Science.gov

Sample records for cells reduces migration

  1. Cell migration.

    PubMed

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2012-10-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  2. Cell Migration

    PubMed Central

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2015-01-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  3. Reduced migration of Ishikawa cells associated with downregulation of aquaporin-5

    PubMed Central

    JIANG, XIU XIU; XU, KAI HONG; MA, JUN YAN; TIAN, YONG HONG; GUO, XIAO YAN; LIN, JUN; WU, RUI JIN

    2012-01-01

    Aquaporin (AQP)-dependent cell migration has broad implications in angiogenesis, tumor metastasis, wound healing, glial scarring and other events requiring cell movement. There are 13 isoforms of AQP (0–12) that have been identified in mammals. It is unclear whether AQP5 plays a role in the development of endometrial cancer. We recently demonstrated that ovarian steroids may affect the expression of AQP5 in the female genital tract. In this study, we considered whether AQP5 may affect cell migration in Ishikawa cells, an adenocarcinoma cell line derived from the endometrium. The results showed that the downregulation of AQP5 results in reduced Ishikawa cell migration. The estrogen (E2) receptor in the promoter of AQP5 mediated the regulation of AQP5 expression in the normal endometrium and endometrial cancer. By contrast, the upregulation of AQP5 by E2 increased cell migration, invasion and adhesion through increased annexin-2, which is responsible for F-actin remodeling and rearrangement. E2 regulates Ishikawa cell migration by regulating the AQP5 expression. PMID:22844365

  4. p62/IMP2 stimulates cell migration and reduces cell adhesion in breast cancer

    PubMed Central

    Li, Yang; Francia, Giulio; Zhang, Jian-Ying

    2015-01-01

    p62/IMP2 is an oncofetal protein that is overexpressed in several types of cancer, and is a member of the family of insulin-like growth factor 2 mRNA binding proteins. We previously reported that high levels of p62/IMP2 autoantibody are present in sera from cancer patients, compared to healthy individuals. Here, we report the overexpression of p62/IMP2 in tumor tissues of 72 out of 104 cases of human breast cancer, and high levels of p62/IMP2 autoantibody in patients’ sera (in 63 out of 216 cases). To explore the role of p62/IMP2 in breast cancer progression, we generated p62/IMP2 transfected variants of two human breast cancer cell lines: MDA-MB-231 and LM2-4. Using in vitro assays we found that overexpression of p62/IMP2 can increase cell migration, and reduce cell adhesion to extracellular matrix (ECM) proteins. A Human Extracellular Matrix and Adhesion Molecules qPCR array was performed with our generated variants, and it identified a group of mRNAs whose expression was altered with p62/IMP2 overexpression, including connective tissue growth factor (CTGF) mRNA – which we show to be a p62/IMP2 binding partner. Overall, our results provide new insights into the molecular mechanism by which p62/IMP2 can contribute to breast cancer progression. PMID:26416451

  5. Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion*

    PubMed Central

    Ramezani-Moghadam, Mehdi; Wang, Jianhua; Ho, Vikki; Iseli, Tristan J.; Alzahrani, Badr; Xu, Aimin; Van der Poorten, David; Qiao, Liang; George, Jacob; Hebbard, Lionel

    2015-01-01

    Hepatic stellate cells (HSC) are central players in liver fibrosis that when activated, proliferate, migrate to sites of liver injury, and secrete extracellular matrix. Obesity, a known risk factor for liver fibrosis is associated with reduced levels of adiponectin, a protein that inhibits liver fibrosis in vivo and limits HSC proliferation and migration in vitro. Adiponectin-mediated activation of adenosine monophosphate-activated kinase (AMPK) inhibits HSC proliferation, but the mechanism by which it limits HSC migration to sites of injury is unknown. Here we sought to elucidate how adiponectin regulates HSC motility. Primary rat HSCs were isolated and treated with adiponectin in migration assays. The in vivo actions of adiponectin were examined by treating mice with carbon tetrachloride for 12 weeks and then injecting them with adiponectin. Cell and tissue samples were collected and analyzed for gene expression, signaling, and histology. Serum from patients with liver fibrosis was examined for adiponectin and tissue inhibitor of metalloproteinase-1 (TIMP-1) protein. Adiponectin administration into mice increased TIMP-1 gene and protein expression. In cultured HSCs, adiponectin promoted TIMP-1 expression and through binding of TIMP-1 to the CD63/β1-integrin complex reduced phosphorylation of focal adhesion kinase to limit HSC migration. In mice with liver fibrosis, adiponectin had similar effects and limited focal adhesion kinase phosphorylation. Finally, in patients with advanced fibrosis, there was a positive correlation between serum adiponectin and TIMP-1 levels. In sum, these data show that adiponectin stimulates TIMP-1 secretion by HSCs to retard their migration and contributes to the anti-fibrotic effects of adiponectin. PMID:25575598

  6. Aquaporins and cell migration.

    PubMed

    Papadopoulos, M C; Saadoun, S; Verkman, A S

    2008-07-01

    Aquaporin (AQP) water channels are expressed primarily in cell plasma membranes. In this paper, we review recent evidence that AQPs facilitate cell migration. AQP-dependent cell migration has been found in a variety of cell types in vitro and in mice in vivo. AQP1 deletion reduces endothelial cell migration, limiting tumor angiogenesis and growth. AQP4 deletion slows the migration of reactive astrocytes, impairing glial scarring after brain stab injury. AQP1-expressing tumor cells have enhanced metastatic potential and local infiltration. Impaired cell migration has also been seen in AQP1-deficient proximal tubule epithelial cells, and AQP3-deficient corneal epithelial cells, enterocytes, and skin keratinocytes. The mechanisms by which AQPs enhance cell migration are under investigation. We propose that, as a consequence of actin polymerization/depolymerization and transmembrane ionic fluxes, the cytoplasm adjacent to the leading edge of migrating cells undergoes rapid changes in osmolality. AQPs could thus facilitate osmotic water flow across the plasma membrane in cell protrusions that form during migration. AQP-dependent cell migration has potentially broad implications in angiogenesis, tumor metastasis, wound healing, glial scarring, and other events requiring rapid, directed cell movement. AQP inhibitors may thus have therapeutic potential in modulating these events, such as slowing tumor growth and spread, and reducing glial scarring after injury to allow neuronal regeneration. PMID:17968585

  7. OP33GLYCOGEN SYNTHASE KINASE INHIBITORS REDUCE 3D MIGRATION OF PATIENT DERIVED GLIOBLASTOMA MULTIFORME STEM CELLS

    PubMed Central

    Tams, Daniel M.; Murray, Clare; Barry, Simon T.; Lawler, Sean; Bruning-Richardson, Anke; Short, Susan

    2014-01-01

    INTRODUCTION: Glioblastoma multiforme (GBM) is a fast growing, highly invasive malignant brain tumour. Inhibition of tumour cell migration into normal brain tissue represents a major target for treatment. Glycogen synthase kinase (GSK-3) inhibition has been associated with reduced GBM invasion in in vitro and in vivo models. Targeting this pathway with established and/or novel drugs may elucidate more effective treatment combinations. METHOD: The effect of GSK-3 inhibitors BIO, AZD2858, AZ1293 and AZ1080 on GBM migration was assessed in patient derived GBM stem cells (GBM-1) and two established cell lines (U251 and U87) using a 3D collagen based assay. Multiple drug concentrations were investigated with up to 72 hours exposure. A migration index was determined using aggregate core size and cell migration area. Immunohistochemistry and immunocytochemistry were used to assess cell morphology and cytoskeletal changes. RESULTS: All compounds inhibit migration in this model. AZD2858 was the most potent, causing significant effects at 1 micro molar. All compounds were cytotoxic at between 10 and 20 micro molar. Cytoskeletal and nuclear abnormalities were noted following drug exposure in all cell lines. These data suggest that possible mechanisms for the anti-migratory effect of these compounds include effects on F-actin localization and microtubule polarity. Inhibition of migration and cell architecture changes occurred at non-toxic doses. CONCLUSION: Inhibition of GSK3 significantly reduced migration of this highly invasive tumour. It is evident from these data that inhibiting the complex biological mechanisms driven by GSK3 may aid treatment of GBM through a number of different mechanisms.

  8. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1

    PubMed Central

    2014-01-01

    Introduction Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Methods Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. Results MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. Conclusions These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be

  9. Berberine, an isoquinoline alkaloid, inhibits melanoma cancer cell migration by reducing the expressions of cyclooxygenase-2, prostaglandin E2 and prostaglandin E2 receptors

    PubMed Central

    Singh, Tripti; Vaid, Mudit; Katiyar, Nandan; Sharma, Samriti; Katiyar, Santosh K.

    2011-01-01

    Melanoma is the leading cause of death from skin disease due, in large part, to its propensity to metastasize. We have examined the effect of berberine, an isoquinoline alkaloid, on human melanoma cancer cell migration and the molecular mechanisms underlying these effects using melanoma cell lines, A375 and Hs294. Using an in vitro cell migration assay, we show that over expression of cyclooxygenase (COX)-2, its metabolite prostaglandin E2 (PGE2) and PGE2 receptors promote the migration of cells. We found that treatment of A375 and Hs294 cells with berberine resulted in concentration-dependent inhibition of migration of these cells, which was associated with a reduction in the levels of COX-2, PGE2 and PGE2 receptors (EP2 and EP4). Treatment of cells with celecoxib, a COX-2 inhibitor, or transient transfection of cells with COX-2 small interfering RNA, also inhibited cell migration. Treatment of the cells with 12-O-tetradecanoylphorbol-13-acetate (TPA), an inducer of COX-2 or PGE2, enhanced cell migration, whereas berberine inhibited TPA- or PGE2-promoted cell migration. Berberine reduced the basal levels as well as PGE2-stimulated expression levels of EP2 and EP4. Treatment of the cells with the EP4 agonist stimulated cell migration and berberine blocked EP4 agonist-induced cell migration activity. Moreover, berberine inhibited the activation of nuclear factor-kappa B (NF-κB), an upstream regulator of COX-2, in A375 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, inhibited cell migration. Together, these results indicate for the first time that berberine inhibits melanoma cell migration, an essential step in invasion and metastasis, by inhibition of COX-2, PGE2 and PGE2 receptors. PMID:20974686

  10. Diosgenin, a Steroidal Saponin, Inhibits Migration and Invasion of Human Prostate Cancer PC-3 Cells by Reducing Matrix Metalloproteinases Expression

    PubMed Central

    Chen, Pin-Shern; Shih, Yuan-Wei; Huang, Hsiang-Ching; Cheng, Hsing-Wen

    2011-01-01

    Background Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum), was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells. Methods and Principal Findings Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2) and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN) were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2) was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF) in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K), Akt, extracellular signal regulating kinase (ERK) and c-Jun N-terminal kinase (JNK). In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that diosgenin inhibited NF-κB activity. Conclusion/Significance The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy. PMID:21629786

  11. Ampelopsin reduces the migration and invasion of ovarian cancer cells via inhibition of epithelial-to-mesenchymal transition.

    PubMed

    Liu, Tianfeng; Liu, Peishu; Ding, Feng; Yu, Nina; Li, Shihong; Wang, Surong; Zhang, Xiaofei; Sun, Xiangxiu; Chen, Ying; Wang, Feng; Zhao, Yunhe; Li, Bo

    2015-02-01

    Ampelopsin has displayed anticancer activity in several types of cancers. However, no evidence has been reported for the direct effect of ampelopsin on ovarian cancer cell migration and invasion, and the underling mechanisms have not yet been clearly established. The aim of the present study was to investigate the influence of ampelopsin on the migration and invasion of ovarian cancer. Proliferation and viability of the ovarian cancer cells were detected by MTT assay. Migration and invasion of the cells were detected, respectively, by scratch wound healing assay and Transwell assay. The expression levels of epithelial-to-mesenchymal transition (EMT) markers were detected at the protein level after stimulation with ampelopsin. Then, the expression levels of NF-κB and p-IκBα were detected with western blot analysis. Meanwhile, an inhibitor of NF-κB was used to investigate the effect of ampelopsin. Finally, the expression of Snail was also detected. Proliferation, migration and invasion of the A2780 cells were all inhibited following the application of ampelopsin. Ampelopsin upregulated E-cadherin and downregulated N-cadherin and vimentin in a concentration- and time-dependent manner. Ampelopsin also exerted its ability to suppress the nuclear translocation of the NF-κB pathway. Administration of the inhibitor BAY11-7082 confirmed the roles of NF-κB in the expression of EMT markers and its transcription factor. These results demonstrated that ampelopsin inhibited EMT and reduced the invasion of ovarian cancer cells via the NF-κB/Snail pathway. PMID:25502786

  12. Mesenchymal stem cells from osteoporotic patients reveal reduced migration and invasion upon stimulation with BMP-2 or BMP-7.

    PubMed

    Haasters, Florian; Docheva, Denitsa; Gassner, Christoph; Popov, Cvetan; Böcker, Wolfgang; Mutschler, Wolf; Schieker, Matthias; Prall, Wolf Christian

    2014-09-12

    Fractures to the osteoporotic bone feature a delay in callus formation and reduced enchondral ossification. Human mesenchymal stem cells (hMSC), the cellular source of fracture healing, are recruited to the fracture site by cytokines, such as BMP-2 and BMP-7. Aim of the study was to scrutinize hMSC for osteoporosis associated alterations in BMP mediated migration and invasion as well as in extracellular matrix (ECM) binding integrin expression. HMSC were isolated from 18 healthy or osteoporotic donors. Migration was assessed using a collagen IV coated micro-slide linear gradient chamber and time-lapse microscopy. Invasion was analyzed utilizing an ECM coated transmembrane invasion assay. Quantitative real-time RT PCR was performed for the ECM binding integrins α1, α2, α3, α4, α5, α11, αv and β1. HMSC from osteoporotic patients showed a significant increase of migration upon BMP-2 or FCS stimulation, as well as a significant increase of invasion upon BMP-2, BMP-7 or FCS stimulation. Nevertheless, the migration and invasion capacity was significantly decreased compared to healthy controls. Out of all integrins analyzed, collagen binding integrin α2 was significantly downregulated in hMSC from osteoporotic patients. In conclusion, we here demonstrate for the first time osteoporosis associated alterations in BMP mediated hMSC recruitment. These findings may underlie the reduced healing of osteoporotic fractures. Nevertheless, the maintained migration and invasion response upon BMP stimulation illustrates the therapeutic potential of these clinically approved substances in the treatment of osteoporotic fractures. Another therapeutic target may be the downregulation of the collagen binding integrin α2 in hMSC from osteoporotic patients. PMID:25152406

  13. Tetraspanins in Cell Migration

    PubMed Central

    Jiang, Xupin; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell–cell adhesion, cell–ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention. PMID:26091149

  14. Reduced expression of fumarate hydratase in clear cell renal cancer mediates HIF-2α accumulation and promotes migration and invasion.

    PubMed

    Sudarshan, Sunil; Shanmugasundaram, Karthigayan; Naylor, Susan L; Lin, Shu; Livi, Carolina B; O'Neill, Christine F; Parekh, Dipen J; Yeh, I-Tien; Sun, Lu-Zhe; Block, Karen

    2011-01-01

    Germline mutations of FH, the gene that encodes for the tricarboxylic acid TCA (TCA) cycle enzyme fumarate hydratase, are associated with an inherited form of cancer referred to as Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC). Individuals with HLRCC are predisposed to the development of highly malignant and lethal renal cell carcinoma (RCC). The mechanisms of tumorigenesis proposed have largely focused on the biochemical consequences of loss of FH enzymatic activity. While loss of the tumor suppressor gene von Hippel Lindau (VHL) is thought to be an initiating event for the majority of RCCs, a role for FH in sporadic renal cancer has not been explored. Here we report that FH mRNA and protein expression are reduced in clear cell renal cancer, the most common histologic variant of kidney cancer. Moreover, we demonstrate that reduced FH leads to the accumulation of hypoxia inducible factor- 2α (HIF-2α), a transcription factor known to promote renal carcinogenesis. Finally, we demonstrate that overexpression of FH in renal cancer cells inhibits cellular migration and invasion. These data provide novel insights into the tumor suppressor functions of FH in sporadic kidney cancer. PMID:21695080

  15. Doxycycline reduces the migration of tuberous sclerosis complex-2 null cells - effects on RhoA-GTPase and focal adhesion kinase

    PubMed Central

    Ng, Ho Yin; Oliver, Brian Gregory George; Burgess, Janette Kay; Krymskaya, Vera P; Black, Judith Lee; Moir, Lyn M

    2015-01-01

    Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2-positive and TSC2-negative mouse embryonic fibroblasts (MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time-lapse microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2-null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2–59 μM. Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2-null cell migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of diseases with TSC2 dysfunction. PMID:26282580

  16. Doxycycline reduces the migration of tuberous sclerosis complex-2 null cells - effects on RhoA-GTPase and focal adhesion kinase.

    PubMed

    Ng, Ho Yin; Oliver, Brian Gregory George; Burgess, Janette Kay; Krymskaya, Vera P; Black, Judith Lee; Moir, Lyn M

    2015-11-01

    Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2-deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2-positive and TSC2-negative mouse embryonic fibroblasts (MEF), 323-TSC2-positive and 323-TSC2-null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time-lapse microscopy and manual cell counts respectively. RhoA-GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2-negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2-null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2-59 μM. Doxycycline decreased RhoA-GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2-null cell migration. Thus doxycycline has potential as an anti-migratory agent in the treatment of diseases with TSC2 dysfunction. PMID:26282580

  17. Memory T Cell Migration

    PubMed Central

    Zhang, Qianqian; Lakkis, Fadi G.

    2015-01-01

    Immunological memory is a key feature of adaptive immunity. It provides the organism with long-lived and robust protection against infection. In organ transplantation, memory T cells pose a significant threat by causing allograft rejection that is generally resistant to immunosuppressive therapy. Therefore, a more thorough understanding of memory T cell biology is needed to improve the survival of transplanted organs without compromising the host’s ability to fight infections. This review will focus on the mechanisms by which memory T cells migrate to the site where their target antigen is present, with particular emphasis on their migration to transplanted organs. First, we will define the known subsets of memory T cells (central, effector, and tissue resident) and their circulation patterns. Second, we will review the cellular and molecular mechanisms by which memory T cells migrate to inflamed and non-inflamed tissues and highlight the emerging paradigm of antigen-driven, trans-endothelial migration. Third, we will discuss the relevance of this knowledge to organ transplantation and the prevention or treatment of allograft rejection. PMID:26483794

  18. Imaging of cell migration

    PubMed Central

    Dormann, Dirk; Weijer, Cornelis J

    2006-01-01

    Cell migration is an essential process during many phases of development and adult life. Cells can either migrate as individuals or move in the context of tissues. Movement is controlled by internal and external signals, which activate complex signal transduction cascades resulting in highly dynamic and localised remodelling of the cytoskeleton, cell–cell and cell–substrate interactions. To understand these processes, it will be necessary to identify the critical structural cytoskeletal components, their spatio-temporal dynamics as well as those of the signalling pathways that control them. Imaging plays an increasingly important and powerful role in the analysis of these spatio-temporal dynamics. We will highlight a variety of imaging techniques and their use in the investigation of various aspects of cell motility, and illustrate their role in the characterisation of chemotaxis in Dictyostelium and cell movement during gastrulation in chick embryos in more detail. PMID:16900100

  19. Legume seeds and colorectal cancer revisited: Protease inhibitors reduce MMP-9 activity and colon cancer cell migration.

    PubMed

    Lima, A I G; Mota, J; Monteiro, S A V S; Ferreira, R M S B

    2016-04-15

    MMP-9 activity is strongly related to cancer growth and metastization. This study aimed at assessing the inhibitory potential of the major seed protein fractions from eight selected legume species towards MMP-9 activity in colon carcinoma cells. Albumin and globulin fractions were screened for MMP-9 inhibitors, using a fluorometric assay and gelatin zymography. Their effect on HT29 cell proliferation and cell migration was tested, as well as on the corresponding intrinsic cellular MMP-9 activities. Seed proteins include potent inhibitors of MMP-9, particularly low molecular mass proteins. Their effectiveness differs greatly among species, with a positive correlation detected between their inhibitory activity and the reduction in cell migration. Lupin seeds contain the most efficient MMP-9 inhibitors of all legume seeds analyzed, inhibiting both gelatinases and HT29 migration and growth, while pea seeds showed no effect. Results reveal legume protein MMPIs as novel metalloproteinase inhibitors with possible pharmacological interest. This may be important for selecting leguminous species with potential use in anti-cancer diets. PMID:26616921

  20. Reduced Expression of Enac in Placenta Tissues of Patients with Severe Preeclampsia Is Related to Compromised Trophoblastic Cell Migration and Invasion during Pregnancy

    PubMed Central

    Yang, Yue; Liu, Ying; Diao, Ruiying; Sheng, Kai; Liu, Xinghui; Xu, Wenming

    2013-01-01

    The purpose of the study is to investigate the expression of epithelial sodium channel (ENaC) in normal pregnancy and severe preeclampsia placenta and to explore the underlying mechanism of the relationship between the altered ENaC expression and onset of preeclampsia. Reverse transcription polymerase chain reaction (RT-PCR) and Western blot were used to check epithelial sodium channel subunits expression in mRNA and protein level in first term and full term placental tissue. ENaCα specific RNAi were used to knockdown ENaC expression and cell invasion and migration assay were used to check whether reduced expression of ENaC can compromise trophoblast cell function. The result showed that ENaCα was highly expressed in first term placental trophoblast cells; while EnaCβ was highly expressed in full term placenta. Knockdown ENaCα expression by using small interfering RNA reduced the invasive and migration abilities of HTR-8/SVneo cell. Real time-PCR and Western blot analysis showed that the expression levels of ENaCβ were also significantly lower in severe preeclampsia compared with normal pregnancy. It is concluded that the ENaC played an important role in trophoblast cell invasion and migration. Reduced expression and activity of epithelial sodium channel in trophoblast cells may be involved in the pathogenesis of preeclampsia. PMID:23977235

  1. Caffeic Acid Reduces the Viability and Migration Rate of Oral Carcinoma Cells (SCC-25) Exposed to Low Concentrations of Ethanol

    PubMed Central

    Dziedzic, Arkadiusz; Kubina, Robert; Kabała-Dzik, Agata; Wojtyczka, Robert D.; Morawiec, Tadeusz; Bułdak, Rafał J.

    2014-01-01

    Alcohol increases the risk of carcinoma originated from oral epithelium, but the biological effects of ultra-low doses of ethanol on existing carcinoma cells in combination with natural substances are still unclear. A role for ethanol (EtOH), taken in small amounts as an ingredient of some beverages or mouthwashes to change the growth behavior of established squamous cell carcinoma, has still not been examined sufficiently. We designed an in vitro study to determine the effect of caffeic acid (CFA) on viability and migration ability of malignant oral epithelial keratinocytes, exposed to ultra-low concentrations (maximum 100 mmol/L) EtOH. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-dimethyltetrazolium bromide) and LDH (lactate dehydrogenase) assays were used to assess the cytotoxic effect of EtOH/CFA and the viability of squamous carcinoma SCC-25 cells (ATCC CRL-1628, mobile part of the tongue). Tested EtOH concentrations were: 2.5, 5, 10, 25, 50, and 100 mmol/L, along with an equal CFA concentration of 50 μmol/L. Carcinoma cells’ migration was investigated by monolayer “wound” healing assay. We demonstrated that very low concentrations of EtOH ranging between 2.5 and 10 mmol/L may induce the viability of oral squamous cell carcinoma cells, while the results following addition of CFA reveal an antagonistic effect, attenuating pro-proliferative EtOH activity. The migration rate of oral squamous carcinoma cells can be significantly inhibited by the biological activity of caffeic acid. PMID:25329614

  2. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    SciTech Connect

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.; Williams, A.C.; Howarth, J.L.; Glover, C.P.; Uney, J.B.; Hague, A.

    2010-08-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.

  3. Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice.

    PubMed

    Jadav, Rathan S; Kumar, Dharmika; Buwa, Natasha; Ganguli, Shubhra; Thampatty, Sitalakshmi R; Balasubramanian, Nagaraj; Bhandari, Rashna

    2016-08-01

    Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO

  4. Inhibiting CREPT reduces the proliferation and migration of non-small cell lung cancer cells by down-regulating cell cycle related protein

    PubMed Central

    Liu, Tao; Li, Wei-Miao; Wang, Wu-Ping; Sun, Ying; Ni, Yun-Feng; Xing, Hao; Xia, Jing-Hua; Wang, Xue-Jiao; Zhang, Zhi-Pei; Li, Xiao-Fei

    2016-01-01

    It has been reported that CREPT acts as a highly expressed oncogene in a variety of tumors, affecting cyclin D1 signal pathways. However, the distribution and clinical significance of CREPT in NSCLC remains poorly understood. Our study focused on the role of CREPT on the regulation ofnon-small cell lung cancer (NSCLC). We found that CREPT mRNA and protein expression was significantly increased in NSCLC compared with adjacent lung tissues and was increased in various NSCLC cell lines compared with the normal human bronchial epithelial (HBE) cell line. siRNA-induced knockingdown of CREPT significantly inhibited the proliferation and migration of NSCLC cell lines by arresting cell cycle in S phase. Moreover, CREPT knocking down affected the expression of cell cycle proteins including c-mycand CDC25A. Finally, we found there were obvious correlations between CREPT with c-myc expression in histological type, differentiation, and pTNM stages of NSCLC (P<0.05, rs>0.3). Immunohistofluorescence studies demonstrated a co-localization phenomenon when CREPT and c-myc were expressed. Thus, we propose that CREPT may promote NSCLC cell growth and migration through the c-myc and CDC25A signaling molecules. PMID:27347318

  5. Collective cell migration in development

    PubMed Central

    Scarpa, Elena

    2016-01-01

    During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective. PMID:26783298

  6. High GPX1 expression promotes esophageal squamous cell carcinoma invasion, migration, proliferation and cisplatin-resistance but can be reduced by vitamin D

    PubMed Central

    Gan, Xiangfeng; Chen, Baishen; Shen, Zhuojian; Liu, Yeqing; Li, Haifeng; Xie, Xuan; Xu, Xia; Li, Haigang; Huang, Zhiquan; Chen, Ju

    2014-01-01

    Esophageal cancer is one of the most common cancers worldwide. Despite recent progress in the development of novel therapies, esophageal carcinoma remains an aggressive cancer associated with a poor prognosis. The glutathione peroxidase 1 (GPX1) gene located on chromosome 3p21.3 is associated with the cancer of several organs. According to available information, GPX1, a gene downstream of NF-κB, is considered to exert adverse effects on tumour progression and enhance malignancy in some cancers but has not been reported in esophageal cancer. It is also reported that vitamin D (Vit. D), a widely used drug in the clinical setting, could suppress GPX1 expression through the NF-κB pathway. Thus, it is speculated that Vit. D could reduce malignancy in esophageal cancer by altering the NF-κB pathway. In this study, we confirmed our speculation by finding that Vit. D, through the inhibition of GPX1, decreased the migratory, invasive and proliferative capabilities, as well as cisplatin resistance, in esophageal cancer cells. Furthermore, when invasion and migration were reduced in the GPX1-inhibited cells, the expression of urokinase type plasminogen activator (uPA) and matrix metalloproteinase-2 (MMP2) was also suppressed correspondingly. Therefore, we believe that, in esophageal cancer cells, the expression of GPX1 can promote invasion, migration, proliferation and cisplatin resistance, and Vit. D can reduce the associated malignancy through the NF-κB pathway. The Vit. D- and NF-κB-mediated decrease in GPX1 expression resulted in a decrease in MMP2- and uPA-mediated invasion and migration. PMID:25356106

  7. Beta-Adrenoceptor Activation Reduces Both Dermal Microvascular Endothelial Cell Migration via a cAMP-Dependent Mechanism and Wound Angiogenesis

    PubMed Central

    O'Leary, Andrew P; Fox, James M; Pullar, Christine E

    2015-01-01

    Angiogenesis is an essential process during tissue regeneration; however, the amount of angiogenesis directly correlates with the level of wound scarring. Angiogenesis is lower in scar-free foetal wounds while angiogenesis is raised and abnormal in pathophysiological scarring such as hypertrophic scars and keloids. Delineating the mechanisms that modulate angiogenesis and could reduce scarring would be clinically useful. Beta-adrenoceptors (β-AR) are G protein-coupled receptors (GPCRs) expressed on all skin cell-types. They play a role in wound repair but their specific role in angiogenesis is unknown. In this study, a range of in vitro assays (single cell migration, scratch wound healing, ELISAs for angiogenic growth factors and tubule formation) were performed with human dermal microvascular endothelial cells (HDMEC) to investigate and dissect mechanisms underpinning β-AR-mediated modulation of angiogenesis in chick chorioallantoic membranes (CAM) and murine excisional skin wounds. β-AR activation reduced HDMEC migration via cyclic adenosine monophosphate (cAMP)-dependent and protein kinase A (PKA)-independent mechanisms as demonstrated through use of an EPAC agonist that auto-inhibited the cAMP-mediated β-AR transduced reduction in HDMEC motility; a PKA inhibitor was, conversely, ineffective. ELISA studies demonstrated that β-AR activation reduced pro-angiogenic growth factor secretion from HDMECs (fibroblast growth factor 2) and keratinocytes (vascular endothelial growth factor A) revealing possible β-AR-mediated autocrine and paracrine anti-angiogenic mechanisms. In more complex environments, β-AR activation delayed HDMEC tubule formation and decreased angiogenesis both in the CAM assay and in murine excisional skin wounds in vivo. β-AR activation reduced HDMEC function in vitro and angiogenesis in vivo; therefore, β-AR agonists could be promising anti-angiogenic modulators in skin. J. Cell. Physiol. 230: 356–365, 2015. © 2014 The Authors. Journal

  8. Geometric friction directs cell migration.

    PubMed

    Le Berre, M; Liu, Yan-Jun; Hu, J; Maiuri, Paolo; Bénichou, O; Voituriez, R; Chen, Y; Piel, M

    2013-11-01

    In the absence of environmental cues, a migrating cell performs an isotropic random motion. Recently, the breaking of this isotropy has been observed when cells move in the presence of asymmetric adhesive patterns. However, up to now the mechanisms at work to direct cell migration in such environments remain unknown. Here, we show that a nonadhesive surface with asymmetric microgeometry consisting of dense arrays of tilted micropillars can direct cell motion. Our analysis reveals that most features of cell trajectories, including the bias, can be reproduced by a simple model of active Brownian particle in a ratchet potential, which we suggest originates from a generic elastic interaction of the cell body with the environment. The observed guiding effect, independent of adhesion, is therefore robust and could be used to direct cell migration both in vitro and in vivo. PMID:24266490

  9. Down-Regulation of ClC-3 Expression Reduces Epidermal Stem Cell Migration by Inhibiting Volume-Activated Chloride Currents.

    PubMed

    Guo, Rui; Pan, Fuqiang; Tian, Yanping; Li, Hongli; Li, Shirong; Cao, Chuan

    2016-06-01

    ClC-3, a member of the ClC chloride (Cl(-)) channel family, has recently been proposed as the primary Cl(-) channel involved in cell volume regulation. Changes in cell volume influence excitability, contraction, migration, pathogen-host interactions, cell proliferation, and cell death processes. In this study, expression and function of ClC-3 channels were investigated during epidermal stem cell (ESC) migration. We observed differential expression of CLC-3 regulates migration of ESCs. Further, whole-cell patch-clamp recordings and image analysis demonstrated ClC-3 expression affected volume-activated Cl(-) current (I Cl,Vol) within ESCs. Live cell imaging systems, designed to observe cellular responses to overexpression and suppression of ClC-3 in real time, indicated ClC-3 may regulate ESC migratory dynamics. We employed IMARIS software to analyze the velocity and distance of ESC migration in vitro to demonstrate the function of ClC-3 channel in ESCs. As our data suggest volume-activated Cl(-) channels play a vital role in migration of ESCs, which contribute to skin repair by migrating from neighboring unwounded epidermis infundibulum, hair follicle or sebaceous glands, ClC-3 may represent a new and valuable target for stem cell therapies. PMID:26769712

  10. Cell and tissue mechanics in cell migration

    PubMed Central

    Lange, Janina R.; Fabry, Ben

    2013-01-01

    Migrating cells generate traction forces to counteract the movement-resisting forces arising from cell-internal stresses and matrix adhesions. In the case of collective migration in a cell colony, or in the case of 3-dimensional migration through connective tissue, movement-resisting forces arise also from external stresses. Although the deformation of a stiffer cell or matrix causes larger movement-resisting forces, at the same time a larger stiffness can also promote cell migration due to a feedback between forces, deformations, and deformation speed that is mediated by the acto-myosin contractile machinery of cells. This mechanical feedback is also important for stiffness sensing, durotaxis, plithotaxis, and collective migration in cell colonies. PMID:23664834

  11. Cell and tissue mechanics in cell migration.

    PubMed

    Lange, Janina R; Fabry, Ben

    2013-10-01

    Migrating cells generate traction forces to counteract the movement-resisting forces arising from cell-internal stresses and matrix adhesions. In the case of collective migration in a cell colony, or in the case of 3-dimensional migration through connective tissue, movement-resisting forces arise also from external stresses. Although the deformation of a stiffer cell or matrix causes larger movement-resisting forces, at the same time a larger stiffness can also promote cell migration due to a feedback between forces, deformations, and deformation speed that is mediated by the acto-myosin contractile machinery of cells. This mechanical feedback is also important for stiffness sensing, durotaxis, plithotaxis, and collective migration in cell colonies. PMID:23664834

  12. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53

    PubMed Central

    Alaee, Mahsa; Danesh, Ghazal; Pasdar, Manijeh

    2016-01-01

    Aberrant expression of cadherins and catenins plays pivotal roles in ovarian cancer development and progression. Plakoglobin (PG, γ-catenin) is a paralog of β-catenin with dual adhesive and signaling functions. While β-catenin has known oncogenic function, PG generally acts as a tumor/metastasis suppressor. We recently showed that PG interacted with p53 and that its growth/metastasis inhibitory function may be mediated by this interaction. Very little is known about the role of PG in ovarian cancer. Here, we investigated the in vitro tumor/metastasis suppressor effects of PG in ovarian cancer cell lines with mutant p53 expression and different cadherin profiles. We showed that the N-cadherin expressing and E-cadherin and PG deficient ES-2 cells were highly migratory and invasive, whereas OV-90 cells that express E-cadherin, PG and very little/no N-cadherin were not. Exogenous expression of PG or E-cadherin or N-cadherin knockdown in ES-2 cells (ES-2-E-cad, ES-2-PG and ES-2-shN-cad) significantly reduced their migration and invasion. Also, PG expression or N-cadherin knockdown significantly decreased ES-2 cells growth. Furthermore, PG interacted with both cadherins and with wild type and mutant p53 in normal ovarian and ES-2-PG cell lines, respectively. PMID:27144941

  13. Anti-CD40 Ab- or 8-oxo-dG-enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via down-regulating migration and activation of mast cells.

    PubMed

    Hong, Gwan Ui; Kim, Nam Goo; Jeoung, Dooil; Ro, Jai Youl

    2013-07-15

    This study investigated whether anti-CD40 Ab and 8-oxo-dG attenuate mast cell migration and EAE development. Anti-CD40 Ab and 8-oxo-dG reduced EAE scores, mast cell numbers, expression of adhesion molecules, OX40L and Act1, levels of TNF-α, LTs, expression of cytokines, and co-localization of Treg cells and mast cells, all of which are increased in EAE-brain tissues. Each treatment enhanced Treg cells, expression of OX40, and cytokines related to suppressive function of Treg cells in EAE brain tissues. Act-BMMCs with Treg cells reduced expression of OX40L and CCL2/CCR2, VCAM-1, PECAM-1, [Ca²⁺]i levels, release of mediators, various signaling molecules, Act1 related to IL-17a signals versus those in act-BMMCs without Treg cells. The data suggest that IL-10- and IL-35-producing Foxp3⁺-Treg cells, enhanced by anti-CD40 Ab or 8-oxo-dG, suppress migration of mast cells through down-regulating the expression of adhesion molecules, and suppress mast cell activation through cell-to-cell cross-talk via OX40/OX40L in EAE development. PMID:23622820

  14. Cell Migration in Confined Environments

    PubMed Central

    Irimia, Daniel

    2014-01-01

    We describe a protocol for measuring the speed of human neutrophils migrating through small channels, in conditions of mechanical confinement comparable to those experienced by neutrophils migrating through tissues. In such conditions, we find that neutrophils move persistently, at constant speed for tens of minutes, enabling precise measurements at single cells resolution, for large number of cells. The protocol relies on microfluidic devices with small channels in which a solution of chemoattractant and a suspension of isolated neutrophils are loaded in sequence. The migration of neutrophils can be observed for several hours, starting within minutes after loading the neutrophils in the devices. The protocol is divided into four main steps: the fabrication of the microfluidic devices, the separation of neutrophils from whole blood, the preparation of the assay and cell loading, and the analysis of data. We discuss the practical steps for the implementation of the migration assays in biology labs, the adaptation of the protocols to various cell types, including cancer cells, and the supplementary device features required for precise measurements of directionality and persistence during migration. PMID:24560508

  15. A Discrete Cell Migration Model

    SciTech Connect

    Nutaro, James J; Kruse, Kara L; Ward, Richard C; O'Quinn, Elizabeth; Woerner, Matthew M; Beckerman, Barbara G

    2007-01-01

    Migration of vascular smooth muscle cells is a fundamental process in the development of intimal hyperplasia, a precursor to development of cardiovascular disease and a potential response to injury of an arterial wall. Boyden chamber experiments are used to quantify the motion of cell populations in response to a chemoattractant gradient (i.e., cell chemotaxis). We are developing a mathematical model of cell migration within the Boyden chamber, while simultaneously conducting experiments to obtain parameter values for the migration process. In the future, the model and parameters will be used as building blocks for a detailed model of the process that causes intimal hyperplasia. The cell migration model presented in this paper is based on the notion of a cell as a moving sensor that responds to an evolving chemoattractant gradient. We compare the results of our three-dimensional hybrid model with results from a one-dimensional continuum model. Some preliminary experimental data that is being used to refine the model is also presented.

  16. Intravenous implanted neural stem cells migrate to injury site, reduce infarct volume, and improve behavior after cerebral ischemia.

    PubMed

    Shen, Chiung-Chyi; Lin, Chen-Huan; Yang, Yi-Chin; Chiao, Ming-Tsang; Cheng, Wen-Yu; Ko, Jiunn-Liang

    2010-08-01

    Stroke represents one of the leading causes of death and disability in humans, but despite intense research, only a few options exist for the treatment of stroke-related infarction of brain tissue. Thus far, in experimental strokes, cell therapy appears to partly reverse some behavioral deficits. However, the mechanisms of action remain uncertain as most studies reveal only little, if any, evidence for neuronal replacement and observed behavioral improvements. This present study was performed to test rodent fetus forebrain derived neural stem cells (NSCs) implantation into rats subjected to suture-induced middle cerebral artery occlusion (MCAO). Efficacy of cell therapy was studied regarding behavior recovery, infarct volume, and protection possibility of related molecular mechanisms. Here, we show that grafted cells can home in on damaged regions by MCAO and significantly improve behavior of ischemic rats. Infarct volumes and brain atrophy were diminished after grafted NSCs treatment. Furthermore, we detected inflammation related molecules such as COX-2 and IL-1beta and found that grafted NSCs treatment after ischemic stroke could repress expression of inflammation molecular protein levels. We also detected protein levels of heat shock protein 27 (HSP27) as a protective protein against apoptosis. The results showed that grafted NSCs treatment induced the protein level of HSP27 and down-regulated activity of caspase-3 compared with the vehicle control. Our results demonstrate that transplanted NSCs provide benefits in behavioral function recovery after MCAO and increase neuroprotection whilst repressing inflammatory destruction. These data reveal another essential explanation of cellular transplantation therapy in damage recovery from ischemic stroke and offer new therapeutic possibilities. PMID:20560882

  17. Endothelial cells enhance migration of meniscus cells

    PubMed Central

    Yuan, Xiaoning; Eng, George M.; Arkonac, Derya E.; Chao, Pen-hsiu Grace; Vunjak-Novakovic, Gordana

    2014-01-01

    Objective To study the interactions between vascular endothelial cells and meniscal fibrochondrocytes from the inner avascular and outer vascular regions of the meniscus, and identify angiogenic factors that enhance cell migration and integrative repair. Methods Bovine meniscal fibrochondrocytes (bMFCs) from the inner and outer regions of meniscus were cultured for seven days with and without human umbilical vein endothelial cells (HUVECs) in a micropatterned three-dimensional hydrogel system for cell migration. Angiogenic factors secreted by HUVECs were probed for their role in paracrine mechanisms governing bMFC migration, and applied to a full-thickness defect model of meniscal repair in explants from the inner and outer regions over four weeks. Results Endothelial cells enhanced migration of inner and outer bMFCs in the micropatterned system via endothelin-1 (ET-1) signaling. Supplementation of ET-1 significantly enhanced integration strength of full-thickness defects in inner and outer explants, and cell migration at the macro-scale, compared to controls without ET-1 treatment. Conclusion We report for the first time that bMFCs from both the avascular and vascular regions respond to the presence of endothelial cells with increased migration. Paracrine signaling by endothelial cells regulates the bMFCs differentially by region, but we identify ET-1 as an angiogenic factor that stimulates migration of inner and outer cells at the micro-scale, and integrative repair of inner and outer explants at the macro-scale. These findings reveal the regional interactions between vasculature and MFCs, and suggest ET-1 as a potential new treatment modality for avascular meniscal injuries, in order to prevent the development of osteoarthritis. PMID:25307081

  18. Quantifying Collective Cell Migration during Cancer Progression

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Stuelten, Christina; Nordstrom, Kerstin; Parent, Carole; Losert, Wolfgang

    2014-03-01

    As tumors become more malignant, cells invade the surrounding tissue and migrate throughout the body to form secondary, metastatic tumors. This metastatic process is initiated when cells leave the primary tumor, either individually or as groups of collectively migrating cells. The mechanisms regulating how groups of cells collectively migrate are not well characterized. Here we study the migration dynamics of epithelial sheets composed of many cells using quantitative image analysis techniques. By extracting motion information from time-lapse images of cell lines of varying malignancy, we are able to measure how migration dynamics change during cancer progression. We further investigate the role that cell-cell adhesion plays in these collective dynamics by analyzing the migration of cell lines with varying levels of E-cadherin (a cell-cell adhesion protein) expression.

  19. Characterization of Collective Cell Migration Dynamics

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Yue, Haicen; Rappel, Wouter-Jan; Losert, Wolfgang

    2015-03-01

    During cancer progression, tumor cells invade the surrounding tissue and migrate throughout the body, forming clinically dangerous secondary tumors. This metastatic process begins when cells leave the primary tumor, either as individual cells or collectively migrating groups. Here we present data on the migration dynamics of epithelial sheets composed of many cells. Using quantitative image analysis techniques, we are able to extract motion information from time-lapse images of cell lines with varying malignancy. Adapting metrics originally used to study fluid flows we are able to characterize the migration dynamics of these cell lines. By describing the migration dynamics in great detail, we are able to make a clear comparison of our results to a simulation of collective cell migration. Specifically, we explore whether leader cells are required to describe our expanding sheets of cells and whether the answer depends on individual cell activity.

  20. 11-epi-Sinulariolide acetate reduces cell migration and invasion of human hepatocellular carcinoma by reducing the activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR signaling pathways.

    PubMed

    Lin, Jen-Jie; Su, Jui-Hsin; Tsai, Chi-Chu; Chen, Yi-Jen; Liao, Ming-Hui; Wu, Yu-Jen

    2014-09-01

    Cancer metastasis is one of the major causes of death in cancer. An active compound, 11-epi-sinulariolide acetate (11-epi-SA), isolated from the cultured soft coral Sinularia flexibilis has been examined for potential anti-cell migration and invasion effects on hepatocellular carcinoma cells (HCC). However, the molecular mechanism of anti-migration and invasion by 11-epi-SA on HCC, along with their corresponding effects, remain poorly understood. In this study, we investigated anti-migration and invasion effects and the underlying mechanism of 11-epi-SA in HA22T cells, and discovered by trans-well migration and invasion assays that 11-epi-SA provided a concentration-dependent inhibitory effect on the migration of human HCC HA22T cells. After treatment with 11-epi-SA for 24 h, there were suppressed protein levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (uPA) in HA22T cells. Meanwhile, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and metalloproteinase-2 (TIMP-2) were increased in a concentration-dependent manner. Further investigation revealed that 11-epi-SA suppressed the phosphorylation of ERK1/2 and p38MAPK. The 11-epi-SA also suppressed the expression of the phosphorylation of FAK/PI3K/AKT/mTOR pathways. PMID:25222667

  1. 11-epi-Sinulariolide Acetate Reduces Cell Migration and Invasion of Human Hepatocellular Carcinoma by Reducing the Activation of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR Signaling Pathways

    PubMed Central

    Lin, Jen-Jie; Su, Jui-Hsin; Tsai, Chi-Chu; Chen, Yi-Jen; Liao, Ming-Hui; Wu, Yu-Jen

    2014-01-01

    Cancer metastasis is one of the major causes of death in cancer. An active compound, 11-epi-sinulariolide acetate (11-epi-SA), isolated from the cultured soft coral Sinularia flexibilis has been examined for potential anti-cell migration and invasion effects on hepatocellular carcinoma cells (HCC). However, the molecular mechanism of anti-migration and invasion by 11-epi-SA on HCC, along with their corresponding effects, remain poorly understood. In this study, we investigated anti-migration and invasion effects and the underlying mechanism of 11-epi-SA in HA22T cells, and discovered by trans-well migration and invasion assays that 11-epi-SA provided a concentration-dependent inhibitory effect on the migration of human HCC HA22T cells. After treatment with 11-epi-SA for 24 h, there were suppressed protein levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator (uPA) in HA22T cells. Meanwhile, the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and metalloproteinase-2 (TIMP-2) were increased in a concentration-dependent manner. Further investigation revealed that 11-epi-SA suppressed the phosphorylation of ERK1/2 and p38MAPK. The 11-epi-SA also suppressed the expression of the phosphorylation of FAK/PI3K/AKT/mTOR pathways. PMID:25222667

  2. Factors controlling cardiac neural crest cell migration

    PubMed Central

    Hutson, Mary R

    2010-01-01

    Cardiac neural crest cells originate as part of the postotic caudal rhombencephalic neural crest stream. Ectomesenchymal cells in this stream migrate to the circumpharyngeal ridge and then into the caudal pharyngeal arches where they condense to form first a sheath and then the smooth muscle tunics of the persisting pharyngeal arch arteries. A subset of the cells continues migrating into the cardiac outflow tract where they will condense to form the aorticopulmonary septum. Cell signaling, extracellular matrix and cell-cell contacts are all critical for the initial migration, pauses, continued migration and condensation of these cells. This Review elucidates what is currently known about these factors. PMID:20890117

  3. Glycation of extracellular matrix proteins impairs migration of immune cells.

    PubMed

    Haucke, Elisa; Navarrete-Santos, Alexander; Simm, Andreas; Silber, Rolf-Edgar; Hofmann, Britt

    2014-01-01

    The immune response during aging and diabetes is disturbed and may be due to the altered migration of immune cells in an aged tissue. Our study should prove the hypothesis that age and diabetes-related advanced glycation end products (AGEs) have an impact on the migration and adhesion of human T-cells. To achieve our purpose, we used in vitro AGE-modified proteins (soluble albumin and fibronectin [FN]), as well as human collagen obtained from bypass graft. A Boyden chamber was used to study cell migration. Migrated Jurkat T-cells were analyzed by flow cytometry and cell adhesion by crystal violet staining. Actin polymerization was determined by phalloidin-Alexa-fluor 488-labeled antibody and fluorescence microscopy. We found that significantly fewer cells (50%, p = 0.003) migrated through methylglyoxal modified FN. The attachment to FN in the presence of AGE-bovine serum albumin (BSA) was also reduced (p < 0.05). In ex vivo experiments, isolated collagen from human vein graft material negatively affected the migration of the cells depending on the grade of AGE modification of the collagen. Collagen with a low AGE level reduced the cell migration by 30%, and collagen with a high AGE level by 60%. Interaction of the cells with an AGE-modified matrix, but not with soluble AGEs like BSA-AGE per se, was responsible for a disturbed migration. The reduced migration was accompanied by an impaired actin polymerization. We conclude that AGEs-modified matrix protein inhibits cell migration and adhesion of Jurkat T-cells. PMID:24635174

  4. Silencing the Nucleocytoplasmic O-GlcNAc Transferase Reduces Proliferation, Adhesion, and Migration of Cancer and Fetal Human Colon Cell Lines.

    PubMed

    Steenackers, Agata; Olivier-Van Stichelen, Stéphanie; Baldini, Steffi F; Dehennaut, Vanessa; Toillon, Robert-Alain; Le Bourhis, Xuefen; El Yazidi-Belkoura, Ikram; Lefebvre, Tony

    2016-01-01

    The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT) transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP), whereas O-GlcNAcase (OGA) removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context, we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein, we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically decreased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of migration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disorganize microfilament, microtubule, and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migratory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biological properties of cancer cell lines but also for normal cells. PMID:27252680

  5. Silencing the Nucleocytoplasmic O-GlcNAc Transferase Reduces Proliferation, Adhesion, and Migration of Cancer and Fetal Human Colon Cell Lines

    PubMed Central

    Steenackers, Agata; Olivier-Van Stichelen, Stéphanie; Baldini, Steffi F.; Dehennaut, Vanessa; Toillon, Robert-Alain; Le Bourhis, Xuefen; El Yazidi-Belkoura, Ikram; Lefebvre, Tony

    2016-01-01

    The post-translational modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is regulated by a unique couple of enzymes. O-GlcNAc transferase (OGT) transfers the GlcNAc residue from UDP-GlcNAc, the final product of the hexosamine biosynthetic pathway (HBP), whereas O-GlcNAcase (OGA) removes it. This study and others show that OGT and O-GlcNAcylation levels are increased in cancer cell lines. In that context, we studied the effect of OGT silencing in the colon cancer cell lines HT29 and HCT116 and the primary colon cell line CCD841CoN. Herein, we report that OGT silencing diminished proliferation, in vitro cell survival and adhesion of primary and cancer cell lines. SiOGT dramatically decreased HT29 and CCD841CoN migration, CCD841CoN harboring high capabilities of migration in Boyden chamber system when compared to HT29 and HCT116. The expression levels of actin and tubulin were unaffected by OGT knockdown but siOGT seemed to disorganize microfilament, microtubule, and vinculin networks in CCD841CoN. While cancer cell lines harbor higher levels of OGT and O-GlcNAcylation to fulfill their proliferative and migratory properties, in agreement with their higher consumption of HBP main substrates glucose and glutamine, our data demonstrate that OGT expression is not only necessary for the biological properties of cancer cell lines but also for normal cells. PMID:27252680

  6. Regulation of C6 glioma cell migration by thymol

    PubMed Central

    LEE, KANG PA; KIM, JAI-EUN; PARK, WON-HWAN; HONG, HEEOK

    2016-01-01

    Tumor cell motility exhibits a crucial role in tumor development. Therefore, the present study aimed to investigate whether thymol could reduce C6 glioma cell migration. Cell viability was determined using the EZ-Cytox Cell Viability kit. The scratch wound healing and Boyden chamber assays were performed to test C6 glioma cell migration in the presence of fetal bovine serum (FBS). Additionally, the study investigated whether signaling proteins relevant to C6 glioma cell migration, i.e., extracellular signal-regulated kinases (ERK)1/2, protein kinase Cα (PKCα), matrix metallopeptidase (MMP)9 and MMP2, were affected by thymol treatment. Up to 30 µM, thymol did not alter cell viability, whereas 100 µM thymol induced the death of ~20% of the cells. Furthermore, thymol (30 µM) significantly reduced FBS-induced migration. In the FBS-stimulated C6 glioma cells, thymol (30 µM) suppressed PKCα and ERK1/2 phosphorylation. MMP9 and MMP2 production was also significantly reduced by treatment with 30 µM thymol in the C6 glioma cells. Taken together, these results indicate that thymol attenuates C6 glioma cell migration. Additionally, the study suggests that the effect of thymol on the FBS-induced migration of C6 glioma cells affects PKCα and ERK1/2 signaling, and suppresses MMP9 and MMP2 production. PMID:27073528

  7. Transplantation stimulates interstitial cell migration in hydra

    SciTech Connect

    Fujisawa, T.; David, C.N.; Bosch, T.C. )

    1990-04-01

    Migration of interstitial cells and nerve cell precursors was analyzed in Hydra magnipapillata and Hydra vulgaris (formerly Hydra attenuata). Axial grafts were made between ({sup 3}H)thymidine-labeled donor and unlabeled host tissue. Migration of labeled cells into the unlabeled half was followed for 4 days. The results indicate that the rate of migration was initially high and then slowed on Days 2-4. Regrafting fresh donor tissue on Days 2-4 maintained high levels of migration. Thus, migration appears to be stimulated by the grafting procedure itself.

  8. Collective cell migration of primary zebrafish keratocytes.

    PubMed

    Rapanan, Jose L; Cooper, Kimbal E; Leyva, Kathryn J; Hull, Elizabeth E

    2014-08-01

    Fish keratocytes are an established model in single cell motility but little is known about their collective migration. Initially, sheets migrate from the scale at ~145 μm/h but over the course of 24h the rate of leading edge advance decreases to ~23 μm/h. During this period, leader cells retain their ability to migrate rapidly when released from the sheet and follower cell area increases. After the addition of RGD peptide, leader cell lamellae are lost, altering migratory forces within the sheet, resulting in rapid retraction. Leader and follower cell states interconvert within minutes with changes in cell-cell adhesions. Leader cells migrate as single cells when they detach from the leading edge and single cells appear to become leader cells if they rejoin the sheet. Follower cells rapidly establish leader cell morphology during closing of holes formed during sheet expansion and revert to follower cell morphology after hole-closure. Inhibition of Rho associated kinase releases leader cells and halts advancement of the leading edge suggesting an important role for the intercellular actomyosin cable at the leading edge. In addition, the presence of the stationary scale orients direction of sheet migration which is characterized by a more uniform advance of the leading edge than in some cell line systems. These data establish fish keratocyte explant cultures as a collective cell migration system and suggest that cell-cell interactions determine the role of keratocytes within the migrating sheet. PMID:24973510

  9. Epithelial MUC1 promotes cell migration, reduces apoptosis and affects levels of mucosal modulators during acetylsalicylic acid (aspirin)-induced gastropathy.

    PubMed

    Banerjee, Debashish; Fernandez, Harvey Robert; Patil, Pradeep Bhatu; Premaratne, Pushpa; Quiding-Järbrink, Marianne; Lindén, Sara Katarina

    2015-02-01

    MUC1 is a transmembrane mucin highly expressed in the stomach. Although extensive research has uncovered many of its roles in cancer, knowledge about the functions of MUC1 in normal tissues is limited. In the present study, we showed that acetylsalicylic acid (ASA; aspirin) up-regulated MUC1/Muc1 expression in the gastric mucosa of humans and wild-type (WT) mice. ASA induced mucosal injury in all mice to a similar extent; however, WT animals and those chimaeras with Muc1 on the epithelia recovered faster than Muc1-knockout (KO) mice and chimaeras carrying Muc1 on haemopoietic but not epithelial cells. MUC1 enhanced proliferation and migration of the human gastric cell line MKN-7 and increased resistance to apoptosis. The repeated treatment regime used caused a reduction in cyclo-oxygenase-1 (Cox-1) expression, though WT animals returned faster towards pre-treatment levels and had increased Cox-2 and vascular endothelial growth factor levels during recovery. Thus we found that epithelial Muc1 is more important for the healing process than haemopoietic Muc1 and Muc1/MUC1 facilitates wound healing by enhancing cell migration and proliferation, protecting against apoptosis and mediating expression of mucosal modulators. Thus MUC1 plays essential roles during wound healing and development of treatment modalities targeting enhanced expression of MUC1 may be beneficial to treat mucosal wounds. PMID:25387004

  10. Efficient cell migration requires global chromatin condensation

    PubMed Central

    Gerlitz, Gabi; Bustin, Michael

    2010-01-01

    Cell migration is a fundamental process that is necessary for the development and survival of multicellular organisms. Here, we show that cell migration is contingent on global condensation of the chromatin fiber. Induction of directed cell migration by the scratch-wound assay leads to decreased DNaseI sensitivity, alterations in the chromatin binding of architectural proteins and elevated levels of H4K20me1, H3K27me3 and methylated DNA. All these global changes are indicative of increased chromatin condensation in response to induction of directed cell migration. Conversely, chromatin decondensation inhibited the rate of cell migration, in a transcription-independent manner. We suggest that global chromatin condensation facilitates nuclear movement and reshaping, which are important for cell migration. Our results support a role for the chromatin fiber that is distinct from its known functions in genetic processes. PMID:20530575

  11. Dynamic contact guidance of migrating cells

    NASA Astrophysics Data System (ADS)

    Losert, Wolfgang; Sun, Xiaoyu; Guven, Can; Driscoll, Meghan; Fourkas, John

    2014-03-01

    We investigate the effects of nanotopographical surfaces on the cell migration and cell shape dynamics of the amoeba Dictyostelium discoideum. Amoeboid motion exhibits significant contact guidance along surfaces with nanoscale ridges or grooves. We show quantitatively that nanoridges spaced 1.5 μm apart exhibit the greatest contact guidance efficiency. Using principal component analysis, we characterize the dynamics of the cell shape modulated by the coupling between the cell membrane and ridges. We show that motion parallel to the ridges is enhanced, while the turning, at the largest spatial scales, is suppressed. Since protrusion dynamics are principally governed by actin dynamics, we imaged the actin polymerization of cells on ridges. We found that actin polymerization occurs preferentially along nanoridges in a ``monorail'' like fashion. The ridges then provide us with a tool to study actin dynamics in an effectively reduced dimensional system.

  12. Mesenchymal Stem Cells Migration Homing and Tracking

    PubMed Central

    Verfaillie, Catherine M.

    2013-01-01

    In this review, we discuss the migration and homing ability of mesenchymal stem cells (MSCs) and MSC-like cells and factors influencing this. We also discuss studies related to the mechanism of migration and homing and the approaches undertaken to enhance it. Finally, we describe the different methods available and frequently used to track and identify the injected cells in vivo. PMID:24194766

  13. Collective cell migration during inflammatory response

    NASA Astrophysics Data System (ADS)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  14. Screening of genes involved in cell migration in Dictyostelium.

    PubMed

    Nagasaki, Akira; Uyeda, Taro Q P

    2008-03-10

    A single cell of wild-type Dictyostelium discoideum forms a visible colony on a plastic dish in several days, but due to enhanced cell migration, amiB-null mutant cells scatter over a large area and do not form noticeable colonies. Here, with an aim to identify genes involved in cell migration, we isolated suppresser mutants of amiB-null mutants that restore the ability to form colonies. From REMI (restriction enzyme-mediated integration)-mutagenized pool of double-mutants, we identified 18 responsible genes from them. These genes can be categorized into several biological processes. One cell line, Sab16 (Suppressor of amiB) was chosen for further analysis, which had a disrupted phospholipase D pldB gene. To confirm the role of pldB gene in cell migration, we knocked out the pldB gene and over-expressed gfp-pldB in wild-type cells. GFP-PLDB localized to plasma membrane and on vesicles, and in migrating cells, at the protruding regions of pseudopodia. Migration speed of vegetative pldB-null cells was reduced to 73% of that of the wild-type. These results suggest that PLDB plays an important role in migration in Dictyostelium cells, and that our screening system is useful for the identification of genes involved in cell migration. PMID:18164290

  15. Rho GTPase signalling in cell migration

    PubMed Central

    Ridley, Anne J

    2015-01-01

    Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family. PMID:26363959

  16. Quantifying Modes of 3D Cell Migration.

    PubMed

    Driscoll, Meghan K; Danuser, Gaudenz

    2015-12-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates. PMID:26603943

  17. Multiscale Cues Drive Collective Cell Migration

    PubMed Central

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-01-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation. PMID:27460294

  18. Multiscale Cues Drive Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-07-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.

  19. Multiscale Cues Drive Collective Cell Migration.

    PubMed

    Nam, Ki-Hwan; Kim, Peter; Wood, David K; Kwon, Sunghoon; Provenzano, Paolo P; Kim, Deok-Ho

    2016-01-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation. PMID:27460294

  20. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  1. Fascin1 promotes cell migration of mature dendritic cells.

    PubMed

    Yamakita, Yoshihiko; Matsumura, Fumio; Lipscomb, Michael W; Chou, Po-chien; Werlen, Guy; Burkhardt, Janis K; Yamashiro, Shigeko

    2011-03-01

    Dendritic cells (DCs) play central roles in innate and adaptive immunity. Upon maturation, DCs assemble numerous veil-like membrane protrusions, disassemble podosomes, and travel from the peripheral tissues to lymph nodes to present Ags to T cells. These alterations in morphology and motility are closely linked to the primary function of DCs, Ag presentation. However, it is unclear how and what cytoskeletal proteins control maturation-associated alterations, in particular, the change in cell migration. Fascin1, an actin-bundling protein, is specifically and greatly induced upon maturation, suggesting a unique role for fascin1 in mature DCs. To determine the physiological roles of fascin1, we characterized bone marrow-derived, mature DCs from fascin1 knockout mice. We found that fascin1 is critical for cell migration: fascin1-null DCs exhibit severely decreased membrane protrusive activity. Importantly, fascin1-null DCs have lower chemotactic activity toward CCL19 (a chemokine for mature DCs) in vitro, and in vivo, Langerhans cells show reduced emigration into draining lymph nodes. Morphologically, fascin1-null mature DCs are flatter and fail to disassemble podosomes, a specialized structure for cell-matrix adhesion. Expression of exogenous fascin1 in fascin1-null DCs rescues the defects in membrane protrusive activity, as well as in podosome disassembly. These results indicate that fascin1 positively regulates migration of mature DCs into lymph nodes, most likely by increasing dynamics of membrane protrusions, as well as by disassembling podosomes. PMID:21263068

  2. Cerium migration during PEM fuel cell assembly and operation

    DOE PAGESBeta

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-10-02

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane ceriummore » gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.« less

  3. Cerium migration during PEM fuel cell assembly and operation

    SciTech Connect

    Baker, Andrew M.; Torraco, Dennis; Judge, Elizabeth J.; Spernjak, Dusan; Mukundan, Rangachary; Borup, Rod L.; Advani, Suresh G.; Prasad, Ajay K.

    2015-09-14

    Cerium migration between PEM fuel cell components is influenced by potential-driven mobility, ionic diffusion, and gradients in water content. These factors were investigated in ex situ experiments and in operating fuel cells. Potential-induced migration was measured ex situ in hydrated window cells. Cerium-containing MEAs were also fabricated and tested under ASTs. MEA disassembly and subsequent XRF analysis were used to observe rapid cerium migration during cell assembly and operation. During MEA hot pressing, humidification, and low RH operation at OCV, ionic diffusion causes uniform migration from the membrane into the catalyst layers. During high RH operation at OCV, in-plane cerium gradients arise due to variations in water content. These gradients may diminish the scavenging efficacy of cerium by reducing its proximity to generated radicals.

  4. Emergence of oligarchy in collective cell migration

    NASA Astrophysics Data System (ADS)

    Schumacher, Linus; Maini, Philip; Baker, Ruth

    Identifying the principles of collective cell migration has the potential to help prevent birth defects, improve regenerative therapies and develop model systems for cancer metastasis. In collaboration with experimental biologists, we use computational simulations of a hybrid model, comprising individual-based stochastic cell movement coupled to a reaction-diffusion equation for a chemoattractant, to explore the role of cell specialisation in the guidance of collective cell migration. In the neural crest, an important migratory cell population in vertebrate embryo development, we present evidence that just a few cells are guiding group migration in a cell-induced chemoattractant gradient that determines the switch between ``leader'' and ``follower'' behaviour in individual cells. This leads us to more generally consider under what conditions cell specialisation might become advantageous for collective migration. Alternatively, individual cell responses to locally different microenvironmental conditions could create the (artefactual) appearance of heterogeneity in a population of otherwise identical cellular agents. We explore these questions using a self-propelled particle model as a minimal description for collective cell migration in two and three dimensions.

  5. In vitro Cell Migration and Invasion Assays

    PubMed Central

    Justus, Calvin R.; Leffler, Nancy; Ruiz-Echevarria, Maria; Yang, Li V.

    2014-01-01

    Migration is a key property of live cells and critical for normal development, immune response, and disease processes such as cancer metastasis and inflammation. Methods to examine cell migration are very useful and important for a wide range of biomedical research such as cancer biology, immunology, vascular biology, cell biology and developmental biology. Here we use tumor cell migration and invasion as an example and describe two related assays to illustrate the commonly used, easily accessible methods to measure these processes. The first method is the cell culture wound closure assay in which a scratch is generated on a confluent cell monolayer. The speed of wound closure and cell migration can be quantified by taking snapshot pictures with a regular inverted microscope at several time intervals. More detailed cell migratory behavior can be documented using the time-lapse microscopy system. The second method described in this paper is the transwell cell migration and invasion assay that measures the capacity of cell motility and invasiveness toward a chemo-attractant gradient. It is our goal to describe these methods in a highly accessible manner so that the procedures can be successfully performed in research laboratories even just with basic cell biology setup. PMID:24962652

  6. CRK proteins selectively regulate T cell migration into inflamed tissues

    PubMed Central

    Huang, Yanping; Clarke, Fiona; Karimi, Mobin; Roy, Nathan H.; Williamson, Edward K.; Okumura, Mariko; Mochizuki, Kazuhiro; Chen, Emily J.H.; Park, Tae-Ju; Debes, Gudrun F.; Zhang, Yi; Curran, Tom; Kambayashi, Taku; Burkhardt, Janis K.

    2015-01-01

    Effector T cell migration into inflamed sites greatly exacerbates tissue destruction and disease severity in inflammatory diseases, including graft-versus-host disease (GVHD). T cell migration into such sites depends heavily on regulated adhesion and migration, but the signaling pathways that coordinate these functions downstream of chemokine receptors are largely unknown. Using conditional knockout mice, we found that T cells lacking the adaptor proteins CRK and CRK-like (CRKL) exhibit reduced integrin-dependent adhesion, chemotaxis, and diapedesis. Moreover, these two closely related proteins exhibited substantial functional redundancy, as ectopic expression of either protein rescued defects in T cells lacking both CRK and CRKL. We determined that CRK proteins coordinate with the RAP guanine nucleotide exchange factor C3G and the adhesion docking molecule CASL to activate the integrin regulatory GTPase RAP1. CRK proteins were required for effector T cell trafficking into sites of inflammation, but not for migration to lymphoid organs. In a murine bone marrow transplantation model, the differential migration of CRK/CRKL-deficient T cells resulted in efficient graft-versus-leukemia responses with minimal GVHD. Together, the results from our studies show that CRK family proteins selectively regulate T cell adhesion and migration at effector sites and suggest that these proteins have potential as therapeutic targets for preventing GVHD. PMID:25621495

  7. Entropy measures of collective cell migration

    NASA Astrophysics Data System (ADS)

    Whitby, Ariadne; Parrinello, Simona; Faisal, Aldo

    2015-03-01

    Collective cell migration is a critical process during tissue formation and repair. To this end there is a need to develop tools to quantitatively measure the dynamics of collective cell migration obtained from microscopy data. Drawing on statistical physics we use entropy of velocity fields derived from dense optic flow to quantitatively measure collective migration. Using peripheral nerve repair after injury as experimental system, we study how Schwann cells, guided by fibroblasts, migrate in cord-like structures across the cut, paving a highway for neurons. This process of emergence of organised behaviour is key for successful repair, yet the emergence of leader cells and transition from a random to ordered state is not understood. We find fibroblasts induce correlated directionality in migrating Schwann cells as measured by a decrease in the entropy of motion vector. We show our method is robust with respect to image resolution in time and space, giving a principled assessment of how various molecular mechanisms affect macroscopic features of collective cell migration. Finally, the generality of our method allows us to process both simulated cell movement and microscopic data, enabling principled fitting and comparison of in silico to in vitro. ICCS, Imperial College London & MRC Clinical Sciences Centre.

  8. Laser-photophoretic migration and fractionation of human blood cells.

    PubMed

    Monjushiro, Hideaki; Tanahashi, Yuko; Watarai, Hitoshi

    2013-05-13

    Laser photophoretic migration behavior of human blood cells in saline solution was investigated under the irradiation of Nd:YAG laser beam (532 nm) in the absence and the presence of the flow in a fused silica capillary. Red blood cells (RBC) were migrated faster than white blood cells (WBC) and blood pellets to the direction of propagation of laser light. The observed photophoretic velocity of RBC was about 11 times faster than those of others. This was understood from the larger photophoretic efficiency of RBC than that of WBC, which was simulated based on the Mie scattering theory. Furthermore, it was found that, during the photophoretic migration, RBCs spontaneously orientated parallel to the migration direction so as to reduce the drag force. Finally, it was demonstrated that RBC and WBC were separated in a micro-channel flow system by the laser photophoresis. PMID:23622969

  9. ASIC proteins regulate smooth muscle cell migration.

    PubMed

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration. PMID:17936312

  10. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation

    PubMed Central

    Fu, Ming; Sato, Yoshiharu; Lyons-Warren, Ariel; Zhang, Bin; Kane, Maureen A.; Napoli, Joseph L.; Heuckeroth, Robert O.

    2010-01-01

    Hirschsprung disease is a serious disorder of enteric nervous system (ENS) development caused by the failure of ENS precursor migration into the distal bowel. We now demonstrate that retinoic acid (RA) is crucial for GDNF-induced ENS precursor migration, cell polarization and lamellipodia formation, and that vitamin A depletion causes distal bowel aganglionosis in serum retinol-binding-protein-deficient (Rbp4–/–) mice. Ret heterozygosity increases the incidence and severity of distal bowel aganglionosis induced by vitamin A deficiency in Rbp4–/– animals. Furthermore, RA reduces phosphatase and tensin homolog (Pten) accumulation in migrating cells, whereas Pten overexpression slows ENS precursor migration. Collectively, these data support the hypothesis that vitamin A deficiency is a non-genetic risk factor that increases Hirschsprung disease penetrance and expressivity, suggesting that some cases of Hirschsprung disease might be preventable by optimizing maternal nutrition. PMID:20110328

  11. A polymorphism site in the pre‑miR‑34a coding region reduces miR‑34a expression and promotes osteosarcoma cell proliferation and migration.

    PubMed

    Lv, Honglin; Pei, Jingfang; Liu, Hongtao; Wang, Haiyan; Liu, Jun

    2014-12-01

    Osteosarcoma (OS) is the most prevalent primary malignant bone tumor in children and young adults, its complex etiology involving a combination of environmental and genetic factors. MicroRNA (miRNA) is a short, non‑coding regulatory RNA molecule that represses gene expression by imperfectly base‑pairing to the 3' untranslated region of target mRNAs. Evidence has shown that alterations in the expression of miRNA are involved in the initiation, progression, and metastasis of human cancers. It is believed that miRNAs function both as tumor suppressors and oncogenes during cancer development. In the present study, three tumor-associated miRNAs (miR‑21, miR‑34a and miR‑146a) coding regions were screened in Chinese‑Han OS patients. A G>A variation in the pre‑miR‑34a coding region was found to be associated with higher OS morbidity. By detecting the mature miR‑34a expression in cells transfected with pre‑miR‑34a expression vectors of different genotypes using quantitative polymerase chain reaction, it was demonstrated that the G>A variation reduced miR‑34a expression in vitro. This was in accordance with the data collected from tumor tissue and patient serum samples. Subsequently, a dual‑luciferase reporter assay and western blot analysis were used to detect the site variation effect on the expression of c‑Met, a target gene of miR‑34a. The G>A variation downregulated the suppression of c‑Met in two OS cell lines. Furthermore, it was found that reduced miR‑34a expression decreased the suppression of OS cell proliferation in vitro. In conclusion, the present study established the association between miR‑34a and the risk of suffering OS in a Chinese Han population by identifying one functional single nucleotide polymorphism site in pre‑miR‑34a. These findings may give insight into the mechanism of OS development and create an opportunity to approach the diagnosis and treatment of OS. PMID:25242229

  12. Reactive oxygen species and hydrogen peroxide generation in cell migration

    PubMed Central

    Rudzka, Dominika A; Cameron, Jenifer M; Olson, Michael F

    2015-01-01

    Directional cell migration is a complex process that requires spatially and temporally co-ordinated regulation of actin cytoskeleton dynamics. In response to external cues, signals are transduced to elicit cytoskeletal responses. It has emerged that reactive oxygen species, including hydrogen peroxide, are important second messengers in pathways that influence the actin cytoskeleton, although the identities of key proteins regulated by hydrogen peroxide are largely unknown. We recently showed that oxidation of cofilin1 is elevated in migrating cells relative to stationary cells, and that the effect of this post-translational modification is to reduce cofilin1-actin binding and to inhibit filamentous-actin severing by cofilin1. These studies revealed that cofilin1 regulation by hydrogen peroxide contributes to directional cell migration, and established a template for discovering additional proteins that are regulated in an analogous manner. PMID:27066166

  13. Junctional communication is induced in migrating capillary endothelial cells.

    PubMed

    Pepper, M S; Spray, D C; Chanson, M; Montesano, R; Orci, L; Meda, P

    1989-12-01

    Using an in vitro model in which a confluent monolayer of capillary endothelial cells is mechanically wounded, gap junction-mediated intercellular communication has been studied by loading the cells with the fluorescent dye, Lucifer Yellow. Approximately 40-50% of the cells in a nonwounded confluent monolayer were coupled in groups of four to five cells (basal level). Basal levels of communication were also observed in sparse and preconfluent cultures, but were reduced in postconfluent monolayers. 30 min after wounding, coupling was markedly reduced between cells lining the wound. Communication at the wound was partially reestablished by 2 h, exceeded basal levels after 6 h and reached a maximum after 24 h, at which stage approximately 90% of the cells were coupled in groups of six to seven cells. When the wound had closed (after 8 d), the increase in communication was no longer observed. Induction of wound-associated communication was unaffected by exposure of the cells to the DNA synthesis inhibitor mitomycin C, but was prevented by the protein synthesis inhibitor, cycloheximide. The induction of wound-associated communication was also inhibited when migration was prevented by placing the cells immediately after wounding at 22 degrees C or after exposure to cytochalasin D, suggesting that the increase in communication is dependent on cells migrating into the wound area. In contrast, migration was not prevented when coupling was blocked by exposure of the cells to retinoic acid, although this agent did disrupt the characteristic sheet-like pattern of migration typically seen during endothelial repair. These results suggest that junctional communication may play an important role in wound repair, possibly by coordinating capillary endothelial cell migration. PMID:2592412

  14. Engineered Models of Confined Cell Migration.

    PubMed

    Paul, Colin D; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos

    2016-07-11

    Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell-substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571

  15. Collective cell migration: guidance principles and hierarchies.

    PubMed

    Haeger, Anna; Wolf, Katarina; Zegers, Mirjam M; Friedl, Peter

    2015-09-01

    Collective cell migration results from the establishment and maintenance of collective polarization, mechanocoupling, and cytoskeletal kinetics. The guidance of collective cell migration depends on a reciprocal process between cell-intrinsic multicellular organization with leader-follower cell behavior and results in mechanosensory integration of extracellular guidance cues. Important guidance mechanisms include chemotaxis, haptotaxis, durotaxis, and strain-induced mechanosensing to move cell groups along interfaces and paths of least resistance. Additional guidance mechanisms steering cell groups during specialized conditions comprise electrotaxis and passive drift. To form higher-order cell and tissue structures during morphogenesis and cancer invasion, these guidance principles act in parallel and are integrated for collective adaptation to and shaping of varying tissue environments. We review mechanochemical and electrical inputs and multiparameter signal integration underlying collective guidance, decision making, and outcome. PMID:26137890

  16. Anticancer effect of arsenite on cell migration, cell cycle and apoptosis in human pancreatic cancer cells

    PubMed Central

    HORIBE, YOHEI; ADACHI, SEIJI; YASUDA, ICHIRO; YAMAUCHI, TAKAHIRO; KAWAGUCHI, JUNJI; KOZAWA, OSAMU; SHIMIZU, MASAHITO; MORIWAKI, HISATAKA

    2016-01-01

    The standard treatment for advanced pancreatic cancer is chemotherapy, but its clinical outcome remains unsatisfactory. Therefore, the development of novel treatments for this malignancy is urgently required. In the present study, the anticancer effect of arsenite on platelet-derived growth factor (PDGF)-BB-induced migration, cell cycle and apoptosis was investigated in pancreatic cancer cells (AsPC-1 and BxPC-3), and compared with the effect on normal pancreatic epithelial (PE) cells. In the cell migration assay, arsenite clearly inhibited PDGF-BB-induced cell migration in AsPC-1 cells, but not in BxPC-3 or PE cells. Arsenite also caused cell apoptosis in AsPC-1 cells, but not in BxPC-3 or PE cells. In AsPC-1 cells, the levels of cyclin D1 and phosphorylated retinoblastoma protein decreased following treatment with arsenite, but this was not observed in BxPC-3 cells. To further examine the differences between these two cell lines, the effect of arsenite on upstream p44/p42 mitogen-activated protein kinase (MAPK) and Akt was investigated. PDGF-BB caused phosphorylation of p44/p42 MAPK and Akt in both cell lines. Pretreatment with arsenite significantly suppressed PDGF-BB-induced phosphorylation of Akt, but not of p44/p42 MAPK in AsPC-1 cells. By contrast, arsenite did not affect these molecules in BxPC-3 cells. Since the inhibition of the Akt signaling pathway markedly reduced PDGF-BB-induced migration in AsPC-1 cells, the present results strongly suggest that arsenite inhibits PDGF-BB-induced migration by suppressing the Akt signaling pathway in AsPC-1 cells. Therefore, arsenite may be a useful tool for the treatment of patients with certain types of pancreatic cancer, without causing adverse effects on normal pancreatic cells. PMID:27347121

  17. Primordial Germ Cell Specification and Migration

    PubMed Central

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration. PMID:26918157

  18. Modeling traction forces in collective cell migration

    NASA Astrophysics Data System (ADS)

    Zimmermann, Juliane; Basan, Markus; Hayes, Ryan L.; Rappel, Wouter-Jan; Levine, Herbert

    2015-03-01

    Collective cell migration is an important process in embryonic development, wound healing, and cancer metastasis. We have developed a particle-based simulation for collective cell migration that describes flow patterns and finger formation at the tissue edge observed in wound healing experiments. We can apply methods for calculating intercellular stress to our simulation model, and have thereby provided evidence for the validity of a stress reconstitution method from traction forces used in experiments. To accurately capture experimentally measured traction forces and stresses in the tissue, which are mostly tensile, we have to include intracellular acto-myosin contraction into our simulation. We can then reproduce the experimentally observed behavior of cells moving around a circular obstacle, and suggest underlying mechanisms for cell-cell alignment and generation of traction force patterns.

  19. Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells

    PubMed Central

    Zhang, Dianbao; Li, Ying; Wang, Rui; Li, Yunna; Shi, Ping; Kan, Zhoumi; Pang, Xining

    2016-01-01

    Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy. PMID:27153061

  20. Inhibition of REST Suppresses Proliferation and Migration in Glioblastoma Cells.

    PubMed

    Zhang, Dianbao; Li, Ying; Wang, Rui; Li, Yunna; Shi, Ping; Kan, Zhoumi; Pang, Xining

    2016-01-01

    Glioblastoma (GBM) is the most common primary brain tumor, with poor prognosis and a lack of effective therapeutic options. The aberrant expression of transcription factor REST (repressor element 1-silencing transcription factor) had been reported in different kinds of tumors. However, the function of REST and its mechanisms in GBM remain elusive. Here, REST expression was inhibited by siRNA silencing in U-87 and U-251 GBM cells. Then CCK-8 assay showed significantly decreased cell proliferation, and the inhibition of migration was verified by scratch wound healing assay and transwell assay. Using cell cycle analysis and Annexin V/PI straining assay, G1 phase cell cycle arrest was found to be a reason for the suppression of cell proliferation and migration upon REST silencing, while apoptosis was not affected by REST silencing. Further, the detection of REST-downstream genes involved in cytostasis and migration inhibition demonstrated that CCND1 and CCNE1 were reduced; CDK5R1, BBC3, EGR1, SLC25A4, PDCD7, MAPK11, MAPK12, FADD and DAXX were enhanced, among which BBC3 and DAXX were direct targets of REST, as verified by ChIP (chromatin immunoprecipitation) and Western blotting. These data suggested that REST is a master regulator that maintains GBM cells proliferation and migration, partly through regulating cell cycle by repressing downstream genes, which might represent a potential target for GBM therapy. PMID:27153061

  1. Cell migration in paediatric glioma; characterisation and potential therapeutic targeting

    PubMed Central

    Cockle, J V; Picton, S; Levesley, J; Ilett, E; Carcaboso, A M; Short, S; Steel, L P; Melcher, A; Lawler, S E; Brüning-Richardson, A

    2015-01-01

    Background: Paediatric high grade glioma (pHGG) and diffuse intrinsic pontine glioma (DIPG) are highly aggressive brain tumours. Their invasive phenotype contributes to their limited therapeutic response, and novel treatments that block brain tumour invasion are needed. Methods: Here, we examine the migratory characteristics and treatment effect of small molecule glycogen synthase kinase-3 inhibitors, lithium chloride (LiCl) and the indirubin derivative 6-bromoindirubin-oxime (BIO), previously shown to inhibit the migration of adult glioma cells, on two pHGG cell lines (SF188 and KNS42) and one patient-derived DIPG line (HSJD-DIPG-007) using 2D (transwell membrane, immunofluorescence, live cell imaging) and 3D (migration on nanofibre plates and spheroid invasion in collagen) assays. Results: All lines were migratory, but there were differences in morphology and migration rates. Both LiCl and BIO reduced migration and instigated cytoskeletal rearrangement of stress fibres and focal adhesions when viewed by immunofluorescence. In the presence of drugs, loss of polarity and differences in cellular movement were observed by live cell imaging. Conclusions: Ours is the first study to demonstrate that it is possible to pharmacologically target migration of paediatric glioma in vitro using LiCl and BIO, and we conclude that these agents and their derivatives warrant further preclinical investigation as potential anti-migratory therapeutics for these devastating tumours. PMID:25628092

  2. Collisions of deformable cells lead to collective migration

    SciTech Connect

    Löber, Jakob; Ziebert, Falko; Aranson, Igor S.

    2015-03-17

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.

  3. Collisions of deformable cells lead to collective migration.

    PubMed

    Löber, Jakob; Ziebert, Falko; Aranson, Igor S

    2015-01-01

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility. PMID:25779619

  4. Collisions of deformable cells lead to collective migration

    DOE PAGESBeta

    Löber, Jakob; Ziebert, Falko; Aranson, Igor S.

    2015-03-17

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignmentmore » of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.« less

  5. Collisions of deformable cells lead to collective migration

    PubMed Central

    Löber, Jakob; Ziebert, Falko; Aranson, Igor S.

    2015-01-01

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility – acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility. PMID:25779619

  6. Collisions of deformable cells lead to collective migration

    NASA Astrophysics Data System (ADS)

    Aranson, Igor; Löber, Jakob; Ziebert, Falko

    2015-03-01

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - actomyosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility. J. L. acknowledges funding from the German Science Foundation (DFG) within the GRK 1558. F. Z. acknowledges funding from the German Science Foundation (DFG) via Project ZI 1232/2-1. I. S. A. was supported by the US Department of Energy (DOE), Office of.

  7. Collisions of deformable cells lead to collective migration

    NASA Astrophysics Data System (ADS)

    Löber, Jakob; Ziebert, Falko; Aranson, Igor S.

    2015-03-01

    Collective migration of eukaryotic cells plays a fundamental role in tissue growth, wound healing and immune response. The motion, arising spontaneously or in response to chemical and mechanical stimuli, is also important for understanding life-threatening pathologies, such as cancer and metastasis formation. We present a phase-field model to describe the movement of many self-organized, interacting cells. The model takes into account the main mechanisms of cell motility - acto-myosin dynamics, as well as substrate-mediated and cell-cell adhesion. It predicts that collective cell migration emerges spontaneously as a result of inelastic collisions between neighboring cells: collisions lead to a mutual alignment of the cell velocities and to the formation of coherently-moving multi-cellular clusters. Small cell-to-cell adhesion, in turn, reduces the propensity for large-scale collective migration, while higher adhesion leads to the formation of moving bands. Our study provides valuable insight into biological processes associated with collective cell motility.

  8. Flow and Diffusion in Channel-Guided Cell Migration

    PubMed Central

    Marel, Anna-Kristina; Zorn, Matthias; Klingner, Christoph; Wedlich-Söldner, Roland; Frey, Erwin; Rädler, Joachim O.

    2014-01-01

    Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport

  9. T cell migration, search strategies and mechanisms.

    PubMed

    Krummel, Matthew F; Bartumeus, Frederic; Gérard, Audrey

    2016-03-01

    T cell migration is essential for T cell responses; it allows for the detection of cognate antigen at the surface of antigen-presenting cells and for interactions with other cells involved in the immune response. Although appearing random, growing evidence suggests that T cell motility patterns are strategic and governed by mechanisms that are optimized for both the activation stage of the cell and for environment-specific cues. In this Opinion article, we discuss how the combined effects of T cell-intrinsic and -extrinsic forces influence T cell motility patterns in the context of highly complex tissues that are filled with other cells involved in parallel motility. In particular, we examine how insights from 'search theory' can be used to describe T cell movement across an 'exploitation-exploration trade-off' in the context of activation versus effector function and lymph nodes versus peripheral tissues. PMID:26852928

  10. Cell Chirality Induces Collective Cell Migration in Epithelial Sheets

    NASA Astrophysics Data System (ADS)

    Sato, Katsuhiko; Hiraiwa, Tetsuya; Shibata, Tatsuo

    2015-10-01

    During early development, epithelial cells form a monolayer sheet and migrate in a uniform direction. Here, we address how this collective migration can occur without breaking the cell-to-cell attachments. Repeated contraction and expansion of the cell-to-cell interfaces enables the cells to rearrange their positions autonomously within the sheet. We show that when the interface tension is strengthened in a direction that is tilted from the body axis, cell rearrangements occur in such a way that unidirectional movement is induced. We use a vertex model to demonstrate that such anisotropic tension can generate the unidirectional motion of cell sheets. Our results suggest that cell chirality facilitates collective cell migration during tissue morphogenesis.

  11. Physical forces during collective cell migration

    NASA Astrophysics Data System (ADS)

    Trepat, Xavier; Wasserman, Michael R.; Angelini, Thomas E.; Millet, Emil; Weitz, David A.; Butler, James P.; Fredberg, Jeffrey J.

    2009-06-01

    Fundamental biological processes including morphogenesis, tissue repair and tumour metastasis require collective cell motions, and to drive these motions cells exert traction forces on their surroundings. Current understanding emphasizes that these traction forces arise mainly in `leader cells' at the front edge of the advancing cell sheet. Our data are contrary to that assumption and show for the first time by direct measurement that traction forces driving collective cell migration arise predominately many cell rows behind the leading front edge and extend across enormous distances. Traction fluctuations are anomalous, moreover, exhibiting broad non-Gaussian distributions characterized by exponential tails. Taken together, these unexpected findings demonstrate that although the leader cell may have a pivotal role in local cell guidance, physical forces that it generates are but a small part of a global tug-of-war involving cells well back from the leading edge.

  12. SIRT1 regulates lamellipodium extension and migration of melanoma cells.

    PubMed

    Kunimoto, Risa; Jimbow, Kowichi; Tanimura, Akihiko; Sato, Masahiro; Horimoto, Kouhei; Hayashi, Takashi; Hisahara, Shin; Sugino, Toshiya; Hirobe, Tomohisa; Yamashita, Toshiharu; Horio, Yoshiyuki

    2014-06-01

    Melanoma is highly metastatic, but the mechanism of melanoma cell migration is still unclear. We found that melanoma cells expressed the nicotinamide adenine dinucleotide-dependent protein deacetylase SIRT1 in the cytoplasm. Cell membrane extension and migration of melanoma cells were inhibited by SIRT1 inhibitors or SIRT1 knockdown, whereas SIRT1 activators enhanced elongation of protrusion and cellular motility. In B16F1 cells, growth factor stimulation induced lamellipodium extension, a characteristic feature at the leading edge of migrating cells, and SIRT1 was found in the lamellipodium. SIRT1 inhibitor nicotinamide (NAM) or SIRT1 small interfering RNAs suppressed the lamellipodium extension by serum or platelet-derived growth factor (PDGF). The lamellipodium formation by dominant-active Rac1 was also inhibited by NAM, a SIRT1 inhibitor. NAM inhibited the accumulation of phosphorylated Akt at the submembrane by serum or PDGF. Using fluorescence resonance energy transfer, we found that NAM impaired PDGF-dependent increase in the phosphatidylinositol-3,4,5-trisphosphate level at the leading edge. NAM inhibited the abdominal metastasis of transplanted B16F1 melanoma cells in C57BL6/J mice and improved survival. Finally, SIRT1-knockdown B16F1 cells showed significantly reduced metastasis in transplanted mice compared with that in control B16F1 cells. These results indicate that SIRT1 inhibition is a strategy to suppress metastasis of melanoma cells. PMID:24480879

  13. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    PubMed

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  14. Cadmium migration in aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1976-01-01

    The effects of temperature, the nature of separator material, charge and discharge, carbonate contamination, and the mode of storage are studied with respect to the migration of active material from the negative toward the positive plate. A theoretical model is proposed which takes into account the solubility of cadmium in various concentrations of hydroxide and carbonate at different temperatures, the generation of the cadmiate ion, Cd(OH)3(-), during discharge, the migration of the cadmiate ion and particulate Cd(OH)2 due to electrophoretic effects and the movement of electrolyte in and out of the negative plate and, finally, the recrystallization of cadmiate ion in the separator as Cd(OH)2. Application of the theoretical model to observations of cadmium migration in cycled cells is also discussed.

  15. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. PMID:27085002

  16. CD4+ T Cell Migration into the Cornea is Reduced in CXCL9 Deficient but not CXCL10 Deficient Mice following Herpes Simplex Virus Type 1 Infection1

    PubMed Central

    Wuest, Todd; Farber, Joshua; Luster, Andrew; Carr, Daniel J. J.

    2007-01-01

    The role of CXCL9 and CXCL10 in the ocular immune response to herpes simplex virus type 1 (HSV-1) infection was investigated using mice deficient in either CXCL9 or CXCL10. CXCL10 but not CXCL9 deficient mice showed an increase in sensitivity to ocular virus infection as measured by an elevation in virus titer recovered in the tear film and corneal tissue. The increase in virus was associated with an increase in the expression of the chemokine CCL2 but no significant change in the infiltration of CD4+ T cells or NK cells into the corneal stroma. In contrast, a significant reduction in CD4+ T cell infiltration into the cornea was found in CXCL9 deficient mice following HSV-1 infection consistent with the absence of CXCL9 expression and reduction in expression of other chemokines including CCL3, CCL5, CXCL1, and CXCL10. Collectively, the results suggest a non-redundant role for CXCL9 and CXCL10 in response to ocular HSV-1 infection in terms of controlling virus replication and recruitment of CD4+ T cells into the cornea. PMID:17296171

  17. Cell migration in the rat embryonic neocortex.

    PubMed

    Bayer, S A; Altman, J; Russo, R J; Dai, X F; Simmons, J A

    1991-05-15

    Three-dimensional reconstructions of the normal rat embryonic (E) neocortex on days E15, E17, E19, and E21, using Skandha (software designed by J. Prothero, University of Washington, Seattle), show that the neocortical ventricular zone shrinks rapidly in the medial direction during cortical morphogenesis. [3H]thymidine autoradiography indicates that the shrinkage of the ventricular zone occurs before neurons in lateral and ventrolateral parts of layers IV-II are generated. Consequently, most of these neurons originate 400-1000 microns medial to their settling sites in the cortical plate. Embryos killed at daily intervals up to E21 after a single injection of [3H]thymidine on either E17 or E18 revealed the presence of a prominent migratory path, the lateral cortical stream, used by neurons migrating to the lateral and ventrolateral cortical plate; neurons migrating to the dorsal cortical plate follow a direct radial path. Arrival times of neurons in the cortical plate depend on the migratory path and are proportional to the overall distance travelled. Neurons that migrate only radially arrive in the dorsal cortical plate in two days (shortest route). Neurons that migrate laterally arrive in the lateral cortical plate in 3 days (longer route) and in the ventrolateral cortical plate in 4 days (longest route). [3H]thymidine autoradiography also shows that cells generated in the neocortical ventricular zone migrate in the lateral cortical stream for 5 or more days and accumulate in a reservoir. Cells leave the reservoir to enter the piriform cortex and destinations (as yet undetermined) in the basal telencephalon. The lateral cortical stream is found wherever the neocortical primordium surrounds the basal ganglia and is absent behind the basal ganglia. A computer analysis of nuclear orientation in anterior and posterior parts of the intermediate zone in the dorsal neocortex between days E17 and E22 shows that horizontally oriented nuclei are more common anteriorly where

  18. Altering FAK-Paxillin Interactions Reduces Adhesion, Migration and Invasion Processes

    PubMed Central

    Deramaudt, Thérèse B.; Dujardin, Denis; Noulet, Fanny; Martin, Sophie; Vauchelles, Romain; Takeda, Ken; Rondé, Philippe

    2014-01-01

    Focal adhesion kinase (FAK) plays an important role in signal transduction pathways initiated at sites of integrin-mediated cell adhesion to the extracellular matrix. Thus, FAK is involved in many aspects of the metastatic process including adhesion, migration and invasion. Recently, several small molecule inhibitors which target FAK catalytic activity have been developed by pharmaceutical companies. The current study was aimed at addressing whether inhibiting FAK targeting to focal adhesions (FA) represents an efficient alternative strategy to inhibit FAK downstream pathways. Using a mutagenesis approach to alter the targeting domain of FAK, we constructed a FAK mutant that fails to bind paxillin. Inhibiting FAK-paxillin interactions led to a complete loss of FAK localization at FAs together with reduced phosphorylation of FAK and FAK targets such as paxillin and p130Cas. This in turn resulted in altered FA dynamics and inhibition of cell adhesion, migration and invasion. Moreover, the migration properties of cells expressing the FAK mutant were reduced as compared to FAK-/- cells. This was correlated with a decrease in both phospho-Src and phospho-p130Cas levels at FAs. We conclude that targeting FAK-paxillin interactions is an efficient strategy to reduce FAK signalling and thus may represent a target for the development of new FAK inhibitors. PMID:24642576

  19. [Research progress of tumor cell migration strategy and the migration transition mechanism].

    PubMed

    Wang, Hongbing; Tan, Qiaoyan; Yang, Ben Yanzi; Zou, Xiaobing; Yang, Li

    2011-12-01

    Tumor cells exhibit two main different migration strategies when invading in 3D environment, i. e. mesenchymal migration and amoeboid migration. This review summarizes the internal reasons and characteristics on various modes of migration adaptation to the microenvironment, and the molecular mechanisms in particular environment where they are mutually interchangeable. A study of the mechanisms that may possibly trigger mesenchymal-amoeboid transition/amoeboid-mesenchymal transition help us to understand the change and the plasticity in the migration strategies of tumor cells. These are important for the development of a cancer treatment, which would efficiently suppress tumor cell invasiveness. PMID:22295724

  20. A Dynamic Model of Chemoattractant-Induced Cell Migration

    PubMed Central

    Yang, Hao; Gou, Xue; Wang, Yong; Fahmy, Tarek M.; Leung, Anskar Y.-H.; Lu, Jian; Sun, Dong

    2015-01-01

    Cell migration refers to a directional cell movement in response to chemoattractant stimulation. In this work, we developed a cell-migration model by mimicking in vivo migration using optically manipulated chemoattractant-loaded microsources. The model facilitates a quantitative characterization of the relationship among the protrusion force, cell motility, and chemoattractant gradient for the first time (to our knowledge). We verified the correctness of the model using migrating leukemia cancer Jurkat cells. The results show that one can achieve the ideal migrating capacity by choosing the appropriate chemoattractant gradient and concentration at the leading edge of the cell. PMID:25863056

  1. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration

    PubMed Central

    Wu, Tao; Kooi, Craig Vander; Shah, Pritom; Charnigo, Richard; Huang, Cai; Smyth, Susan S.; Morris, Andrew J.

    2014-01-01

    Autotaxin (ATX) is a secreted lysophospholipase D (lysoPLD) that binds to integrin adhesion receptors. We dissected the roles of integrin binding and lysoPLD activity in stimulation of human breast cancer and mouse aortic vascular smooth muscle cell migration by ATX. We compared effects of wild-type human ATX, catalytically inactive ATX, an integrin binding-defective ATX variant with wild-type lysoPLD activity, the isolated ATX integrin binding N-terminal domain, and a potent ATX selective lysoPLD inhibitor on cell migration using transwell and single-cell tracking assays. Stimulation of transwell migration was reduced (18 or 27% of control, respectively) but not ablated by inactivation of integrin binding or inhibition of lysoPLD activity. The N-terminal domain increased transwell migration (30% of control). ATX lysoPLD activity and integrin binding were necessary for a 3.8-fold increase in the fraction of migrating breast cancer cell step velocities >0.7 μm/min. ATX increased the persistent directionality of single-cell migration 2-fold. This effect was lysoPLD activity independent and recapitulated by the integrin binding N-terminal domain. Integrin binding enables uptake and intracellular sequestration of ATX, which redistributes to the front of migrating cells. ATX binding to integrins and lysoPLD activity therefore cooperate to promote rapid persistent directional cell migration.—Wu, T., Kooi, C. V., Shah, P., Charnigo, R., Huang, C., Smyth, S. S., Morris, A. J. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration. PMID:24277575

  2. Migrastatin Analogues Inhibit Canine Mammary Cancer Cell Migration and Invasion

    PubMed Central

    Majchrzak, Kinga; Lo Re, Daniele; Gajewska, Małgorzata; Bulkowska, Małgorzata; Homa, Agata; Pawłowski, Karol; Motyl, Tomasz; Murphy, Paul V.; Król, Magdalena

    2013-01-01

    Background Cancer spread to other organs is the main cause of death of oncological patients. Migration of cancer cells from a primary tumour is the crucial step in the complex process of metastasis, therefore blocking this process is currently the main treatment strategy. Metastasis inhibitors derived from natural products, such as, migrastatin, are very promising anticancer agents. Thus, the aim of our study was to investigate the effect of six migrastatin analogues (MGSTA-1 to 6) on migration and invasion of canine mammary adenocarcinoma cell lines isolated from primary tumours and their metastases to the lungs. Canine mammary tumours constitute a valuable tool for studying multiple aspect of human cancer. Results Our results showed that two of six fully synthetic analogues of migrastatin: MGSTA-5 and MGSTA-6 were potent inhibitors of canine mammary cancer cells migration and invasion. These data were obtained using the wound healing test, as well as trans-well migration and invasion assays. Furthermore, the treatment of cancer cells with the most effective compound (MGSTA-6) disturbed binding between filamentous F-actin and fascin1. Confocal microscopy analyses revealed that treatment with MGSTA-6 increased the presence of unbound fascin1 and reduced co-localization of F-actin and fascin1 in canine cancer cells. Most likely, actin filaments were not cross-linked by fascin1 and did not generate the typical filopodial architecture of actin filaments in response to the activity of MGSTA-6. Thus, administration of MGSTA-6 results in decreased formation of filopodia protrusions and stress fibres in canine mammary cancer cells, causing inhibition of cancer migration and invasion. Conclusion Two synthetic migrastatin analogues (MGSTA-5 and MGSTA-6) were shown to be promising compounds for inhibition of cancer metastasis. They may have beneficial therapeutic effects in cancer therapy in dogs, especially in combination with other anticancer drugs. However, further in

  3. Migration of cells in a social context.

    PubMed

    Vedel, Søren; Tay, Savaş; Johnston, Darius M; Bruus, Henrik; Quake, Stephen R

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified "cellular traffic rules" and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells. PMID:23251032

  4. MicroRNA-21 suppression impedes medulloblastoma cell migration.

    PubMed

    Grunder, Eveline; D'Ambrosio, Rocco; Fiaschetti, Giulio; Abela, Lucia; Arcaro, Alexandre; Zuzak, Tycho; Ohgaki, Hiroko; Lv, Sheng-Qing; Shalaby, Tarek; Grotzer, Michael

    2011-11-01

    Medulloblastoma (MB), the most common malignant brain tumour in children, is characterised by a high risk of leptomeningeal dissemination. But little is known about the molecular mechanisms that promote cancer cell migration in MB. Aberrant expression of miR-21 is recognised to be causatively linked to metastasis in a variety of human neoplasms including brain tumours; however its function in MB is still unknown. In this study we investigated the expression level and the role of miR-21 in MB cell migration. miR-21 was found to be up-regulated, compared to normal cerebellum, in 29/29 MB primary samples and 6/6 MB-derived cell lines. Inverse correlation was observed between miR-21 expression and the metastasis suppressor PDCD4, while miR-21 repression increased the release of PDCD4 protein, suggesting negative regulation of PDCD4 by miR-21 in MB cells. Anti-miR-21 decreased protein expression of the tumour cell invasion mediators MAP4K1 and JNK, which are also known to be negatively regulated by PDCD4, and down-regulated integrin protein that is essential for MB leptomeningeal dissemination. Moreover miR-21 knockdown in MB cells increased the expression of two eminent negative modulators of cancer cell migration, E-Cadherin and TIMP2 proteins that are known to be positively regulated by PDCD4. Finally and importantly, suppression of miR-21 decreased the motility of MB cells and reduced their migration across basement membranes in vitro. Together, these compelling data propose miR-21 pathway as a novel mechanism impacting MB cell dissemination and raises the possibility that curability of selected MB may be improved by pharmaceutical strategies directed towards microRNA-21. PMID:21775132

  5. RGMb controls aggregation and migration of Neogenin-positive cells in vitro and in vivo.

    PubMed

    Conrad, Sabine; Stimpfle, Fabian; Montazeri, Sonia; Oldekamp, Judit; Seid, Karin; Alvarez-Bolado, Gonzalo; Skutella, Thomas

    2010-02-01

    The proliferation, migration and differentiation of dentate gyrus stem and precursor cells have aroused keen interest. Neogenin and RGMb are expressed in non-overlapping compartments of the developing dentate gyrus. While Neogenin is expressed in migrating and proliferating dentate precursors, RGMb is localized in structures bordering the developing dentate, such as cornus ammonis cells and Cajal-Retzius cells in the marginal zone including the hippocampal fissure. Co-immunoprecipitation and binding assays indicate a strong physical interaction. In vitro and in vivo migration of dentate neuroepithelial cells is abolished by RGMb, and cell adhesion is reduced when cells expressing Neogenin comes into contact with cells expressing RGMb. Ectopic expression of RGMb in organotypic slice cultures and after in utero electroporation in the hippocampus modifies precursor cell migration. Our results imply that Neogenin-RGMb interaction might be involved in neuronal migration in the dentate gyrus. PMID:19944164

  6. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-κB.

    PubMed

    Suboj, Priya; Babykutty, Suboj; Valiyaparambil Gopi, Deepak Roshan; Nair, Rakesh S; Srinivas, Priya; Gopala, Srinivas

    2012-04-11

    Aloe emodin (AE), a natural anthraquinone, is reported to have antiproliferative activity in various cancer cell lines. In this study we analyzed molecular mechanisms involved in the antimigratory and antiangiogenic activity of this hydroxy anthraquinone in colon cancer cell, WiDr. Our results show that a relatively non toxic concentration of AE suppressed the phorbol-12-myristyl-13-acetate (PMA) induced migration and invasion of tumor cells. On analysis for the molecules involved in the migration/invasion, we found AE downregulated mRNA expression and promoter/gelatinolytic activity of Matrix Metalloproteinase (MMP)-2/9, as well as the RhoB expression at gene and protein level. It was also a strong inhibitor of Vascular Endothelial Growth Factor (VEGF) expression, promoter activity and endothelial cell migration/invasion and in vitro angiogenesis. AE suppressed the nuclear translocation and DNA binding of NF-κB, which is an important transcription factor for controlling MMP-2/9 and VEGF gene expression. Taken together these data indicate that AE target multiple molecules responsible for cellular invasion, migration and angiogenesis. Inhibitory effect on angiogenic and metastatic regulatory processes make AE a sensible candidate as a specific blocker of tumor associated events. PMID:22227305

  7. Actomyosin contractility spatiotemporally regulates actin network dynamics in migrating cells.

    PubMed

    Okeyo, Kennedy Omondi; Adachi, Taiji; Sunaga, Junko; Hojo, Masaki

    2009-11-13

    Coupling interactions among mechanical and biochemical factors are important for the realization of various cellular processes that determine cell migration. Although F-actin network dynamics has been the focus of many studies, it is not yet clear how mechanical forces generated by actomyosin contractility spatiotemporally regulate this fundamental aspect of cell migration. In this study, using a combination of fluorescent speckle microscopy and particle imaging velocimetry techniques, we perturbed the actomyosin system and examined quantitatively the consequence of actomyosin contractility on F-actin network flow and deformation in the lamellipodia of actively migrating fish keratocytes. F-actin flow fields were characterized by retrograde flow at the front and anterograde flow at the back of the lamellipodia, and the two flows merged to form a convergence zone of reduced flow intensity. Interestingly, activating or inhibiting actomyosin contractility altered network flow intensity and convergence, suggesting that network dynamics is directly regulated by actomyosin contractility. Moreover, quantitative analysis of F-actin network deformation revealed that the deformation was significantly negative and predominant in the direction of cell migration. Furthermore, perturbation experiments revealed that the deformation was a function of actomyosin contractility. Based on these results, we suggest that the actin cytoskeletal structure is a mechanically self-regulating system, and we propose an elaborate pathway for the spatiotemporal self-regulation of the actin cytoskeletal structure during cell migration. In the proposed pathway, mechanical forces generated by actomyosin interactions are considered central to the realization of the various mechanochemical processes that determine cell motility. PMID:19665125

  8. Integrin-mediated cell migration is blocked by inhibitors of human neuraminidase.

    PubMed

    Jia, Feng; Howlader, Md Amran; Cairo, Christopher W

    2016-09-01

    Integrins are critical receptors in cell migration and adhesion. A number of mechanisms are known to regulate the function of integrins, including phosphorylation, conformational change, and cytoskeletal anchoring. We investigated whether native neuraminidase (Neu, or sialidase) enzymes which modify glycolipids could play a role in regulating integrin-mediated cell migration. Using a scratch assay, we found that exogenously added Neu3 and Neu4 activity altered rates of cell migration. We observed that Neu4 increased the rate of migration in two cell lines (HeLa, A549); while Neu3 only increased migration in HeLa cells. A bacterial neuraminidase was able to increase the rate of migration in HeLa, but not in A549 cells. Treatment of cells with complex gangliosides (GM1, GD1a, GD1b, and GT1b) resulted in decreased cell migration rates, while LacCer was able to increase rates of migration in both lines. Importantly, our results show that treatment of cells with inhibitors of native Neu enzymes had a dramatic effect on the rates of cell migration. The most potent compound tested targeted the human Neu4 isoenzyme, and was able to substantially reduce the rate of cell migration. We found that the lateral mobility of integrins was reduced by treatment of cells with Neu3, suggesting that Neu3 enzyme activity resulted in changes to integrin-co-receptor or integrin-cytoskeleton interactions. Finally, our results support the hypothesis that inhibitors of human Neu can be used to investigate mechanisms of cell migration and for the development of anti-adhesive therapies. PMID:27344026

  9. The front and rear of collective cell migration.

    PubMed

    Mayor, Roberto; Etienne-Manneville, Sandrine

    2016-02-01

    Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement. PMID:26726037

  10. Silencing of VAMP3 inhibits cell migration and integrin-mediated adhesion

    SciTech Connect

    Luftman, Kevin; Hasan, Nazarul; Day, Paul; Hardee, Deborah; Hu Chuan

    2009-02-27

    Integrins are transmembrane receptors for cell adhesion to the extracellular matrix. In cell migration, integrins are endocytosed from the plasma membrane or the cell surface, transported in vesicles and exocytosed actively at the cell front. In the present study, we examined the roles of VAMP3, a SNARE protein that mediates exocytosis, in cell migration and integrin trafficking. Small interfering RNA (siRNA)-induced silencing of VAMP3 inhibited chemotactic cell migration by more than 60% without affecting cell proliferation. VAMP3 silencing reduced the levels of {beta}1 integrin at the cell surface but had no effect on total cellular {beta}1 integrin, indicating that VAMP3 is required for trafficking of {beta}1 integrin to the plasma membrane. Furthermore, VAMP3 silencing diminished cell adhesion to laminin but not to fibronectin or collagen. Taken together, these data suggest that VAMP3-dependent integrin trafficking is crucial in cell migration and cell adhesion to laminin.

  11. T Cell Migration in Rheumatoid Arthritis

    PubMed Central

    Mellado, Mario; Martínez-Muñoz, Laura; Cascio, Graciela; Lucas, Pilar; Pablos, José L.; Rodríguez-Frade, José Miguel

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies. PMID:26284069

  12. T Cell Migration in Rheumatoid Arthritis.

    PubMed

    Mellado, Mario; Martínez-Muñoz, Laura; Cascio, Graciela; Lucas, Pilar; Pablos, José L; Rodríguez-Frade, José Miguel

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies. PMID:26284069

  13. HEMA inhibits migration of dental pulp stem cells

    PubMed Central

    Williams, Drake W.; Wu, Hongkun; Oh, Ju-Eun; Fakhar, Camron; Kang, Mo K.; Shin, Ki-Hyuk; Park, No-Hee; Kim, Reuben H.

    2013-01-01

    Objectives Cell migration is an important step in pulpal wound healing. Although components in the resin-based dental materials are known to have adverse effects on pulp wound healing including proliferation and mineralization, their effects on cell migration have been scarcely examined. Here, we investigated effects of 2-Hydroxyethyl methacrylate (HEMA) on migration of dental pulp stem cells (DPSC) in vitro. Methods Cell viability was assessed using MTT assay, and cell migration was evaluated using wound scratch assay and transwell migration assay at non-cytotoxic doses. Western blotting was used to examine pathways associated with migration such as focal adhesion kinase (FAK), mitogen-activated protein kinase (MAPK), and glycogen synthase kinase 3 (GSK3). Results There were no drastic changes in the cell viability below 3mM HEMA. When DPSC were treated with HEMA at 0.5, 1.0, and 2.5mM, cell migration was diminished. HEMA-treated DPSC exhibited the loss of phosphorylated focal adhesion kinase (FAK) in a dose-dependent manner. The HEMA-mediated inhibition of cell migration was associated with phosphorylation of p38 but not GSK3, ERK or JNK pathways. When we inhibited the p38 signaling pathway using a p38 inhibitor, migration of DPSC was suppressed. Conclusion HEMA inhibits migration of dental pulp cells in vitro, suggesting that poor pulpal wound healing under resin-based dental materials may be due, in part, to inhibition of cell migration by HEMA. PMID:23953290

  14. Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma.

    PubMed

    Zhou, Guoren; Ye, Jinjun; Sun, Lei; Zhang, Zhi; Feng, Jifeng

    2016-06-01

    Dishevelled-2 (Dvl2) was associated with tumor cell proliferation and migration. We aimed to examine the mechanism of Dvl2 in esophageal squamous cell carcinoma (ESCC). Dvl2 was overexpressed in human ESCC tissues and cell lines ECA109 and TE1 cells. CCK-8 and colony formation assay was performed to evaluate the proliferation in ECA109 cells transfected with Dvl2-shRNA. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in Dvl2-silenced ESCC cells. Knockdown of Dvl2 significantly reduced ECA109 cell proliferation and migration. Moreover, we demonstrated that the proliferation and migration ability of Dvl2 might through the activation of Wnt pathway by targeting the Cyclin D1 and MMP-9. We came to the conclusion that the proliferation and migration effects of Dvl2 might contribute to malignant development of human ESCC. PMID:27083564

  15. Alignment of cell division axes in directed epithelial cell migration

    NASA Astrophysics Data System (ADS)

    Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

    2014-11-01

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

  16. Flow-driven cell migration under external electric fields

    PubMed Central

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2016-01-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and can migrate toward a cathode or an anode, depending on the cell type. In this paper, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent. PMID:26765031

  17. Flow-Driven Cell Migration under External Electric Fields

    NASA Astrophysics Data System (ADS)

    Li, Yizeng; Mori, Yoichiro; Sun, Sean X.

    2015-12-01

    Electric fields influence many aspects of cell physiology, including various forms of cell migration. Many cells are sensitive to electric fields, and they can migrate toward a cathode or an anode, depending on the cell type. In this Letter, we examine an actomyosin-independent mode of cell migration under electrical fields. Our theory considers a one-dimensional cell with water and ionic fluxes at the cell boundary. Water fluxes through the membrane are governed by the osmotic pressure difference across the cell membrane. Fluxes of cations and anions across the cell membrane are determined by the properties of the ion channels as well as the external electric field. Results show that without actin polymerization and myosin contraction, electric fields can also drive cell migration, even when the cell is not polarized. The direction of migration with respect to the electric field direction is influenced by the properties of ion channels, and are cell-type dependent.

  18. Anandamide inhibits adhesion and migration of breast cancer cells

    SciTech Connect

    Grimaldi, Claudia; Pisanti, Simona; Laezza, Chiara; Malfitano, Anna Maria; Santoro, Antonietta; Vitale, Mario; Caruso, Maria Gabriella; Notarnicola, Maria; Iacuzzo, Irma; Portella, Giuseppe; Di Marzo, Vincenzo . E-mail: vdimarzo@icmib.na.cnr.it; Bifulco, Maurizio . E-mail: maubiful@unina.it

    2006-02-15

    The endocannabinoid system regulates cell proliferation in human breast cancer cells. We reasoned that stimulation of cannabinoid CB{sub 1} receptors could induce a non-invasive phenotype in breast mtastatic cells. In a model of metastatic spreading in vivo, the metabolically stable anandamide analogue, 2-methyl-2'-F-anandamide (Met-F-AEA), significantly reduced the number and dimension of metastatic nodes, this effect being antagonized by the selective CB{sub 1} antagonist SR141716A. In MDA-MB-231 cells, a highly invasive human breast cancer cell line, and in TSA-E1 cells, a murine breast cancer cell line, Met-F-AEA inhibited adhesion and migration on type IV collagen in vitro without modifying integrin expression: both these effects were antagonized by SR141716A. In order to understand the molecular mechanism involved in these processes, we analyzed the phosphorylation of FAK and Src, two tyrosine kinases involved in migration and adhesion. In Met-F-AEA-treated cells, we observed a decreased tyrosine phosphorylation of both FAK and Src, this effect being attenuated by SR141716A. We propose that CB{sub 1} receptor agonists inhibit tumor cell invasion and metastasis by modulating FAK phosphorylation, and that CB{sub 1} receptor activation might represent a novel therapeutic strategy to slow down the growth of breast carcinoma and to inhibit its metastatic diffusion in vivo.

  19. ERP44 inhibits human lung cancer cell migration mainly via IP3R2

    PubMed Central

    Zhai, Kui; Chang, Yan; Yuan, Qi; Yao, Kai-Tai; Ji, Guangju

    2016-01-01

    Cancer cell migration is involved in tumour metastasis. However, the relationship between calcium signalling and cancer migration is not well elucidated. In this study, we used the human lung adenocarcinoma A549 cell line to examine the role of endoplasmic reticulum protein 44 (ERP44), which has been reported to regulate calcium release inside of the endoplasmic reticulum (ER), in cell migration. We found that the inositol 1,4,5-trisphosphate receptors (IP3Rs/ITPRs) inhibitor 2-APB significantly inhibited A549 cell migration by inhibiting cell polarization and pseudopodium protrusion, which suggests that Ca2+ is necessary for A549 cell migration. Similarly, the overexpression of ERP44 reduced intracellular Ca2+ release via IP3Rs, altered cell morphology and significantly inhibited the migration of A549 cells. These phenomena were primarily dependent on IP3R2 because wound healing in A549 cells with IP3R2 rather than IP3R1 or IP3R3 siRNA was markedly inhibited. Moreover, the overexpression of ERP44 did not affect the migration of the human neuroblastoma cell line SH-SY5Y, which mainly expresses IP3R1. Based on the above observations, we conclude that ERP44 regulates A549 cell migration mainly via an IP3R2-dependent pathway. PMID:27347718

  20. Capsaicin modulates proliferation, migration, and activation of hepatic stellate cells.

    PubMed

    Bitencourt, Shanna; Mesquita, Fernanda; Basso, Bruno; Schmid, Júlia; Ferreira, Gabriela; Rizzo, Lucas; Bauer, Moises; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis; Mannaerts, Inge; van Grunsven, Leo Adrianus; Oliveira, Jarbas

    2014-03-01

    Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro. PMID:23955514

  1. Tetanus neurotoxin-mediated cleavage of cellubrevin impairs epithelial cell migration and integrin-dependent cell adhesion

    PubMed Central

    Proux-Gillardeaux, Véronique; Gavard, Julie; Irinopoulou, Theano; Mège, René-Marc; Galli, Thierry

    2005-01-01

    A role for endocytosis and exocytosis in cell migration has been proposed but not yet demonstrated. Here, we show that cellubrevin (Cb), an early endosomal v-SNARE, mediates trafficking in the lamellipod of migrating epithelial cells and partially colocalizes with markers of focal contacts. Expression of tetanus neurotoxin, which selectively cleaves Cb, significantly reduced the speed of migrating epithelial cells. Furthermore, expression of tetanus neurotoxin enhanced the adhesion of epithelial cells to collagen, laminin, fibronectin, and E-cadherin; altered spreading on collagen; and impaired the recycling of β1 integrins. These results suggest that Cb-dependent membrane trafficking participates in cell motility through the regulation of cell adhesion. PMID:15851685

  2. A promising therapeutic approach for multiple sclerosis: recombinant T-cell receptor ligands modulate experimental autoimmune encephalomyelitis by reducing interleukin-17 production and inhibiting migration of encephalitogenic cells into the CNS.

    PubMed

    Sinha, Sushmita; Subramanian, Sandhya; Proctor, Thomas M; Kaler, Laurie J; Grafe, Marjorie; Dahan, Rony; Huan, Jianya; Vandenbark, Arthur A; Burrows, Gregory G; Offner, Halina

    2007-11-14

    Recombinant T-cell receptor ligands (RTLs) can prevent and reverse clinical and histological signs of experimental autoimmune encephalomyelitis (EAE) in an antigen-specific manner and are currently in clinical trials for treatment of subjects with multiple sclerosis (MS). To evaluate regulatory mechanisms, we designed and tested RTL551, containing the alpha1 and beta1 domains of the I-A(b) class II molecule covalently linked to the encephalitogenic MOG-35-55 peptide in C57BL/6 mice. Treatment of active or passive EAE with RTL551 after disease onset significantly reduced clinical signs and spinal cord lesions. Moreover, RTL551 treatment strongly and selectively reduced secretion of interleukin-17 and tumor necrosis factor alpha by transferred green fluorescent protein-positive (GFP+) MOG-35-55-reactive T-cells and almost completely abrogated existent GFP+ cellular infiltrates in affected spinal cord sections. Reduced inflammation in spinal cords of RTL551-treated mice was accompanied by a highly significant downregulation of chemokines and their receptors and inhibition of VCAM-1 (vascular cell adhesion molecule-1) and ICAM-1 (intercellular adhesion molecule-1) expression by endothelial cells. Thus, RTL therapy cannot only inhibit systemic production of encephalitogenic cytokines by the targeted myelin oligodendrocyte glycoprotein-reactive T-cells but also impedes downstream local recruitment and retention of inflammatory cells in the CNS. These findings indicate that targeted immunotherapy of antigen-specific T-cells can result in a reversal of CNS lesion formation and lend strong support to the application of the RTL approach for therapy in MS. PMID:18003831

  3. Emerging modes of collective cell migration induced by geometrical constraints

    PubMed Central

    Vedula, Sri Ram Krishna; Leong, Man Chun; Lai, Tan Lei; Hersen, Pascal; Kabla, Alexandre J.; Lim, Chwee Teck; Ladoux, Benoît

    2012-01-01

    The role of geometrical confinement on collective cell migration has been recognized but has not been elucidated yet. Here, we show that the geometrical properties of the environment regulate the formation of collective cell migration patterns through cell–cell interactions. Using microfabrication techniques to allow epithelial cell sheets to migrate into strips whose width was varied from one up to several cell diameters, we identified the modes of collective migration in response to geometrical constraints. We observed that a decrease in the width of the strips is accompanied by an overall increase in the speed of the migrating cell sheet. Moreover, large-scale vortices over tens of cell lengths appeared in the wide strips whereas a contraction-elongation type of motion is observed in the narrow strips. Velocity fields and traction force signatures within the cellular population revealed migration modes with alternative pulling and/or pushing mechanisms that depend on extrinsic constraints. Force transmission through intercellular contacts plays a key role in this process because the disruption of cell–cell junctions abolishes directed collective migration and passive cell–cell adhesions tend to move the cells uniformly together independent of the geometry. Altogether, these findings not only demonstrate the existence of patterns of collective cell migration depending on external constraints but also provide a mechanical explanation for how large-scale interactions through cell–cell junctions can feed back to regulate the organization of migrating tissues. PMID:22814373

  4. Control of glioma cell migration and invasiveness by GDF-15

    PubMed Central

    Codó, Paula; Weller, Michael; Kaulich, Kerstin; Schraivogel, Daniel; Silginer, Manuela; Reifenberger, Guido; Meister, Gunter; Roth, Patrick

    2016-01-01

    Growth and differentiation factor (GDF)-15 is a member of the transforming growth factor (TGF)-β family of proteins. GDF-15 levels are increased in the blood and cerebrospinal fluid of glioblastoma patients. Using a TCGA database interrogation, we demonstrate that high GDF-15 expression levels are associated with poor survival of glioblastoma patients. To elucidate the role of GDF-15 in glioblastoma in detail, we confirmed that glioma cells express GDF-15 mRNA and protein in vitro. To allow for a detailed functional characterization, GDF-15 expression was silenced using RNA interference in LNT-229 and LN-308 glioma cells. Depletion of GDF-15 had no effect on cell viability. In contrast, GDF-15-deficient cells displayed reduced migration and invasion, in the absence of changes in Smad2 or Smad1/5/8 phosphorylation. Conversely, exogenous GDF-15 stimulated migration and invasiveness. Large-scale expression profiling revealed that GDF-15 gene silencing resulted in minor changes in the miRNA profile whereas several genes, including members of the plasminogen activator/inhibitor complex, were deregulated at the mRNA level. One of the newly identified genes induced by GDF-15 gene silencing was the serpin peptidase inhibitor, clade E nexin group 1 (serpine1) which is induced by TGF-β and known to inhibit migration and invasiveness. However, serpine1 down-regulation alone did not mediate GDF-15-induced promotion of migration and invasiveness. Our findings highlight the complex contributions of GDF-15 to the invasive phenotype of glioma cells and suggest anti-GDF-15 approaches as a promising therapeutic strategy. PMID:26741507

  5. Differential migration and proliferation of geometrical ensembles of cell clusters

    SciTech Connect

    Kumar, Girish; Chen, Bo; Co, Carlos C.; Ho, Chia-Chi

    2011-06-10

    Differential cell migration and growth drives the organization of specific tissue forms and plays a critical role in embryonic development, tissue morphogenesis, and tumor invasion. Localized gradients of soluble factors and extracellular matrix have been shown to modulate cell migration and proliferation. Here we show that in addition to these factors, initial tissue geometry can feedback to generate differential proliferation, cell polarity, and migration patterns. We apply layer by layer polyelectrolyte assembly to confine multicellular organization and subsequently release cells to demonstrate the spatial patterns of cell migration and growth. The cell shapes, spreading areas, and cell-cell contacts are influenced strongly by the confining geometry. Cells within geometric ensembles are morphologically polarized. Symmetry breaking was observed for cells on the circular pattern and cells migrate toward the corners and in the direction parallel to the longest dimension of the geometric shapes. This migration pattern is disrupted when actomyosin based tension was inhibited. Cells near the edge or corner of geometric shapes proliferate while cells within do not. Regions of higher rate of cell migration corresponded to regions of concentrated growth. These findings demonstrate that multicellular organization can result in spatial patterns of migration and proliferation.

  6. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts.

    PubMed

    Muñoz-Félix, José M; Fuentes-Calvo, Isabel; Cuesta, Cristina; Eleno, Nélida; Crespo, Piero; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-10-01

    The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc. PMID:26873620

  7. Water permeation drives tumor cell migration in confined microenvironments.

    PubMed

    Stroka, Kimberly M; Jiang, Hongyuan; Chen, Shih-Hsun; Tong, Ziqiu; Wirtz, Denis; Sun, Sean X; Konstantopoulos, Konstantinos

    2014-04-24

    Cell migration is a critical process for diverse (patho)physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach ("Osmotic Engine Model") and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation. PMID:24726433

  8. Water Permeation Drives Tumor Cell Migration in Confined Microenvironments

    PubMed Central

    Stroka, Kimberly M.; Jiang, Hongyuan; Chen, Shih-Hsun; Tong, Ziqiu; Wirtz, Denis; Sun, Sean X.; Konstantopoulos, Konstantinos

    2014-01-01

    SUMMARY Cell migration is a critical process for diverse (patho) physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach (“Osmotic Engine Model”) and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation. PMID:24726433

  9. How inhibitory cues can both constrain and promote cell migration.

    PubMed

    Bronner, Marianne E

    2016-06-01

    Collective cell migration is a common feature in both embryogenesis and metastasis. By coupling studies of neural crest migration in vivo and in vitro with mathematical modeling, Szabó et al. (2016, J. Cell Biol., http://dx.doi.org/10.1083/jcb.201602083) demonstrate that the proteoglycan versican forms a physical boundary that constrains neural crest cells to discrete streams, in turn facilitating their migration. PMID:27269064

  10. Texture sensing of cytoskeletal dynamics in cell migration

    NASA Astrophysics Data System (ADS)

    Das, Satarupa; Lee, Rachel; Hourwitz, Matthew J.; Sun, Xiaoyu; Parent, Carole; Fourkas, John T.; Losert, Wolfgang

    Migrating cells can be directed towards a target by gradients in properties such as chemical concentration or mechanical properties of the surrounding microenvironment. In previous studies we have shown that micro/nanotopographical features on scales comparable to those of natural collagen fibers can guide fast migrating amoeboid cells by aligning actin polymerization waves to such nanostructures. We find that actin microfilaments and microtubules are aligned along the nanoridge topographies, modulating overall cell polarity and directional migration in epithelial cells. This work shows that topographic features on a biologically relevant length scale can modulate migration outcomes by affecting the texture sensing property of the cytoskeleton.

  11. Systems microscopy approaches to understand cancer cell migration and metastasis

    PubMed Central

    Le Dévédec, Sylvia E.; Yan, Kuan; de Bont, Hans; Ghotra, Veerander; Truong, Hoa; Danen, Erik H.; Verbeek, Fons

    2010-01-01

    Cell migration is essential in a number of processes, including wound healing, angiogenesis and cancer metastasis. Especially, invasion of cancer cells in the surrounding tissue is a crucial step that requires increased cell motility. Cell migration is a well-orchestrated process that involves the continuous formation and disassembly of matrix adhesions. Those structural anchor points interact with the extra-cellular matrix and also participate in adhesion-dependent signalling. Although these processes are essential for cancer metastasis, little is known about the molecular mechanisms that regulate adhesion dynamics during tumour cell migration. In this review, we provide an overview of recent advanced imaging strategies together with quantitative image analysis that can be implemented to understand the dynamics of matrix adhesions and its molecular components in relation to tumour cell migration. This dynamic cell imaging together with multiparametric image analysis will help in understanding the molecular mechanisms that define cancer cell migration. PMID:20556632

  12. Activation of Rac1 by RhoG regulates cell migration.

    PubMed

    Katoh, Hironori; Hiramoto, Kiyo; Negishi, Manabu

    2006-01-01

    Cell migration is essential for normal development and many pathological processes. Rho-family small GTPases play important roles in this event. In particular, Rac regulates lamellipodia formation at the leading edge during migration. The small GTPase RhoG activates Rac through its effector ELMO and the ELMO-binding protein Dock180, which functions as a Rac-specific guanine nucleotide exchange factor. Here we investigated the role of RhoG in cell migration. RNA interference-mediated knockdown of RhoG in HeLa cells reduced cell migration in Transwell and scratch-wound migration assays. In RhoG-knockdown cells, activation of Rac1 and formation of lamellipodia at the leading edge in response to wounding were attenuated. By contrast, expression of active RhoG promoted cell migration through ELMO and Dock180. However, the interaction of Dock180 with Crk was dispensable for the activation of Rac1 and promotion of cell migration by RhoG. Taken together, these results suggest that RhoG contributes to the regulation of Rac activity in migrating cells. PMID:16339170

  13. Piperine impairs the migration and T cell-activating function of dendritic cells.

    PubMed

    Rodgers, Gemma; Doucette, Carolyn D; Soutar, David A; Liwski, Robert S; Hoskin, David W

    2016-02-01

    Piperine, a major alkaloid found in the fruits of black and long pepper plants, has anti-inflammatory properties; however, piperine's effect on dendritic cell (DC) migration and T cell-activating function has not been investigated. Bone marrow-derived mouse DCs that were matured in the presence of 100 μM piperine showed reduced in vitro migration in response to CCL21, as well as reduced in vivo migration to lymph nodes. In addition, piperine-treated DCs had reduced CCR7 expression and elevated CCR5 expression, as well as reduced expression of CD40 and class II major histocompatibility complex molecules and decreased nuclear accumulation of RelB. DC production of interleukin (IL)-6, tumor necrosis factor α, and monocyte chemoattractant protein-1 in response to lipopolysaccharide stimulation was also reduced following piperine treatment. Exposure to piperine during maturation therefore caused DCs to retain an immature phenotype, which was associated with a reduced capacity to promote T cell activation since co-culture of ovalbumin (OVA323-339)-specific T cells with OVA323-339-pulsed DCs that were previously matured in the presence of piperine showed reduced interferon-γ and IL-2 expression. OVA323-339-specific T cell proliferation was also reduced in vivo in the presence of piperine-treated DCs. Inhibition of DC migration and function by piperine may therefore be a useful strategy to down-regulate potentially harmful DC-driven T cell responses to self-antigens and transplantation antigens. PMID:26640239

  14. MicroRNA-584-3p, a novel tumor suppressor and prognostic marker, reduces the migration and invasion of human glioma cells by targeting hypoxia-induced ROCK1

    PubMed Central

    Xue, Hao; Guo, Xing; Han, Xiao; Yan, Shaofeng; Zhang, Jinsen; Xu, Shugang; Li, Tong; Guo, Xiaofan; Zhang, Ping; Gao, Xiao; Liu, Qinglin; Li, Gang

    2016-01-01

    Here, we report that microRNA-584-3p (miR-584-3p) is up-regulated in hypoxic glioma cells and in high-grade human glioma tumors (WHO grades III–IV) relative to normoxic cells and to low-grade tumors (WHO grades I–II), respectively. The postoperative survival time was significantly prolonged in the high-grade glioma patients with high miR-584-3p expression compared with those with low miR-584-3p expression. miR-584-3p may function as a potent tumor suppressor and as a prognostic biomarker for malignant glioma. However, the molecular mechanisms underlying these properties remain poorly understood. Our mechanistic studies revealed that miR-584-3p suppressed the migration and invasion of glioma cells by disrupting hypoxia-induced stress fiber formation. Specifically, we have found that ROCK1 is a direct and functionally relevant target of miR-584-3p in glioma cells. Our results have demonstrated a tumor suppressive function of miR-584-3p in glioma, in which it inhibits the migration and invasion of tumor cells by antagonizing hypoxia-induced, ROCK1-dependent stress fiber formation. Our findings have potential implications for glioma gene therapy and suggest that miR-584-3p could represent a prognostic indicator for glioma. PMID:26715733

  15. Novel functions of core cell cycle regulators in neuronal migration.

    PubMed

    Godin, Juliette D; Nguyen, Laurent

    2014-01-01

    The cerebral cortex is one of the most intricate regions of the brain, which required elaborated cell migration patterns for its development. Experimental observations show that projection neurons migrate radially within the cortical wall, whereas interneurons migrate along multiple tangential paths to reach the developing cortex. Tight regulation of the cell migration processes ensures proper positioning and functional integration of neurons to specific cerebral cortical circuits. Disruption of neuronal migration often lead to cortical dysfunction and/or malformation associated with neurological disorders. Unveiling the molecular control of neuronal migration is thus fundamental to understand the physiological or pathological development of the cerebral cortex. Generation of functional cortical neurons is a complex and stratified process that relies on decision of neural progenitors to leave the cell cycle and generate neurons that migrate and differentiate to reach their final position in the cortical wall. Although accumulating work shed some light on the molecular control of neuronal migration, we currently do not have a comprehensive understanding of how cell cycle exit and migration/differentiation are coordinated at the molecular level. The current chapter tends to lift the veil on this issue by discussing how core cell cycle regulators, and in particular p27(Kip1) acts as a multifunctional protein to control critical steps of neuronal migration through activities that go far beyond cell cycle regulation. PMID:24243100

  16. Loss of lysophosphatidic acid receptor-3 enhances cell migration in rat lung tumor cells

    SciTech Connect

    Hayashi, Mai; Okabe, Kyoko; Yamawaki, Yasuna; Teranishi, Miki; Honoki, Kanya; Mori, Toshio; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2011-02-18

    Research highlights: {yields} Loss of the Lpar3 expression due to aberrant DNA methylation occurred in rat lung tumor cells. {yields} The Lpar3 inhibited cell migration of rat lung tumor cells. {yields} The Lpar3 may act as a negative regulator of rat lung tumor cells. -- Abstract: Lysophosphatidic acid (LPA) indicates several biological effects, such as cell proliferation, differentiation and migration. LPA interacts with G protein-coupled transmembrane LPA receptors. In our previous report, we detected that loss of the LPA receptor-1 (Lpar1) expression is due to its aberrant DNA methylation in rat tumor cell lines. In this study, to assess an involvement of the other LPA receptor, Lpar3, in the pathogenesis of rat lung tumor cells, we measured the expression levels of the Lpar3 gene and its DNA methylation status by reverse transcription (RT)-polymerase chain reaction (PCR) and bisulfite sequencing analyses, respectively. RLCNR lung adenocarcinoma cells showed reduced expression of the Lpar3, compared with normal lung tissues. In the 5' upstream region of the Lpar3, normal lung tissues were unmethylated. By contrast, RLCNR cells were highly methylated, correlating with reduced expressions of the Lpar3. Based on these results, we generated the Lpar3-expressing RLCNR-a3 cells and measured the cell migration ability. Interestingly, the cell migration of RLCNR-a3 cells was significantly lower than that of RLCNR cells. This study suggests that loss of the Lpar3 due to aberrant DNA methylation may be involved in the progression of rat lung tumor cells.

  17. Leader Cells Define Directionality of Trunk, but Not Cranial, Neural Crest Cell Migration.

    PubMed

    Richardson, Jo; Gauert, Anton; Briones Montecinos, Luis; Fanlo, Lucía; Alhashem, Zainalabdeen Mohmammed; Assar, Rodrigo; Marti, Elisa; Kabla, Alexandre; Härtel, Steffen; Linker, Claudia

    2016-05-31

    Collective cell migration is fundamental for life and a hallmark of cancer. Neural crest (NC) cells migrate collectively, but the mechanisms governing this process remain controversial. Previous analyses in Xenopus indicate that cranial NC (CNC) cells are a homogeneous population relying on cell-cell interactions for directional migration, while chick embryo analyses suggest a heterogeneous population with leader cells instructing directionality. Our data in chick and zebrafish embryos show that CNC cells do not require leader cells for migration and all cells present similar migratory capacities. In contrast, laser ablation of trunk NC (TNC) cells shows that leader cells direct movement and cell-cell contacts are required for migration. Moreover, leader and follower identities are acquired before the initiation of migration and remain fixed thereafter. Thus, two distinct mechanisms establish the directionality of CNC cells and TNC cells. This implies the existence of multiple molecular mechanisms for collective cell migration. PMID:27210753

  18. Curcumin suppresses migration and invasion of human endometrial carcinoma cells

    PubMed Central

    CHEN, QIAN; GAO, QING; CHEN, KUNLUN; WANG, YIDONG; CHEN, LIJUAN; LI, XU

    2015-01-01

    Curcumin, a widely used Chinese herbal medicine, has historically been used in anti-cancer therapies. However, the anti-metastatic effect and molecular mechanism of curcumin in endometrial carcinoma (EC) are still poorly understood. The purpose of this study was to detect the anti-metastatic effects of curcumin and the associated mechanism(s) in EC. Based on assays carried out in EC cell lines, it was observed that curcumin inhibited EC cell migration and invasion in vitro. Furthermore, following treatment with curcumin for 24 h, there was a decrease in the expression levels of matrix metalloproteinase (MMP)-2 and -9 as well as proteinase activity in EC cells. Moreover, curcumin treatment significantly decreased the levels of the phosphorylated form of extracellular signal-regulated kinase (ERK) 1/2. MEK1 overexpression partially blocked the anti-metastatic effects of curcumin. Combined treatment with ERK inhibitor U0126 and curcumin resulted in a synergistic reduction in MMP-2/-9 expression; the invasive capabilities of HEC-1B cells were also inhibited. In conclusion, curcumin inhibits tumor cell migration and invasion by reducing the expression and activity of MMP-2/9 via the suppression of the ERK signaling pathway, suggesting that curcumin is a potential therapeutic agent for EC. PMID:26622667

  19. Physical role for the nucleus in cell migration

    NASA Astrophysics Data System (ADS)

    Fruleux, Antoine; Hawkins, Rhoda J.

    2016-09-01

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration.

  20. Physical role for the nucleus in cell migration.

    PubMed

    Fruleux, Antoine; Hawkins, Rhoda J

    2016-09-14

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration. PMID:27406341

  1. 3D cancer cell migration in a confined matrix

    NASA Astrophysics Data System (ADS)

    Alobaidi, Amani; Sun, Bo

    Cancer cell migration is widely studied in 2D motion, which does not mimic the invasion processes in vivo. More recently, 3D cell migration studies have been performed. The ability of cancer cells to migrate within the extracellular matrix depends on the physical and biochemical features of the extracellular matrix. We present a model of cell motility in confined matrix geometry. The aim of the study is to study cancer migration in collagen matrix, as a soft tissue, to investigate their motility within the confined and surrounding collagen environment. Different collagen concentrations have been used to show the ability of these cancer cells to move through such a complex structure by measuring Cancer cell migration velocity as well as the displacement. Graduate student physics department.

  2. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    PubMed

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-04-01

    The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles") of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity. PMID:25894589

  3. Follow-the-leader cell migration requires biased cell-cell contact and local microenvironmental signals

    PubMed Central

    Wynn, Michelle L.; Rupp, Paul; Trainor, Paul A.; Schnell, Santiago

    2013-01-01

    Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell-cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns. PMID:23735560

  4. Controlled skeletal progenitor cell migration on nanostructured porous silicon/silicon micropatterns

    NASA Astrophysics Data System (ADS)

    Torres-Costa, V.; Sánchez-Vaquero, V.; Muñoz-Noval, Á.; González-Méndez, L.; Punzón-Quijorna, E.; Gallach-Pérez, D.; Manso-Silván, M.; Martínez-Muñoz, G.; Climent-Font, A.; García-Ruiz, J. P.; Martín-Palma, R. J.

    2011-10-01

    In this work nanostructured porous silicon (nanoPS) was used for the fabrication of surface micropatterns aiming at controlling cell adhesion and migration. In particular, surface patterns of nanoPS and Si were engineered by high-energy ion-beam irradiation and subsequent anodization. It was found that human skeletal progenitor cells are sensitive to oneand two-dimensional patterns and that focal adhesion is inhibited on nanoPS areas. In spite of this anti-fouling characteristics, studies on patterns with reduced Si areas show that cells conform to nanoPS pathways favoring migration through cell protrusion, body translocation and tail retraction from two parallel Si traction rails. Moreover, migration can be blocked and cells tend to arrange when grid patterns with the appropriate dimensions are fabricated. The experimental results confirm that progenitor cells are able to exploit nanoPS anti-fouling designs by adapting to it for migration purposes.

  5. At the leading edge of three-dimensional cell migration

    PubMed Central

    Petrie, Ryan J.; Yamada, Kenneth M.

    2012-01-01

    Summary Cells migrating on flat two-dimensional (2D) surfaces use actin polymerization to extend the leading edge of the plasma membrane during lamellipodia-based migration. This mode of migration is not universal; it represents only one of several mechanisms of cell motility in three-dimensional (3D) environments. The distinct modes of 3D migration are strongly dependent on the physical properties of the extracellular matrix, and they can be distinguished by the structure of the leading edge and the degree of matrix adhesion. How are these distinct modes of cell motility in 3D environments related to each other and regulated? Recent studies show that the same type of cell migrating in 3D extracellular matrix can switch between different leading edge structures. This mode-switching behavior, or plasticity, by a single cell suggests that the apparent diversity of motility mechanisms is integrated by a common intracellular signaling pathway that governs the mode of cell migration. In this Commentary, we propose that the mode of 3D cell migration is governed by a signaling axis involving cell–matrix adhesions, RhoA signaling and actomyosin contractility, and that this might represent a universal mechanism that controls 3D cell migration. PMID:23378019

  6. Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas.

    PubMed

    Arosarena, Oneida A; Dela Cadena, Raul A; Denny, Michael F; Bryant, Evan; Barr, Eric W; Thorpe, Ryan; Safadi, Fayez F

    2016-08-01

    Nearly 50% of patients with oral squamous cell carcinoma (OSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell adhesion, migration, and invasion. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies. The aims were to determine how integrin interactions modulate OA-induced OSCC cell migration; and to investigate OA effects on cell survival and proliferation. We confirmed OA mRNA and protein overexpression in OSCC cell lines. We assessed OA's interactions with integrins using adhesion inhibition assays, fluorescent immunocytochemistry and co-immunoprecipitation. We investigated OA-mediated activation of mitogen-activated protein kinases (MAPKs) and cell survival. Integrin inhibition effects on OA-mediated cell migration were determined. We assessed effects of OA knock-down on cell migration and proliferation. OA is overexpressed in OSCC cell lines, and serves as a migration-promoting adhesion molecule. OA co-localized with integrin subunits, and co-immunoprecipitated with the subunits. Integrin blocking antibodies, especially those directed against the β1 subunit, inhibited cell adhesion (P = 0.03 for SCC15 cells). Adhesion to OA activated MAPKs in UMSCC14a cells and OA treatment promoted survival of SCC15 cells. Integrin-neutralizing antibodies enhanced cell migration with OA in the extracellular matrix. OA knock-down resulted in decreased proliferation of SCC15 and SCC25 cells, but did not inhibit cell migration. OA in the extracellular matrix promotes OSCC cell adhesion and migration, and may be a novel target in the prevention of HNSCC spread. J. Cell. Physiol. 231: 1761-1770, 2016. © 2015 Wiley Periodicals, Inc. PMID:26636434

  7. Specific Myosins Control Actin Organization, Cell Morphology, and Migration in Prostate Cancer Cells.

    PubMed

    Makowska, Katarzyna A; Hughes, Ruth E; White, Kathryn J; Wells, Claire M; Peckham, Michelle

    2015-12-15

    We investigated the myosin expression profile in prostate cancer cell lines and found that Myo1b, Myo9b, Myo10, and Myo18a were expressed at higher levels in cells with high metastatic potential. Moreover, Myo1b and Myo10 were expressed at higher levels in metastatic tumors. Using an siRNA-based approach, we found that knockdown of each myosin resulted in distinct phenotypes. Myo10 knockdown ablated filopodia and decreased 2D migration speed. Myo18a knockdown increased circumferential non-muscle myosin 2A-associated actin filament arrays in the lamella and reduced directional persistence of 2D migration. Myo9b knockdown increased stress fiber formation, decreased 2D migration speed, and increased directional persistence. Conversely, Myo1b knockdown increased numbers of stress fibers but did not affect 2D migration. In all cases, the cell spread area was increased and 3D migration potential was decreased. Therefore, myosins not only act as molecular motors but also directly influence actin organization and cell morphology, which can contribute to the metastatic phenotype. PMID:26670045

  8. From Cell Differentiation to Cell Collectives: Bacillus subtilis Uses Division of Labor to Migrate

    PubMed Central

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-01-01

    The organization of cells, emerging from cell–cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called “van Gogh bundles”) of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity. PMID:25894589

  9. Stem cell differentiation increases membrane-actin adhesion regulating cell blebability, migration and mechanics

    PubMed Central

    Sliogeryte, Kristina; Thorpe, Stephen D.; Lee, David A.; Botto, Lorenzo; Knight, Martin M.

    2014-01-01

    This study examines how differentiation of human mesenchymal stem cells regulates the interaction between the cell membrane and the actin cortex controlling cell behavior. Micropipette aspiration was used to measure the pressure required for membrane-cortex detachment which increased from 0.15 kPa in stem cells to 0.71 kPa following chondrogenic differentiation. This effect was associated with reduced susceptibility to mechanical and osmotic bleb formation, reduced migration and an increase in cell modulus. Theoretical modelling of bleb formation demonstrated that the increased stiffness of differentiated cells was due to the increased membrane-cortex adhesion. Differentiated cells exhibited greater F-actin density and slower actin remodelling. Differentiated cells also expressed greater levels of the membrane-cortex ezrin, radixin, moeisin (ERM) linker proteins which was responsible for the reduced blebability, as confirmed by transfection of stem cells with dominant active ezrin-T567D-GFP. This study demonstrates that stem cells have an inherently weak membrane-cortex adhesion which increases blebability thereby regulating cell migration and stiffness. PMID:25471686

  10. Effect of Static Magnetic Field on Cell Migration

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yuichiro; Kawasumi, Masashi; Saito, Masao

    The effect of magnetic field on cell has long been investigated, but there are few quantitative investigations of the migration of cells. Cell-migration is important as one of the fundamental activities of the cell. This study proposes a method to evaluate quantitatively the cell-diffusion constant and the effect of static magnetic field on cell migration. The cell-lines are neuroblastoma (NG108-15), fibroblastoma (NIH/3T3) and osteoblastoma (MC3T3-E1). The static magnetic field of 30 mT or 120 mT is impressed by a permanent magnet in vertical or horizontal direction to the dish. It is shown that the cell-diffusion constant can represent the cell migration as the cell activity. It is found that the cell migration is enhanced by exposure to the magnetic field, depending on the kind of cell. It is conjectured that the effect of static magnetic field affects the cell migration, which is at the downstream of the information transmission.

  11. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer

    PubMed Central

    YAN, LI-XU; LIU, YAN-HUI; XIANG, JIAN-WEN; WU, QI-NIAN; XU, LEI-BO; LUO, XIN-LAN; ZHU, XIAO-LAN; LIU, CHAO; XU, FANG-PING; LUO, DONG-LAN; MEI, PING; XU, JIE; ZHANG, KE-PING; CHEN, JIE

    2016-01-01

    We have previously shown that dysregulation of miR-21 functioned as an oncomiR in breast cancer. The aim of the present study was to elucidate the mechanisms by which miR-21 regulate breast tumor migration and invasion. We applied pathway analysis on genome microarray data and target-predicting algorithms for miR-21 target screening, and used luciferase reporting assay to confirm the direct target. Thereafter, we investigated the function of the target gene phosphoinositide-3-kinase, regulatory subunit 1 (α) (PIK3R1), and detected PIK3R1 coding protein (p85α) by immunohistochemistry and miR-21 by RT-qPCR on 320 archival paraffin-embedded tissues of breast cancer to evaluate the correlation of their expression with prognosis. First, we found that PIK3R1 suppressed growth, invasiveness, and metastatic properties of breast cancer cells. Next, we identified the PIK3R1 as a direct target of miR-21 and showed that it was negatively regulated by miR-21. Furthermore, we demonstrated that p85α overexpression phenocopied the suppression effects of antimiR-21 on breast cancer cell growth, migration and invasion, indicating its tumor suppressor role in breast cancer. On the contrary, PIK3R1 knockdown abrogated antimiR-21-induced effect on breast cancer cells. Notably, antimiR-21 induction increased p85α, accompanied by decreased p-AKT level. Besides, antimiR-21/PIK3R1-induced suppression of invasiveness in breast cancer cells was mediated by reversing epithelial-mesenchymal transition (EMT). p85α downregulation was found in 25 (7.8%) of the 320 breast cancer patients, and was associated with inferior 5-year disease-free survival (DFS) and overall survival (OS). Taken together, we provide novel evidence that miR-21 knockdown suppresses cell growth, migration and invasion partly by inhibiting PI3K/AKT activation via direct targeting PIK3R1 and reversing EMT in breast cancer. p85α downregulation defined a specific subgroup of breast cancer with shorter 5-year DFS and OS

  12. Selective inhibition of EGFR downstream signaling reverses the irradiation-enhanced migration of HNSCC cells

    PubMed Central

    Schuettler, Dominik; Piontek, Guido; Wirth, Markus; Haller, Bernhard; Reiter, Rudolf; Brockhoff, Gero; Pickhard, Anja

    2015-01-01

    Irradiation, which is one of the standard therapies used to treat squamous cell carcinoma of the head and neck (HNSCC), has been linked to enhanced tumor migration in carcinomas. In this study, we demonstrated that irradiation induced the phosphorylation of AKT, p38 MAPK and ERK. The combined activation of these pathways caused inactivation of GSK3β kinase, resulting in enhanced tumor cell migration. Here, we describe that the exclusive and specific inhibition of just one of the aforementioned key signaling molecules is sufficient to restore GSK3β activity and to reduce radiation-induced migration in HNSCC. These data indicate that pharmacological inhibition of pathways targeting GSK3β could decrease radiation-induced cell migration in HNSCC and thus potentially reduce metastasis and locoregional recurrence in patients. PMID:26609474

  13. A Src-Tks5 Pathway Is Required for Neural Crest Cell Migration during Embryonic Development

    PubMed Central

    Murphy, Danielle A.; Tsai, Jeff H.; Kawakami, Yasuhiko; Maurer, Jochen; Stewart, Rodney A.; Izpisúa-Belmonte, Juan Carlos; Courtneidge, Sara A.

    2011-01-01

    In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis. PMID:21799874

  14. Timosaponin AIII inhibits melanoma cell migration by suppressing COX-2 and in vivo tumor metastasis.

    PubMed

    Kim, Ki Mo; Im, A-Rang; Kim, Seung Hyung; Hyun, Jin Won; Chae, Sungwook

    2016-02-01

    Melanoma is the leading cause of death from skin disease, due in large part to its propensity to metastasize. We examined the effects of timosaponin AIII, a compound isolated from Anemarrhena asphodeloides Bunge, on melanoma cancer cell migration and the molecular mechanisms underlying these effects using B16-F10 and WM-115 melanoma cells lines. Overexpression of COX-2, its metabolite prostaglandin E2 (PGE2 ), and PGE2 receptors (EP2 and EP4) promoted cell migration in vitro. Exposure to timosaponin AIII resulted in concentration-dependent inhibition of cell migration, which was associated with reduced levels of COX-2, PGE2 , and PGE2 receptors. Transient transfection of COX-2 siRNA also inhibited cell migration. Exposure to 12-O-tetradecanoylphorbal-13-acetate enhanced cell migration, whereas timosaponin AIII inhibited 12-O-tetradecanoylphorbal-13-acetate-induced cell migration and reduced basal levels of EP2 and EP4. Moreover, timosaponin AIII inhibited activation of nuclear factor-kappa B (NF-κB), an upstream regulator of COX-2 in B16-F10 cells. Consistent with our in vitro findings, in vivo studies showed that timosaponin AIII treatment significantly reduced the total number of metastatic nodules in the mouse lung and improved histological alterations in B16-F10-injected C57BL/6 mice. In addition, C57BL/6 mice treated with timosaponin AIII showed reduced expression of COX-2 and NF-κB in the lung. Together, these results indicate that timosaponin AIII has the capacity to inhibit melanoma cell migration, an essential step in the process of metastasis, by inhibiting expression of COX-2, NF-κB, PGE2, and PGE2 receptors. PMID:26595378

  15. Cell migration in the normal and pathological postnatal mammalian brain

    PubMed Central

    Canoll, Peter; Goldman, James E.

    2009-01-01

    In the developing brain, cell migration is a crucial process for structural organization, and is therefore highly regulated to allow the correct formation of complex networks, wiring neurons, and glia. In the early postnatal brain, late developmental processes such as the production and migration of astrocyte and oligodendrocyte progenitors still occur. Although the brain is completely formed and structured few weeks after birth, it maintains a degree of plasticity throughout life, including axonal remodeling, synaptogenesis, but also neural cell birth, migration and integration. The subventricular zone (SVZ) and the dentate gyrus of the hippocampus (DG) are the two main neurogenic niches in the adult brain. Neural stem cells reside in these structures and produce progenitors that migrate toward their ultimate location: the olfactory bulb and granular cell layer of the DG respectively. The aim of this review is to synthesize the increasing information concerning the organization, regulation and function of cell migration in a mature brain. In a normal brain, protein involved in cell-cell or cell-matrix interactions together with secreted proteins acting as chemoattractant or chemorepellant play key roles in the regulation of neural progenitor cell migration. In addition, recent data suggest that gliomas arise from the transformation of neural stem cells or progenitor cells and that glioma cell infiltration recapitulates key aspects of glial progenitor migration. Thus, we will consider glioma migration in the context of progenitor migration. Finally, many observations show that brain lesions and neurological diseases trigger neural stem/progenitor cell activation and migration towards altered structures. The factors involved in such cell migration/recruitment are just beginning to be understood. Inflammation which has long been considered as thoroughly disastrous for brain repair is now known to produce some positive effects on stem/progenitor cell recruitment via

  16. Single cell migration dynamics mediated by geometric confinement.

    PubMed

    Zhang, Hua; Hou, Ruixia; Xiao, Peng; Xing, Rubo; Chen, Tao; Han, Yanchun; Ren, Penggang; Fu, Jun

    2016-09-01

    The migration dynamics of cells plays a key role in tissue engineering and regenerative medicine. Previous studies mostly focus on regulating stem cell fate and phenotype by biophysical cues. In contrast, less is known about how the geometric cues mediate the migration dynamics of cells. Here, we fabricate graphene oxide (GO) microstripes on cell non-adhesive PEG substrate by using micromolding in capillary (MIMIC) method. Such micropatterns with alternating cell adhesion and cell resistance enable an effective control of selective adhesion and migration of single cells. The sharp contrast in cell adhesion minimizes the invasion of cells into the PEG patterns, and thereby strongly confines the cells on GO microstripes. As a result, the cells are forced to adapt highly polarized, elongated, and oriented geometry to fit the patterns. A series of pattern widths have been fabricated to modulate the extent of cell deformation and polarization. Under strong confinement, the cytoskeleton contractility, intracellular traction, and actin filament elongation are highly promoted, which result in enhanced cell migration along the patterns. This work provides an important insight into developing combinatorial graphene-based patterns for the control of cell migration dynamics, which is of great significance for tissue engineering and regenerative medicine. PMID:27137805

  17. Basic fibroblast growth factor: its role in the control of smooth muscle cell migration.

    PubMed Central

    Jackson, C. L.; Reidy, M. A.

    1993-01-01

    The formation of an intimal lesion in an injured artery is the consequence of the replication and migration of smooth muscle cells. Recent studies have implicated basic fibroblast growth factor (bFGF) as an important mediator of replication in the arterial media, and platelet-derived growth factor as an important mediator of migration. However, the degree of arterial trauma produced during injury has a significant influence on the time of onset of intimal thickening, suggesting that factors released from damaged smooth muscle cells may affect migration. We have investigated the role of one of these factors, bFGF, in smooth muscle cell migration in vivo. We found that 1) deendothelialization of the rat carotid artery results in significantly more migration when it is accompanied by traumatic injury to the underlying smooth muscle; 2) the rate of migration in arteries that have been gently deendothelialized is significantly stimulated by systemic injection of bFGF; and 3) inhibition of bFGF with a blocking antibody significantly reduces the amount of migration after traumatic deendothelializing injury with a balloon catheter. These findings suggest that bFGF plays an important role in the mediation of smooth muscle cell migration after arterial injury. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8213998

  18. Role of mTOR signaling in intestinal cell migration

    PubMed Central

    Rhoads, J. Marc; Niu, Xiaomei; Odle, Jack; Graves, Lee M.

    2006-01-01

    An early signaling event activated by amino acids and growth factors in many cell types is the phosphorylation of the mammalian target of rapamycin (mTOR; FRAP), which is functionally linked to ribosomal protein s6 kinase (p70s6k), a kinase that plays a critical regulatory role in the translation of mRNAs and protein synthesis. We previously showed that intestinal cell migration, the initial event in epithelial restitution, is enhanced by l-arginine (ARG). In this study, we used amino acids as prototypic activators of mTOR and ARG, IGF-1, or serum as recognized stimulators of intestinal cell migration. We found that 1) protein synthesis is required for intestinal cell migration, 2) mTOR/p70s6k pathway inhibitors (rapamycin, wortmannin, and intracellular Ca2+ chelation) inhibit cell migration, 3) ARG activates migration and mTOR/p70s6k (but not ERK-2) in migrating enterocytes, and 4) immunocytochemistry reveals abundant p70s6k staining in cytoplasm, whereas phosphop70s6k is virtually all intranuclear in resting cells but redistributes to the periphery on activation by ARG. We conclude that mTOR/p70s6k signaling is essential to intestinal cell migration, is activated by ARG, involves both nuclear and cytoplasmic events, and may play a role in intestinal repair. PMID:16710051

  19. Glass-like dynamics in collective cell migration

    NASA Astrophysics Data System (ADS)

    Angelini, Thomas; Weitz, David

    2011-03-01

    The collective movement of tissue cells is essential to fundamental biological processes in both health and disease, and occurs throughout embryonic development, during wound healing, and in cancerous tumor invasion. Most knowledge of cell migration, however, comes from single cell studies. Single cells migrate by executing cyclic processes of extension, adhesion, and retraction, during which the cell body fluctuates dramatically and the cell changes direction erratically. These sub-cellular motions must be coupled between neighbors in confluent layers, yet the influence of this coupling on collective migration is not known. In this talk we present a study of motion in confluent epithelial cell sheets. We measure collective migration and sub-cellular motions, covering a broad range of length-scales, time-scales, and cell densities. We find that that collective cell migration exhibits many behaviors characteristic of classical supercooled particulate fluids, including growing dynamic heterogeneities in the migration velocity field, non-Arrhenius relaxation behavior, and peaks in the density of states analogous to the Boson peak. These results provide a suggestive analogy between collective cell motion and the dynamics of supercooled fluids approaching a glass transition.

  20. In vivo knockdown of ErbB3 in mice inhibits Schwann cell precursor migration.

    PubMed

    Torii, Tomohiro; Miyamoto, Yuki; Takada, Shuji; Tsumura, Hideki; Arai, Miyuki; Nakamura, Kazuaki; Ohbuchi, Katsuya; Yamamoto, Masahiro; Tanoue, Akito; Yamauchi, Junji

    2014-09-26

    The myelin sheath insulates neuronal axons and markedly increases the nerve conduction velocity. In the peripheral nervous system (PNS), Schwann cell precursors migrate along embryonic neuronal axons to their final destinations, where they eventually wrap around individual axons to form the myelin sheath after birth. ErbB2 and ErbB3 tyrosine kinase receptors form a heterodimer and are extensively expressed in Schwann lineage cells. ErbB2/3 is thought to be one of the primary regulators controlling the entire Schwann cell development. ErbB3 is the bona fide Schwann cell receptor for the neuronal ligand neuregulin-1. Although ErbB2/3 is well known to regulate both Schwann cell precursor migration and myelination by Schwann cells in fishes, it still remains unclear whether in mammals, ErbB2/3 actually regulates Schwann cell precursor migration. Here, we show that knockdown of ErbB3 using a Schwann cell-specific promoter in mice causes delayed migration of Schwann cell precursors. In contrast, littermate control mice display normal migration. Similar results are seen in an in vitro migration assay using reaggregated Schwann cell precursors. Also, ErbB3 knockdown in mice reduces myelin thickness in sciatic nerves, consistent with the established role of ErbB3 in myelination. Thus, ErbB3 plays a key role in migration, as well as in myelination, in mouse Schwann lineage cells, presenting a genetically conservative role of ErbB3 in Schwann cell precursor migration. PMID:25204498

  1. Berberine suppresses migration of MCF-7 breast cancer cells through down-regulation of chemokine receptors

    PubMed Central

    Ahmadiankia, Naghmeh; Moghaddam, Hamid Kalalian; Mishan, Mohammad Amir; Bahrami, Ahmad Reza; Naderi-Meshkin, Hojjat; Bidkhori, Hamid Reza; Moghaddam, Maryam; Mirfeyzi, Seyed Jamal Aldin

    2016-01-01

    Objective(s): Berberine is one of the main alkaloids and it has been proven to have different pharmacological effects including inhibition of cell cycle and progression of apoptosis in various cancerous cells; however, its effects on cancer metastasis are not well known. Cancer cells obtain the ability to change their chemokine system and convert into metastatic cells. In this study, we examined the effect of berberine on breast cancer cell migration and its probable interaction with the chemokine system in cancer cells. Materials and Methods: The MCF-7 breast cancer cell line was cultured, and then, treated with berberine (10, 20, 40 and 80 μg/ml) for 24 hr. MTT assay was used in order to determine the cytotoxic effect of berberine on MCF-7 breast cancer cells. Wound healing assay was applied to determine the inhibitory effect of berberine on cell migration. Moreover, real-time quantitative PCR analysis of selected chemokine receptors was performed to determine the probable molecular mechanism underlying the effect of berberine on breast cancer cell migration. Results: The results of wound healing assay revealed that berberine decreases cell migration. Moreover, we found that the mRNA levels of some chemokine receptors were reduced after berberine treatment, and this may be the underlying mechanism for decreased cell migration. Conclusion: Our results indicate that berberine might be a potential preventive biofactor for human breast cancer metastasis by targeting chemokine receptor genes. PMID:27081456

  2. Bioengineering paradigms for cell migration in confined microenvironments.

    PubMed

    Stroka, Kimberly M; Gu, Zhizhan; Sun, Sean X; Konstantopoulos, Konstantinos

    2014-10-01

    Cell migration is a fundamental process underlying diverse (patho)physiological phenomena. The classical understanding of the molecular mechanisms of cell migration has been based on in vitro studies on two-dimensional substrates. More recently, mounting evidence from intravital studies has shown that during metastasis, tumor cells must navigate complex microenvironments in vivo, including narrow, pre-existing microtracks created by anatomical structures. It is becoming apparent that unraveling the mechanisms of confined cell migration in this context requires a multi-disciplinary approach through integration of in vivo and in vitro studies, along with sophisticated bioengineering techniques and mathematical modeling. Here, we highlight such an approach that has led to discovery of a new model for cell migration in confined microenvironments (i.e., the Osmotic Engine Model). PMID:24973724

  3. Bioengineering Paradigms for Cell Migration in Confined Microenvironments

    PubMed Central

    Stroka, Kimberly M.; Gu, Zhizhan; Sun, Sean X.; Konstantopoulos, Konstantinos

    2014-01-01

    Cell migration is a fundamental process underlying diverse (patho)physiological phenomena. The classical understanding of the molecular mechanisms of cell migration has been based on in vitro studies on two-dimensional substrates. More recently, mounting evidence from intravital studies has shown that during metastasis, tumor cells must navigate complex microenvironments in vivo, including narrow, pre-existing microtracks created by anatomical structures. It is becoming apparent that unraveling the mechanisms of confined cell migration in this context requires a multi-disciplinary approach through integration of in vivo and in vitro studies, along with sophisticated bioengineering techniques and mathematical modeling. Here, we highlight such an approach that has led to discovery of a new model for cell migration in confined microenvironments (i.e., the Osmotic Engine Model). PMID:24973724

  4. GMF promotes leading edge dynamics and collective cell migration in vivo

    PubMed Central

    Poukkula, Minna; Hakala, Markku; Pentinmikko, Nalle; Sweeney, Meredith O.; Jansen, Silvia; Mattila, Jaakko; Hietakangas, Ville; Goode, Bruce L.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Lamellipodia are dynamic actin-rich cellular extensions, which drive advancement of the leading edge during cell migration [1–3]. Lamellipodia undergo periodic extension/retraction cycles [4–8], but the molecular mechanisms underlying these dynamics and their role in cell migration have remained obscure. We show that gliamaturation factor (GMF), which is an Arp2/3 complex inhibitor and actin filament debranching factor [9, 10], regulates lamellipodial protrusion dynamics in living cells. In cultured S2R+ cells, GMF silencing resulted in an increase in the width of lamellipodial actin filament arrays. Importantly, live-imaging of mutant Drosophila egg chambers revealed that the dynamics of actin-rich protrusions in migrating border cells are diminished in the absence of GMF. Consequently, velocity of border cell clusters undergoing guided migration was reduced in GMF mutant flies. Furthermore, genetic studies demonstrated that GMF cooperates with the Drosophila homologue of Aip1 (flare) in promoting disassembly of Arp2/3-nucleated actin filament networks and driving border cell migration. These data suggest that GMF functions in vivo to promote the disassembly of Arp2/3-nucleated actin filament arrays, making an important contribution to cell migration within a three-dimensional tissue environment. PMID:25308079

  5. Inhibition of Cancer Cell Migration by Multiwalled Carbon Nanotubes.

    PubMed

    García-Hevia, Lorena; Valiente, Rafael; Fernández-Luna, José L; Flahaut, Emmanuel; Rodríguez-Fernández, Lidia; Villegas, Juan C; González, Jesús; Fanarraga, Mónica L

    2015-08-01

    Inhibiting cancer cell migration and infiltration to other tissues makes the difference between life and death. Multiwalled carbon nanotubes (MWCNTs) display intrinsic biomimetic properties with microtubules, severely interfering with the function of these protein filaments during cell proliferation, triggering cell death. Here it is shown MWCNTs disrupt the centrosomal microtubule cytoskeletal organization triggering potent antimigratory effects in different cancer cells. PMID:26097131

  6. Live Imaging of Border Cell Migration in Drosophila.

    PubMed

    Dai, Wei; Montell, Denise J

    2016-01-01

    Border cells are a cluster of cells that migrate from the anterior tip of the Drosophila egg chamber to the border of the oocyte in stage 9. They serve as a useful model to study collective cell migration in a native tissue environment. Here we describe a protocol for preparing ex vivo egg chamber cultures from transgenic flies expressing fluorescent proteins in the border cells, and using confocal microscopy to take a multi-positional time-lapse movie. We include an image analysis method for tracking border cell cluster dynamics as well as tracking individual cell movements. PMID:27271901

  7. The thioredoxin system in breast cancer cell invasion and migration

    PubMed Central

    Bhatia, Maneet; McGrath, Kelly L.; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M.; Clarke, Frank M.; Tonissen, Kathryn F.

    2015-01-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  8. The thioredoxin system in breast cancer cell invasion and migration.

    PubMed

    Bhatia, Maneet; McGrath, Kelly L; Di Trapani, Giovanna; Charoentong, Pornpimol; Shah, Fenil; King, Mallory M; Clarke, Frank M; Tonissen, Kathryn F

    2016-08-01

    Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1) in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1) expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS) or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS) levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx system with auranofin or other specific inhibitors may provide improved breast cancer patient outcomes through inhibition of cancer invasion and migration. PMID:26760912

  9. Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment.

    PubMed

    Ward, Rebecca; Sims, Andrew H; Lee, Alexander; Lo, Christina; Wynne, Luke; Yusuf, Humza; Gregson, Hannah; Lisanti, Michael P; Sotgia, Federica; Landberg, Göran; Lamb, Rebecca

    2015-06-10

    Macrophages are a major cellular constituent of the tumour stroma and contribute to breast cancer prognosis. The precise role and treatment strategies to target macrophages remain elusive. As macrophage infiltration is associated with poor prognosis and high grade tumours we used the THP-1 cell line to model monocyte-macrophage differentiation in co-culture with four breast cancer cell lines (MCF7, T47D, MDA-MB-231, MDA-MB-468) to model in vivo cellular interactions. Polarisation into M1 and M2 subtypes was confirmed by specific cell marker expression of ROS and HLA-DR, respectively. Co-culture with all types of macrophage increased migration of ER-positive breast cancer cell lines, while M2-macrophages increased mammosphere formation, compared to M1-macrophages, in all breast cancer cells lines. Treatment of cells with Zoledronate in co-culture reduced the "pro-tumourigenic" effects (increased mammospheres/migration) exerted by macrophages. Direct treatment of breast cancer cells in homotypic culture was unable to reduce migration or mammosphere formation.Macrophages promote "pro-tumourigenic" cellular characteristics of breast cancer cell migration and stem cell activity. Zoledronate targets macrophages within the microenvironment which in turn, reduces the "pro-tumourigenic" characteristics of breast cancer cells. Zoledronate offers an exciting new treatment strategy for both primary and metastatic breast cancer. PMID:26008983

  10. Collective dynamics of cell migration and cell rearrangements

    NASA Astrophysics Data System (ADS)

    Kabla, Alexandre

    Understanding multicellular processes such as embryo development or cancer metastasis requires to decipher the contributions of local cell autonomous behaviours and long range interactions with the tissue environment. A key question in this context concerns the emergence of large scale coordination in cell behaviours, a requirement for collective cell migration or convergent extension. I will present a few examples where physical and mechanical aspects play a significant role in driving tissue scale dynamics.

  1. CD133 promotes gallbladder carcinoma cell migration through activating Akt phosphorylation

    PubMed Central

    Zhen, Jiaojiao; Ai, Zhilong

    2016-01-01

    Gallbladder carcinoma (GBC) is the fifth most common malignancy of gastrointestinal tract. The prognosis of gallbladder carcinoma is extremely terrible partially due to metastasis. However, the mechanisms underlying gallbladder carcinoma metastasis remain largely unknown. CD133 is a widely used cancer stem cell marker including in gallbladder carcinoma. Here, we found that CD133 was highly expressed in gallbladder carcinoma as compared to normal tissues. CD133 was located in the invasive areas in gallbladder carcinoma. Down-regulation expression of CD133 inhibited migration and invasion of gallbladder carcinoma cell without obviously reducing cell proliferation. Mechanism analysis revealed that down-regulation expression of CD133 inhibited Akt phosphorylation and increased PTEN protein level. The inhibitory effect of CD133 down-regulation on gallbladder carcinoma cell migration could be rescued by Akt activation. Consistent with this, addition of Akt inhibitor Wortmannin markedly inhibited the migration ability of CD133-overexpressing cells. Thus, down-regulation of CD133 inhibits migration of gallbladder carcinoma cells through reducing Akt phosphorylation. These findings explore the fundamental biological aspect of CD133 in gallbladder carcinoma progression, providing insights into gallbladder carcinoma cell migration. PMID:26910892

  2. Computational methods for analysis of dynamic events in cell migration.

    PubMed

    Castañeda, V; Cerda, M; Santibáñez, F; Jara, J; Pulgar, E; Palma, K; Lemus, C G; Osorio-Reich, M; Concha, M L; Härtel, S

    2014-02-01

    Cell migration is a complex biological process that involves changes in shape and organization at the sub-cellular, cellular, and supra-cellular levels. Individual and collective cell migration can be assessed in vitro and in vivo starting from the flagellar driven movement of single sperm cells or bacteria, bacterial gliding and swarming, and amoeboid movement to the orchestrated movement of collective cell migration. One key technology to access migration phenomena is the combination of optical microscopy with image processing algorithms. This approach resolves simple motion estimation (e.g. preferred direction of migrating cells or path characteristics), but can also reveal more complex descriptors (e.g. protrusions or cellular deformations). In order to ensure an accurate quantification, the phenomena under study, their complexity, and the required level of description need to be addressed by an adequate experimental setup and processing pipeline. Here, we review typical workflows for processing starting with image acquisition, restoration (noise and artifact removal, signal enhancement), registration, analysis (object detection, segmentation and characterization) and interpretation (high level understanding). Image processing approaches for quantitative description of cell migration in 2- and 3-dimensional image series, including registration, segmentation, shape and topology description, tracking and motion fields are presented. We discuss advantages, limitations and suitability for different approaches and levels of description. PMID:24467201

  3. Gradient biomaterials and their influences on cell migration

    PubMed Central

    Wu, Jindan; Mao, Zhengwei; Tan, Huaping; Han, Lulu; Ren, Tanchen; Gao, Changyou

    2012-01-01

    Cell migration participates in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. The cells specifically migrate to destiny sites induced by the gradually varying concentration (gradient) of soluble signal factors and the ligands bound with the extracellular matrix in the body during a wound healing process. Therefore, regulation of the cell migration behaviours is of paramount importance in regenerative medicine. One important way is to create a microenvironment that mimics the in vivo cellular and tissue complexity by incorporating physical, chemical and biological signal gradients into engineered biomaterials. In this review, the gradients existing in vivo and their influences on cell migration are briefly described. Recent developments in the fabrication of gradient biomaterials for controlling cellular behaviours, especially the cell migration, are summarized, highlighting the importance of the intrinsic driving mechanism for tissue regeneration and the design principle of complicated and advanced tissue regenerative materials. The potential uses of the gradient biomaterials in regenerative medicine are introduced. The current and future trends in gradient biomaterials and programmed cell migration in terms of the long-term goals of tissue regeneration are prospected. PMID:23741610

  4. Compound K attenuates stromal cell-derived growth factor 1 (SDF-1)-induced migration of C6 glioma cells

    PubMed Central

    Kim, Hyuck; Roh, Hyo Sun; Kim, Jai Eun; Park, Sun Dong; Park, Won Hwan

    2016-01-01

    BACKGROUND/OBJECTIVES Stromal cell-derived growth factor 1 (SDF-1), also known as chemokine ligand 12, and chemokine receptor type 4 are involved in cancer cell migration. Compound K (CK), a metabolite of protopanaxadiol-type ginsenoside by gut microbiota, is reported to have therapeutic potential in cancer therapy. However, the inhibitory effect of CK on SDF-1 pathway-induced migration of glioma has not yet been established. MATERIALS/METHODS Cytotoxicity of CK in C6 glioma cells was determined using an EZ-Cytox cell viability assay kit. Cell migration was tested using the wound healing and Boyden chamber assay. Phosphorylation levels of protein kinase C (PKC)α and extracellular signal-regulated kinase (ERK) were measured by western blot assay, and matrix metallopeptidases (MMP) were measured by gelatin-zymography analysis. RESULTS CK significantly reduced the phosphorylation of PKCα and ERK1/2, expression of MMP9 and MMP2, and inhibited the migration of C6 glioma cells under SDF-1-stimulated conditions. CONCLUSIONS CK is a cell migration inhibitor that inhibits C6 glioma cell migration by regulating its downstream signaling molecules including PKCα, ERK1/2, and MMPs. PMID:27247721

  5. Serotonin induces the migration of PC12 cells via the serotonin receptor 6/cAMP/ERK pathway

    PubMed Central

    KOIZUMI, KEITA; NAKAJIMA, HIDEO

    2014-01-01

    Serotonin (5-HT) functions as a chemoattractant that modulates neural migration during prenatal and early postnatal development. However, its molecular mechanism remains to be elucidated. The effect of 5-HT on neural cell migration was examined using PC12 neuron-like cell line. Transwell migration assay was used to determine the effect of 5-HT on PC12 cell migration. The results demonstrated that 5-HT and nerve growth factor (NGF) induced PC12 cell migration in a dose-dependent manner. Additionally, 5-HT receptor antagonists suggest that 5-HT-induced migration was mediated by serotonin receptor 6 (5-HT6), a Gs-protein coupled receptor that elevates the intercellular cAMP level. By contrast, antagonists of serotonin receptor 3 (5-HT3) did not show any effects on PC12 cell migration. Clozapine, an inhibitor of cAMP accumulation mediated by 5-HT6, significantly reduced the effect of 5-HT on the PC12 cell migration. An inhibitor of extracellular signal-regulated kinase (ERK) also suppressed migration. These results suggest that 5-HT induces PC12 cell migration by activating cAMP/ERK signaling pathways, which is mediated by 5-HT6 receptor. PMID:24649064

  6. Loss of Myoferlin Redirects Breast Cancer Cell Motility towards Collective Migration

    PubMed Central

    Volakis, Leonithas I.; Li, Ruth; Ackerman, William E.; Mihai, Cosmin; Bechel, Meagan; Summerfield, Taryn L.; Ahn, Christopher S.; Powell, Heather M.; Zielinski, Rachel; Rosol, Thomas J.

    2014-01-01

    Cell migration plays a central role in the invasion and metastasis of tumors. As cells leave the primary tumor, they undergo an epithelial to mesenchymal transition (EMT) and migrate as single cells. Epithelial tumor cells may also migrate in a highly directional manner as a collective group in some settings. We previously discovered that myoferlin (MYOF) is overexpressed in breast cancer cells and depletion of MYOF results in a mesenchymal to epithelial transition (MET) and reduced invasion through extracellular matrix (ECM). However, the biomechanical mechanisms governing cell motility during MYOF depletion are poorly understood. We first demonstrated that lentivirus-driven shRNA-induced MYOF loss in MDA-MB-231 breast cancer cells (MDA-231MYOF-KD) leads to an epithelial morphology compared to the mesenchymal morphology observed in control (MDA- 231LTVC) and wild-type cells. Knockdown of MYOF led to significant reductions in cell migration velocity and MDA- 231MYOF-KD cells migrated directionally and collectively, while MDA-231LTVC cells exhibited single cell migration. Decreased migration velocity and collective migration were accompanied by significant changes in cell mechanics. MDA-231MYOF-KD cells exhibited a 2-fold decrease in cell stiffness, a 2-fold increase in cell-substrate adhesion and a 1.5-fold decrease in traction force generation. In vivo studies demonstrated that when immunocompromised mice were implanted with MDA- 231MYOF-KD cells, tumors were smaller and demonstrated lower tumor burden. Moreover, MDA- 231MYOF-KD tumors were highly circularized and did not invade locally into the adventia in contrast to MDA- 231LTVC-injected animals. Thus MYOF loss is associated with a change in tumor formation in xenografts and leads to smaller, less invasive tumors. These data indicate that MYOF, a previously unrecognized protein in cancer, is involved in MDA-MB-231 cell migration and contributes to biomechanical alterations. Our results indicate that changes in

  7. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    SciTech Connect

    Nakashima, Yukiko; Morimoto, Mayuka; Toda, Ken-ichi; Shinya, Tomohiro; Sato, Keizo; Takahashi, Satoru

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  8. A Photoactivatable Nanopatterned Substrate for Analyzing Collective Cell Migration with Precisely Tuned Cell-Extracellular Matrix Ligand Interactions

    PubMed Central

    Shimizu, Yoshihisa; Boehm, Heike; Yamaguchi, Kazuo; Spatz, Joachim P.; Nakanishi, Jun

    2014-01-01

    Collective cell migration is involved in many biological and pathological processes. Various factors have been shown to regulate the decision to migrate collectively or individually, but the impact of cell-extracellular matrix (ECM) interactions is still debated. Here, we developed a method for analyzing collective cell migration by precisely tuning the interactions between cells and ECM ligands. Gold nanoparticles are arrayed on a glass substrate with a defined nanometer spacing by block copolymer micellar nanolithography (BCML), and photocleavable poly(ethylene glycol) (Mw  =  12 kDa, PEG12K) and a cyclic RGD peptide, as an ECM ligand, are immobilized on this substrate. The remaining glass regions are passivated with PEG2K-silane to make cells interact with the surface via the nanoperiodically presented cyclic RGD ligands upon the photocleavage of PEG12K. On this nanostructured substrate, HeLa cells are first patterned in photo-illuminated regions, and cell migration is induced by a second photocleavage of the surrounding PEG12K. The HeLa cells gradually lose their cell-cell contacts and become disconnected on the nanopatterned substrate with 10-nm particles and 57-nm spacing, in contrast to their behavior on the homogenous substrate. Interestingly, the relationship between the observed migration collectivity and the cell-ECM ligand interactions is the opposite of that expected based on conventional soft matter models. It is likely that the reduced phosphorylation at tyrosine-861 of focal adhesion kinase (FAK) on the nanopatterned surface is responsible for this unique migration behavior. These results demonstrate the usefulness of the presented method in understanding the process of determining collective and non-collective migration features in defined micro- and nano-environments and resolving the crosstalk between cell-cell and cell-ECM adhesions. PMID:24632806

  9. A Sensitized PiggyBac-Based Screen for Regulators of Border Cell Migration in Drosophila

    PubMed Central

    Mathieu, Juliette; Sung, Hsin-Ho; Pugieux, Céline; Soetaert, Jan; Rorth, Pernille

    2007-01-01

    Migration of border cells during Drosophila melanogaster oogenesis is a good model system for investigating the genetic requirements for cell migration in vivo. We present a sensitized loss-of-function screen used to identify new genes required in border cells for their migration. Chromosomes bearing FRTs on all four major autosomal arms were mutagenized by insertions of the transposable element PiggyBac, allowing multiple parallel clonal screens and easy identification of the mutated gene. For border cells, we analyzed homozygous mutant clones positively marked with lacZ and sensitized by expression of dominant-negative PVR, the guidance receptor. We identified new alleles of genes already known to be required for border cell migration, including aop/yan, DIAP1, and taiman as well as a conserved Slbo-regulated enhancer downstream of shg/DE–cadherin. Mutations in genes not previously described to be required in border cells were also uncovered: hrp48, vir, rme-8, kismet, and puckered. puckered was unique in that the migration defects were observed only when PVR signaling was reduced. We present evidence that an excess of JNK signaling is deleterious for migration in the absence of PVR activity at least in part through Fos transcriptional activity and possibly through antagonistic effects on DIAP1. PMID:17483425

  10. Cellular and molecular mechanisms of single and collective cell migrations in Drosophila: themes and variations.

    PubMed

    Pocha, Shirin M; Montell, Denise J

    2014-01-01

    The process of cell migration is essential throughout life, driving embryonic morphogenesis and ensuring homeostasis in adults. Defects in cell migration are a major cause of human disease, with excessive migration causing autoimmune diseases and cancer metastasis, whereas reduced capacity for migration leads to birth defects and immunodeficiencies. Myriad studies in vitro have established a consensus view that cell migrations require cell polarization, Rho GTPase-mediated cytoskeletal rearrangements, and myosin-mediated contractility. However, in vivo studies later revealed a more complex picture, including the discovery that cells migrate not only as single units but also as clusters, strands, and sheets. In particular, the role of E-Cadherin in cell motility appears to be more complex than previously appreciated. Here, we discuss recent advances achieved by combining the plethora of genetic tools available to the Drosophila geneticist with live imaging and biophysical techniques. Finally, we discuss the emerging themes such studies have revealed and ponder the puzzles that remain to be solved. PMID:25421599

  11. Modelling Rho GTPase biochemistry to predict collective cell migration

    NASA Astrophysics Data System (ADS)

    Merchant, Brian; Feng, James

    The collective migration of cells, due to individual cell polarization and intercellular contact inhibition of locomotion, features prominently in embryogenesis and metastatic cancers. Existing methods for modelling collectively migrating cells tend to rely either on highly abstracted agent-based models, or on continuum approximations of the group. Both of these frameworks represent intercellular interactions such as contact inhibition of locomotion as hard-coded rules defining model cells. In contrast, we present a vertex-dynamics framework which predicts polarization and contact inhibition of locomotion naturally from an underlying model of Rho GTPase biochemistry and cortical mechanics. We simulate the interaction between many such model cells, and study how modulating Rho GTPases affects migratory characteristics of the group, in the context of long-distance collective migration of neural crest cells during embryogenesis.

  12. The role of chromatin structure in cell migration

    PubMed Central

    Gerlitz, Gabi; Bustin, Michael

    2010-01-01

    Chromatin dynamics play a major role in regulating genetic processes. Now, accumulating data suggest that chromatin structure may also affect the mechanical properties of the nucleus and cell migration. Global chromatin organization seems to modulate the shape, the size and the stiffness of the nucleus. Directed-cell migration, which often requires nuclear reshaping to allow cellular passage through narrow openings, is dependent not only on changes in cytoskeletal elements, but also on the global chromatin condensation. Conceivably, during cell migration a physical link between the chromatin and the cytoskeleton facilitates coordinated structural changes in these two components. Thus, in addition to regulating genetic processes, we suggest that alterations in chromatin structure may facilitate cellular reorganizations necessary for efficient migration. PMID:20951589

  13. Mechanotransduction at focal adhesions: integrating cytoskeletal mechanics in migrating cells

    PubMed Central

    Kuo, Jean-Cheng

    2013-01-01

    Focal adhesions (FAs) are complex plasma membrane-associated macromolecular assemblies that serve to physically connect the actin cytoskeleton to integrins that engage with the surrounding extracellular matrix (ECM). FAs undergo maturation wherein they grow and change composition differentially to provide traction and to transduce the signals that drive cell migration, which is crucial to various biological processes, including development, wound healing and cancer metastasis. FA-related signalling networks dynamically modulate the strength of the linkage between integrin and actin and control the organization of the actin cytoskeleton. In this review, we have summarized a number of recent investigations exploring how FA composition is affected by the mechanical forces that transduce signalling networks to modulate cellular function and drive cell migration. Understanding the fundamental mechanisms of how force governs adhesion signalling provides insights that will allow the manipulation of cell migration and help to control migration-related human diseases. PMID:23551528

  14. Ion channels and transporters in tumour cell migration and invasion

    PubMed Central

    Schwab, Albrecht; Stock, Christian

    2014-01-01

    Cell migration is a central component of the metastatic cascade requiring a concerted action of ion channels and transporters (migration-associated transportome), cytoskeletal elements and signalling cascades. Ion transport proteins and aquaporins contribute to tumour cell migration and invasion among other things by inducing local volume changes and/or by modulating Ca2+ and H+ signalling. Targeting cell migration therapeutically bears great clinical potential, because it is a prerequisite for metastasis. Ion transport proteins appear to be attractive candidate target proteins for this purpose because they are easily accessible as membrane proteins and often overexpressed or activated in cancer. Importantly, a number of clinically widely used drugs are available whose anticipated efficacy as anti-tumour drugs, however, has now only begun to be evaluated. PMID:24493750

  15. Cell migration in confinement: a micro-channel-based assay.

    PubMed

    Heuzé, Mélina L; Collin, Olivier; Terriac, Emmanuel; Lennon-Duménil, Ana-Maria; Piel, Matthieu

    2011-01-01

    This chapter describes a method to study cells migrating in micro-channels, a confining environment of well-defined geometry. This assay is a complement to more complex 3D migration systems and provides several advantages even if it does not recapitulate the full complexity of 3D migration. Important parameters such as degree of adhesion, degree of confinement, mechanical properties, and geometry can be varied independently of each other. The device is fully compatible with almost any type of light microscopy and the simple geometry makes automated analysis very easy to perform, which allows screening strategy. The chapters is divided into five parts describing the design of different types of migration chambers, the fabrication of a mold by photolithography, the assembly of the chamber, the loading of cells, and finally the imaging on live or fixed cells. PMID:21748692

  16. Directing cell migration using micropatterned and dynamically adhesive polymer brushes.

    PubMed

    Costa, Patricia; Gautrot, Julien E; Connelly, John T

    2014-06-01

    Micropatterning techniques, such as photolithography and microcontact printing, provide robust tools for controlling the adhesive interactions between cells and their extracellular environment. However, the ability to modify these interactions in real time and examine dynamic cellular responses remains a significant challenge. Here we describe a novel strategy to create dynamically adhesive, micropatterned substrates, which afford precise control of cell adhesion and migration over both space and time. Specific functionalization of micropatterned poly(ethylene glycol methacrylate) (POEGMA) brushes with synthetic peptides, containing the integrin-binding arginine-glycine-aspartic acid (RGD) motif, was achieved using thiol-yne coupling reactions. RGD activation of POEGMA brushes promoted fibroblast adhesion, spreading and migration into previously non-adhesive areas, and migration speed could be tuned by adjusting the surface ligand density. We propose that this technique is a robust strategy for creating dynamically adhesive biomaterial surfaces and a useful assay for studying cell migration. PMID:24508539

  17. Mechanics in Mechanosensitivity of Cell Adhesion and its Roles in Cell Migration

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; He, Shijie; Ji, Baohua

    2012-12-01

    Cells sense and respond to external stimuli and properties of their environment through focal adhesion complexes (FACs) to regulate a broad range of physiological and pathological processes, including cell migration. Currently, the basic principles in mechanics of the mechanosensitivity of cell adhesion and migration have not been fully understood. In this paper, an FEM-based mechano-chemical coupling model is proposed for studying the cell migration behaviors in which the dynamics of stability of FACs and the effect of cell shape on cell traction force distribution are considered. We find that the driving force of cell migration is produced by the competition of stability of cell adhesion between the cell front and cell rear, which consequently controls the speed of cell migration. We show that the rigidity gradient of matrix can bias this competition which allows cell to exhibit a durotaxis behavior, i.e. the larger the gradient, the higher the cell speed.

  18. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression

    SciTech Connect

    Guo, Kai; Jin, Faguang

    2015-09-25

    The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy. - Highlights: • NFAT5 expression is higher in lung adenocarcinoma cells compared with normal cells. • NFAT5 knockdown decreases proliferation and migration of lung adenocarcinoma cells. • Knockdown of NFAT5 reduces AQP5 expression in human lung adenocarcinoma cells. • Overexpression of NFAT5 promotes proliferation and migration of lung adenocarcinoma cells. • Overexpression of NFAT5 increases AQP5 expression in human lung adenocarcinoma cells.

  19. A Novel Role of Cab45-G in Mediating Cell Migration in Cancer Cells.

    PubMed

    Luo, Judong; Li, Zengpeng; Zhu, Hong; Wang, Chenying; Zheng, Weibin; He, Yan; Song, Jianyuan; Wang, Wenjie; Zhou, Xifa; Lu, Xujing; Zhang, Shuyu; Chen, Jianming

    2016-01-01

    Ca(2+)-binding protein of 45 kDa (Cab45), a CREC family member, is reported to be associated with Ca(2+)-dependent secretory pathways and involved in multiple diseases including cancers. Cab45-G, a Cab45 isoform protein, plays an important role in protein sorting and secretion at Golgi complex. However, its role in cancer cell migration remains elusive. In this study, we demonstrate that Cab45-G exhibited an increased expression in cell lines with higher metastatic potential and promoted cell migration in multiple types of cancer cells. Overexpression of Cab45-G resulted in an altered expression of the molecular mediators of epithelial-mesenchymal transition (EMT), which is a critical step in the tumor metastasis. Quantitative real-time PCR showed that overexpression of Cab45-G increased the expression of matrix metalloproteinase-2 and -7 (MMP-2 and MMP-7). Conversely, knock-down of Cab45-G reduced the expression of the above MMPs. Moreover, forced expression of Cab45-G upregulated the level of phosphorylated ERK and modulated the secretion of extracellular proteins fibronectin and fibulin. Furthermore, in human cervical and esophageal cancer tissues, the expression of Cab45-G was found to be significantly correlated with that of MMP-2, further supporting the importance of Cab45-G on regulating cancer metastasis. Taken together, these results suggest that Cab45-G could regulate cancer cell migration through various molecular mechanisms, which may serve as a therapeutic target for the treatment of cancers. PMID:27194945

  20. A Novel Role of Cab45-G in Mediating Cell Migration in Cancer Cells

    PubMed Central

    Luo, Judong; Li, Zengpeng; Zhu, Hong; Wang, Chenying; Zheng, Weibin; He, Yan; Song, Jianyuan; Wang, Wenjie; Zhou, Xifa; Lu, Xujing; Zhang, Shuyu; Chen, Jianming

    2016-01-01

    Ca2+-binding protein of 45 kDa (Cab45), a CREC family member, is reported to be associated with Ca2+-dependent secretory pathways and involved in multiple diseases including cancers. Cab45-G, a Cab45 isoform protein, plays an important role in protein sorting and secretion at Golgi complex. However, its role in cancer cell migration remains elusive. In this study, we demonstrate that Cab45-G exhibited an increased expression in cell lines with higher metastatic potential and promoted cell migration in multiple types of cancer cells. Overexpression of Cab45-G resulted in an altered expression of the molecular mediators of epithelial-mesenchymal transition (EMT), which is a critical step in the tumor metastasis. Quantitative real-time PCR showed that overexpression of Cab45-G increased the expression of matrix metalloproteinase-2 and -7 (MMP-2 and MMP-7). Conversely, knock-down of Cab45-G reduced the expression of the above MMPs. Moreover, forced expression of Cab45-G upregulated the level of phosphorylated ERK and modulated the secretion of extracellular proteins fibronectin and fibulin. Furthermore, in human cervical and esophageal cancer tissues, the expression of Cab45-G was found to be significantly correlated with that of MMP-2, further supporting the importance of Cab45-G on regulating cancer metastasis. Taken together, these results suggest that Cab45-G could regulate cancer cell migration through various molecular mechanisms, which may serve as a therapeutic target for the treatment of cancers. PMID:27194945

  1. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis

    PubMed Central

    2011-01-01

    Background SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate cancers remain elusive. Methods Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and qPCR analyses. Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and invasion assay, respectively. Research We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore, ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12 by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth. Conclusion We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that CXCL12 is a therapeutic target for prostate cancer metastasis. PMID:22074556

  2. A bibenzyl from Dendrobium ellipsophyllum inhibits migration in lung cancer cells.

    PubMed

    Chaotham, Chatchai; Chanvorachote, Pithi

    2015-10-01

    Metastatic cancer cells have been shown to have aggressive behaviors accounting for the high incidence of chemotherapeutic failure and mortality. Because migration and invasion are crucial behaviors for cancer cell dissemination, promising compounds exhibiting potential antimigration effects are of interest for metastasis-based therapeutic approaches. This study aimed to evaluate the activity of a bibenzyl, 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (TDB), isolated from Dendrobium ellipsophyllum Tang and Wang, in the suppression of migration in human lung cancer cells. TDB at nontoxic concentrations (1 and 5 µM) significantly inhibited the motility of lung cancer cells in scratch-wound assay. Chemotaxis-induced migration and invasion assays also revealed that the cell motility dramatically diminished in the cells treated with 1-5 µM TDB. Western blot analysis provided the underlying molecular mechanism, showing that TDB reduced such cell migration and invasion by decreasing migration-regulating proteins, including integrins αv, α4, β1, β3 and β5, as well as downstream signaling proteins, such as activated focal adhesion kinase (pFAK), activated Ras-related C3 botulinum toxin substrate 1 (Rac1-GTP) and cell division control protein 42 (Cdc42). As the presence of cellular protrusion, called filopodia, has been indicated as a hallmark of migrating cells, we showed that the reduction of the mentioned proteins correlated well with the disappearance of filopodia. In summary, this study demonstrates the promising activity of TDB and its mechanism in the inhibition of lung cancer cell migration, which might be useful for encouraging the development of this compound for antimetastatic approaches. PMID:26109451

  3. Alk1 controls arterial endothelial cell migration in lumenized vessels.

    PubMed

    Rochon, Elizabeth R; Menon, Prahlad G; Roman, Beth L

    2016-07-15

    Heterozygous loss of the arterial-specific TGFβ type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs. PMID:27287800

  4. Heterogeneous CD8+ T cell migration in the lymph node in the absence of inflammation revealed by quantitative migration analysis.

    PubMed

    Banigan, Edward J; Harris, Tajie H; Christian, David A; Hunter, Christopher A; Liu, Andrea J

    2015-02-01

    The three-dimensional positions of immune cells can be tracked in live tissues precisely as a function of time using two-photon microscopy. However, standard methods of analysis used in the field and experimental artifacts can bias interpretations and obscure important aspects of cell migration such as directional migration and non-Brownian walk statistics. Therefore, methods were developed for minimizing drift artifacts, identifying directional and anisotropic (asymmetric) migration, and classifying cell migration statistics. These methods were applied to describe the migration statistics of CD8+ T cells in uninflamed lymph nodes. Contrary to current models, CD8+ T cell statistics are not well described by a straightforward persistent random walk model. Instead, a model in which one population of cells moves via Brownian-like motion and another population follows variable persistent random walks with noise reproduces multiple statistical measures of CD8+ T cell migration in the lymph node in the absence of inflammation. PMID:25692801

  5. Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish

    PubMed Central

    Matsui, Takaaki; Ishikawa, Hiroshi; Bessho, Yasumasa

    2015-01-01

    Although cell adhesion is thought to fasten cells tightly, cells that adhere to each other can migrate directionally. This group behavior, called “collective cell migration,” is observed during normal development, wound healing, and cancer invasion. Loss-of-function of cell adhesion molecules in several model systems of collective cell migration results in delay or inhibition of migration of cell groups but does not lead to dissociation of the cell groups, suggesting that mechanisms of cells staying assembled as a single cell cluster, termed as “cell collectivity,” remain largely unknown. During the formation of Kupffer's vesicle (KV, an organ of laterality in zebrafish), KV progenitors form a cluster and migrate together toward the vegetal pole. Importantly, in this model system of collective cell migration, knockdown of cell adhesion molecules or signal components leads to failure of cell collectivity. In this review, we summarize recent findings in cell collectivity regulation during collective migration of KV progenitor cells and describe our current understanding of how cell collectivity is regulated during collective cell migration. PMID:26000276

  6. Chemokine-Mediated Migration of Mesencephalic Neural Crest Cells

    PubMed Central

    Rezzoug, Francine; Seelan, Ratnam S.; Bhattacherjee, Vasker; Greene, Robert M.; Pisano, M. Michele

    2011-01-01

    Clefts of the lip and/or palate are among the most prevalent birth defects affecting approximately 7000 newborns in the United States annually. Disruption of the developmentally programmed migration of neural crest cells (NCCs) into the orofacial region is thought to be one of the major causes of orofacial clefting. Signaling of the chemokine SDF-1 (Stromal Derived Factor-1) through its specific receptor, CXCR4, is required for the migration of many stem cell and progenitor cell populations from their respective sites of emergence to the regions where they differentiate into complex cell types, tissues and organs. In the present study, “transwell” assays of chick embryo mesencephalic (cranial) NCC migration and ex ovo whole embryo “bead implantation” assays were utilized to determine whether SDF-1/CXCR4 signaling mediates mesencephalic NCC migration. Results from this study demonstrate that attenuation of SDF-1 signaling, through the use of specific CXCR4 antagonists (AMD3100 and TN14003), disrupts the migration of mesencephalic NCCs into the orofacial region, suggesting a novel role for SDF-1/CXCR4 signaling in the directed migration of mesencephalic NCCs in the early stage embryo. PMID:22015108

  7. Mathematical Modeling of Eukaryotic Cell Migration: Insights Beyond Experiments

    PubMed Central

    Danuser, Gaudenz; Allard, Jun; Mogilner, Alex

    2014-01-01

    A migrating cell is a molecular machine made of tens of thousands of short-lived and interacting parts. Understanding migration means understanding the self-organization of these parts into a system of functional units. This task is one of tackling complexity: First, the system integrates numerous chemical and mechanical component processes. Second, these processes are connected in feedback interactions and over a large range of spatial and temporal scales. Third, many processes are stochastic, which leads to heterogeneous migration behaviors. Early on in the research of cell migration it became evident that this complexity exceeds human intuition. Thus, the cell migration community has led the charge to build mathematical models that could integrate the diverse experimental observations and measurements in consistent frameworks, first in conceptual and more recently in molecularly explicit models. The main goal of this review is to sift through a series of important conceptual and explicit mathematical models of cell migration and to evaluate their contribution to the field in their ability to integrate critical experimental data. PMID:23909278

  8. Microtubule-organizing centers and cell migration: effect of inhibition of migration and microtubule disruption in endothelial cells.

    PubMed

    Gotlieb, A I; Subrahmanyan, L; Kalnins, V I

    1983-05-01

    We have previously shown that microtubule-organizing centers (MTOC's) become preferentially oriented towards the leading edge of migrating endothelial cells (EC's) at the margin of an experimentally induced wound made in a confluent EC monolayer. To learn more about the mechanism responsible for the reorientation of MTOC's and to determine whether a similar reorientation takes place when cell migration is inhibited, we incubated the wounded cultures with colcemid (C) and cytochalasin B (CB), which disrupt microtubules (MT's) and microfilaments (MF's), respectively. The results obtained showed that the MTOC reorientation can occur independent of cell migration since MTOC's reoriented preferentially toward the wound edge in the CB-treated cultures, even though forward migration of the EC was inhibited. In addition, the MTOC reorientation is inhibited by C, indicating that it requires an intact system of MT's and/or other intracellular structures whose distribution is dependent on that of MT's. PMID:6341378

  9. Protrusive waves guide 3D cell migration along nanofibers

    PubMed Central

    Guetta-Terrier, Charlotte; Monzo, Pascale; Zhu, Jie; Long, Hongyan; Venkatraman, Lakshmi; Zhou, Yue; Wang, PeiPei; Chew, Sing Yian; Mogilner, Alexander

    2015-01-01

    In vivo, cells migrate on complex three-dimensional (3D) fibrous matrices, which has made investigation of the key molecular and physical mechanisms that drive cell migration difficult. Using reductionist approaches based on 3D electrospun fibers, we report for various cell types that single-cell migration along fibronectin-coated nanofibers is associated with lateral actin-based waves. These cyclical waves have a fin-like shape and propagate up to several hundred micrometers from the cell body, extending the leading edge and promoting highly persistent directional movement. Cells generate these waves through balanced activation of the Rac1/N-WASP/Arp2/3 and Rho/formins pathways. The waves originate from one major adhesion site at leading end of the cell body, which is linked through actomyosin contractility to another site at the back of the cell, allowing force generation, matrix deformation and cell translocation. By combining experimental and modeling data, we demonstrate that cell migration in a fibrous environment requires the formation and propagation of dynamic, actin based fin-like protrusions. PMID:26553933

  10. Role of Bruton’s tyrosine kinase in myeloma cell migration and induction of bone disease

    PubMed Central

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2014-01-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton’s tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL) –6– or stroma–dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. PMID:23456977

  11. Role of Bruton's tyrosine kinase in myeloma cell migration and induction of bone disease.

    PubMed

    Bam, Rakesh; Ling, Wen; Khan, Sharmin; Pennisi, Angela; Venkateshaiah, Sathisha Upparahalli; Li, Xin; van Rhee, Frits; Usmani, Saad; Barlogie, Bart; Shaughnessy, John; Epstein, Joshua; Yaccoby, Shmuel

    2013-06-01

    Myeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton's tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL)-6- or stroma-dependent cell lines and osteoclasts. SDF-1 induced BTK activation in myeloma cells and BTK inhibition by small hairpin RNA or the small molecule inhibitor, LFM-A13, reduced their migration toward stromal cell-derived factor-1 (SDF-1). Pretreatment with LFM-A13 also reduced in vivo homing of myeloma cells to bone using bioluminescence imaging in the SCID-rab model. Enforced expression of BTK in myeloma cell line enhanced cell migration toward SDF-1 but had no effect on short-term growth. BTK expression was correlated with cell-surface CXCR4 expression in myeloma cells (n = 33, r = 0.81, P < 0.0001), and BTK gene and protein expression was more profound in cell-surface CXCR4-expressing myeloma cells. BTK was not upregulated by IL-6 while its inhibition had no effect on IL-6 signaling in myeloma cells. Human osteoclast precursors also expressed BTK and cell-surface CXCR4 and migrated toward SDF-1. LFM-A13 suppressed migration and differentiation of osteoclast precursors as well as bone-resorbing activity of mature osteoclasts. In primary myeloma-bearing SCID-rab mice, LFM-A13 inhibited osteoclast activity, prevented myeloma-induced bone resorption and moderately suppressed myeloma growth. These data demonstrate BTK and cell-surface CXCR4 association in myeloma cells and that BTK plays a role in myeloma cell homing to bone and myeloma-induced bone disease. Am. J. Hematol. 88:463-471, 2013. © 2013 Wiley Periodicals, Inc. PMID:23456977

  12. TIMP-1 inhibits microvascular endothelial cell migration by MMP-dependent and MMP-independent mechanisms.

    PubMed

    Akahane, Takemi; Akahane, Manabu; Shah, Amy; Connor, Christine M; Thorgeirsson, Unnur P

    2004-12-10

    It was reported over a decade ago that tissue inhibitor of metalloproteinases-1 (TIMP-1) suppresses angiogenesis in experimental models but the mechanism is still incompletely understood. This in vitro study focused on the molecular basis of TIMP-1-mediated inhibition of endothelial cell (EC) migration, a key step in the angiogenic process. Both recombinant human TIMP-1 and the synthetic MMP inhibitors, GM6001 and MMP-2-MMP-9 Inhibitor III, suppressed migration of human dermal microvascular endothelial cells (HDMVEC) in a dose-dependent fashion. The MMP-dependent inhibition of migration was associated with increased expression of the junctional adhesion proteins, VE-cadherin and PECAM-1, and VE-cadherin accumulation at cell-cell junctions. TIMP-1 also caused MMP-independent dephosphorylation of focal adhesion kinase (FAK) (pY397) and paxillin, which was associated with reduced number of F-actin stress fibers and focal adhesions. Moreover, TIMP-1 stimulated expression of PTEN that has been shown to reduce phosphorylation of FAK and inhibit cell migration. Our data suggest that TIMP-1 inhibits HDMVEC migration through MMP-dependent stimulation of VE-cadherin and MMP-independent stimulation of PTEN with subsequent dephosphorylation of FAK and cytoskeletal remodeling. PMID:15530852

  13. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    SciTech Connect

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Inoue, Satoshi

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  14. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration.

    PubMed

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  15. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration

    PubMed Central

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  16. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    PubMed

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. PMID:27278647

  17. Knockdown of integrin α3β1 expression induces proliferation and migration of non-small cell lung cancer cells.

    PubMed

    Yoon, Hyun Jae; Cho, Young-Rak; Joo, Ji-Hye; Seo, Dong-Wan

    2013-02-01

    Integrin α3β1 is expressed on many types of cancer cells and can regulate tumor growth and progression. In the present study, we examined the roles and molecular mechanism of integrin α3β1 in modulating cell proliferation and migration of p53-deficient non-small cell lung cancer (NSCLC) cells. Reduced expression of integrin α3 by RNA silencing clearly induces cell proliferation and migration in H1299 cells, compared with those in control cells. Enhanced proliferation in integrin α3-silenced cells is mediated by upregulation and nuclear localization of cyclin-dependent kinases, and these effects require the activation of Akt and ERK as evidenced by treatment with LY294002 and PD98059, respectively. Furthermore, suppression of integrin α3 expression induces the expression of nuclear factor-κB and Bcl-2 as well as epidermal growth factor receptor, which are positively correlated with cell proliferation and survival. In contrast, increase in cell migration of integrin α3-silenced cells is found to be independent of Akt or ERK signaling pathways. Collectively, these findings suggest that integrin α3β1 plays pivotal roles in regulating cell proliferation and migration that enhance the invasive type of p53-deficient NSCLC cells. PMID:23233127

  18. Syndecan-4 regulates the bFGF-induced chemotactic migration of endothelial cells.

    PubMed

    Li, Ran; Wu, Han; Xie, Jun; Li, Guannan; Gu, Rong; Kang, Lina; Wang, Lian; Xu, Biao

    2016-10-01

    Chemotactic migration of endothelial cells (ECs) guided by extracellular attractants is essential for blood vessel formation. Synd4 is a ubiquitous heparin sulfate proteoglycan receptor on the cell surface that has been identified to promote angiogenesis during tissue repair. Here, the role synd4 played in chemotactic migration of ECs was investigated in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) were transfected with Lenti-synd4-RNAi or Lenti-null. Cell migration was observed in a 2D-chemotaxis slide with a stable gradient of basic fibroblast growth factor (bFGF) for 18 h using time-lapse microscopy. Synd4 knockdown HUVECs showed reduced mobility compared with the control. In animal studies, Matrigel premixed with bFGF was used to induce the migration of ECs. The cells migrated less distance from the skin in the Matrigel plugs of synd4 null mice compared with the control mice. Then recombinant adenoviruses containing the synd4 gene (Ad-synd4) or null (Ad-null) were constructed to enhance the synd4 expression of migratory cells in Matrigel plugs of wild-type mice. Migratory cells with synd4 overexpression did not invade further in the Matrigel plugs of wild-type mice, but showed a high ability to proliferate. PMID:27541034

  19. The role of ICAM-1 molecule in the migration of Langerhans cells in the skin and regional lymph node

    PubMed Central

    Xu, Hui; Guan, Hongbing; Zu, Guorui; Bullard, Daniel; Hanson, Joseph; Slater, Marlon; Elmets, Craig A.

    2011-01-01

    ICAM-1 (CD54) plays an important role in the cell-cell interaction and migration of leukocytes. Previous studies have shown that ICAM-1 is involved in inflammatory reactions and that a defect in ICAM-1 gene inhibits allergic contact hypersensitivity. This study indicates that the migration of hapten presenting Langerhans cells into the regional lymph nodes was significantly reduced in ICAM-1-deficient mice compared to wild-type C57BL/6 mice. The reduced number of dendritic cells in regional lymph nodes did not result from abnormal migration of Langerhans cells into the skin of ICAM-1-deficient mice. The concentration and distribution of Langerhans cells in the naïve skin of ICAM-1-deficient mice was equal to that of wild-type mice. Following hapten sensitization, Langerhans cell migration out of the skin and recruitment of fresh Langerhans cells back to the epidermis was not affected in ICAM-1-deficient mice. Further experiments demonstrated that ICAM-1 deficiency on lymphatic endothelium rather than on dendritic cells was responsible for the reduced migration of Langerhans cells into draining lymph nodes. This study indicates that ICAM-1 regulates the migration of dendritic cells into regional lymph nodes but not into or out of the skin. PMID:11592085

  20. Cellular Polarization and Contractility in Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Utuje, Kazage J. Christophe; Notbohm, Jacob; Banerjee, Shiladitya; Gweon, Bomi; Jang, Hwanseok; Park, Yongdoo; Shin, Jennifer; Butler, James P.; Fredberg, Jeffrey J.; Marchetti, M. Cristina

    Collective cell migration drives many biological processes such as metastasis, morphogenesis and wound healing. These coordinated motions are driven by active forces. The physical nature of these forces and the mechanisms by which they generate collective cell migration are still not fully understood. We have developed a minimum physical model of a cell monolayer as an elastic continuum whose deformation field is coupled to two internal degrees of freedom: the concentration of a chemical signal, controlling cell Contractility, and the polarization field controlling the direction of local cell motion. By combining theory with experiments, we show that these two internal variables account for the sloshing waves and the systematic deviations of the direction of cell polarization from that of local cell velocity observed in confined cell monolayers. KJCU and MCM were supported by the Simons Foundation.

  1. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  2. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  3. Cerium migration during PEM fuel cell accelerated stress testing

    SciTech Connect

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humidity cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.

  4. Cerium migration during PEM fuel cell accelerated stress testing

    DOE PAGESBeta

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  5. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.

    PubMed

    Chevalier, N R; Gazguez, E; Bidault, L; Guilbert, T; Vias, C; Vian, E; Watanabe, Y; Muller, L; Germain, S; Bondurand, N; Dufour, S; Fleury, V

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  6. Morelloflavone blocks injury-induced neointimal formation by inhibiting vascular smooth muscle cell migration

    PubMed Central

    Pinkaew, Decha; Cho, Sung Gook; Hui, David Y.; Wiktorowicz, John E.; Hutadilok-Towatana, Nongporn; Mahabusarakam, Wilawan; Tonganunt, Moltira; Stafford, Lewis J.; Phongdara, Amornrat; Liu, Mingyao; Fujise, Ken

    2014-01-01

    Background In-stent restenosis, or renarrowing within a coronary stent, is the most ominous complication of percutaneous coronary intervention, caused by vascular smooth muscle cell (VSMC) migration into and proliferation in the intima. Although drug-eluting stents reduce restenosis, they delay the tissue healing of the injured arteries. No promising alternative anti-restenosis treatments are currently on the horizon. Methods & Results In endothelium-denudated mouse carotid arteries, oral morelloflavone—an active ingredient of the Thai medicinal plant Garcinia dulcis—significantly decreased the degree of neointimal hyperplasia, without affecting neointimal cell cycle progression or apoptosis as evaluated by Ki-67 and TUNEL staining, respectively. At the cellular level, morelloflavone robustly inhibited VSMC migration as shown by both scratch wound and invasion assays. In addition, morelloflavone prevented VSMCs from forming lamellipodia, a VSMC migration apparatus. Mechanistically, the inhibition by morelloflavone of VSMC migration was through its negative regulatory effects on several migration-related kinases, including FAK, Src, ERK, and RhoA. Consistently with the animal data, morelloflavone did not affect VSMC cell cycle progression or induce apoptosis. Conclusion These data suggest that morelloflavone blocks injury-induced neointimal hyperplasia via the inhibition of VSMC migration, without inducing apoptosis or cell cycle arrest. General Significance We propose morelloflavone to be a viable oral agent for the prevention of restenosis, without compromising effects on the integrity and healing of the injured arteries. PMID:18930785

  7. Epac Activation Regulates Human Mesenchymal Stem Cells Migration and Adhesion.

    PubMed

    Yu, Jiao-Le; Deng, Ruixia; Chung, Sookja K; Chan, Godfrey Chi-Fung

    2016-04-01

    How to enhance the homing of human mesenchymal stem cells (hMSCs) to the target tissues remains a clinical challenge nowadays. To overcome this barrier, the mechanism responsible for the hMSCs migration and engraftment has to be defined. Currently, the exact mechanism involved in migration and adhesion of hMSCs remains unknown. Exchange protein directly activated by cAMP (Epac), a novel protein discovered in cAMP signaling pathway, may have a potential role in regulating cells adhesion and migration by triggering the downstream Rap family signaling cascades. However, the exact role of Epac in cells homing is elusive. Our study evaluated the role of Epac in the homing of hMSCs. We confirmed that hMSCs expressed functional Epac and its activation enhanced the migration and adhesion of hMSCs significantly. The Epac activation was further found to be contributed directly to the chemotactic responses induced by stromal cell derived factor-1 (SDF-1) which is a known chemokine in regulating hMSCs homing. These findings suggested Epac is connected to the SDF-1 signaling cascades. In conclusion, our study revealed that Epac plays a role in hMSCs homing by promoting adhesion and migration. Appropriate manipulation of Epac may enhance the homing of hMSCs and facilitate their future clinical applications. Stem Cells 2016;34:948-959. PMID:26727165

  8. ASB2α regulates migration of immature dendritic cells.

    PubMed

    Lamsoul, Isabelle; Métais, Arnaud; Gouot, Emmanuelle; Heuzé, Mélina L; Lennon-Duménil, Ana-Maria; Moog-Lutz, Christel; Lutz, Pierre G

    2013-07-25

    The actin-binding protein filamins (FLNs) are major organizers of the actin cytoskeleton. They control the elasticity and stiffness of the actin network and provide connections with the extracellular microenvironment by anchoring transmembrane receptors to the actin filaments. Although numerous studies have revealed the importance of FLN levels, relatively little is known about the regulation of its stability in physiological relevant settings. Here, we show that the ASB2α cullin 5-ring E3 ubiquitin ligase is highly expressed in immature dendritic cells (DCs) and is down-regulated after DC maturation. We further demonstrate that FLNs are substrates of ASB2α in immature DCs and therefore are not stably expressed in these cells, whereas they exhibit high levels of expression in mature DCs. Using ASB2 conditional knockout mice, we show that ASB2α is a critical regulator of cell spreading and podosome rosette formation in immature DCs. Furthermore, we show that ASB2(-/-) immature DCs exhibit reduced matrix-degrading function leading to defective migration. Altogether, our results point to ASB2α and FLNs as newcomers in DC biology. PMID:23632887

  9. Phase-field model for collective cell migration

    NASA Astrophysics Data System (ADS)

    Najem, Sara; Grant, Martin

    2016-05-01

    We construct a phase-field model for collective cell migration based on a Ginzburg-Landau free-energy formulation. We model adhesion, surface tension, repulsion, coattraction, and polarization, enabling us to follow the cells' morphologies and the effect of their membranes fluctuations on collective motion. We were able to measure the tissue surface tension as a function of the individual cell cortical tension and adhesion and identify a density threshold for cell-sheet formation.

  10. The Essential Role of Giα2 in Prostate Cancer Cell Migration

    PubMed Central

    Zhong, Miao; Clarke, Shineka; Vo, BaoHan; Khan, Shafiq A.

    2012-01-01

    Cell- and receptor-specific regulation of cell migration by Gi/oα-proteins remains unknown in prostate cancer cells. In the present study, oxytocin (OXT) receptor (OXTR) was detected at the protein level in total cell lysates from C81 (an androgen-independent subline of LNCaP), DU145 and PC3 prostate cancer cells, but not in immortalized normal prostate luminal epithelial cells (RWPE1), and OXT induced migration of PC3 cells. This effect of OXT has been shown to be mediated by Gi/oα-dependent signaling. Accordingly, OXT inhibited forskolin-induced luciferase activity in PC3 cells that were transfected with a luciferase reporter for cAMP activity. Although mRNAs for all three Giα isoforms were present in PC3 cells, Giα2 was the most abundant isoform that was detected at the protein level. Pertussis toxin (PTx) inhibited the OXT-induced migration of PC3 cells. Ectopic expression of the PTx-resistant Giα2-C352G, but not wild type Giα2, abolished this effect of PTx on OXT-induced cell migration. The Giα2-targeting siRNA was shown to specifically reduce Giα2 mRNA and protein in prostate cancer cells. The Giα2-targeting siRNA eliminated OXT-induced migration of PC3 cells. These data suggest that Giα2 plays an important role in the effects of OXT on PC3 cell migration. The Giα2-targeting siRNA also inhibited EGF-induced migration of PC3 and DU145 cells. Expression of the siRNA-resistant Giα2, but not wild type Giα2, restored the effects of EGF in PC3 cells transfected with the Giα2-targeting siRNA. In conclusion, Giα2 plays an essential role in OXT and EGF signaling to induce prostate cancer cell migration. PMID:22936789

  11. Nanotopography guides and directs cell migration in amoeboid and epithelial cells

    NASA Astrophysics Data System (ADS)

    Lee, Rachel; Das, Satarupa; Hourwitz, Matthew; Sun, Xiaoyu; Parent, Carole; Fourkas, John; Losert, Wolfgang

    Cell migration plays a critical role in development, angiogenesis, immune response, wound healing, and cancer metastasis. In many cases, cells also move in the context of a matrix of collagen fibers, and the alignment of these fibers can both affect the migration phenotype and guide cells. Here we show that both fast and slow migrating cells - amoeboid HL-60 and epithelial MCF10A - are affected in similar ways by micro/nanostructures with dimensions similar to those of collagen fibers. Cell alignment enhances the efficiency of migration by increasing directional persistence.

  12. CD8+ Effector T Cell Migration to Pancreatic Islet Grafts Is Dependent on Cognate Antigen Presentation by Donor Graft Cells.

    PubMed

    Zhang, Qianqian; Dai, Hehua; Yatim, Karim M; Abou-Daya, Khodor; Williams, Amanda L; Oberbarnscheidt, Martin H; Camirand, Geoffrey; Rudd, Christopher E; Lakkis, Fadi G

    2016-08-15

    Pancreatic islet transplantation is a promising therapy for diabetes, but acute rejection of the islets by host effector T cells has hindered clinical application. In this study, we addressed the mechanisms of CD8(+) effector T cell migration to islet grafts because interrupting this step is key to preventing rejection. We found that effector T cell migration to revascularized islet transplants in mice is dependent on non-self Ag recognition rather than signaling via Gαi-coupled chemokine receptors. Presentation of non-self Ag by donor cells was necessary for migration, whereas Ag presentation by recipient cells was dispensable. We also observed that deficiency of SKAP1, an immune cell adaptor downstream of the TCR and important for integrin activation, prolongs allograft survival but does not reduce effector T cell migration to the graft. Therefore, effector T cell migration to transplanted islets is Ag driven, not chemokine driven, but SKAP1 does not play a critical role in this process. PMID:27357151

  13. Analyzing In Vivo Cell Migration using Cell Transplantations and Time-lapse Imaging in Zebrafish Embryos.

    PubMed

    Giger, Florence A; Dumortier, Julien G; David, Nicolas B

    2016-01-01

    Cell migration is key to many physiological and pathological conditions, including cancer metastasis. The cellular and molecular bases of cell migration have been thoroughly analyzed in vitro. However, in vivo cell migration somehow differs from in vitro migration, and has proven more difficult to analyze, being less accessible to direct observation and manipulation. This protocol uses the migration of the prospective prechordal plate in the early zebrafish embryo as a model system to study the function of candidate genes in cell migration. Prechordal plate progenitors form a group of cells which, during gastrulation, undergoes a directed migration from the embryonic organizer to the animal pole of the embryo. The proposed protocol uses cell transplantation to create mosaic embryos. This offers the combined advantages of labeling isolated cells, which is key to good imaging, and of limiting gain/loss of function effects to the observed cells, hence ensuring cell-autonomous effects. We describe here how we assessed the function of the TORC2 component Sin1 in cell migration, but the protocol can be used to analyze the function of any candidate gene in controlling cell migration in vivo. PMID:27168357

  14. The effects of acoustic vibration on fibroblast cell migration.

    PubMed

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. PMID:27612824

  15. EMT Involved in Migration of Stem/Progenitor Cells for Pituitary Development and Regeneration

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    Epithelial–mesenchymal transition (EMT) and cell migration are important processes in embryonic development of many tissues as well as oncogenesis. The pituitary gland is a master endocrine tissue and recent studies indicate that Sox2-expressing stem/progenitor cells actively migrate and develop this tissue during embryogenesis. Notably, although migration activity of stem/progenitor cells in the postnatal period seems to be reduced compared to that in the embryonic period, it is hypothesized that stem/progenitor cells in the adult pituitary re-migrate from their microenvironment niche to contribute to the regeneration system. Therefore, elucidation of EMT in the pituitary stem/progenitor cells will promote understanding of pituitary development and regeneration, as well as diseases such as pituitary adenoma. In this review, so as to gain more insights into the mechanisms of pituitary development and regeneration, we summarize the EMT in the pituitary by focusing on the migration of pituitary stem/progenitor cells during both embryonic and postnatal organogenesis. PMID:27058562

  16. EMT Involved in Migration of Stem/Progenitor Cells for Pituitary Development and Regeneration.

    PubMed

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    Epithelial-mesenchymal transition (EMT) and cell migration are important processes in embryonic development of many tissues as well as oncogenesis. The pituitary gland is a master endocrine tissue and recent studies indicate that Sox2-expressing stem/progenitor cells actively migrate and develop this tissue during embryogenesis. Notably, although migration activity of stem/progenitor cells in the postnatal period seems to be reduced compared to that in the embryonic period, it is hypothesized that stem/progenitor cells in the adult pituitary re-migrate from their microenvironment niche to contribute to the regeneration system. Therefore, elucidation of EMT in the pituitary stem/progenitor cells will promote understanding of pituitary development and regeneration, as well as diseases such as pituitary adenoma. In this review, so as to gain more insights into the mechanisms of pituitary development and regeneration, we summarize the EMT in the pituitary by focusing on the migration of pituitary stem/progenitor cells during both embryonic and postnatal organogenesis. PMID:27058562

  17. Leukotrienes induce the migration of Th17 cells.

    PubMed

    Lee, Wonyong; Su Kim, Hyeong; Lee, Gap Ryol

    2015-01-01

    Th17 cell trafficking in response to leukotriene signaling is poorly understood. Here we showed that Th17 cells express high levels of leukotriene B4 receptor 1 (LTB4R1) and cysteinyl leukotriene receptor 1 (CysLTR1). Th17 cells migrated under the guidance of leukotriene B4 and D4. The migration of Th17 cells was more efficient than that of Th1 and Th2 cells, and it was blocked by specific inhibitors of LTB4R1 or CysLTR1. Studies in an animal model of experimental autoimmune encephalomyelitis revealed that treatment with montelukast alleviated disease symptoms and inhibited the recruitment of Th17 cells to the central nervous system. Thus, leukotrienes may act as chemoattractants for Th17 cells. PMID:25512344

  18. Bromoenol Lactone Attenuates Nicotine-Induced Breast Cancer Cell Proliferation and Migration

    PubMed Central

    Calderon, Lindsay E.; Liu, Shu; Arnold, Nova; Breakall, Bethany; Rollins, Joseph; Ndinguri, Margaret

    2015-01-01

    Objectives Calcium independent group VIA phospholipase A2 (iPLA2β) and Matrix Metalloproteinase-9 (MMP-9) are upregulated in many disease states; their involvement with cancer cell migration has been a recent subject for study. Further, the molecular mechanisms mediating nicotine-induced breast cancer cell progression have not been fully investigated. This study aims to investigate whether iPLA2β mediates nicotine-induced breast cancer cell proliferation and migration through both in-vitro and in-vivo techniques. Subsequently, the ability of Bromoenol Lactone (BEL) to attenuate the severity of nicotine-induced breast cancer was examined. Method and Results We found that BEL significantly attenuated both basal and nicotine-induced 4T1 breast cancer cell proliferation, via an MTT proliferation assay. Breast cancer cell migration was examined by both a scratch and transwell assay, in which, BEL was found to significantly decrease both basal and nicotine-induced migration. Additionally, nicotine-induced MMP-9 expression was found to be mediated in an iPLA2β dependent manner. These results suggest that iPLA2β plays a critical role in mediating both basal and nicotine-induced breast cancer cell proliferation and migration in-vitro. In an in-vivo mouse breast cancer model, BEL treatment was found to significantly reduce both basal (p<0.05) and nicotine-induced tumor growth (p<0.01). Immunohistochemical analysis showed BEL decreased nicotine-induced MMP-9, HIF-1alpha, and CD31 tumor tissue expression. Subsequently, BEL was observed to reduce nicotine-induced lung metastasis. Conclusion The present study indicates that nicotine-induced migration is mediated by MMP-9 production in an iPLA2β dependent manner. Our data suggests that BEL is a possible chemotherapeutic agent as it was found to reduce both nicotine-induced breast cancer tumor growth and lung metastasis. PMID:26588686

  19. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  20. Multidisciplinary approaches to understanding collective cell migration in developmental biology

    PubMed Central

    Schumacher, Linus J.; Kulesa, Paul M.; McLennan, Rebecca; Baker, Ruth E.; Maini, Philip K.

    2016-01-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell–cell interactions, cell–environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. PMID:27278647

  1. Oncogene ATAD2 promotes cell proliferation, invasion and migration in cervical cancer.

    PubMed

    Zheng, Le; Li, Tianren; Zhang, Yi; Guo, Yi; Yao, Jihang; Dou, Lei; Guo, Kejun

    2015-05-01

    The ATPase family AAA domain-containing protein 2 (ATAD2) is associated with many cellular processes, such as cell proliferation, invasion and migration. However, the molecular biological function of the ATAD2 gene in cervical cancer is unclear. The purpose of this study was to explore ATAD2 expression in cervical cancer, evaluate the relationship between the development of cervical cancer, metastasis and clinicopathological characteristics, and discuss the implications for its use in clinical treatment. Protein and mRNA expression of ATAD2 was examined in tissues and cell lines. Tumor tissues from 135 cases of cervical cancer were collected for evaluation of ATAD2 expression by immunohistochemistry and western blotting. Prognostic significance was evaluated by the Cox hazards model and Kaplan-Meier survival method. HeLa and SiHa cells were transfected with two siRNAs targeting ATAD2. ATAD2 knockdown was used to analyze cell proliferation, invasion and migration. Cell viability was evaluated with the Cell Counting Κit-8 (CCK-8) assay, cell invasion by a Transwell assay and cell migration by a wound healing/scratch migration assay. ATAD2 was shown to be highly expressed in cervical cancer tissues, both at the transcriptional and protein levels, and was correlated with poor patient survival (P<0.05). Knockdown of ATAD2 in the HeLa and SiHa cells was found to reduce the capacity for invasion and migration (P<0.05), and inhibited the growth and clonogenic potential of the HeLa and SiHa cell lines. Our results suggest that cervical cancer tissues may have highly expressed ATAD2, which is associated with tumor stage and lymph node status (P<0.05). Oncogene ATAD2 may play an important role in cervical cancer proliferation, invasion and migration. It could serve as a prognostic marker and a therapeutic target for cervical cancer. PMID:25813398

  2. Single-cell Migration Chip for Chemotaxis-based Microfluidic Selection of Heterogeneous Cell Populations

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Allen, Steven G.; Ingram, Patrick N.; Buckanovich, Ronald; Merajver, Sofia D.; Yoon, Euisik

    2015-05-01

    Tumor cell migration toward and intravasation into capillaries is an early and key event in cancer metastasis, yet not all cancer cells are imbued with the same capability to do so. This heterogeneity within a tumor is a fundamental property of cancer. Tools to help us understand what molecular characteristics allow a certain subpopulation of cells to spread from the primary tumor are thus critical for overcoming metastasis. Conventional in vitro migration platforms treat populations in aggregate, which leads to a masking of intrinsic differences among cells. Some migration assays reported recently have single-cell resolution, but these platforms do not provide for selective retrieval of the distinct migrating and non-migrating cell populations for further analysis. Thus, to study the intrinsic differences in cells responsible for chemotactic heterogeneity, we developed a single-cell migration platform so that individual cells’ migration behavior can be studied and the heterogeneous population sorted based upon chemotactic phenotype. Furthermore, after migration, the highly chemotactic and non-chemotactic cells were retrieved and proved viable for later molecular analysis of their differences. Moreover, we modified the migration channel to resemble lymphatic capillaries to better understand how certain cancer cells are able to move through geometrically confining spaces.

  3. AAMP Regulates Endothelial Cell Migration and Angiogenesis Through RhoA/Rho Kinase Signaling.

    PubMed

    Hu, Jianjun; Qiu, Juhui; Zheng, Yiming; Zhang, Tao; Yin, Tieying; Xie, Xiang; Wang, Guixue

    2016-05-01

    Angiogenesis is a complicated process including endothelial cell proliferation, migration and tube formation. AAMP plays a role in regulating cell migration of multiple cell types. The purpose of this study was to investigate whether AAMP regulates angiogenesis, and to clarify the role of AAMP in the VEGF-induced angiogenesis. We found that AAMP expressed in multiple cell types and mainly localized in cytoplasm and membrane in vascular endothelial cells. Using tube formation assay in vitro and aortic ring assay, siRNA-mediated knockdown and antibody blockade of AAMP impaired VEGF-induced endothelial cell tube formation and aortic ring angiogenic sprouting. Mechanistic studies showed that AAMP expression was significantly upregulated by VEGF in a concentration and time-dependent manner. Moreover, VEGF recruited AAMP to the cell membrane protrusions. AAMP regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. AAMP knock-down reduced VEGF-induced actin stress fibers and collagen gel contraction. Furthermore, we identified RhoA/Rho kinase signaling as an important factor that contributes to the action of AAMP in regulating endothelial cell migration and angiogenesis. Altogether, these data demonstrated the critical role of AAMP in angiogenesis and suggested blocking AAMP could serve as a potential therapeutic strategy for angiogenesis-related diseases. PMID:26350504

  4. The inhibition of aromatase alters the mechanical and rheological properties of non-small-cell lung cancer cell lines affecting cell migration.

    PubMed

    Giannopoulou, E; Siatis, K E; Metsiou, D; Kritikou, I; Papachristou, D J; Kalofonou, M; Koutras, A; Athanassiou, G; Kalofonos, H P

    2015-02-01

    Tumor invasion and metastasis are key aspects of non-small cell lung cancer (NSCLC). During migration, cells undergo mechanical alterations. The mechanical phenotype of breast cancer cells is correlated with aromatase gene expression. We have previously shown that targeting aromatase is a promising strategy for NSCLC. The aim of this study was to examine morphological and mechanical changes of NSCLC cells, upon treatment with aromatase inhibitor and correlate their ability to migrate and invade. In vitro experiments were performed using H23 and A549 NSCLC cell lines and exemestane was used for aromatase inhibition. We demonstrated that exemestane reduced H23 cell migration and invasion and caused changes in cell morphology including increased vacuolar structures and greater pleomorphism. In addition, exemestane changed the distribution of α-tubulin in H23 and A549 cells in a way that might destabilize microtubules polymerization. These effects were associated with increased cell viscosity and decreased elastic shear modulus. Although exemestane caused similar effects in A549 cells regarding viscosity and elastic shear modulus, it did not affect A549 cell migration and caused an increase in invasion. The increased invasion was in line with vimentin perinuclear localization. Our data show that the treatment of NSCLC cells with an aromatase inhibitor not only affects cell migration and invasion but also alters the mechanical properties of the cells. It suggests that the different origin of cancer cells is associated with different morphological characteristics and mechanical behavior. PMID:25450981

  5. Running with neighbors: coordinating cell migration and cell-cell adhesion.

    PubMed

    Collins, Caitlin; Nelson, W James

    2015-10-01

    Coordinated movement of large groups of cells is required for many biological processes, such as gastrulation and wound healing. During collective cell migration, cell-cell and cell-extracellular matrix (ECM) adhesions must be integrated so that cells maintain strong interactions with neighboring cells and the underlying substratum. Initiation and maintenance of cadherin adhesions at cell-cell junctions and integrin-based cell-ECM adhesions require integration of mechanical cues, dynamic regulation of the actin cytoskeleton, and input from specific signaling cascades, including Rho family GTPases. Here, we summarize recent advances made in understanding the interplay between these pathways at cadherin-based and integrin-based adhesions during collective cell migration and highlight outstanding questions that remain in the field. PMID:26201843

  6. Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers.

    PubMed

    Song, Kwang Hoon; Lee, Jaehyun; Park, HyoungJun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang

    2016-01-01

    Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as "duro-repulsive" cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei. PMID:26996137

  7. Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers

    PubMed Central

    Song, Kwang Hoon; Lee, Jaehyun; Park, HyoungJun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang

    2016-01-01

    Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei. PMID:26996137

  8. Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers

    NASA Astrophysics Data System (ADS)

    Song, Kwang Hoon; Lee, Jaehyun; Park, Hyoungjun; Kim, Hye Mi; Park, Jeehun; Kwon, Keon Woo; Doh, Junsang

    2016-03-01

    Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as “duro-repulsive” cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.

  9. Vinculin regulates directionality and cell polarity in two- and three-dimensional matrix and three-dimensional microtrack migration

    PubMed Central

    Rahman, Aniqua; Carey, Shawn P.; Kraning-Rush, Casey M.; Goldblatt, Zachary E.; Bordeleau, Francois; Lampi, Marsha C.; Lin, Deanna Y.; García, Andrés J.; Reinhart-King, Cynthia A.

    2016-01-01

    During metastasis, cells can use proteolytic activity to form tube-like “microtracks” within the extracellular matrix (ECM). Using these microtracks, cells can migrate unimpeded through the stroma. To investigate the molecular mechanisms of microtrack migration, we developed an in vitro three-dimensional (3D) micromolded collagen platform. When in microtracks, cells tend to migrate unidirectionally. Because focal adhesions are the primary mechanism by which cells interact with the ECM, we examined the roles of several focal adhesion molecules in driving unidirectional motion. Vinculin knockdown results in the repeated reversal of migration direction compared with control cells. Tracking the position of the Golgi centroid relative to the position of the nucleus centroid reveals that vinculin knockdown disrupts cell polarity in microtracks. Vinculin also directs migration on two-dimensional (2D) substrates and in 3D uniform collagen matrices, as indicated by reduced speed, shorter net displacement, and decreased directionality in vinculin-deficient cells. In addition, vinculin is necessary for focal adhesion kinase (FAK) activation in three dimensions, as vinculin knockdown results in reduced FAK activation in both 3D uniform collagen matrices and microtracks but not on 2D substrates, and, accordingly, FAK inhibition halts cell migration in 3D microtracks. Together these data indicate that vinculin plays a key role in polarization during migration. PMID:26960796

  10. Plasmacytoid dendritic cells migrate in afferent skin lymph.

    PubMed

    Pascale, Florentina; Pascale, Florentia; Contreras, Vanessa; Bonneau, Michel; Courbet, Alexandre; Chilmonczyk, Stefan; Bevilacqua, Claudia; Epardaud, Mathieu; Eparaud, Mathieu; Niborski, Violeta; Riffault, Sabine; Balazuc, Anne-Marie; Foulon, Eliane; Guzylack-Piriou, Laurence; Riteau, Beatrice; Hope, Jayne; Bertho, Nicolas; Charley, Bernard; Schwartz-Cornil, Isabelle

    2008-05-01

    Conventional dendritic cells enter lymph nodes by migrating from peripheral tissues via the lymphatic route, whereas plasmacytoid dendritic cells (pDC), also called IFN-producing cells (IPC), are described to gain nodes from blood via the high endothelial venules. We demonstrate here that IPC/pDC migrate in the afferent lymph of two large mammals. In sheep, injection of type A CpG oligodinucleotide (ODN) induced lymph cells to produce type I IFN. Furthermore, low-density lymph cells collected at steady state produced type I IFN after stimulation with type A CpG ODN and enveloped viruses. Sheep lymph IPC were found within a minor B(neg)CD11c(neg) subset expressing CD45RB. They presented a plasmacytoid morphology, expressed high levels of TLR-7, TLR-9, and IFN regulatory factor 7 mRNA, induced IFN-gamma production in allogeneic CD4(pos) T cells, and differentiated into dendritic cell-like cells under viral stimulation, thus fulfilling criteria of bona fide pDC. In mini-pig, a CD4(pos)SIRP(pos) subset in afferent lymph cells, corresponding to pDC homologs, produced type I IFN after type A CpG-ODN triggering. Thus, pDC can link innate and acquired immunity by migrating from tissue to draining node via lymph, similarly to conventional dendritic cells. PMID:18424716

  11. Integrin {alpha}6 cleavage: A novel modification to modulate cell migration

    SciTech Connect

    Pawar, Sangita C.; Demetriou, Manolis C.; Nagle, Raymond B.; Bowden, G. Tim; Cress, Anne E. . E-mail: acress@azcc.arizona.edu

    2007-04-01

    Integrins play a major role in cell adhesion and migration. Previous work reported that a cleaved form of integrin {alpha}6 ({alpha}6p) was detected in invasive human prostate cancer tissue, absent in normal prostate tissue and was produced by urokinase-type Plasminogen Activator (uPA) in a plasmin-independent manner. Using site-directed mutagenesis we identified amino acid residues R594 and R595, located in the 'stalk' region of integrin {alpha}6, as essential for cleavage. The cleavage site is located on the extracellular region of the protein between the {beta}-barrel domain and the thigh domain. Prostate cancer cells (PC3N) were stably transfected to overexpress the cleavable, wild-type (PC3N-{alpha}6-WT) or the non-cleavable form of integrin {alpha}6 (PC3N-{alpha}6-RR). The number of cells invading laminin 111- and laminin 332-coated filters by PC3N-{alpha}6-WT cells increased by threefold as compared to PC3N-{alpha}6-RR cells. Plasminogen activator inhibitor-1 (PAI-1) reduced the invasion of PC3N-{alpha}6-WT cells by approximately 42% through laminin 332-coated filters and plasmin inhibitor aprotinin had no significant effect. Linear cell migration increased production of integrin {alpha}6p in the PC3N-{alpha}6-WT cells and not in the PC3N-{alpha}6-RR cells and 32% of the PC3N-{alpha}6-WT cells migrated on laminin 111 in the linear migration assay as compared to the 5% PC3N-{alpha}6-RR cells. These data taken together suggest that the uPA-mediated cell surface cleavage of the {alpha}6 integrin extracellular domain is involved in tumor cell invasion and migration on laminin.

  12. Quantification of cell co-migration occurrences during cell aggregation on fibroin substrates.

    PubMed

    Otaka, Akihisa; Takahashi, Kazuya; Takeda, Yuji S; Kambe, Yusuke; Kuwana, Yoshihiko; Tamada, Yasushi; Tomita, Naohide

    2014-08-01

    A quantitative analytical method was proposed for measuring cell co-migration, which was defined as two or more cells migrating together. To accurately identify and quantify this behavior, cell migration on fibroin substrates was analyzed with respect to intercellular distance. Specifically, cell size was characterized by major diameter, and then, based on these measurements and cell center data, a specific threshold distance for defining co-migration was determined after analyzing cell motion using the Voronoi diagram method. The results confirmed that co-migration occurrences of rounded cells were significantly more stable on fibroin than on ProNectin substrates under the present experimental conditions. The cell co-migration analysis method in this article was shown to be successful in evaluating the stability of cell co-migration and also suggested the presence of "critical distance" where two cells interact on fibroin substrates. With further research, the cell co-migration analysis method and "critical distance" may prove to be capable of identifying the aggregation behavior of other cells on different materials, making it a valuable tool that can be used in tissue engineering design. PMID:24341914

  13. Control of Cell Migration Through Mrna Localization and Local Translation

    PubMed Central

    Liao, Guoning; Mingle, Lisa; Van De Water, Livingston; Liu, Gang

    2014-01-01

    Cell migration plays an important role in many normal and pathological functions such as development, wound healing, immune defense and tumor metastasis. Polarized migrating cells exhibit asymmetric distribution of many cytoskeletal proteins which is believed to be critical for establishing and maintaining cell polarity and directional cell migration. To target these proteins to the site of function, cells use a variety of mechanisms such as protein transport and mRNA localization-mediated local protein synthesis. In contrast to the former which is intensively investigated and relatively well understood, the latter has been under-studied and relatively poorly understood. However, recent advances in the study of mRNA localization and local translation have demonstrated that mRNA localization and local translation are specific and effective ways for protein localization and are crucial for embryo development, neuronal function and many other cellular processes. There are excellent reviews on mRNA localization, transport and translation during development and other cellular processes. This review will focus on mRNA localization-mediated local protein biogenesis and its impact on somatic cell migration. PMID:25264217

  14. Electrolytic cell stack with molten electrolyte migration control

    DOEpatents

    Kunz, H.R.; Guthrie, R.J.; Katz, M.

    1987-03-17

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate. 5 figs.

  15. Electrolytic cell stack with molten electrolyte migration control

    DOEpatents

    Kunz, H. Russell; Guthrie, Robin J.; Katz, Murray

    1988-08-02

    An electrolytic cell stack includes inactive electrolyte reservoirs at the upper and lower end portions thereof. The reservoirs are separated from the stack of the complete cells by impermeable, electrically conductive separators. Reservoirs at the negative end are initially low in electrolyte and the reservoirs at the positive end are high in electrolyte fill. During stack operation electrolyte migration from the positive to the negative end will be offset by the inactive reservoir capacity. In combination with the inactive reservoirs, a sealing member of high porosity and low electrolyte retention is employed to limit the electrolyte migration rate.

  16. Differential miRNA expression defines migration and reduced apoptosis in follicular thyroid carcinomas.

    PubMed

    Wojtas, Bartosz; Ferraz, Carolina; Stokowy, Tomasz; Hauptmann, Steffen; Lange, Dariusz; Dralle, Henning; Musholt, Thomas; Jarzab, Barbara; Paschke, Ralf; Eszlinger, Markus

    2014-05-01

    The objective of the study was to identify microRNAs (miRs) characteristic for follicular thyroid carcinoma (FTC) and to define their role in tumorigenesis. A miR-microarray study was conducted to identify miRs differentially expressed between FTCs and their surrounding tissues. Selection was further reinforced by a literature review. Four miRs were selected and confirmed by RT-qPCR: miR-146b, -183, -221 were up-regulated, whereas miR-199b down-regulated in FTCs. The influence of these miRs on cell proliferation, cell cycle, apoptosis and migration was studied in HTori and FTC-133 cells. Functional characterization suggests an impact of miR-183 and miR-146b in FTC development. Overexpression of both miRs significantly induces migration. Moreover, overexpression of miR-183 significantly represses apoptosis. MiR-199b and -221 do not have significant effects on proliferation, cell cycle, apoptosis or migration in HTori and FTC-133 cells. Our data suggest that miR-146b and miR-183 may influence FTC development through the induction of migration and apoptosis inhibition. PMID:24631480

  17. Nox4 and Duox1/2 Mediate Redox Activation of Mesenchymal Cell Migration by PDGF

    PubMed Central

    Sukhova, Anna A.; Sagaradze, George D.; Albert, Eugene A.; Ageeva, Ludmila V.; Sharonov, George V.; Tkachuk, Vsevolod A.

    2016-01-01

    Platelet derived growth factor (PDGF) orchestrates wound healing and tissue regeneration by regulating recruitment of the precursor mesenchymal stromal cells (MSC) and fibroblasts. PDGF stimulates generation of hydrogen peroxide that is required for cell migration, but the sources and intracellular targets of H2O2 remain obscure. Here we demonstrate sustained live responses of H2O2 to PDGF and identify PKB/Akt, but not Erk1/2, as the target for redox regulation in cultured 3T3 fibroblasts and MSC. Apocynin, cell-permeable catalase and LY294002 inhibited PDGF-induced migration and mitotic activity of these cells indicating involvement of PI3-kinase pathway and H2O2. Real-time PCR revealed Nox4 and Duox1/2 as the potential sources of H2O2. Silencing of Duox1/2 in fibroblasts or Nox4 in MSC reduced PDGF-stimulated intracellular H2O2, PKB/Akt phosphorylation and migration, but had no such effect on Erk1/2. In contrast to PDGF, EGF failed to increase cytoplasmic H2O2, phosphorylation of PKB/Akt and migration of fibroblasts and MSC, confirming the critical impact of redox signaling. We conclude that PDGF-induced migration of mesenchymal cells requires Nox4 and Duox1/2 enzymes, which mediate redox-sensitive activation of PI3-kinase pathway and PKB/Akt. PMID:27110716

  18. Nox4 and Duox1/2 Mediate Redox Activation of Mesenchymal Cell Migration by PDGF.

    PubMed

    Tyurin-Kuzmin, Pyotr A; Zhdanovskaya, Nadezhda D; Sukhova, Anna A; Sagaradze, George D; Albert, Eugene A; Ageeva, Ludmila V; Sharonov, George V; Vorotnikov, Alexander V; Tkachuk, Vsevolod A

    2016-01-01

    Platelet derived growth factor (PDGF) orchestrates wound healing and tissue regeneration by regulating recruitment of the precursor mesenchymal stromal cells (MSC) and fibroblasts. PDGF stimulates generation of hydrogen peroxide that is required for cell migration, but the sources and intracellular targets of H2O2 remain obscure. Here we demonstrate sustained live responses of H2O2 to PDGF and identify PKB/Akt, but not Erk1/2, as the target for redox regulation in cultured 3T3 fibroblasts and MSC. Apocynin, cell-permeable catalase and LY294002 inhibited PDGF-induced migration and mitotic activity of these cells indicating involvement of PI3-kinase pathway and H2O2. Real-time PCR revealed Nox4 and Duox1/2 as the potential sources of H2O2. Silencing of Duox1/2 in fibroblasts or Nox4 in MSC reduced PDGF-stimulated intracellular H2O2, PKB/Akt phosphorylation and migration, but had no such effect on Erk1/2. In contrast to PDGF, EGF failed to increase cytoplasmic H2O2, phosphorylation of PKB/Akt and migration of fibroblasts and MSC, confirming the critical impact of redox signaling. We conclude that PDGF-induced migration of mesenchymal cells requires Nox4 and Duox1/2 enzymes, which mediate redox-sensitive activation of PI3-kinase pathway and PKB/Akt. PMID:27110716

  19. Cell migration in the developing rodent olfactory system.

    PubMed

    Huilgol, Dhananjay; Tole, Shubha

    2016-07-01

    The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain. PMID:26994098

  20. Drosophila KASH-domain protein Klarsicht regulates microtubule stability and integrin receptor localization during collective cell migration.

    PubMed

    Myat, M M; Rashmi, R N; Manna, D; Xu, N; Patel, U; Galiano, M; Zielinski, K; Lam, A; Welte, M A

    2015-11-01

    During collective migration of the Drosophila embryonic salivary gland, cells rearrange to form a tube of a distinct shape and size. Here, we report a novel role for the Drosophila Klarsicht-Anc-Syne Homology (KASH) domain protein Klarsicht (Klar) in the regulation of microtubule (MT) stability and integrin receptor localization during salivary gland migration. In wild-type salivary glands, MTs became progressively stabilized as gland migration progressed. In embryos specifically lacking the KASH domain containing isoforms of Klar, salivary gland cells failed to rearrange and migrate, and these defects were accompanied by decreased MT stability and altered integrin receptor localization. In muscles and photoreceptors, KASH isoforms of Klar work together with Klaroid (Koi), a SUN domain protein, to position nuclei; however, loss of Koi had no effect on salivary gland migration, suggesting that Klar controls gland migration through novel interactors. The disrupted cell rearrangement and integrin localization observed in klar mutants could be mimicked by overexpressing Spastin (Spas), a MT severing protein, in otherwise wild-type salivary glands. In turn, promoting MT stability by reducing spas gene dosage in klar mutant embryos rescued the integrin localization, cell rearrangement and gland migration defects. Klar genetically interacts with the Rho1 small GTPase in salivary gland migration and is required for the subcellular localization of Rho1. We also show that Klar binds tubulin directly in vitro. Our studies provide the first evidence that a KASH-domain protein regulates the MT cytoskeleton and integrin localization during collective cell migration. PMID:26247519

  1. Heparan Sulfate Inhibits Hematopoietic Stem and Progenitor Cell Migration and Engraftment in Mucopolysaccharidosis I*

    PubMed Central

    Watson, H. Angharad; Holley, Rebecca J.; Langford-Smith, Kia J.; Wilkinson, Fiona L.; van Kuppevelt, Toin H.; Wynn, Robert F.; Wraith, J. Edmond; Merry, Catherine L. R.; Bigger, Brian W.

    2014-01-01

    Mucopolysaccharidosis I Hurler (MPSI-H) is a pediatric lysosomal storage disease caused by genetic deficiencies in IDUA, coding for α-l-iduronidase. Idua−/− mice share similar clinical pathology with patients, including the accumulation of the undegraded glycosaminoglycans (GAGs) heparan sulfate (HS), and dermatan sulfate (DS), progressive neurodegeneration, and dysostosis multiplex. Hematopoietic stem cell transplantation (HSCT) is the most effective treatment for Hurler patients, but reduced intensity conditioning is a risk factor in transplantation, suggesting an underlying defect in hematopoietic cell engraftment. HS is a co-receptor in the CXCL12/CXCR4 axis of hematopoietic stem and progenitor cell (HSPC) migration to the bone marrow (BM), but the effect of HS alterations on HSPC migration, or the functional role of HS in MPSI-H are unknown. We demonstrate defective WT HSPC engraftment and migration in Idua−/− recipient BM, particularly under reduced intensity conditioning. Both intra- but especially extracellular Idua−/− BM HS was significantly increased and abnormally sulfated. Soluble heparinase-sensitive GAGs from Idua−/− BM and specifically 2-O-sulfated HS, elevated in Idua−/− BM, both inhibited CXCL12-mediated WT HSPC transwell migration, while DS had no effect. Thus we have shown that excess overly sulfated extracellular HS binds, and sequesters CXCL12, limiting hematopoietic migration and providing a potential mechanism for the limited scope of HSCT in Hurler disease. PMID:25359774

  2. A lateral signalling pathway coordinates shape volatility during cell migration

    PubMed Central

    Zhang, Liang; Luga, Valbona; Armitage, Sarah K.; Musiol, Martin; Won, Amy; Yip, Christopher M.; Plotnikov, Sergey V.; Wrana, Jeffrey L.

    2016-01-01

    Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1–Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243

  3. A lateral signalling pathway coordinates shape volatility during cell migration.

    PubMed

    Zhang, Liang; Luga, Valbona; Armitage, Sarah K; Musiol, Martin; Won, Amy; Yip, Christopher M; Plotnikov, Sergey V; Wrana, Jeffrey L

    2016-01-01

    Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1-Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243

  4. Galectin-3 Overrides PTRF/Cavin-1 Reduction of PC3 Prostate Cancer Cell Migration.

    PubMed

    Meng, Fanrui; Joshi, Bharat; Nabi, Ivan Robert

    2015-01-01

    Expression of Caveolin-1 (Cav1), a key component of cell surface caveolae, is elevated in prostate cancer (PCa) and associated with PCa metastasis and a poor prognosis for PCa patients. Polymerase I and Transcript Release Factor (PTRF)/cavin-1 is a cytoplasmic protein required for Cav1-dependent formation of caveolae. Expression of PTRF reduces the motility of PC3 cells, a metastatic prostate cancer cell line that endogenously expresses abundant Cav1 but no PTRF and no caveolae, suggesting a role for non-caveolar Cav1 domains, or Cav1 scaffolds, in PCa cell migration. Tyrosine phosphorylated Cav1 (pCav1) functions in concert with Galectin-3 (Gal3) and the galectin lattice to stabilize focal adhesion kinase (FAK) within focal adhesions (FAs) and promote cancer cell motility. However, whether PTRF regulation of Cav1 function in PCa cell migration is related to Gal3 expression and functionality has yet to be determined. Here we show that PTRF expression in PC3 cells reduces FAK stabilization in focal adhesions and reduces cell motility without affecting pCav1 levels. Exogenous Gal3 stabilized FAK in focal adhesions of PTRF-expressing cells and restored cell motility of PTRF-expressing PC3 cells to levels of PC3 cells in a dose-dependent manner, with an optimal concentration of 2 µg/ml. Exogenous Gal3 stabilized FAK in focal adhesions of Gal3 knockdown PC3 cells but not in Cav1 knockdown PC3 cells. Cav1 knockdown also prevented Gal3 rescue of FA-associated FAK stabilization in PTRF-expressing PC3 cells. Our data support a role for PTRF/cavin-1, through caveolae formation, as an attenuator of the non-caveolar functionality of Cav1 in Gal3-Cav1 signalling and regulation of focal adhesion dynamics and cancer cell migration. PMID:25942420

  5. Optimal chemotaxis in intermittent migration of animal cells

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Salbreux, G.

    2015-04-01

    Animal cells can sense chemical gradients without moving and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases, and performing persistent migration during run phases. We show that the chaser average run time can be adjusted to minimize the target catching time or the spatial dispersion of the chasers. We obtain analytical results for the catching time and for the spatial dispersion in the limits of small and large ratios of run time to tumble time and scaling laws for the optimal run times. Our findings have implications for optimal chemotactic strategies in animal cell migration.

  6. Effects of radiation on metastasis and tumor cell migration.

    PubMed

    Vilalta, Marta; Rafat, Marjan; Graves, Edward E

    2016-08-01

    It is well known that tumor cells migrate from the primary lesion to distant sites to form metastases and that these lesions limit patient outcome in a majority of cases. However, the extent to which radiation influences this process and to which migration in turn alters radiation response remains controversial. There are preclinical and clinical reports showing that focal radiotherapy can both increase the development of distant metastasis, as well as that it can induce the regression of established metastases through the abscopal effect. More recently, preclinical studies have suggested that radiation can attract migrating tumor cells and may, thereby, facilitate tumor recurrence. In this review, we summarize these phenomena and their potential mechanisms of action, and evaluate their significance for modern radiation therapy strategies. PMID:27022944

  7. Optimal chemotaxis in intermittent migration of animal cells.

    PubMed

    Romanczuk, P; Salbreux, G

    2015-04-01

    Animal cells can sense chemical gradients without moving and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases, and performing persistent migration during run phases. We show that the chaser average run time can be adjusted to minimize the target catching time or the spatial dispersion of the chasers. We obtain analytical results for the catching time and for the spatial dispersion in the limits of small and large ratios of run time to tumble time and scaling laws for the optimal run times. Our findings have implications for optimal chemotactic strategies in animal cell migration. PMID:25974540

  8. COX-2 Promotes Migration and Invasion by the Side Population of Cancer Stem Cell-Like Hepatocellular Carcinoma Cells

    PubMed Central

    Guo, Zhe; Jiang, Jing-Hang; Zhang, Jun; Yang, Hao-Jie; Yang, Fu-Quan; Qi, Ya-Peng; Zhong, Yan-Ping; Su, Jie; Yang, Ri-Rong; Li, Le-Qun; Xiang, Bang-De

    2015-01-01

    Abstract Cancer stem cells (CSCs) are thought to be responsible for tumor relapse and metastasis due to their abilities to self-renew, differentiate, and give rise to new tumors. Cyclooxygenase-2 (COX-2) is highly expressed in several kinds of CSCs, and it helps promote stem cell renewal, proliferation, and radioresistance. Whether and how COX-2 contributes to CSC migration and invasion is unclear. In this study, COX-2 was overexpressed in the CSC-like side population (SP) of the human hepatocellular carcinoma (HCC) cell line HCCLM3. COX-2 overexpression significantly enhanced migration and invasion of SP cells, while reducing expression of metastasis-related proteins PDCD4 and PTEN. Treating SP cells with the selective COX-2 inhibitor celecoxib down-regulated COX-2 and caused a dose-dependent reduction in cell migration and invasion, which was associated with up-regulation of PDCD4 and PTEN. These results suggest that COX-2 exerts pro-metastatic effects on SP cells, and that these effects are mediated at least partly through regulation of PDCD4 and PTEN expression. These results further suggest that celecoxib may be a promising anti-metastatic agent to reduce migration and invasion by hepatic CSCs. PMID:26554780

  9. Ratchetaxis: Long-Range Directed Cell Migration by Local Cues.

    PubMed

    Caballero, David; Comelles, Jordi; Piel, Matthieu; Voituriez, Raphaël; Riveline, Daniel

    2015-12-01

    Directed cell migration is usually thought to depend on the presence of long-range gradients of either chemoattractants or physical properties such as stiffness or adhesion. However, in vivo, chemical or mechanical gradients have not systematically been observed. Here we review recent in vitro experiments, which show that other types of spatial guidance cues can bias cell motility. Introducing local geometrical or mechanical anisotropy in the cell environment, such as adhesive/topographical microratchets or tilted micropillars, show that local and periodic external cues can direct cell motion. Together with modeling, these experiments suggest that cell motility can be viewed as a stochastic phenomenon, which can be biased by various types of local cues, leading to directional migration. PMID:26615123

  10. Fascin Regulates Nuclear Movement and Deformation in Migrating Cells.

    PubMed

    Jayo, Asier; Malboubi, Majid; Antoku, Susumu; Chang, Wakam; Ortiz-Zapater, Elena; Groen, Christopher; Pfisterer, Karin; Tootle, Tina; Charras, Guillaume; Gundersen, Gregg G; Parsons, Maddy

    2016-08-22

    Fascin is an F-actin-bundling protein shown to stabilize filopodia and regulate adhesion dynamics in migrating cells, and its expression is correlated with poor prognosis and increased metastatic potential in a number of cancers. Here, we identified the nuclear envelope protein nesprin-2 as a binding partner for fascin in a range of cell types in vitro and in vivo. Nesprin-2 interacts with fascin through a direct, F-actin-independent interaction, and this binding is distinct and separable from a role for fascin within filopodia at the cell periphery. Moreover, disrupting the interaction between fascin and nesprin-2 C-terminal domain leads to specific defects in F-actin coupling to the nuclear envelope, nuclear movement, and the ability of cells to deform their nucleus to invade through confined spaces. Together, our results uncover a role for fascin that operates independently of filopodia assembly to promote efficient cell migration and invasion. PMID:27554857

  11. Nerve growth factor-induced migration of endothelial cells.

    PubMed

    Dollé, Jean-Pierre; Rezvan, Amir; Allen, Fred D; Lazarovici, Philip; Lelkes, Peter I

    2005-12-01

    Nerve growth factor (NGF) is a well known neurotropic and neurotrophic agonist in the nervous system, which recently was shown to also induce angiogenic effects in endothelial cells (ECs). To measure NGF effects on the migration of cultured ECs, an important step in neoangiogenesis, we optimized an omnidirectional migration assay using human aortic endothelial cells (HAECs) and validated the assay with human recombinant basic fibroblast growth factor (rhbFGF) and human recombinant vascular endothelial growth factor (rhVEGF). The potencies of nerve growth factor purified from various species (viper, mouse, and recombinant human) to stimulate HAEC migration was similar to that of VEGF and basic fibroblast growth factor (bFGF) (EC50 of approximately 0.5 ng/ml). Recombinant human bFGF was significantly more efficacious than either viper NGF or rhVEGF, both of which stimulated HAEC migration by approximately 30% over basal spontaneous migration. NGF-mediated stimulation of HAEC migration was completely blocked by the NGF/TrkA receptor antagonist K252a [(8R*,9S*,11S*)-(/)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,-8H,11H-2,7b,11a-triazadibenzo(a,g)cycloocta(c,d,e)trindene-1-one] (30 nM) but not by the VEGF/Flk receptor antagonist SU-5416 [3-[(2,4-dimethylpyrrol-5-yl) methylidenyl]-indolin-2-one] (250 nM), indicating a direct effect of NGF via TrkA receptor activation on HAEC migration. Viper NGF stimulation of HAEC migration was additively increased by either rhVEGF or rhbFGF, suggesting a potentiating interaction between their tyrosine kinase receptor signaling pathways. Viper NGF represents a novel pharmacological tool to investigate possible TrkA receptor subtypes in endothelial cells. The ability of NGF to stimulate migration of HAEC cells in vitro implies that this factor may play an important role in the cardiovascular system besides its well known effects in the nervous system. PMID:16123305

  12. YAP Regulates Cell Proliferation, Migration, and Steroidogenesis in Adult Granulosa Cell Tumors

    PubMed Central

    Fu, David; Lv, Xiangmin; Hua, Guohua; He, Chunbo; Dong, Jixin; Lele, Subodh M.; Li, David Wan-Cheng; Zhai, Qiongli; Davis, John S.; Wang, Cheng

    2014-01-01

    The Hippo signaling pathway has been implicated as a conserved regulator of organ size in both Drosophila and mammals. Yes associated protein (YAP), the central component of the Hippo signaling cascade, functions as an oncogene in several malignancies. Ovarian granulosa cell tumors (GCT) are characterized by enlargement of ovary, excess production of estrogen, high frequency of recurrence and potential of malignancy and metastasis. Whether the Hippo pathway plays a role in the pathogenesis of GCT is unknown. This study was conducted to examine the expression of YAP in human adult GCTs and to determine the role of YAP in the proliferation and steroidogenesis of GCT cells. Compared with age-matched normal human ovaries, GCT tissues exhibited higher levels of YAP expression. YAP protein was predominantly expressed in the nucleus of tumor cells, whereas the non-tumor ovarian stromal cells expressed very low levels of YAP. YAP was also expressed in cultured primary human granulosa cells and in KGN and COV434 GCT cell lines. siRNA-mediated knockdown of YAP in KGN cells resulted in a significant reduction in cell proliferation (P<0.001). Conversely, overexpression of wild-type YAP or a constitutively active YAP mutant resulted in a significant increase in KGN cell proliferation and migration. Moreover, YAP knockdown reduced FSH-induced aromatase (CYP19A1) protein expression and estrogen production in KGN cells. These results demonstrate that YAP plays an important role in regulating GCT cell proliferation, migration and steroidogenesis. Targeting the Hippo/YAP pathway may provide a novel therapeutic approach for GCT. PMID:24389730

  13. Quantification of hydrodynamic factors influencing cell lateral migration

    NASA Astrophysics Data System (ADS)

    Nix, Stephanie; Imai, Yohsuke; Ishikawa, Takuji

    2015-11-01

    The study of the migration of blood cells perpendicular to the direction of blood flow, or lateral migration, is motivated by the differing behavior of the various types of blood cells. In vivo, red blood cells are observed to flow in the central region of the blood vessel, particularly in the microcirculation, while other types of cells in the blood, including white blood cells and platelets, are observed to flow disproportionately near the vessel wall. However, the specifics regarding the effect of hydrodynamic and biological factors are still unknown. Thus, in this study, we aim to quantify the effect of hydrodynamic factors on a cell model numerically using the boundary integral method. By using the boundary integral method, we can isolate the effect of a single hydrodynamic factor, such as a wall or given flow distribution, in an otherwise infinite flow. Then, we can use the obtained numerical results to develop a semi-analytical model describing the cell lateral migration dependent on only the flow geometry and the viscosity ratio between the cell and external fluid.

  14. p63 Inhibits Extravillous Trophoblast Migration and Maintains Cells in a Cytotrophoblast Stem Cell-Like State

    PubMed Central

    Li, Yingchun; Moretto-Zita, Matteo; Leon-Garcia, Sandra; Parast, Mana M.

    2015-01-01

    Proper differentiation of placental epithelial cells, called trophoblast, is required for implantation. Early during placentation, trophoblast cell columns help anchor the developing embryo in the uterine wall. Although proximally continuous with villous cytotrophoblast (CTB) distally, these cells differentiate into invasive extravillous trophoblast. We previously reported that p63, a p53 family member, is highly expressed in proliferative villous CTB and required for induction of the trophoblast lineage in human pluripotent stem cells. We now further explore its function in human trophoblast by using both primary CTB from the early placenta and established trophoblast cell lines. We show that p63 is expressed in epidermal growth factor receptor-positive CTB and that its expression decreases with differentiation into HLA-G+ extravillous trophoblast. In trophoblast cell lines, p63 is expressed in JEG3 cells but absent from HTR8 cells. Overexpression of p63 in both cell lines enhances cell proliferation and significantly reduces cell migration; conversely, down-regulation of p63 in JEG3 cells reduces cell proliferation and restores cell migration. Analysis of epithelial-to-mesenchymal transition, cell adhesion, and matrix degradation pathways shows that p63 blocks epithelial-to-mesenchymal transition, promotes a CTB-specific cell adhesion profile, and inhibits expression of matrix metalloproteinases. Taken together, these data show that p63 maintains the proliferative CTB state, at least partially through regulation of epithelial-to-mesenchymal transition, cell adhesion, and matrix degradation pathways. PMID:25307348

  15. NHE3 phosphorylation via PKCη marks the polarity and orientation of directionally migrating cells

    PubMed Central

    Bola, Sharanya; Zhang, Lei; Reid, Brian; Fu, Guo; Funk, Richard H. W.; Zhao, Min

    2015-01-01

    Endogenous electric fields (EF) may provide an overriding cue for directional cell migration during wound closure. Perceiving a constant direction requires active sodium-hydrogen exchanger (pNHE3) at the leading edge of HEK 293 cells but its activation mechanism is not yet fully understood. Because protein kinase C (PKC) is required in electrotaxis, we asked whether NHE3 is activated by PKC during wound healing. Using pharmacological (pseudosubstrate and edelfosine) inhibition, we showed that inhibition of PKCη isoform impairs directional cell migration in HEK 293 cells in the presence of a persistent directional cue (0.25–0.3 V/mm of EF for 2 h). Further, we found that pNHE3 forms complexes with both PKCη and ɣ-tubulin, suggesting that these molecules may regulate the microtubule-organizing center. In addition, cellular pNHE3 content was reduced significantly when PKCη was inhibited during directional cell migration. Taken together, these data suggest that PKCη-dependent phosphorylation of NHE3 and the formation of pNHE3/PKCη/ɣ-tubulin complexes at the leading edge of the cell are required for directional cell migration in an EF. PMID:24788043

  16. Enkephalins stimulate leukemia cell migration and surface expression of CD9.

    PubMed Central

    Heagy, W; Duca, K; Finberg, R W

    1995-01-01

    Opioid peptides have been implicated in the regulation of tumor growth and biology; however, little attention has been given to the mechanisms that are involved. In this study we show that physiological concentrations of the endogenous opioid neuropeptide methionine-enkephalin (MET-ENK) and the synthetic enkephalins D-Ala2, Me-Phe4, Gly(ol)5 and D-Ala2, D-Leu5 are stimulants for the in vitro migration of pre-B acute lymphoblastoid leukemia (ALL) cells. Activation of the human pre-B ALL cell lines NALM 6 and LAZ 221 with MET-ENK resulted in both an increase in their migration and an augmentation in the surface expression of the leukemia cell marker CD9. The opiate receptor antagonist naloxone reversed these enkephalin-induced effects on the leukemia cells. When the pre-B ALL cells were preincubated with an anti-CD9 mAb before challenge with MET-ENK their migration to the enkephalin was markedly reduced. These studies show that endogenous and synthetic opioid peptides are stimulants for pre-B ALL cell migration and suggest that CD9 is important in the regulation of leukemia cell motility. Images PMID:7657811

  17. Collective Epithelial Migration and Cell Rearrangements Drive Mammary Branching Morphogenesis

    PubMed Central

    Ewald, Andrew J.; Brenot, Audrey; Duong, Myhanh; Chan, Bianca S.; Werb, Zena

    2009-01-01

    Summary Epithelial organs are built through the movement of groups of interconnected cells. We observed cells in elongating mammary ducts reorganize into a multilayered epithelium, migrate collectively, and rearrange dynamically, all without forming leading cellular extensions. Duct initiation required proliferation, Rac, and myosin light-chain kinase, whereas repolarization to a bilayer depended on Rho kinase. We observed that branching morphogenesis results from the active motility of both luminal and myoepithelial cells. Luminal epithelial cells advanced collectively, whereas myoepithelial cells appeared to restrain elongating ducts. Significantly, we observed that normal epithelium and neoplastic hyperplasias are organized similarly during morphogenesis, suggesting common mechanisms of epithelial growth. PMID:18410732

  18. Describing Directional Cell Migration with a Characteristic Directionality Time

    PubMed Central

    Loosley, Alex J.; O’Brien, Xian M.; Reichner, Jonathan S.; Tang, Jay X.

    2015-01-01

    Many cell types can bias their direction of locomotion by coupling to external cues. Characteristics such as how fast a cell migrates and the directedness of its migration path can be quantified to provide metrics that determine which biochemical and biomechanical factors affect directional cell migration, and by how much. To be useful, these metrics must be reproducible from one experimental setting to another. However, most are not reproducible because their numerical values depend on technical parameters like sampling interval and measurement error. To address the need for a reproducible metric, we analytically derive a metric called directionality time, the minimum observation time required to identify motion as directionally biased. We show that the corresponding fit function is applicable to a variety of ergodic, directionally biased motions. A motion is ergodic when the underlying dynamical properties such as speed or directional bias do not change over time. Measuring the directionality of nonergodic motion is less straightforward but we also show how this class of motion can be analyzed. Simulations are used to show the robustness of directionality time measurements and its decoupling from measurement errors. As a practical example, we demonstrate the measurement of directionality time, step-by-step, on noisy, nonergodic trajectories of chemotactic neutrophils. Because of its inherent generality, directionality time ought to be useful for characterizing a broad range of motions including intracellular transport, cell motility, and animal migration. PMID:25992908

  19. VEGF signals induce trailblazer cell identity that drives neural crest migration.

    PubMed

    McLennan, Rebecca; Schumacher, Linus J; Morrison, Jason A; Teddy, Jessica M; Ridenour, Dennis A; Box, Andrew C; Semerad, Craig L; Li, Hua; McDowell, William; Kay, David; Maini, Philip K; Baker, Ruth E; Kulesa, Paul M

    2015-11-01

    Embryonic neural crest cells travel in discrete streams to precise locations throughout the head and body. We previously showed that cranial neural crest cells respond chemotactically to vascular endothelial growth factor (VEGF) and that cells within the migratory front have distinct behaviors and gene expression. We proposed a cell-induced gradient model in which lead neural crest cells read out directional information from a chemoattractant profile and instruct trailers to follow. In this study, we show that migrating chick neural crest cells do not display distinct lead and trailer gene expression profiles in culture. However, exposure to VEGF in vitro results in the upregulation of a small subset of genes associated with an in vivo lead cell signature. Timed addition and removal of VEGF in culture reveals the changes in neural crest cell gene expression are rapid. A computational model incorporating an integrate-and-switch mechanism between cellular phenotypes predicts migration efficiency is influenced by the timescale of cell behavior switching. To test the model hypothesis that neural crest cellular phenotypes respond to changes in the VEGF chemoattractant profile, we presented ectopic sources of VEGF to the trailer neural crest cell subpopulation and show diverted cell trajectories and stream alterations consistent with model predictions. Gene profiling of trailer cells that diverted and encountered VEGF revealed upregulation of a subset of 'lead' genes. Injection of neuropilin1 (Np1)-Fc into the trailer subpopulation or electroporation of VEGF morpholino to reduce VEGF signaling failed to alter trailer neural crest cell trajectories, suggesting trailers do not require VEGF to maintain coordinated migration. These results indicate that VEGF is one of the signals that establishes lead cell identity and its chemoattractant profile is critical to neural crest cell migration. PMID:26278036

  20. ABCA2 transporter deficiency reduces incidence of TRAMP prostate tumor metastasis and cellular chemotactic migration

    PubMed Central

    Mack, Jody T.; Helke, Kristi L.; Normand, Gabrielle; Green, CoDanielle; Townsend, Danyelle M.; Tew, Kenneth D.

    2010-01-01

    In order to study the effects of ATP-binding cassette transporter 2 (ABCA2) deficiency on the progression of prostate cancer, congenic Abca2 knockout (KO) mice were crossed to the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. ABCA2 expression was elevated in wild-type/TRAMP (WT/Tg) dorsal prostate, a region comprising the most aggressive tumors in this model, compared to non-transgenic WT mice. Primary prostate tumor progression was similar in KO/Tg and WT/Tg mice with respect to pathological score, prostate tumor growth, as calculated using MRI volumetry, and proliferative index, as determined by PCNA immunostaining. Vimentin, a marker of the epithelial-mesenchymal transition, was expressed at similar levels in prostate, but elevated in histologically normal seminal vesicles (SV) in KO/Tg mice (P < 0.02), concomitant with an increased SV volume (P < 0.01). These changes in the SV did not exacerbate the metastatic phenotype of this disease model; rather, KO/Tg mice aged 20-25 weeks had no detectable metastases while 38% of WT/Tg developed metastases to lung and/or lymph nodes. The absence of a metastatic phenotype in KO/Tg mice was reprised in stable ABCA2 knockdown (KD) cells where chemotactic, but not random, migration was impaired (P = 0.0004). Expression levels of sphingolipid biosynthetic enzymes were examined due to the established link of the transporter with sphingolipid homeostasis. Galactosylceramide synthase (GalCerS) mRNA levels were over 8-fold higher in KD cells (P = 0.001), while lactosylceramide synthase (LacCerS) and CTP:choline cytidylyltransferase (CCT) were significantly reduced (P < 0.0001 and 0.03, respectively). Overall, we demonstrate that ABCA2 deficiency inhibits prostate tumor metastasis in vivo and decreases chemotactic potential of cells, conceivably due to altered sphingolipid metabolism. PMID:21041019

  1. Mesenchymal Stem Cells Induce Directional Migration of Invasive Breast Cancer Cells through TGF-β

    PubMed Central

    McAndrews, Kathleen M.; McGrail, Daniel J.; Ravikumar, Nithin; Dawson, Michelle R.

    2015-01-01

    Mesenchymal stem cells (MSCs) are recruited to the tumor microenvironment and influence tumor progression; however, how MSCs induce the invasion of cancer cells is not completely understood. Here, we used a 3D coculture model to determine how MSCs affect the migration of invasive breast cancer cells. Coculture with MSCs increases the elongation, directional migration, and traction generation of breast cancer cells. MSC-induced directional migration directly correlates with traction generation and is mediated by transforming growth factor β (TGF-β) and the migratory proteins rho-associated kinase, focal adhesion kinase, and matrix metalloproteinases. Treatment with MSC conditioned media or recombinant TGF-β1 elicits a similar migration response to coculture. Taken together, this work suggests TGF-β is secreted by MSCs, leading to force-dependent directional migration of invasive breast cancer cells. These pathways may be potential targets for blocking cancer cell invasion and subsequent metastasis. PMID:26585689

  2. Endogenous electric fields as guiding cue for cell migration.

    PubMed

    Funk, Richard H W

    2015-01-01

    This review covers two topics: (1) "membrane potential of low magnitude and related electric fields (bioelectricity)" and (2) "cell migration under the guiding cue of electric fields (EF)."Membrane potentials for this "bioelectricity" arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the "electric" interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions. PMID:26029113

  3. Endogenous electric fields as guiding cue for cell migration

    PubMed Central

    Funk, Richard H. W.

    2015-01-01

    This review covers two topics: (1) “membrane potential of low magnitude and related electric fields (bioelectricity)” and (2) “cell migration under the guiding cue of electric fields (EF).”Membrane potentials for this “bioelectricity” arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the “electric” interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions. PMID:26029113

  4. Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, R.; Lacy, Claud E.; Woniak, Günter; Subramanian, R. Shankar

    1996-04-01

    Experiments were performed on the motion of isolated drops and bubbles in a Dow-Corning silicone oil under the action of an applied temperature gradient in a reduced gravity environment aboard the NASA Space Shuttle in orbit. Images of the interior of the test cell during these experiments were recorded on cine film and later analyzed to obtain data on the migration velocity as a function of size and the applied temperature gradient. The data are presented in scaled form. Predictions are available in the case of gas bubbles, and it is found that the scaled velocity decreases with increasing Marangoni number qualitatively as expected even though there are quantitative discrepancies. The scaled velocity also appears to approach a theoretical asymptote predicted in the limit of large values of the Marangoni number for Stokes motion. Finally, sample results from a preliminary experiment on a pair of drops are presented. They display the remarkable feature that a small drop which leads a large drop in a temperature gradient can significantly retard the motion of the large trailing drop while itself moving as though it is virtually unaffected by the presence of the large drop.

  5. Exo70 Generates Membrane Curvature for Morphogenesis and Cell Migration

    PubMed Central

    Zhao, Yuting; Liu, Jianglan; Yang, Changsong; Capraro, Benjamin R.; Baumgart, Tobias; Bradley, Ryan P.; Ramakrishnan, N.; Xu, Xiaowei; Radhakrishnan, Ravi; Svitkina, Tatyana; Guo, Wei

    2013-01-01

    Dynamic shape changes of the plasma membrane are fundamental to many processes ranging from morphogenesis and cell migration to phagocytosis and viral propagation. Here we demonstrate that Exo70, a component of the exocyst complex, induces tubular membrane invaginations towards the lumen of synthetic vesicles in vitro and generates protrusions on the surface of cells. Biochemical analyses using Exo70 mutants and independent molecular dynamics simulations based on Exo70 structure demonstrate that Exo70 generates negative membrane curvature through an oligomerization-based mechanism. In cells, the membrane-deformation function of Exo70 is required for protrusion formation and directional cell migration. Exo70 thus represents a membrane-bending protein that may couple actin dynamics and plasma membrane remodeling for morphogenesis. PMID:23948253

  6. Cell Migration: Recoiling from an Embrace.

    PubMed

    Genuth, Miriam A; Weiner, Orion D

    2015-06-29

    For proper spacing or rapid dispersion, some migratory cells are guided by repulsive collisions with their neighbors. A new study reveals that a surprising intercellular coupling of leading edge actin networks forms the basis of mutual repulsion in Drosophila hemocytes. PMID:26126284

  7. Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling pathway

    PubMed Central

    Xu, Fan; Xu, Yue; Zhu, Liqiong; Rao, Pinhong; Wen, Jiamin; Sang, Yunyun; Shang, Fu

    2016-01-01

    Purpose To investigate the effect and possible molecular mechanisms of fasudil on retinal microglial (RMG) cell migration. Methods Primary cultured RMG cells were incubated with lipopolysaccharide (LPS), fasudil, and/or SB203580 (a p38 inhibitor). RMG cell motility was determined with the scratch wound assay and the Transwell migration assay. The phosphorylation of p38 and levels of matrix metalloproteinase 2 (MMP-2) and MMP-9 were measured with western blot. Results In the scratch-induced migration assay, as well as in the Transwell migration assay, the results indicated that LPS stimulated the migratory potential of RMG cells and fasudil significantly reduced LPS-stimulated RMG cell migration in a concentration-dependent manner. However, fasudil had no effect on RMG cell migration in the absence of LPS stimulation. Moreover, fasudil reduced the level of phosphor-p38 mitogen-activated protein kinase (p-p38-MAPK) in a concentration-dependent manner, without effects on the levels of phospho-p44/42 (p-ERK1/2) and phospho-c-Jun N-terminal kinase (p-JNK). Cotreatment with SB203580 (a p38 inhibitor) and fasudil resulted in the synergistic reduction of MMP-2, MMP-9, and p-p38-MAPK, as well as a reduction in the LPS-stimulated migration capabilities of the RMG cells, suggesting fasudil suppresses the LPS-stimulated migration of RMG cells via directly downregulating the p38-MAPK signaling pathway. Conclusions Our studies indicated that fasudil inhibited LPS-stimulated RMG cell migration via suppression of the p38-MAPK signaling pathway. PMID:27441000

  8. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour

    PubMed Central

    Fokkelman, Michiel; Balcıoğlu, Hayri E.; Klip, Janna E.; Yan, Kuan; Verbeek, Fons J.; Danen, Erik H. J.; van de Water, Bob

    2016-01-01

    Cancer cells migrate from the primary tumour into surrounding tissue in order to form metastasis. Cell migration is a highly complex process, which requires continuous remodelling and re-organization of the cytoskeleton and cell-matrix adhesions. Here, we aimed to identify genes controlling aspects of tumour cell migration, including the dynamic organization of cell-matrix adhesions and cellular traction forces. In a siRNA screen targeting most cell adhesion-related genes we identified 200+ genes that regulate size and/or dynamics of cell-matrix adhesions in MCF7 breast cancer cells. In a subsequent secondary screen, the 64 most effective genes were evaluated for growth factor-induced cell migration and validated by tertiary RNAi pool deconvolution experiments. Four validated hits showed significantly enlarged adhesions accompanied by reduced cell migration upon siRNA-mediated knockdown. Furthermore, loss of PPP1R12B, HIPK3 or RAC2 caused cells to exert higher traction forces, as determined by traction force microscopy with elastomeric micropillar post arrays, and led to considerably reduced force turnover. Altogether, we identified genes that co-regulate cell-matrix adhesion dynamics and traction force turnover, thereby modulating overall motility behaviour. PMID:27531518

  9. Junctional adhesion molecule-C (JAM-C) regulates polarized neutrophil transendothelial cell migration in vivo

    PubMed Central

    Woodfin, Abigail; Voisin, Mathieu-Benoit; Beyrau, Martina; Colom, Bartomeu; Caille, Dorothée; Diapouli, Frantzeska-Maria; Nash, Gerard B; Chavakis, Triantafyllos; Albelda, Steven M.; Rainger, G Ed; Meda, Paolo; Imhof, Beat A.; Nourshargh, Sussan

    2011-01-01

    Neutrophil migration into inflamed tissues is a fundamental component of innate immunity. A decisive step in this process is the polarised migration of blood neutrophils through endothelial cells (ECs) lining the venular lumen (transendothelial cell migration; TEM) in a luminal to abluminal direction. Using real-time confocal imaging we report that neutrophils can exhibit disrupted polarised TEM (“hesitant” and “reverse”) in vivo. These events were noted in inflammation following ischemia-reperfusion injury, characterised by reduced expression of junctional adhesion molecule C (JAM-C) from EC junctions, and were enhanced by EC JAM-C blockade or genetic deletion. The results identify JAM-C as a key regulator of polarised neutrophil TEM in vivo and suggest that reverse TEM neutrophils can contribute to dissemination of systemic inflammation. PMID:21706006

  10. Inhibition of TRPM7 by carvacrol suppresses glioblastoma cell proliferation, migration and invasion

    PubMed Central

    Chen, Wen-Liang; Barszczyk, Andrew; Turlova, Ekaterina; Deurloo, Marielle; Liu, Baosong; Yang, Burton B.; Rutka, James T.; Feng, Zhong-Ping; Sun, Hong-Shuo

    2015-01-01

    Glioblastomas are progressive brain tumors with devastating proliferative and invasive characteristics. Ion channels are the second largest target class for drug development. In this study, we investigated the effects of the TRPM7 inhibitor carvacrol on the viability, resistance to apoptosis, migration, and invasiveness of the human U87 glioblastoma cell line. The expression levels of TRPM7 mRNA and protein in U87 cells were detected by RT-PCR, western blotting and immunofluorescence. TRPM7 currents were recorded using whole-cell patch-clamp techniques. An MTT assay was used to assess cell viability and proliferation. Wound healing and transwell experiments were used to evaluate cell migration and invasion. Protein levels of p-Akt/t-Akt, p-ERK1/2/t-ERK1/2, cleaved caspase-3, MMP-2 and phosphorylated cofilin were also detected. TRPM7 mRNA and protein expression in U87 cells is higher than in normal human astrocytes. Whole-cell patch-clamp recording showed that carvacrol blocks recombinant TRPM7 current in HEK293 cells and endogenous TRPM7-like current in U87 cells. Carvacrol treatment reduced the viability, migration and invasion of U87 cells. Carvacrol also decreased MMP-2 protein expression and promoted the phosphorylation of cofilin. Furthermore, carvacrol inhibited the Ras/MEK/MAPK and PI3K/Akt signaling pathways. Therefore, carvacrol may have therapeutic potential for the treatment of glioblastomas through its inhibition of TRPM7 channels. PMID:25965832

  11. Ndm, a coiled-coil domain protein that suppresses macropinocytosis and has effects on cell migration.

    PubMed

    Kelsey, Jessica S; Fastman, Nathan M; Noratel, Elizabeth F; Blumberg, Daphne D

    2012-09-01

    The ampA gene has a role in cell migration in Dictyostelium discoideum. Cells overexpressing AmpA show an increase in cell migration, forming large plaques on bacterial lawns. A second-site suppressor of this ampA-overexpressing phenotype identified a previously uncharacterized gene, ndm, which is described here. The Ndm protein is predicted to contain a coiled-coil BAR-like domain-a domain involved in endocytosis and membrane bending. ndm-knockout and Ndm-monomeric red fluorescent protein-expressing cell lines were used to establish a role for ndm in suppressing endocytosis. An increase in the rate of endocytosis and in the number of endosomes was detected in ndm(-) cells. During migration ndm(-) cells formed numerous endocytic cups instead of the broad lamellipodia structure characteristic of moving cells. A second lamellipodia-based function-cell spreading-was also defective in the ndm(-) cells. The increase in endocytosis and the defect in lamellipodia formation were associated with reduced chemotaxis in ndm(-) cells. Immunofluorescence results and glutathione S-transferase pull-down assays revealed an association of Ndm with coronin and F-actin. The results establish ndm as a gene important in regulating the balance between formation of endocytic cups and lamellipodia structures. PMID:22809629

  12. Migration of amoeba cells in an electric field

    NASA Astrophysics Data System (ADS)

    Guido, Isabella; Bodenschatz, Eberhard

    2015-03-01

    Exogenous and endogenous electric fields play a role in cell physiology as a guiding mechanism for the orientation and migration of cells. Electrotaxis of living cells has been observed for several cell types, e.g. neurons, fibroblasts, leukocytes, neural crest cells, cancer cells. Dictyostelium discoideum (Dd), an intensively investigated chemotactic model organism, also exhibits a strong electrotactic behavior moving toward the cathode under the influence of electric fields. Here we report experiments on the effects of DC electric fields on the directional migration of Dd cells. We apply the electric field to cells seeded into microfluidic devices equipped with agar bridges to avoid any harmful effects of the electric field on the cells (ions formation, pH changes, etc.) and a constant flow to prevent the build-up of chemical gradient that elicits chemotaxis. Our results show that the cells linearly increase their speed over time when a constant electric field is applied for a prolonged duration (2 hours). This novel phenomenon cannot be attributed to mechanotaxis as the drag force of the electroosmotic flow is too small to produce shear forces that can reorient cells. It is independent of the cellular developmental stage and to our knowledge, it was not observed in chemotaxis. This work is supported by MaxSynBio project of the Max Planck Society.

  13. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells

    PubMed Central

    Vasyutina, Elena; Stebler, Jürg; Brand-Saberi, Beate; Schulz, Stefan; Raz, Erez; Birchmeier, Carmen

    2005-01-01

    Long-range migrating progenitor cells generate hypaxial muscle, for instance the muscle of the limbs, hypoglossal cord, and diaphragm. We show here that migrating muscle progenitors express the chemokine receptor CXCR4. The corresponding ligand, SDF1, is expressed in limb and branchial arch mesenchyme; i.e., along the routes and at the targets of the migratory cells. Ectopic application of SDF1 in the chick limb attracts muscle progenitor cells. In CXCR4 mutant mice, the number of muscle progenitors that colonize the anlage of the tongue and the dorsal limb was reduced. Changes in the distribution of the muscle progenitor cells were accompanied by increased apoptosis, indicating that CXCR4 signals provide not only attractive cues but also control survival. Gab1 encodes an adaptor protein that transduces signals elicited by tyrosine kinase receptors, for instance the c-Met receptor, and plays a role in the migration of muscle progenitor cells. We found that CXCR4 and Gab1 interact genetically. For instance, muscle progenitors do not reach the anlage of the tongue in CXCR4;Gab1 double mutants; this target is colonized in either of the single mutants. Our analysis reveals a role of SDF1/CXCR4 signaling in the development of migrating muscle progenitors and shows that a threshold number of progenitor cells is required to generate muscle of appropriate size. PMID:16166380

  14. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells.

    PubMed

    Vasyutina, Elena; Stebler, Jürg; Brand-Saberi, Beate; Schulz, Stefan; Raz, Erez; Birchmeier, Carmen

    2005-09-15

    Long-range migrating progenitor cells generate hypaxial muscle, for instance the muscle of the limbs, hypoglossal cord, and diaphragm. We show here that migrating muscle progenitors express the chemokine receptor CXCR4. The corresponding ligand, SDF1, is expressed in limb and branchial arch mesenchyme; i.e., along the routes and at the targets of the migratory cells. Ectopic application of SDF1 in the chick limb attracts muscle progenitor cells. In CXCR4 mutant mice, the number of muscle progenitors that colonize the anlage of the tongue and the dorsal limb was reduced. Changes in the distribution of the muscle progenitor cells were accompanied by increased apoptosis, indicating that CXCR4 signals provide not only attractive cues but also control survival. Gab1 encodes an adaptor protein that transduces signals elicited by tyrosine kinase receptors, for instance the c-Met receptor, and plays a role in the migration of muscle progenitor cells. We found that CXCR4 and Gab1 interact genetically. For instance, muscle progenitors do not reach the anlage of the tongue in CXCR4;Gab1 double mutants; this target is colonized in either of the single mutants. Our analysis reveals a role of SDF1/CXCR4 signaling in the development of migrating muscle progenitors and shows that a threshold number of progenitor cells is required to generate muscle of appropriate size. PMID:16166380

  15. Chordin-Like 1 Suppresses Bone Morphogenetic Protein 4-Induced Breast Cancer Cell Migration and Invasion.

    PubMed

    Cyr-Depauw, Chanèle; Northey, Jason J; Tabariès, Sébastien; Annis, Matthew G; Dong, Zhifeng; Cory, Sean; Hallett, Michael; Rennhack, Jonathan P; Andrechek, Eran R; Siegel, Peter M

    2016-05-15

    ShcA is an important mediator of ErbB2- and transforming growth factor β (TGF-β)-induced breast cancer cell migration, invasion, and metastasis. We show that in the context of reduced ShcA levels, the bone morphogenetic protein (BMP) antagonist chordin-like 1 (Chrdl1) is upregulated in numerous breast cancer cells following TGF-β stimulation. BMPs have emerged as important modulators of breast cancer aggressiveness, and we have investigated the ability of Chrdl1 to block BMP-induced increases in breast cancer cell migration and invasion. Breast cancer-derived conditioned medium containing elevated concentrations of endogenous Chrdl1, as well as medium containing recombinant Chrdl1, suppresses BMP4-induced signaling in multiple breast cancer cell lines. Live-cell migration assays reveal that BMP4 induces breast cancer migration, which is effectively blocked by Chrdl1. We demonstrate that BMP4 also stimulated breast cancer cell invasion and matrix degradation, in part, through enhanced metalloproteinase 2 (MMP2) and MMP9 activity that is antagonized by Chrdl1. Finally, high Chrdl1 expression was associated with better clinical outcomes in patients with breast cancer. Together, our data reveal that Chrdl1 acts as a negative regulator of malignant breast cancer phenotypes through inhibition of BMP signaling. PMID:26976638

  16. Migration Phenotype of Brain-Cancer Cells Predicts Patient Outcomes.

    PubMed

    Smith, Chris L; Kilic, Onur; Schiapparelli, Paula; Guerrero-Cazares, Hugo; Kim, Deok-Ho; Sedora-Roman, Neda I; Gupta, Saksham; O'Donnell, Thomas; Chaichana, Kaisorn L; Rodriguez, Fausto J; Abbadi, Sara; Park, JinSeok; Quiñones-Hinojosa, Alfredo; Levchenko, Andre

    2016-06-21

    Glioblastoma multiforme is a heterogeneous and infiltrative cancer with dismal prognosis. Studying the migratory behavior of tumor-derived cell populations can be informative, but it places a high premium on the precision of in vitro methods and the relevance of in vivo conditions. In particular, the analysis of 2D cell migration may not reflect invasion into 3D extracellular matrices in vivo. Here, we describe a method that allows time-resolved studies of primary cell migration with single-cell resolution on a fibrillar surface that closely mimics in vivo 3D migration. We used this platform to screen 14 patient-derived glioblastoma samples. We observed that the migratory phenotype of a subset of cells in response to platelet-derived growth factor was highly predictive of tumor location and recurrence in the clinic. Therefore, migratory phenotypic classifiers analyzed at the single-cell level in a patient-specific way can provide high diagnostic and prognostic value for invasive cancers. PMID:27292647

  17. Dentin Matrix Protein-1 Isoforms Promote Differential Cell Attachment and Migration*S⃞

    PubMed Central

    von Marschall, Zofia; Fisher, Larry W.

    2008-01-01

    Dentin matrix protein-1 (DMP1), bone sialoprotein (BSP), and osteopontin (OPN) are three SIBLINGs (small integrin-binding ligand, N-linked glycoproteins) co-expressed/secreted by skeletal and active ductal epithelial cells. Although etiological mechanisms remain unclear, DMP1 is the only one of these three genes currently known to have mutations resulting in human disease, and yet it remains the least studied. All three contain the highly conserved integrin-binding tripeptide, RGD, and experiments comparing the cell attachment and haptotactic migration-enhancing properties of DMP1 to BSP and OPN were performed using human skeletal (MG63 and primary dental pulp cells) and salivary gland (HSG) cells. Mutation of any SIBLING's RGD destroyed all attachment and migration activity. Using itsαVβ5 integrin, HSG cells attached to BSP but not to DMP1 or OPN. However, HSG cells could not migrate onto BSP in a modified Boyden chamber assay. Expression of αVβ3 integrin enhanced HSG attachment to DMP1 and OPN and promoted haptotactic migration onto all three proteins. Interchanging the first four coding exons or the conserved amino acids adjacent to the RGD of DMP1 with corresponding sequences of BSP did not enhance the ability of DMP1 to bindαVβ5. For αVβ3-expressing cells, intact DMP1, its BMP1-cleaved C-terminal fragment, and exon six lacking all post-translational modifications worked equally well but the proteoglycan isoform of DMP1 had greatly reduced ability for cell attachment and migration. The sequence specificity of the proposed BMP1-cleavage site of DMP1 was verified by mutation analysis. Direct comparison of the three proteins showed that cells discriminate among these SIBLINGs and among DMP1 isoforms. PMID:18819913

  18. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion

    PubMed Central

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-01-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression. DOI: http://dx.doi.org/10.7554/eLife.07270.001 PMID:26030852

  19. Regulation of Cell Migration and β1 Integrin Trafficking by the Endosomal Adaptor GGA3.

    PubMed

    Ratcliffe, Colin D H; Sahgal, Pranshu; Parachoniak, Christine A; Ivaska, Johanna; Park, Morag

    2016-06-01

    The integrin family of cell adhesion receptors link extracellular matrices to intracellular signaling pathways and the actin cytoskeleton; and regulate cell migration, proliferation and survival in normal and diseased tissues. The subcellular location of integrin receptors is critical for their function and deregulated trafficking is implicated in various human diseases. Here we identify a role for Golgi-localized gamma-ear containing Arf-binding protein 3 (GGA3), in regulating trafficking of β1 integrin. GGA3 knockdown reduces cell surface and total levels of α2, α5 and β1 integrin subunits, inhibits cell spreading, reduces focal adhesion number, as well as cell migration. In the absence of GGA3, integrins are increasingly retained inside the cell, traffic toward the perinuclear lysosomal compartment and their degradation is enhanced. Integrin traffic and maintenance of integrin levels are dependent on the integrity of the Arf binding site of GGA3. Furthermore, sorting nexin 17 (SNX17), a critical regulator of integrin recycling, becomes mislocalized to enlarged late endosomes upon GGA3 depletion. These data support a model whereby GGA3, through its ability to regulate SNX17 endosomal localization and through interaction with Arf6 diverts integrins from the degradative pathway supporting cell migration. PMID:26935970

  20. [Migration].

    PubMed

    Maccotta, W; Perotti, A; Thebaut, F; Cristofanelli, L; Pittau, F; Sergi, N; Pittau, L; Morelli, A; Morsella, M; Grinover, A P

    1990-01-01

    This is a collection of 11 individual articles on aspects of current migration problems affecting developed countries. The geographical focus is on immigration in Europe, with particular reference to Italy, although one paper is concerned with Quebec. The topical focus is on the social problems associated with immigration. The articles are in Italian, with one exception, which is in French. PMID:12343393

  1. Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration

    NASA Astrophysics Data System (ADS)

    Bradshaw, Michael; Ho, Diwei; Fear, Mark W.; Gelain, Fabrizio; Wood, Fiona M.; Iyer, K. Swaminathan

    2014-11-01

    There is a need to develop economical, efficient and widely available therapeutic approaches to enhance the rate of skin wound healing. The optimal outcome of wound healing is restoration to the pre-wound quality of health. In this study we investigate the cellular response to biological stimuli using functionalized nanofibers from the self-assembling peptide, RADA16. We demonstrate that adding different functional motifs to the RADA16 base peptide can influence the rate of proliferation and migration of keratinocytes and dermal fibroblasts. Relative to unmodified RADA16; the Collagen I motif significantly promotes cell migration, and reduces proliferation.

  2. Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration

    PubMed Central

    Bradshaw, Michael; Ho, Diwei; Fear, Mark W.; Gelain, Fabrizio; Wood, Fiona M.; Iyer, K. Swaminathan

    2014-01-01

    There is a need to develop economical, efficient and widely available therapeutic approaches to enhance the rate of skin wound healing. The optimal outcome of wound healing is restoration to the pre-wound quality of health. In this study we investigate the cellular response to biological stimuli using functionalized nanofibers from the self-assembling peptide, RADA16. We demonstrate that adding different functional motifs to the RADA16 base peptide can influence the rate of proliferation and migration of keratinocytes and dermal fibroblasts. Relative to unmodified RADA16; the Collagen I motif significantly promotes cell migration, and reduces proliferation. PMID:25384420

  3. Corneal Stromal Cells use both High- and Low-Contractility Migration Mechanisms in 3-D Collagen Matrices

    PubMed Central

    Kim, Areum; Zhou, Chengxin; Lakshman, Neema; Petroll, W. Matthew

    2012-01-01

    Corneal keratocyte migration can impact both corneal clarity and refractive outcome following injury or refractive surgery. In this study, we investigated how culture conditions, ECM properties, and Rho kinase activity regulate the mechanics of keratocyte migration, using a nested collagen matrix model. Time-lapse imaging demonstrated that both serum and PDGF stimulate keratocyte migration into the outer matrix. Although the velocity of cell migration was similar, cells in serum were bipolar and induced significant matrix deformation during migration, whereas PDGF induced extension of branching dendritic processes with smaller, more localized force generation. These differences in cell-induced matrix reorganization were verified with a global matrix contraction assay and confocal reflection imaging, using both bovine and rat tail collagen. When constructs were detached from the substrate to lower the effective stiffness, migration was significantly reduced in serum; but was unchanged in PDGF. These differences in migration mechanics were mediated, in part, by Rho kinase. Overall, corneal keratocytes can effectively migrate through collagen matrices using varying degrees of cellular force generation. Low-contractility migration may facilitate keratocyte repopulation of the stroma following surgery or injury, without altering the structural and mechanical properties that are critical to maintaining corneal transparency. PMID:22233682

  4. T-cell Migration, Search Strategies and Mechanisms

    PubMed Central

    Krummel, Matthew F; Bartumeus, Frederic; Gérard, Audrey

    2016-01-01

    T cell migration is essential for T cell responses, allowing for detection of cognate antigen at the surface of an Antigen-Presenting Cell (APC) and for interactions with other cells involved in the immune response. Although appearing random, growing evidence supports that T cell motility patterns are strategic and governed by mechanisms that are optimized for both activation-stage and environment-specific attributes. In this Opinion Article, we will discuss how to understand the combined effects of T cell- intrinsic and -extrinsic forces upon these motility patterns when viewed in highly complex tissues filled with other cells involved in parallel motility. In particular, we will examine how insights from ‘search theory’ describe T cell movement across exploitation-exploration gradients, in the context of activation versus effector function and in the context of lymph nodes versus peripheral tissues. PMID:26852928

  5. Controlled Cell Growth and Cell Migration in Periodic Mesoporous Organosilica/Alginate Nanocomposite Hydrogels.

    PubMed

    Seda Kehr, Nermin; Riehemann, Kristina

    2016-01-21

    Nanocomposite (NC) hydrogels with different periodic mesoporous organosilica (PMO) concentrations and a NC hydrogel bilayer with various PMO concentrations inside the layers of the hydrogel matrix are prepared. The effect of the PMO concentration on cell growth and migration of cells is reported. The cells migrate in the bilayer NC hydrogel towards higher PMO concentrations and from cell culture plates to NC hydrogel scaffolds. PMID:26648333

  6. The role and regulation of blebs in cell migration

    PubMed Central

    Paluch, Ewa K; Raz, Erez

    2013-01-01

    Blebs are cellular protrusions that have been shown to be instrumental for cell migration in development and disease. Bleb expansion is driven by hydrostatic pressure generated in the cytoplasm by the contractile actomyosin cortex. The mechanisms of bleb formation thus fundamentally differ from the actin polymerization-based mechanisms responsible for lamellipodia expansion. In this review, we summarize recent findings relevant for the mechanics of bleb formation and the underlying molecular pathways. We then review the processes involved in determining the type of protrusion formed by migrating cells, in particular in vivo, in the context of embryonic development. Finally, we discuss how cells utilize blebs for their forward movement in the presence or absence of strong substrate attachment. PMID:23786923

  7. Leukocyte-specific protein 1 regulates T-cell migration in rheumatoid arthritis.

    PubMed

    Hwang, Seong-Hye; Jung, Seung-Hyun; Lee, Saseong; Choi, Susanna; Yoo, Seung-Ah; Park, Ji-Hwan; Hwang, Daehee; Shim, Seung Cheol; Sabbagh, Laurent; Kim, Ki-Jo; Park, Sung Hwan; Cho, Chul-Soo; Kim, Bong-Sung; Leng, Lin; Montgomery, Ruth R; Bucala, Richard; Chung, Yeun-Jun; Kim, Wan-Uk

    2015-11-24

    Copy number variations (CNVs) have been implicated in human diseases. However, it remains unclear how they affect immune dysfunction and autoimmune diseases, including rheumatoid arthritis (RA). Here, we identified a novel leukocyte-specific protein 1 (LSP1) deletion variant for RA susceptibility located in 11p15.5. We replicated that the copy number of LSP1 gene is significantly lower in patients with RA, which correlates positively with LSP1 protein expression levels. Differentially expressed genes in Lsp1-deficient primary T cells represent cell motility and immune and cytokine responses. Functional assays demonstrated that LSP1, induced by T-cell receptor activation, negatively regulates T-cell migration by reducing ERK activation in vitro. In mice with T-cell-dependent chronic inflammation, loss of Lsp1 promotes migration of T cells into the target tissues as well as draining lymph nodes, exacerbating disease severity. Moreover, patients with RA show diminished expression of LSP1 in peripheral T cells with increased migratory capacity, suggesting that the defect in LSP1 signaling lowers the threshold for T-cell activation. To our knowledge, our work is the first to demonstrate how CNVs result in immune dysfunction and a disease phenotype. Particularly, our data highlight the importance of LSP1 CNVs and LSP1 insufficiency in the pathogenesis of RA and provide previously unidentified insights into the mechanisms underlying T-cell migration toward the inflamed synovium in RA. PMID:26554018

  8. Chemokine-guided cell migration and motility in zebrafish development

    PubMed Central

    Bussmann, Jeroen; Raz, Erez

    2015-01-01

    Chemokines are vertebrate-specific, structurally related proteins that function primarily in controlling cell movements by activating specific 7-transmembrane receptors. Chemokines play critical roles in a large number of biological processes and are also involved in a range of pathological conditions. For these reasons, chemokines are at the focus of studies in developmental biology and of clinically oriented research aimed at controlling cancer, inflammation, and immunological diseases. The small size of the zebrafish embryos, their rapid external development, and optical properties as well as the large number of eggs and the fast expansion in genetic tools available make this model an extremely useful one for studying the function of chemokines and chemokine receptors in an in vivo setting. Here, we review the findings relevant to the role that chemokines play in the context of directed single-cell migration, primarily in neutrophils and germ cells, and compare it to the collective cell migration of the zebrafish lateral line. We present the current knowledge concerning the formation of the chemokine gradient, its interpretation within the cell, and the molecular mechanisms underlying the cellular response to chemokine signals during directed migration. PMID:25762592

  9. β-PIX is critical for transplanted mesenchymal stromal cell migration.

    PubMed

    Koh, Seong-Ho; Huh, Yong-Min; Noh, Min Young; Kim, Hyun Young; Kim, Kyung Suk; Lee, Eun-Sook; Ko, Hyun-Ju; Cho, Goang Won; Yoo, A Rum; Song, Ho-Taek; Hwang, Sejin; Lee, Kwangyeol; Haam, Seungjoo; Frank, Joseph A; Suh, Jin-Suck; Kim, Seung Hyun

    2012-07-20

    Bone marrow-derived mesenchymal stromal cells (MSCs) have been used successfully as a source of stem cells for treating neurodegenerative diseases. However, for reasons that are not clear, autologous MSC transplants have not yielded successful results in human trials. To test one possible reason, we compared the migratory ability of MSCs from amyotrophic lateral sclerosis (ALS) patients with those of healthy controls. We found that MSCs derived from ALS patients (ALS-MSCs) had a reduced ability to migrate, which may explain why autologous transplantation is not successful. We also found that expression of one of the intracellular factors implicated in migration, β-PIX, was significantly reduced in ALS-MSCs compared with healthy stem cells. Restoration of β-PIX expression by genetic manipulation restored the migratory ability of ALS-MSCs, and inhibition of β-PIX expression with shRNA reduced the migration of healthy MSCs. We suggest that transplantation of allogeneic or genetically modified autologous stem cells might be a more promising strategy for ALS patients than transplantation of autologous stem cells. PMID:22087847

  10. Migration of Drosophila intestinal stem cells across organ boundaries.

    PubMed

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-05-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules ('renal stem cells') has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside. PMID:23571215

  11. Macrophage Migration Inhibitory Factor Inhibits the Migration of Cartilage End Plate-Derived Stem Cells by Reacting with CD74

    PubMed Central

    Xiong, Cheng-jie; Huang, Bo; Zhou, Yue; Cun, Yan-ping; Liu, Lan-tao; Wang, Jian; Li, Chang-qing; Pan, Yong; Wang, Hai

    2012-01-01

    Background Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that regulates inflammatory reactions and the pathophysiology of many inflammatory diseases. Intervertebral disc (IVD) degeneration is characterized by an inflammatory reaction, but the potential role of MIF in IVD degeneration has not been determined. Recent studies have shown that MIF and its receptor, CD74, are involved in regulating the migration of human mesenchymal stem cells (MSCs); Thus, MIF might impair the ability of mesenchymal stem cells (MSCs) to home to injured tissues. Our previous studies indicated that cartilage endplate (CEP)-derived stem cells (CESCs) as a type of MSCs exist in human degenerate IVDs. Here, we investigate the role of MIF in regulating the migration of CESCs. Methods and Findings CESCs were isolated and identified. We have shown that MIF was distributed in human degenerate IVD tissues and was subject to regulation by the pro-inflammatory cytokine TNF-α. Furthermore, in vitro cell migration assays revealed that nucleus pulposus (NP) cells inhibited the migration of CESCs in a number-dependent manner, and ELISA assays revealed that the amount of MIF in conditioned medium (CM) was significantly increased as a function of increasing cell number. Additionally, recombinant human MIF (r-MIF) inhibited the migration of CESCs in a dose-dependent manner. CESCs migration was restored when an antagonist of MIF, (S, R)-3(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), was added. Finally, a CD74 activating antibody (CD74Ab) was used to examine the effect of CD74 on CESCs motility and inhibited the migration of CESCs in a dose-dependent manner. Conclusions We have identified and characterized a novel regulatory mechanism governing cell migration during IVD degeneration. The results will benefit understanding of another possible mechanism for IVD degeneration, and might provide a new method to repair degenerate IVD by enhancing CESCs

  12. Optogenetic approaches to cell migration and beyond

    PubMed Central

    Weitzman, Matthew; Hahn, Klaus M.

    2014-01-01

    Optogenetics, the use of genetically encoded tools to control protein function with light, can generate localized changes in signaling within living cells and animals. For years it has been focused on channel proteins for neurobiology, but has recently expanded to cover many different types of proteins, using a broad array of different protein engineering approaches. These methods have largely been directed at proteins involved in motility, cytoskeletal regulation and gene expression. This review provides a survey of non-channel proteins that have been engineered for optogenetics. Existing molecules are used to illustrate the advantages and disadvantages of the many imaginative new approaches that the reader can use to create light-controlled proteins. PMID:25216352

  13. Aquaporin-5: A Marker Protein for Proliferation and Migration of Human Breast Cancer Cells

    PubMed Central

    Jung, Hyun Jun; Park, Ji-Young; Jeon, Hyo-Sung; Kwon, Tae-Hwan

    2011-01-01

    Aquaporin (AQP) is a family of transmembrane proteins for water transport. Recent studies revealed that AQPs are likely to play a role in tumor progression and invasion. We aimed to examine the potential role of AQP5 in the progression of human breast cancer cells. Expression of AQP5 mRNA and protein was seen in human breast cancer cell line (both MCF7 and MDA-MB-231) by RT-PCR and immunoblotting analysis. Immunoperoxidase labeling of AQP5 was observed at ductal epithelial cells of human breast tissues. In benign tumor, AQP5 labeling was mainly seen at the apical domains of ductal epithelial cells. In contrast, in invasive ductal carcinoma, prominent AQP5 labeling was associated with cancer cells, whereas some ducts were unlabeled and apical polarity of AQP5 in ducts was lost. Cell proliferation (BrdU incorporation assay) and migration of MCF7 cells were significantly attenuated by lentivirus-mediated AQP5-shRNA transduction. Hyperosmotic stress induced by sorbitol treatment (100 mM, 24 h) reduced AQP5 expression in MCF7 cells, which was also associated with a significant reduction in cell proliferation and migration. Taken together, prominent AQP5 expression in breast cancer cells with the loss of polarity of ductal epithelial cells was seen during the progression of breast carcinoma. shRNA- or hyperosmotic stress-induced reduction in AQP5 expression of MCF7 cells was associated with significantly reduced cell proliferation and migration. In conclusion, AQP5 overexpression is likely to play a role in cell growth and metastasis of human breast cancer and could be a novel target for anti-breast cancer treatment. PMID:22145049

  14. AHNAK is highly expressed and plays a key role in cell migration and invasion in mesothelioma.

    PubMed

    Sudo, Hitomi; Tsuji, Atsushi B; Sugyo, Aya; Abe, Masaaki; Hino, Okio; Saga, Tsuneo

    2014-02-01

    The worldwide incidence of the highly aggressive tumor mesothelioma is expected to increase. Mesothelioma is classified into three main histological subtypes: epithelioid, sarcomatoid and biphasic. Although the pathological diagnostic markers for epithelioid are established, to date no adequate marker for sarcomatoid mesothelioma has been found. Thus, a reliable diagnostic marker of sarcomatoid mesothelioma is necessary. In this study, to identify an unknown protein with 120 kDa expressed only in the mesothelioma cell line 211H, we conducted proteomic analysis and found five candidate proteins. One such protein, AHNAK, was highly expressed in all seven mesothelioma cell lines (211H, H28, H226, H2052, H2452, MESO1 and MESO4), but not in the mesothelial cell line MeT-5A by RT-PCR and immunofluorescence staining. Furthermore, we confirmed high AHNAK expression not only in xenografts but also in human mesothelioma specimens including sarcomatoid, epithelioid and biphasic mesothelioma using immunohistochemical staining. These findings suggest that AHNAK has the potential to be a new marker for detecting mesothelioma. Since AHNAK is involved in cell migration and invasion in other metastatic tumor cells, we conducted migration and invasion assays in mesothelioma cell lines. The number of migrating cells in six of seven mesothelioma cell lines and the number of invading cells in all seven cell lines were significantly increased compared with those in MeT-5A. Knockdown of AHNAK significantly reduced the cell migration and invasion ability in all seven mesothelioma cell lines. These results support further clinical evaluation of the association of AHNAK and metastasis in mesothelioma. PMID:24253341

  15. Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells.

    PubMed

    van Alphen, Lieke B; Bleumink-Pluym, Nancy M C; Rochat, Klazina D; van Balkom, Bas W M; Wösten, Marc M S M; van Putten, Jos P M

    2008-01-01

    The bacterial pathogen Campylobacter jejuni invades mucosal cells via largely undefined and rather inefficient (0.01-2 bacteria per cell) mechanisms. Here we report a novel, highly efficient C. jejuni infection pathway resulting in 10-15 intracellular bacteria per cell within 3 h of infection. Electron microscopy, pulse-chase infection assays and time-lapse multiphoton laser confocal microscopy demonstrated that the mechanism involved active and rapid migration of the pathogen into the subcellular space (termed 'subvasion'), followed by bacterial entry ('invasion') at the cell basis. Efficient subvasion was maximal after repeated rounds of selection for the subvasive phenotype. Targeted mutagenesis indicated that the CadF, JlpA or PEB1 adhesins were not required. Dissection of the selected and parental phenotypes by SDS-PAGE yielded comparable capsule polysaccharide and lipooligosaccharide profiles. Proteomics revealed reduced amounts of the chemotaxis protein CheW for the subvasive phenotype. Swarming assays confirmed that the selected phenotype exhibited altered migration behaviour. Introduction of a plasmid carrying chemotaxis genes into the subvasive strain yielded wild-type subvasion levels and migration behaviour. These results indicate that alterations in the bacterial migration machinery enable C. jejuni to actively penetrate the subcellular space and gain access to the cell interior with unprecedented efficiency. PMID:18052944

  16. The Origin And Migration Of Primordial Germ Cells In Sturgeons

    PubMed Central

    Saito, Taiju; Pšenička, Martin; Goto, Rie; Adachi, Shinji; Inoue, Kunio; Arai, Katsutoshi; Yamaha, Etsuro

    2014-01-01

    Primordial germ cells (PGCs) arise elsewhere in the embryo and migrate into developing gonadal ridges during embryonic development. In several model animals, formation and migration patterns of PGCs have been studied, and it is known that these patterns vary. Sturgeons (genus Acipenser) have great potential for comparative and evolutionary studies of development. Sturgeons belong to the super class Actinoptergii, and their developmental pattern is similar to that of amphibians, although their phylogenetic position is an out-group to teleost fishes. Here, we reveal an injection technique for sturgeon eggs allowing visualization of germplasm and PGCs. Using this technique, we demonstrate that the PGCs are generated at the vegetal pole of the egg and they migrate on the yolky cell mass toward the gonadal ridge. We also provide evidence showing that PGCs are specified by inheritance of maternally supplied germplasm. Furthermore, we demonstrate that the migratory mechanism is well-conserved between sturgeon and other remotely related teleosts, such as goldfish, by a single PGCs transplantation (SPT) assay. The mode of PGCs specification in sturgeon is similar to that of anurans, but the migration pattern resembles that of teleosts. PMID:24505272

  17. MMP-9-hemopexin domain hampers adhesion and migration of colorectal cancer cells.

    PubMed

    Burg-Roderfeld, M; Roderfeld, M; Wagner, S; Henkel, C; Grötzinger, J; Roeb, E

    2007-04-01

    Matrix metalloproteinases (MMPs), in particular MMP-2 and MMP-9, are involved in colon cancer progression and metastasis due to their ability to degrade extracellular matrix (ECM) components. In previous studies we described the MMP-9 hemopexin like domain (MMP-9-PEX) as an MMP-9 antagonist. In the present study it was examined whether recombinant MMP-9-PEX has an inhibitory effect on migration and adhesion of colorectal carcinoma cells. Furthermore, we searched for MMP-9 substrate binding sites within the MMP-9-PEX by surface plasmon resonance. Migration of SW620 and LS174 cells was investigated in a modified Boyden chamber assay. In the presence of 0.2 microg/ml MMP-9-PEX migration of SW620 was decreased by 34%, while addition of 0.4 microg/ml diminished migration by 56%. Migration of LS174 cells was not affected by MMP-9-PEX. Adhesion studies were performed on 96-well plates coated with gelatin, collagen type I, and laminin, respectively. In the presence of MMP-9-PEX, adhesion of SW620 cells to these coating substrates was significantly inhibited. Surface plasmon resonance studies revealed binding of collagen type I and IV, elastin, and fibrinogen to proMMP-9 as well as to MMP-9-PEX. However, equilibrium constants (Kd) indicated a higher affinity of proMMP-9 to the matrix proteins. This could indicate that there is more than one binding site for matrix components within the entire proMMP-9 molecule. Since migration and adhesion of metastatic colorectal carcinoma cells were reduced by MMP-9-PEX, this recombinant MMP-9 antagonist might be of therapeutical interest. PMID:17332939

  18. Force Matters: Biomechanical Regulation of Cell Invasion and Migration in Disease.

    PubMed

    Kai, FuiBoon; Laklai, Hanane; Weaver, Valerie M

    2016-07-01

    Atherosclerosis, cancer, and various chronic fibrotic conditions are characterized by an increase in the migratory behavior of resident cells and the enhanced invasion of assorted exogenous cells across a stiffened extracellular matrix (ECM). This stiffened scaffold aberrantly engages cellular mechanosignaling networks in cells, which promotes the assembly of invadosomes and lamellae for cell invasion and migration. Accordingly, deciphering the conserved molecular mechanisms whereby matrix stiffness fosters invadosome and lamella formation could identify therapeutic targets to treat fibrotic conditions, and reducing ECM stiffness could ameliorate disease progression. PMID:27056543

  19. Depletion of C3orf1/TIMMDC1 inhibits migration and proliferation in 95D lung carcinoma cells.

    PubMed

    Wu, Huiling; Wang, Wenbing; Xu, Huaxi

    2014-01-01

    In our previous study, we identified an association of high expression of c3orf1, also known as TIMMDC1 (translocase of inner mitochondrial membrane domain-containing protein 1), with metastatic characteristics in lung carcinoma cells. To investigate the preliminary function and mechanism of this mitochondrial protein, we depleted C3orf1 expression by introducing siRNA into 95D lung carcinoma cells. We demonstrated that C3orf1 depletion significantly suppressed 95D cell growth and migration. We confirmed C3orf1 localization in the inner mitochondrial membrane and showed that mitochondrial viability, membrane potential, and ATPase activity were remarkably reduced upon depletion of C3orf1. Microarray data indicated that genes involved in regulation of cell death, migration, and cell-cycle arrest were significantly altered after C3orf1 depletion for 48 h. The expression of genes involved in focal adhesion, ECM-receptor interaction, and p53-signaling pathways were notably altered. Furthermore, cell-cycle arrest genes such as CCNG2 and PTEN as well as genes involved in cell migration inhibition, such as TIMP3 and COL3A1, were upregulated after C3orf1 depletion in 95D cells. Concurrently, expression of the migration-promoting gene NUPR1 was markedly reduced, as confirmed by real-time PCR. We conclude that C3orf1 is critical for mitochondrial function, migration, and proliferation in 95D lung carcinoma cells. Depletion of C3orf1 inhibited cell migration and cell proliferation in association with upregulation of genes involved in cell-cycle arrest and cell migration inhibition. These results suggest that C3orf1 (TIMMDC1) may be a viable treatment target for lung carcinoma, and that further study of the role of this protein in lung carcinoma pathogenesis is justified. PMID:25391042

  20. Actein Inhibits Cell Proliferation and Migration in Human Osteosarcoma

    PubMed Central

    Chen, Zhi; Wu, Jingdong; Guo, Qinghao

    2016-01-01

    Background Osteosarcoma is one of the most common malignant bone cancers worldwide. Although the traditional chemotherapies have made some progression in the past decades, the mortality of osteosarcoma in children and adolescent is very high. Herein, the role of actein in osteosarcoma was explored. Material/Methods Cell viability assay was performed in osteosarcoma cell lines 143B and U2OS. Colony formation analysis was included when cells were treated with different doses of actin. Cell cycle assay was conducted to further examine the role of actein. Cell apoptotic rate and the relative activities of caspase-3, caspase-8, and caspase-9 were detected in 143B and U2OS osteosarcoma cells. Moreover, transwell assays were used to explore the effects of actein on cell metastasis. Results Actein significantly inhibited osteosarcoma cell viability in a time- and dose-dependent manner. Actein also dramatically suppressed the colony formation ability in osteosarcoma143B and U2OS cells. It was revealed that osteosarcoma cells were arrested in G0/G1 phase in the cell cycle progression and induced to apoptosis by administration of actein. The activities of pro-apoptotic factors such as caspase-3 and caspase-9 were significantly increased by actein. Furthermore, administration of actein decreased cell migrated and invasive abilities in both 143B and U2OS cell lines. Conclusions Actein inhibits tumor growth by inducing cell apoptosis in osteosarcoma. The inhibitive roles of actein in cell proliferation, migration and invasion suggest that actein may serve as a potential therapeutic agent in the treatment of osteosarcoma. PMID:27173526

  1. Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells

    PubMed Central

    Kilch, Tatiana; Jochum, Marcus Martin; Urban, Sabine Katharina; Jung, Volker; Stöckle, Michael; Rother, Karen; Greiner, Markus; Peinelt, Christine

    2015-01-01

    Impaired Ca2+ signaling in prostate cancer contributes to several cancer hallmarks, such as enhanced proliferation and migration and a decreased ability to induce apoptosis. Na+ influx via transient receptor potential melastatin 4 channel (TRPM4) can reduce store-operated Ca2+ entry (SOCE) by decreasing the driving force for Ca2+. In patients with prostate cancer, gene expression of TRPM4 is elevated. Recently, TRPM4 was identified as a cancer driver gene in androgen-insensitive prostate cancer. We investigated TRPM4 protein expression in cancer tissue samples from 20 patients with prostate cancer. We found elevated TRPM4 protein levels in prostatic intraepithelial neoplasia (PIN) and prostate cancer tissue compared to healthy tissue. In primary human prostate epithelial cells (hPEC) from healthy tissue and in the androgen-insensitive prostate cancer cell lines DU145 and PC3, TRPM4 mediated large Na+ currents. We demonstrated significantly increased SOCE after siRNA targeting of TRPM4 in hPEC and DU145 cells. In addition, knockdown of TRPM4 reduced migration but not proliferation of DU145 and PC3 cells. Taken together, our data identify TRPM4 as a regulator of SOCE in hPEC and DU145 cells, demonstrate a role for TRPM4 in cancer cell migration and suggest that TRPM4 is a promising potential therapeutic target. PMID:26496025

  2. Migration of Drosophila intestinal stem cells across organ boundaries

    PubMed Central

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules (‘renal stem cells’) has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside. PMID:23571215

  3. Semaphorin signals in cell adhesion and cell migration: functional role and molecular mechanisms.

    PubMed

    Casazza, Andrea; Fazzari, Pietro; Tamagnone, Luca

    2007-01-01

    Cell migration is pivotal in embryo development and in the adult. During development a wide range of progenitor cells travel over long distances before undergoing terminal differentiation. Moreover, the morphogenesis of epithelial tissues and of the cardiovascular system involves remodelling compact cell layers and sprouting of new tubular branches. In the adult, cell migration is essential for leucocytes involved in immune response. Furthermore, invasive and metastatic cancer cells have the distinctive ability to overcome normal tissue boundaries, travel in and out of blood vessels, and settle down in heterologous tissues. Cell migration normally follows strict guidance cues, either attractive, or inhibitory and repulsive. Semaphorins are a wide family of signals guiding cell migration during development and in the adult. Recent findings have established that semaphorin receptors, the plexins, govern cell migration by regulating integrin-based cell substrate adhesion and actin cytoskeleton dynamics, via specific monomeric GTPases. Plexins furthermore recruit tyrosine kinases in receptor complexes, which allows switching between multiple signaling pathways and functional outcomes. In this article, we will review the functional role of semaphorins in cell migration and the implicated molecular mechanisms controlling cell adhesion. PMID:17607949

  4. SENP1 regulates cell migration and invasion in neuroblastoma.

    PubMed

    Xiang-Ming, Yan; Zhi-Qiang, Xu; Ting, Zhang; Jian, Wang; Jian, Pan; Li-Qun, Yuan; Ming-Cui, Fu; Hong-Liang, Xia; Xu, Cao; Yun, Zhou

    2016-05-01

    Neuroblastoma (NB) is an embryonic solid tumor derived from precursor cells of the sympathetic nervous system, and accounts for 11% of childhood cancers and around 15% of cancer deaths in children. SUMOylation and deSUMOylation are dynamic mechanisms regulating a spectrum of protein activities. The SUMO proteases (SENP) remove SUMO conjugate from proteins, and their expression is deregulated in diverse cancers. However, nothing is known about the role of SENPs in NBL. In the present study, we found that SENP1 expression was significantly high in metastatic NB tissues compared with primary NB tissues. Overexpression of SENP1 promoted NB cells migration and invasion. Inhibition of SENP1 could significantly suppress NB cell migration and invasion. Moreover, we found that SENP1 could regulate the expression of CDH1, MMP9, and MMP2. In summary, the data presented here indicate a significant role of SENP1 in the regulation of cell migration and invasion in NB and suppress SENP1 expression as promising candidates for novel treatment strategies of NB. PMID:25816890

  5. The NANIVID: a new device for cancer cell migration studies

    NASA Astrophysics Data System (ADS)

    Raja, Waseem K.; Cady, Nathaniel C.; Castracane, James; Gligorijevic, Bojana; van Rheenen, Jacobus W.; Condeelis, John S.

    2008-02-01

    Cancerous tumors are dynamic microenvironments that require unique analytical tools for their study. Better understanding of tumor microenvironments may reveal mechanisms behind tumor progression and generate new strategies for diagnostic marker development, which can be used routinely in histopathological analysis. Previous studies have shown that cell invasion and intravasation are related to metastatic potential and have linked these activities to gene expression patterns seen in migratory and invasive tumor cells in vivo. Existing analytical methods for tumor microenvironments include collection of tumor cells through a catheter needle loaded with a chemical or protein attractant (chemoattractant). This method has some limitations and restrictions, including time constraints of cell collection, long term anesthetization, and in vivo imaging inside the catheter. In this study, a novel implantable device was designed to replace the catheter-based method. The 1.5mm x 0.5mm x 0.24mm device is designed to controllably release chemoattractants for stimulation of tumor cell migration and subsequent cell capture. Devices were fabricated using standard microfabrication techniques and have been shown to mediate controlled release of bovine serum albumin (BSA) and epidermal growth factor (EGF). Optically transparent indium tin oxide (ITO) electrodes have been incorporated into the device for impedance-based measurement of cell density and have been shown to be compatible with in vivo multi-photon imaging of cell migration.

  6. HMGCR positively regulated the growth and migration of glioblastoma cells.

    PubMed

    Qiu, Zhihua; Yuan, Wen; Chen, Tao; Zhou, Chenzhi; Liu, Chao; Huang, Yongkai; Han, Deqing; Huang, Qinghui

    2016-01-15

    The metabolic program of cancer cells is significant different from the normal cells, which makes it possible to develop novel strategies targeting cancer cells. Mevalonate pathway and its rate-limiting enzyme HMG-CoA reductase (HMGCR) have shown important roles in the progression of several cancer types. However, their roles in glioblastoma cells remain unknown. In this study, up-regulation of HMGCR in the clinical glioblastoma samples was observed. Forced expression of HMGCR promoted the growth and migration of U251 and U373 cells, while knocking down the expression of HMGCR inhibited the growth, migration and metastasis of glioblastoma cells. Molecular mechanism studies revealed that HMGCR positively regulated the expression of TAZ, an important mediator of Hippo pathway, and the downstream target gene connective tissue growth factor (CTGF), suggesting HMGCR might activate Hippo pathway in glioblastoma cells. Taken together, our study demonstrated the oncogenic roles of HMGCR in glioblastoma cells and HMGCR might be a promising therapeutic target. PMID:26432005

  7. LPP inhibits collective cell migration during lung cancer dissemination.

    PubMed

    Kuriyama, S; Yoshida, M; Yano, S; Aiba, N; Kohno, T; Minamiya, Y; Goto, A; Tanaka, M

    2016-02-25

    Lipoma preferred partner (LPP) is a LIM domain protein, which has multiple functions as an actin-binding protein and a transcriptional coactivator, and it has been suggested that LPP has some roles in cell migration or invasion, however, its role in cancer cells remains to be elucidated. Here, we showed that LPP degraded N-cadherin in lung cancer, PC14PE6 cells via regulating the expression of matrix metalloproteinase 15 (MMP-15), and loss-of-LPP increases collective cell migration (CCM) and dissemination consequently. Knockdown of LPP and its functional partner, Etv5, markedly restores the full-length N-cadherin and increases cell-cell adhesion. We investigated the common target of LPP and Etv5, and found that MMP-15 is transcribed as their direct transcriptional target. Furthermore, MMP-15 could directly digest the N-cadherin extracellular domain. LPP knockdown in PC14PE6 cells increases N-cadherin-dependent CCM in the three-dimensional collagen gel invasion assays, and promoted the dissemination of cancer cells when they were orthotopically implanted in nude mice. Immunohistochemistry of lung adenocarcinoma specimens revealed the heterogeneity of LPP intensity and complementary expression of LPP and N-cadherin in the primary tumors. These findings suggest that loss-of-LPP, Etv5 or MMP-15 can be a prognostic marker of increasing malignancy. PMID:26028032

  8. Baicalein inhibits the migration and invasive properties of human hepatoma cells

    SciTech Connect

    Chiu, Yung-Wei; Lin, Tseng-Hsi; Huang, Wen-Shih; Teng, Chun-Yuh; Liou, Yi-Sheng; Kuo, Wu-Hsien; Lin, Wea-Lung; Huang, Hai-I; Tung, Jai-Nien; Huang, Chih-Yang; Liu, Jer-Yuh; Wang, Wen-Hung; Hwang, Jin-Ming

    2011-09-15

    Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38 mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-{beta}. In addition, baicalein reduced the phosphorylation levels of PKC{alpha} and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: > Baicalein inhibits several essential steps in the onset of metastasis.

  9. MYADM regulates Rac1 targeting to ordered membranes required for cell spreading and migration.

    PubMed

    Aranda, Juan F; Reglero-Real, Natalia; Kremer, Leonor; Marcos-Ramiro, Beatriz; Ruiz-Sáenz, Ana; Calvo, María; Enrich, Carlos; Correas, Isabel; Millán, Jaime; Alonso, Miguel A

    2011-04-15

    Membrane organization into condensed domains or rafts provides molecular platforms for selective recruitment of proteins. Cell migration is a general process that requires spatiotemporal targeting of Rac1 to membrane rafts. The protein machinery responsible for making rafts competent to recruit Rac1 remains elusive. Some members of the MAL family of proteins are involved in specialized processes dependent on this type of membrane. Because condensed membrane domains are a general feature of the plasma membrane of all mammalian cells, we hypothesized that MAL family members with ubiquitous expression and plasma membrane distribution could be involved in the organization of membranes for cell migration. We show that myeloid-associated differentiation marker (MYADM), a protein with unique features within the MAL family, colocalizes with Rac1 in membrane protrusions at the cell surface and distributes in condensed membranes. MYADM knockdown (KD) cells had altered membrane condensation and showed deficient incorporation of Rac1 to membrane raft fractions and, similar to Rac1 KD cells, exhibited reduced cell spreading and migration. Results of rescue-of-function experiments by expression of MYADM or active Rac1L61 in cells knocked down for Rac1 or MYADM, respectively, are consistent with the idea that MYADM and Rac1 act on parallel pathways that lead to similar functional outcomes. PMID:21325632

  10. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway

    PubMed Central

    Rolón-Reyes, Kimberleve; Kucheryavykh, Yuriy V.; Cubano, Luis A.; Inyushin, Mikhail; Skatchkov, Serguei N.; Eaton, Misty J.; Harrison, Jeffrey K.; Kucheryavykh, Lilia Y.

    2015-01-01

    Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells. PMID:26098895

  11. Chemokine Receptor Type 4 Regulates Migration and Invasion of Trophectoderm Cell in the Human Blastocyst.

    PubMed

    Bao, Siyu; Li, Tianjie; Long, Xiaoyu; Zhang, Jinjuan; Zhao, Hongcui; Ren, Yun; Zhao, Yue; Li, Rong; Tan, Tao; Yu, Yang; Qiao, Jie

    2016-07-01

    Chemokine receptor type 4 (CXCR4) has been suggested to regulate cell migration and invasion in human somatic cells. However, its role in human oocytes and embryos has not been investigated directly. Here we show that CXCR4 mRNA was initially expressed at the 4-cell stage, and its expression gradually increased until the blastocyst stage, whereas its protein was detectable only after the 8-cell stage. In addition, CXCR4 mRNA and protein were expressed in the inner cell mass (ICM) and trophectoderm (TE) cell of the blastocyst. Furthermore, we collected embryos from women whose embryos had undergone successful implantation (SI) and those whose embryos had failed implantation (FI) in their fresh cycles. TE cells from the FI group had reduced CXCR4 mRNA expression relative to those from the SI group but not in the ICM. Through ICM replacement, we constructed mouse blastocysts in which Cxcr4 was specifically knocked down in TE cells to simulate the CXCR4 expression profile of human blastocysts from the FI group. In this case, we found that the implantation rate significantly decreased after transfer of reconstructed embryos. Bioinformatic analysis indicated that CXCR4 can induce cell apoptosis and migration mediated by Rho signaling. This hypothesis was confirmed by invasion and migration experiments, using a human trophoblast cell line. The present study is the first to explore the characteristics of CXCR4 expression using human oocytes and embryos and suggests that CXCR4 is required upstream of TE cell apoptosis and migration. CXCR4 expression is a potential biomarker to predict implantation competence during assisted reproductive technologies. PMID:27146031

  12. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway.

    PubMed

    Rolón-Reyes, Kimberleve; Kucheryavykh, Yuriy V; Cubano, Luis A; Inyushin, Mikhail; Skatchkov, Serguei N; Eaton, Misty J; Harrison, Jeffrey K; Kucheryavykh, Lilia Y

    2015-01-01

    Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells. PMID:26098895

  13. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors.

    PubMed

    Riehl, Brandon D; Lee, Jeong Soon; Ha, Ligyeom; Lim, Jung Yul

    2015-03-01

    The study of mesenchymal stem cell (MSC) migration under flow conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcome in stem-cell-based cell therapy and regenerative medicine. We used peer-reviewed open source software to develop methods for efficiently and accurately tracking, measuring and processing cell migration as well as morphology. Using these tools, we investigated MSC migration under flow-induced shear and tested the molecular mechanism with stable knockdown of focal adhesion kinase (FAK) and RhoA kinase (ROCK). Under steady flow, MSCs migrated following the flow direction in a shear stress magnitude-dependent manner, as assessed by root mean square displacement and mean square displacement, motility coefficient and confinement ratio. Silencing FAK in MSCs suppressed morphology adaptation capability and reduced cellular motility for both static and flow conditions. Interestingly, ROCK silencing significantly increased migration tendency especially under flow. Blocking ROCK, which is known to reduce cytoskeletal tension, may lower the resistance to skeletal remodelling during the flow-induced migration. Our data thus propose a potentially differential role of focal adhesion and cytoskeletal tension signalling elements in MSC migration under flow shear. PMID:25589570

  14. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors

    PubMed Central

    Riehl, Brandon D.; Lee, Jeong Soon; Ha, Ligyeom; Lim, Jung Yul

    2015-01-01

    The study of mesenchymal stem cell (MSC) migration under flow conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcome in stem-cell-based cell therapy and regenerative medicine. We used peer-reviewed open source software to develop methods for efficiently and accurately tracking, measuring and processing cell migration as well as morphology. Using these tools, we investigated MSC migration under flow-induced shear and tested the molecular mechanism with stable knockdown of focal adhesion kinase (FAK) and RhoA kinase (ROCK). Under steady flow, MSCs migrated following the flow direction in a shear stress magnitude-dependent manner, as assessed by root mean square displacement and mean square displacement, motility coefficient and confinement ratio. Silencing FAK in MSCs suppressed morphology adaptation capability and reduced cellular motility for both static and flow conditions. Interestingly, ROCK silencing significantly increased migration tendency especially under flow. Blocking ROCK, which is known to reduce cytoskeletal tension, may lower the resistance to skeletal remodelling during the flow-induced migration. Our data thus propose a potentially differential role of focal adhesion and cytoskeletal tension signalling elements in MSC migration under flow shear. PMID:25589570

  15. The cyclophilin-binding agent Sanglifehrin A is a dendritic cell chemokine and migration inhibitor.

    PubMed

    Immecke, Sabrina N; Baal, Nelli; Wilhelm, Jochen; Bechtel, Juliane; Knoche, Angela; Bein, Gregor; Hackstein, Holger

    2011-01-01

    Sanglifehrin A (SFA) is a cyclophilin-binding immunosuppressant but the immunobiology of action is poorly understood. We and others have reported that SFA inhibits IL-12 production and antigen uptake in dendritic cells (DC) and exhibits lower activity against lymphocytes. Here we show that SFA suppresses DC chemokine production and migration. Gene expression analysis and subsequent protein level confirmation revealed that SFA suppressed CCL5, CCL17, CCL19, CXCL9 and CXCL10 expression in human monocyte-derived DC (moDC). A systems biology analysis, Onto Express, confirmed that SFA interferes with chemokine-chemokine receptor gene expression with the highest impact. Direct comparison with the related agent cyclosporine A (CsA) and dexamethasone indicated that SFA uniquely suppresses moDC chemokine expression. Competitive experiments with a 100-fold molar excess of CsA and with N-Methyl-Val-4-cyclosporin, representing a nonimmunosuppressive derivative of CsA indicated chemokine suppression through a cyclophilin-A independent pathway. Functional assays confirmed reduced migration of CD4+ Tcells and moDCs to supernatant of SFA-exposed moDCs. Vice versa, SFA-exposed moDC exhibited reduced migration against CCL19. Moreover, SFA suppressed expression of the ectoenzyme CD38 that was reported to regulate DC migration and cytokine production. These results identify SFA as a DC chemokine and migration inhibitor and provide novel insight into the immunobiology of SFA. PMID:21483789

  16. The Cyclophilin-Binding Agent Sanglifehrin A Is a Dendritic Cell Chemokine and Migration Inhibitor

    PubMed Central

    Immecke, Sabrina N.; Baal, Nelli; Wilhelm, Jochen; Bechtel, Juliane; Knoche, Angela; Bein, Gregor; Hackstein, Holger

    2011-01-01

    Sanglifehrin A (SFA) is a cyclophilin-binding immunosuppressant but the immunobiology of action is poorly understood. We and others have reported that SFA inhibits IL-12 production and antigen uptake in dendritic cells (DC) and exhibits lower activity against lymphocytes. Here we show that SFA suppresses DC chemokine production and migration. Gene expression analysis and subsequent protein level confirmation revealed that SFA suppressed CCL5, CCL17, CCL19, CXCL9 and CXCL10 expression in human monocyte-derived DC (moDC). A systems biology analysis, Onto Express, confirmed that SFA interferes with chemokine-chemokine receptor gene expression with the highest impact. Direct comparison with the related agent cyclosporine A (CsA) and dexamethasone indicated that SFA uniquely suppresses moDC chemokine expression. Competitive experiments with a 100-fold molar excess of CsA and with N-Methyl-Val-4-cyclosporin, representing a nonimmunosuppressive derivative of CsA indicated chemokine suppression through a cyclophilin-A independent pathway. Functional assays confirmed reduced migration of CD4+ Tcells and moDCs to supernatant of SFA-exposed moDCs. Vice versa, SFA-exposed moDC exhibited reduced migration against CCL19. Moreover, SFA suppressed expression of the ectoenzyme CD38 that was reported to regulate DC migration and cytokine production. These results identify SFA as a DC chemokine and migration inhibitor and provide novel insight into the immunobiology of SFA. PMID:21483789

  17. Capturing relevant extracellular matrices for investigating cell migration

    PubMed Central

    Keely, Patricia; Nain, Amrinder

    2015-01-01

    Much progress in understanding cell migration has been determined by using classic two-dimensional (2D) tissue culture platforms. However, increasingly, it is appreciated that certain properties of cell migration in vivo are not represented by strictly 2D assays. There is much interest in creating relevant three-dimensional (3D) culture environments and engineered platforms to better represent features of the extracellular matrix and stromal microenvironment that are not captured in 2D platforms. Important to this goal is a solid understanding of the features of the extracellular matrix—composition, stiffness, topography, and alignment—in different tissues and disease states and the development of means to capture these features PMID:26918156

  18. 20(S)-Protopanaxadiol saponins inhibit SKOV3 cell migration

    PubMed Central

    LI, BIN; CHEN, DAOMEI; LI, WANYI; XIAO, DAN

    2016-01-01

    While the anti-tumor actions of ginsenosides from Panax notoginseng are well-studied, the anti-proliferative activity of 20(S)-protopanaxadiol saponins (PDS) in Sanchi ginseng on human ovarian cancer has not been reported, nor has its effect on migration of SKOV3 cells been investigated. In the present study, a wound-healing assay indicated that PDS inhibited the migration of SKOV3 cells, and a Matrigel™ tube formation assay demonstrated the presence of inhibitory tube-structures following treatment with PDS. To date, there are no previous reports on the regulation of osteopontin (OPN), a glycophosphoprotein cytokine frequently expressed in ovarian carcinoma effusions by PDS. A reduction in the expression of OPN following PDS-treatment was observed using immunohistochemical and western blot experiments. These results suggest that PDS may be useful in the search for a potential ovarian cancer treatment. PMID:26998063

  19. Directional collective cell migration emerges as a property of cell interactions.

    PubMed

    Woods, Mae L; Carmona-Fontaine, Carlos; Barnes, Chris P; Couzin, Iain D; Mayor, Roberto; Page, Karen M

    2014-01-01

    Collective cell migration is a fundamental process, occurring during embryogenesis and cancer metastasis. Neural crest cells exhibit such coordinated migration, where aberrant motion can lead to fatality or dysfunction of the embryo. Migration involves at least two complementary mechanisms: contact inhibition of locomotion (a repulsive interaction corresponding to a directional change of migration upon contact with a reciprocating cell), and co-attraction (a mutual chemoattraction mechanism). Here, we develop and employ a parameterized discrete element model of neural crest cells, to investigate how these mechanisms contribute to long-range directional migration during development. Motion is characterized using a coherence parameter and the time taken to reach, collectively, a target location. The simulated cell group is shown to switch from a diffusive to a persistent state as the response-rate to co-attraction is increased. Furthermore, the model predicts that when co-attraction is inhibited, neural crest cells can migrate into restrictive regions. Indeed, inhibition of co-attraction in vivo and in vitro leads to cell invasion into restrictive areas, confirming the prediction of the model. This suggests that the interplay between the complementary mechanisms may contribute to guidance of the neural crest. We conclude that directional migration is a system property and does not require action of external chemoattractants. PMID:25181349

  20. Piperlongumine inhibits migration of glioblastoma cells via activation of ROS-dependent p38 and JNK signaling pathways.

    PubMed

    Liu, Qian Rong; Liu, Ju Mei; Chen, Yong; Xie, Xiao Qiang; Xiong, Xin Xin; Qiu, Xin Yao; Pan, Feng; Liu, Di; Yu, Shang Bin; Chen, Xiao Qian

    2014-01-01

    Piperlongumine (PL) is recently found to kill cancer cells selectively and effectively via targeting reactive oxygen species (ROS) responses. To further explore the therapeutic effects of PL in cancers, we investigated the role and mechanisms of PL in cancer cell migration. PL effectively inhibited the migration of human glioma (LN229 or U87 MG) cells but not normal astrocytes in the scratch-wound culture model. PL did not alter EdU(+)-cells and cdc2, cdc25c, or cyclin D1 expression in our model. PL increased ROS (measured by DCFH-DA), reduced glutathione, activated p38 and JNK, increased IκBα, and suppressed NFκB in LN229 cells after scratching. All the biological effects of PL in scratched LN229 cells were completely abolished by the antioxidant N-acetyl-L-cysteine (NAC). Pharmacological administration of specific p38 (SB203580) or JNK (SP600125) inhibitors significantly reduced the inhibitory effects of PL on LN229 cell migration and NF κ B activity in scratch-wound and/or transwell models. PL prevented the deformation of migrated LN229 cells while NAC, SB203580, or SP600125 reversed PL-induced morphological changes of migrated cells. These results suggest potential therapeutic effects of PL in the treatment and prevention of highly malignant tumors such as glioblastoma multiforme (GBM) in the brain by suppressing tumor invasion and metastasis. PMID:24967005

  1. TIMP3 regulates osteosarcoma cell migration, invasion, and chemotherapeutic resistances.

    PubMed

    Han, Xiu-Guo; Li, Yan; Mo, Hui-Min; Li, Kang; Lin, Du; Zhao, Chang-Qing; Zhao, Jie; Tang, Ting-Ting

    2016-07-01

    Tissue inhibitors of metalloproteinases (TIMPs) inhibit matrix metalloproteinases (MMPs) to limit degradation of the extracellular matrix. Low levels of TIMP3 have been demonstrated in cancer tissues at advanced clinical stages, with positive distant metastasis and chemotherapeutic resistance. We examined the role of TIMP3 in osteosarcoma (OS) cell invasiveness and chemoresistance. TIMP3 was overexpressed or knocked down in the human OS cell lines Saos2 and MG63. Cell migration and invasion capacities were then evaluated using Transwell assays, and resistance to cisplatin was assessed by CCK-8 assay and flow cytometry. Real-time PCR and western blotting were used to investigate activation of signaling pathways downstream of TIMP3. Overexpression of TIMP3 inhibited the migration and invasion of Saos2 and MG63 cells, while knockdown of TIMP3 had the opposite effect. Cell survival after exposure to cisplatin was inhibited by TIMP3 overexpression in both Saos2 and MG63 cells. Consistently, downregulation of TIMP3 gene expression significantly decreased the sensitivity of OS cells to cisplatin treatment. MMP1, MMP2, Bcl-2, and Akt1 were all downregulated following TIMP3 overexpression, while Bax and cleaved caspase-3 were upregulated. TIMP3 knockdown had opposite effects on the regulation of these genes. Taken together, our findings suggest TIMP3 as a new target for inhibition of OS progression and chemotherapeutic resistance. PMID:26749283

  2. Novel interactions between erythroblast macrophage protein and cell migration.

    PubMed

    Javan, Gulnaz T; Can, Ismail; Yeboah, Fred; Lee, Youngil; Soni, Shivani

    2016-09-01

    Erythroblast macrophage protein is a novel protein known to mediate attachment of erythroid cells to macrophages to form erythroblastic islands in bone marrow during erythropoiesis. Emp-null macrophages are small with round morphologies, and lack cytoplasmic projections which imply immature structure. The role of Emp in macrophage development and function is not fully elucidated. Macrophages perform varied functions (e.g. homeostasis, erythropoiesis), and are implicated in numerous pathophysiological conditions such as cellular malignancy. The objective of the current study is to investigate the interaction of Emp with cytoskeletal- and cell migration-associated proteins involved in macrophage functions. A short hairpin RNA lentiviral system was use to down-regulate the expression of Emp in macrophage cells. A cell migration assay revealed that the relocation of macrophages was significantly inhibited when Emp expression was decreased. To further analyze changes in gene expression related to cell motility, PCR array was performed by down-regulating Emp expression. The results indicated that expression of mitogen-activated protein kinase 1 and thymoma viral proto-oncogene 1 were significantly higher when Emp was down-regulated. The results implicate Emp in abnormal cell motility, thus, warrants to assess its role in cancer where tumor cell motility is required for invasion and metastasis. PMID:27519940

  3. Modeling tumor cell migration: From microscopic to macroscopic models

    NASA Astrophysics Data System (ADS)

    Deroulers, Christophe; Aubert, Marine; Badoual, Mathilde; Grammaticos, Basil

    2009-03-01

    It has been shown experimentally that contact interactions may influence the migration of cancer cells. Previous works have modelized this thanks to stochastic, discrete models (cellular automata) at the cell level. However, for the study of the growth of real-size tumors with several million cells, it is best to use a macroscopic model having the form of a partial differential equation (PDE) for the density of cells. The difficulty is to predict the effect, at the macroscopic scale, of contact interactions that take place at the microscopic scale. To address this, we use a multiscale approach: starting from a very simple, yet experimentally validated, microscopic model of migration with contact interactions, we derive a macroscopic model. We show that a diffusion equation arises, as is often postulated in the field of glioma modeling, but it is nonlinear because of the interactions. We give the explicit dependence of diffusivity on the cell density and on a parameter governing cell-cell interactions. We discuss in detail the conditions of validity of the approximations used in the derivation, and we compare analytic results from our PDE to numerical simulations and to some in vitro experiments. We notice that the family of microscopic models we started from includes as special cases some kinetically constrained models that were introduced for the study of the physics of glasses, supercooled liquids, and jamming systems.

  4. Blood flow and blood cell interactions and migration in microvessels

    NASA Astrophysics Data System (ADS)

    Fedosov, Dmitry; Fornleitner, Julia; Gompper, Gerhard

    2011-11-01

    Blood flow in microcirculation plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network which is characteristic for the microcirculation. We employ the Dissipative Particle Dynamics method to model blood as a suspension of deformable cells represented by a viscoelastic spring-network which incorporates appropriate mechanical and rheological cell-membrane properties. Blood flow is investigated in idealized geometries. In particular, migration of blood cells and their distribution in blood flow are studied with respect to various conditions such as hematocrit, flow rate, red blood cell aggregation. Physical mechanisms which govern cell migration in microcirculation and, in particular, margination of white blood cells towards the vessel wall, will be discussed. In addition, we characterize blood flow dynamics and quantify hemodynamic resistance. D.F. acknowledges the Humboldt Foundation for financial support.

  5. Golgi Anti-apoptotic Proteins Are Highly Conserved Ion Channels That Affect Apoptosis and Cell Migration*

    PubMed Central

    Carrara, Guia; Saraiva, Nuno; Parsons, Maddy; Byrne, Bernadette; Prole, David L.; Taylor, Colin W.; Smith, Geoffrey L.

    2015-01-01

    Golgi anti-apoptotic proteins (GAAPs) are multitransmembrane proteins that are expressed in the Golgi apparatus and are able to homo-oligomerize. They are highly conserved throughout eukaryotes and are present in some prokaryotes and orthopoxviruses. Within eukaryotes, GAAPs regulate the Ca2+ content of intracellular stores, inhibit apoptosis, and promote cell adhesion and migration. Data presented here demonstrate that purified viral GAAPs (vGAAPs) and human Bax inhibitor 1 form ion channels and that vGAAP from camelpox virus is selective for cations. Mutagenesis of vGAAP, including some residues conserved in the recently solved structure of a related bacterial protein, BsYetJ, altered the conductance (E207Q and D219N) and ion selectivity (E207Q) of the channel. Mutation of residue Glu-207 or -178 reduced the effects of GAAP on cell migration and adhesion without affecting protection from apoptosis. In contrast, mutation of Asp-219 abrogated the anti-apoptotic activity of GAAP but not its effects on cell migration and adhesion. These results demonstrate that GAAPs are ion channels and define residues that contribute to the ion-conducting pore and affect apoptosis, cell adhesion, and migration independently. PMID:25713081

  6. Directional cell migration, but not proliferation, drives hair placode morphogenesis.

    PubMed

    Ahtiainen, Laura; Lefebvre, Sylvie; Lindfors, Päivi H; Renvoisé, Elodie; Shirokova, Vera; Vartiainen, Maria K; Thesleff, Irma; Mikkola, Marja L

    2014-03-10

    Epithelial reorganization involves coordinated changes in cell shapes and movements. This restructuring occurs during formation of placodes, ectodermal thickenings that initiate the morphogenesis of epithelial organs including hair, mammary gland, and tooth. Signaling pathways in ectodermal placode formation are well known, but the cellular mechanisms have remained ill defined. We established imaging methodology for live visualization of embryonic skin explants during the first wave of hair placode formation. We found that the vast majority of placodal cells were nonproliferative throughout morphogenesis. We show that cell compaction and centripetal migration are the main cellular mechanisms associated with hair placode morphogenesis and that inhibition of actin remodeling suppresses placode formation. Stimulation of both ectodysplasin/NF-κB and Wnt/β-catenin signaling increased cell motility and the number of cells committed to placodal fate. Thus, cell fate choices and morphogenetic events are controlled by the same molecular pathways, providing the framework for coordination of these two processes. PMID:24636260

  7. Insights into the Cell Shape Dynamics of Migrating Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Driscoll, Meghan; Homan, Tess; McCann, Colin; Parent, Carole; Fourkas, John; Losert, Wolfgang

    2010-03-01

    Dynamic cell shape is a highly visible manifestation of the interaction between the internal biochemical state of a cell and its external environment. We analyzed the dynamic cell shape of migrating cells using the model system Dictyostelium discoideum. Applying a snake algorithm to experimental movies, we extracted cell boundaries in each frame and followed local boundary motion over long time intervals. Using a local motion measure that corresponds to protrusive/retractive activity, we found that protrusions are intermittent and zig-zag, whereas retractions are more sustained and straight. Correlations of this local motion measure reveal that protrusions appear more localized than retractions. Using a local shape measure, curvature, we also found that small peaks in boundary curvature tend to originate at the front of cells and propagate backwards. We will review the possible cytoskeletal origin of these mechanical waves.

  8. The Role of Thrombin and Cell Contractility in Regulating Clustering and Collective Migration of Corneal Fibroblasts in Different ECM Environments

    PubMed Central

    Miron-Mendoza, Miguel; Graham, Eric; Kivanany, Pouriska; Quiring, Jonathan; Petroll, W. Matthew

    2015-01-01

    Purpose. We previously reported that extracellular matrix composition (fibrin versus collagen) modulates the pattern of corneal fibroblast spreading and migration in 3-D culture. In this study, we investigate the role of thrombin and cell contractility in mediating these differences in cell behavior. Methods. To assess cell spreading, corneal fibroblasts were plated on top of fibrillar collagen and fibrin matrices. To assess 3-dimensional cell migration, compacted collagen matrices seeded with corneal fibroblasts were embedded inside acellular collagen or fibrin matrices. Constructs were cultured in serum-free media containing platelet-derived growth factor (PDGF), with or without thrombin, the Rho kinase inhibitor Y-27632, and/or the myosin II inhibitor blebbistatin. We used 3-dimensional and 4-dimensional imaging to assess cell mechanical behavior, connectivity and cytoskeletal organization. Results. Thrombin stimulated increased contractility of corneal fibroblasts. Thrombin also induced Rho kinase–dependent clustering of cells plated on top of compliant collagen matrices, but not on rigid substrates. In contrast, cells on fibrin matrices coalesced into clusters even when Rho kinase was inhibited. In nested matrices, cells always migrated independently through collagen, even in the presence of thrombin. In contrast, cells migrating into fibrin formed an interconnected network. Both Y-27632 and blebbistatin reduced the migration rate in fibrin, but cells continued to migrate collectively. Conclusions. The results suggest that while thrombin-induced actomyosin contraction can induce clustering of fibroblasts plated on top of compliant collagen matrices, it does not induce collective cell migration inside 3-D collagen constructs. Furthermore, increased contractility is not required for clustering or collective migration of corneal fibroblasts interacting with fibin. PMID:25736789

  9. Chinese herbal formula QHF inhibits liver cancer cell invasion and migration

    PubMed Central

    CHEN, TAO; WANG, QUAN; LI, YUNXIAO; HUANG, HEFEI; HU, WEI

    2016-01-01

    The aim of the present study was to observe the effects of the Chinese herbal formula QHF (Q, Qingrejiedu; H, Huoxuehuayu; and F, Fuzhengguben) on the migration and invasion of hepatocellular carcinoma (HCC) HepG2 cells and to elucidate the potential molecular mechanisms involved. HepG2 cells were treated with various concentrations of QHF, and scratch and Transwell® migration assays were used to qualitatively analyze differences in the migration and invasion activity of these cells. Extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) inhibitors were subsequently introduced in order to study the association between QHF and the invasion of HepG2 cells. The protein expression levels of the mitogen-activated protein kinase (MAPK) signaling pathway in HepG2 cells in the presence and absence of QHF were additionally determined using western blot analysis. The results showed that QHF significantly inhibited the proliferation of the HepG2 cells in a concentration-dependent manner, in addition to inhibiting cell movement, which reduced the ability of the cells to invade and migrate. Western blot analysis indicated that the effects of QHF on HCC HepG2 cells after 24 h were to significantly decrease the expression of phosphorylated- (p-)ERK and to increase the expression of p-p38 and p-JNK; however, the total quantity of ERK, p38 and JNK protein remained unchanged. The administration of an inhibitor of ERK altered p38 and JNK expression and promoted the anti-invasion effects of QHF, whereas p38 and JNK inhibitors only partially reversed this effect. The results of the present study indicate, therefore, that QHF is able to inhibit the migratory and invasive activity of HepG2 cells. A possible underlying mechanism involves the activation of the p38 and JNK MAPK signaling pathway and the attenuation of the ERK signaling pathway. PMID:27284329

  10. Targeting Rho-GTPases in immune cell migration and inflammation

    PubMed Central

    Biro, Maté; Munoz, Marcia A; Weninger, Wolfgang

    2014-01-01

    Leukocytes are unmatched migrators capable of traversing barriers and tissues of remarkably varied structural composition. An effective immune response relies on the ability of its constituent cells to infiltrate target sites. Yet, unwarranted mobilization of immune cells can lead to inflammatory diseases and tissue damage ranging in severity from mild to life-threatening. The efficacy and plasticity of leukocyte migration is driven by the precise spatiotemporal regulation of the actin cytoskeleton. The small GTPases of the Rho family (Rho-GTPases), and their immediate downstream effector kinases, are key regulators of cellular actomyosin dynamics and are therefore considered prime pharmacological targets for stemming leukocyte motility in inflammatory disorders. This review describes advances in the development of small-molecule inhibitors aimed at modulating the Rho-GTPase-centric regulatory pathways governing motility, many of which stem from studies of cancer invasiveness. These inhibitors promise the advent of novel treatment options with high selectivity and potency against immune-mediated pathologies. Linked Articles This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24 PMID:24571448

  11. Sodium-Calcium Exchanger 1 Regulates Epithelial Cell Migration via Calcium-dependent Extracellular Signal-regulated Kinase Signaling*

    PubMed Central

    Balasubramaniam, Sona Lakshme; Gopalakrishnapillai, Anilkumar; Gangadharan, Vimal; Duncan, Randall L.; Barwe, Sonali P.

    2015-01-01

    Na+/Ca2+ exchanger-1 (NCX1) is a major calcium extrusion mechanism in renal epithelial cells enabling the efflux of one Ca2+ ion and the influx of three Na+ ions. The gradient for this exchange activity is provided by Na,K-ATPase, a hetero-oligomer consisting of a catalytic α-subunit and a regulatory β-subunit (Na,K-β) that also functions as a motility and tumor suppressor. We showed earlier that mice with heart-specific ablation (KO) of Na,K-β had a specific reduction in NCX1 protein and were ouabain-insensitive. Here, we demonstrate that Na,K-β associates with NCX1 and regulates its localization to the cell surface. Madin-Darby canine kidney cells with Na,K-β knockdown have reduced NCX1 protein and function accompanied by 2.1-fold increase in free intracellular calcium and a corresponding increase in the rate of cell migration. Increased intracellular calcium up-regulated ERK1/2 via calmodulin-dependent activation of PI3K. Both myosin light chain kinase and Rho-associated kinase acted as mediators of ERK1/2-dependent migration. Restoring NCX1 expression in β-KD cells reduced migration rate and ERK1/2 activation, suggesting that NCX1 functions downstream of Na,K-β in regulating cell migration. In parallel, inhibition of NCX1 by KB-R7943 in Madin-Darby canine kidney cells, LLC-PK1, and human primary renal epithelial cells (HREpiC) increased ERK1/2 activation and cell migration. This increased migration was associated with high myosin light chain phosphorylation by PI3K/ERK-dependent mechanism in HREpiC cells. These data confirm the role of NCX1 activity in regulating renal epithelial cell migration. PMID:25770213

  12. Overexpression of engulfment and cell motility 1 promotes cell invasion and migration of hepatocellular carcinoma.

    PubMed

    Jiang, Jiarui; Liu, Guoqing; Miao, Xiongying; Hua, Songwen; Zhong, Dewu

    2011-05-01

    Engulfment and cell motility 1 (Elmo1) has been linked to the invasive phenotype of glioma cells. The use of Elmo1 inhibitors is currently being evaluated in hepato-cellular carcinoma (HCC), but the molecular mechanisms of their therapeutic effect have yet to be determined. Elmo1 expression in HCC tissue samples from 131 cases and in 5 HCC cell lines was determined by immunohistochemistry, quantitative RT-PCR and Western blotting. To functionally characterize Elmo1 in HCC, Elmo1 expression in the HCCLM3 cell line was blocked by siRNA. Cell migration was measured by wound healing and transwell migration assays in vitro. Elmo1 overexpression was significantly correlated with cell invasion and the poor prognosis of HCC. Elmo1-siRNA-treated HCCLM3 cells demonstrated a reduction in cell migration. The present study demonstrated for the first time that the suppression of Elmo1 expression inhibits cell invasion in HCC. PMID:22977532

  13. Guidance of myogenic cell migration by oriented deposits of fibronectin.

    PubMed

    Turner, D C; Lawton, J; Dollenmeier, P; Ehrismann, R; Chiquet, M

    1983-02-01

    Fibronectin mediates myoblast-substratum attachment; one region of the molecule binds directly to the cell surface, while others bind to collagen, glycosaminoglycans, and other fibronectin molecules. There is evidence to suggest that fibronectin-containing extracellular matrices guide cell migration in vivo. We describe a method for producing regular deposits of fibronectin in vitro that can serve as a model system for studying cell-substrate interactions, cell orientation, and contact guidance. The novel culture substrate is prepared by allowing an aqueous solution of fibronectin and urea to dry in a culture dish and then washing away the urea crystals. Myogenic cells in vitro adhere to, align with, and migrate along, parallel streaks of fibronectin. This leads to the formation of myotubes that are long and thin, with little branching. Myogenic clones are highly elongated in the direction of the deposits, in contrast with the roughly circular clones seen in conventional cultures. Fibroblasts and limb bud mesenchymal cells align with fibronectin deposits, assuming a bipolar shape. PMID:6825944

  14. Fibronectin Fiber Extension Decreases Cell Spreading and Migration.

    PubMed

    Hubbard, Brant; Buczek-Thomas, Jo Ann; Nugent, Matthew A; Smith, Michael L

    2016-08-01

    The extracellular matrix (ECM) is present in a range of molecular conformations and intermolecular arrangements. Fibronectin (Fn) molecules that constitute fibers within the ECM can exist in a variety of conformations that result from both mechanical stress and chemical factors such as allosteric binding partners. The long-standing hypothesis that conformational changes regulate the binding of cells to Fn fibers has only been tested for mutated molecules of Fn and has yet to be fully evaluated with Fn fibers. Using time-lapse microscopy we examined how mechanical extension of single fibers of Fn affects the adhesion and migration of endothelial cells. Using this single fiber adhesion technique, we show that high levels of mechanical strain applied to Fn fibers decreases the rates of both cell spreading and cell migration. These data indicate a fundamental cellular response to mechanical strain in the ECM that might have important implications for understanding how cells are recruited during tissue development and repair. J. Cell. Physiol. 231: 1728-1736, 2016. © 2015 Wiley Periodicals, Inc. PMID:26621030

  15. Lidocaine inhibits the invasion and migration of TRPV6-expressing cancer cells by TRPV6 downregulation

    PubMed Central

    Jiang, Yuan; Gou, Hui; Zhu, Jiang; Tian, Si; Yu, Lehua

    2016-01-01

    It is well known that local anesthetics have a broad spectrum of pharmacological actions, acting as nerve blocks, and treating pain and cardiac arrhythmias via blocking of the sodium channel. The use of local anesthetics could reduce the possibility of cancer metastasis and recurrence following surgical tumor excision. The purpose of the present study was to investigate the inhibitory effect of lidocaine upon the invasion and migration of transient receptor potential cation channel subfamily V member 6 (TRPV6)-expressing cancer cells. Human breast cancer MDA-MB-231 cells, prostatic cancer PC-3 cells and ovarian cancer ES-2 cells were treated with lidocaine. Cell viability was quantitatively determined by MTT assay. The migration of the cells was evaluated using the wound healing assay, and the invasion of the cells was assessed using a Transwell assay. Calcium (Ca2+) measurements were performed using a Fluo-3 AM fluorescence kit. The expression of TRPV6 mRNA and protein in the cells was determined by quantitative-polymerase chain reaction and western blot analysis, respectively. The results suggested that lidocaine inhibits the cell invasion and migration of MDA-MB-231, PC-3 and ES-2 cells at lower than clinical concentrations. The inhibitory effect of lidocaine on TRPV6-expressing cancer cells was associated with a reduced rate of calcium influx, and could occur partly as a result of the downregulation of TRPV6 expression. The use of appropriate local anesthetics may confer potential benefits in clinical practice for the treatment of patients with TRPV6-expressing cancer. PMID:27446413

  16. Deuterium-depleted water (DDW) inhibits the proliferation and migration of nasopharyngeal carcinoma cells in vitro.

    PubMed

    Wang, Hongqiang; Zhu, Baohua; He, Zhiwei; Fu, Hui; Dai, Zhong; Huang, Guoliang; Li, Binbin; Qin, Dongyun; Zhang, Xiaoyan; Tian, Lu; Fang, Weiyi; Yang, Huiling

    2013-07-01

    Recent studies have demonstrated that natural water that has 65% of the deuterium concentration depleted, can exhibit anti-tumor properties. However, the anti-tumor effects of DDW on various nasopharyngeal carcinoma (NPC) cells have not previously been reported. In the present study, NPC cell lines and normal preosteoblast MC3T3-E1 cells were grown in RPMI1640 media containing different deuterium concentrations (50-150 ppm). The effects of DDW on the proliferation and migration of NPC and MC3T3-E1 cells were investigated using the MTT, plate colony formation, and Transwell assays, as well as Boyden chamber arrays, flow cytometry (FCM), western blot and immunofluorescence. We found that DDW was an effective inhibitor of NPC cell proliferation, plated colony formation, migration and invasion. In contrast, the growth of normal preosteoblast MC3T3-E1 cells was promoted when they were cultured in the presence of DDW. Cell cycle analysis revealed that DDW caused cell cycle arrest in the G1/S transition, reduced the number of cells in the S phase and significantly increased the population of cells in the G1 phase in NPC cells. Western blot analysis revealed that treatment with DDW significantly increased the expression of NADPH:quinone oxidoreductase-1 (NQO1), while immunofluorescence assay analysis revealed that treatment with DDW decreased the expression of PCNA and matrix metalloproteinase 9 (MMP9) in NPC cells. These results demonstrated that DDW is a novel, non-toxic adjuvant therapeutic agent that suppresses NPC cell proliferation, migration, and invasion by inducing the expression of NQO1 and causing cell cycle arrest, as well as decreasing PCNA and MMP9 expression. PMID:23773852

  17. PTK6 Promotes Cancer Migration and Invasion in Pancreatic Cancer Cells Dependent on ERK Signaling

    PubMed Central

    Ono, Hiroaki; Basson, Marc D.; Ito, Hiromichi

    2014-01-01

    Protein Tyrosine Kinase 6 (PTK6) is a non-receptor type tyrosine kinase that may be involved in some cancers. However, the biological role and expression status of PTK6 in pancreatic cancer is unknown. Therefore in this study, we evaluated the functional role of PTK6 on pancreatic cancer invasion. Five pancreatic cancer cell lines expressed PTK6 at varying levels. PTK6 expression was also observed in human pancreatic adenocarcinomas. PTK6 suppression by siRNA significantly reduced both cellular migration and invasion (0.59/0.49 fold for BxPC3, 0.61/0.62 for Panc1, 0.42/0.39 for MIAPaCa2, respectively, p<0.05 for each). In contrast, forced overexpression of PTK6 by transfection of a PTK6 expression vector in Panc1 and MIAPaCa2 cells increased cellular migration and invasion (1.57/1.67 fold for Panc1, 1.44/1.57 for MIAPaCa2, respectively, p<0.05). Silencing PTK6 reduced ERK1/2 activation, but not AKT or STAT3 activation, while PTK6 overexpression increased ERK1/2 activation. U0126, a specific inhibitor of ERK1/2, completely abolished the effect of PTK6 overexpression on cellular migration and invasion. These results suggest that PTK6 regulates cellular migration and invasion in pancreatic cancer via ERK signaling. PTK6 may be a novel therapeutic target for pancreatic cancer. PMID:24788754

  18. Phosphorylation of serine-504 of tNOX (ENOX2) modulates cell proliferation and migration in cancer cells

    SciTech Connect

    Zeng, Zih-Ming; Chuang, Show-Mei; Chang, Ting-Chia; Hong, Chen-Wei; Chou, Jou-Chun; Yang, Jaw-Ji; Chueh, Pin Ju

    2012-08-15

    Tumor-associated NADH oxidase (tNOX; ENOX2) is a growth-related protein expressed in transformed cells. Consistent with this function, tNOX knockdown by RNA interference leads to a significant reduction in cell proliferation and migration in HeLa cells, whereas tNOX overexpression confers an aggressive phenotype. Here, for the first time, we report that tNOX is phosphorylated by protein kinase C{delta} (PKC{delta}) both in vitro and in vivo. Replacement of serine-504 with alanine significantly reduces phosphorylation by PKC{delta}. Co-immunoprecipitation experiments reveal an interaction between tNOX and PKC{delta}. Moreover, whereas overexpression of wild-type tNOX in NIH3T3 cells increases cell proliferation and migration, overexpression of the S504A tNOX mutant leads to diminished cell proliferation and migration, reflecting reduced stability of the unphosphorylatable tNOX mutant protein. Collectively, these results suggest that phosphorylation of serine-504 by PKC{delta} modulates the biological function of tNOX.

  19. DAPK loss in colon cancer tumor buds: implications for migration capacity of disseminating tumor cells

    PubMed Central

    Karamitopoulou, Eva; Dawson, Heather; Koelzer, Viktor Hendrik; Agaimy, Abbas; Garreis, Fabian; Söder, Stephan; Laqua, William; Lugli, Alessandro; Hartmann, Arndt; Rau, Tilman T.; Schneider-Stock, Regine

    2015-01-01

    Defining new therapeutic strategies to overcome therapy resistance due to tumor heterogeneity in colon cancer is challenging. One option is to explore the molecular profile of aggressive disseminating tumor cells. The cytoskeleton-associated Death-associated protein kinase (DAPK) is involved in the cross talk between tumor and immune cells at the invasion front of colorectal cancer. Here dedifferentiated tumor cells histologically defined as tumor budding are associated with a high risk of metastasis and poor prognosis. Analyzing samples from 144 colorectal cancer patients we investigated immunhistochemical DAPK expression in different tumor regions such as center, invasion front, and buds. Functional consequences for tumor aggressiveness were studied in a panel of colon tumor cell lines using different migration, wound healing, and invasion assays. DAPK levels were experimentally modified by siRNA transfection and overexpression as well as inhibitor treatments. We found that DAPK expression was reduced towards the invasion front and was nearly absent in tumor buds. Applying the ECIS system with HCT116 and HCT116 stable lentiviral DAPK knock down cells (HCTshDAPK) we identified an important role for DAPK in decreasing the migratory capacity whereas proliferation was not affected. Furthermore, the migration pattern differed with HCTshDAPK cells showing a cluster-like migration of tumor cell groups. DAPK inhibitor treatment revealed that the migration rate was independent of DAPK's catalytic activity. Modulation of DAPK expression level in SW480 and DLD1 colorectal cancer cells significantly influenced wound closure rate. DAPK seems to be a major player that influences the migratory capability of disseminating tumor cells and possibly affects the dynamic interface between pro- and anti-survival factors at the invasion front of colorectal cancer. This interesting and new finding requires further evaluation. PMID:26405175

  20. Securin promotes migration and invasion via matrix metalloproteinases in glioma cells

    PubMed Central

    YAN, HAICHENG; WANG, WEI; DOU, CHANGWU; TIAN, FUMING; QI, SONGTAO

    2015-01-01

    Human securin, encoded by pituitary tumor transforming gene 1, is implicated in several oncogenic processes in the pathogenesis of brain tumors, including glioma. The aim of the present study was to examine the effect of securin on the migration and invasion of glioma cells. The results revealed that the overexpression of securin in glioma LN-229 cells significantly increased the invasion and transmigration abilities. By contrast, these abilities were significantly reduced by the downregulation of securin in glioma U373 cells. Furthermore, the results demonstrated that securin overexpression and downregulation significantly increased and decreased the levels of matrix metalloproteinase 2 and 9, respectively. These findings indicate a promotive role for securin in glioma migration and invasion, which may involve the action of matrix metalloproteinases. PMID:26137166

  1. 10-Shogaol, an Antioxidant from Zingiber officinale for Skin Cell Proliferation and Migration Enhancer

    PubMed Central

    Chen, Chung-Yi; Cheng, Kuo-Chen; Chang, Andy Y; Lin, Ying-Ting; Hseu, You-Cheng; Wang, Hui-Min

    2012-01-01

    In this work, one of Zingiber officinale components, 10-shogaol, was tested with 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, metal chelating ability, and reducing power to show antioxidant activity. 10-Shogaol promoted human normal epidermal keratinocytes and dermal fibroblasts cell growths. 10-Shogaol enhanced growth factor production in transforming growth factor-β (TGF-β), platelet derived growth factor-αβ (PDGF-αβ) and vascular endothelial growth factors (VEGF) of both cells. In the in vitro wound healing assay for 12 or 24 h, with 10-shogaol, the fibroblasts and keratinocytes migrated more rapidly than the vehicle control group. Thus, this study substantiates the target compound, 10-shogaol, as an antioxidant for human skin cell growth and a migration enhancer with potential to be a novel wound repair agent. PMID:22408422

  2. Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christian

    2014-03-12

    An impurity reaction-diffusion model is applied to Cu defects and related intrinsic defects in polycrystalline CdTe for a better understanding of Cu’s role in the cell level reliability of CdTe PV devices. The simulation yields transient Cu distributions in polycrystalline CdTe during solar cell processing and stressing. Preliminary results for Cu migration using available diffusivity and solubility data show that Cu accumulates near the back contact, a phenomena that is commonly observed in devices after back-contact processing or stress conditions.

  3. [The PAI-1 swing: microenvironment and cancer cell migration].

    PubMed

    Malo, Michel; Charrière-Bertrand, Cécile; Chettaoui, Chafika; Fabre-Guillevin, Elizabeth; Maquerlot, François; Lackmy, Alexandra; Vallée, Benoît; Delaplace, Franck; Barlovatz-Meimon, Georgia

    2006-12-01

    Cancer is a complex and dynamic process caused by a cellular dysfunction leading to a whole organ or even organism vital perturbation. To better understand this process, we need to study each one of the levels involved, which allows the scale change, and to integrate this knowledge. A matricellular protein, PAI-1, is able to induce in vitro cell behaviour modifications, morphological changes, and to promote cell migration. PAI-1 influences the mesenchymo-amaeboid transition. This matricellular protein should be considered as a potential 'launcher' of the metastatic process acting at the molecular, cellular, tissular levels and, as a consequence, at the organism's level. PMID:17126795

  4. Migration of connexin in the membranes of living cells

    NASA Astrophysics Data System (ADS)

    Bledsoe, Matthew; Rana, Daharsh; May, Karl; Kreft, Jennifer

    2008-11-01

    Movement of connexins within cell lipid bilayers remains somewhat mysterious. In studying their movement, researchers hoped to shed more light on the mechanisms by which they are influenced. We examined this problem by observing the behavior of the connexins directly. Cancerous human liver cells were cultured and their membrane connexins labeled with green fluorescent protein through transvection. The connexins were then filmed by high speed camera and carefully analyzed. The study served to fine-tune the model used in simulations of connexin migration, enabling further study of connexins and their transmembrane environment.

  5. Myosin Light Chain Kinase (MLCK) Regulates Cell Migration in a Myosin Regulatory Light Chain Phosphorylation-independent Mechanism*

    PubMed Central

    Chen, Chen; Tao, Tao; Wen, Cheng; He, Wei-Qi; Qiao, Yan-Ning; Gao, Yun-Qian; Chen, Xin; Wang, Pei; Chen, Cai-Ping; Zhao, Wei; Chen, Hua-Qun; Ye, An-Pei; Peng, Ya-Jing; Zhu, Min-Sheng

    2014-01-01

    Myosin light chain kinase (MLCK) has long been implicated in the myosin phosphorylation and force generation required for cell migration. Here, we surprisingly found that the deletion of MLCK resulted in fast cell migration, enhanced protrusion formation, and no alteration of myosin light chain phosphorylation. The mutant cells showed reduced membrane tether force and fewer membrane F-actin filaments. This phenotype was rescued by either kinase-dead MLCK or five-DFRXXL motif, a MLCK fragment with potent F-actin-binding activity. Pull-down and co-immunoprecipitation assays showed that the absence of MLCK led to attenuated formation of transmembrane complexes, including myosin II, integrins and fibronectin. We suggest that MLCK is not required for myosin phosphorylation in a migrating cell. A critical role of MLCK in cell migration involves regulating the cell membrane tension and protrusion necessary for migration, thereby stabilizing the membrane skeleton through F-actin-binding activity. This finding sheds light on a novel regulatory mechanism of protrusion during cell migration. PMID:25122766

  6. Mechanobiology of cell migration in the context of dynamic two-way cell-matrix interactions.

    PubMed

    Kurniawan, Nicholas A; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2016-05-24

    Migration of cells is integral in various physiological processes in all facets of life. These range from embryonic development, morphogenesis, and wound healing, to disease pathology such as cancer metastasis. While cell migratory behavior has been traditionally studied using simple assays on culture dishes, in recent years it has been increasingly realized that the physical, mechanical, and chemical aspects of the matrix are key determinants of the migration mechanism. In this paper, we will describe the mechanobiological changes that accompany the dynamic cell-matrix interactions during cell migration. Furthermore, we will review what is to date known about how these changes feed back to the dynamics and biomechanical properties of the cell and the matrix. Elucidating the role of these intimate cell-matrix interactions will provide not only a better multi-scale understanding of cell motility in its physiological context, but also a more holistic perspective for designing approaches to regulate cell behavior. PMID:26747513

  7. Aqueous Extract of Paeonia suffruticosa Inhibits Migration and Metastasis of Renal Cell Carcinoma Cells via Suppressing VEGFR-3 Pathway.

    PubMed

    Wang, Shih-Chin; Tang, Sai-Wen; Lam, Sio-Hong; Wang, Chung-Chieh; Liu, Yu-Huei; Lin, Hsuan-Yuan; Lee, Shoei-Sheng; Lin, Jung-Yaw

    2012-01-01

    Renal cell carcinoma (RCC) cells are characterized by strong drug resistance and high metastatic incidence. In this study, the effects of ten kinds of Chinese herbs on RCC cell migration and proliferation were examined. Aqueous extract of Paeonia suffruticosa (PS-A) exerted strong inhibitory effects on cancer cell migration, mobility, and invasion. The results of mouse xenograft experiments showed that the treatment of PS-A significantly suppressed tumor growth and pulmonary metastasis. We further found that PS-A markedly decreased expression of VEGF receptor-3 (VEGFR-3) and phosphorylation of FAK in RCC cells. Moreover, the activation of Rac-1, a modulator of cytoskeletal dynamics, was remarkably reduced by PS-A. Additionally, PS-A suppressed polymerization of actin filament as demonstrated by confocal microscopy analysis and decreased the ratio of F-actin to G-actin in RCC cells, suggesting that PS-A inhibits RCC cell migration through modulating VEGFR-3/FAK/Rac-1 pathway to disrupt actin filament polymerization. In conclusion, this research elucidates the effects and molecular mechanism for antimigration of PS-A on RCC cells and suggests PS-A to be a therapeutic or adjuvant strategy for the patients with aggressive RCC. PMID:22454663

  8. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium.

    PubMed

    Banik, Brittany L; Riley, Thomas R; Platt, Christina J; Brown, Justin L

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6-18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  9. Human Mesenchymal Stem Cell Morphology and Migration on Microtextured Titanium

    PubMed Central

    Banik, Brittany L.; Riley, Thomas R.; Platt, Christina J.; Brown, Justin L.

    2016-01-01

    The implant used in spinal fusion procedures is an essential component to achieving successful arthrodesis. At the cellular level, the implant impacts healing and fusion through a series of steps: first, mesenchymal stem cells (MSCs) need to adhere and proliferate to cover the implant; second, the MSCs must differentiate into osteoblasts; third, the osteoid matrix produced by the osteoblasts needs to generate new bone tissue, thoroughly integrating the implant with the vertebrate above and below. Previous research has demonstrated that microtextured titanium is advantageous over smooth titanium and PEEK implants for both promoting osteogenic differentiation and integrating with host bone tissue; however, no investigation to date has examined the early morphology and migration of MSCs on these surfaces. This study details cell spreading and morphology changes over 24 h, rate and directionality of migration 6–18 h post-seeding, differentiation markers at 10 days, and the long-term morphology of MSCs at 7 days, on microtextured, acid-etched titanium (endoskeleton), smooth titanium, and smooth PEEK surfaces. The results demonstrate that in all metrics, the two titanium surfaces outperformed the PEEK surface. Furthermore, the rough acid-etched titanium surface presented the most favorable overall results, demonstrating the random migration needed to efficiently cover a surface in addition to morphologies consistent with osteoblasts and preosteoblasts. PMID:27243001

  10. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    SciTech Connect

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  11. RalB mobilizes the exocyst to drive cell migration.

    PubMed

    Rossé, Carine; Hatzoglou, Anastassia; Parrini, Maria-Carla; White, Michael A; Chavrier, Philippe; Camonis, Jacques

    2006-01-01

    The Ras family GTPases RalA and RalB have been defined as central components of the regulatory machinery supporting tumor initiation and progression. Although it is known that Ral proteins mediate oncogenic Ras signaling and physically and functionally interact with vesicle trafficking machinery, their mechanistic contribution to oncogenic transformation is unknown. Here, we have directly evaluated the relative contribution of Ral proteins and Ral effector pathways to cell motility and directional migration. Through loss-of-function analysis, we find that RalA is not limiting for cell migration in normal mammalian epithelial cells. In contrast, RalB and the Sec6/8 complex or exocyst, an immediate downstream Ral effector complex, are required for vectorial cell motility. RalB expression is required for promoting both exocyst assembly and localization to the leading edge of moving cells. We propose that RalB regulation of exocyst function is required for the coordinated delivery of secretory vesicles to the sites of dynamic plasma membrane expansion that specify directional movement. PMID:16382162

  12. The effects of laser immunotherapy on cancer cell migration

    NASA Astrophysics Data System (ADS)

    Bahavar, Cody F.; Zhou, Feifan; Hasanjee, Aamr M.; Layton, Elivia; Lam, Anh; Chen, Wei R.; Vaughan, Melville B.

    2016-03-01

    Laser immunotherapy (LIT) uses laser irradiation and immunological stimulation to target all types of metastases and creates a long-term tumor resistance. Glycated chitosan (GC) is the immunological stimulant used in LIT. Interestingly, GC can act as a surfactant for single-walled carbon nanotubes (SWNTs) to immunologically modify SWNTs. SWNT-GC retains the optical properties of SWNTs and the immunological functions of GC to help increase the selectivity of the laser and create a more optimal immune response. One essential aspect of understanding this immune response is knowing how laser irradiation affects cancer cells' ability to metastasize. In this experiment, a cell migration assay was performed. A 2mm circular elastomer plugs were placed at the bottom of multi-well dishes. Pre-cancerous keratinocytes, different tumor cells, and fibroblasts were then plated separately in treated wells. Once the cells reached 100% confluence, they were irradiated by either a 980nm or 805nm wavelength laser. The goal was to determine the effects of laser irradiation and immunological stimulation on cancer cell migration in vitro, paying the way to understand the mechanism of LIT in treating metastatic tumors in cancer patients.

  13. USP33 mediates Slit-Robo signaling in inhibiting colorectal cancer cell migration

    PubMed Central

    Huang, Zhaohui; Wen, Pushuai; Kong, Ruirui; Cheng, Haipeng; Zhang, Binbin; Quan, Cao; Bian, Zehua; Chen, Mengmeng; Zhang, Zhenfeng; Chen, Xiaoping; Du, Xiang; Liu, Jianghong; Zhu, Li; Fushimi, Kazuo; Hua, Dong; Wu, Jane Y.

    2014-01-01

    Summary Originally discovered in neuronal guidance, the Slit-Robo pathway is emerging as an important player in human cancers. However, its involvement and mechanism in colorectal cancer (CRC) remains to be elucidated. Here, we report that Slit2 expression is reduced in CRC tissues compared with adjacent non-cancerous tissues. Extensive promoter hypermethylation of the Slit2 gene has been observed in CRC cells, which provides a mechanistic explanation for the Slit2 downregulation in CRC. Functional studies showed that Slit2 inhibits CRC cell migration in a Robo-dependent manner. Robo-interacting ubiquitin-specific protease 33 (USP33) is required for the inhibitory function of Slit2 on CRC cell migration by deubiquitinating and stabilizing Robo1. USP33 expression is downregulated in CRC samples, and reduced USP33 mRNA levels are correlated with increased tumor grade, lymph node metastasis and poor patient survival. Taken together, our data reveal USP33 as a previously unknown tumor-suppressing gene for CRC by mediating the inhibitory function of Slit-Robo signaling on CRC cell migration. Our work suggests the potential value of USP33 as an independent prognostic marker of CRC. PMID:25242263

  14. GAR22β regulates cell migration, sperm motility, and axoneme structure

    PubMed Central

    Gamper, Ivonne; Fleck, David; Barlin, Meltem; Spehr, Marc; Sayad, Sara El; Kleine, Henning; Maxeiner, Sebastian; Schalla, Carmen; Aydin, Gülcan; Hoss, Mareike; Litchfield, David W.; Lüscher, Bernhard; Zenke, Martin; Sechi, Antonio

    2016-01-01

    Spatiotemporal cytoskeleton remodeling is pivotal for cell adhesion and migration. Here we investigated the function of Gas2-related protein on chromosome 22 (GAR22β), a poorly characterized protein that interacts with actin and microtubules. Primary and immortalized GAR22β−/− Sertoli cells moved faster than wild-type cells. In addition, GAR22β−/− cells showed a more prominent focal adhesion turnover. GAR22β overexpression or its reexpression in GAR22β−/− cells reduced cell motility and focal adhesion turnover. GAR22β–actin interaction was stronger than GAR22β–microtubule interaction, resulting in GAR22β localization and dynamics that mirrored those of the actin cytoskeleton. Mechanistically, GAR22β interacted with the regulator of microtubule dynamics end-binding protein 1 (EB1) via a novel noncanonical amino acid sequence, and this GAR22β–EB1 interaction was required for the ability of GAR22β to modulate cell motility. We found that GAR22β is highly expressed in mouse testes, and its absence resulted in reduced spermatozoa generation, lower actin levels in testes, and impaired motility and ultrastructural disorganization of spermatozoa. Collectively our findings identify GAR22β as a novel regulator of cell adhesion and migration and provide a foundation for understanding the molecular basis of diverse cytoskeleton-dependent processes. PMID:26564797

  15. Protein migration from transplanted nuclei in Amoeba proteus. I. The relation to the cell cycle and RNA migration, as studied by autoradiography

    SciTech Connect

    Mills, K.I.; Bell, L.G.

    1982-11-01

    Autoradiography has been used to examine the migration of proteins from a radioactivity labelled amoeba nucleus following transplantation into an unlabelled homophasic amoeba. Nuclei were transferred at three times in the cell cycle coinciding with DNA synthesis (4 h post-division); a peak of RNA synthesis (25 h); and a relative lull in synthetic activity (43 h). Six amino acids were added individually to the culture medium to label the nuclear proteins. Migration of the proteins from the donor nucleui and least with proteins labelled with the basic amino acids. All amino acids exhibited the greatest extent of migration following the 25-h transfers, i.e., coinciding with a peak of RNA synthesis at 26-27.5 h. Actinomycin D (actD) inhibition of RNA synthesis reduced, but did not eliminate the extent of protein migration from the transplanted nucleus, thus indicating the existence of two classes of migratory proteins. Firstly, proteins, associated with RNA transport, which migrated mainly into the host cytoplasm. The second class migrated into the host nucleus from the transplanted nucleus, irrespective of RNA synthesis. The shuttling character of the latter class of proteins is consistent with a role of regulation of nuclear activity.

  16. Effects of eugenol on polymorphonuclear cell migration and chemiluminescence.

    PubMed

    Fotos, P G; Woolverton, C J; Van Dyke, K; Powell, R L

    1987-03-01

    In this study, the effects of eugenol on human polymorphonuclear (PMN) cell migration and chemiluminescence were examined in vitro. Utilizing zymosan-activated serum or crude Bacteroides sonicate fractions as chemotractants, we found that eugenol inhibits PMN migration at 6.6 X 10(-2) to 6.6 X 10(-5) mol/L (P less than 0.05). Also, similar effects were observed in PMNs pre-incubated in eugenol. Regardless of concentration, eugenol was not found to induce chemotaxis of PMNs. An examination of PMN membrane activation through chemiluminescence gave results consistent with the chemotaxis data, demonstrating a decrease in light emission at concentrations as low as 6.6 X 10(-6) mol/L (P less than 0.05). In view of these data, the potential effect of eugenol on in vivo (sulcular or periapical) PMN function deserves further study. PMID:3475310

  17. HOXA10 controls proliferation, migration and invasion in oral squamous cell carcinoma

    PubMed Central

    Carrera, Manoela; Bitu, Carolina C; de Oliveira, Carine Ervolino; Cervigne, Nilva K; Graner, Edgard; Manninen, Aki; Salo, Tuula; Coletta, Ricardo D

    2015-01-01

    Although HOX genes are best known for acting in the regulation of important events during embryogenesis, including proliferation, differentiation and migration, alterations in their expression patterns have been frequently described in cancers. In previous studies we analyzed the expression profile of the members of the HOX family of homeobox genes in oral samples of normal mucosa and squamous cell carcinoma (OSCC) and identified differently expressed genes such as HOXA10. The present study aimed to validate the increased expression of HOXA10 in OSCCs, and to investigate the effects arising from its knockdown in OSCC cells. The levels of HOXA10 mRNA were determined in human OSCC samples and cell lines by quantitative PCR, and HOXA10-mediated effects on proliferation, apoptosis, adhesion, epithelial-mesenchymal transition (EMT), migration and invasion were studied in HSC-3 tongue carcinoma cells by using retrovirus-mediated RNA interference. Higher expression of HOXA10 mRNA was observed in OSCC cell lines and in tumor tissues compared to normal controls. HOXA10 knockdown significantly reduced the proliferation of the tumor cells which was accompanied by increased levels of p21. HOXA10 silencing also significantly induced the expression of EMT markers and enhanced the adhesion, migration and invasion of HSC-3 cells. No effects on cell death were observed after HOXA10 knockdown. The results of the current study confirm the overexpression of HOXA10 in OSCCs, and further demonstrate that its expression is functionally associated with several important biological processes related to oral tumorigenesis, such as proliferation, migration and invasion. PMID:26097543

  18. Blockade of Retinol Metabolism Protects T Cell-Induced Hepatitis by Increasing Migration of Regulatory T Cells.

    PubMed

    Lee, Young-Sun; Yi, Hyon-Seung; Suh, Yang-Gun; Byun, Jin-Seok; Eun, Hyuk Soo; Kim, So Yeon; Seo, Wonhyo; Jeong, Jong-Min; Choi, Won-Mook; Kim, Myung-Ho; Kim, Ji Hoon; Park, Keun-Gyu; Jeong, Won-Il

    2015-11-01

    Retinols are metabolized into retinoic acids by alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (Raldh). However, their roles have yet to be clarified in hepatitis despite enriched retinols in hepatic stellate cells (HSCs). Therefore, we investigated the effects of retinols on Concanavalin A (Con A)-mediated hepatitis. Con A was injected into wild type (WT), Raldh1 knock-out (Raldh1(-/-)), CCL2(-/-) and CCR2(-/-) mice. For migration study of regulatory T cells (Tregs), we used in vivo and ex vivo adoptive transfer systems. Blockade of retinol metabolism in mice given 4-methylpyrazole, an inhibitor of ADH, and ablated Raldh1 gene manifested increased migration of Tregs, eventually protected against Con A-mediated hepatitis by decreasing interferon-γ in T cells. Moreover, interferon-γ treatment increased the expression of ADH3 and Raldh1, but it suppressed that of CCL2 and IL-6 in HSCs. However, the expression of CCL2 and IL-6 was inversely increased upon the pharmacologic or genetic ablation of ADH3 and Raldh1 in HSCs. Indeed, IL-6 treatment increased CCR2 expression of Tregs. In migration assay, ablated CCR2 in Tregs showed reduced migration to HSCs. In adoptive transfer of Tregs in vivo and ex vivo, Raldh1-deficient mice showed more increased migration of Tregs than WT mice. Furthermore, inhibited retinol metabolism increased survival rate (75%) compared with that of the controls (25%) in Con A-induced hepatitis. These results suggest that blockade of retinol metabolism protects against acute liver injury by increased Treg migration, and it may represent a novel therapeutic strategy to control T cell-mediated acute hepatitis. PMID:26537191

  19. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    SciTech Connect

    Zhang, Fenxi; Hong, Yan; Liang, Wenmei; Ren, Tongming; Jing, Suhua; Lin, Juntang

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  20. Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces

    NASA Astrophysics Data System (ADS)

    Jeon, Hojeong; Koo, Sangmo; Reese, Willie Mae; Loskill, Peter; Grigoropoulos, Costas P.; Healy, Kevin E.

    2015-09-01

    Although adhesive interactions between cells and nanostructured interfaces have been studied extensively, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells’ focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces.

  1. Modeling cell migration on filamentous tracks in 3D

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.

    2014-03-01

    Cell motility is integral to a number of physiological processes ranging from wound healing to immune response to cancer metastasis. Many studies of cell migration, both experimental and theoretical, have addressed various aspects of it in two dimensions, including protrusion and retraction at the level of single cells. However, the in vivo environment for a crawling cell is typically a three-dimensional environment, consisting of the extracellular matrix (ECM) and surrounding cells. Recent experiments demonstrate that some cells crawling along fibers of the ECM mimic the geometry of the fibers to become long and thin, as opposed to fan-like in two dimensions, and can remodel the ECM. Inspired by these experiments, a model cell consisting of beads and springs that moves along a tense semiflexible filamentous track is constructed and studied, paying particular attention to the mechanical feedback between the model cell and the track, as mediated by the active myosin-driven contractility and the catch/slip bond behavior of the focal adhesions, as the model cell crawls. This simple construction can then be scaled up to a model cell moving along a three-dimensional filamentous network, with a prescribed microenvironment, in order to make predictions for proposed experiments.

  2. An automated cell-counting algorithm for fluorescently-stained cells in migration assays

    PubMed Central

    2011-01-01

    A cell-counting algorithm, developed in Matlab®, was created to efficiently count migrated fluorescently-stained cells on membranes from migration assays. At each concentration of cells used (10,000, and 100,000 cells), images were acquired at 2.5 ×, 5 ×, and 10 × objective magnifications. Automated cell counts strongly correlated to manual counts (r2 = 0.99, P < 0.0001 for a total of 47 images), with no difference in the measurements between methods under all conditions. We conclude that our automated method is accurate, more efficient, and void of variability and potential observer bias normally associated with manual counting. PMID:22011343

  3. Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition, and collective cell migration.

    PubMed

    Theveneau, Eric; Mayor, Roberto

    2012-01-01

    Neural crest (NC) cells are induced at the border of the neural plate and subsequently leave the neuroepithelium during a delamination phase. This delamination involves either a complete or partial epithelium-to-mesenchyme transition, which is directly followed by an extensive cell migration. During migration, NC cells are exposed to a wide variety of signals controlling their polarity and directionality, allowing them to colonize specific areas or preventing them from invading forbidden zones. For instance, NC cells are restricted to very precise pathways by the presence of inhibitory signals at the borders of each route, such as Semaphorins, Ephrins, and Slit/Robo. Although specific NC chemoattractants have been recently identified, there is evidence that repulsive interactions between the cells, in a process called contact inhibition of locomotion, is one of the major driving forces behind directional migration. Interestingly, in cellular and molecular terms, the invasive behavior of NC is similar to the invasion of cancer cells during metastasis. NC cells eventually settle in various places and make an immense contribution to the vertebrate body. They form the major constituents of the skull, the peripheral nervous system, and the pigment cells among others, which show the remarkable diversity and importance of this embryonic-stem cell like cell population. Consequently, several birth defects and craniofacial disorders, such as Treacher Collins syndrome, are due to improper NC cell migration. PMID:23801492

  4. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    NASA Astrophysics Data System (ADS)

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin

    2016-03-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  5. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    PubMed Central

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin

    2016-01-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters. PMID:26936382

  6. The migrations of Drosophila muscle founders and primordial germ cells are interdependent.

    PubMed

    Stepanik, Vincent; Dunipace, Leslie; Bae, Young-Kyung; Macabenta, Frank; Sun, Jingjing; Trisnadi, Nathanie; Stathopoulos, Angelike

    2016-09-01

    Caudal visceral mesoderm (CVM) cells migrate from posterior to anterior of the Drosophila embryo as two bilateral streams of cells to support the specification of longitudinal muscles along the midgut. To accomplish this long-distance migration, CVM cells receive input from their environment, but little is known about how this collective cell migration is regulated. In a screen we found that wunen mutants exhibit CVM cell migration defects. Wunens are lipid phosphate phosphatases known to regulate the directional migration of primordial germ cells (PGCs). PGC and CVM cell types interact while PGCs are en route to the somatic gonadal mesoderm, and previous studies have shown that CVM impacts PGC migration. In turn, we found here that CVM cells exhibit an affinity for PGCs, localizing to the position of PGCs whether mislocalized or trapped in the endoderm. In the absence of PGCs, CVM cells exhibit subtle changes, including more cohesive movement of the migrating collective, and an increased number of longitudinal muscles is found at anterior sections of the larval midgut. These data demonstrate that PGC and CVM cell migrations are interdependent and suggest that distinct migrating cell types can coordinately influence each other to promote effective cell migration during development. PMID:27578182

  7. SRPX2 promotes cell migration and invasion via FAK dependent pathway in pancreatic cancer.

    PubMed

    Gao, Zhenyuan; Zhang, Jingjing; Bi, Minghong; Han, Xiao; Han, Zhengquan; Wang, Hongya; Ou, Yimei

    2015-01-01

    Sushi repeat-containing protein, X-linked 2, abbreviated as SRPX2, is a candidate downstream target protein for E2A-HLF and involved in disorders of language cortex and cognition. Recent studies have demonstrated that elevated SRPX2 exhibits crucial roles in gastric cancer, however, underlying clinical significance and biological function of SRPX2 in pancreatic ductal adenocarcinoma (PDAC), remains unclear. Data from Oncomine database showed that higher SRPX2 expression is more commonly observed in PDAC compared with normal pancreatic duct, similar results were also found in 12 matched PDAC tissue samples, 7 PDAC cell lines and a tissue microarray containing 81 PDAC specimens as demonstrated by real-time quantitative PCR and immunohistochemistry, respectively. Besides, higher SRPX2 expression was closely correlated with advanced TNM stage. Silencing of endogenous SRPX2 expression reduced abilities of cell migration and invasion of PDAC cells. Further studies revealed that SRPX2 expression in PDAC tissues significantly correlated with the phosphorylation levels of FAK, indicating that FAK dependent pathway may be account for the effect of SRPX2 on cell migration and invasion in PDAC. Collectively, this study reveals that frequently elevated SRPX2 contributes to cell migration and invasion in PDAC and SRPX2-related pathways might be a potential therapeutic target for PDAC. PMID:26191169

  8. VI-14, a novel flavonoid derivative, inhibits migration and invasion of human breast cancer cells

    SciTech Connect

    Li, Fanni; Li, Chenglin; Zhang, Haiwei; Lu, Zhijian; Li, Zhiyu; You, Qidong; Lu, Na; Guo, Qinglong

    2012-06-01

    It has been well characterized that flavonoids possess pronounced anticancer potentials including anti-angiogenesis, anti-metastasis, and pro-apoptosis. Herein, we report, for the first time, that VI-14, a novel flavonoid derivative, possesses anti-cancer properties. The purpose of this study is to investigate the anti-migration and anti-invasion activities of VI-14 in breast cancer cells. Our data indicate that VI-14 inhibits adhesion, migration and invasion of MDA-MB-231 and MDA-MB-435 human breast cancer cells. MDA-MB-231 cells treated with VI-14 display reduced activities and expressions of ECM degradation-associated proteins including matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) at both the protein and mRNA levels. Meanwhile, VI-14 treatment induces an up-regulated expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) and 2 (TIMP-2) in MDA-MB-231 cells. Western blotting results show that phosphorylation levels of critical components of the MAPK signaling pathway, including ERK, JNK and P38, are dramatically decreased in VI-14-treated MDA-MB-231 cells. Furthermore, treatment of VI-14 significantly decreases the nuclear levels and the binding ability of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). Taken together, our data suggest that VI-14 treatment suppresses migration and motility of breast cancer cells, and VI-14 may be a potential compound for cancer therapy. Highlights: ► We report for the first time that VI-14 possesses anti-cancer properties. ► VI-14 weakens the adhesion, migration and invasion of human breast cancer cells. ► VI-14 decreases the activities and expressions of MMP-2/9. ► VI-14 suppresses the phosphorylation levels of the MAPK signaling pathway. ► VI-14 decreases the nuclear levels and the binding ability of NF-κB and AP-1.

  9. Time-lapse microscopy and image processing for stem cell research: modeling cell migration

    NASA Astrophysics Data System (ADS)

    Gustavsson, Tomas; Althoff, Karin; Degerman, Johan; Olsson, Torsten; Thoreson, Ann-Catrin; Thorlin, Thorleif; Eriksson, Peter

    2003-05-01

    This paper presents hardware and software procedures for automated cell tracking and migration modeling. A time-lapse microscopy system equipped with a computer controllable motorized stage was developed. The performance of this stage was improved by incorporating software algorithms for stage motion displacement compensation and auto focus. The microscope is suitable for in-vitro stem cell studies and allows for multiple cell culture image sequence acquisition. This enables comparative studies concerning rate of cell splits, average cell motion velocity, cell motion as a function of cell sample density and many more. Several cell segmentation procedures are described as well as a cell tracking algorithm. Statistical methods for describing cell migration patterns are presented. In particular, the Hidden Markov Model (HMM) was investigated. Results indicate that if the cell motion can be described as a non-stationary stochastic process, then the HMM can adequately model aspects of its dynamic behavior.

  10. Ceramide 1-phosphate regulates cell migration and invasion of human pancreatic cancer cells.

    PubMed

    Rivera, Io-Guané; Ordoñez, Marta; Presa, Natalia; Gangoiti, Patricia; Gomez-Larrauri, Ana; Trueba, Miguel; Fox, Todd; Kester, Mark; Gomez-Muñoz, Antonio

    2016-02-15

    Pancreatic cancer is an aggressive and devastating disease characterized by invasiveness, rapid progression and profound resistance to treatment. Despite years of intense investigation, the prognosis of this type of cancer is poor and there is no efficacious treatment to overcome the disease. Using human PANC-1 and MIA PaCa-2 cells, we demonstrate that the bioactive sphingolipid ceramide 1-phosphate (C1P) increases pancreatic cancer cell migration and invasion. Treatment of these cells with selective inhibitors of phosphatidylinositol 3-kinase (PI3K), Akt1, or mammalian target of rapamycin 1 (mTOR1), or with specific siRNAs to silence the genes encoding these kinases, resulted in potent inhibition of C1P-induced cell migration and invasion. Likewise, the extracellularly regulated kinases 1 and 2 (ERK1-2), and the small GTPase RhoA, which regulates cytoskeleton reorganization, were also found to be implicated in C1P-stimulated ROCK1-dependent cancer cell migration and invasion. In addition, pre-treatment of the cancer cells with pertussis toxin abrogated C1P-induced cell migration, suggesting the intervention of a Gi protein-coupled receptor in this process. Pancreatic cancer cells engineered to overexpress ceramide kinase (CerK), the enzyme responsible for C1P biosynthesis in mammalian cells, showed enhanced spontaneous cell migration that was potently blocked by treatment with the selective CerK inhibitor NVP-231, or by treatment with specific CerK siRNA. Moreover, overexpression of CerK with concomitant elevations in C1P enhanced migration of pancreatic cancer cells. Collectively, these data demonstrate that C1P is a key regulator of pancreatic cancer cell motility, and suggest that targeting CerK expression/activity and C1P may be relevant factors for controlling pancreatic cancer cell dissemination. PMID:26707801

  11. Epigenetic modification suppresses proliferation, migration and invasion of urothelial cancer cell lines

    PubMed Central

    Brockmeyer, Phillipp; Hemmerlein, Bernhard

    2016-01-01

    Epigenetic approaches offer additional therapeutic options, including apoptosis induction, modification of cell cycle regulating proteins and the re-expression of pharmaceutical targets, such as hormone receptors. The present study analyzed the effect of the epigenetic modifiers 5-aza-2′-deoxycytidine and Trichostatin A on the proliferative, migratory and invasive behavior of four urinary bladder cancer cell lines (RT-4, RT-112, VMCUB-1 and T-24), and the expression of various matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs). Cell proliferation, migration and invasion assays revealed that treatment with the two epigenetic modifiers resulted in proliferation inhibition in all cell lines, and migration and invasion inhibition in RT-4, RT-112 and T-24 cell lines. Quantitative polymerase chain reaction demonstrated that the mRNA expression of a broad selection of MMPs and their TIMPs was induced in all cell lines, and MMP-14 mRNA expression was suppressed in all cell lines, with the exception of RT-4. In conclusion, epigenetic modifications suppressed the motility and invasiveness of three out of four urothelial cancer cell lines. The inhibitory effect on cell motility appears to be crucial for reduced invasive properties. However, even a broad spectrum of mRNA analysis does not sufficiently explain the loss of invasiveness, as it does not allow for functional conclusions. Further complex urothelial tumour models should be applied to investigate whether epigenetic therapeutic approaches may be an option in urothelial cancer. PMID:27602104

  12. Nuclear deformability constitutes a rate-limiting step during cell migration in 3-D environments

    PubMed Central

    Davidson, Patricia M.; Denais, Celine; Bakshi, Maya C.; Lammerding, Jan

    2014-01-01

    Cell motility plays a critical role in many physiological and pathological settings, ranging from wound healing to cancer metastasis. While cell migration on 2-dimensional (2-D) substrates has been studied for decades, the physical challenges cells face when moving in 3-D environments are only now emerging. In particular, the cell nucleus, which occupies a large fraction of the cell volume and is normally substantially stiffer than the surrounding cytoplasm, may impose a major obstacle when cells encounter narrow constrictions in the interstitial space, the extracellular matrix, or small capillaries. Using novel microfluidic devices that allow observation of cells moving through precisely defined geometries at high spatial and temporal resolution, we determined nuclear deformability as a critical factor in the cells’ ability to pass through constrictions smaller than the size of the nucleus. Furthermore, we found that cells with reduced levels of the nuclear envelope proteins lamins A/C, which are the main determinants of nuclear stiffness, passed significantly faster through narrow constrictions during active migration and passive perfusion. Given recent reports that many human cancers have altered lamin expression, our findings suggest a novel biophysical mechanism by which changes in nuclear structure and composition may promote cancer cell invasion and metastasis. PMID:25436017

  13. Tre1, a G Protein-Coupled Receptor, Directs Transepithelial Migration of Drosophila Germ Cells

    PubMed Central

    2003-01-01

    In most organisms, germ cells are formed distant from the somatic part of the gonad and thus have to migrate along and through a variety of tissues to reach the gonad. Transepithelial migration through the posterior midgut (PMG) is the first active step during Drosophila germ cell migration. Here we report the identification of a novel G protein-coupled receptor (GPCR), Tre1, that is essential for this migration step. Maternal tre1 RNA is localized to germ cells, and tre1 is required cell autonomously in germ cells. In tre1 mutant embryos, most germ cells do not exit the PMG. The few germ cells that do leave the midgut early migrate normally to the gonad, suggesting that this gene is specifically required for transepithelial migration and that mutant germ cells are still able to recognize other guidance cues. Additionally, inhibiting small Rho GTPases in germ cells affects transepithelial migration, suggesting that Tre1 signals through Rho1. We propose that Tre1 acts in a manner similar to chemokine receptors required during transepithelial migration of leukocytes, implying an evolutionarily conserved mechanism of transepithelial migration. Recently, the chemokine receptor CXCR4 was shown to direct migration in vertebrate germ cells. Thus, germ cells may more generally use GPCR signaling to navigate the embryo toward their target. PMID:14691551

  14. Notch1-Dll4 signaling and mechanical force regulate leader cell formation during collective cell migration

    PubMed Central

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin

    2015-01-01

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 signaling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signaling to dynamically regulate the density of leader cells during collective cell migration. PMID:25766473

  15. Essential role for calcium waves in migration of human vascular smooth muscle cells.

    PubMed

    Espinosa-Tanguma, Ricardo; O'Neil, Caroline; Chrones, Tom; Pickering, J Geoffrey; Sims, Stephen M

    2011-08-01

    Vascular smooth muscle cell (SMC) migration is characterized by extension of the lamellipodia at the leading edge, lamellipodial attachment to substrate, and release of the rear (uropod) of the cell, all of which enable forward movement. However, little is known regarding the role of intracellular cytosolic Ca(2+) concentration ([Ca(2+)](i)) in coordinating these distinct activities of migrating SMCs. The objective of our study was to determine whether regional changes of Ca(2+) orchestrate the migratory cycle in human vascular SMCs. We carried out Ca(2+) imaging using digital fluorescence microscopy of fura-2 loaded human smooth muscle cells. We found that motile SMCs exhibited Ca(2+) waves that characteristically swept from the rear of polarized cells toward the leading edge. Ca(2+) waves were less evident in nonpolarized, stationary cells, although acute stimulation of these SMCs with the agonists platelet-derived growth factor-BB or histamine could elicit transient rise of [Ca(2+)](i). To investigate a role for Ca(2+) waves in the migratory cycle, we loaded cells with the Ca(2+) chelator BAPTA, which abolished Ca(2+) waves and significantly reduced retraction, supporting a causal role for Ca(2+) in initiation of retraction. However, lamellipod motility was still evident in BAPTA-loaded cells. The incidence of Ca(2+) oscillations was reduced when Ca(2+) release from intracellular stores was disrupted with the sarcoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin or by treatment with the inositol 1,4,5-trisphosphate receptor blocker 2-aminoethoxy-diphenyl borate or xestospongin C, implicating Ca(2+) stores in generation of waves. We conclude that Ca(2+) waves are essential for migration of human vascular SMCs and can encode cell polarity. PMID:21572011

  16. Loss of AF6/afadin, a marker of poor outcome in breast cancer, induces cell migration, invasiveness and tumor growth.

    PubMed

    Fournier, G; Cabaud, O; Josselin, E; Chaix, A; Adélaïde, J; Isnardon, D; Restouin, A; Castellano, R; Dubreuil, P; Chaffanet, M; Birnbaum, D; Lopez, M

    2011-09-01

    Afadin/AF6, an F-actin-binding protein, is ubiquitously expressed in epithelia and has a key role during development, through its regulatory role in cell-cell junction organization. Afadin loss of expression in 15% of breast carcinoma is associated with adverse prognosis and increased risk of metastatic relapse. To determine the role of afadin in breast cancer, we studied the functional consequences of afadin protein extinction using in vitro and in vivo models. Three different breast cancer cell lines representative of the major molecular subtypes were stably repressed for afadin expression (knockdown of afadin (afadin KD)) using RNA interference. Collective and individual migrations as well as Matrigel invasion were markedly increased in afadin KD cells. Heregulin-β1 (HRG-β1)-induced migration and invasion were increased by twofold in afadin KD cells. Conversely, ectopic expression of afadin in the afadin-negative T47D cell line inhibited spontaneous and HRG-β1-induced migrations. RAS/MAPK and SRC kinase pathways were activated in afadin KD cells. Activation levels positively correlated with migration and invasion strength. Use of MEK1/2 (U0126) and SRC kinases (SU6656) inhibitors reduced afadin-dependent migration and invasion. Afadin extinction in the SK-BR-3 cell line markedly accelerated tumor growth development in mouse mammary gland and lung metastasis formation. These results may explain why the loss of afadin expression in tumors correlates with high tumor size and poor metastasis-free survival in patients. PMID:21478912

  17. Forward transport of proteins in the plasma membrane of migrating cerebellar granule cells.

    PubMed

    Wang, Dong; She, Liang; Sui, Ya-nan; Yuan, Xiao-bing; Wen, Yunqing; Poo, Mu-ming

    2012-12-18

    Directional flow of membrane components has been detected at the leading front of fibroblasts and the growth cone of neuronal processes, but whether there exists global directional flow of plasma membrane components over the entire migrating neuron remains largely unknown. By analyzing the trajectories of antibody-coated single quantum dots (QDs) bound to two membrane proteins, overexpressed myc-tagged synaptic vesicle-associated membrane protein VAMP2 and endogenous neurotrophin receptor TrkB, we found that these two proteins exhibited net forward transport, which is superimposed upon Brownian motion, in both leading and trailing processes of migrating cerebellar granule cells in culture. Furthermore, no net directional transport of membrane proteins was observed in nonmigrating cells with either growing or stalling leading processes. Analysis of the correlation of motion direction between two QDs on the same process in migrating neurons also showed a higher frequency of correlated forward than rearward movements. Such correlated QD movements were markedly reduced in the presence of myosin II inhibitor blebbistatin,suggesting the involvement of myosin II-dependent active transport processes. Thus, a net forward transport of plasma membrane proteins exists in the leading and trailing processes of migrating neurons, in line with the translocation of the soma. PMID:23213239

  18. Collective Epithelial and Mesenchymal Cell Migration During Gastrulation

    PubMed Central

    Chuai, Manli; Hughes, David; Weijer, Cornelis J

    2012-01-01

    Gastrulation, the process that puts the three major germlayers, the ectoderm, mesoderm and endoderm in their correct topological position in the developing embryo, is characterised by extensive highly organised collective cell migration of epithelial and mesenchymal cells. We discuss current knowledge and insights in the mechanisms controlling these cell behaviours during gastrulation in the chick embryo. We discuss several ideas that have been proposed to explain the observed large scale vortex movements of epithelial cells in the epiblast during formation of the primitive streak. We review current insights in the control and execution of the epithelial to mesenchymal transition (EMT) underlying the formation of the hypoblast and the ingression of the mesendoderm cells through the streak. We discuss the mechanisms by which the mesendoderm cells move, the nature and dynamics of the signals that guide these movements, as well as the interplay between signalling and movement that result in tissue patterning and morphogenesis. We argue that instructive cell-cell signaling and directed chemotactic movement responses to these signals are instrumental in the execution of all phases of gastrulation. PMID:23204916

  19. Dysregulated expression of IDO may cause unexplained recurrent spontaneous abortion through suppression of trophoblast cell proliferation and migration

    PubMed Central

    Zong, Shanshan; Li, Chunqing; Luo, Chengfeng; Zhao, Xin; Liu, Chunhong; Wang, Kai; Jia, Wenwen; Bai, Mingliang; Yin, Minghong; Bao, Shihua; Guo, Jie; Kang, jiuhong; Duan, Tao; Zhou, Qian

    2016-01-01

    In pregnancy, trophoblast proliferation, migration and invasion are important for the establishment and maintenance of a successful pregnancy. Impaired trophoblast function has been implicated in recurrent spontaneous abortion (RSA), a major complication of pregnancy, but the underlying mechanisms remain unclear. Indoleamine 2,3-dioxygenase (IDO), an enzyme that catabolizes tryptophan along the kynurenine pathway, is highly expressed in the placenta and serum during pregnancy. Here, we identified a novel function of IDO in regulating trophoblast cell proliferation and migration. We showed that IDO expression and activity were decreased in unexplained recurrent spontaneous abortion (URSA) compared to normal pregnancy. Furthermore, blocking IDO in human trophoblast cells led to reduced proliferation and migration, along with decreased STAT3 phosphorylation and MMP9 expression. Increased STAT3 phosphorylation reversed the IDO knockdown-suppressed trophoblast cell proliferation and migration. In addition, the overexpression of IDO promoted cell proliferation and migration, which could be abolished by the STAT3 signaling inhibitor (AG490). Finally, we observed similar reductions of STAT3 phosphorylation and MMP9 expression in URSA patients. These results indicate that the level of IDO expression may be associated with pregnancy-related complications, such as URSA, by affecting trophoblast cell proliferation and migration via the STAT3 signaling pathway. PMID:26814137

  20. A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of Schwann cells.

    PubMed

    Ren, Tanchen; Yu, Shan; Mao, Zhengwei; Gao, Changyou

    2015-07-01

    Selective enhancement of directional migration of Schwann cells (SCs) over fibroblasts (FIBs) plays a significant role in peripheral nerve regeneration, because this behavior facilitates neuron repair and avoids fibrosis. Herein a complementary density gradient of poly(3-dimethyl-methacryloyloxyethyl ammonium propane sulfonate) (PDMAPS, a zwitterionic polymer with antifouling property) and KHIFSDDSSE peptide (KHI, derived from neural cell adhesion molecule NCAM which mediates cell-cell adhesion) was fabricated. The gradient was visualized by fluorescent labeling, and further characterized by X-ray photoelectron spectrometry (XPS) and quartz crystal microbalance with dissipation (QCM-d). The SCs exhibited preferential orientation and enhanced directional migration on the gradient surface toward the region of lower PDMAPS density and higher KHI peptide density, while FIBs showed random migration. Moreover, the migration rate of the SCs was significantly enhanced to 2 folds, whereas that of the FIBs was reduced to 60% compared to their natural state on glass, leading to a faster migration rate of SCs than FIBs. The success of the complementary gradient relies on the appropriate interplay between the PDMAPS brushes and the cell-specific ligands, enabling the selective guidance of SCs migration. PMID:25934279

  1. Can Migration Reduce Educational Attainment? Evidence from Mexico. Policy Research Working Paper Series. WPS3952

    ERIC Educational Resources Information Center

    McKenzie, David; Rapoport, Hillel

    2006-01-01

    This paper examines the impact of migration on educational attainment in rural Mexico. Using historical migration rates by state to instrument for current migration, we find evidence of a significant negative effect of migration on schooling attendance and attainment of 12 to 18 year-old boys and 16 to 18 year-old girls. IV-Censored Ordered Probit…

  2. c-Cbl regulates αPix-mediated cell migration and invasion

    SciTech Connect

    Seong, Min Woo; Park, Ji Ho; Yoo, Hee Min; Yang, Seung Wook; Oh, Kyu Hee; Ka, Seung Hyeun; Park, Dong Eun; Lee, Soon-Tae; Chung, Chin Ha

    2014-12-12

    Highlights: • c-Cbl ubiquitinates αPix for proteasome-mediated degradation. • C6 and A172 glioma cells lack c-Cbl, which leads to stabilization of αPix. • The accumulated αPix promotes migration and invasion of the cancer cells. • The lack of c-Cbl in the cells appears responsible for their malignant behavior. - Abstract: c-Cbl, a RING-type ubiquitin E3 ligase, down-regulates receptor tyrosine kinases, including EGF receptor, and inhibits cell proliferation. Moreover, c-Cbl mutations are frequently found in patients with myeloid neoplasm. Therefore, c-Cbl is known as a tumor suppressor. αPix is expressed only in highly proliferative and mobile cells, including immune cells, and up-regulated in certain invasive tumors, such as glioblastoma multiforme. Here, we showed that c-Cbl serves as an ubiquitin E3 ligase for proteasome-mediated degradation of αPix, but not βPix. Remarkably, the rat C6 and human A172 glioma cells were unable to express c-Cbl, which leads to a dramatic accumulation of αPix. Depletion of αPix by shRNA markedly reduced the ability of the glioma cells to migrate and invade, whereas complementation of shRNA-insensitive αPix promoted it. These results indicate that c-Cbl negatively regulates αPix-mediated cell migration and invasion and the lack of c-Cbl in the C6 and A172 glioma cells is responsible for their malignant behavior.

  3. ARMc8 indicates aggressive colon cancers and promotes invasiveness and migration of colon cancer cells.

    PubMed

    Jiang, Guiyang; Zhang, Yong; Zhang, Xiupeng; Fan, Chuifeng; Wang, Liang; Xu, Hongtao; Yu, Juanhan; Wang, Enhua

    2015-11-01

    Recent studies have implicated ARMc8 in promoting tumor formation in non-small cell lung cancer and breast cancer; however, so far, no studies have revealed the expression pattern or cellular function of ARMc8 in colon cancer. In this study, we used immunohistochemical staining to measure ARMc8 expression in 206 cases of colon cancer and matched adjacent normal colon tissue. Clinically important behaviors of cells, including invasiveness and migration, were evaluated after upregulation of ARMc8 expression in HT29 cells through gene transfection or downregulation of expression in LoVo cells using RNAi. We found that ARMc8 was primarily located in the membrane and cytoplasm of tumor cells, and its expression level was significantly higher in colon cancer in comparison to that in the adjacent normal colon tissues (p < 0.001). ARMc8 expression was closely related to TNM stage (p = 0.006), lymph node metastasis (p = 0.001), and poor prognosis (p = 0.002) of colon cancer. The invasiveness and migration capacity of HT29 cells transfected with ARMc8 were significantly greater than those of control cells (p < 0.001), while ARMc8 siRNA treatment significantly reduced cell invasion and migration in LoVo cells (p < 0.001). Furthermore, we demonstrated that ARMc8 could upregulate the expression of MMP7 and snail and downregulate the expression of p120ctn and α-catenin. Therefore, ARMc8 probably enhanced invasiveness and metastatic capacity by affecting these tumor-associated factors, thereby playing a role in enhancing the tumorigenicity of colon cancer cells. ARMc8 is likely to become a potential therapeutic target for colon cancer. PMID:26081621

  4. Pitavastatin attenuates the PDGF-induced LR11/uPA receptor-mediated migration of smooth muscle cells

    SciTech Connect

    Jiang, Meizi; Bujo, Hideaki . E-mail: hbujo@faculty.chiba-u.jp; Zhu, Yanjuan; Yamazaki, Hiroyuki; Hirayama, Satoshi; Kanaki, Tatsuro; Shibasaki, Manabu; Takahashi, Kazuo; Schneider, Wolfgang J.; Saito, Yasushi

    2006-10-06

    Statins, inhibitors of HMG-CoA reductase, elicit various actions on vascular cells including the modulation of proliferation and migration of smooth muscle cells (SMCs). Here, we have elucidated the mechanism by which statins, in particular pitavastatin, attenuate the migration activity of SMCs. The expression of LR11, a member of the LDL receptor family and an enhancer of cell surface localization of urokinase-type plasminogen activator receptor (uPAR), is increased in cultured SMCs by treatment with PDGF-BB. Pitavastatin attenuates the PDGF-BB -induced surface expression of LR11 and uPAR. The increased migration of SMCs observed both upon overexpression of LR11 and via stimulation of secretion of soluble LR11 is not reversed by pitavastatin. In vivo studies showed that the SMCs expressing LR11 in plaques are almost congruent with intimal cells expressing nonmuscle myosin heavy chain (SMemb). Pitavastatin reduced the expression of LR11 and SMemb, and the levels of LR11, uPAR, and SMemb in cultured intimal SMCs were reduced to those seen in medial SMCs. We propose that this statin reduces PDGF-induced migration through the attenuation of the LR11/uPAR system in SMCs. Modulation of the LR11/uPAR system with statins suggests a novel treatment strategy for atherogenesis based on suppression of intimal SMC migration.

  5. Migration of Langerhans cells and gammadelta dendritic cells from UV-B-irradiated sheep skin.

    PubMed

    Dandie, G W; Clydesdale, G J; Radcliff, F J; Muller, H K

    2001-02-01

    Depletion of dendritic cells from UV-B-irradiated sheep skin was investigated by monitoring migration of these cells towards regional lymph nodes. By creating and cannulating pseudoafferent lymphatic vessels draining a defined region of skin, migrating cells were collected and enumerated throughout the response to UV-B irradiation. In the present study, the effects of exposing sheep flank skin to UV-B radiation clearly demonstrated a dose-dependent increase in the migration of Langerhans cells (LC) from the UV-B-exposed area to the draining lymph node. The range of UV-B doses assessed in this study included 2.7 kJ/m2, a suberythemal dose; 8 kJ/m2, 1 minimal erythemal dose (MED); 20.1 kJ/m2; 40.2 kJ/m2; and 80.4 kJ/m2, 10 MED. The LC were the cells most sensitive to UV-B treatment, with exposure to 8 kJ/m2 or greater reproducibly causing a significant increase in migration. Migration of gammadelta+ dendritic cells (gammadelta+ DC) from irradiated skin was also triggered by exposure to UV-B radiation, but dose dependency was not evident within the range of UV-B doses examined. This, in conjunction with the lack of any consistent correlation between either the timing or magnitude of migration peaks of these two cell types, suggests that different mechanisms govern the egress of LC and gammadelta+ DC from the skin. It is concluded that the depression of normal immune function in the skin after exposure to erythemal doses of UV-B radiation is associated with changes in the migration patterns of epidermal dendritic cells to local lymph nodes. PMID:11168622

  6. Collective epithelial cell sheet adhesion and migration on polyelectrolyte multilayers with uniform and gradients of compliance.

    PubMed

    Martinez, Jessica S; Schlenoff, Joseph B; Keller, Thomas C S

    2016-08-01

    Polyelectrolyte multilayers (PEMUs) are tunable thin films that could serve as coatings for biomedical implants. PEMUs built layer by layer with the polyanion poly(acrylic acid) (PAA) modified with a photosensitive 4-(2-hydroxyethoxy) benzophenone (PAABp) group and the polycation poly(allylamine hydrochloride) (PAH) are mechanically tunable by UV irradiation, which forms covalent bonds between the layers and increases PEMU stiffness. PAH-terminated PEMUs (PAH-PEMUs) that were uncrosslinked, UV-crosslinked to a uniform stiffness, or UV-crosslinked with an edge mask or through a neutral density optical gradient filter to form continuous compliance gradients were used to investigate how differences in PEMU stiffness affect the adhesion and migration of epithelial cell sheets from scales of the fish Poecilia sphenops (Black Molly) and Carassius auratus (Comet Goldfish). During the progressive collective cell migration, the edge cells (also known as 'leader' cells) in the sheets on softer uncrosslinked PEMUs and less crosslinked regions of the gradient formed more actin filaments and vinculin-containing adherens junctions and focal adhesions than formed in the sheet cells on stiffer PEMUs or glass. During sheet migration, the ratio of edge cell to internal cell (also known as 'follower' cells) motilities were greater on the softer PEMUs than on the stiffer PEMUs or glass, causing tension to develop across the sheet and periods of retraction, during which the edge cells lost adhesion to the substrate and regions of the sheet retracted toward the more adherent internal cell region. These retraction events were inhibited by the myosin II inhibitor Blebbistatin, which reduced the motility velocity ratios to those for sheets on the stiffer PEMUs. Blebbistatin also caused disassembly of actin filaments, reorganization of focal adhesions, increased cell spreading at the leading edge, as well as loss of edge cell-cell connections in epithelial cell sheets on all surfaces

  7. Claudin 1 mediates tumor necrosis factor alpha-induced cell migration in human gastric cancer cells

    PubMed Central

    Shiozaki, Atsushi; Shimizu, Hiroki; Ichikawa, Daisuke; Konishi, Hirotaka; Komatsu, Shuhei; Kubota, Takeshi; Fujiwara, Hitoshi; Okamoto, Kazuma; Iitaka, Daisuke; Nakashima, Shingo; Nako, Yoshito; Liu, Mingyao; Otsuji, Eigo

    2014-01-01

    AIM: To investigate the role of claudin 1 in the regulation of genes involved in cell migration and tumor necrosis factor alpha (TNF-α)-induced gene expression in human gastric adenocarcinoma cells. METHODS: Knockdown experiments were conducted with claudin 1 small interfering RNA (siRNA), and the effects on the cell cycle, apoptosis, migration and invasion were analyzed in human gastric adenocarcinoma MKN28 cells. The gene expression profiles of cells were analyzed by microarray and bioinformatics. RESULTS: The knockdown of claudin 1 significantly inhibited cell proliferation, migration and invasion, and increased apoptosis. Microarray analysis identified 245 genes whose expression levels were altered by the knockdown of claudin 1. Pathway analysis showed that the top-ranked molecular and cellular function was the cellular movement related pathway, which involved MMP7, TNF-SF10, TGFBR1, and CCL2. Furthermore, TNF- and nuclear frctor-κB were the top-ranked upstream regulators related to claudin 1. TNF-α treatment increased claudin 1 expression and cell migration in MKN28 cells. Microarray analysis indicated that the depletion of claudin 1 inhibited 80% of the TNF-α-induced mRNA expression changes. Further, TNF-α did not enhance cell migration in the claudin 1 siRNA transfected cells. CONCLUSION: These results suggest that claudin 1 is an important messenger that regulates TNF-α-induced gene expression and migration in gastric cancer cells. A deeper understanding of these cellular processes may be helpful in establishing new therapeutic strategies for gastric cancer. PMID:25548484

  8. Macrophages modulate migration and invasion of human tongue squamous cell carcinoma.

    PubMed

    Pirilä, Emma; Väyrynen, Otto; Sundquist, Elias; Päkkilä, Kaisa; Nyberg, Pia; Nurmenniemi, Sini; Pääkkönen, Virve; Pesonen, Paula; Dayan, Dan; Vered, Marilena; Uhlin-Hansen, Lars; Salo, Tuula

    2015-01-01

    Oral tongue squamous cell carcinoma (OTSCC) has a high mortality rate and the incidence is rising worldwide. Despite advances in treatment, the disease lacks specific prognostic markers and treatment modality. The spreading of OTSCC is dependent on the tumor microenvironment and involves tumor-associated macrophages (TAMs). Although the presence of TAMs is associated with poor prognosis in OTSCC, the specific mechanisms underlying this are still unknown. The aim here was to investigate the effect of macrophages (Mfs) on HSC-3 tongue carcinoma cells and NF-kappaB activity. We polarized THP-1 cells to M1 (inflammatory), M2 (TAM-like) and R848 (imidazoquinoline-treated) type Mfs. We then investigated the effect of Mfs on HSC-3 cell migration and NF-kappaB activity, cytokine production and invasion using several different in vitro migration models, a human 3D tissue invasion model, antibody arrays, confocal microscopy, immunohistochemistry and a mouse invasion model. We found that in co-culture studies all types of Mfs fused with HSC-3 cells, a process which was partially due to efferocytosis. HSC-3 cells induced expression of epidermal growth factor and transforming growth factor-beta in co-cultures with M2 Mfs. Direct cell-cell contact between M2 Mfs and HSC-3 cells induced migration and invasion of HSC-3 cells while M1 Mfs reduced HSC-3 cell invasion. M2 Mfs had an excess of NF-kappaB p50 subunit and a lack of p65 subunits both in the presence and absence of HSC-3 cells, indicating dysregulation and pro-tumorigenic NF-kappaB activation. TAM-like cells were abundantly present in close vicinity to carcinoma cells in OTSCC patient samples. We conclude that M2 Mfs/TAMs have an important role in OTSCC regulating adhesion, migration, invasion and cytokine production of carcinoma cells favouring tumor growth. These results demonstrate that OTSCC patients could benefit from therapies targeting TAMs, polarizing TAM-like M2 Mfs to inflammatory macrophages and modulating NF

  9. Macrophages Modulate Migration and Invasion of Human Tongue Squamous Cell Carcinoma

    PubMed Central

    Pirilä, Emma; Väyrynen, Otto; Sundquist, Elias; Päkkilä, Kaisa; Nyberg, Pia; Nurmenniemi, Sini; Pääkkönen, Virve; Pesonen, Paula; Dayan, Dan; Vered, Marilena; Uhlin-Hansen, Lars; Salo, Tuula

    2015-01-01

    Oral tongue squamous cell carcinoma (OTSCC) has a high mortality rate and the incidence is rising worldwide. Despite advances in treatment, the disease lacks specific prognostic markers and treatment modality. The spreading of OTSCC is dependent on the tumor microenvironment and involves tumor-associated macrophages (TAMs). Although the presence of TAMs is associated with poor prognosis in OTSCC, the specific mechanisms underlying this are still unknown. The aim here was to investigate the effect of macrophages (Mfs) on HSC-3 tongue carcinoma cells and NF-kappaB activity. We polarized THP-1 cells to M1 (inflammatory), M2 (TAM-like) and R848 (imidazoquinoline-treated) type Mfs. We then investigated the effect of Mfs on HSC-3 cell migration and NF-kappaB activity, cytokine production and invasion using several different in vitro migration models, a human 3D tissue invasion model, antibody arrays, confocal microscopy, immunohistochemistry and a mouse invasion model. We found that in co-culture studies all types of Mfs fused with HSC-3 cells, a process which was partially due to efferocytosis. HSC-3 cells induced expression of epidermal growth factor and transforming growth factor-beta in co-cultures with M2 Mfs. Direct cell-cell contact between M2 Mfs and HSC-3 cells induced migration and invasion of HSC-3 cells while M1 Mfs reduced HSC-3 cell invasion. M2 Mfs had an excess of NF-kappaB p50 subunit and a lack of p65 subunits both in the presence and absence of HSC-3 cells, indicating dysregulation and pro-tumorigenic NF-kappaB activation. TAM-like cells were abundantly present in close vicinity to carcinoma cells in OTSCC patient samples. We conclude that M2 Mfs/TAMs have an important role in OTSCC regulating adhesion, migration, invasion and cytokine production of carcinoma cells favouring tumor growth. These results demonstrate that OTSCC patients could benefit from therapies targeting TAMs, polarizing TAM-like M2 Mfs to inflammatory macrophages and modulating NF

  10. Honokiol inhibits non-small cell lung cancer cell migration by targeting PGE₂-mediated activation of β-catenin signaling.

    PubMed

    Singh, Tripti; Katiyar, Santosh K

    2013-01-01

    Lung cancer remains a leading cause of death due to its metastasis to distant organs. We have examined the effect of honokiol, a bioactive constituent from the Magnolia plant, on human non-small cell lung cancer (NSCLC) cell migration and the molecular mechanisms underlying this effect. Using an in vitro cell migration assay, we found that treatment of A549, H1299, H460 and H226 NSCLC cells with honokiol resulted in inhibition of migration of these cells in a dose-dependent manner, which was associated with a reduction in the levels of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2). Celecoxib, a COX-2 inhibitor, also inhibited cell migration. Honokiol inhibited PGE2-enhanced migration of NSCLC cells, inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in A549 and H1299 cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited migration of NSCLC cells. PGE2 has been shown to activate β-catenin signaling, which contributes to cancer cell migration. Therefore, we checked the effect of honokiol on β-catenin signaling. It was observed that treatment of NSCLC cells with honokiol degraded cytosolic β-catenin, reduced nuclear accumulation of β-catenin and down-regulated matrix metalloproteinase (MMP)-2 and MMP-9, which are the down-stream targets of β-catenin and play a crucial role in cancer cell metastasis. Honokiol enhanced: (i) the levels of casein kinase-1α, glycogen synthase kinase-3β, and (ii) phosphorylation of β-catenin on critical residues Ser(45), Ser(33/37) and Thr(41). These events play important roles in degradation or inactivation of β-catenin. Treatment of celecoxib also reduced nuclear accumulation of β-catenin in NSCLC cells. FH535, an inhibitor of Wnt/β-catenin pathway, inhibited PGE2-enhanced cell migration of A549 and H1299 cells. These results indicate that honokiol inhibits non-small cell lung cancer cells migration by targeting PGE2-mediated activation of

  11. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion.

    PubMed

    Chen, Nan-Peng; Uddin, Borhan; Voit, Renate; Schiebel, Elmar

    2016-01-26

    Cell adhesion and migration are highly dynamic biological processes that play important roles in organ development and cancer metastasis. Their tight regulation by small GTPases and protein phosphorylation make interrogation of these key processes of great importance. We now show that the conserved dual-specificity phosphatase human cell-division cycle 14A (hCDC14A) associates with the actin cytoskeleton of human cells. To understand hCDC14A function at this location, we manipulated native loci to ablate hCDC14A phosphatase activity (hCDC14A(PD)) in untransformed hTERT-RPE1 and colorectal cancer (HCT116) cell lines and expressed the phosphatase in HeLa FRT T-Rex cells. Ectopic expression of hCDC14A induced stress fiber formation, whereas stress fibers were diminished in hCDC14A(PD) cells. hCDC14A(PD) cells displayed faster cell migration and less adhesion than wild-type controls. hCDC14A colocalized with the hCDC14A substrate kidney- and brain-expressed protein (KIBRA) at the cell leading edge and overexpression of KIBRA was able to reverse the phenotypes of hCDC14A(PD) cells. Finally, we show that ablation of hCDC14A activity increased the aggressive nature of cells in an in vitro tumor formation assay. Consistently, hCDC14A is down-regulated in many tumor tissues and reduced hCDC14A expression is correlated with poorer survival of patients with cancer, to suggest that hCDC14A may directly contribute to the metastatic potential of tumors. Thus, we have uncovered an unanticipated role for hCDC14A in cell migration and adhesion that is clearly distinct from the mitotic and cytokinesis functions of Cdc14/Flp1 in budding and fission yeast. PMID:26747605

  12. Silencing of HMGA2 promotes apoptosis and inhibits migration and invasion of prostate cancer cells.

    PubMed

    Shi, Zhan; Wu, Ding; Tang, Run; Li, Xiang; Chen, Renfu; Xue, Song; Zhang, Chengjing; Sun, Xiaoqing

    2016-06-01

    The high mobility group protein A2 (HMGA2) has been demonstrated as an architectural transcription factor that is associated with pathogenesis of many malignant cancers; however, its role in prostate cancer cells remains largely unknown. To explore whether HMGA2 participates in the development and progression of prostate cancer, small interfering RNA (siRNA) targeted on human HMGA2 was transfected to suppress the HMGA2 expression in prostate cancer PC3 and DU145 cells, and then the cellular biology changes after decreased the expression of HMGA2 was examined. Our results showed that knockdown of HMGA2 markedly inhibited cell proliferation; this reduced cell proliferation was due to the promotion of cell apoptosis as the Bcl-xl was decreased, whereas Bax was up-regulated. In addition, we found that HMGA2 knockdown resulted in reduction of cell migration and invasion, as well as repressed the expression of matrix metalloproteinases (MMPs) and affected the occurrence of epithelial-mesenchymal transition (EMT) in both cell types. We further found that decreased HMGA2 expression inhibited the transforming growth factor-beta (TGF-beta)/Smad signalling pathway in cancer cells. In conclusion, our data indicated that HMGA2 was associated with apoptosis, migration and invasion of prostate cancer, which might be a promising therapeutic target for prostate cancer. PMID:27240983

  13. Actin-Based Feedback Circuits in Cell Migration and Endocytosis

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin

    In this thesis, we study the switch and pulse functions of actin during two important cellular processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize to form a dendritic network. The actin network can exert force to push or bend the cell membrane. During cell migration, the actin network behaves like a switch, assembling mostly at one end or at the other end. The end with the majority of the actin network is the leading edge, following which the cell can persistently move in the same direction. The other end, with the minority of the actin network, is the trailing edge, which is dragged by the cell as it moves forward. When subjected to large fluctuations or external stimuli, the leading edge and the trailing edge can interchange and change the direction of motion, like a motion switch. Our model of the actin network in a cell reveals that mechanical force is crucial for forming the motion switch. We find a transition from single state symmetric behavior to switch behavior, when tuning parameters such as the force. The model is studied by both stochastic simulations, and a set of rate equations that are consistent with the simulations. Endocytosis is a process by which cells engulf extracellular substances and recycle the cell membrane. In yeast cells, the actin network is transiently needed to overcome the pressure difference across the cell membrane caused by turgor pressure. The actin network behaves like a pulse, which assembles and then disassembles within about 30 seconds. Using a stochastic model, we reproduce the pulse behaviors of the actin network and one of its regulatory proteins, Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells. The model also predicts some phenotypes that modify or diminish the pulse behavior. The phenotypes are verified with both experiments performed at Washington University and with other groups' experiments. We find that several feedback mechanisms are

  14. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    SciTech Connect

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik

    2014-03-28

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluate CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via

  15. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    SciTech Connect

    Ramos-Solano, Moisés; Meza-Canales, Ivan D.; Torres-Reyes, Luis A.; Alvarez-Zavala, Monserrat; and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  16. Expression of pleiotrophin, an important regulator of cell migration, is inhibited in intestinal epithelial cells by treatment with non-steroidal anti-inflammatory drugs.

    PubMed

    Silver, Kristopher; Desormaux, Alejandra; Freeman, Lisa C; Lillich, James D

    2012-08-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs for the suppression of inflammation and pain. However, the analgesic properties of NSAIDs are also associated with significant negative side effects, most notably in the gastrointestinal (GI) tract. Increasingly, evidence indicates that the ulcerogenic properties of some NSAIDs are not exclusively the result of inhibition of cyclooxygenase isoforms in the GI tract, and other mechanisms, including inhibition of cell migration and epithelial restitution, are being explored. Recently, microarray analysis was used to identify potential novel targets of NSAID activity in intestinal epithelial cells. Treated cells exhibited significant reductions in the gene expression of pleiotrophin (PTN), a cytokine and growth factor known to participate in angiogenesis and bone growth. This report aimed to confirm the microarray results reported previously, and to measure protein expression of PTN in intestinal epithelial cells. Furthermore, we also examined the effects of exogenous PTN on cell migration in the presence and absence of either NSAIDs with variable ulcerogenic potential or PTN-specific siRNA. Our results demonstrated that indomethacin and NS-398, two NSAIDs with ulcerogenic potential significantly decrease both gene and protein expressions of PTN in IEC-6 cells and protein expression in IEC-6-Cdx2 cells. Additionally, cell migration experiments with PTN siRNA showed that PTN is an important mediator of IEC-6 cell migration, and addition of exogenous PTN partially restores the deficits in cell migration caused by treatment with indomethacin and NS-398. Finally, measurement of PTN protein expression in the GI tract of horses treated with phenylbutazone showed that PTN expression is reduced by NSAIDs in vivo. Our results show that PTN is an important mediator of cell migration in IEC-6 cells, and PTN is a potential target through which NSAIDs may inhibit cell migration, epithelial

  17. Dynamic assessment of cell viability, proliferation and migration using real time cell analyzer system (RTCA).

    PubMed

    Roshan Moniri, Mani; Young, Ada; Reinheimer, Kelsey; Rayat, Jarrett; Dai, Long-Jun; Warnock, Garth L

    2015-03-01

    Cell viability and cell migration capacities are critical parameters for cell culture-related studies. It is essential to monitor the dynamic changes of cell properties under various co-culture conditions to our better understanding of their behaviours and characteristics. The real time cell analyzer (RTCA, xCELLigence, Roche) is an impedance-based technology that can be used for label-free and real-time monitoring of cell properties, such as cell adherence, proliferation, migration and cytotoxicity. The practicality of this system has been proven in our recent cancer studies. In the present method, we intend to use co-cultures of pancreatic cancer cells (HP62) and mesenchymal stem cells to describe in detail, the procedures and benefits of RTCA. PMID:24443077

  18. Complement Fragment C3a Controls Mutual Cell Attraction during Collective Cell Migration

    PubMed Central

    Carmona-Fontaine, Carlos; Theveneau, Eric; Tzekou, Apostolia; Tada, Masazumi; Woods, Mae; Page, Karen M.; Parsons, Maddy; Lambris, John D.; Mayor, Roberto

    2011-01-01

    Summary Collective cell migration is a mode of movement crucial for morphogenesis and cancer metastasis. However, little is known about how migratory cells coordinate collectively. Here we show that mutual cell-cell attraction (named here coattraction) is required to maintain cohesive clusters of migrating mesenchymal cells. Coattraction can counterbalance the natural tendency of cells to disperse via mechanisms such as contact inhibition and epithelial-to-mesenchymal transition. Neural crest cells are coattracted via the complement fragment C3a and its receptor C3aR, revealing an unexpected role of complement proteins in early vertebrate development. Loss of coattraction disrupts collective and coordinated movements of these cells. We propose that coattraction and contact inhibition act in concert to allow cell collectives to self-organize and respond efficiently to external signals, such as chemoattractants and repellents. PMID:22118769

  19. Extravillous trophoblast cells-derived exosomes promote vascular smooth muscle cell migration

    PubMed Central

    Salomon, Carlos; Yee, Sarah; Scholz-Romero, Katherin; Kobayashi, Miharu; Vaswani, Kanchan; Kvaskoff, David; Illanes, Sebastian E.; Mitchell, Murray D.; Rice, Gregory E.

    2014-01-01

    Background: Vascular smooth muscle cells (VSMCs) migration is a critical process during human uterine spiral artery (SpA) remodeling and a successful pregnancy. Extravillous trophoblast cells (EVT) interact with VSMC and enhance their migration, however, the mechanisms by which EVT remodel SpA remain to be fully elucidated. We hypothesize that exosomes released from EVT promote VSMC migration. Methods: JEG-3 and HTR-8/SVneo cell lines were used as models for EVT. Cells were cultured at 37°C and humidified under an atmosphere of 5% CO2-balanced N2 to obtain 8% O2. Cell-conditioned media were collected, and exosomes (exo-JEG-3 and exo- HTR-8/SVneo) isolated by differential and buoyant density centrifugation. The effects of exo-EVT on VSMC migration were established using a real-time, live-cell imaging system (Incucyte™). Exosomal proteins where identified by mass spectrometry and submitted to bioinformatic pathway analysis (Ingenuity software). Results: HTR-8/SVneo cells were significantly more (~30%) invasive than JEG-3 cells. HTR-8/SVneo cells released 2.6-fold more exosomes (6.39 × 108 ± 2.5 × 108 particles/106 cells) compared to JEG-3 (2.86 × 108 ± 0.78 × 108 particles/106 cells). VSMC migration was significantly increased in the presence of exo-JEG-3 and exo-HTR-8/SVneo compared to control (−exosomes) (21.83 ± 0.49 h and 15.57 ± 0.32, respectively, vs. control 25.09 ± 0.58 h, p < 0.05). Sonication completely abolished the effect of exosomes on VSMC migration. Finally, mass spectrometry analysis identified unique exosomal proteins for each EVT cell line-derived exosomes. Conclusion: The data obtained in this study are consistent with the hypothesis that the release, content, and bioactivity of exosomes derived from EVT-like cell lines is cell origin-dependent and differentially regulates VSMC migration. Thus, an EVT exosomal signaling pathway may contribute to SpA remodeling by promoting the migration of VSMC out of the vessel walls. PMID:25157233

  20. Lipocalin 2 Enhances Migration and Resistance against Cisplatin in Endometrial Carcinoma Cells

    PubMed Central

    Kashima, Hiroyasu; Yamada, Yasushi; Kobara, Hisanori; Asaka, Ryoichi; Ando, Hirofumi; Higuchi, Shotaro; Ida, Koichi; Mvunta, David Hamisi; Shiozawa, Tanri

    2016-01-01

    Purpose Lipocalin 2 (LCN2) is a secretory protein that is involved in various physiological processes including iron transport. We previously identified LCN2 as an up-regulated gene in endometrial carcinoma, and found that the overexpression of LCN2 and its receptor, SLC22A17, was associated with a poor prognosis. However, the functions and mechanism of action of LCN2 currently remain unclear. Methods The LCN2-overexpressing endometrial carcinoma cell lines, HHUA and RL95-2, and LCN2-low-expressing one, HEC1B, were used. The effects of LCN2 on cell migration, cell viability, and apoptosis under various stresses, including ultraviolet (UV) irradiation and cisplatin treatment, were examined using the scratch wound healing assay, WST-1 assay, and Apostrand assay, respectively. Results LCN2-silencing using shRNA method significantly reduced the migration ability of cells (p<0.05). Cytotoxic stresses significantly decreased the viability of LCN2-silenced cells more than that of control cells. In contrast, LCN2 overexpression was significantly increased cisplatin resistance. These effects were canceled by the addition of the iron chelator, deferoxamine. After UV irradiation, the expression of phosphorylated Akt (pAkt) was decreased in LCN2-silenced cells, and the PI3K inhibitor canceled the difference induced in UV sensitivity by LCN2. The cisplatin-induced expression of pAkt was not affected by LCN2; however, the expression of p53 and p21 was increased by LCN2-silencing. Conclusions These results indicated that LCN2 was involved in the migration and survival of endometrial carcinoma cells under various stresses in an iron-dependent manner. The survival function of LCN2 may be exerted through the PI3K pathway and suppression of the p53-p21 pathway. These functions of LCN2 may increase the malignant potential of endometrial carcinoma cells. PMID:27168162

  1. MicroRNA-92a Promotes Colorectal Cancer Cell Growth and Migration by Inhibiting KLF4.

    PubMed

    Lv, Huiqing; Zhang, Zhongmin; Wang, Yaoxia; Li, Chenglin; Gong, Weihong; Wang, Xin

    2016-01-01

    Colorectal cancer (CRC) is the third most common malignancy with high mortality around the world. However, the biological mechanism of CRC carcinogenesis is not completely known. In the present study, we determined the role of miR-92a in the regulation of CRC cell motility. Expression of miR-92a is aberrantly upregulated in human CRC tissues and cultured cells, as shown by RT-PCR analysis. The effects of miR-92a on the proliferation and migration of human CRC SW620 and LoVo cells were measured by CCK-8 and Transwell assay, respectively. Results showed that the proliferation and migration capacity of both SW620 and LoVo cells were significantly increased by miR-92a mimic transfection but reduced by miR-92a inhibition. Additionally, KLF4 was identified as a direct target of miR-92a in CRC cells through bioinformatics and luciferase reporter analysis. KLF4 overexpression attenuated the effects of miR-92a on the regulation of CRC cell motility. Further studies suggested that the cell cycle inhibitor p21 was aberrantly downregulated in CRC cells, whereas this inhibition was reversed by miR-92a inhibitor. In conclusion, our data demonstrated that miR-92a may play a positive role in the colorectal carcinogenesis by promoting the proliferation and migration of CRC cells through targeting KLF4 as well as downstream p21. This could be an alternative therapeutic target for CRC. PMID:27131314

  2. Differential Regulation of CXCL5 by FGF2 in Osteoblastic and Endothelial Niche Cells Supports Hematopoietic Stem Cell Migration

    PubMed Central

    Yoon, Kyung-Ae; Cho, Hye-Sim; Shin, Hong-In

    2012-01-01

    Stem cell maintenance requires a specific microenvironment. Hematopoietic stem cells (HSCs) are mainly maintained by the endosteal osteoblast (OB) niche, which provides a quiescent HSC microenvironment, and the vascular niche, which regulates the proliferation, differentiation, and mobilization of HSCs. The systemic administration of FGF2 failed to induce normal hematopoiesis in bone marrow (BM) by reducing SDF-1, an important factor for hematopoiesis. Interestingly, SDF-1 levels were decreased in the OBs, but increased in vascular endothelial C166 cells when FGF2 was administered. We hypothesized that FGF2 induces changes in HSC migration from BM; therefore, we investigated FGF2-induced factors of HSC migration by a microarray chip. We searched the genes that were decreased in primary OBs, but increased in C166 cells upon FGF2 treatment. We confirmed selected genes that function in the extracellular region and identified the CXCR2-related chemokine candidate LIX/Cxcl5. A chemotaxis assay showed that CXCL5 induced the migration of HSCs (CD34−/lowLSK). Our data suggest that the differential regulation of the chemokine CXCL5 between OBs and endothelial cells upon FGF2 treatment is involved in HSC mobilization from the OB niche or BM to peripheral blood. PMID:22827607

  3. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    PubMed Central

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B.; Parkos, Charles A.

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating cells, which coincided with a displacement of the polarity protein Par6 from the leading edge. Consequently, the relocation of the microtubule organizing center and the Golgi apparatus in the direction of migration was significantly and persistently inhibited in the presence of Dkk-1. Small interfering RNA-induced down-regulation of Dkk-1 confirmed that extracellular exposure to Dkk-1 was required for this effect. Together, these data demonstrate a novel role of Dkk-1 in the regulation of directional polarization of migrating intestinal epithelial cells, which contributes to the effect of Dkk-1 on wound closure in vivo. PMID:19776352

  4. RUNX3 Suppresses Migration, Invasion and Angiogenesis of Human Renal Cell Carcinoma

    PubMed Central

    Li, Wang; Mei, Pengjin; Liu, Hui; Li, Linlin; Pan, Zhenqiang; Wu, Yongping; Zheng, Junnian

    2013-01-01

    RUNX3 (runt-related transcription factor-3) is a known tumor suppressor gene which exhibits potent antitumor activity in several carcinomas. However, little is known about the role of RUNX3 in human renal cell carcinoma (RCC). To investigate the clinical relevance of RUNX3 in RCC patients, immunohistochemistry was performed to detect the clinical relevance of RUNX3 in 75 RCC tissues and paired non-cancerous tissues by using tissue microarray (TMA). We also investigated the role of RUNX3 in RCC cell migration, invasion and angiogenesis. The RUNX3 expression was decreased dramatically in human RCC tissue. The RUNX3 expression was significantly correlated with tumor size (P<0.001), depth of invasion (P<0.001), and of TNM stage (P<0.001). Restoration of RUNX3 significantly decreased renal carcinoma cell migration and invasion capacity compared with controls. In addition, we found that overexpression of RUNX3 reduced the proliferation and tube formation of human umbilical vascular endothelial cells (HUVECs). Gelatin zymography and Western blot showed that RUNX3 expression suppressed matrix metalloproteinase-9 (MMP-9) protein level and enzyme activity. Western blot and ELISA showed that RUNX3 restoration inhibited the expression and secretion of vascular endothelial growth factor (VEGF). Taken together, our studies indicate that decreased expression of RUNX3 in human RCC tissue is significantly correlated with RCC progression. Restoration of RUNX3 expression significantly inhibits RCC cells migration, invasion and angiogenesis. These findings provide new insights into the significance of RUNX3 in migration, invasion and angiogenesis of RCC. PMID:23457532

  5. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization

    PubMed Central

    Datla, Srinivasa Raju; McGrail, Daniel J.; Vukelic, Sasa; Huff, Lauren P.; Lyle, Alicia N.; Pounkova, Lily; Lee, Minyoung; Seidel-Rogol, Bonnie; Khalil, Mazen K.; Hilenski, Lula L.; Terada, Lance S.; Dawson, Michelle R.; Lassègue, Bernard

    2014-01-01

    Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner. PMID:25063792

  6. Poldip2 controls vascular smooth muscle cell migration by regulating focal adhesion turnover and force polarization.

    PubMed

    Datla, Srinivasa Raju; McGrail, Daniel J; Vukelic, Sasa; Huff, Lauren P; Lyle, Alicia N; Pounkova, Lily; Lee, Minyoung; Seidel-Rogol, Bonnie; Khalil, Mazen K; Hilenski, Lula L; Terada, Lance S; Dawson, Michelle R; Lassègue, Bernard; Griendling, Kathy K

    2014-10-01

    Polymerase-δ-interacting protein 2 (Poldip2) interacts with NADPH oxidase 4 (Nox4) and regulates migration; however, the precise underlying mechanisms are unclear. Here, we investigated the role of Poldip2 in focal adhesion turnover, as well as traction force generation and polarization. Poldip2 overexpression (AdPoldip2) in vascular smooth muscle cells (VSMCs) impairs PDGF-induced migration and induces a characteristic phenotype of long cytoplasmic extensions. AdPoldip2 also prevents the decrease in spreading and increased aspect ratio observed in response to PDGF and slightly impairs cell contraction. Moreover, AdPoldip2 blocks focal adhesion dissolution and sustains H2O2 levels in focal adhesions, whereas Poldip2 knockdown (siPoldip2) significantly decreases the number of focal adhesions. RhoA activity is unchanged when focal adhesion dissolution is stimulated in control cells but increases in AdPoldip2-treated cells. Inhibition of RhoA blocks Poldip2-mediated attenuation of focal adhesion dissolution, and overexpression of RhoA or focal adhesion kinase (FAK) reverses the loss of focal adhesions induced by siPoldip2, indicating that RhoA and FAK mediate the effect of Poldip2 on focal adhesions. Nox4 silencing prevents focal adhesion stabilization by AdPoldip2 and induces a phenotype similar to siPoldip2, suggesting a role for Nox4 in Poldip2-induced focal adhesion stability. As a consequence of impaired focal adhesion turnover, PDGF-treated AdPoldip2 cells are unable to reduce and polarize traction forces, a necessary first step in migration. These results implicate Poldip2 in VSMC migration via regulation of focal adhesion turnover and traction force generation in a Nox4/RhoA/FAK-dependent manner. PMID:25063792

  7. MicroRNA-383 expression regulates proliferation, migration, invasion, and apoptosis in human glioma cells.

    PubMed

    Xu, Dawei; Ma, Pengju; Gao, Guojun; Gui, Yongkun; Niu, Xiaolu; Jin, Baozhe

    2015-09-01

    This study aims to evaluate microRNA-383 (miR-383) expression level in glioma cells and its influences on proliferation, migration, invasion, apoptosis, and cell cycle in glioma cells. miR-383 expression levels were determined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Thirty BALB/c-nu mice were randomly assigned into three groups: U87-miR-383 group, vector-control group, and blank group. Tumorigenicity experiment was conducted to confirm the function of miR-383. U251 and U87 glioma cells were divided into three groups: non-transfected control cells (NT group), glioma cells transfected with miR-383 (miR-383 group), and glioma cells transfected with negative sequence (NC group). Transfection efficiency was measured by qRT-PCR. Cell counting kit-8 (CCK-8) assay was used to detect cell proliferation. Cell migration and invasion were examined by utilizing a Transwell chamber. Cell cycle and apoptosis were analyzed by flow cytometry. The qRT-PCR results revealed that miR-383 expression was down-regulated in human glioma cells, and was negatively related to the pathological grading of glioma. The rates of tumor growth in vector-control group and blank group were significantly faster than that in U87-miR-383 group, and the average tumor volume and weight in vector-control group and blank group were increased as compared with U87-miR-383 group. Additionally, miR-383 levels in miR-383 group were higher than those in NT group and NC group. CCK-8 assay indicated lower cell viability in miR-383 group as compared with NT group and NC group. Flow cytometry implied that the percentages of cells in miR-383 group reduced, while the cell apoptosis rate enhanced compared with NT group and NC group. In conclusion, our findings suggest that miR-383 expression is down-regulated in glioma cells, inhibiting cell proliferation, migration, and invasion, affecting the cell cycle, and inducing cell apoptosis. PMID:25936342

  8. Selective Migration of Subpopulations of Bone Marrow Cells along an SDF-1α and ATP Gradient.

    PubMed

    Laupheimer, Michael; Skorska, Anna; Große, Jana; Tiedemann, Gudrun; Steinhoff, Gustav; David, Robert; Lux, Cornelia A

    2014-01-01

    Both stem cell chemokine stromal cell-derived factor-1α (SDF-1α) and extracellular nucleotides such as adenosine triphosphate (ATP) are increased in ischemic myocardium. Since ATP has been reported to influence cell migration, we analysed the migratory response of bone marrow cells towards a combination of SDF-1 and ATP. Total nucleated cells (BM-TNCs) were isolated from bone marrow of cardiac surgery patients. Migration assays were performed in vitro. Subsequently, migrated cells were subjected to multicolor flow cytometric analysis of CD133, CD34, CD117, CD184, CD309, and CD14 expression. BM-TNCs migrated significantly towards a combination of SDF-1 and ATP. The proportions of CD34+ cells as well as subpopulations coexpressing multiple stem cell markers were selectively enhanced after migration towards SDF-1 or SDF-1 + ATP. After spontaneous migration, significantly fewer stem cells and CD184+ cells were detected. Direct incubation with SDF-1 led to a reduction of CD184+ but not stem cell marker-positive cells, while incubation with ATP significantly increased CD14+ percentage. In summary, we found that while a combination of SDF-1 and ATP elicited strong migration of BM-TNCs in vitro, only SDF-1 was responsible for selective attraction of hematopoietic stem cells. Meanwhile, spontaneous migration of stem cells was lower compared to BM-TNCs or monocytes. PMID:25610653

  9. Selective Migration of Subpopulations of Bone Marrow Cells along an SDF-1α and ATP Gradient

    PubMed Central

    Laupheimer, Michael; Skorska, Anna; Große, Jana; Tiedemann, Gudrun; Steinhoff, Gustav; David, Robert; Lux, Cornelia A.

    2014-01-01

    Both stem cell chemokine stromal cell-derived factor-1α (SDF-1α) and extracellular nucleotides such as adenosine triphosphate (ATP) are increased in ischemic myocardium. Since ATP has been reported to influence cell migration, we analysed the migratory response of bone marrow cells towards a combination of SDF-1 and ATP. Total nucleated cells (BM-TNCs) were isolated from bone marrow of cardiac surgery patients. Migration assays were performed in vitro. Subsequently, migrated cells were subjected to multicolor flow cytometric analysis of CD133, CD34, CD117, CD184, CD309, and CD14 expression. BM-TNCs migrated significantly towards a combination of SDF-1 and ATP. The proportions of CD34+ cells as well as subpopulations coexpressing multiple stem cell markers were selectively enhanced after migration towards SDF-1 or SDF-1 + ATP. After spontaneous migration, significantly fewer stem cells and CD184+ cells were detected. Direct incubation with SDF-1 led to a reduction of CD184+ but not stem cell marker-positive cells, while incubation with ATP significantly increased CD14+ percentage. In summary, we found that while a combination of SDF-1 and ATP elicited strong migration of BM-TNCs in vitro, only SDF-1 was responsible for selective attraction of hematopoietic stem cells. Meanwhile, spontaneous migration of stem cells was lower compared to BM-TNCs or monocytes. PMID:25610653

  10. Extracellular matrix-mediated chemotaxis can impede cell migration

    PubMed Central

    Perumpanani, A. J.; Simmons, D. L.; Gearing, A. J. H.; Miller, K. M.; Ward, G.; Norbury, J.; Schneemann, M.; Sherratt, J. A.

    1998-01-01

    Cells use a combination of changes in adhesion, proteolysis and motility (directed and random) during the process of migration. Proteolysis of the extracellular matrix (ECM) results in thecreation of haptotactic gradients which cells use to move in a directed fashion. The proteolytic creation of these gradients also results in the production of digested fragments of ECM. In this study we show that in the human fibrosarcoma cell line HT1080, matrix metalloproteinase-2(MMP-2)-digested fragments of fibronectin exert a chemotactic pull stronger than that of undigested fibronectin. During invasion, this gradient of ECM fragments is established in the wake of an invading cell, running counter to the direction of invasion. The resultant chemotactic pull is anti-invasive, contrary to the traditional view of the role of chemotaxis in invasion. Uncontrolled ECM degradation by high concentrations of MMP can thus result in steep gradients of ECM fragments, which run against the direction of invasion. Consequently, the invasive potential of a cell depends on MMP production in a biphasic mannerimplying that MMP inhibitors will upregulate invasion in high-MMPexpressing cells. Hence the therapeutic use of protease inhibitors against tumours expressing high levels of MMP could produce an augmentation of invasion.

  11. Tumour-suppressive microRNA-29s directly regulate LOXL2 expression and inhibit cancer cell migration and invasion in renal cell carcinoma.

    PubMed

    Nishikawa, Rika; Chiyomaru, Takeshi; Enokida, Hideki; Inoguchi, Satoru; Ishihara, Tomoaki; Matsushita, Ryosuke; Goto, Yusuke; Fukumoto, Ichiro; Nakagawa, Masayuki; Seki, Naohiko

    2015-07-22

    Here, we found that members of the microRNA-29 family (miR-29a/b/c; "miR-29s") were significantly reduced in clear cell renal cell carcinoma (ccRCC) tissues, suggesting that they functioned as tumour suppressors. Restoration of all mature members of the miR-29 family inhibited cancer cell proliferation, migration and invasion. LOXL2 was a direct target gene of miR-29s, as shown by genome-wide gene expression analysis and luciferase reporter assay. Overexpressed LOXL2 was confirmed in ccRCC clinical specimens, and silencing of LOXL2 inhibited cancer cell migration and invasion in ccRCC cell lines. Our data demonstrated that the miR-29s-LOXL2 axis contributed to cancer cell migration and invasion in ccRCC. PMID:26096783

  12. The secretory pathway calcium ATPase PMR-1/SPCA1 has essential roles in cell migration during Caenorhabditis elegans embryonic development.

    PubMed

    Praitis, Vida; Simske, Jeffrey; Kniss, Sarah; Mandt, Rebecca; Imlay, Leah; Feddersen, Charlotte; Miller, Michael B; Mushi, Juliet; Liszewski, Walter; Weinstein, Rachel; Chakravorty, Adityarup; Ha, Dae-Gon; Schacht Farrell, Angela; Sullivan-Wilson, Alexander; Stock, Tyson

    2013-05-01

    Maintaining levels of calcium in the cytosol is important for many cellular events, including cell migration, where localized regions of high calcium are required to regulate cytoskeletal dynamics, contractility, and adhesion. Studies show inositol-trisphosphate receptors (IP3R) and ryanodine receptors (RyR), which release calcium into the cytosol, are important regulators of cell migration. Similarly, proteins that return calcium to secretory stores are likely to be important for cell migration. The secretory protein calcium ATPase (SPCA) is a Golgi-localized protein that transports calcium from the cytosol into secretory stores. SPCA has established roles in protein processing, metal homeostasis, and inositol-trisphosphate signaling. Defects in the human SPCA1/ATP2C1 gene cause Hailey-Hailey disease (MIM# 169600), a genodermatosis characterized by cutaneous blisters and fissures as well as keratinocyte cell adhesion defects. We have determined that PMR-1, the Caenorhabditis elegans ortholog of SPCA1, plays an essential role in embryogenesis. Pmr-1 strains isolated from genetic screens show terminal phenotypes, such as ventral and anterior enclosure failures, body morphogenesis defects, and an unattached pharynx, which are caused by earlier defects during gastrulation. In Pmr-1 embryos, migration rates are significantly reduced for cells moving along the embryo surface, such as ventral neuroblasts, C-derived, and anterior-most blastomeres. Gene interaction experiments show changing the activity of itr-1/IP3R and unc-68/RyR modulates levels of embryonic lethality in Pmr-1 strains, indicating pmr-1 acts with these calcium channels to regulate cell migration. This analysis reveals novel genes involved in C. elegans cell migration, as well as a new role in cell migration for the highly conserved SPCA gene family. PMID:23696750

  13. The Secretory Pathway Calcium ATPase PMR-1/SPCA1 Has Essential Roles in Cell Migration during Caenorhabditis elegans Embryonic Development

    PubMed Central

    Praitis, Vida; Simske, Jeffrey; Kniss, Sarah; Mandt, Rebecca; Imlay, Leah; Feddersen, Charlotte; Miller, Michael B.; Mushi, Juliet; Liszewski, Walter; Weinstein, Rachel; Chakravorty, Adityarup; Ha, Dae-Gon; Schacht Farrell, Angela; Sullivan-Wilson, Alexander; Stock, Tyson

    2013-01-01

    Maintaining levels of calcium in the cytosol is important for many cellular events, including cell migration, where localized regions of high calcium are required to regulate cytoskeletal dynamics, contractility, and adhesion. Studies show inositol-trisphosphate receptors (IP3R) and ryanodine receptors (RyR), which release calcium into the cytosol, are important regulators of cell migration. Similarly, proteins that return calcium to secretory stores are likely to be important for cell migration. The secretory protein calcium ATPase (SPCA) is a Golgi-localized protein that transports calcium from the cytosol into secretory stores. SPCA has established roles in protein processing, metal homeostasis, and inositol-trisphosphate signaling. Defects in the human SPCA1/ATP2C1 gene cause Hailey-Hailey disease (MIM# 169600), a genodermatosis characterized by cutaneous blisters and fissures as well as keratinocyte cell adhesion defects. We have determined that PMR-1, the Caenorhabditis elegans ortholog of SPCA1, plays an essential role in embryogenesis. Pmr-1 strains isolated from genetic screens show terminal phenotypes, such as ventral and anterior enclosure failures, body morphogenesis defects, and an unattached pharynx, which are caused by earlier defects during gastrulation. In Pmr-1 embryos, migration rates are significantly reduced for cells moving along the embryo surface, such as ventral neuroblasts, C-derived, and anterior-most blastomeres. Gene interaction experiments show changing the activity of itr-1/IP3R and unc-68/RyR modulates levels of embryonic lethality in Pmr-1 strains, indicating pmr-1 acts with these calcium channels to regulate cell migration. This analysis reveals novel genes involved in C. elegans cell migration, as well as a new role in cell migration for the highly conserved SPCA gene family. PMID:23696750

  14. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    SciTech Connect

    Tang, Yiting; Liu, Lan; Sheng, Ming; Xiong, Kai; Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin; Liu, Honglin; Mu, Yulian; Li, Kui

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1

  15. Zebrafish keratocyte explants to study collective cell migration and reepithelialization in cutaneous wound healing.

    PubMed

    Rapanan, Jose L; Pascual, Agnes S; Uppalapati, Chandana K; Cooper, Kimbal E; Leyva, Kathryn J; Hull, Elizabeth E

    2015-01-01

    Due to their unique motile properties, fish keratocytes dissociated from explant cultures have long been used to study the mechanisms of single cell migration. However, when explants are established, these cells also move collectively, maintaining many of the features which make individual keratocytes an attractive model to study migration: rapid rates of motility, extensive actin-rich lamellae with a perpendicular actin cable, and relatively constant speed and direction of migration. In early explants, the rapid interconversion of cells migrating individually with those migrating collectively allows the study of the role of cell-cell adhesions in determining the mode of migration, and emphasizes the molecular links between the two modes of migration. Cells in later explants lose their ability to migrate rapidly and collectively as an epithelial to mesenchymal transition occurs and genes associated with wound healing and inflammation are differentially expressed. Thus, keratocyte explants can serve as an in vitro model for the reepithelialization that occurs during cutaneous wound healing and can represent a unique system to study mechanisms of collective cell migration in the context of a defined program of gene expression changes. A variety of mutant and transgenic zebrafish lines are available, which allows explants to be established from fish with different genetic backgrounds. This allows the role of different proteins within these processes to be uniquely addressed. The protocols outlined here describe an easy and effective method for establishing these explant cultures for use in a variety of assays related to collective cell migration. PMID:25742068

  16. Effect of adipose-derived stem cell-conditioned medium on the proliferation and migration of B16 melanoma