histology, ultrastructure, and glycosylation pattern of the jejunum and ileum of the wild rodent Lagostomus maximus. Enterocytes, goblet cells, Paneth cells, and enteroendocrine cells were identified in both intestinal epithelia. Two morphological types of enterocytes were identified only in the ileum based on their cytoplasm electron density. Although the histological and ultrastructural examination showed that the epithelia of both anatomical regions were morphologically similar, a certain specialization in their secretory products was evident. The glycosylation pattern of the jejunum and ileum was characterized in situ by histochemical and lectin histochemical methods. Histochemical results revealed the presence of carboxylated and sulfated gycoconjugates in both regions, although sulfomucins were clearly prevalent in the ileum. Sialic acid was highly O-acetylated and particularly abundant in the jejunum. The KOH/PA*/Bh/PAS technique evidenced a more intense histochemical reaction in the jejunal than in the ileum goblet cells, demonstrating a reduction of neutral mucin secretion in the distal small intestine. Further specific differences were revealed by lectin histochemistry. These data evidenced that the nature of mucus varies at different anatomical regions, probably adapted to physiological requirements. PMID:26917039

  1. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments.

    PubMed

    Leng, Ning; Chu, Li-Fang; Barry, Chris; Li, Yuan; Choi, Jeea; Li, Xiaomao; Jiang, Peng; Stewart, Ron M; Thomson, James A; Kendziorski, Christina

    2015-10-01

    Oscillatory gene expression is fundamental to development, but technologies for monitoring expression oscillations are limited. We have developed a statistical approach called Oscope to identify and characterize the transcriptional dynamics of oscillating genes in single-cell RNA-seq data from an unsynchronized cell population. Applying Oscope to a number of data sets, we demonstrated its utility and also identified a potential artifact in the Fluidigm C1 platform. PMID:26301841

  2. Redefining Langerhans Cell Histiocytosis as a Myeloid Dysplasia and Identifying B | Division of Cancer Prevention

    Cancer.gov

    DESCRIPTION (provided by applicant): Redefining Langerhans Cell Histiocytosis as a Myeloid Dysplasia and Identifying Biomarkers for Early Detection and Risk Assessment. This application addresses Program Announcement PA-09-197: Biomarkers for Early Detection of Hematopoietic Malignancies (R01). The overall aim of this project is to identify novel biomarkers that may be used to diagnose and treat patients with Langerhans Cell Histiocytosis (LCH). LCH occurs with similar frequency as other rare malignancies including Hodgkin's lymphoma and AML. |

  3. Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells.

    PubMed

    George, Joshy; Uyar, Asli; Young, Kira; Kuffler, Lauren; Waldron-Francis, Kaiden; Marquez, Eladio; Ucar, Duygu; Trowbridge, Jennifer J

    2016-01-01

    The precise identity of a tumour's cell of origin can influence disease prognosis and outcome. Methods to reliably define tumour cell of origin from primary, bulk tumour cell samples has been a challenge. Here we use a well-defined model of MLL-rearranged acute myeloid leukaemia (AML) to demonstrate that transforming haematopoietic stem cells (HSCs) and multipotent progenitors results in more aggressive AML than transforming committed progenitor cells. Transcriptome profiling reveals a gene expression signature broadly distinguishing stem cell-derived versus progenitor cell-derived AML, including genes involved in immune escape, extravasation and small GTPase signal transduction. However, whole-genome profiling of open chromatin reveals precise and robust biomarkers reflecting each cell of origin tested, from bulk AML tumour cell sampling. We find that bulk AML tumour cells exhibit distinct open chromatin loci that reflect the transformed cell of origin and suggest that open chromatin patterns may be leveraged as prognostic signatures in human AML. PMID:27397025

  4. Ultrastructure and properties of Paecilomyces lilacinus spores.

    PubMed

    Holland, R J; Gunasekera, T S; Williams, K L; Nevalainen, K M H

    2002-10-01

    Strains of the filamentous soil fungus Paecilomyces lilacinus are currently being developed for use as biological control agents against root-knot, cyst, and other plant-parasitic nematodes. The inoculum applied in the field consists mainly of spores. This study was undertaken to examine the size, ultrastructure, and rodlet layers of P. lilacinus spores and the effect of the culture method on structural and functional spore properties. A rodlet layer was identified on aerial spores only. Other differences noted between aerial spores and those produced in submerged culture included the size and appearance of spores and thickness of spore coat layers when examined with transmission electron microscopy. The two spore types differed in UV tolerance, with aerial spores being less sensitive to environmentally relevant UV radiation. Also, viability after drying and storage was better with the aerial spores. Both spore types exhibited similar nematophagous ability. PMID:12489777

  5. An Engineered Cardiac Reporter Cell Line Identifies Human Embryonic Stem Cell-Derived Myocardial Precursors

    PubMed Central

    Mihardja, Shirley S.; Liszewski, Walter; Erle, David J.; Lee, Randall J.; Bernstein, Harold S.

    2011-01-01

    Unlike some organs, the heart is unable to repair itself after injury. Human embryonic stem cells (hESCs) grow and divide indefinitely while maintaining the potential to develop into many tissues of the body. As such, they provide an unprecedented opportunity to treat human diseases characterized by tissue loss. We have identified early myocardial precursors derived from hESCs (hMPs) using an α-myosin heavy chain (αMHC)-GFP reporter line. We have demonstrated by immunocytochemistry and quantitative real-time PCR (qPCR) that reporter activation is restricted to hESC-derived cardiomyocytes (CMs) differentiated in vitro, and that hMPs give rise exclusively to muscle in an in vivo teratoma formation assay. We also demonstrate that the reporter does not interfere with hESC genomic stability. Importantly, we show that hMPs give rise to atrial, ventricular and specialized conduction CM subtypes by qPCR and microelectrode array analysis. Expression profiling of hMPs over the course of differentiation implicate Wnt and transforming growth factor-β signaling pathways in CM development. The identification of hMPs using this αMHC-GFP reporter line will provide important insight into the pathways regulating human myocardial development, and may provide a novel therapeutic reagent for the treatment of cardiac disease. PMID:21245908

  6. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

    PubMed Central

    Worthley, Daniel L.; Churchill, Michael; Compton, Jocelyn T.; Tailor, Yagnesh; Rao, Meenakshi; Si, Yiling; Levin, Daniel; Schwartz, Matthew G.; Uygur, Aysu; Hayakawa, Yoku; Gross, Stefanie; Renz, Bernhard W.; Setlik, Wanda; Martinez, Ashley N.; Chen, Xiaowei; Nizami, Saqib; Lee, Heon Goo; Kang, H. Paco; Caldwell, Jon-Michael; Asfaha, Samuel; Westphalen, C. Benedikt; Graham, Trevor; Jin, Guangchun; Nagar, Karan; Wang, Hongshan; Kheirbek, Mazen A.; Kolhe, Alka; Carpenter, Jared; Glaire, Mark; Nair, Abhinav; Renders, Simon; Manieri, Nicholas; Muthupalani, Sureshkumar; Fox, James G.; Reichert, Maximilian; Giraud, Andrew S.; Schwabe, Robert F.; Pradere, Jean-Phillipe; Walton, Katherine; Prakash, Ajay; Gumucio, Deborah; Rustgi, Anil K.; Stappenbeck, Thaddeus S.; Friedman, Richard A.; Gershon, Michael D.; Sims, Peter; Grikscheit, Tracy; Lee, Francis Y.; Karsenty, Gerard; Mukherjee, Siddhartha; Wang, Timothy C.

    2014-01-01

    The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs). PMID:25594183

  7. Cryosurgery: ultrastructural changes in pancreas tissue after low temperature exposure.

    PubMed

    Korpan, N N

    2007-04-01

    A number of theoretical and experimental studies, both in vitro and in vivo, have been performed to explain the action of low temperatures on tissue. It is now evident that the thermal parameters used in the past for freezing during cryosurgery were not precise; this may have resulted in the failure of treatment. For the first time, this report describes the early ultrastructural features of pancreatic parenchyma after low temperature exposure, i.e., cryosurgery, in vivo. We demonstrate the effect of freeze-thawing processes using temperatures of various intensities. The cryosurgical response of pancreas parenchyma, i.e., ultrastructural cellular changes in pancreas tissue, was investigated. The electronic microscopic analysis showed that, after local cryodestruction at temperatures of -80 degrees C and -180 degrees C, similar processes occurred within the pancreas tissue in the early postcryosurgical phase -- immediately and up to 24 hours after low temperature exposure on tissue. The exocrine pancreatic cells in the center of the cryozone changed upon thawing. Ultrastructural changes in the exocrine pancreatic cells, where the first signs of dystrophic processes had been noticed, were increased. These ultrastructural changes in the pancreatic cells provide a platform to better understand the mechanisms of damage and the pathogenesis of frostbite after cryosurgery. The properties of the pancreas parenchyma response after low temperature exposure provide important insights into the mechanisms of damage and the cryogenic lesion immediately after thawing in cryosurgery. Our new insights prove on the cell level that suddenly and progressively damaged pancreatic cells in the postcryosurgical zone lead to aseptic cryonecrosis and then to aseptic cryoapoptosis of vital normal tissue. The vascular capillary changes and circulatory stagnation demonstrate the anti-angiogenesis mechanism, which, together with cryoaponecrosis and cryoapoptosis, are some of the main mechanisms

  8. Adult Neurogenesis: Ultrastructure of a Neurogenic Niche and Neurovascular Relationships

    PubMed Central

    Chaves da Silva, Paula Grazielle; Benton, Jeanne L.; Beltz, Barbara S.; Allodi, Silvana

    2012-01-01

    The first-generation precursors producing adult-born neurons in the crayfish (Procambarus clarkii) brain reside in a specialized niche located on the ventral surface of the brain. In the present work, we have explored the organization and ultrastructure of this neurogenic niche, using light-level, confocal and electron microscopic approaches. Our goals were to define characteristics of the niche microenvironment, examine the morphological relationships between the niche and the vasculature and observe specializations at the boundary between the vascular cavity located centrally in the niche. Our results show that the niche is almost fully encapsulated by blood vessels, and that cells in the vasculature come into contact with the niche. This analysis also characterizes the ultrastructure of the cell types in the niche. The Type I niche cells are by far the most numerous, and are the only cell type present superficially in the most ventral cell layers of the niche. More dorsally, Type I cells are intermingled with Types II, III and IV cells, which are observed far less frequently. Type I cells have microvilli on their apical cell surfaces facing the vascular cavity, as well as junctional complexes between adjacent cells, suggesting a role in regulating transport from the blood into the niche cells. These studies demonstrate a close relationship between the neurogenic niche and vascular system in P. clarkii. Furthermore, the specializations of niche cells contacting the vascular cavity are also typical of the interface between the blood/cerebrospinal fluid (CSF)-brain barriers of vertebrates, including cells of the subventricular zone (SVZ) producing new olfactory interneurons in mammals. These data indicate that tissues involved in producing adult-born neurons in the crayfish brain use strategies that may reflect fundamental mechanisms preserved in an evolutionarily broad range of species, as proposed previously. The studies described here extend our understanding of

  9. Pharmacogenomic Approach to Identify Drug Sensitivity in Small-Cell Lung Cancer

    PubMed Central

    Wildey, Gary; Chen, Yanwen; Lent, Ian; Stetson, Lindsay; Pink, John; Barnholtz-Sloan, Jill S.; Dowlati, Afshin

    2014-01-01

    There are currently no molecular targeted approaches to treat small-cell lung cancer (SCLC) similar to those used successfully against non-small-cell lung cancer. This failure is attributable to our inability to identify clinically-relevant subtypes of this disease. Thus, a more systematic approach to drug discovery for SCLC is needed. In this regard, two comprehensive studies recently published in Nature, the Cancer Cell Line Encyclopedia and the Cancer Genome Project, provide a wealth of data regarding the drug sensitivity and genomic profiles of many different types of cancer cells. In the present study we have mined these two studies for new therapeutic agents for SCLC and identified heat shock proteins, cyclin-dependent kinases and polo-like kinases (PLK) as attractive molecular targets with little current clinical trial activity in SCLC. Remarkably, our analyses demonstrated that most SCLC cell lines clustered into a single, predominant subgroup by either gene expression or CNV analyses, leading us to take a pharmacogenomic approach to identify subgroups of drug-sensitive SCLC cells. Using PLK inhibitors as an example, we identified and validated a gene signature for drug sensitivity in SCLC cell lines. This gene signature could distinguish subpopulations among human SCLC tumors, suggesting its potential clinical utility. Finally, circos plots were constructed to yield a comprehensive view of how transcriptional, copy number and mutational elements affect PLK sensitivity in SCLC cell lines. Taken together, this study outlines an approach to predict drug sensitivity in SCLC to novel targeted therapeutics. PMID:25198282

  10. Standard melanoma-associated markers do not identify the MM127 metastatic melanoma cell line

    PubMed Central

    Haridas, Parvathi; McGovern, Jacqui A.; Kashyap, Abhishek S.; McElwain, D. L. Sean; Simpson, Matthew J.

    2016-01-01

    Reliable identification of different melanoma cell lines is important for many aspects of melanoma research. Common markers used to identify melanoma cell lines include: S100; HMB-45; and Melan-A. We explore the expression of these three markers in four different melanoma cell lines: WM35; WM793; SK-MEL-28; and MM127. The expression of these markers is examined at both the mRNA and protein level. Our results show that the metastatic cell line, MM127, cannot be detected using any of the commonly used melanoma-associated markers. This implies that it would be very difficult to identify this particular cell line in a heterogeneous sample, and as a result this cell line should be used with care. PMID:27087056

  11. Standard melanoma-associated markers do not identify the MM127 metastatic melanoma cell line.

    PubMed

    Haridas, Parvathi; McGovern, Jacqui A; Kashyap, Abhishek S; McElwain, D L Sean; Simpson, Matthew J

    2016-01-01

    Reliable identification of different melanoma cell lines is important for many aspects of melanoma research. Common markers used to identify melanoma cell lines include: S100; HMB-45; and Melan-A. We explore the expression of these three markers in four different melanoma cell lines: WM35; WM793; SK-MEL-28; and MM127. The expression of these markers is examined at both the mRNA and protein level. Our results show that the metastatic cell line, MM127, cannot be detected using any of the commonly used melanoma-associated markers. This implies that it would be very difficult to identify this particular cell line in a heterogeneous sample, and as a result this cell line should be used with care. PMID:27087056

  12. Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate

    PubMed Central

    Kendrick, Howard; Regan, Joseph L; Magnay, Fiona-Ann; Grigoriadis, Anita; Mitsopoulos, Costas; Zvelebil, Marketa; Smalley, Matthew J

    2008-01-01

    Background Understanding the molecular control of cell lineages and fate determination in complex tissues is key to not only understanding the developmental biology and cellular homeostasis of such tissues but also for our understanding and interpretation of the molecular pathology of diseases such as cancer. The prerequisite for such an understanding is detailed knowledge of the cell types that make up such tissues, including their comprehensive molecular characterisation. In the mammary epithelium, the bulk of the tissue is composed of three cell lineages, namely the basal/myoepithelial, luminal epithelial estrogen receptor positive and luminal epithelial estrogen receptor negative cells. However, a detailed molecular characterisation of the transcriptomic differences between these three populations has not been carried out. Results A whole transcriptome analysis of basal/myoepithelial cells, luminal estrogen receptor negative cells and luminal estrogen receptor positive cells isolated from the virgin mouse mammary epithelium identified 861, 326 and 488 genes as highly differentially expressed in the three cell types, respectively. Network analysis of the transcriptomic data identified a subpopulation of luminal estrogen receptor negative cells with a novel potential role as non-professional immune cells. Analysis of the data for potential paracrine interacting factors showed that the basal/myoepithelial cells, remarkably, expressed over twice as many ligands and cell surface receptors as the other two populations combined. A number of transcriptional regulators were also identified that were differentially expressed between the cell lineages. One of these, Sox6, was specifically expressed in luminal estrogen receptor negative cells and functional assays confirmed that it maintained mammary epithelial cells in a differentiated luminal cell lineage. Conclusion The mouse mammary epithelium is composed of three main cell types with distinct gene expression patterns

  13. Ultrastructure and mitochondrial numbers in pre- and postpubertal pig oocytes.

    PubMed

    Pedersen, Hanne Skovsgaard; Callesen, Henrik; Løvendahl, Peter; Chen, Fenghua; Nyengaard, Jens Randel; Nikolaisen, Nanett Kvist; Holm, Peter; Hyttel, Poul

    2016-04-01

    Prepubertal pig oocytes are associated with lower developmental competence. The aim of this experiment was to conduct an exhaustive survey of oocyte ultrastructure and to use a design-unbiased stereological approach to quantify the numerical density and total number of mitochondria in oocytes with different diameters from pre- and postpubertal pigs. The ultrastructure of smaller prepubertal immature oocytes indicated active cells in close contact with cumulus cells. The postpubertal oocytes were more quiescent cell types. The small prepubertal oocytes had a lower total mitochondrial number, but no differences were observed in mitochondrial densities between groups. Mature postpubertal oocytes adhered to the following characteristics: presence of metaphase II, lack of contact between cumulus cells and oocyte, absence of rough endoplasmic reticulum and Golgi complexes, peripheral location of cortical granules and central localisation of mitochondria, vesicles and lipid droplets. Prepubertal oocytes displayed more variation. The ultrastructure of large pre- and postpubertal oocytes was compatible with higher developmental competence, whereas that of smaller prepubertal oocytes could explain their reduced capacity. The higher number of mitochondria in large pre- and postpubertal oocytes could have an influence on oocyte competence, by increasing the pool of mitochondria available for early embryonic development. PMID:25482576

  14. ABCG2 Transporter Identifies a Population of Clonogenic Human Limbal Epithelial Cells

    PubMed Central

    de Paiva, Cintia S.; Chen, Zhuo; Corrales, Rosa M.; Pflugfelder, Stephen C.; Li, De-Quan

    2010-01-01

    ABCG2, a member of the ATP binding cassette (ABC) transporters, has been identified as a molecular determinant for bone marrow stem cells and proposed as a universal marker for stem cells. This study investigates ABCG2 expression and its potential as a marker that identifies human limbal epithelial stem cells. ABCG2 expression was evaluated by immunofluorescent and immunohistochemical staining, laser scanning confocal microscopy, flow cytometry, and semiquantitative reverse transcription–polymerase chain reaction. Cells selected from primary limbal epithelial cultures by flow cytometry with ABCG2 monoclonal antibody (mAb) or Hoechst 33342 dye staining were evaluated for their gene expression and colony-forming efficiency (CFE). ABCG2 protein was mainly located in the basal cells of limbal epithelia but not in the limbal suprabasal and corneal epithelia. ABCG2 staining was also observed in primary limbal epithelial cultures. Limbal epithelia express higher levels of ABCG2 and ΔNp63 mRNAs than corneal epithelia. Labeling with ABCG2 mAb yielded 2.5%–3.0% positive cells by flow cytometry. The ABCG2-positive cells exhibited greater CFE on a 3T3 fibroblast feeder layer than ABCG2-negative cells. A side population (SP) was detected by the Hoechst 33342 exclusion assay. SP cells displayed stronger expression of ABCG2 and ΔNp63 mRNA and greater CFE than the non-SP cells. In conclusion, these findings demonstrate that ABCG2 transporter was exclusively expressed by limbal basal cells and that the ABCG2-positive and SP cells possess enriched stem cell properties, suggesting for the first time that ABCG2 could serve as a marker to identify the putative limbal epithelial stem cells. PMID:15625123

  15. Label-free haemogram using wavelength modulated Raman spectroscopy for identifying immune-cell subset

    NASA Astrophysics Data System (ADS)

    Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.

    2014-03-01

    Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.

  16. A loss-of-function genetic screening identifies novel mediators of thyroid cancer cell viability.

    PubMed

    Cantisani, Maria Carmela; Parascandolo, Alessia; Perälä, Merja; Allocca, Chiara; Fey, Vidal; Sahlberg, Niko; Merolla, Francesco; Basolo, Fulvio; Laukkanen, Mikko O; Kallioniemi, Olli Pekka; Santoro, Massimo; Castellone, Maria Domenica

    2016-05-10

    RET, BRAF and other protein kinases have been identified as major molecular players in thyroid cancer. To identify novel kinases required for the viability of thyroid carcinoma cells, we performed a RNA interference screening in the RET/PTC1(CCDC6-RET)-positive papillary thyroid cancer cell line TPC1 using a library of synthetic small interfering RNAs (siRNAs) targeting the human kinome and related proteins. We identified 14 hits whose silencing was able to significantly reduce the viability and the proliferation of TPC1 cells; most of them were active also in BRAF-mutant BCPAP (papillary thyroid cancer) and 8505C (anaplastic thyroid cancer) and in RAS-mutant CAL62 (anaplastic thyroid cancer) cells. These included members of EPH receptor tyrosine kinase family as well as SRC and MAPK (mitogen activated protein kinases) families. Importantly, silencing of the identified hits did not affect significantly the viability of Nthy-ori 3-1 (hereafter referred to as NTHY) cells derived from normal thyroid tissue, suggesting cancer cell specificity. The identified proteins are worth exploring as potential novel druggable thyroid cancer targets. PMID:27058903

  17. Ultrastructure of Sheep Primordial Follicles Cultured in the Presence of Indol Acetic Acid, EGF, and FSH

    PubMed Central

    Andrade, Evelyn Rabelo; Maddox-Hyttel, Poul; Landim-Alvarenga, Fernanda Da Cruz; Viana Silva, José Roberto; Alfieri, Amauri Alcindo; Seneda, Marcelo Marcondes; Figueiredo, José Ricardo; Toniolli, Ricardo

    2011-01-01

    The aim of this study was to investigate the ultrastructural characteristics of primordial follicles after culturing of sheep ovarian cortical slices in the presence of indol acetic acid (IAA), Epidermal Growth Factor (EGF), and FSH. To evaluate ultrastructure of primordial follicles cultured in MEM (control) or in MEM containing IAA, EGF, and FSH, fragments of cultured tissue were processes for transmission electron microscopy. Except in the control, primordial follicles cultured in supplemented media for 6 d were ultrastructurally normal. They had oocyte with intact nucleus and the cytoplasm contained heterogeneous-sized lipid droplets and numerous round or elongated mitochondria with intact parallel cristae were observed. Rough endoplasmic reticulum (RER) was rarely found. The granulosa cells cytoplasm contained a great number of mitochondria and abundant RER. In conclusion, the presence of IAA, EGF, and FSH helped to maintain ultrastructural integrity of sheep primordial follicles cultured in vitro. PMID:21188166

  18. High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells

    PubMed Central

    Sharma, Prabhat K; Wong, Emily B; Napier, Ruth J; Bishai, William R; Ndung'u, Thumbi; Kasprowicz, Victoria O; Lewinsohn, Deborah A; Lewinsohn, David M; Gold, Marielle C

    2015-01-01

    Mucosa-associated invariant T (MAIT) cells express the semi-invariant T-cell receptor TRAV1–2 and detect a range of bacteria and fungi through the MHC-like molecule MR1. However, knowledge of the function and phenotype of bacteria-reactive MR1-restricted TRAV1–2+ MAIT cells from human blood is limited. We broadly characterized the function of MR1-restricted MAIT cells in response to bacteria-infected targets and defined a phenotypic panel to identify these cells in the circulation. We demonstrated that bacteria-reactive MR1-restricted T cells shared effector functions of cytolytic effector CD8+ T cells. By analysing an extensive panel of phenotypic markers, we determined that CD26 and CD161 were most strongly associated with these T cells. Using FACS to sort phenotypically defined CD8+ subsets we demonstrated that high expression of CD26 on CD8+ TRAV1–2+ cells identified with high specificity and sensitivity, bacteria-reactive MR1-restricted T cells from human blood. CD161hi was also specific for but lacked sensitivity in identifying all bacteria-reactive MR1-restricted T cells, some of which were CD161dim. Using cell surface expression of CD8, TRAV1–2, and CD26hi in the absence of stimulation we confirm that bacteria-reactive T cells are lacking in the blood of individuals with active tuberculosis and are restored in the blood of individuals undergoing treatment for tuberculosis. PMID:25752900

  19. Pathogenesis of experimental lipid keratopathy. An ultrastructural study of an animal model system.

    PubMed

    Roth, S I; Stock, E L; Siel, J M; Mendelsohn, A; Reddy, C; Preskill, D G; Ghosh, S

    1988-10-01

    The histology and ultrastructure of experimental lipid keratopathy were studied in hypercholesterolemic rabbits in which the insertion of corneal sutures induced vascularization and subsequent lipid deposition in the anterior stroma. Lipid accumulated in the keratocytes, the pericytes and occasionally in the endothelial cells of the capillaries. The lipid-laden keratocytes were concentrated in the region of the capillaries. No lipid was seen in the control rabbits. In the hypercholesterolemic rabbit with sutures, intracellular lipid in the keratocytes was present largely in nonmembrane-limited droplets with smaller amounts of membrane-limited cholesterol crystals and rare numbers of myelin figures. In addition, large, lipid-engorged spherical cells were present. The numerous phagolysosomes seen ultrastructurally suggest that some of these cells probably represent macrophages. Keratocytes and the large, spherical lipid-engorged cells show focal degenerative changes, including pyknotic nuclei, cytoplasmic coagulation and membrane loss, leaving extracellular mixed accumulations of lipid and cytoplasmic organelles. Small numbers of lymphocytes and plasmacytoid cells were present. No corneal lipid was seen in animals with normocholesterolemia, with or without sutures. In hypercholesterolemic animals, a few lipid-laden keratocytes without macrophages were identified even in the absence of vessels. These morphologic studies support the hypothesis that the accumulation of the corneal lipid in this animal model of lipid keratopathy is the result of increased lysosomal uptake of lipid, probably as low density lipoprotein, from the extracellular space by the keratocytes. The rate of metabolism of this lipid is insufficient to clear the cells of the lipid and the subsequent lipid inspissation results in keratocyte death, leading to macrophage accumulation of lipid and free lipid in the stroma. PMID:3170126

  20. Tubulocystic carcinoma of the kidney: a histologic, immunohistochemical, and ultrastructural study.

    PubMed

    Alexiev, Borislav A; Drachenberg, Cinthia B

    2013-05-01

    Tubulocystic carcinoma of the kidney (TCCK) is a tumor entity, which is not yet included in the WHO classification of renal tumors. The histogenesis of this neoplasm is uncertain. This study was undertaken to determine (1) the incidence of TCCK and (2) immunohistochemical and ultrastructural characteristics of those tumors that qualify as TCCK by the current definitions. From January 1, 2003 to December 31, 2012, a total of 615 renal cell carcinomas (RCCs) were seen by the Department of Pathology, University of Maryland Medical Center. Four TCCKs were identified (4/615, <1 %). TCCK is a distinctive group of kidney tumors with a male predominance and noteworthy macroscopic spongy appearance. Microscopically, the tumors were composed of tubules and cysts lined by a single layer of eosinophilic, columnar, cuboidal, flat, or hobnail cells with large nuclei and prominent nucleoli separated by a thin fibrotic stroma. In all TCCKs, the majority of neoplastic cells showed immunohistochemical (CD10(+), RCC(+), vimentin(+), and AMACR(+)) and ultrastructural (abundant long brush border microvilli) characteristics of proximal renal tubules. In few cells, the microvilli were shorter and sparse with cytoplasmic interdigitation analogous to intercalated cells of the collecting ducts. Focal positivity for BerEP4 (a marker preferentially expressed in distal renal tubules) was also noted. The major differential diagnostic considerations are oncocytoma, multilocular cystic renal cell carcinoma, and cystic nephroma/mixed epithelial and stromal tumor of the kidney. TCCK seems to have a favorable prognosis. In the current series, none of the patients had local recurrence or metastatic disease. PMID:23525677

  1. Immunological and ultrastructural studies in acute biphenotypic leukaemia.

    PubMed Central

    Shetty, V; Chitale, A; Matutes, E; Buccheri, V; Morilla, R; Catovsky, D

    1993-01-01

    AIMS--To compare the sensitivity of the ultrastructural method to detect myeloperoxidase (MPO) with light microscopy and immunocytochemistry using an anti-MPO antibody; to examine the expression of lymphoid antigens in relation to MPO activity in blast cells from cases of biphenotypic leukaemia. METHODS--Blast cells from 14 cases of biphenotypic acute leukaemia were analysed. Immunological markers were performed by single or double immunofluorescence staining on a flow cytometer. The presence of MPO was determined by light microscopy, electron microscopy on fixed and unfixed cells, and by immunoalkaline phosphatase with an anti-MPO antibody. The immunogold method was applied at the ultrastructural level to assess the expression of lymphoid and myeloid antigens at the same time as the MPO activity. RESULTS--Six of the 14 cases were initially classified as acute lymphoblastic leukaemia (ALL) and eight as acute myeloid leukaemia (AML). MPO activity was shown at the ultrastructural level in 4-99% blasts from all cases. Six of the 14 were MPO negative by light microscopy and three of these were negative with the antibody anti-MPO. Coexpression of lymphoid antigens (CD19, CD10, or CD2) and MPO was shown by the immunogold method in four out of 11 cases; in seven cases the blasts coexpressed myeloid antigens (CD13, CD33) and MPO. CONCLUSIONS--Electron microscopy is more sensitive for showing MPO than light microscopy and immunocytochemistry; the immunogold method combined with MPO used at the ultrastructural level can help to define the cell lineage involved in biphenotypic leukaemia by highlighting the myeloid component defined by MPO. Images PMID:8227405

  2. Ultrastructural alterations in skeletal muscle fibers of rats after exercise

    NASA Technical Reports Server (NTRS)

    Akuzawa, M.; Hataya, M.

    1982-01-01

    Ultrastructural alterations in skeletal muscle fibers were electron microscopically studied in rats forced to run on the treadmill until all-out. When they were mild and limited to relatively small areas, the reconstruction of filaments ensued within 10 days without infiltration of cells. When they were severe and extensive, phagocytes infiltrated in the lesions and removed degenerative sacroplasmic debris from muscle fibers. A little later, myoblasts appeared and regeneration was accomplished in 30 days in much the same manner as in myogenesis.

  3. A validated gene regulatory network and GWAS identifies early regulators of T cell-associated diseases.

    PubMed

    Gustafsson, Mika; Gawel, Danuta R; Alfredsson, Lars; Baranzini, Sergio; Björkander, Janne; Blomgran, Robert; Hellberg, Sandra; Eklund, Daniel; Ernerudh, Jan; Kockum, Ingrid; Konstantinell, Aelita; Lahesmaa, Riita; Lentini, Antonio; Liljenström, H Robert I; Mattson, Lina; Matussek, Andreas; Mellergård, Johan; Mendez, Melissa; Olsson, Tomas; Pujana, Miguel A; Rasool, Omid; Serra-Musach, Jordi; Stenmarker, Margaretha; Tripathi, Subhash; Viitala, Miro; Wang, Hui; Zhang, Huan; Nestor, Colm E; Benson, Mikael

    2015-11-11

    Early regulators of disease may increase understanding of disease mechanisms and serve as markers for presymptomatic diagnosis and treatment. However, early regulators are difficult to identify because patients generally present after they are symptomatic. We hypothesized that early regulators of T cell-associated diseases could be found by identifying upstream transcription factors (TFs) in T cell differentiation and by prioritizing hub TFs that were enriched for disease-associated polymorphisms. A gene regulatory network (GRN) was constructed by time series profiling of the transcriptomes and methylomes of human CD4(+) T cells during in vitro differentiation into four helper T cell lineages, in combination with sequence-based TF binding predictions. The TFs GATA3, MAF, and MYB were identified as early regulators and validated by ChIP-seq (chromatin immunoprecipitation sequencing) and small interfering RNA knockdowns. Differential mRNA expression of the TFs and their targets in T cell-associated diseases supports their clinical relevance. To directly test if the TFs were altered early in disease, T cells from patients with two T cell-mediated diseases, multiple sclerosis and seasonal allergic rhinitis, were analyzed. Strikingly, the TFs were differentially expressed during asymptomatic stages of both diseases, whereas their targets showed altered expression during symptomatic stages. This analytical strategy to identify early regulators of disease by combining GRNs with genome-wide association studies may be generally applicable for functional and clinical studies of early disease development. PMID:26560356

  4. Tridimensional ultrastructure and glycolipid pattern studies of Trypanosoma dionisii.

    PubMed

    Oliveira, Miriam Pires de Castro; Ramos, Thiago Cesar Prata; Pinheiro, Adriana Maria V N; Bertini, Silvio; Takahashi, Helio Kiyoshi; Straus, Anita Hilda; Haapalainen, Edna Freymuller

    2013-12-01

    Trypanosoma (Schizotrypanum) dionisii is a non-pathogenic bat trypanosome closely related to Trypanosoma cruzi, the etiological agent of Chaga's disease. Both kinetoplastids present similar morphological stages and are able to infect mammalian cells in culture. In the present study we examined 3D ultrastructure aspects of the two species by serial sectioning epimastigote and trypomastigote forms, and identified common carbohydrate epitopes expressed in T. dionisii, T. cruzi and Leishmania major. A major difference in 3D morphology was that T. dionisii epimastigote forms present larger multivesicular structures, restricted to the parasite posterior region. These structures could be related to T. cruzi reservosomes and are also rich in cruzipain, the major cysteine-proteinase of T. cruzi. We analyzed the reactivity of two monoclonal antibodies: MEST-1 directed to galactofuranose residues of glycolipids purified from Paracoccidioides brasiliensis, and BST-1 directed to glycolipids purified from T. cruzi epimastigotes. Both antibodies were reactive with T. dionisii epimastigotes by indirect immunofluorescense, but we noted differences in the location and intensity of the epitopes, when compared to T. cruzi. In summary, despite similar features in cellular structure and life cycle of T. dionisii and T. cruzi, we observed a unique morphological characteristic in T. dionisii that deserves to be explored. PMID:23933185

  5. Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis

    PubMed Central

    Yang, Jian; Chi, Chi; Liu, Zhen; Yang, Gang; Shen, Zong-Ji; Yang, Xiao-Jun

    2015-01-01

    Acute salpingitis (AS) is an inflammatory disease which causes severe damage to a subset of classically described cells lining in oviduct wall and contributes to interstitial fibrosis and fertility problems. Telocytes (TCs), a newly discovered peculiar type of stromal cells, have been identified in many organs, including oviduct, with proposed multiple potential bio-functions. However, with recent increasing reports regarding TCs alterations in disease-affected tissues, there is still lack of evidence about TCs involvement in AS-affected oviduct tissues and potential pathophysiological roles. We presently identified normal TCs by their characteristic ultrastructural features and immunophenotype. However, in AS-affected oviduct tissues, TCs displayed multiple ultrastructural damage both in cellular body and prolongations, with obvious loss of TCs and development of tissue fibrosis. Furthermore, TCs lose their interstitial 3-D network connected by homocellular or heterocellular junctions between TCs and adjacent cells. And especially, TCs connected to the activated immunocytes (mononuclear cells, eosinophils) and affected local immune state (repression or activation). Meanwhile, massive neutrophils infiltration and overproduced Inducible Nitric Oxide Synthase (iNOS), COX-2, suggested mechanism of inflammatory-induced TCs damage. Consequently, TCs damage might contribute to AS-induced structural and reproductive functional abnormalities of oviduct, probably via: (i) substances, energy and functional insufficiency, presumably, e.g. TC-specific genetic material profiles, ion channels, cytoskeletal elements, Tps dynamics, etc., (ii) impaired TCs-mediated multicellular signalling, such as homeostasis/angiogenesis, tissue repair/regeneration, neurotransmission, (iii) derangement of 3-D network and impaired mechanical support for TCs-mediated multicellular signals within the stromal compartment, consequently induced interstitial fibrosis, (iv) involvement in local

  6. Morphologic and Gene Expression Criteria for Identifying Human Induced Pluripotent Stem Cells

    PubMed Central

    Wakao, Shohei; Kitada, Masaaki; Kuroda, Yasumasa; Ogura, Fumitaka; Murakami, Toru; Niwa, Akira; Dezawa, Mari

    2012-01-01

    Induced pluripotent stem (iPS) cells can be generated from somatic cells by the forced expression of four factors, Oct3/4, Sox2, Klf4, and c-Myc. While a great variety of colonies grow during induction, only a few of them develop into iPS cells. Researchers currently use visual observation to identify iPS cells and select colonies resembling embryonic stem (ES) cells, and there are no established objective criteria. Therefore, we exhaustively analyzed the morphology and gene expression of all the colonies generated from human fibroblasts after transfection with four retroviral vectors encoding individual factors (192 and 203 colonies in two experiments) and with a single polycistronic retroviral vector encoding all four factors (199 and 192 colonies in two experiments). Here we demonstrate that the morphologic features of emerged colonies can be categorized based on six parameters, and all generated colonies that could be passaged were classified into seven subtypes in colonies transfected with four retroviral vectors and six subtypes with a single polycistronic retroviral vector, both including iPS cell colonies. The essential qualifications for iPS cells were: cells with a single nucleolus; nucleus to nucleolus (N/Nls) ratio ∼2.19: cell size ∼43.5 µm2: a nucleus to cytoplasm (N/C) ratio ∼0.87: cell density in a colony ∼5900 cells/mm2: and number of cell layer single. Most importantly, gene expression analysis revealed for the first time that endogenous Sox2 and Cdx2 were expressed specifically in iPS cells, whereas Oct3/4 and Nanog, popularly used markers for identifying iPS cells, are expressed in colonies other than iPS cells, suggesting that Sox2 and Cdx2 are reliable markers for identifying iPS cells. Our findings indicate that morphologic parameters and the expression of endogenous Sox2 and Cdx2 can be used to accurately identify iPS cells. PMID:23272044

  7. A genomics approach to identify susceptibilities of breast cancer cells to “fever-range” hyperthermia

    PubMed Central

    2014-01-01

    Background Preclinical and clinical studies have shown for decades that tumor cells demonstrate significantly enhanced sensitivity to “fever range” hyperthermia (increasing the intratumoral temperature to 42-45°C) than normal cells, although it is unknown why cancer cells exhibit this distinctive susceptibility. Methods To address this issue, mammary epithelial cells and three malignant breast cancer lines were subjected to hyperthermic shock and microarray, bioinformatics, and network analysis of the global transcription changes was subsequently performed. Results Bioinformatics analysis differentiated the gene expression patterns that distinguish the heat shock response of normal cells from malignant breast cancer cells, revealing that the gene expression profiles of mammary epithelial cells are completely distinct from malignant breast cancer lines following this treatment. Using gene network analysis, we identified altered expression of transcripts involved in mitotic regulators, histones, and non-protein coding RNAs as the significant processes that differed between the hyperthermic response of mammary epithelial cells and breast cancer cells. We confirmed our data via qPCR and flow cytometric analysis to demonstrate that hyperthermia specifically disrupts the expression of key mitotic regulators and G2/M phase progression in the breast cancer cells. Conclusion These data have identified molecular mechanisms by which breast cancer lines may exhibit enhanced susceptibility to hyperthermic shock. PMID:24511912

  8. Brachyury identifies a class of enteroendocrine cells in normal human intestinal crypts and colorectal cancer

    PubMed Central

    Pinto, Filipe; Sammut, Stephen J.; Williams, Geraint T.; Gollins, Simon; McFarlane, Ramsay J.; Reis, Rui Manuel; Wakeman, Jane A.

    2016-01-01

    Normal homeostasis of adult intestinal epithelium and repair following tissue damage is maintained by a balance of stem and differentiated cells, many of which are still only poorly characterised. Enteroendocrine cells of the gut are a small population of differentiated, secretory cells that are critical for integrating nutrient sensing with metabolic responses, dispersed amongst other epithelial cells. Recent evidence suggests that sub-sets of secretory enteroendocrine cells can act as reserve stem cells. Given the link between cells with stem-like properties and cancer, it is important that we identify factors that might provide a bridge between the two. Here, we identify a sub-set of chromogranin A-positive enteroendocrine cells that are positive for the developmental and cancer-associated transcription factor Brachyury in normal human small intestinal and colonic crypts. Whilst chromogranin A-positive enteroendocrine cells are also Brachyury-positive in colorectal tumours, expression of Brachyury becomes more diffuse in these samples, suggesting a more widespread function in cancer. The finding of the developmental transcription factor Brachyury in normal adult human intestinal crypts may extend the functional complexity of enteroendocrine cells and serves as a platform for assessment of the molecular processes of intestinal homeostasis that underpins our understanding of human health, cancer and aging. PMID:26862851

  9. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity.

    PubMed

    McMillin, Douglas W; Delmore, Jake; Weisberg, Ellen; Negri, Joseph M; Geer, D Corey; Klippel, Steffen; Mitsiades, Nicholas; Schlossman, Robert L; Munshi, Nikhil C; Kung, Andrew L; Griffin, James D; Richardson, Paul G; Anderson, Kenneth C; Mitsiades, Constantine S

    2010-04-01

    Conventional anticancer drug screening is typically performed in the absence of accessory cells of the tumor microenvironment, which can profoundly alter antitumor drug activity. To address this limitation, we developed the tumor cell-specific in vitro bioluminescence imaging (CS-BLI) assay. Tumor cells (for example, myeloma, leukemia and solid tumors) stably expressing luciferase are cultured with nonmalignant accessory cells (for example, stromal cells) for selective quantification of tumor cell viability, in presence versus absence of stromal cells or drug treatment. CS-BLI is high-throughput scalable and identifies stroma-induced chemoresistance in diverse malignancies, including imatinib resistance in leukemic cells. A stroma-induced signature in tumor cells correlates with adverse clinical prognosis and includes signatures for activated Akt, Ras, NF-kappaB, HIF-1alpha, myc, hTERT and IRF4; for biological aggressiveness; and for self-renewal. Unlike conventional screening, CS-BLI can also identify agents with increased activity against tumor cells interacting with stroma. One such compound, reversine, shows more potent activity in an orthotopic model of diffuse myeloma bone lesions than in conventional subcutaneous xenografts. Use of CS-BLI, therefore, enables refined screening of candidate anticancer agents to enrich preclinical pipelines with potential therapeutics that overcome stroma-mediated drug resistance and can act in a synthetic lethal manner in the context of tumor-stroma interactions. PMID:20228816

  10. Epigenetic Landscapes Explain Partially Reprogrammed Cells and Identify Key Reprogramming Genes

    PubMed Central

    Lang, Alex H.; Li, Hu; Collins, James J.; Mehta, Pankaj

    2014-01-01

    A common metaphor for describing development is a rugged “epigenetic landscape” where cell fates are represented as attracting valleys resulting from a complex regulatory network. Here, we introduce a framework for explicitly constructing epigenetic landscapes that combines genomic data with techniques from spin-glass physics. Each cell fate is a dynamic attractor, yet cells can change fate in response to external signals. Our model suggests that partially reprogrammed cells are a natural consequence of high-dimensional landscapes, and predicts that partially reprogrammed cells should be hybrids that co-express genes from multiple cell fates. We verify this prediction by reanalyzing existing datasets. Our model reproduces known reprogramming protocols and identifies candidate transcription factors for reprogramming to novel cell fates, suggesting epigenetic landscapes are a powerful paradigm for understanding cellular identity. PMID:25122086

  11. Confocal Raman data analysis enables identifying apoptosis of MCF-7 cells caused by anticancer drug paclitaxel

    NASA Astrophysics Data System (ADS)

    Salehi, Hamideh; Middendorp, Elodie; Panayotov, Ivan; Dutilleul, Pierre-Yves Collard; Vegh, Attila-Gergely; Ramakrishnan, Sathish; Gergely, Csilla; Cuisinier, Frederic

    2013-05-01

    Confocal Raman microscopy is a noninvasive, label-free imaging technique used to study apoptosis of live MCF-7 cells. The images are based on Raman spectra of cells components, and their apoptosis is monitored through diffusion of cytochrome c in cytoplasm. K-mean clustering is used to identify mitochondria in cells, and correlation analysis provides the cytochrome c distribution inside the cells. Our results demonstrate that incubation of cells for 3 h with 10 μM of paclitaxel does not induce apoptosis in MCF-7 cells. On the contrary, incubation for 30 min at a higher concentration (100 μM) of paclitaxel induces gradual release of the cytochrome c into the cytoplasm, indicating cell apoptosis via a caspase independent pathway.

  12. Ultrastructure of the root cap of Arabidopsis Thaliana L. Heynh under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Peculiarities of the ultrastructural organization of Arabidopsis root cap cells grown from the stage of two cotyledonous leaves in the Svetoblok-1 apparatus aboard the Salyut 6 research orbital station and in the laboratory are assessed. It is established that under conditions of real space flight vacuolization of the root cap cells increses considerably compared to the control variant. Changes in the topography and ulstrastructure of amyloplasts as well as lysis of cell walls are observed in the material under study. An assumption is advanced on analogous cell responses observed at the ultrastructural level to weightlessness and clinostatic conditions.

  13. Tim-3 identifies exhausted follicular helper T cells in breast cancer patients.

    PubMed

    Zhu, Shiguang; Lin, Jun; Qiao, Guangdong; Wang, Xingmiao; Xu, Yanping

    2016-09-01

    Breast cancer is the most common cancer diagnosed in women worldwide. Although a series of treatment options have improved the overall 5-year survival rate to 90%, individual responses still vary from patient to patient. New evidence suggested that the infiltration of CXCL13-expressing CD4(+) follicular helper cells (Tfh) in breast tumor predicted better survival. Here, we examined the regulation of Tfh function in breast cancer patients in depth. We found that the frequencies of circulating Tfh cells were not altered in breast cancer patients compared to healthy controls. However, the expression of PD-1 and Tim-3 in Tfh cells was significantly elevated in breast cancer patients. Interestingly, we observed a preferential upregulation of PD-1 in Tim-3(+) Tfh cells compared to Tim-3(-) Tfh cells. Coexpression of PD-1 and Tim-3 is typically a hallmark of functional exhaustion in chronic virus infections and tumor. To examine whether Tim-3(+) identifies exhausted Tfh cells, we stimulated Tfh cells with anti-CD3/CD28, and found that Tim-3(+) T cells expressed reduced frequencies of chemokine CXCL13 and cytokine interleukin 21 (IL-21), and contained fewer proliferating cells, than Tim-3(-) Tfh cells. Compared to those cocultured with Tim-3(-) Tfh cells, naive B cells cocultured with Tim-3(+) Tfh cells resulted in significantly less IgM, IgG and IgA production after 12 day incubation, demonstrating a reduction in Tim-3(+) Tfh-mediated B cell help. Moreover, the frequencies of Tim-3(+) Tfh cells in resected breast tumor were further upregulated than autologous blood, suggesting a participation of Tim-3(+) Tfh cells in tumor physiology. Overall, the data presented here provided new insight in the regulation of Tfh cells in breast cancer patients. PMID:27156907

  14. Aldehyde Dehydrogenase Activity Identifies a Population of Human Skeletal Muscle Cells With High Myogenic Capacities

    PubMed Central

    Vauchez, Karine; Marolleau, Jean-Pierre; Schmid, Michel; Khattar, Patricia; Chapel, Alain; Catelain, Cyril; Lecourt, Séverine; Larghéro, Jérôme; Fiszman, Marc; Vilquin, Jean-Thomas

    2009-01-01

    Aldehyde dehydrogenase 1A1 (ALDH) activity is one hallmark of human bone marrow (BM), umbilical cord blood (UCB), and peripheral blood (PB) primitive progenitors presenting high reconstitution capacities in vivo. In this study, we have identified ALDH+ cells within human skeletal muscles, and have analyzed their phenotypical and functional characteristics. Immunohistofluorescence analysis of human muscle tissue sections revealed rare endomysial cells. Flow cytometry analysis using the fluorescent substrate of ALDH, Aldefluor, identified brightly stained (ALDHbr) cells with low side scatter (SSClo), in enzymatically dissociated muscle biopsies, thereafter abbreviated as SMALD+ (for skeletal muscle ALDH+) cells. Phenotypical analysis discriminated two sub-populations according to CD34 expression: SMALD+/CD34− and SMALD+/CD34+ cells. These sub-populations did not initially express endothelial (CD31), hematopoietic (CD45), and myogenic (CD56) markers. Upon sorting, however, whereas SMALD+/CD34+ cells developed in vitro as a heterogeneous population of CD56− cells able to differentiate in adipoblasts, the SMALD+/CD34− fraction developed in vitro as a highly enriched population of CD56+ myoblasts able to form myotubes. Moreover, only the SMALD+/CD34− population maintained a strong myogenic potential in vivo upon intramuscular transplantation. Our results suggest that ALDH activity is a novel marker for a population of new human skeletal muscle progenitors presenting a potential for cell biology and cell therapy. PMID:19738599

  15. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL

    PubMed Central

    O'Malley, John T.; Williamson, David W.; Scott, Laura-Louise; Elco, Christopher P.; Teague, Jessica E.; Gehad, Ahmed; Lowry, Elizabeth L.; LeBoeuf, Nicole R.; Krueger, James G.; Robins, Harlan S.; Kupper, Thomas S.; Clark, Rachael A.

    2016-01-01

    Early diagnosis of CTCL is difficult and takes on average six years after presentation, in part because the clinical appearance and histopathology of CTCL can resemble that of benign inflammatory skin diseases. Detection of a malignant T cell clone is critical in making the diagnosis of CTCL but the TCRγ PCR analysis in current clinical use detect clones in only a subset of patients. High-throughput TCR sequencing (HTS) detected T cell clones in 46/46 CTCL patients, was more sensitive and specific than TCRγ PCR, and successfully discriminated CTCL from benign inflammatory diseases. HTS also accurately assessed responses to therapy and facilitated diagnosis of disease recurrence. In patients with new skin lesions and no involvement of blood by flow cytometry, HTS demonstrated hematogenous spread of small numbers of malignant T cells. Analysis of CTCL TCRγ genes demonstrated that CTCL is a malignancy derived from mature T cells. There was a maximal T cell density in skin in benign inflammatory diseases that was exceeded in CTCL, suggesting a niche of finite size may exist for benign T cells in skin. Lastly, immunostaining demonstrated that the malignant T cell clones in mycosis fungoides and leukemic CTCL localized to different anatomic compartments in the skin. In summary, HTS accurately diagnosed CTCL in all stages, discriminated CTCL from benign inflammatory skin diseases and provided insights into the cell of origin and location of malignant CTCL cells in skin. PMID:26446955

  16. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    PubMed Central

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-01-01

    Abstract. Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ∼16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations. PMID:26160347

  17. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds

    NASA Astrophysics Data System (ADS)

    Holt, David; Parthasarathy, Ashwin B.; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G.; Singhal, Sunil

    2015-07-01

    Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ˜16. Ten animals showed no residual tumor cells in the wound bed (mean SBR<2, P<0.001). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15, and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations.

  18. Intraoperative near-infrared fluorescence imaging and spectroscopy identifies residual tumor cells in wounds.

    PubMed

    Holt, David; Parthasarathy, Ashwin B; Okusanya, Olugbenga; Keating, Jane; Venegas, Ollin; Deshpande, Charuhas; Karakousis, Giorgos; Madajewski, Brian; Durham, Amy; Nie, Shuming; Yodh, Arjun G; Singhal, Sunil

    2015-07-01

    Surgery is the most effective method to cure patients with solid tumors, and 50% of all cancer patients undergo resection. Local recurrences are due to tumor cells remaining in the wound, thus we explore near-infrared (NIR) fluorescence spectroscopy and imaging to identify residual cancer cells after surgery. Fifteen canines and two human patients with spontaneously occurring sarcomas underwent intraoperative imaging. During the operation, the wounds were interrogated with NIR fluorescence imaging and spectroscopy. NIR monitoring identified the presence or absence of residual tumor cells after surgery in 14/15 canines with a mean fluorescence signal-to-background ratio (SBR) of ∼16 . Ten animals showed no residual tumor cells in the wound bed (mean SBR<2 , P<0.001 ). None had a local recurrence at >1-year follow-up. In five animals, the mean SBR of the wound was >15 , and histopathology confirmed tumor cells in the postsurgical wound in four/five canines. In the human pilot study, neither patient had residual tumor cells in the wound bed, and both remain disease free at >1.5-year follow up. Intraoperative NIR fluorescence imaging and spectroscopy identifies residual tumor cells in surgical wounds. These observations suggest that NIR imaging techniques may improve tumor resection during cancer operations. PMID:26160347

  19. Heterogeneous Vesicles in Mucous Epithelial Cells of Posterior Esophagus of Chinese Giant Salamander (Andrias Davidianus)

    PubMed Central

    Zhang, H.; Zhong, S.; Ge, T.; Peng, S.; Yu, P.; Zhou, Z.; Guo, X.

    2015-01-01

    The Chinese giant salamander belongs to an old lineage of salamanders and endangered species. Many studies of breeding and disease regarding this amphibian had been implemented. However, the studies on the ultrastructure of this amphibian are rare. In this work, we provide a histological and ultra-structural investigation on posterior esophagus of Chinese giant salamander. The sections of amphibian esophagus were stained by hematoxylin & eosin (H&E). Moreover, the esophageal epithelium was observed by transmission electron microscopy (TEM). The results showed that esophageal epithelium was a single layer epithelium, which consisted of mucous cells and columnar cells. The esophageal glands were present in submucosa. The columnar cells were ciliated. According to the diverging ultrastructure of mucous vesicles, three types of mucous cells could be identified in the esophageal mucosa: i) electron-lucent vesicles mucous cell (ELV-MC); ii) electron-dense vesicles mucous cell (EDV-MC); and iii) mixed vesicles mucous cell (MV-MC). PMID:26428885

  20. Genome-wide Analysis Identifies Bcl6-Controlled Regulatory Networks during T Follicular Helper Cell Differentiation.

    PubMed

    Liu, Xindong; Lu, Huiping; Chen, Tingting; Nallaparaju, Kalyan C; Yan, Xiaowei; Tanaka, Shinya; Ichiyama, Kenji; Zhang, Xia; Zhang, Li; Wen, Xiaofeng; Tian, Qiang; Bian, Xiu-wu; Jin, Wei; Wei, Lai; Dong, Chen

    2016-02-23

    T follicular helper (Tfh) cell is a unique T cell subset specialized in promoting humoral immunity. B-cell lymphoma 6 protein (Bcl6) has been identified as an obligatory transcription factor in Tfh cells; however, the molecular mechanism underlying Bcl6 function remains largely unknown. Here, we defined Bcl6 target genes in Tfh cells by analyzing genome-wide Bcl6 occupancy together with transcriptome profiling. With consensus sequences being different from those in Th9, B cells, and macrophages, Bcl6 binding in Tfh cell was closely associated with a decrease in 5-hydroxymethylcytosine (5hmC). Importantly, Bcl6 promoted Tfh cell differentiation through antagonizing IL-7R (CD127)/signal transducer and activator of transcription (STAT) 5 axis; deletion of the Bcl6 gene in T cells resulted in enhanced IL-7R-STAT5 signaling and substantial expansion of CD127(hi) non-Tfh cells. Thus, our study systemically examines Bcl6-controlled regulatory networks and provides important insights into Bcl6's biological functions in Tfh cells. PMID:26876184

  1. Ph+/VE-cadherin+ identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells.

    PubMed

    Wang, Lin; O'Leary, Heather; Fortney, James; Gibson, Laura F

    2007-11-01

    Although leukemic stem cells (LSCs) show a symbiotic relationship with bone marrow microenvironmental niches, the mechanism by which the marrow microenvironment contributes to self-renewal and proliferation of LSCs remains elusive. In the present study, we identified a unique subpopulation of Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL) cells coexpressing markers of endothelial cells (including VE-cadherin, PECAM-1, and Flk-1) and committed B-lineage progenitors. After long-term coculture with bone marrow stromal cells, tumor cells formed hematopoietic colonies and cords, expressed early stem- cell markers, and showed endothelial sprouting. Gene expression profiles of LSCs were altered in the presence of stromal cell contact. Stromal cell contact promoted leukemic cell VE-cadherin expression, stabilized beta-catenin, and up-regulated Bcr-abl fusion gene expression. Our study indicates that these specific tumor cells are uniquely positioned to respond to microenvironment-derived self-renewing and proliferative cues. Ph(+)/VE-cadherin(+) tumor subpopulation circumvents the requirement of exogenous Wnt signaling for self-renewal through stromal cell support of leukemic cell VE-cadherin expression and up-regulated Bcr-abl tyrosine kinase activity. These data suggest that strategies targeting signals in the marrow microenvironment that amplify the Bcr-abl/VE-cadherin/beta-catenin axis may have utility in sensitizing drug-resistant leukemic stem cells. PMID:17638851

  2. Resolving Tumor Heterogeneity: Genes Involved in Chordoma Cell Development Identified by Low-Template Analysis of Morphologically Distinct Cells

    PubMed Central

    Wagner, Karin; Meditz, Katharina; Kolb, Dagmar; Feichtinger, Julia; Thallinger, Gerhard G.; Quehenberger, Franz; Liegl-Atzwanger, Bernadette; Rinner, Beate

    2014-01-01

    The classical sacrococcygeal chordoma tumor presents with a typical morphology of lobulated myxoid tumor tissue with cords, strands and nests of tumor cells. The population of cells consists of small non-vacuolated cells, intermediate cells with a wide range of vacuolization and large heavily vacuolated (physaliferous) cells. To date analysis was only performed on bulk tumor mass because of its rare incidence, lack of suited model systems and technical limitations thereby neglecting its heterogeneous composition. We intended to clarify whether the observed cell types are derived from genetically distinct clones or represent different phenotypes. Furthermore, we aimed at elucidating the differences between small non-vacuolated and large physaliferous cells on the genomic and transcriptomic level. Phenotype-specific analyses of small non-vacuolated and large physaliferous cells in two independent chordoma cell lines yielded four candidate genes involved in chordoma cell development. UCHL3, coding for an ubiquitin hydrolase, was found to be over-expressed in the large physaliferous cell phenotype of MUG-Chor1 (18.7-fold) and U-CH1 (3.7-fold) cells. The mannosyltransferase ALG11 (695-fold) and the phosphatase subunit PPP2CB (18.6-fold) were found to be up-regulated in large physaliferous MUG-Chor1 cells showing a similar trend in U-CH1 cells. TMEM144, an orphan 10-transmembrane family receptor, yielded contradictory data as cDNA microarray analysis showed up- but RT-qPCR data down-regulation in large physaliferous MUG-Chor1 cells. Isolation of few but morphologically identical cells allowed us to overcome the limitations of bulk analysis in chordoma research. We identified the different chordoma cell phenotypes to be part of a developmental process and discovered new genes linked to chordoma cell development representing potential targets for further research in chordoma tumor biology. PMID:24503940

  3. Ultrastructural observations on the caecum of the rabbit.

    PubMed Central

    Ross, J A; Scott, A; Gardner, I C

    1989-01-01

    The caecal mucosa of the rabbit has been studied using transmission electron microscopy and its fine structure is considered in the light of its known secretory and absorptive capacities. The luminal surface consists of columnar absorptive epithelium while the crypts are lined with glandular epithelium comprising undifferentiated cells, goblet cells containing dark and light mucigenous granules, and intra-epithelial cells. Endocrine cells occur more commonly in the cryptal epithelium and two cell types have been recognised which correspond to EC and L cells respectively. The lamina propria includes lymphocytes, plasma cells, mast cell and smooth muscle cells. There is little ultrastructural variation within mucosal cells along the length of the caecum. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:2606789

  4. HEPATOBLASTOMAS IN THE MUMMICHOG, FUNDULUS HETEROCLITUS (L.), FROM A CREOSOTE-CONTAMINATED ENVIRONMENT: A HISTOLOGIC, ULTRASTRUCTURAL AND IMMUNOHISTOCHEMICAL STUDY

    EPA Science Inventory

    A detailed histologic and ultrastructural description of two cases of hepatoblastoma, a primitive liver cell neoplasm, is provided from mummichog, Fundulus heteroclitus(L.), inhabiting a creosote-contaminated site in the Elizabeth River, Virginia, USA. Both neoplasms were multifo...

  5. Tumor-initiating and -propagating cells: cells that we would like to identify and control.

    PubMed

    Tysnes, Berit Bølge

    2010-07-01

    Identification of the cell types capable of initiating and sustaining growth of the neoplastic clone in vivo is a fundamental problem in cancer research. It is likely that tumor growth can be sustained both by rare cancer stem-like cells and selected aggressive clones and that the nature of the mutations, the cell of origin, and its environment will contribute to tumor propagation. Genomic instability, suggested as a driving force in tumorigenesis, may be induced by genetic and epigenetic changes. The feature of self-renewal in stem cells is shared with tumor cells, and deviant function of the stem cell regulatory networks may, in complex ways, contribute to malignant transformation and the establishment of a cancer stem cell-like phenotype. Understanding the nature of the more quiescent cancer stem-like cells and their niches has the potential to develop novel cancer therapeutic protocols including pharmacological targeting of self-renewal pathways. Drugs that target cancer-related inflammation may have the potential to reeducate a tumor-promoting microenvironment. Because most epigenetic modifications may be reversible, DNA methylation and histone deacetylase inhibitors can be used to induce reexpression of genes that have been silenced epigenetically. Design of therapies that eliminate cancer stem-like cells without eliminating normal stem cells will be important. Further insight into the mechanisms by which pluripotency transcription factors (e.g., OCT4, SOX2, and Nanog), polycomb repressive complexes and microRNA balance selfrenewal and differentiation will be essential for our understanding of both embryonic differentiation and human carcinogenesis and for the development of new treatment strategies. PMID:20651980

  6. Tumor-Initiating and -Propagating Cells: Cells That We Would Like to Identify and Control1

    PubMed Central

    Tysnes, Berit Bølge

    2010-01-01

    Identification of the cell types capable of initiating and sustaining growth of the neoplastic clone in vivo is a fundamental problem in cancer research. It is likely that tumor growth can be sustained both by rare cancer stem-like cells and selected aggressive clones and that the nature of the mutations, the cell of origin, and its environment will contribute to tumor propagation. Genomic instability, suggested as a driving force in tumorigenesis, may be induced by genetic and epigenetic changes. The feature of self-renewal in stem cells is shared with tumor cells, and deviant function of the stem cell regulatory networks may, in complex ways, contribute to malignant transformation and the establishment of a cancer stem cell-like phenotype. Understanding the nature of the more quiescent cancer stem-like cells and their niches has the potential to develop novel cancer therapeutic protocols including pharmacological targeting of self-renewal pathways. Drugs that target cancer-related inflammation may have the potential to reeducate a tumor-promoting microenvironment. Because most epigenetic modifications may be reversible, DNA methylation and histone deacetylase inhibitors can be used to induce reexpression of genes that have been silenced epigenetically. Design of therapies that eliminate cancer stem-like cells without eliminating normal stem cells will be important. Further insight into the mechanisms by which pluripotency transcription factors (e.g., OCT4, SOX2, and Nanog), polycomb repressive complexes and microRNA balance selfrenewal and differentiation will be essential for our understanding of both embryonic differentiation and human carcinogenesis and for the development of new treatment strategies. PMID:20651980

  7. High-throughput genotoxicity assay identifies antioxidants as inducers of DNA damage response and cell death

    PubMed Central

    Fox, Jennifer T.; Sakamuru, Srilatha; Huang, Ruili; Teneva, Nedelina; Simmons, Steven O.; Xia, Menghang; Tice, Raymond R.; Austin, Christopher P.; Myung, Kyungjae

    2012-01-01

    Human ATAD5 is a biomarker for identifying genotoxic compounds because ATAD5 protein levels increase posttranscriptionally in response to DNA damage. We screened over 4,000 compounds with a cell-based quantitative high-throughput ATAD5-luciferase assay detecting genotoxic compounds. We identified 22 antioxidants, including resveratrol, genistein, and baicalein, that are currently used or investigated for the treatment of cardiovascular disease, type 2 diabetes, osteopenia, osteoporosis, and chronic hepatitis, as well as for antiaging. Treatment of dividing cells with these compounds induced DNA damage and resulted in cell death. Despite their genotoxic effects, resveratrol, genistein, and baicalein did not cause mutagenesis, which is a major side effect of conventional anticancer drugs. Furthermore, resveratrol and genistein killed multidrug-resistant cancer cells. We therefore propose that resveratrol, genistein, and baicalein are attractive candidates for improved chemotherapeutic agents. PMID:22431602

  8. Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure

    SciTech Connect

    Plomp, M; Leighton, T J; Wheeler, K E; Pitesky, M E; Malkin, A J

    2005-11-21

    Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of {approx}11 nm thick rodlets, having a periodicity of {approx}8 nm. We present here further AFM ultrastructural investigations of air-dried and fully hydrated spore surface architecture. In the rodlet layer, planar and point defects, as well as domain boundaries, similar to those described for inorganic and macromolecular crystals, were identified. For several Bacillus species, rodlet structure assembly and architectural variation appear to be a consequence of species-specific nucleation and crystallization mechanisms that regulate the formation of the outer spore coat. We propose a unifying mechanism for nucleation and self-assembly of this crystalline layer on the outer spore coat surface.

  9. Axon growth and guidance genes identify T-dependent germinal centre B cells.

    PubMed

    Yu, Di; Cook, Matthew C; Shin, Dong-Mi; Silva, Diego G; Marshall, Jennifer; Toellner, Kai-Michael; Havran, Wendy L; Caroni, Pico; Cooke, Michael P; Morse, Herbert C; MacLennan, Ian C M; Goodnow, Christopher C; Vinuesa, Carola G

    2008-01-01

    Selection of B cells subjected to hypermutation in germinal centres (GC) during T cell-dependent (TD) antibody responses yields memory cells and long-lived plasma cells that produce high affinity antibodies biased to foreign antigens rather than self-antigens. GC also form in T-independent (TI) responses to polysaccharide antigens but failed selection results in GC involution and memory cells are not generated. To date there are no markers that allow phenotypic distinction of T-dependent and TI germinal centre B cells. We compared the global gene expression of GC B cells purified from mice immunized with either TD or TI antigens and identified eighty genes that are differentially expressed in TD GC. Significantly, the largest cluster comprises genes involved in growth and guidance of neuron axons such as Plexin B2, Basp1, Nelf, Shh, Sc4mol and Sult4alpha. This is consistent with formation of long neurite (axon and dendrite)-like structures by mouse and human GC B cells, which may facilitate T:B cell interactions within GC, affinity maturation and B cell memory formation. Expression of BASP1 and PLEXIN B2 protein is very low or undetectable in resting and TI GC B cells, but markedly upregulated in GC B cells induced in the presence of T cell help. Finally we show some of the axon growth genes upregulated in TD-GC B cells including Basp1, Shh, Sult4alpha, Sc4mol are also preferentially expressed in post-GC B cell neoplasms. PMID:17938642

  10. Ultrastructural insights into morphology and reproductive mode of Blastocystis hominis.

    PubMed

    Zhang, Xu; Zhang, Siwei; Qiao, Jiying; Wu, Xiaomin; Zhao, Liming; Liu, Yansheng; Fan, Xiaojun

    2012-03-01

    To understand well the morphology and reproductive mode of Blastocystis hominis, with the help of transmission electron microscopy and scanning electron microscopy the ultrastructural details of B. hominis from fresh diarrheal specimens and cultured strains were observed. In both fecal samples and culture conditions, there were vacuolar and granular forms. In diarrhea, it exists in multivacuolar, avacuolar, and amoeboid forms. In the in vitro culture, vacuolar form could transform to granular form. The most commonly noticed structure on the cell surface was surface coat with diversity in appearance (the funiform, lamellar, filiform, and floccose in different thickness) and distributions. Three modes of reproduction were confirmed, they were binary fission, plasmotomy, and budding. Under the impact of host's response, the ultrastructures of surface coat, nucleus, and mitochondrion-like organelle sometimes changed. PMID:21845408

  11. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration

    PubMed Central

    McLaughlin, Laura M.; Xu, Hui; Carden, Sarah E.; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C.; Monack, Denise M.

    2014-01-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration. PMID:24599496

  12. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration.

    PubMed

    McLaughlin, Laura M; Xu, Hui; Carden, Sarah E; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C; Monack, Denise M

    2014-04-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration. PMID:24599496

  13. Immunohistochemical, Ultrastructural and Functional Analysis of Axonal Regeneration through Peripheral Nerve Grafts Containing Schwann Cells Expressing BDNF, CNTF or NT3

    PubMed Central

    Godinho, Maria João; Teh, Lip; Pollett, Margaret A.; Goodman, Douglas; Hodgetts, Stuart I.; Sweetman, Iain; Walters, Mark; Verhaagen, Joost; Plant, Giles W.; Harvey, Alan R.

    2013-01-01

    We used morphological, immunohistochemical and functional assessments to determine the impact of genetically-modified peripheral nerve (PN) grafts on axonal regeneration after injury. Grafts were assembled from acellular nerve sheaths repopulated ex vivo with Schwann cells (SCs) modified to express brain-derived neurotrophic factor (BDNF), a secretable form of ciliary neurotrophic factor (CNTF), or neurotrophin-3 (NT3). Grafts were used to repair unilateral 1 cm defects in rat peroneal nerves and 10 weeks later outcomes were compared to normal nerves and various controls: autografts, acellular grafts and grafts with unmodified SCs. The number of regenerated βIII-Tubulin positive axons was similar in all grafts with the exception of CNTF, which contained the fewest immunostained axons. There were significantly lower fiber counts in acellular, untransduced SC and NT3 groups using a PanNF antibody, suggesting a paucity of large caliber axons. In addition, NT3 grafts contained the greatest number of sensory fibres, identified with either IB4 or CGRP markers. Examination of semi- and ultra-thin sections revealed heterogeneous graft morphologies, particularly in BDNF and NT3 grafts in which the fascicular organization was pronounced. Unmyelinated axons were loosely organized in numerous Remak bundles in NT3 grafts, while the BDNF graft group displayed the lowest ratio of umyelinated to myelinated axons. Gait analysis revealed that stance width was increased in rats with CNTF and NT3 grafts, and step length involving the injured left hindlimb was significantly greater in NT3 grafted rats, suggesting enhanced sensory sensitivity in these animals. In summary, the selective expression of BDNF, CNTF or NT3 by genetically modified SCs had differential effects on PN graft morphology, the number and type of regenerating axons, myelination, and locomotor function. PMID:23950907

  14. Cytoarchitecture and Ultrastructure of Neural Stem Cell Niches and Neurogenic Complexes Maintaining Adult Neurogenesis in the Olfactory Midbrain of Spiny Lobsters, Panulirus argus

    PubMed Central

    Schmidt, Manfred; Derby, Charles D.

    2013-01-01

    New interneurons are continuously generated in small proliferation zones within neuronal somata clusters in the olfactory deutocerebrum of adult decapod crustaceans. Each proliferation zone is connected to a clump of cells containing one neural stem cell (i.e., adult neuroblast), thus forming a “neurogenic complex.” Here we provide a detailed analysis of the cytoarchitecture of neurogenic complexes in adult spiny lobsters, Panulirus argus, based on transmission electron microscopy and labeling with cell-type-selective markers. The clump of cells is composed of unique bipolar clump-forming cells that collectively completely envelop the adult neuroblast and are themselves ensheathed by a layer of processes of multipolar cell body glia. An arteriole is attached to the clump of cells, but dye perfusion experiments show that hemolymph has no access to the interior of the clump of cells. Thus, the clump of cells fulfills morphological criteria of a protective stem cell niche, with clump-forming cells constituting the adult neuroblast’s microenvironment together with the cell body glia processes separating it from other tissue components. Bromodeoxyuridine pulse-chase experiments with short survival times suggest that adult neuroblasts are not quiescent but rather cycle actively during daytime. We propose a cell lineage model in which an asymmetrically dividing adult neuroblast repopulates the pool of neuronal progenitor cells in the associated proliferation zone. In conclusion, as in mammalian brains, adult neurogenesis in crustacean brains is fueled by neural stem cells that are maintained by stem cell niches that preserve elements of the embryonic microenvironment and contain glial and vascular elements. PMID:21523781

  15. Ultrastructural characterization of the pronephric glomerulus development in zebrafish.

    PubMed

    Zhu, Xiaodong; Chen, Zhaohong; Zeng, Caihong; Wang, Ling; Xu, Feng; Hou, Qing; Liu, Zhihong

    2016-08-01

    The zebrafish pronephros is a valuable model for studying kidney development and diseases. Ultrastructural studies have revealed that zebrafish and mammals share similarities in nephron structures such as podocytes, slit diaphragms, glomerular basement membrane, and endothelium. However, the basic ultrastructural features of the pronephric glomerulus during glomerulogenesis have not been characterized. To understand these features, it is instructive to consider the developmental process of the pronephros glomerulus. Here, we describe the ultrastructural features of pronephric glomerulus in detail from 24 h hours post-fertilization (hpf) to 144 hpf, the period during which the pronephric glomerulus develops from initiation to its mature morphology. The pronephric glomerulus underwent progressive morphogenesis from 24 to 72 hpf, and presumptive glomerular cells were observed ventral to the aorta region at 24 hpf. The nascent glomerular basement membrane and initial lumen were formed at 36 hpf. A lumen was clearly visible in the region of the pronephros at 48 hpf. At 60 hpf, the pronephric glomerulus contained more patches of capillaries. After these transformations, the complex capillary vessel networks had formed inside the glomerulus, which was surrounded by podocyte bodies with elaborate foot processes as well as well-formed glomerular basement membrane by 72 hpf. The number of renal glomerular cells rapidly increased, and the glomerulus presented its delicate structural features by 96 hpf. Morphogenesis was completed at 120 hpf with the final formation of the pronephric glomerulus. J. Morphol. 277:1104-1112, 2016. © 2016 Wiley Periodicals, Inc. PMID:27185367

  16. Greigite magnetosome membrane ultrastructure in 'Candidatus Magnetoglobus multicellularis'.

    PubMed

    Abreu, Fernanda P; Silva, Karen T; Farina, Marcos; Keim, Carolina N; Lins, Ulysses

    2008-06-01

    The ultrastructure of the greigite magnetosome membrane in the multicellular magnetotactic bacteria 'Candidatus Magnetoglobus multicellularis' was studied. Each cell contains 80 membrane-enclosed iron-sulfide magnetosomes. Cytochemistry methods showed that the magnetosomes are enveloped by a structure whose staining pattern and dimensions are similar to those of the cytoplasmic membrane, indicating that the magnetosome membrane likely originates from the cytoplasmic membrane. Freeze-fracture showed intramembrane particles in the vesicles surrounding each magnetosome. Observations of cell membrane invaginations, the trilaminar membrane structure of immature magnetosomes, and empty vesicles together suggested that greigite magnetosome formation begins by invagination of the cell membrane, as has been proposed for magnetite magnetosomes. PMID:18645957

  17. Ultrastructural localization of photosynthetic and photorespiratory enzymes in epidermal, mesophyll, bundle sheath, and vascular bundle cells of the C4 dicot Amaranthus viridis.

    PubMed

    Ueno, O

    2001-05-01

    In the leaves of the NAD-malic enzyme (NAD-ME)-type C4 dicot Amaranthus viridis L., there are chloroplasts in the vascular parenchyma cells (VPC), companion cells (CC), ordinary epidermal cells (EC), and guard cells (GC), as well as in the mesophyll cells (MC) and the bundle sheath cells (BSC). However, the chloroplasts of the VPC, CC, EC, and GC are smaller than those of the MC and BSC. In this study, the accumulation of photosynthetic and photorespiratory enzymes in these leaf cell types was investigated by immunogold labelling and electron microscopy. Strong labelling for phosphoenolpyruvate carboxylase was found in the MC cytosol. Weak labelling was observed in the CC and GC cytosol. Labelling for pyruvate, Pi dikinase occurred to varying degrees in the chloroplasts of all cell types except CC. Labelling for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase was detected in the chloroplasts of all cell types except MC. For both NAD-ME and the P-protein of glycine decarboxylase, intense labelling was found in the BSC mitochondria; weaker labelling was recognized in the VPC mitochondria. These data indicate that when not only the MC and BSC but also the other leaf cell types are included, the cell-specific expression of the enzymes in C4 leaves becomes more complex than has been known previously. These findings are discussed in relation to the metabolic function of epidermal and vascular bundle cells. PMID:11432917

  18. Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis

    PubMed Central

    Alonso-Martin, Sonia; Rochat, Anne; Mademtzoglou, Despoina; Morais, Jessica; de Reyniès, Aurélien; Auradé, Frédéric; Chang, Ted Hung-Tse; Zammit, Peter S.; Relaix, Frédéric

    2016-01-01

    Skeletal muscle growth and regeneration require a population of muscle stem cells, the satellite cells, located in close contact to the myofiber. These cells are specified during fetal and early postnatal development in mice from a Pax3/7 population of embryonic progenitor cells. As little is known about the genetic control of their formation and maintenance, we performed a genome-wide chronological expression profile identifying the dynamic transcriptomic changes involved in establishment of muscle stem cells through life, and acquisition of muscle stem cell properties. We have identified multiple genes and pathways associated with satellite cell formation, including set of genes specifically induced (EphA1, EphA2, EfnA1, EphB1, Zbtb4, Zbtb20) or inhibited (EphA3, EphA4, EphA7, EfnA2, EfnA3, EfnA4, EfnA5, EphB2, EphB3, EphB4, EfnBs, Zfp354c, Zcchc5, Hmga2) in adult stem cells. Ephrin receptors and ephrins ligands have been implicated in cell migration and guidance in many tissues including skeletal muscle. Here we show that Ephrin receptors and ephrins ligands are also involved in regulating the adult myogenic program. Strikingly, impairment of EPHB1 function in satellite cells leads to increased differentiation at the expense of self-renewal in isolated myofiber cultures. In addition, we identified new transcription factors, including several zinc finger proteins. ZFP354C and ZCCHC5 decreased self-renewal capacity when overexpressed, whereas ZBTB4 increased it, and ZBTB20 induced myogenic progression. The architectural and transcriptional regulator HMGA2 was involved in satellite cell activation. Together, our study shows that transcriptome profiling coupled with myofiber culture analysis, provides an efficient system to identify and validate candidate genes implicated in establishment/maintenance of muscle stem cells. Furthermore, tour de force transcriptomic profiling provides a wealth of data to inform for future stem cell-based muscle therapies. PMID:27446912

  19. Ultrastructural observations on the development of Ceratomyxa aegyptiaca (Myxozoa: Bivalvulida) infecting Solea aegyptiaca (Pleuronectiformes: Soleidae) from Tunisian coastal lagoon.

    PubMed

    Yemmen, Chiraz; Quilichini, Yann; Marchand, Bernard; Bahri, Sihem

    2016-01-01

    Ultrastructural description of Ceratomyxa aegyptiaca Yemmen, Marton, Eszterbauer and Bahri, 2012 infecting the gallbladder of Solea aegyptiaca Chabanaud, 1927 from a tunisian north-east costal lagoon, was presented in this study. The primary cell was attached to the gallbladder epithelium and presented at one side cytoplasmic projections corresponding to pinocytotic invaginations. Netherless, early sporogonic stages development was carried with contact to the epithelial cells of gallbladder. Immature spores were identified in early sporoblasts by their valvogenic, capsulogenic and binucleated sporoplasmic cells. Capsulogenesis was asynchronous. Each capsulogenic cell presented a large condensed nucleus and a capsular primordium that extended into an external tube. The eversion and coiling of the external tube gave rise to the polar filament, which displayed six turns and an apical plug. PMID:27615932

  20. Platelet satellitism: an ultrastructural study.

    PubMed Central

    Payne, C. M.

    1981-01-01

    The ultrastructural morphology of platelet-polymorph (platelet-polymorphonuclear leukocyte) rosettes was investigated in EDTA-anticoagulated blood obtained from two patients who exhibited the phenomenon of platelet satellitism. Most of the platelet profiles were attached to the polymorph surface by broad areas of contact. Examination of these broad areas of contact at high magnification revealed an intercellular material of low electron density. This material appeared to form strands, which bridged the intercellular space and spanned the entire area formed by the apposing plasma membranes. Phagocytosis of entire platelets was only observed in 1 case. The platelet profiles that participated in rosette formation revealed a large number of glycogen particles, compared with unattached platelets. Ultrastructural examination of "stress" platelets obtained from five normal subjects treated with steroids similarly showed a large number of glycogen particles, although no rosette formation or phagocytosis of platelets was observed. The etiology of platelet satellitism is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7223859

  1. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    PubMed Central

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna; Shoaie, Saeed; Kampf, Caroline; Uhlen, Mathias; Nielsen, Jens

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted 85 antimetabolites that can inhibit growth of, or even kill, any of the cell lines, while at the same time not being toxic for 83 different healthy human cell types. 60 of these antimetabolites were found to inhibit growth in all cell lines. Finally, we experimentally validated one of the predicted antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies. PMID:25640694

  2. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling.

    PubMed

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna; Shoaie, Saeed; Kampf, Caroline; Uhlen, Mathias; Nielsen, Jens

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted 85 antimetabolites that can inhibit growth of, or even kill, any of the cell lines, while at the same time not being toxic for 83 different healthy human cell types. 60 of these antimetabolites were found to inhibit growth in all cell lines. Finally, we experimentally validated one of the predicted antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies. PMID:25640694

  3. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells

    PubMed Central

    Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C.; Hanson, Buck T.; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M.; Fowler, Patrick W.; Huang, Wei E.; Wagner, Michael

    2015-01-01

    Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics. PMID:25550518

  4. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells.

    PubMed

    Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C; Hanson, Buck T; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M; Fowler, Patrick W; Huang, Wei E; Wagner, Michael

    2015-01-13

    Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics. PMID:25550518

  5. Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells

    PubMed Central

    Bar-Joseph, Ziv; Siegfried, Zahava; Brandeis, Michael; Brors, Benedikt; Lu, Yong; Eils, Roland; Dynlacht, Brian D.; Simon, Itamar

    2008-01-01

    Characterization of the transcriptional regulatory network of the normal cell cycle is essential for understanding the perturbations that lead to cancer. However, the complete set of cycling genes in primary cells has not yet been identified. Here, we report the results of genome-wide expression profiling experiments on synchronized primary human foreskin fibroblasts across the cell cycle. Using a combined experimental and computational approach to deconvolve measured expression values into “single-cell” expression profiles, we were able to overcome the limitations inherent in synchronizing nontransformed mammalian cells. This allowed us to identify 480 periodically expressed genes in primary human foreskin fibroblasts. Analysis of the reconstructed primary cell profiles and comparison with published expression datasets from synchronized transformed cells reveals a large number of genes that cycle exclusively in primary cells. This conclusion was supported by both bioinformatic analysis and experiments performed on other cell types. We suggest that this approach will help pinpoint genetic elements contributing to normal cell growth and cellular transformation. PMID:18195366

  6. The antifungal properties of a 2S albumin-homologous protein from passion fruit seeds involve plasma membrane permeabilization and ultrastructural alterations in yeast cells.

    PubMed

    Agizzio, Ana Paula; Da Cunha, Maura; Carvalho, André O; Oliveira, Marco Antônio; Ribeiro, Suzanna F F; Gomes, Valdirene M

    2006-10-01

    Different types of antimicrobial proteins were purified from plant seeds, including chitinases, β-1,3-glucanases, defensins, thionins, lipid transfer proteins and 2S albumins. It has become clear that these groups of proteins play an important role in the protection of plants from microbial infection. Recent results from our laboratory have shown that the defense-related proteins from passion fruit seeds, named Pf1 and Pf2 (which show sequence homology with 2S albumins), inhibit fungal growth and glucose-stimulated acidification of the medium by Saccharomyces cerevisiae cells. The aim of this study was to determine whether 2S albumins from passion fruit seeds induce plasma membrane permeabilization and cause morphological alterations in yeast cells. Initially, we used an assay based on the uptake of SYTOX Green, an organic compound that fluoresces upon interaction with nucleic acids and penetrates cells with compromised plasma membranes, to investigate membrane permeabilization in S. cerevisiae cells. When viewed with a confocal laser microscope, S. cervisiae cells showed strong SYTOX Green fluorescence in the cytosol, especially in the nuclei. 2S albumins also inhibited glucose-stimulated acidification of the medium by S. cerevisiae cells, which indicates a probable impairment of fungal metabolism. The microscopical analysis of the yeast cells treated with 2S albumins demonstrated several morphological alterations in cell shape, cell surface, cell wall and bud formation, as well as in the organization of intracellular organelles. PMID:25193649

  7. Engineering and Identifying Supercharged Proteins for Macromolecule Delivery into Mammalian Cells

    PubMed Central

    Thompson, David B.; Cronican, James J.; Liu, David R.

    2012-01-01

    Supercharged proteins are a class of engineered or naturally occurring proteins with unusually high net positive or negative theoretical charge. Both supernegatively and superpositively charged proteins exhibit a remarkable ability to withstand thermally or chemically induced aggregation. Superpositively charged proteins are also able to penetrate mammalian cells. Associating cargo with these proteins, such as plasmid DNA, siRNA, or other proteins, can enable the functional delivery of these macromolecules into mammalian cells both in vitro and in vivo. The potency of functional delivery in some cases can exceed that of other current methods for macromolecule delivery, including the use of cell-penetrating peptides such as Tat, and adenoviral delivery vectors. This chapter summarizes methods for engineering supercharged proteins, optimizing cell penetration, identifying naturally occurring supercharged proteins, and using these proteins for macromolecule delivery into mammalian cells. PMID:22230574

  8. A Systems-Level Interrogation Identifies Regulators of Drosophila Blood Cell Number and Survival

    PubMed Central

    Makhijani, Kalpana; Alexander, Brandy; Perrimon, Norbert; Brückner, Katja

    2015-01-01

    In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems. PMID:25749252

  9. Identifying Students Difficulties in Understanding Concepts Pertaining to Cell Water Relations: An Exploratory Study.

    ERIC Educational Resources Information Center

    Friedler, Y.; And Others

    This study identified students' conceptual difficulties in understanding concepts and processes associated with cell water relationships (osmosis), determined possible reasons for these difficulties, and pilot-tested instruments and research strategies for a large scale comprehensive study. Research strategies used included content analysis of…

  10. Coexpression of TIGIT and FCRL3 Identifies Helios+ Human Memory Regulatory T Cells

    PubMed Central

    Dhuban, Khalid Bin; d’Hennezel, Eva; Nashi, Emil; Bar-Or, Amit; Rieder, Sadiye; Shevach, Ethan M.; Nagata, Satoshi; Piccirillo, Ciriaco A.

    2015-01-01

    Two distinct subsets of CD4+Foxp3+ regulatory T (Treg) cells have been described based on the differential expression of Helios, a transcription factor of the Ikaros family. Efforts to understand the origin and biological roles of these Treg populations in regulating immune responses have, however, been hindered by the lack of reliable surface markers to distinguish and isolate them for subsequent functional studies. Using a single-cell cloning strategy coupled with microarray analysis of different Treg functional subsets in humans, we identify the mRNA and protein expression of TIGIT and FCRL3 as a novel surface marker combination that distinguishes Helios+FOXP3+ from Helios−FOXP3+ memory cells. Unlike conventional markers that are modulated on conventional T cells upon activation, we show that the TIGIT/FCRL3 combination allows reliable identification of Helios+ Treg cells even in highly activated conditions in vitro as well as in PBMCs of autoimmune patients. We also demonstrate that the Helios−FOXP3+ Treg subpopulation harbors a larger proportion of nonsuppressive clones compared with the Helios+ FOXP3+ cell subset, which is highly enriched for suppressive clones. Moreover, we find that Helios− cells are exclusively responsible for the productions of the inflammatory cytokines IFN-γ, IL-2, and IL-17 in FOXP3+ cells ex vivo, highlighting important functional differences between Helios+ and Helios− Treg cells. Thus, we identify novel surface markers for the consistent identification and isolation of Helios+ and Helios− memory Treg cells in health and disease, and we further reveal functional differences between these two populations. These new markers should facilitate further elucidation of the functional roles of Helios-based Treg heterogeneity. PMID:25762785

  11. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture

    PubMed Central

    Álvarez-Viejo, María; Menéndez-Menéndez, Yolanda; Otero-Hernández, Jesús

    2015-01-01

    Mesenchymal stem cells, due to their characteristics are ideal candidates for cellular therapy. Currently, in culture these cells are defined by their adherence to plastic, specific surface antigen expression and multipotent differentiation potential. However, the in vivo identification of mesenchymal stem cells, before culture, is not so well established. Pre-culture identification markers would ensure higher purity than that obtained with selection based on adherence to plastic. Up until now, CD271 has been described as the most specific marker for the characterization and purification of human bone marrow mesenchymal stem cells. This marker has been shown to be specifically expressed by these cells. Thus, CD271 has been proposed as a versatile marker to selectively isolated and expand multipotent mesenchymal stem cells with both immunosuppressive and lymphohematopoietic engraftment-promoting properties. This review focuses on this marker, specifically on identification of mesenchymal stem cells from different tissues. Literature revision suggests that CD271 should not be defined as a universal marker to identify mesenchymal stem cells before culture from different sources. In the case of bone marrow or adipose tissue, CD271 could be considered a quite suitable marker; however this marker seems to be inadequate for the isolation of mesenchymal stem cells from other tissues such as umbilical cord blood or wharton’s jelly among others. PMID:25815130

  12. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture.

    PubMed

    Álvarez-Viejo, María; Menéndez-Menéndez, Yolanda; Otero-Hernández, Jesús

    2015-03-26

    Mesenchymal stem cells, due to their characteristics are ideal candidates for cellular therapy. Currently, in culture these cells are defined by their adherence to plastic, specific surface antigen expression and multipotent differentiation potential. However, the in vivo identification of mesenchymal stem cells, before culture, is not so well established. Pre-culture identification markers would ensure higher purity than that obtained with selection based on adherence to plastic. Up until now, CD271 has been described as the most specific marker for the characterization and purification of human bone marrow mesenchymal stem cells. This marker has been shown to be specifically expressed by these cells. Thus, CD271 has been proposed as a versatile marker to selectively isolated and expand multipotent mesenchymal stem cells with both immunosuppressive and lymphohematopoietic engraftment-promoting properties. This review focuses on this marker, specifically on identification of mesenchymal stem cells from different tissues. Literature revision suggests that CD271 should not be defined as a universal marker to identify mesenchymal stem cells before culture from different sources. In the case of bone marrow or adipose tissue, CD271 could be considered a quite suitable marker; however this marker seems to be inadequate for the isolation of mesenchymal stem cells from other tissues such as umbilical cord blood or wharton's jelly among others. PMID:25815130

  13. Transcriptional Profiling of Th2 Cells Identifies Pathogenic Features Associated with Asthma.

    PubMed

    Seumois, Grégory; Zapardiel-Gonzalo, Jose; White, Brandie; Singh, Divya; Schulten, Veronique; Dillon, Myles; Hinz, Denize; Broide, David H; Sette, Alessandro; Peters, Bjoern; Vijayanand, Pandurangan

    2016-07-15

    Allergic asthma and rhinitis are two common chronic allergic diseases that affect the lungs and nose, respectively. Both diseases share clinical and pathological features characteristic of excessive allergen-induced type 2 inflammation, orchestrated by memory CD4(+) T cells that produce type 2 cytokines (Th2 cells). However, a large majority of subjects with allergic rhinitis do not develop asthma, suggesting divergence in disease mechanisms. Because Th2 cells play a pathogenic role in both these diseases and are also present in healthy nonallergic subjects, we performed global transcriptional profiling to determine whether there are qualitative differences in Th2 cells from subjects with allergic asthma, rhinitis, and healthy controls. Th2 cells from asthmatic subjects expressed higher levels of several genes that promote their survival as well as alter their metabolic pathways to favor persistence at sites of allergic inflammation. In addition, genes that enhanced Th2 polarization and Th2 cytokine production were also upregulated in asthma. Several genes that oppose T cell activation were downregulated in asthma, suggesting enhanced activation potential of Th2 cells from asthmatic subjects. Many novel genes with poorly defined functions were also differentially expressed in asthma. Thus, our transcriptomic analysis of circulating Th2 cells has identified several molecules that are likely to confer pathogenic features to Th2 cells that are either unique or common to both asthma and rhinitis. PMID:27271570

  14. Chromatin marks identify critical cell types for fine mapping complex trait variants.

    PubMed

    Trynka, Gosia; Sandor, Cynthia; Han, Buhm; Xu, Han; Stranger, Barbara E; Liu, X Shirley; Raychaudhuri, Soumya

    2013-02-01

    If trait-associated variants alter regulatory regions, then they should fall within chromatin marks in relevant cell types. However, it is unclear which of the many marks are most useful in defining cell types associated with disease and fine mapping variants. We hypothesized that informative marks are phenotypically cell type specific; that is, SNPs associated with the same trait likely overlap marks in the same cell type. We examined 15 chromatin marks and found that those highlighting active gene regulation were phenotypically cell type specific. Trimethylation of histone H3 at lysine 4 (H3K4me3) was the most phenotypically cell type specific (P < 1 × 10(-6)), driven by colocalization of variants and marks rather than gene proximity (P < 0.001). H3K4me3 peaks overlapped with 37 SNPs for plasma low-density lipoprotein concentration in the liver (P < 7 × 10(-5)), 31 SNPs for rheumatoid arthritis within CD4(+) regulatory T cells (P = 1 × 10(-4)), 67 SNPs for type 2 diabetes in pancreatic islet cells (P = 0.003) and the liver (P = 0.003), and 14 SNPs for neuropsychiatric disease in neuronal tissues (P = 0.007). We show how cell type-specific H3K4me3 peaks can inform the fine mapping of associated SNPs to identify causal variation. PMID:23263488

  15. Drug-eluting microarrays to identify effective chemotherapeutic combinations targeting patient-derived cancer stem cells

    PubMed Central

    Carstens, Matthew R.; Fisher, Robert C.; Acharya, Abhinav P.; Butterworth, Elizabeth A.; Scott, Edward; Huang, Emina H.; Keselowsky, Benjamin G.

    2015-01-01

    A new paradigm in oncology establishes a spectrum of tumorigenic potential across the heterogeneous phenotypes within a tumor. The cancer stem cell hypothesis postulates that a minute fraction of cells within a tumor, termed cancer stem cells (CSCs), have a tumor-initiating capacity that propels tumor growth. An application of this discovery is to target this critical cell population using chemotherapy; however, the process of isolating these cells is arduous, and the rarity of CSCs makes it difficult to test potential drug candidates in a robust fashion, particularly for individual patients. To address the challenge of screening drug libraries on patient-derived populations of rare cells, such as CSCs, we have developed a drug-eluting microarray, a miniaturized platform onto which a minimal quantity of cells can adhere and be exposed to unique treatment conditions. Hundreds of drug-loaded polymer islands acting as drug depots colocalized with adherent cells are surrounded by a nonfouling background, creating isolated culture environments on a solid substrate. Significant results can be obtained by testing <6% of the cells required for a typical 96-well plate. Reliability was demonstrated by an average coefficient of variation of 14% between all of the microarrays and 13% between identical conditions within a single microarray. Using the drug-eluting array, colorectal CSCs isolated from two patients exhibited unique responses to drug combinations when cultured on the drug-eluting microarray, highlighting the potential as a prognostic tool to identify personalized chemotherapeutic regimens targeting CSCs. PMID:26124098

  16. Identification and Phylogeny of the First T Cell Epitope Identified from a Human Gut Bacteroides Species

    PubMed Central

    Perez-Muñoz, Maria Elisa; Joglekar, Payal; Shen, Yi-Ji; Chang, Kuan Y.; Peterson, Daniel A.

    2015-01-01

    Host T cell reactivity toward gut bacterial epitopes has been recognized as part of disease pathogenesis. However, the specificity of T cells that recognize this vast number of epitopes has not yet been well described. After colonizing a C57BL/6J germ-free mouse with the human gut symbiotic bacteria Bacteroides thetaiotaomicron, we isolated a T cell that recognized these bacteria in vitro. Using this T cell, we mapped the first known non-carbohydrate T cell epitope within the phylum Bacteroidetes. The T cell also reacted to two other additional Bacteroides species. We identified the peptide that stimulated the T cell by using a genetic approach. Genomic data from the epitope-positive and epitope-negative bacteria explain the cross-reactivity of the T cell to multiple species. This epitope degeneracy should shape our understanding of the T cell repertoire stimulated by the complex microbiome residing in the gastrointestinal tract in both healthy and disease states. PMID:26637014

  17. A newly identified type of attachment cell is critical for normal patterning of chordotonal neurons.

    PubMed

    Halachmi, Naomi; Nachman, Atalya; Salzberg, Adi

    2016-03-01

    This work describes unknown aspects of chordotonal organ (ChO) morphogenesis revealed in post-embryonic stages through the use of new fluorescently labeled markers. We show that towards the end of embryogenesis a hitherto unnoticed phase of cell migration commences in which the cap cells of the ventral ChOs elongate and migrate towards their prospective attachment sites. This migration and consequent cell attachment generates a continuous zigzag line of proprioceptors, stretching from the ventral midline to a dorsolateral position in each abdominal segment. Our observation that the cap cell of the ventral-most ChO attaches to a large tendon cell near the midline provides the first evidence for a direct physical connection between the contractile and proprioceptive systems in Drosophila. Our analysis has also provided an answer to a longstanding enigma that is what anchors the neurons of the ligamentless ventral ChOs on their axonal side. We identified a new type of ChO attachment cell, which binds to the scolopale cells of these organs, thus behaving like a ligament cell, but on the other hand exhibits all the typical features of a ChO attachment cell and is critical for the correct anchoring of these organs. PMID:26794680

  18. An unusual cell penetrating peptide identified using a plasmid display-based functional selection platform

    PubMed Central

    Gao, Shan; Simon, Melissa J.; Hue, Christopher D.; Morrison, Barclay; Banta, Scott

    2011-01-01

    Cell penetrating peptides (CPPs) have tremendous potential for use in gene and drug delivery applications. The selection of new CPPs with desired capabilities from randomized peptide libraries is challenging, since the CPP phenotype is a complex selection target. Here we report the discovery of an unusual new CPP from a randomized peptide library using a functional selection system based on plasmid display (PD). After four rounds of screening of a 14-mer peptide library over PC12 cells, several peptides were identified and tested for their ability to deliver the green fluorescent protein (GFP). One peptide (SG3) exhibited a cell penetrating phenotype, however unlike other well-known CPPs such as TAT or Penetratin, the newly identified peptide was not highly cationic. The PD protocol necessitated the addition of a cationic lipid (Lipofectamine2000), and in the presence of this compound, the SG3 peptide significantly outperformed the well-known TAT CPP in the delivery of GFP to PC12 cells and primary astrocytes. When the SG3 peptide was fused to the pro-apoptotic BH3 peptide from the Bak protein, significant cell death was induced in cultured primary astrocytes, indicating relevant, intracellular delivery of a functional cargo. The PD platform is a useful method for identifying functional new CPPs from randomized libraries with unique delivery capabilities. PMID:21291271

  19. Large-Scale RNA Interference Screening in Mammalian Cells Identifies Novel Regulators of Mutant Huntingtin Aggregation

    PubMed Central

    Tosaki, Asako; Bauer, Peter O.; Wada, Koji; Kurosawa, Masaru; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2014-01-01

    In polyglutamine (polyQ) diseases including Huntington's disease (HD), mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms. PMID:24705917

  20. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation.

    PubMed

    Yamanaka, Tomoyuki; Wong, Hon Kit; Tosaki, Asako; Bauer, Peter O; Wada, Koji; Kurosawa, Masaru; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2014-01-01

    In polyglutamine (polyQ) diseases including Huntington's disease (HD), mutant proteins containing expanded polyQ stretch form aggregates in neurons. Genetic or RNAi screenings in yeast, C. elegans or Drosophila have identified multiple genes modifying polyQ aggregation, a few of which are confirmed effective in mammals. However, the overall molecular mechanism underlying polyQ protein aggregation in mammalian cells still remains obscure. We here perform RNAi screening in mouse neuro2a cells to identify mammalian modifiers for aggregation of mutant huntingtin, a causative protein of HD. By systematic cell transfection and automated cell image analysis, we screen ∼ 12000 shRNA clones and identify 111 shRNAs that either suppress or enhance mutant huntingtin aggregation, without altering its gene expression. Classification of the shRNA-targets suggests that genes with various cellular functions such as gene transcription and protein phosphorylation are involved in modifying the aggregation. Subsequent analysis suggests that, in addition to the aggregation-modifiers sensitive to proteasome inhibition, some of them, such as a transcription factor Tcf20, and kinases Csnk1d and Pik3c2a, are insensitive to it. As for Tcf20, which contains polyQ stretches at N-terminus, its binding to mutant huntingtin aggregates is observed in neuro2a cells and in HD model mouse neurons. Notably, except Pik3c2a, the rest of the modifiers identified here are novel. Thus, our first large-scale RNAi screening in mammalian system identifies previously undescribed genetic players that regulate mutant huntingtin aggregation by several, possibly mammalian-specific mechanisms. PMID:24705917

  1. Next-generation sequencing identifies the natural killer cell microRNA transcriptome

    PubMed Central

    Fehniger, Todd A.; Wylie, Todd; Germino, Elizabeth; Leong, Jeffrey W.; Magrini, Vincent J.; Koul, Sunita; Keppel, Catherine R.; Schneider, Stephanie E.; Koboldt, Daniel C.; Sullivan, Ryan P.; Heinz, Michael E.; Crosby, Seth D.; Nagarajan, Rakesh; Ramsingh, Giridharan; Link, Daniel C.; Ley, Timothy J.; Mardis, Elaine R.

    2010-01-01

    Natural killer (NK) cells are innate lymphocytes important for early host defense against infectious pathogens and surveillance against malignant transformation. Resting murine NK cells regulate the translation of effector molecule mRNAs (e.g., granzyme B, GzmB) through unclear molecular mechanisms. MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate the translation of their mRNA targets, and are therefore candidates for mediating this control process. While the expression and importance of miRNAs in T and B lymphocytes have been established, little is known about miRNAs in NK cells. Here, we used two next-generation sequencing (NGS) platforms to define the miRNA transcriptomes of resting and cytokine-activated primary murine NK cells, with confirmation by quantitative real-time PCR (qRT-PCR) and microarrays. We delineate a bioinformatics analysis pipeline that identified 302 known and 21 novel mature miRNAs from sequences obtained from NK cell small RNA libraries. These miRNAs are expressed over a broad range and exhibit isomiR complexity, and a subset is differentially expressed following cytokine activation. Using these miRNA NGS data, miR-223 was identified as a mature miRNA present in resting NK cells with decreased expression following cytokine activation. Furthermore, we demonstrate that miR-223 specifically targets the 3′ untranslated region of murine GzmB in vitro, indicating that this miRNA may contribute to control of GzmB translation in resting NK cells. Thus, the sequenced NK cell miRNA transcriptome provides a valuable framework for further elucidation of miRNA expression and function in NK cell biology. PMID:20935160

  2. An in vitro co-culture model of esophageal cells identifies ascorbic acid as a modulator of cell competition

    PubMed Central

    2011-01-01

    Background The evolutionary dynamics between interacting heterogeneous cell types are fundamental properties of neoplastic progression but can be difficult to measure and quantify. Cancers are heterogeneous mixtures of mutant clones but the direct effect of interactions between these clones is rarely documented. The implicit goal of most preventive interventions is to bias competition in favor of normal cells over neoplastic cells. However, this is rarely explicitly tested. Here we have developed a cell culture competition model to allow for direct observation of the effect of chemopreventive or therapeutic agents on two interacting cell types. We have examined competition between normal and Barrett's esophagus cell lines, in the hopes of identifying a system that could screen for potential chemopreventive agents. Methods One fluorescently-labeled normal squamous esophageal cell line (EPC2-hTERT) was grown in competition with one of four Barrett's esophagus cell lines (CP-A, CP-B, CP-C, CP-D) under varying conditions and the outcome of competition measured over 14 days by flow cytometry. Results We demonstrate that ascorbic acid (vitamin C) can help squamous cells outcompete Barrett's cells in this system. We are also able to show that ascorbic acid's boost to the relative fitness of squamous cells was increased in most cases by mimicking the pH conditions of gastrointestinal reflux in the lower esophagus. Conclusions This model is able to integrate differential fitness effects on various cell types, allowing us to simultaneously capture effects on interacting cell types without having to perform separate experiments. This model system may be used to screen for new classes of cancer prevention agents designed to modulate the competition between normal and neoplastic cells. PMID:22026449

  3. Apoptosis-induced structural changes in leukemia cells identified by IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, K.-Z.; Mantsch, H. H.

    2001-05-01

    Apoptotic changes induced in the leukemia cell line CEM by treatment with the chemical etoposide were investigated by IR spectroscopy. Characteristic band alterations were identified in the apoptotic cells arising from cellular protein, lipid and DNA. Besides general changes such as an increase in lipid content and a decrease in the amount of detectable DNA, there were specific changes that affected the secondary structure of proteins in the apoptotic leukemia cells, i.e. the dominant protein structure shifts from β-sheet in the control cells to unordered coil in the apoptotic cells. The student's t-test was applied to the spectral range 1500-1700 cm -1 in order to determine the significant differences of protein structure between control and etoposide treated cells at various time points. A temporal relationship was found between the spectrally significant differences of the protein structure in the apoptotic cells and the severity of apoptosis. The IR spectral changes of protein structure also correlate well with the activity of caspase-3, an important proteolytic enzyme in apoptosis. This preliminary study suggests that IR spectroscopy could possibly be used to monitor and quantitate apoptosis in leukemia cells.

  4. Ultrastructural changes of goat corpus luteum during the estrous cycle.

    PubMed

    Jiang, Yi-Fan; Hsu, Meng-Chieh; Cheng, Chiung-Hsiang; Tsui, Kuan-Hao; Chiu, Chih-Hsien

    2016-07-01

    The present study was designed to study the ultrastructure of goat corpora lutea (CL, n=10) and structural changes as related to steroidogenic functions during the estrous cycle. The reproduction status of goats was estimated by analyzing serum progesterone concentrations. The CL at various stages was surgically collected. To characterize ultrastructural features associated with steroidogenesis, tissue and cellular structures were studied. Blood supplies were examined based on features of the endothelial cells and capillary structures in the CL. Activated endothelial cells and developing vessels were observed in the early stage, whereas mature endothelial cells, accumulating extracellular matrix fibers, and stabilized vessels were observed in the middle and late stages of assessment. In the late stage of assessment, shrunken goat luteal cells scattered around the capillaries were detected and formed circular regression areas. Features of autophagy and luteal cell apoptosis were noted. In large luteal cells, steroidogenic organelles were present, including microvillar channels, endoplasmic reticulum, and mitochondria. Conformational changes in the endoplasmic reticulum and increased mitochondria with tubular cristae were observed in the early-middle CL transitions. In contrast, mitochondria swelled and the cristae transformed to the lamellar type in the late stage, suggesting that organelle plasticity could contribute to steroidogenesis in goat CL. In conclusion, results suggest angiogenesis occurs in early developing CL and programmed cell death occurred in the late stage of CL assessment in the present study. Structures and quantiles of steroidogenic organelles are correlated with the steroidogenic functions in goats. PMID:27102356

  5. Innervation of amphibian reproductive system. Histological and ultrastructural studies.

    PubMed

    Cisint, Susana; Crespo, Claudia A; Medina, Marcela F; Iruzubieta Villagra, Lucrecia; Fernández, Silvia N; Ramos, Inés

    2014-10-01

    In the present study we describe for the first time in anuran amphibians the histological and ultrastructural characteristics of innervation in the female reproductive organs. The observations in Rhinella arenarum revealed the presence of nerve fibers located predominantly in the ovarian hilium and in the oviduct wall. In both organs the nerves fibers are placed near blood vessels and smooth muscles fibers. In the present study the histological observations were confirmed using antibodies against peripherin and neurofilament 200 proteins. Ultrastructural analyses demonstrated that the innervation of the reproductive organs is constituted by unmyelinated nerve fibers surrounded by Schwann cells. Axon terminals contain a population of small, clear, translucent vesicles that coexist with a few dense cored vesicles. The ultrastructural characteristics together with the immunopositive reaction to tyrosine hydroxylase of the nerve fibers and the type of synaptic vesicles present in the axon terminal would indicate that the reproductive organs of R. arenarum females are innervated by the sympathetic division of the autonomic nervous system. PMID:24882461

  6. Ultrastructural and tissue-culture studies on the role of fibronectin, collagen and glycosaminoglycans in the migration of neural crest cells in the fowl embryo.

    PubMed

    Newgreen, D F; Gibbins, I L; Sauter, J; Wallenfels, B; Wütz, R

    1982-01-01

    The initial migration of neural crest (NC) cells into cell-free space was studied by transmission electron microscopy at trunk levels of fowl embryos, some of which were fixed in the presence of ruthenium red. Migrating NC cells occurred in zones which contained fewer ruthenium-red stained 15-40nm diameter granules than other regions. The ruthenium-red stained granules were linked by similarly stained thin (greater than 3nm diameter) microfibrils. The granules resemble proteoglycan and the microfibrils may be hyaluronate. NC cells contacted thicker (greater than 10 nm diameter) fibrils and interstitial bodies, which did not require ruthenium red for visualization. Cytoplasmic microfilaments were sometimes aligned at the point of contact with the extracellular fibrils, which may be fibronectin and collagen. Phase-contrast time-lapse videotaping and scanning electron microscopy showed that NC cells of the fowl embryo in vitro migrated earlier and more extensively on glass coated with fibronectin-rich fibrous material and adsorbed fibronectin molecules than on glass coated with collagen type I (fibres and adsorbed molecules). NC cells became completely enmeshed in fibronectin-rich fibres, but generally remained on the surface of collagen-fibre gels. When given a choice, NC cells strongly preferred fibronectin coatings to plain glass, and plain glass to dried collagen gels. NC cells showed a slight preference for plain glass over glass to which collagen was adsorbed. Addition to the culture medium of hyaluronate (initial conc. 20 mg/ml), chondroitin (5 mg/ml) and fully sulphated chondroitin sulphate and dermatan sulphate (up to 10 mg/ml) did not drastically alter NC cell migration on fibronectin-rich fibrous substrates. PMID:7034954

  7. Genome-wide association study identifies genetic variants influencing F-cell levels in sickle-cell patients.

    PubMed

    Bhatnagar, Pallav; Purvis, Shirley; Barron-Casella, Emily; DeBaun, Michael R; Casella, James F; Arking, Dan E; Keefer, Jeffrey R

    2011-04-01

    Fetal hemoglobin (HbF) level has emerged as an important prognostic factor in sickle-cell disease (SCD) and can be measured by the proportion of HbF-containing erythrocytes (F-cells). Recently, BCL11A (zinc-finger protein) was identified as a regulator of HbF, and the strongest association signals were observed either directly for rs766432 or for correlated single-nucleotide polymorphisms (SNPs). To identify additional independently associated genetic variants, we performed a genome-wide association study (GWAS) on the proportion of F-cells in individuals of African ancestry with SCD from the Silent Infarct Transfusion (SIT) Trial cohort. Our study not only confirms the association of rs766432 (P-value <3.32 × 10(-13)), but also identifies an independent novel intronic SNP, rs7606173, associated with F-cells (P-value <1.81 × 10(-15)). The F-cell variances explained independently by these two SNPs are ∼13% (rs7606173) and ∼11% (rs766432), whereas, together they explain ∼16%. Additionally, in men, we identify a novel locus on chromosome 17, glucagon-like peptide-2 receptor (GLP2R), associated with F-cell regulation (rs12103880; P-value <3.41 × 10(-8)). GLP2R encodes a G protein-coupled receptor and involved in proliferative and anti-apoptotic cellular responses. These findings highlight the importance of denser genetic screens and suggest further exploration of the BCL11A and GLP2R loci to gain additional insight into HbF/F-cell regulation. PMID:21326311

  8. Histone deacetylase inhibitor screening identifies HC toxin as the most effective in intrahepatic cholangiocarcinoma cells.

    PubMed

    Zhou, Wenjie; Chen, Xiaoxun; He, Ke; Xiao, Jinfeng; Duan, Xiaopeng; Huang, Rui; Xia, Zhenglin; He, Jingliang; Zhang, Jinqian; Xiang, Guoan

    2016-05-01

    Histone deacetylases (HDACs) are highly expressed in intrahepatic cholangiocarcinoma (ICC) and are associated with poor prognosis of these patients. The aim of the present study was to explore the inhibitory effects of HDAC inhibitors on ICC cells and identify effective and sensitive drugs for ICC. Effects of 34 HDAC inhibitors were screened through two rounds of cell viability assays, and HC toxin, a cyclic tetrapeptide first isolated from the secondary metabolite of Helminthosporium carbonum, exhibited an antitumor activity superior to that of the other HDAC inhibitors and gemcitabine. The mechanisms involved in the inhibitory effects of HC toxin on CCLP-1 cells were investigated by cell counting, colony formation assay, cell morphological observation, real-time PCR, western blotting and flow cytometry. It was demonstrated that HC toxin inhibited the cell proliferation and clone formation ability of the CCLP-1 cells. HC toxin increased the acetyl-histone H4 level and this was associated with the inhibitory effect of HC toxin on the CCLP-1 cells. We also found that HC toxin reduced the level of HDAC1 protein in a post-transcriptional manner. Morphological observation showed multiple morphological changes and indicated the possibility of cell differentiation owing to HC toxin. With increasing concentration of HC toxin, the cell cycle was gradually arrested at the G0/G1 stage and the percentage of apoptotic cells increased which was not mainly through the caspase-3-dependent ways. These results indicated that HC toxin was the most effective among the various HDAC inhibitors with multiple functions in the suppression of ICC in vitro. Thus, HC may be a potential chemotherapeutic for ICC. PMID:26935789

  9. Dual pathways to endochondral osteoblasts: a novel chondrocyte-derived osteoprogenitor cell identified in hypertrophic cartilage

    PubMed Central

    Park, Jung; Gebhardt, Matthias; Golovchenko, Svitlana; Perez-Branguli, Francesc; Hattori, Takako; Hartmann, Christine; Zhou, Xin; deCrombrugghe, Benoit; Stock, Michael; Schneider, Holm; von der Mark, Klaus

    2015-01-01

    According to the general understanding, the chondrocyte lineage terminates with the elimination of late hypertrophic cells by apoptosis in the growth plate. However, recent cell tracking studies have shown that murine hypertrophic chondrocytes can survive beyond “terminal” differentiation and give rise to a progeny of osteoblasts participating in endochondral bone formation. The question how chondrocytes convert into osteoblasts, however, remained open. Following the cell fate of hypertrophic chondrocytes by genetic lineage tracing using BACCol10;Cre induced YFP-reporter gene expression we show that a progeny of Col10Cre-reporter labelled osteoprogenitor cells and osteoblasts appears in the primary spongiosa and participates – depending on the developmental stage – substantially in trabecular, endosteal, and cortical bone formation. YFP+ trabecular and endosteal cells isolated by FACS expressed Col1a1, osteocalcin and runx2, thus confirming their osteogenic phenotype. In searching for transitory cells between hypertrophic chondrocytes and trabecular osteoblasts we identified by confocal microscopy a novel, small YFP+Osx+ cell type with mitotic activity in the lower hypertrophic zone at the chondro-osseous junction. When isolated from growth plates by fractional enzymatic digestion, these cells termed CDOP (chondrocyte-derived osteoprogenitor) cells expressed bone typical genes and differentiated into osteoblasts in vitro. We propose the Col10Cre-labeled CDOP cells mark the initiation point of a second pathway giving rise to endochondral osteoblasts, alternative to perichondrium derived osteoprogenitor cells. These findings add to current concepts of chondrocyte-osteocyte lineages and give new insight into the complex cartilage-bone transition process in the growth plate. PMID:25882555

  10. Histone deacetylase inhibitor screening identifies HC toxin as the most effective in intrahepatic cholangiocarcinoma cells

    PubMed Central

    ZHOU, WENJIE; CHEN, XIAOXUN; HE, KE; XIAO, JINFENG; DUAN, XIAOPENG; HUANG, RUI; XIA, ZHENGLIN; HE, JINGLIANG; ZHANG, JINQIAN; XIANG, GUOAN

    2016-01-01

    Histone deacetylases (HDACs) are highly expressed in intrahepatic cholangiocarcinoma (ICC) and are associated with poor prognosis of these patients. The aim of the present study was to explore the inhibitory effects of HDAC inhibitors on ICC cells and identify effective and sensitive drugs for ICC. Effects of 34 HDAC inhibitors were screened through two rounds of cell viability assays, and HC toxin, a cyclic tetrapeptide first isolated from the secondary metabolite of Helminthosporium carbonum, exhibited an antitumor activity superior to that of the other HDAC inhibitors and gemcitabine. The mechanisms involved in the inhibitory effects of HC toxin on CCLP-1 cells were investigated by cell counting, colony formation assay, cell morphological observation, real-time PCR, western blotting and flow cytometry. It was demonstrated that HC toxin inhibited the cell proliferation and clone formation ability of the CCLP-1 cells. HC toxin increased the acetyl-histone H4 level and this was associated with the inhibitory effect of HC toxin on the CCLP-1 cells. We also found that HC toxin reduced the level of HDAC1 protein in a post-transcriptional manner. Morphological observation showed multiple morphological changes and indicated the possibility of cell differentiation owing to HC toxin. With increasing concentration of HC toxin, the cell cycle was gradually arrested at the G0/G1 stage and the percentage of apoptotic cells increased which was not mainly through the caspase-3-dependent ways. These results indicated that HC toxin was the most effective among the various HDAC inhibitors with multiple functions in the suppression of ICC in vitro. Thus, HC may be a potential chemotherapeutic for ICC. PMID:26935789

  11. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation

    PubMed Central

    Yang, Zijiang; Concannon, John; Ng, Kelvin S.; Seyb, Kathleen; Mortensen, Luke J.; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P.; Glicksman, Marcie A.; Karp, Jeffrey M.

    2016-01-01

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy. PMID:27457881

  12. Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulation.

    PubMed

    Yang, Zijiang; Concannon, John; Ng, Kelvin S; Seyb, Kathleen; Mortensen, Luke J; Ranganath, Sudhir; Gu, Fangqi; Levy, Oren; Tong, Zhixiang; Martyn, Keir; Zhao, Weian; Lin, Charles P; Glicksman, Marcie A; Karp, Jeffrey M

    2016-01-01

    Pre-treatment or priming of mesenchymal stem cells (MSC) prior to transplantation can significantly augment the immunosuppressive effect of MSC-based therapies. In this study, we screened a library of 1402 FDA-approved bioactive compounds to prime MSC. We identified tetrandrine as a potential hit that activates the secretion of prostaglandin E2 (PGE2), a potent immunosuppressive agent, by MSC. Tetrandrine increased MSC PGE2 secretion through the NF-κB/COX-2 signaling pathway. When co-cultured with mouse macrophages (RAW264.7), tetrandrine-primed MSC attenuated the level of TNF-α secreted by RAW264.7. Furthermore, systemic transplantation of primed MSC into a mouse ear skin inflammation model significantly reduced the level of TNF-α in the inflamed ear, compared to unprimed cells. Screening of small molecules to pre-condition cells prior to transplantation represents a promising strategy to boost the therapeutic potential of cell therapy. PMID:27457881

  13. An Orthologous Epigenetic Gene Expression Signature Derived from Differentiating Embryonic Stem Cells Identifies Regulators of Cardiogenesis

    PubMed Central

    Busser, Brian W.; Lin, Yongshun; Yang, Yanqin; Zhu, Jun; Chen, Guokai; Michelson, Alan M.

    2015-01-01

    Here we used predictive gene expression signatures within a multi-species framework to identify the genes that underlie cardiac cell fate decisions in differentiating embryonic stem cells. We show that the overlapping orthologous mouse and human genes are the most accurate candidate cardiogenic genes as these genes identified the most conserved developmental pathways that characterize the cardiac lineage. An RNAi-based screen of the candidate genes in Drosophila uncovered numerous novel cardiogenic genes. shRNA knockdown combined with transcriptome profiling of the newly-identified transcription factors zinc finger protein 503 and zinc finger E-box binding homeobox 2 and the well-known cardiac regulatory factor NK2 homeobox 5 revealed that zinc finger E-box binding homeobox 2 activates terminal differentiation genes required for cardiomyocyte structure and function whereas zinc finger protein 503 and NK2 homeobox 5 are required for specification of the cardiac lineage. We further demonstrated that an essential role of NK2 homeobox 5 and zinc finger protein 503 in specification of the cardiac lineage is the repression of gene expression programs characteristic of alternative cell fates. Collectively, these results show that orthologous gene expression signatures can be used to identify conserved cardiogenic pathways. PMID:26485529

  14. Lead induced ultrastructural changes in the testis of rats.

    PubMed

    Murthy, R C; Saxena, D K; Gupta, S K; Chandra, S V

    1991-01-01

    Oral lead administration (250 ppm lead acetate through drinking water) to weaning male rats for 70 days resulted in the marked accumulation of this metal in blood and testicular tissue. No marked changes were evident in light microscopy. Ultrastructural changes were revealed in the form of vacuolisation of Sertoli cell cytoplasm and increase in the number and size of lysosomes. Some of the vacuoles contained vesicle like structures. Although there was no impairment of spermatogenesis, the changes in the Sertoli cells may lead to changes in spermatogenesis after chronic exposure. PMID:1879517

  15. Gravity receptors - An ultrastructural basis for peripheral sensory processing

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Donovan, K.

    1984-01-01

    The present ultrastructural study of serial sections has shown that type II hair cells of the anterior part of the utricular macula are integrated into the afferent neural circuitry of type I cells, which are arranged in clusters. Additionally, there exists a complex system of intramacularly originating efferent-type nerve fibers and terminals. The findings, taken together, suggest that on morphological grounds, complex processing of sensory information occurs in gravity receptors. Asymmetry of such a complex system may contribute to motion and space-motion sickness.

  16. A Novel Proteomics Approach to Identify SUMOylated Proteins and Their Modification Sites in Human Cells*

    PubMed Central

    Galisson, Frederic; Mahrouche, Louiza; Courcelles, Mathieu; Bonneil, Eric; Meloche, Sylvain; Chelbi-Alix, Mounira K.; Thibault, Pierre

    2011-01-01

    The small ubiquitin-related modifier (SUMO) is a small group of proteins that are reversibly attached to protein substrates to modify their functions. The large scale identification of protein SUMOylation and their modification sites in mammalian cells represents a significant challenge because of the relatively small number of in vivo substrates and the dynamic nature of this modification. We report here a novel proteomics approach to selectively enrich and identify SUMO conjugates from human cells. We stably expressed different SUMO paralogs in HEK293 cells, each containing a His6 tag and a strategically located tryptic cleavage site at the C terminus to facilitate the recovery and identification of SUMOylated peptides by affinity enrichment and mass spectrometry. Tryptic peptides with short SUMO remnants offer significant advantages in large scale SUMOylome experiments including the generation of paralog-specific fragment ions following CID and ETD activation, and the identification of modified peptides using conventional database search engines such as Mascot. We identified 205 unique protein substrates together with 17 precise SUMOylation sites present in 12 SUMO protein conjugates including three new sites (Lys-380, Lys-400, and Lys-497) on the protein promyelocytic leukemia. Label-free quantitative proteomics analyses on purified nuclear extracts from untreated and arsenic trioxide-treated cells revealed that all identified SUMOylated sites of promyelocytic leukemia were differentially SUMOylated upon stimulation. PMID:21098080

  17. Testis follicles ultrastructure of three species of terrestrial isopods (Crustacea, Isopoda Oniscidea).

    PubMed

    Mazzei, V; Longo, G; Brundo, M V

    2015-10-01

    The aim of the research, carried out on three species of terrestrial isopods - Armadillidium granulatum, Halophiloscia hirsuta and Trichoniscus alexandrae - is to bring a first consistent contribution to the knowledge of the ultrastructural organization of the testis follicles. The testis follicles are seat of a remarkable dynamic activity of their cell components (somatic cells and germ cells) that results in a continuous variation, related to the trend of spermatogenesis, of their morphology, organization and of the relationships between the two cell populations. The somatic cells, known in literature as follicular cells, nurse cells or Sertoli cells, are arranged at the periphery of the follicle to form an epithelial layer of variable thickness resting on a thin basal lamina in turn surrounded by a discontinuous network of muscle cells. In A. granulatum and H. hirsuta, two types of Sertoli cells are present: a first type, the nurse cells, envelop the spermatids in cavities within their cytoplasm and through their secretion activity play a fundamental role in the formation of the spermatophores; moreover, they phagocytizes the residual cytoplasm of spermatids. A second type of Sertoli cells shows features that leave clearly identify its supporting role to the spermatophores in formation. In T. alexandrae, instead, only one type of Sertoli cells, the nurse cell, is present, whose features are widely superimposable to those observed in the other two species. Moreover, two septa of Sertoli cells depart from the periphery of the testis follicle to constitute an articulated compartmentalization of the follicle itself, probably targeted to realize at its inside a series of microenvironments functionally diversified in order to meets the needs of the different stages of the spermatogenic cycle. PMID:26276088

  18. Ultrastructure of lymphocyte-mediated fat-cell lysis in erythema nodosum-like lesions of Behçet's syndrome.

    PubMed

    Honma, T; Bang, D; Saito, T; Nakagawa, S; Ueki, H; Lee, S

    1987-12-01

    In this study, biopsy specimens from 18 patients with Behçet's syndrome were examined by electron microscopy with particular attention to the appearance of the lymphocyte-macrophage infiltrate into the interlobules of subcutaneous fat in erythema nodosum-like lesions. Electron microscopic evaluation revealed vacuolization changes of fat cells with detachment of their cell membrane from the basal lamina that permitted lymphocytes and macrophages to enter into this developed space. We believe that the detachment of fat cells from the basal lamina precedes invasion by lymphocytes which, in turn, attracts macrophages into the space. This eventually leads to fat-cell lysis accompanied by activation of macrophages, which causes further inflammation, completing the picture of panniculitis in the erythema nodosum-like lesions in Behçet's syndrome. PMID:3688905

  19. Ultrastructure, inferred porosity, and gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium.

    PubMed

    Beveridge, T J; Sprott, G D; Whippey, P

    1991-01-01

    By light microscopy, Methanospirillum hungatei GP1 stains gram positive at the terminal ends of each multicellular filament and gram negative at all regions in between. This phenomenon was studied further by electron microscopy and energy-dispersive X-ray spectroscopy of Gram-stained cells, using a platinum compound to replace Gram's iodine (J. A. Davies, G. K. Anderson, T. J. Beveridge, and H. C. Clark, J. Bacteriol. 156:837-845, 1983). Crystal violet-platinum precipitates could be found only in the terminal cells of each filament, which suggested that the multilamellar plugs at the filament ends were involved with stain penetration. When sheaths were isolated by sodium dodecyl sulfate-dithiothreitol treatment, the end plugs could be ejected and their layers could be separated from one another by 0.1 M NaOH treatment. Each plug consisted of at least three individual layers; two were particulate and possessed 14.0-nm particles hexagonally arranged on their surfaces with a spacing of a = b = 18.0 nm, whereas the other was a netting of 12.5-nm holes with spacings and symmetry identical to those of the particulate layers. Optical diffraction and computer image reconstruction were used to clarify the structures of each layer in an intact plug and to provide a high-resolution image of their interdigitated structures. The holes through this composite were three to six times larger than those through the sheath. Accordingly, we propose that the terminal plugs of M. hungatei allow the access of larger solutes than does the sheath and that this is the reason why the end cells of each filament stain gram positive whereas more internal cells are gram negative. Intuitively, since the cell spacers which partition the cells from one another along the filament contain plugs identical in structure to terminal plugs, the diffusion of large solutes for these cells would be unidirectional along the filament-cell axis. PMID:1702777

  20. Alternatively expressed genes identified in the CD4+ T cells of allograft rejection mice.

    PubMed

    Xu, Jia; Wang, Dan; Zhang, Chao; Song, Jing; Liang, Ting; Jin, Weirong; Kim, Yeong C; Wang, San Ming; Hou, Guihua

    2011-01-01

    Allograft rejection is a leading cause for the failure of allotransplantation. CD4(+) T cells play critical roles in this process. The identification of genes that alternatively expressed in CD4(+) T cells during allograft rejection will provide critical information for studying the mechanism of allograft rejection, finding specific gene markers for monitoring, predicting allograft rejection, and opening new ways to regulate and prevent allograft rejection. Here, we established allograft and isograft transplantation models by adoptively transferring wild-type BALB/c mouse CD4(+) T cells into severe combined immunodeficient (SCID) mice with a C57BL/6 or BALB/c mouse skin graft. Using the whole transcriptome sequencing-based serial analysis of gene expression (SAGE) technology, we identified 97 increasingly and 88 decreasingly expressed genes that may play important roles in allograft rejection and tolerance. Functional classification of these genes shows that apoptosis, transcription regulation, cell growth and maintenance, and signal transduction are among the frequently changed functional groups. This study provides a genome-wide view for the candidate genes of CD4(+) T cells related to allotransplantation, and this report is a good resource for further microarray studies and for identifying the specific markers that are associated with clinical organ transplantations. PMID:21294963

  1. Plasmodesmal receptor-like kinases identified through analysis of rice cell wall extracted proteins.

    PubMed

    Jo, Yeonhwa; Cho, Won Kyong; Rim, Yeonggil; Moon, Juyeon; Chen, Xiong-Yan; Chu, Hyosub; Kim, Cha Young; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2011-01-01

    In plants, plasmodesmata (PD) are intercellular channels that function in both metabolite exchange and the transport of proteins and RNAs. Currently, many of the PD structural and regulatory components remain to be elucidated. Receptor-like kinases (RLKs) belonging to a notably expanded protein family in plants compared to the animal kingdom have been shown to play important roles in plant growth, development, pathogen resistance, and cell death. In this study, cell biological approaches were used to identify potential PD-associated RLK proteins among proteins contained within cell walls isolated from rice callus cultured cells. A total of 15 rice RLKs were investigated to determine their subcellular localization, using an Agrobacterium-mediated transient expression system. Of these six PD-associated RLKs were identified based on their co-localization with a viral movement protein that served as a PD marker, plasmolysis experiments, and subcellular localization at points of wall contact between spongy mesophyll cells. These findings suggest potential PD functions in apoplasmic signaling in response to environmental stimuli and developmental inputs. PMID:21161304

  2. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing.

    PubMed

    Drissen, Roy; Buza-Vidas, Natalija; Woll, Petter; Thongjuea, Supat; Gambardella, Adriana; Giustacchini, Alice; Mancini, Elena; Zriwil, Alya; Lutteropp, Michael; Grover, Amit; Mead, Adam; Sitnicka, Ewa; Jacobsen, Sten Eirik W; Nerlov, Claus

    2016-06-01

    According to current models of hematopoiesis, lymphoid-primed multi-potent progenitors (LMPPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)Flt3(hi)) and common myeloid progenitors (CMPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)CD41(hi)) establish an early branch point for separate lineage-commitment pathways from hematopoietic stem cells, with the notable exception that both pathways are proposed to generate all myeloid innate immune cell types through the same myeloid-restricted pre-granulocyte-macrophage progenitor (pre-GM) (Lin(-)Sca-1(-)c-Kit(+)CD41(-)FcγRII/III(-)CD150(-)CD105(-)). By single-cell transcriptome profiling of pre-GMs, we identified distinct myeloid differentiation pathways: a pathway expressing the gene encoding the transcription factor GATA-1 generated mast cells, eosinophils, megakaryocytes and erythroid cells, and a pathway lacking expression of that gene generated monocytes, neutrophils and lymphocytes. These results identify an early hematopoietic-lineage bifurcation that separates the myeloid lineages before their segregation from other hematopoietic-lineage potential. PMID:27043410

  3. Thrombin-Mediated Platelet Activation of Lysed Whole Blood and Platelet-Rich Plasma: A Comparison Between Platelet Activation Markers and Ultrastructural Alterations.

    PubMed

    Augustine, Tanya N; van der Spuy, Wendy J; Kaberry, Lindsay L; Shayi, Millicent

    2016-06-01

    Platelet ultrastructural alterations representing spurious activation have been identified in pathological conditions. A limitation of platelet studies is that sample preparation may lead to artifactual activation processes which may confound results, impacting the use of scanning electron microscopy as a supplemental diagnostic tool. We used scanning electron microscopy and flow cytometry to analyze platelet activation in platelet-rich plasma (PRP) and whole blood (WB) samples. PRP generated using a single high g force centrifugation, and WB samples treated with a red blood cell lysis buffer, were exposed to increasing concentrations of the agonist thrombin. Platelets in lysed WB samples responded to thrombin by elevating the activation marker CD62p definitively, with corresponding ultrastructural changes indicating activation. Conversely, CD62p expression in PRP preparations remained static. Ultrastructural analysis revealed fully activated platelets even under low concentration thrombin stimulation, with considerable fibrin deposition. It is proposed that the method for PRP production induced premature platelet activation, preventable by using an inhibitor of platelet aggregation and fibrin polymerization. Nevertheless, our results show a definitive correspondence between flow cytometry and scanning electron microscopy in platelet activation studies, highlighting the potential of the latter technique as a supplemental diagnostic tool. PMID:27329313

  4. Ultrastructural Analysis of Candida albicans When Exposed to Silver Nanoparticles

    PubMed Central

    Vazquez-Muñoz, Roberto; Avalos-Borja, Miguel; Castro-Longoria, Ernestina

    2014-01-01

    Candida albicans is the most common fungal pathogen in humans, and recently some studies have reported the antifungal activity of silver nanoparticles (AgNPs) against some Candida species. However, ultrastructural analyses on the interaction of AgNPs with these microorganisms have not been reported. In this work we evaluated the effect of AgNPs on C. albicans, and the minimum inhibitory concentration (MIC) was found to have a fungicidal effect. The IC50 was also determined, and the use of AgNPs with fluconazole (FLC), a fungistatic drug, reduced cell proliferation. In order to understand how AgNPs interact with living cells, the ultrastructural distribution of AgNPs in this fungus was determined. Transmission electron microscopy (TEM) analysis revealed a high accumulation of AgNPs outside the cells but also smaller nanoparticles (NPs) localized throughout the cytoplasm. Energy dispersive spectroscopy (EDS) analysis confirmed the presence of intracellular silver. From our results it is assumed that AgNPs used in this study do not penetrate the cell, but instead release silver ions that infiltrate into the cell leading to the formation of NPs through reduction by organic compounds present in the cell wall and cytoplasm. PMID:25290909

  5. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. I: Methodology

    PubMed Central

    2010-01-01

    Background Cryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient. Results The present study suggests a new approach in cryopreservation, utilizing the Individual Cell-based Cryo-Chip (i3C). The i3C is made of materials having appropriate durability for cryopreservation conditions. The core of this approach is an array of picowells, each picowell designed to maintain an individual cell during the severe conditions of the freezing - thawing cycle and accompanying treatments. More than 97% of cells were found to retain their position in the picowells throughout the entire freezing - thawing cycle and medium exchange. Thus the comparison between pre-freezing and post-thawing data can be achieved at an individual cell resolution. The intactness of cells undergoing slow freezing and thawing, while residing in the i3C, was found to be similar to that obtained with micro-vials. However, in a fast freezing protocol, the i3C was found to be far superior. Conclusions The results of the present study offer new opportunities for cryopreservation. Using the present methodology, the cryopreservation of individual identifiable cells, and their observation and retrieval, at an individual cell resolution become possible for the first time. This approach facilitates the correlation between cell characteristics before and after the freezing - thawing cycle. Thus, it is expected to significantly enhance current cryopreservation procedures for successful regenerative and reproductive medicine. PMID:20609216

  6. New melanogenesis and photobiological processes in activation and proliferation of precursor melanocytes after UV-exposure: ultrastructural differentiation of precursor melanocytes from Langerhans cells

    SciTech Connect

    Jimbow, K.; Uesugi, T.

    1982-02-01

    Photobiological processes involving new melanogenesis after exposure to ultraviolet (UV) light were experimentally studied in C57 black adult mice by histochemistry, cytochemistry, and autoradiography. The trunk and the plantar region of the foot, where no functioning melanocytes were present before exposure, were exposed to UV-A for 14 consecutive days. Both regions revealed a basically similar pattern for new melanogenesis which involved an activation of precursor melanocytes. Essentially all of ''indeterminate'' cells appeared to be precursor melanocytes, the fine structure of which could be differentiated even from poorly developed Langerhans cells. New melanogenesis was manifested by 4 stages of cellular and subcellular reactions of these cells as indicated by histochemistry of dihydroxyphenylalanine (dopa) and autoradiography of thymidine incorporation: (a) an initial lag in the activation of precursor melanocytes with development of Golgi cisternae and rough endoplasmic reticulum followed by formation of unmelanized melanosomes (day 0 to 2); (b) synthesis of active tyrosinase accumulated in Golgi cisternae and vesicles with subsequent formation of melanized melanosomes in these cells (day 3 to 5); (c) mitotic proliferation of many of these activated cells, followed by an exponential increase of new melanocytes (day 6 to 7); and (d) melanosome transfer with differentiation of 10 nm filaments and arborization of dendrites, but without any significant change in the melanocyte population (day 8 to 14). The melanosome transfer was, however, not obvious until after 7 days of exposure. The size of newly synthesized melanosomes was similar to that of tail skin where native melanocytes were present before exposure.

  7. Ultrastructure and molecular phylogenetic position of a novel euglenozoan with extrusive episymbiotic bacteria: Bihospites bacati n. gen. et sp. (Symbiontida)

    PubMed Central

    2010-01-01

    Background Poorly understood but highly diverse microbial communities exist within anoxic and oxygen-depleted marine sediments. These communities often harbour single-celled eukaryotes that form symbiotic associations with different prokaryotes. During low tides in South-western British Columbia, Canada, vast areas of marine sand become exposed, forming tidal pools. Oxygen-depleted sediments within these pools are distinctively black at only 2-3 cm depth; these layers contain a rich variety of microorganisms, many of which are undescribed. We discovered and characterized a novel (uncultivated) lineage of heterotrophic euglenozoan within these environments using light microscopy, scanning and transmission electron microscopy, serial sectioning and ultrastructural reconstruction, and molecular phylogenetic analyses of small subunit rDNA sequences. Results Bihospites bacati n. gen. et sp. is a biflagellated microbial eukaryote that lives within low-oxygen intertidal sands and dies within a few hours of exposure to atmospheric oxygen. The cells are enveloped by two different prokaryotic episymbionts: (1) rod-shaped bacteria and (2) longitudinal strings of spherical bacteria, capable of ejecting an internal, tightly wound thread. Ultrastructural data showed that B. bacati possesses all of the euglenozoan synapomorphies. Moreover, phylogenetic analyses of SSU rDNA sequences demonstrated that B. bacati groups strongly with the Symbiontida: a newly established subclade within the Euglenozoa that includes Calkinsia aureus and other unidentified organisms living in low-oxygen sediments. B. bacati also possessed novel features, such as a compact C-shaped rod apparatus encircling the nucleus, a cytostomal funnel and a distinctive cell surface organization reminiscent of the pellicle strips in phagotrophic euglenids. Conclusions We characterized the ultrastructure and molecular phylogenetic position of B. bacati n. gen. et sp. Molecular phylogenetic analyses demonstrated that

  8. S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells

    PubMed Central

    Jaiswal, Jyoti K; Nylandsted, Jesper

    2015-01-01

    Mechanical activity of cells and the stress imposed on them by extracellular environment is a constant source of injury to the plasma membrane (PM). In invasive tumor cells, increased motility together with the harsh environment of the tumor stroma further increases the risk of PM injury. The impact of these stresses on tumor cell plasma membrane and mechanism by which tumor cells repair the PM damage are poorly understood. Ca2+ entry through the injured PM initiates repair of the PM. Depending on the cell type, different organelles and proteins respond to this Ca2+ entry and facilitate repair of the damaged plasma membrane. We recently identified that proteins expressed in various metastatic cancers including Ca2+-binding EF hand protein S100A11 and its binding partner annexin A2 are used by tumor cells for plasma membrane repair (PMR). Here we will discuss the involvement of S100, annexin proteins and their regulation of actin cytoskeleton, leading to PMR. Additionally, we will show that another S100 member – S100A4 accumulates at the injured PM. These findings reveal a new role for the S100 and annexin protein up regulation in metastatic cancers and identify these proteins and PMR as targets for treating metastatic cancers. PMID:25565331

  9. Identifying critical differentiation state of MCF-7 cells for breast cancer by dynamical network biomarkers.

    PubMed

    Chen, Pei; Liu, Rui; Chen, Luonan; Aihara, Kazuyuki

    2015-01-01

    Identifying the pre-transition state just before a critical transition during a complex biological process is a challenging task, because the state of the system may show neither apparent changes nor clear phenomena before this critical transition during the biological process. By exploring rich correlation information provided by high-throughput data, the dynamical network biomarker (DNB) can identify the pre-transition state. In this work, we apply DNB to detect an early-warning signal of breast cancer on the basis of gene expression data of MCF-7 cell differentiation. We find a number of the related modules and pathways in the samples, which can be used not only as the biomarkers of cancer cells but also as the drug targets. Both functional and pathway enrichment analyses validate the results. PMID:26284108

  10. Langerhans cell histiocytosis of the digestive tract identified on an upper gastrointestinal examination.

    PubMed

    Zei, Markus; Meyers, Arthur B; Boyd, Kevin P; Larson-Nath, Catherine; Suchi, Mariko

    2016-08-01

    Langerhans cell histiocytosis (LCH) with involvement of the gastrointestinal tract is rare and typically identified in patients with systemic disease. We describe a 16-month-old girl who initially presented with bilious vomiting, failure to thrive and a rash. An upper gastrointestinal (GI) examination revealed loss of normal mucosal fold pattern and luminal narrowing within the duodenum, prompting endoscopic biopsy. Langerhans cell histiocytosis of the digestive tract was confirmed by histopathology. A skeletal survey and skin biopsy identified other systemic lesions. Although uncommon, it is important to consider LCH in the differential diagnosis for gastrointestinal symptoms of unclear origin, especially when seen with concurrent rash. Findings of gastrointestinal involvement on upper GI examination include loss of normal mucosal fold pattern and luminal narrowing in the few published case reports. PMID:26886914

  11. Ontogeny of the conus papillaris of the lizard Gallotia galloti and cellular response following transection of the optic nerve: an immunohistochemical and ultrastructural study.

    PubMed

    Alfayate, M C; Santos, E; Yanes, C; Casañas, N; Viñoly, R; Del Mar Romero-Alemán, Maria; Monzón-Mayor, Maximina

    2011-04-01

    Spontaneous regrowth of the axons of retinal ganglion cells (RGC) occurs after unilateral optic nerve transection (ONT) in the lizard Gallotia galloti. We have performed an immunohistochemical and ultrastructural study of the conus papillaris (CP) of this lizard during ontogeny and after ONT in order to characterize its cell subpopulations, innervation and putative blood-brain barrier (BBB) and to evaluate changes occurring throughout regeneration. Proliferating PCNA(+) cells were abundant between embryonic stage 33 (E33) and hatching. From E33, we observed Pax2(+)/GS(+) glial cells in the primitive CP, which became increasingly pigmented and vascularised from E35. Conal astrocytes coexpressing Pax2 with vimentin and/or GFAP were identified from E37-E38. GluT-1(+)/LEA(+)/Pax2(-) endothelial cells (ECs) formed a continuous endothelium with tight junctions and luminal and abluminal microfolds. In adults, the peripheral blood vessels showed a thinner calibre, stronger GluT-1 staining and more abundant microfolds than those of the central CP indicating the higher specialization involved during transport within the former. Occasional pericytes, abundant Pax2(+) pigment cells, LEA(+) microglia/macrophages, unmyelinated Tuj1(+) nerve fibres and SV2(+) synaptic vesicles were also observed in the perivascular zone. After ONT, the expression of GluT-1 and p75(NTR) persisted in ECs, suggesting the preservation/early recovery of the BBB. Relevant ultrastructural alterations were observed at 0.5 months postlesion, although, by 3 months, the CP had recovered the ultrastructure of controls indicating tissue recovery. Abnormal newly formed blood vessels had developed in the CP-optic nerve junction. Thus, the CP is a central nervous system structure whose regenerating capacity might be key for the nutritional support of regenerating RGCs in G. galloti. PMID:21347575

  12. Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution.

    PubMed

    Ameye, L; Hermann, R; Dubois, P

    2000-08-01

    The improvements brought by high-pressure freezing/freeze substitution fixation methods to the ultrastructural preservation of echinoderm mineralized tissues are investigated in developing pedicellariae and teeth of the echinoid Paracentrotus lividus. Three freeze substitution (FS) protocols were tested: one in the presence of osmium tetroxide, one in the presence of uranyl acetate, and the last in the presence of gallic acid. FS in the presence of osmium tetroxide significantly improved cell ultrastructure preservation and should especially be used for ultrastructural studies involving vesicles and the Golgi apparatus. With all protocols, multivesicular bodies, suggested to contain Ca(2+), were evident for the first time in skeleton-forming cells. FS in the presence of gallic acid allowed us to confirm the structured and insoluble character of a part of the organic matrix of mineralization in the calcification sites of the tooth, an observation which modifies the current understanding of biomineralization control in echinoderms. PMID:11042082

  13. Effect of nitrogen starvation on the morphology and ultrastructure of the cyanobacterium Mastigocladus laminosus.

    PubMed Central

    Stevens, S E; Nierzwicki-Bauer, S A; Balkwill, D L

    1985-01-01

    The effects of nitrogen starvation on the morphology and ultrastructure of the branching, filamentous cyanobacterium Mastigocladus laminosus were examined with light and electron microscopy. The internal ultrastructural characteristics of vegetative cells changed markedly during nitrogen starvation. Carboxysomes were degraded, while polyphosphate bodies and lipid bodies accumulated. The ultrastructure of mature heterocysts was also affected by nitrogen starvation; their intracytoplasmic membranes vesiculated to form vacuolelike structures and, eventually, large empty regions in the cytoplasm. Nitrogen starvation stimulated extensive heterocyst differentiation in M. laminosus, producing heterocyst frequencies of 17.5% in narrow filaments and 28.3% in wide filaments within 44 h after transfer to N-free conditions. Cells in wide filaments differentiated so extensively that only 16.8% of them failed to initiate the differentiation process within 44 h. Images PMID:3918986

  14. Effect of gamma radiation on Aspergillus flavus and Aspergillus ochraceus ultrastructure and mycotoxin production

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Cavaglieri, L.; Vital, H.; Cristofolini, A.; Merkis, C.; Astoreca, A.; Orlando, J.; Carú, M.; Dalcero, A.; Rosa, C. A. R.

    2011-05-01

    The aim of this work was to study the effect of gamma radiation (2 kGy) on Aspergillus flavus and Aspergillus ochraceus ultrastructure. Moreover, the influence on aflatoxin B 1 and ochratoxin A production was also observed. Irradiated A. flavus strain showed a dull orangish colony while control strain showed the typical green color. Minor differences were observed on stipes, metulae and conidia size between control and irradiated A. flavus and A. ochraceus strains. Irradiated fungi showed ultrastructural changes on cell wall, plasmalema and cytoplasm levels. The levels of mycotoxins produced by irradiated strains were two times greater than those produced by control strains. Successive transferences of irradiated strains on malt extract agar allowed the fungus to recuperate morphological characteristics. Although minor changes in the fungal morphology were observed, ultrastructural changes at cell wall level and the increase of mycotoxin production ability were observed. Inappropriate storage of irradiated food and feed would allow the development of potentially more toxicogenic fungal propagules.

  15. Differential diagnosis between mesothelioma and adenocarcinoma: a multimodal approach based on ultrastructure and immunocytochemistry

    SciTech Connect

    Bedrossian, C.W.; Bonsib, S.; Moran, C. )

    1992-05-01

    Most compensations for asbestos-related deaths secondary to cancer center around mesothelioma and bronchogenic carcinoma. The differential diagnosis between mesothelioma and adenocarcinoma is a common and troublesome one, necessitating the correlation between clinical history, radiographic findings, and pathologic examination of tissues and cells. We describe a multimodal approach based on the use of routine and special stains, immunocytochemistry, and electron microscopy for distinguishing between mesothelioma and adenocarcinoma. Once a malignant diagnosis is arrived at by careful pathological examination, the tumor is classified as mesothelioma if mesothelial cells are identified as the constituent cells of the neoplasm. Mesothelial cells are recognized by (1) their main ultrastructural features: slender and elongated microvilli, abundant intermediate filaments, and lacking secretory granules; and (2) their characteristic immunocytochemical reactivity: positivity for cytokeratin, EMA, and vimentin, and negativity for carcinoembryonic antigen (CEA), B72-3, Leu-M1, and other gland-cell markers. A variety of methods have been attempted in an effort to distinguish between reactive and malignant mesothelial cells. In practice, however, such distinction depends more on experience and expertise than in any fool-proof ancillary tests. A number of these tests are discussed along with the illustration of classical and unusual examples of mesothelioma and other pleural tumors.

  16. Ultrastructural and biochemical evidence for the presence of mature steroidogenic acute regulatory protein (StAR) in the cytoplasm of human luteal cells.

    PubMed

    Sierralta, Walter D; Kohen, Paulina; Castro, Olga; Muñoz, Alex; Strauss, Jerome F; Devoto, Luigi

    2005-10-20

    The distribution of the steroidogenic acute regulatory protein (StAR) inside thecal and granulosa-lutein cells of human corpus luteum (CL) was assessed by immunoelectron microscopy. We found greater levels of StAR immunolabeling in steroidogenic cells from early- and mid-than in late luteal phase CL and lower levels in cells from women treated with a GnRH antagonist in the mid-luteal phase. Immunoelectron microscopy revealed significant levels of StAR antigen in the mitochondria and in the cytoplasm of luteal cells. The 30 kDa mature StAR protein was present in both mitochondria and cytosol (post-mitochondrial) fractions from homogenates of CL at different ages, whereas cytochrome c and mitochondrial HSP70 were detected only in the mitochondrial fraction. Therefore, we hypothesized that either appreciable processing of StAR 37 kDa pre-protein occurs outside the mitochondria, or mature StAR protein is selectively released into the cytoplasm after mitochondrial processing. The presence of mature StAR in the cytoplasm is consonant with the notion that StAR acts on the outer mitochondrial membrane to effect sterol import, and that StAR may interact with other cytoplasmic proteins involved in cholesterol metabolism, including hormone sensitive lipase. PMID:16162390

  17. Molecular profiling of premalignant lesions in lung squamous cell carcinomas identifies mechanisms involved in stepwise carcinogenesis.

    PubMed

    Ooi, Aik T; Gower, Adam C; Zhang, Kelvin X; Vick, Jessica L; Hong, Longsheng; Nagao, Brian; Wallace, W Dean; Elashoff, David A; Walser, Tonya C; Dubinett, Steven M; Pellegrini, Matteo; Lenburg, Marc E; Spira, Avrum; Gomperts, Brigitte N

    2014-05-01

    Lung squamous cell carcinoma (SCC) is thought to arise from premalignant lesions in the airway epithelium; therefore, studying these lesions is critical for understanding lung carcinogenesis. Previous microarray and sequencing studies designed to discover early biomarkers and therapeutic targets for lung SCC had limited success identifying key driver events in lung carcinogenesis, mostly due to the cellular heterogeneity of patient samples examined and the interindividual variability associated with difficult to obtain airway premalignant lesions and appropriate normal control samples within the same patient. We performed RNA sequencing on laser-microdissected representative cell populations along the SCC pathologic continuum of patient-matched normal basal cells, premalignant lesions, and tumor cells. We discovered transcriptomic changes and identified genomic pathways altered with initiation and progression of SCC within individual patients. We used immunofluorescent staining to confirm gene expression changes in premalignant lesions and tumor cells, including increased expression of SLC2A1, CEACAM5, and PTBP3 at the protein level and increased activation of MYC via nuclear translocation. Cytoband enrichment analysis revealed coordinated loss and gain of expression in chromosome 3p and 3q regions, respectively, during carcinogenesis. This is the first gene expression profiling study of airway premalignant lesions with patient-matched SCC tumor samples. Our results provide much needed information about the biology of premalignant lesions and the molecular changes that occur during stepwise carcinogenesis of SCC, and it highlights a novel approach for identifying some of the earliest molecular changes associated with initiation and progression of lung carcinogenesis within individual patients. PMID:24618292

  18. Molecular profiling of premalignant lesions in lung squamous cell carcinomas identifies mechanisms involved in stepwise carcinogenesis

    PubMed Central

    Ooi, Aik T.; Gower, Adam C.; Zhang, Kelvin X.; Vick, Jessica L.; Hong, Longsheng; Nagao, Brian; Wallace, W. Dean; Elashoff, David A.; Walser, Tonya C.; Dubinett, Steven M.; Pellegrini, Matteo; Lenburg, Marc E.; Spira, Avrum; Gomperts, Brigitte N.

    2014-01-01

    Lung squamous cell carcinoma (SCC) is thought to arise from premalignant lesions in the airway epithelium; therefore studying these lesions is critical for understanding lung carcinogenesis. Previous microarray and sequencing studies designed to discover early biomarkers and therapeutic targets for lung SCC had limited success identifying key driver events in lung carcinogenesis, mostly due to the cellular heterogeneity of patient samples examined and the inter-individual variability associated with difficult to obtain airway premalignant lesions and appropriate normal control samples within the same patient. We performed RNA sequencing on laser-microdissected representative cell populations along the SCC pathological continuum of patient-matched normal basal cells, premalignant lesions, and tumor cells. We discovered transcriptomic changes and identified genomic pathways altered with initiation and progression of SCC within individual patients. We used immunofluorescent staining to confirm gene expression changes in premalignant lesions and tumor cells, including increased expression of SLC2A1, CEACAM5, and PTBP3 at the protein level and increased activation of MYC via nuclear translocation. Cytoband enrichment analysis revealed coordinated loss and gain of expression in chromosome 3p and 3q regions, respectively, during carcinogenesis. This is the first gene expression profiling study of airway premalignant lesions with patient-matched SCC tumor samples. Our results provide much needed information about the biology of premalignant lesions and the molecular changes that occur during stepwise carcinogenesis of SCC, and it highlights a novel approach for identifying some of the earliest molecular changes associated with initiation and progression of lung carcinogenesis within individual patients. PMID:24618292

  19. Common Viral Integration Sites Identified in Avian Leukosis Virus-Induced B-Cell Lymphomas

    PubMed Central

    Justice, James F.; Morgan, Robin W.

    2015-01-01

    ABSTRACT Avian leukosis virus (ALV) induces B-cell lymphoma and other neoplasms in chickens by integrating within or near cancer genes and perturbing their expression. Four genes—MYC, MYB, Mir-155, and TERT—have previously been identified as common integration sites in these virus-induced lymphomas and are thought to play a causal role in tumorigenesis. In this study, we employ high-throughput sequencing to identify additional genes driving tumorigenesis in ALV-induced B-cell lymphomas. In addition to the four genes implicated previously, we identify other genes as common integration sites, including TNFRSF1A, MEF2C, CTDSPL, TAB2, RUNX1, MLL5, CXorf57, and BACH2. We also analyze the genome-wide ALV integration landscape in vivo and find increased frequency of ALV integration near transcriptional start sites and within transcripts. Previous work has shown ALV prefers a weak consensus sequence for integration in cultured human cells. We confirm this consensus sequence for ALV integration in vivo in the chicken genome. PMID:26670384

  20. Functional Genomics Screening Utilizing Mutant Mouse Embryonic Stem Cells Identifies Novel Radiation-Response Genes

    PubMed Central

    Loesch, Kimberly; Galaviz, Stacy; Hamoui, Zaher; Clanton, Ryan; Akabani, Gamal; Deveau, Michael; DeJesus, Michael; Ioerger, Thomas; Sacchettini, James C.; Wallis, Deeann

    2015-01-01

    Elucidating the genetic determinants of radiation response is crucial to optimizing and individualizing radiotherapy for cancer patients. In order to identify genes that are involved in enhanced sensitivity or resistance to radiation, a library of stable mutant murine embryonic stem cells (ESCs), each with a defined mutation, was screened for cell viability and gene expression in response to radiation exposure. We focused on a cancer-relevant subset of over 500 mutant ESC lines. We identified 13 genes; 7 genes that have been previously implicated in radiation response and 6 other genes that have never been implicated in radiation response. After screening, proteomic analysis showed enrichment for genes involved in cellular component disassembly (e.g. Dstn and Pex14) and regulation of growth (e.g. Adnp2, Epc1, and Ing4). Overall, the best targets with the highest potential for sensitizing cancer cells to radiation were Dstn and Map2k6, and the best targets for enhancing resistance to radiation were Iqgap and Vcan. Hence, we provide compelling evidence that screening mutant ESCs is a powerful approach to identify genes that alter radiation response. Ultimately, this knowledge can be used to define genetic variants or therapeutic targets that will enhance clinical therapy. PMID:25853515

  1. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes

    PubMed Central

    James, Sally; Fox, James; Afsari, Farinaz; Lee, Jennifer; Clough, Sally; Knight, Charlotte; Ashmore, James; Ashton, Peter; Preham, Olivier; Hoogduijn, Martin; Ponzoni, Raquel De Almeida Rocha; Hancock, Y.; Coles, Mark; Genever, Paul

    2015-01-01

    Summary Bone marrow stromal cells (BMSCs, also called bone-marrow-derived mesenchymal stromal cells) provide hematopoietic support and immunoregulation and contain a stem cell fraction capable of skeletogenic differentiation. We used immortalized human BMSC clonal lines for multi-level analysis of functional markers for BMSC subsets. All clones expressed typical BMSC cell-surface antigens; however, clones with trilineage differentiation capacity exhibited enhanced vascular interaction gene sets, whereas non-differentiating clones were uniquely CD317 positive with significantly enriched immunomodulatory transcriptional networks and high IL-7 production. IL-7 lineage tracing and CD317 immunolocalization confirmed the existence of a rare non-differentiating BMSC subtype, distinct from Cxcl12-DsRed+ perivascular stromal cells in vivo. Colony-forming CD317+ IL-7hi cells, identified at ∼1%–3% frequency in heterogeneous human BMSC fractions, were found to have the same biomolecular profile as non-differentiating BMSC clones using Raman spectroscopy. Distinct functional identities can be assigned to BMSC subpopulations, which are likely to have specific roles in immune control, lymphopoiesis, and bone homeostasis. PMID:26070611

  2. Human mesenchymal stromal cells: identifying assays to predict potency for therapeutic selection.

    PubMed

    Deskins, Desirae L; Bastakoty, Dikshya; Saraswati, Sarika; Shinar, Andrew; Holt, Ginger E; Young, Pampee P

    2013-02-01

    Multipotent mesenchymal stromal cells (MSCs) have the potential to repair and regenerate damaged tissues, making them attractive candidates for cell-based therapies. To maximize efficacy of MSCs, prediction of their therapeutic abilities must be made so that only the best cells will be used. Our goal was to identify feasible and reproducible in vitro assays to predict MSC potency. We generated cell lines from 10 normal human bone marrow samples and used the International Society for Cellular Therapy's minimal criteria to define them as MSCs: plastic adherence, appropriate surface marker expression, and trilineage differentiation. Each MSC line was further characterized by its growth, proliferation, and viability as determined by cell count, bromodeoxyuridine incorporation, and cellular ATP levels, respectively. To determine whether these tests reliably predict the therapeutic aptitude of the MSCs, several lines were implanted in vivo to examine their capacity to engraft and form granulation tissue in a well-established murine wound model using polyvinyl alcohol sponges. Long-term engraftment of MSCs in the sponges was quantified through the presence of the human-specific Alu gene in sponge sections. Sections were also stained for proliferating cells, vascularity, and granulation tissue formation to determine successful engraftment and repair. We found that high performance in a combination of the in vitro tests accurately predicted which lines functioned well in vivo. These findings suggest that reliable and reproducible in vitro assays may be used to measure the functional potential of MSCs for therapeutic use. PMID:23362238

  3. A CRISPR-based screen identifies genes essential for West Nile virus-induced cell death

    PubMed Central

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N.; Wu, Haoquan

    2015-01-01

    Summary West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the endoplasmic reticulum-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. PMID:26190106

  4. Identifying mutated proteins secreted by colon cancer cell lines using mass spectrometry.

    PubMed

    Mathivanan, Suresh; Ji, Hong; Tauro, Bow J; Chen, Yuan-Shou; Simpson, Richard J

    2012-12-01

    Secreted proteins encoded by mutated genes (mutant proteins) are a particularly rich source of biomarkers being not only components of the cancer secretome but also actually implicated in tumorigenesis. One of the challenges of proteomics-driven biomarker discovery research is that the bulk of secreted mutant proteins cannot be identified directly and quantified by mass spectrometry due to the lack of mutated peptide information in extant proteomics databases. Here we identify, using an integrated genomics and proteomics strategy (referred to iMASp - identification of Mutated And Secreted proteins), 112 putative mutated tryptic peptides (corresponding to 57 proteins) in the collective secretomes derived from a panel of 18 human colorectal cancer (CRC) cell lines. Central to this iMASp was the creation of Human Protein Mutant Database (HPMD), against which experimentally-derived secretome peptide spectra were searched. Eight of the identified mutated tryptic peptides were confirmed by RT-PCR and cDNA sequencing of RNA extracted from those CRC cells from which the mutation was identified by mass spectrometry. The iMASp technology promises to improve the link between proteomics and genomic mutation data thereby providing an effective tool for targeting tryptic peptides with mutated amino acids as potential cancer biomarker candidates. This article is part of a Special Issue entitled: Integrated omics. PMID:22796352

  5. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    PubMed

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists. PMID:25183542

  6. Screens for piwi suppressors in Drosophila identify dosage-dependent regulators of germline stem cell division.

    PubMed Central

    Smulders-Srinivasan, Tora K; Lin, Haifan

    2003-01-01

    The Drosophila piwi gene is the founding member of the only known family of genes whose function in stem cell maintenance is highly conserved in both animal and plant kingdoms. piwi mutants fail to maintain germline stem cells in both male and female gonads. The identification of piwi-interacting genes is essential for understanding how stem cell divisions are regulated by piwi-mediated mechanisms. To search for such genes, we screened the Drosophila third chromosome ( approximately 36% of the euchromatic genome) for suppressor mutations of piwi2 and identified six strong and three weak piwi suppressor genes/sequences. These genes/sequences interact negatively with piwi in a dosage-sensitive manner. Two of the strong suppressors represent known genes--serendipity-delta and similar, both encoding transcription factors. These findings reveal that the genetic regulation of germline stem cell division involves dosage-sensitive mechanisms and that such mechanisms exist at the transcriptional level. In addition, we identified three other types of piwi interactors. The first type consists of deficiencies that dominantly interact with piwi2 to cause male sterility, implying that dosage-sensitive regulation also exists in the male germline. The other two types are deficiencies that cause lethality and female-specific lethality in a piwi2 mutant background, revealing the zygotic function of piwi in somatic development. PMID:14704180

  7. Cell-Based Screening Identifies Paroxetine as an Inhibitor of Diabetic Endothelial Dysfunction

    PubMed Central

    Gerö, Domokos; Szoleczky, Petra; Suzuki, Kunihiro; Módis, Katalin; Oláh, Gabor; Coletta, Ciro; Szabo, Csaba

    2013-01-01

    We have conducted a phenotypic screening in endothelial cells exposed to elevated extracellular glucose (an in vitro model of hyperglycemia) to identify compounds that prevent hyperglycemia-induced reactive oxygen species (ROS) formation without adversely affecting cell viability. From a focused library of >6,000 clinically used drug-like and pharmacologically active compounds, several classes of active compounds emerged, with a confirmed hit rate of <0.5%. Follow-up studies focused on paroxetine, a clinically used antidepressant compound that has not been previously implicated in the context of hyperglycemia or diabetes. Paroxetine reduced hyperglycemia-induced mitochondrial ROS formation, mitochondrial protein oxidation, and mitochondrial and nuclear DNA damage, without interfering with mitochondrial electron transport or cellular bioenergetics. The ability of paroxetine to improve hyperglycemic endothelial cell injury was unique among serotonin reuptake blockers and can be attributed to its antioxidant effect, which primarily resides within its sesamol moiety. Paroxetine maintained the ability of vascular rings to respond to the endothelium-dependent relaxant acetylcholine, both during in vitro hyperglycemia and ex vivo, in a rat model of streptozotocin-induced diabetes. Thus, the current work identifies a novel pharmacological action of paroxetine as a protector of endothelial cells against hyperglycemic injury and raises the potential of repurposing of this drug for the experimental therapy of diabetic cardiovascular complications. PMID:23223176

  8. Gene trapping identifies a putative tumor suppressor and a new inducer of cell migration

    SciTech Connect

    Guardiola-Serrano, Francisca; Haendeler, Judith; Lukosz, Margarete; Sturm, Karsten; Melchner, Harald von; Altschmied, Joachim

    2008-11-28

    Tumor necrosis factor alpha (TNF{alpha}) is a pleiotropic cytokine involved in apoptotic cell death, cellular proliferation, differentiation, inflammation, and tumorigenesis. In tumors it is secreted by tumor associated macrophages and can have both pro- and anti-tumorigenic effects. To identify genes regulated by TNF{alpha}, we performed a gene trap screen in the mammary carcinoma cell line MCF-7 and recovered 64 unique, TNF{alpha}-induced gene trap integration sites. Among these were the genes coding for the zinc finger protein ZC3H10 and for the transcription factor grainyhead-like 3 (GRHL3). In line with the dual effects of TNF{alpha} on tumorigenesis, we found that ZC3H10 inhibits anchorage independent growth in soft agar suggesting a tumor suppressor function, whereas GRHL3 strongly stimulated the migration of endothelial cells which is consistent with an angiogenic, pro-tumorigenic function.

  9. Characterization of a nitrogen-regulated protein identified by cell surface biotinylation of a marine phytoplankton

    SciTech Connect

    Palenik, B.; Koke, J.A.

    1995-09-01

    The biotinylating reagent succinimidyl 6-(biotinamido) hexanoate was used to label the cell surfaces of the cosmopolitan, marine, eukaryotic microorganism Emiliania huxleyi under different growth conditions. Proteins characteristic of different nutrient conditions could be identified. In particular, a nitrogen-regulated protein, nrp1, has an 82-kDa subunit that is present under nitrogen limitation and during growth on urea. It is absent under phosphate limitation or during exponential growth on nitrate or ammonia. nrp1 is the major membrane or wall protein in nitrogen-limited cells and is found in several strains of E. huxleyi. It may be a useful biomarker for examining the physiological state of E. huxleyi cells in their environment. 35 refs., 4 figs.

  10. Ultrastructural cytochemical analysis of intranuclear arsenic inclusions

    SciTech Connect

    Sorensen, E.M.B.

    1987-01-01

    To establish the chemical composition of the arsenic inclusion, freshly isolated preparations of inclusions and epon-embedded thin sections of inclusions were subjected to ultrastructural cytochemical analysis. Intranuclear inclusions are composed of amorphous, arsenic-containing subunits aligned linearly to form a coiled complex. Lipase, ribonuclease, deoxyribonuclease, trypsin, pepsin, protease, amylase, or ethylenediaminetetraacetic acid (EDTA) was used to digest or chelate these inclusions. Following enzymatic digestion or chelation, the electron opacity of inclusions was compared with that of control sections exposed for equal times to equivalent solutions lacking the enzymes. Exposure to amylase caused a consistent reduction in the electron opacity of thin sections of inclusions and almost complete digestion of the freshly isolated preparations of inclusions. This was indicative of the presence of a carbohydrate moiety within arsenic inclusions. Incubation of inclusions with EDTA resulted in solubilization of freshly isolated and thin-sectioned embedded material. These data indicated that the intranuclear arsenic inclusion is composed of both metallic and carbohydrate moieties, confirming earlier studies which identified arsenic within inclusions using instrumental neutron activation analysis and x-ray microprobe analysis.

  11. Morphogenesis and Ultrastructure of Geotrichum candidum Septa

    PubMed Central

    Hashimoto, Tadayo; Morgan, J.; Conti, S. F.

    1973-01-01

    The ultrastructure and mode of formation of septa of Geotrichum candidum were investigated by light and electron microscopy. The invaginations of the lateral membrane and wall appear to initiate at multiple points around the circumference of the cell; the immature septum subsequently assumes a cart-wheel shape, with branched spokes radiating from the center of the septum. Each face of the septum is covered with a membrane possessing hitherto undescribed structural differentiation; the membrane substructures are comprised of two central subunits encircled by 12 identical subunits. The diameter of the entire 12 plus 2 structure is 24 to 25 nm, and the diameter of each individual subunit is approximately 4 nm. The maturation of the septum appears to occur by further deposition of material along the branched skeletal regions. Numerous small openings (micropores), formed as a result of incomplete deposition, ultimately give rise to plasmodesmata. During arthrospore formation, the plasmodesmal canals and associated micropores are occluded by electron-dense materials, rendering each segment of the hyphae completely independent of the rest of the hyphae. Images PMID:4126819

  12. The acquired immunodeficiency syndrome: an ultrastructural study.

    PubMed

    Sidhu, G S; Stahl, R E; el-Sadr, W; Cassai, N D; Forrester, E M; Zolla-Pazner, S

    1985-04-01

    Blood and a variety of tissues from 97 patients with the acquired immunodeficiency syndrome (AIDS) and 25 with the AIDS prodrome were studied ultrastructurally. Tubuloreticular structures (TRS) were found in 85 per cent of the patients with AIDS and in 92 per cent of those with the prodrome. Test tube and ring-shaped forms (TRF), found in 41 per cent of the patients with AIDS and in 8 per cent of those with the prodrome, increased with disease progression. Among the patients with AIDS, as the number of sites examined per case increased, the incidence of TRS and TRF tended to approach 100 per cent, suggesting that they are present in all patients with AIDS. Other changes seen frequently were immunologic capping of blood lymphocytes, intramitochondrial iron in blood reticulocytes and marrow normoblasts, megakaryocytic immaturity and platelet phagocytosis, collections of membranous rings in hepatocytic cytoplasm, suggestive of non-A, non-B hepatitis, and proliferations and engorgement of hepatic Ito cells with lipid. The data suggest that TRS and TRF can be used as diagnostic and prognostic markers. PMID:3872253

  13. Ultrastructural and Single-Cell-Level Characterization Reveals Metabolic Versatility in a Microbial Eukaryote Community from an Ice-Covered Antarctic Lake

    DOE PAGESBeta

    Li, Wei; Podar, Mircea; Morgan-Kiss, Rachael M.

    2016-04-15

    The McMurdo Dry Valleys (MCM) of southern Victoria Land, Antarctica, harbor numerous ice-covered bodies of water that provide year-round liquid water oases for isolated food webs dominated by the microbial loop. Single-cell microbial eukaryotes (protists) occupy major trophic positions within this truncated food web, ranging from primary producers (e.g., chlorophytes, haptophytes, and cryptophytes) to tertiary predators (e.g., ciliates, dinoflagellates, and choanoflagellates). To advance the understanding of MCM protist ecology and the roles of MCM protists in nutrient and energy cycling, we investigated potential metabolic strategies and microbial interactions of key MCM protists isolated from a well-described lake (Lake Bonney). Fluorescence-activatedmore » cell sorting (FACS) of enrichment cultures, combined with single amplified genome/amplicon sequencing and fluorescence microscopy, revealed that MCM protists possess diverse potential metabolic capabilities and interactions. Two metabolically distinct bacterial clades (FlavobacteriaandMethylobacteriaceae) were independently associated with two key MCM lake microalgae (IsochrysisandChlamydomonas, respectively). We also report on the discovery of two heterotrophic nanoflagellates belonging to the Stramenopila supergroup, one of which lives as a parasite ofChlamydomonas, a dominate primary producer in the shallow, nutrient-poor layers of the lake. Single-cell eukaryotes called protists play critical roles in the cycling of organic matter in aquatic environments. In the ice-covered lakes of Antarctica, protists play key roles in the aquatic food web, providing the majority of organic carbon to the rest of the food web (photosynthetic protists) and acting as the major consumers at the top of the food web (predatory protists). In this study, we utilized a combination of techniques (microscopy, cell sorting, and genomic analysis) to describe the trophic abilities of Antarctic lake protists and their potential

  14. An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis

    PubMed Central

    2010-01-01

    Background In metazoans, the hematopoietic system plays a key role both in normal development and in defense of the organism. In Drosophila, the cellular immune response involves three types of blood cells: plasmatocytes, crystal cells and lamellocytes. This last cell type is barely present in healthy larvae, but its production is strongly induced upon wasp parasitization or in mutant contexts affecting larval blood cell homeostasis. Notably, several zygotic mutations leading to melanotic mass (or "tumor") formation in larvae have been associated to the deregulated differentiation of lamellocytes. To gain further insights into the gene regulatory network and the mechanisms controlling larval blood cell homeostasis, we conducted a tissue-specific loss of function screen using hemocyte-specific Gal4 drivers and UAS-dsRNA transgenic lines. Results By targeting around 10% of the Drosophila genes, this in vivo RNA interference screen allowed us to recover 59 melanotic tumor suppressor genes. In line with previous studies, we show that melanotic tumor formation is associated with the precocious differentiation of stem-cell like blood progenitors in the larval hematopoietic organ (the lymph gland) and the spurious differentiation of lamellocytes. We also find that melanotic tumor formation can be elicited by defects either in the fat body, the embryo-derived hemocytes or the lymph gland. In addition, we provide a definitive confirmation that lymph gland is not the only source of lamellocytes as embryo-derived plasmatocytes can differentiate into lamellocytes either upon wasp infection or upon loss of function of the Friend of GATA cofactor U-shaped. Conclusions In this study, we identify 55 genes whose function had not been linked to blood cell development or function before in Drosophila. Moreover our analyses reveal an unanticipated plasticity of embryo-derived plasmatocytes, thereby shedding new light on blood cell lineage relationship, and pinpoint the Friend of GATA

  15. Early T Cell Recognition of B Cells following Epstein-Barr Virus Infection: Identifying Potential Targets for Prophylactic Vaccination

    PubMed Central

    Brooks, Jill M.; Long, Heather M.; Tierney, Rose J.; Shannon-Lowe, Claire; Leese, Alison M.; Fitzpatrick, Martin; Taylor, Graham S.; Rickinson, Alan B.

    2016-01-01

    Epstein-Barr virus, a B-lymphotropic herpesvirus, is the cause of infectious mononucleosis, has strong aetiologic links with several malignancies and has been implicated in certain autoimmune diseases. Efforts to develop a prophylactic vaccine to prevent or reduce EBV-associated disease have, to date, focused on the induction of neutralising antibody responses. However, such vaccines might be further improved by inducing T cell responses capable of recognising and killing recently-infected B cells. In that context, EBNA2, EBNA-LP and BHRF1 are the first viral antigens expressed during the initial stage of B cell growth transformation, yet have been poorly characterised as CD8+ T cell targets. Here we describe CD8+ T cell responses against each of these three “first wave” proteins, identifying target epitopes and HLA restricting alleles. While EBNA-LP and BHRF1 each contained one strong CD8 epitope, epitopes within EBNA2 induced immunodominant responses through several less common HLA class I alleles (e.g. B*3801 and B*5501), as well as subdominant responses through common class I alleles (e.g. B7 and C*0304). Importantly, such EBNA2-specific CD8+ T cells recognised B cells within the first day post-infection, prior to CD8+ T cells against well-characterised latent target antigens such as EBNA3B or LMP2, and effectively inhibited outgrowth of EBV-transformed B cell lines. We infer that “first wave” antigens of the growth-transforming infection, especially EBNA2, constitute potential CD8+ T cell immunogens for inclusion in prophylactic EBV vaccine design. PMID:27096949

  16. Structural and ultrastructural evaluation of the aortic wall after transplantation of bone marrow-derived cells (BMCs) in a model for atherosclerosis.

    PubMed

    Felix, Alyne Souza; Monteiro, Nemesis; Rocha, Vinícius Novaes; Oliveira, Genilza; Nascimento, Ana Lucia; de Carvalho, Laís; Thole, Alessandra; Carvalho, Jorge

    2015-08-01

    Stem cells are characterized by their ability to differentiate into multiple cell lineages and display the paracrine effect. The aim of this work was to evaluate the effect of therapy with bone marrow-derived cells (BMCs) on glucose, lipid metabolism, and aortic wall remodeling in mice through the administration of a high-fat diet and subsequent BMCs transplantation. C57BL/6 mice were fed a control diet (CO group) or an atherogenic diet (AT group). After 16 weeks, the AT group was divided into 4 subgroups: an AT 14 days group and AT 21 days group that were given an injection of vehicle and sacrificed after 14 and 21 days, respectively, and an AT-BMC 14 days group and AT-BMC 21 days group that were given an injection of BMCs and sacrificed after 14 and 21 days, respectively. The BMCs transplant had reduced blood glucose, triglycerides, and total cholesterol. There was no significant difference in relation to body mass between the transplanted groups and non-transplanted groups, and all were different than CO. There was no significant difference in the glycemic curve among AT 14 days, AT-BMC 14 days, and AT 21 days, and these were different than the CO and the AT-BMC 21 days groups. The increased thickness of the aortic wall was observed in all atherogenic groups, but was significantly smaller in group AT-BMC 21 days compared to AT 14 days and AT 21 days. Vacuoles in the media tunic, delamination and the thinning of the elastic lamellae were observed in AT 14 days and AT 21 days. The smallest number of these was displayed on the AT-BMC 14 days and AT-BMC 21 days. Marking to CD105, CD133, and CD68 were observed in AT 14 days and AT 21 days. These markings were not observed in AT-BMC 14 days or in AT-BMC 21 days. Electron micrographs show the beneficial remodeling in AT-BMC 14 days and AT-BMC 21 days, and the structural organization was similar to the CO group. Vesicles of pinocytosis, projection of smooth muscle cells, and delamination of the internal elastic lamina

  17. Ultrastructural and molecular characterization of Balantidium coli isolated in the Philippines.

    PubMed

    Nilles-Bije, Ma Lourdes; Rivera, Windell L

    2010-01-01

    Balantidium coli is a ciliated protozoon inhabiting the colon of swine, rodents, horses, nonhuman primates and humans. In association with disease triggered by other infectious agents, B. coli may become a pathogenic opportunist. This study describes the isolation, cultivation, morphological as well as molecular characterization of B. coli isolated from the large intestine of a pig in the Philippines. Based on scanning and transmission electron microscopy, this protozoon presents a dense ciliation in the oral structure and somatic cilia that are arranged in a more transverse field. Oral and somatic monokinetids were identified in the cortex of the organism. The presence of heterokaryotic nuclear condition is evident, and the cell body of the ciliate shows numerous mucocysts, several food vacuoles, mitochondria, endoplasmic reticulum, and contractile vacuoles. Polymerase chain reaction and phylogenetic analysis based on the small subunit ribosomal RNA gene were performed in order to compare our isolate with other previously reported B. coli isolates. The full-length sequence of the SSU rRNA gene of the isolate showed 99% similarity to other B. coli isolates reported in the GenBank. Phylogenetic analysis revealed that the isolate clustered with previously reported B. coli isolates from gorillas, pig, and ostrich. To date, no studies on the ultrastructure and phylogeny of B. coli isolated in the Philippines have been reported. Results from this study may serve as a baseline data for further ultrastructural and phylogenetic studies on this organism. This study also suggests that morphological characteristics along with molecular identification are essential for validating and identifying species of Balantidium. PMID:19902250

  18. Identifying Functional Gene Regulatory Network Phenotypes Underlying Single Cell Transcriptional Variability

    PubMed Central

    Park, James; Ogunnaike, Babatunde; Schwaber, James; Vadigepalli, Rajanikanth

    2014-01-01

    Summary/abstract Recent analysis of single-cell transcriptomic data has revealed a surprising organization of the transcriptional variability pervasive across individual neurons. In response to distinct combinations of synaptic input-type, a new organization of neuronal subtypes emerged based on transcriptional states that were aligned along a gradient of correlated gene expression. Individual neurons traverse across these transcriptional states in response to cellular inputs. However, the regulatory network interactions driving these changes remain unclear. Here we present a novel fuzzy logic-based approach to infer quantitative gene regulatory network models from highly variable single-cell gene expression data. Our approach involves developing an a priori regulatory network that is then trained against in vivo single-cell gene expression data in order to identify causal gene interactions and corresponding quantitative model parameters. Simulations of the inferred gene regulatory network response to experimentally observed stimuli levels mirrored the pattern and quantitative range of gene expression across individual neurons remarkably well. In addition, the network identification results revealed that distinct regulatory interactions, coupled with differences in the regulatory network stimuli, drive the variable gene expression patterns observed across the neuronal subtypes. We also identified a key difference between the neuronal subtype-specific networks with respect to negative feedback regulation, with the catecholaminergic subtype network lacking such interactions. Furthermore, by varying regulatory network stimuli over a wide range, we identified several cases in which divergent neuronal subtypes could be driven towards similar transcriptional states by distinct stimuli operating on subtype-specific regulatory networks. Based on these results, we conclude that heterogeneous single-cell gene expression profiles should be interpreted through a regulatory

  19. Growth inhibitory response and ultrastructural modification of oral-associated candidal reference strains (ATCC) by Piper betle L. extract

    PubMed Central

    Nordin, Mohd-Al-Faisal; Wan Harun, Wan Himratul-Aznita; Abdul Razak, Fathilah; Musa, Md Yusoff

    2014-01-01

    Candida species have been associated with the emergence of strains resistant to selected antifungal agents. Plant products have been used traditionally as alternative medicine to ease mucosal fungal infections. This study aimed to investigate the effects of Piper betle extract on the growth profile and the ultrastructure of commonly isolated oral candidal cells. The major component of P. betle was identified using liquid chromatography-mass spectrophotometry (LC-MS/MS). Seven ATCC control strains of Candida species were cultured in yeast peptone dextrose broth under four different growth environments: (i) in the absence of P. betle extract; and in the presence of P. betle extract at respective concentrations of (ii) 1 mg⋅mL−1; (iii) 3 mg⋅mL−1; and (iv) 6 mg⋅mL−1. The growth inhibitory responses of the candidal cells were determined based on changes in the specific growth rates (µ). Scanning electron microscopy (SEM) was used to observe any ultrastructural alterations in the candida colonies. LC-MS/MS was performed to validate the presence of bioactive compounds in the extract. Following treatment, it was observed that the µ-values of the treated cells were significantly different than those of the untreated cells (P<0.05), indicating the fungistatic properties of the P. betle extract. The candidal population was also reduced from an average of 13.44×106 to 1.78×106 viable cell counts (CFU)⋅mL−1. SEM examination exhibited physical damage and considerable morphological alterations of the treated cells. The compound profile from LC-MS/MS indicated the presence of hydroxybenzoic acid, chavibetol and hydroxychavicol in P. betle extract. The effects of P. betle on candida cells could potentiate its antifungal activity. PMID:24406634

  20. Genome-wide RNAi screening identifies genes inhibiting the migration of glioblastoma cells.

    PubMed

    Yang, Jian; Fan, Jing; Li, Ying; Li, Fuhai; Chen, Peikai; Fan, Yubo; Xia, Xiaofeng; Wong, Stephen T

    2013-01-01

    Glioblastoma Multiforme (GBM) cells are highly invasive, infiltrating into the surrounding normal brain tissue, making it impossible to completely eradicate GBM tumors by surgery or radiation. Increasing evidence also shows that these migratory cells are highly resistant to cytotoxic reagents, but decreasing their migratory capability can re-sensitize them to chemotherapy. These evidences suggest that the migratory cell population may serve as a better therapeutic target for more effective treatment of GBM. In order to understand the regulatory mechanism underlying the motile phenotype, we carried out a genome-wide RNAi screen for genes inhibiting the migration of GBM cells. The screening identified a total of twenty-five primary hits; seven of them were confirmed by secondary screening. Further study showed that three of the genes, FLNA, KHSRP and HCFC1, also functioned in vivo, and knocking them down caused multifocal tumor in a mouse model. Interestingly, two genes, KHSRP and HCFC1, were also found to be correlated with the clinical outcome of GBM patients. These two genes have not been previously associated with cell migration. PMID:23593504

  1. Vasa Identifies Germ Cells and Critical Stages of Oogenesis in the Asian Seabass

    PubMed Central

    Xu, Hongyan; Lim, Menghuat; Dwarakanath, Manali; Hong, Yunhan

    2014-01-01

    Germ cells produce sperm and eggs for reproduction and fertility. The Asian seabass (Lates calcarifer), a protandrous marine fish, undergoes male-female sex reversal and thus offers an excellent model to study the role of germ cells in sex differentiation and sex reversal. Here we report the cloning and expression of vasa as a first germ cell marker in this organism. A 2241-bp cDNA was cloned by PCR using degenerate primers of conserved sequences and gene-specific primers. This cDNA contains a polyadenylation signal and a full open reading frame for 645 amino acid residues, which was designated as Lcvasa for the seabass vasa, as its predicted protein is homologous to Vasa proteins. The Lcvasa RNA is maternally supplied and specific to gonads in adulthood. By chromogenic and fluorescent in situ hybridization we revealed germ cell-specific Lcvasa expression in both the testis and ovary. Importantly, Lcvasa shows dynamic patterns of temporospatial expression and subcellular distribution during gametogenesis. At different stages of oogenesis, for example, Lcvasa undergoes nuclear-cytoplasmic redistribution and becomes concentrated preferentially in the Balbiani body of stage-II~III oocytes. Thus, the vasa RNA identifies both female and male germ cells in the Asian seabass, and its expression and distribution delineate critical stages of gametogenesis. PMID:24550690

  2. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma

    PubMed Central

    Chahal, Harvind S.; Lin, Yuan; Ransohoff, Katherine J.; Hinds, David A.; Wu, Wenting; Dai, Hong-Ji; Qureshi, Abrar A.; Li, Wen-Qing; Kraft, Peter; Tang, Jean Y.; Han, Jiali; Sarin, Kavita Y.

    2016-01-01

    Cutaneous squamous cell carcinoma represents the second most common cutaneous malignancy, affecting 7–11% of Caucasians in the United States. The genetic determinants of susceptibility to cutaneous squamous cell carcinoma remain largely unknown. Here we report the results of a two-stage genome-wide association study of cutaneous squamous cell carcinoma, totalling 7,404 cases and 292,076 controls. Eleven loci reached genome-wide significance (P<5 × 10−8) including seven previously confirmed pigmentation-related loci: MC1R, ASIP, TYR, SLC45A2, OCA2, IRF4 and BNC2. We identify an additional four susceptibility loci: 11q23.3 CADM1, a metastasis suppressor gene involved in modifying tumour interaction with cell-mediated immunity; 2p22.3; 7p21.1 AHR, the dioxin receptor involved in anti-apoptotic pathways and melanoma progression; and 9q34.3 SEC16A, a putative oncogene with roles in secretion and cellular proliferation. These susceptibility loci provide deeper insight into the pathogenesis of squamous cell carcinoma. PMID:27424798

  3. Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors

    NASA Astrophysics Data System (ADS)

    Cho, Edward H.; Wendel, Marco; Luttgen, Madelyn; Yoshioka, Craig; Marrinucci, Dena; Lazar, Daniel; Schram, Ethan; Nieva, Jorge; Bazhenova, Lyudmila; Morgan, Alison; Ko, Andrew H.; Korn, W. Michael; Kolatkar, Anand; Bethel, Kelly; Kuhn, Peter

    2012-02-01

    Circulating tumor cells (CTCs) have been implicated as a population of cells that may seed metastasis and venous thromboembolism (VTE), two major causes of mortality in cancer patients. Thus far, existing CTC detection technologies have been unable to reproducibly detect CTC aggregates in order to address what contribution CTC aggregates may make to metastasis or VTE. We report here an enrichment-free immunofluorescence detection method that can reproducibly detect and enumerate homotypic CTC aggregates in patient samples. We identified CTC aggregates in 43% of 86 patient samples. The fraction of CTC aggregation was investigated in blood draws from 24 breast, 14 non-small cell lung, 18 pancreatic, 15 prostate stage IV cancer patients and 15 normal blood donors. Both single CTCs and CTC aggregates were measured to determine whether differences exist in the physical characteristics of these two populations. Cells contained in CTC aggregates had less area and length, on average, than single CTCs. Nuclear to cytoplasmic ratios between single CTCs and CTC aggregates were similar. This detection method may assist future studies in determining which population of cells is more physically likely to contribute to metastasis and VTE.

  4. Chemical Screening Identifies EUrd as a Novel Inhibitor Against Temozolomide-Resistant Glioblastoma-Initiating Cells.

    PubMed

    Tsukamoto, Yoshihiro; Ohtsu, Naoki; Echizenya, Smile; Otsuguro, Satoko; Ogura, Ryosuke; Natsumeda, Manabu; Isogawa, Mizuho; Aoki, Hiroshi; Ichikawa, Satoshi; Sakaitani, Masahiro; Matsuda, Akira; Maenaka, Katsumi; Fujii, Yukihiko; Kondo, Toru

    2016-08-01

    Glioblastoma (GBM), one of the most malignant human cancers, frequently recurs despite multimodal treatment with surgery and chemo/radiotherapies. GBM-initiating cells (GICs) are the likely cell-of-origin in recurrences, as they proliferate indefinitely, form tumors in vivo, and are resistant to chemo/radiotherapies. It is therefore crucial to find chemicals that specifically kill GICs. We established temozolomide (the standard medicine for GBM)-resistant GICs (GICRs) and used the cells for chemical screening. Here, we identified 1-(3-C-ethynyl-β-d-ribopentofuranosyl) uracil (EUrd) as a selective drug for targeting GICRs. EUrd induced the death in GICRs more effectively than their parental GICs, while it was less toxic to normal neural stem cells. We demonstrate that the cytotoxic effect of EUrd on GICRs partly depended on the increased expression of uridine-cytidine kinase-like 1 (UCKL1) and the decreased one of 5'-nucleotidase cytosolic III (NT5C3), which regulate uridine-monophosphate synthesis positively and negatively respectively. Together, these findings suggest that EUrd can be used as a new therapeutic drug for GBM with the expression of surrogate markers UCKL1 and NT5C3. Stem Cells 2016;34:2016-2025. PMID:27090194

  5. Genome-wide association study identifies novel susceptibility loci for cutaneous squamous cell carcinoma.

    PubMed

    Chahal, Harvind S; Lin, Yuan; Ransohoff, Katherine J; Hinds, David A; Wu, Wenting; Dai, Hong-Ji; Qureshi, Abrar A; Li, Wen-Qing; Kraft, Peter; Tang, Jean Y; Han, Jiali; Sarin, Kavita Y

    2016-01-01

    Cutaneous squamous cell carcinoma represents the second most common cutaneous malignancy, affecting 7-11% of Caucasians in the United States. The genetic determinants of susceptibility to cutaneous squamous cell carcinoma remain largely unknown. Here we report the results of a two-stage genome-wide association study of cutaneous squamous cell carcinoma, totalling 7,404 cases and 292,076 controls. Eleven loci reached genome-wide significance (P<5 × 10(-8)) including seven previously confirmed pigmentation-related loci: MC1R, ASIP, TYR, SLC45A2, OCA2, IRF4 and BNC2. We identify an additional four susceptibility loci: 11q23.3 CADM1, a metastasis suppressor gene involved in modifying tumour interaction with cell-mediated immunity; 2p22.3; 7p21.1 AHR, the dioxin receptor involved in anti-apoptotic pathways and melanoma progression; and 9q34.3 SEC16A, a putative oncogene with roles in secretion and cellular proliferation. These susceptibility loci provide deeper insight into the pathogenesis of squamous cell carcinoma. PMID:27424798

  6. Comparing plasma and X-ray exposure and identifying vulnerable cell parts

    NASA Astrophysics Data System (ADS)

    Graham, Bill

    2012-10-01

    Here two issues in plasma medicine that are being addressed in a collaboration between the Centre of Plasma Physics and the School of Pharmacy at Queen's University Belfast and the Plasma Institute at York University UK will be discussed. Recent measurements of the interaction of plasmas created directly in DMEM cell medium and MDAMB-231, a human breast cancer cell line, showed evidence of reduced cell viability and of DNA damage. The same set of experiments were undertaken but with X-ray exposure. A correlation of the dependence on plasma exposure time and X-ray dose was observed which might point the way to dose definition in plasma medicine. We have also been working to identify the cell parts most vulnerable to plasma exposure. In this study a 10 kHz atmospheric pressure non-thermal plasma jet, operating in He/0.5%O2 and characterized to determine the behavior of many of the plasma species, was incident onto the surface of media containing either bacterial strains, in their planktonic and biofilm forms, or isolated bacterial plasmid DNA. The results of measurements to look for changes in plasmid structural conformation, rates of single and double strand breaks, the catalytic activity of certain bacterial enzymes, the peroxidation of lipid content of the bacterial cells, the leakage of ATP and Scanning Electron Microscope (SEM) images will be discussed.

  7. Histopathological, Ultrastructural and Apoptotic Changes in Diabetic Rat Placenta

    PubMed Central

    Gül, Mehmet; Bayat, Nuray; Çetin, Aslı; Kepekçi, Remziye Aysun; Şimşek, Yavuz; Kayhan, Başak; Turhan, Uğur; Otlu, Ali

    2015-01-01

    Background: The exchange of substances between mother and fetus via the placenta plays a vital role during development. A number of developmental disorders in the fetus and placenta are observed during diabetic pregnancies. Diabetes, together with placental apoptosis, can lead to developmental and functional disorders. Aims: Histological, ultrastructural and apoptotic changes were investigated in the placenta of streptozotocin (STZ) induced diabetic rats. Study Design: Animal experimentation. Methods: In this study, a