Science.gov

Sample records for cells regulates tcr

  1. Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells.

    PubMed

    Schönle, Anne; Hartl, Frederike A; Mentzel, Jan; Nöltner, Theresa; Rauch, Katharina S; Prestipino, Alessandro; Wohlfeil, Sebastian A; Apostolova, Petya; Hechinger, Anne-Kathrin; Melchinger, Wolfgang; Fehrenbach, Kerstin; Guadamillas, Marta C; Follo, Marie; Prinz, Gabriele; Ruess, Ann-Katrin; Pfeifer, Dietmar; Angel Del Pozo, Miguel; Schmitt-Graeff, Annette; Duyster, Justus; Hippen, Keli I; Blazar, Bruce R; Schachtrup, Kristina; Minguet, Susana; Zeiser, Robert

    2016-04-14

    Caveolin-1 (Cav-1) is a key organizer of membrane specializations and a scaffold protein that regulates signaling in multiple cell types. We found increased Cav-1 expression in human and murine T cells after allogeneic hematopoietic cell transplantation. Indeed, Cav-1(-/-)donor T cells caused less severe acute graft-versus-host disease (GVHD) and yielded higher numbers of regulatory T cells (Tregs) compared with controls. Depletion of Tregs from the graft abrogated this protective effect. Correspondingly, Treg frequencies increased when Cav-1(-/-)T cells were exposed to transforming growth factor-β/T-cell receptor (TCR)/CD28 activation or alloantigen stimulation in vitro compared with wild-type T cells. Mechanistically, we found that the phosphorylation of Cav-1 is dispensable for the control of T-cell fate by using a nonphosphorylatable Cav-1 (Y14F/Y14F) point-mutation variant. Moreover, the close proximity of lymphocyte-specific protein tyrosine kinase (Lck) to the TCR induced by TCR-activation was reduced in Cav-1(-/-)T cells. Therefore, less TCR/Lck clustering results in suboptimal activation of the downstream signaling events, which correlates with the preferential development into a Treg phenotype. Overall, we report a novel role for Cav-1 in TCR/Lck spatial distribution upon TCR triggering, which controls T-cell fate toward a regulatory phenotype. This alteration translated into a significant increase in the frequency of Tregs and reduced GVHD in vivo. PMID:26837700

  2. Regulation of encephalitogenic T cells with recombinant TCR ligands.

    PubMed

    Burrows, G G; Adlard, K L; Bebo, B F; Chang, J W; Tenditnyy, K; Vandenbark, A A; Offner, H

    2000-06-15

    We have previously described recombinant MHC class II beta1 and alpha1 domains loaded with free antigenic peptides with potent inhibitory activity on encephalitogenic T cells. We have now produced single-chain constructs in which the peptide Ag is genetically encoded within the same exon as the linked beta1 and alpha1 domains, overcoming the problem of displacement of peptide Ag from the peptide binding cleft. We here describe clinical effects of recombinant TCR ligands (RTLs) comprised of the rat RT1.B beta1alpha1 domains covalently linked to the 72-89 peptide of guinea pig myelin basic protein (RTL-201), to the corresponding 72-89 peptide from rat myelin basic protein (RTL-200), or to cardiac myosin peptide CM-2 (RTL-203). Only RTL-201 possessed the ability to prevent and treat active or passive experimental autoimmune encephalomyelitis. Amelioration of experimental autoimmune encephalomyelitis was associated with a selective inhibition of proliferation response and cytokine production by Ag-stimulated lymph node T cells and a drastic reduction in the number of encephalitogenic and recruited inflammatory cells infiltrating the CNS. The exquisitely selective inhibition could be observed between molecules that differ by a single methyl group (the single amino acid residue difference between RTL-200 (threonine) and RTL-201 (serine) at position 80 of the myelin basic protein peptide). These novel RTLs provide a platform for developing potent and selective human diagnostic and therapeutic agents for treatment of autoimmune disease. PMID:10843691

  3. Naïve T Cell Homeostasis Regulated by Stress Responses and TCR Signaling

    PubMed Central

    Kamimura, Daisuke; Atsumi, Toru; Stofkova, Andrea; Nishikawa, Naoki; Ohki, Takuto; Suzuki, Hironao; Katsunuma, Kokichi; Jiang, Jing-jing; Bando, Hidenori; Meng, Jie; Sabharwal, Lavannya; Ogura, Hideki; Hirano, Toshio; Arima, Yasunobu; Murakami, Masaaki

    2015-01-01

    The survival of naïve T cells is believed to require signals from TCR–pMHC interactions and cytokines such as IL-7. In contrast, signals that negatively impact naïve T cell survival are less understood. We conducted a forward genetic screening of mice and found a mutant mouse line with reduced number of naïve T cells (T-Red mice). T-Red mice have a point mutation in the Kdelr1 gene, and their naïve T cells show enhanced integrated stress response (ISR), which eventually induces their apoptosis. Therefore, naïve T cells require a KDEL receptor-mediated mechanism that efficiently relieves cellular stress for their survival in vivo. Interestingly, naïve T cells expressing TCR with higher affinity/avidity to self-antigens survive in T-Red mice, suggesting the possible link between TCR-mediated survival and ISR-induced apoptosis. In this article, we discuss the regulation of naïve T cell homeostasis, keeping special attention on the ISR and TCR signal. PMID:26734005

  4. TCR Signaling in T Cell Memory

    PubMed Central

    Daniels, Mark A.; Teixeiro, Emma

    2015-01-01

    T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR–peptide–MHC interactions impact the multiple fates a T cell can adopt in the memory pool. PMID:26697013

  5. Genetic and immunochemical evidence for CD4-dependent association of p56lck with the alpha beta T-cell receptor (TCR): regulation of TCR-induced activation.

    PubMed Central

    Díez-Orejas, R; Ballester, S; Feito, M J; Ojeda, G; Criado, G; Ronda, M; Portolés, P; Rojo, J M

    1994-01-01

    Recent observations suggest that the tyrosine kinase p56lck is involved in the transduction of transmembrane signals through the antigen specific T cell receptor (TCR) in CD4+ T cells. By means of in vitro kinase assays, we have found that p56lck coprecipitated with the TCR from lysates of a murine CD4+ T cell line in the absence of TCR-mediated stimuli. Analysis of CD4- mutants and CD4-transfected cells shows that p56lck-TCR association occurred only when CD4 was present. The functional importance of CD4:p56lck-TCR association was demonstrated by low activating potential of rare clonotypic antibodies which did not coprecipitate CD4:p56lck, as well as by total or partial loss of anti-TCR or antigen induced stimulation in CD4- cells, which could be recovered by CD4 transfection. Complementation assays using different anti-TCR antibodies suggest that cross linking of TCR-p56lck:CD4 plus structural changes in the complex are needed for efficient transduction of activating signals through the TCR in these cells. Images PMID:7905824

  6. Force-Regulated In Situ TCR-Peptide-Bound MHC Class II Kinetics Determine Functions of CD4+ T Cells.

    PubMed

    Hong, Jinsung; Persaud, Stephen P; Horvath, Stephen; Allen, Paul M; Evavold, Brian D; Zhu, Cheng

    2015-10-15

    We have recently shown that two-dimensional (2D) and force-regulated kinetics of TCR-peptide-bound MHC class I (pMHC-I) interactions predict responses of CD8(+) T cells. To test whether these findings are applicable to CD4(+) T cells, we analyzed the in situ 3.L2 TCR-pMHC-II interactions for a well-characterized panel of altered peptide ligands on the T cell surface using the adhesion frequency assay with a micropipette and the thermal fluctuation and force-clamp assays with a biomembrane force probe. We found that the 2D effective TCR-pMHC-II affinity and off-rate correlate with, but better predict the T cell response than, the corresponding measurements with the surface plasmon resonance in three dimensions. The 2D affinity of the CD4 for MHC-II was very low, approaching the detection limit, making it one to two orders of magnitude lower than the affinity of CD8 for MHC-I. In addition, the signal-dependent cooperation between TCR and coreceptor for pMHC binding previously observed for CD8 was not observed for CD4. Interestingly, force elicited TCR-pMHC-II catch-slip bonds for agonists but slip-only bonds for antagonists, thereby amplifying the power of discrimination between altered peptide ligands. These results show that the force-regulated 2D binding kinetics of the 3.L2 TCR for pMHC-II determine functions of CD4(+) T cells. PMID:26336148

  7. Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation.

    PubMed

    Voisinne, Guillaume; García-Blesa, Antonio; Chaoui, Karima; Fiore, Frédéric; Bergot, Elise; Girard, Laura; Malissen, Marie; Burlet-Schiltz, Odile; Gonzalez de Peredo, Anne; Malissen, Bernard; Roncagalli, Romain

    2016-01-01

    T-cell receptor (TCR) signaling is essential for the function of T cells and negatively regulated by the E3 ubiquitin-protein ligases CBL and CBLB Here, we combined mouse genetics and affinity purification coupled to quantitative mass spectrometry to monitor the dynamics of the CBL and CBLB signaling complexes that assemble in normal T cells over 600 seconds of TCR stimulation. We identify most previously known CBL and CBLB interacting partners, as well as a majority of proteins that have not yet been implicated in those signaling complexes. We exploit correlations in protein association with CBL and CBLB as a function of time of TCR stimulation for predicting the occurrence of direct physical association between them. By combining co-recruitment analysis with biochemical analysis, we demonstrated that the CD5 transmembrane receptor constitutes a key scaffold for CBL- and CBLB-mediated ubiquitylation following TCR engagement. Our results offer an integrated view of the CBL and CBLB signaling complexes induced by TCR stimulation and provide a molecular basis for their negative regulatory function in normal T cells. PMID:27474268

  8. Regulatory T cells require TCR signaling for their suppressive function

    PubMed Central

    Schmidt, Amanda M.; Lu, Wen; Sindhava, Vishal J.; Huang, Yanping; Burkhardt, Janis K.; Yang, Enjun; Riese, Matthew J.; Maltzman, Jonathan S.; Jordan, Martha S.; Kambayashi, Taku

    2015-01-01

    Regulatory T cells (Tregs) are a subset of CD4+ T cells that maintain immune tolerance in part by their ability to inhibit the proliferation of conventional CD4+ T cells (Tconvs). The role of the T cell receptor (TCR) and the downstream signaling pathways required for this suppressive function of Tregs are not fully understood. To yield insight into how TCR-mediated signals influence Treg suppressive function, we assessed the ability of Tregs with altered TCR-mediated signaling capacity to inhibit Tconv proliferation. Mature Tregs deficient in SLP-76, an adaptor protein that nucleates the proximal signaling complex downstream of the TCR, were unable to inhibit Tconv proliferation, suggesting that TCR signaling is required for Treg suppressive function. Moreover, Tregs with defective PLCγ activation due to a Y145F mutation of SLP-76 were also defective in their suppressive function. Conversely, enhancement of diacylglycerol-mediated signaling downstream of PLCγ by genetic ablation of a negative regulator of diacylglycerol kinase ζ increased the suppressive ability of Tregs. Since SLP-76 is also important for integrin activation and signaling, we tested the role of integrin activation in Treg-mediated suppression. Tregs lacking the adaptor proteins ADAP or Crk/CrkL, which are required for TCR-mediated integrin activation, inhibited Tconv proliferation to a similar extent as wildtype Tregs. Together, these data suggest that TCR-mediated PLCγ activation but not integrin activation is required for Tregs to inhibit Tconv proliferation. PMID:25821220

  9. Control of T cell antigen reactivity via programmed TCR downregulation.

    PubMed

    Gallegos, Alena M; Xiong, Huizhong; Leiner, Ingrid M; Sušac, Bože; Glickman, Michael S; Pamer, Eric G; van Heijst, Jeroen W J

    2016-04-01

    The T cell antigen receptor (TCR) is unique in that its affinity for ligand is unknown before encounter and can vary by orders of magnitude. How the immune system regulates individual T cells that display very different reactivity to antigen remains unclear. Here we found that activated CD4(+) T cells, at the peak of clonal expansion, persistently downregulated their TCR expression in proportion to the strength of the initial antigen recognition. This programmed response increased the threshold for cytokine production and recall proliferation in a clone-specific manner and ultimately excluded clones with the highest antigen reactivity. Thus, programmed downregulation of TCR expression represents a negative feedback mechanism for constraining T cell effector function with a suitable time delay to thereby allow pathogen control while avoiding excess inflammatory damage. PMID:26901151

  10. TCR-induced Akt serine 473 phosphorylation is regulated by protein kinase C-alpha

    SciTech Connect

    Yang, Lifen; Qiao, Guilin; Ying, Haiyan; Zhang, Jian; Yin, Fei

    2010-09-10

    Research highlights: {yields} Conventional PKC positively regulates TCR-induced phosphorylation of Akt. {yields} PKC-alpha is the PDK-2 responsible for phosphorylating Akt at Ser{sup 473} upon TCR stimulation. {yields} Knockdown of PKC-alpha decreases TCR-induced Akt phosphorylation. -- Abstract: Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser{sup 473} in the hydrophobic motif, along with Thr{sup 308} in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr{sup 308}, but the kinase(s) responsible for phosphorylating Akt at Ser{sup 473} (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser{sup 473} phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser{sup 473} in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.

  11. Down Regulation of the TCR Complex CD3ζ-Chain on CD3+ T Cells: A Potential Mechanism for Helminth-Mediated Immune Modulation

    PubMed Central

    Appleby, Laura J.; Nausch, Norman; Heard, Francesca; Erskine, Louise; Bourke, Claire D.; Midzi, Nicholas; Mduluza, Takafira; Allen, Judith E.; Mutapi, Francisca

    2015-01-01

    The CD3ζ forms part of the T cell receptor (TCR) where it plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways leading to T cell effector functions. Down regulation of CD3ζ leads to impairment of immune responses including reduced cell proliferation and cytokine production. In experimental models, helminth parasites have been shown to modulate immune responses directed against them and unrelated antigens, so called bystander antigens, but there is a lack of studies validating these observations in humans. This study investigated the relationship between expression levels of the TCR CD3ζ chain with lymphocyte cell proliferation during human infection with the helminth parasite, Schistosoma haematobium, which causes uro-genital schistosomiasis. Using flow cytometry, peripheral blood mononuclear cells (PBMCs) from individuals naturally exposed to S. haematobium in rural Zimbabwe were phenotyped, and expression levels of CD3ζ on T cells were related to intensity of infection. In this population, parasite infection intensity was inversely related to CD3ζ expression levels (p < 0.05), consistent with downregulation of CD3ζ expression during helminth infection. Furthermore, PBMC proliferation was positively related to expression levels of CD3ζ (p < 0.05) after allowing for confounding variables (host age, sex, and infection level). CD3ζ expression levels had a differing relationship between immune correlates of susceptibility and immunity, measured by antibody responses, indicating a complex relationship between immune activation status and immunity. The relationships between the CD3ζ chain of the TCR and schistosome infection, PBMC proliferation and schistosome-specific antibody responses have not previously been reported, and these results may indicate a mechanism for the impaired T cell proliferative responses observed during human schistosome infection. PMID:25741337

  12. Vaccination with BV8S2 protein amplifies TCR-specific regulation and protection against experimental autoimmune encephalomyelitis in TCR BV8S2 transgenic mice.

    PubMed

    Offner, H; Adlard, K; Bebo, B F; Schuster, J; Burrows, G G; Buenafe, A C; Vandenbark, A A

    1998-09-01

    TCR determinants overexpressed by autopathogenic Th1 cells can naturally induce a second set of TCR-specific regulatory T cells. We addressed the question of whether immune regulation could be induced naturally in a genetically restricted model in which a major portion of TCR-specific regulatory T cells expressed the same target TCR BV8S2 chain as the pathogenic T cells specific for myelin basic protein (MBP). We found vigorous T cell responses to BV8S2 determinants in naive mice that could be further potentiated by vaccination with heterologous BV8S2 proteins, resulting in the selective inhibition of MBP-specific Th1 cells and protection against experimental encephalomyelitis. Moreover, coculture with BV8S2-specific T cells or their supernatants reduced proliferation, IFN-gamma secretion, and encephalitogenic activity of MBP-specific T cells. These results suggest that immune regulation occurs through a nondeletional cytokine-driven suppressive mechanism. PMID:9725209

  13. Requirement of full TCR repertoire for regulatory T cells to maintain intestinal homeostasis.

    PubMed

    Nishio, Junko; Baba, Minato; Atarashi, Koji; Tanoue, Takeshi; Negishi, Hideo; Yanai, Hideyuki; Habu, Sonoko; Hori, Shohei; Honda, Kenya; Taniguchi, Tadatsugu

    2015-10-13

    The regulation of intestinal homeostasis by the immune system involves the dynamic interplay between gut commensal microbiota and resident immune cells. It is well known that a large and diverse lymphocyte antigen receptor repertoire enables the immune system to recognize and respond to a wide range of invading pathogens. There is also an emerging appreciation for a critical role the T-cell receptor (TCR) repertoire serves in the maintenance of peripheral tolerance by regulatory T cells (Tregs). Nevertheless, how the diversity of the TCR repertoire in Tregs affects intestinal homeostasis remains unknown. To address this question, we studied mice whose T cells express a restricted TCR repertoire. We observed the development of spontaneous colitis, accompanied by the induction of T-helper type 17 cells in the colon that is driven by gut commensal microbiota. We provide further evidence that a restricted TCR repertoire causes a loss of tolerogenicity to microbiota, accompanied by a paucity of peripherally derived, Helios(-) Tregs and hyperactivation of migratory dendritic cells. These results thus reveal a new facet of the TCR repertoire in which Tregs require a diverse TCR repitoire for intestinal homeostasis, suggesting an additional driving force in the evolutional significance of the TCR repertoire. PMID:26420876

  14. Requirement of full TCR repertoire for regulatory T cells to maintain intestinal homeostasis

    PubMed Central

    Nishio, Junko; Baba, Minato; Atarashi, Koji; Tanoue, Takeshi; Negishi, Hideo; Yanai, Hideyuki; Habu, Sonoko; Hori, Shohei; Honda, Kenya; Taniguchi, Tadatsugu

    2015-01-01

    The regulation of intestinal homeostasis by the immune system involves the dynamic interplay between gut commensal microbiota and resident immune cells. It is well known that a large and diverse lymphocyte antigen receptor repertoire enables the immune system to recognize and respond to a wide range of invading pathogens. There is also an emerging appreciation for a critical role the T-cell receptor (TCR) repertoire serves in the maintenance of peripheral tolerance by regulatory T cells (Tregs). Nevertheless, how the diversity of the TCR repertoire in Tregs affects intestinal homeostasis remains unknown. To address this question, we studied mice whose T cells express a restricted TCR repertoire. We observed the development of spontaneous colitis, accompanied by the induction of T-helper type 17 cells in the colon that is driven by gut commensal microbiota. We provide further evidence that a restricted TCR repertoire causes a loss of tolerogenicity to microbiota, accompanied by a paucity of peripherally derived, Helios− Tregs and hyperactivation of migratory dendritic cells. These results thus reveal a new facet of the TCR repertoire in which Tregs require a diverse TCR repitoire for intestinal homeostasis, suggesting an additional driving force in the evolutional significance of the TCR repertoire. PMID:26420876

  15. Cish actively silences TCR signaling in CD8+ T cells to maintain tumor tolerance

    PubMed Central

    Guittard, Geoffrey C.; Franco, Zulmarie; Crompton, Joseph G.; Eil, Robert L.; Patel, Shashank J.; Ji, Yun; Van Panhuys, Nicholas; Klebanoff, Christopher A.; Sukumar, Madhusudhanan; Clever, David; Chichura, Anna; Roychoudhuri, Rahul; Varma, Rajat; Wang, Ena; Gattinoni, Luca; Marincola, Francesco M.; Balagopalan, Lakshmi; Samelson, Lawrence E.

    2015-01-01

    Improving the functional avidity of effector T cells is critical in overcoming inhibitory factors within the tumor microenvironment and eliciting tumor regression. We have found that Cish, a member of the suppressor of cytokine signaling (SOCS) family, is induced by TCR stimulation in CD8+ T cells and inhibits their functional avidity against tumors. Genetic deletion of Cish in CD8+ T cells enhances their expansion, functional avidity, and cytokine polyfunctionality, resulting in pronounced and durable regression of established tumors. Although Cish is commonly thought to block STAT5 activation, we found that the primary molecular basis of Cish suppression is through inhibition of TCR signaling. Cish physically interacts with the TCR intermediate PLC-γ1, targeting it for proteasomal degradation after TCR stimulation. These findings establish a novel targetable interaction that regulates the functional avidity of tumor-specific CD8+ T cells and can be manipulated to improve adoptive cancer immunotherapy. PMID:26527801

  16. Exposure of Human CD4 T Cells to IL-12 Results in Enhanced TCR-Induced Cytokine Production, Altered TCR Signaling, and Increased Oxidative Metabolism

    PubMed Central

    2016-01-01

    Human CD4 T cells are constantly exposed to IL-12 during infections and certain autoimmune disorders. The current paradigm is that IL-12 promotes the differentiation of naïve CD4 T cells into Th1 cells, but recent studies suggest IL-12 may play a more complex role in T cell biology. We examined if exposure to IL-12 alters human CD4 T cell responses to subsequent TCR stimulation. We found that IL-12 pretreatment increased TCR-induced IFN-γ, TNF-α, IL-13, IL-4 and IL-10 production. This suggests that prior exposure to IL-12 potentiates the TCR-induced release of a range of cytokines. We observed that IL-12 mediated its effects through both transcriptional and post-transcriptional mechanisms. IL-12 pretreatment increased the phosphorylation of AKT, p38 and LCK following TCR stimulation without altering other TCR signaling molecules, potentially mediating the increase in transcription of cytokines. In addition, the IL-12-mediated enhancement of cytokines that are not transcriptionally regulated was partially driven by increased oxidative metabolism. Our data uncover a novel function of IL-12 in human CD4 T cells; specifically, it enhances the release of a range of cytokines potentially by altering TCR signaling pathways and by enhancing oxidative metabolism. PMID:27280403

  17. Caveolin-1 Orchestrates TCR Synaptic Polarity, Signal Specificity, and Function in CD8 T Cells

    PubMed Central

    Tomassian, Tamar; Humphries, Lisa A.; Liu, Scot D.; Silva, Oscar; Brooks, David G.; Miceli, M. Carrie

    2013-01-01

    TCR engagement triggers the polarized recruitment of membrane, actin, and transducer assemblies within the T cell–APC contact that amplify and specify signaling cascades and Teffector activity. We report that caveolin-1, a scaffold that regulates polarity and signaling in nonlymphoid cells, is required for optimal TCR-induced actin polymerization, synaptic membrane raft polarity, and function in CD8, but not CD4, T cells. In CD8+ T cells, caveolin-1 ablation selectively impaired TCR-induced NFAT-dependent NFATc1 and cytokine gene expression, whereas caveolin-1 re-expression promoted NFATc1 gene expression. Alternatively, caveolin-1 ablation did not affect TCR-induced NF-κB–dependent Iκbα expression. Cav-1−/− mice did not efficiently promote CD8 immunity to lymphocytic choriomeningitis virus, nor did cav-1−/− OT-1+ CD8+ T cells efficiently respond to Listeria mono-cytogenes-OVA after transfer into wild-type hosts. Therefore, caveolin-1 is a T cell-intrinsic orchestrator of TCR-mediated membrane polarity and signal specificity selectively employed by CD8 T cells to customize TCR responsiveness. PMID:21849673

  18. Adoptive Immunotherapy of Disseminated Leukemia With TCR-transduced, CD8+ T Cells Expressing a Known Endogenous TCR

    PubMed Central

    Dossett, Michelle L; Teague, Ryan M; Schmitt, Thomas M; Tan, Xiaoxia; Cooper, Laurence JN; Pinzon, Cristina; Greenberg, Philip D

    2009-01-01

    Adoptive T-cell immunotherapy has shown promise in the treatment of human malignancies, but the challenge of isolating T cells with high avidity for tumor antigens in each patient has limited application of this approach. The transfer into T cells of T-cell receptor (TCR) genes encoding high-affinity TCRs recognizing defined tumor-associated antigens can potentially circumvent this obstacle. Using a well-characterized murine model of adoptive T-cell immunotherapy for widely disseminated leukemia, we demonstrate that TCR gene–modified T cells can cure mice of disseminated tumor. One goal of such adoptive therapy is to establish a persistent memory response to prevent recurrence; however, long-term function of transferred TCR-transduced T cells is limited due to reduced expression of the introduced TCR in vivo in quiescent resting T cells. However, by introducing the TCR into a cell with a known endogenous specificity, activation of these T cells by stimulation through the endogenous TCR can be used to increase expression of the introduced TCR, potentially providing a strategy to increase the total number of tumor-reactive T cells in the host and restore more potent antitumor activity. PMID:19209146

  19. Viral Escape Mutant Epitope Maintains TCR Affinity for Antigen yet Curtails CD8 T Cell Responses

    PubMed Central

    Shorter, Shayla K.; Schnell, Frederick J.; McMaster, Sean R.; Pinelli, David F.; Andargachew, Rakieb; Evavold, Brian D.

    2016-01-01

    T cells have the remarkable ability to recognize antigen with great specificity and in turn mount an appropriate and robust immune response. Critical to this process is the initial T cell antigen recognition and subsequent signal transduction events. This antigen recognition can be modulated at the site of TCR interaction with peptide:major histocompatibility (pMHC) or peptide interaction with the MHC molecule. Both events could have a range of effects on T cell fate. Though responses to antigens that bind sub-optimally to TCR, known as altered peptide ligands (APL), have been studied extensively, the impact of disrupting antigen binding to MHC has been highlighted to a lesser extent and is usually considered to result in complete loss of epitope recognition. Here we present a model of viral evasion from CD8 T cell immuno-surveillance by a lymphocytic choriomeningitis virus (LCMV) escape mutant with an epitope for which TCR affinity for pMHC remains high but where the antigenic peptide binds sub optimally to MHC. Despite high TCR affinity for variant epitope, levels of interferon regulatory factor-4 (IRF4) are not sustained in response to the variant indicating differences in perceived TCR signal strength. The CD8+ T cell response to the variant epitope is characterized by early proliferation and up-regulation of activation markers. Interestingly, this response is not maintained and is characterized by a lack in IL-2 and IFNγ production, increased apoptosis and an abrogated glycolytic response. We show that disrupting the stability of peptide in MHC can effectively disrupt TCR signal strength despite unchanged affinity for TCR and can significantly impact the CD8+ T cell response to a viral escape mutant. PMID:26915099

  20. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    PubMed

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies. PMID:17855129

  1. Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain

    PubMed Central

    Hauptrock, Beate; Malina, Victoria; Antunes, Edite; Voss, Ralf-Holger; Wolfl, Matthias; Strong, Roland; Theobald, Matthias; Greenberg, Philip D.

    2009-01-01

    Adoptive transfer of T lymphocytes transduced with a T cell receptor (TCR) to impart tumor reactivity has been reported as a potential strategy to redirect immune responses to target cancer cells (Schumacher, T.N. 2002. Nat. Rev. Immunol. 2:512–519). However, the affinity of most TCRs specific for shared tumor antigens that can be isolated is usually low. Thus, strategies to increase the affinity of TCRs or the functional avidity of TCR-transduced T cells might be therapeutically beneficial. Because glycosylation affects the flexibility, movement, and interactions of surface molecules, we tested if selectively removing conserved N-glycoslyation sites in the constant regions of TCR α or β chains could increase the functional avidity of T cells transduced with such modified TCRs. We observed enhanced functional avidity and improved recognition of tumor cells by T cells harboring TCR chains with reduced N-glycosylation (ΔTCR) as compared with T cells with wild-type (WT) TCR chains. T cells transduced with WT or ΔTCR chains bound tetramer equivalently at 4°C, but tetramer binding was enhanced at 37°C, predominantly as a result of reduced tetramer dissociation. This suggested a temperature-dependent mechanism such as TCR movement in the cell surface or structural changes of the TCR allowing improved multimerization. This strategy was effective with mouse and human TCRs specific for different antigens and, thus, should be readily translated to TCRs with any specificity. PMID:19171765

  2. TCR ITAM multiplicity is required for the generation of follicular helper T-cells.

    PubMed

    Hwang, SuJin; Palin, Amy C; Li, LiQi; Song, Ki-Duk; Lee, Jan; Herz, Jasmin; Tubo, Noah; Chu, Hamlet; Pepper, Marion; Lesourne, Renaud; Zvezdova, Ekaterina; Pinkhasov, Julia; Jenkins, Marc K; McGavern, Dorian; Love, Paul E

    2015-01-01

    The T-cell antigen receptor (TCR) complex contains 10 copies of a di-tyrosine Immunoreceptor-Tyrosine-based-Activation-Motif (ITAM) that initiates TCR signalling by recruiting protein tyrosine kinases. ITAM multiplicity amplifies TCR signals, but the importance of this capability for T-cell responses remains undefined. Most TCR ITAMs (6 of 10) are contributed by the CD3ζ subunits. We generated 'knock-in' mice that express non-signalling CD3ζ chains in lieu of wild-type CD3ζ. Here we demonstrate that ITAM multiplicity is important for the development of innate-like T-cells and follicular helper T-cells, events that are known to require strong/sustained TCR-ligand interactions, but is not essential for 'general' T-cell responses including proliferation and cytokine production or for the generation of a diverse antigen-reactive TCR repertoire. PMID:25959494

  3. Homeostasis and function of regulatory T cells (Tregs) in vivo: lessons from TCR-transgenic Tregs

    PubMed Central

    Attridge, Kesley; Walker, Lucy S K

    2014-01-01

    The identification of CD25 and subsequently Forkhead box protein 3 (Foxp3) as markers for regulatory T cells (Tregs) has revolutionized our ability to explore this population experimentally. In a similar vein, our understanding of antigen-specific Treg responses in vivo owes much to the fortuitous generation of T-cell receptor (TCR)-transgenic Tregs. This has permitted tracking of Tregs with a defined specificity in vivo, facilitating analysis of how encounter with cognate antigen shapes Treg homeostasis and function. Here, we review the key lessons learned from a decade of analysis of TCR-transgenic Tregs and set this in the broader context of general progress in the field. Use of TCR-transgenic Tregs has led to an appreciation that Tregs are a highly dynamic proliferative population in vivo, rather than an anergic population as they were initially portrayed. It is now clear that Treg homeostasis is positively regulated by encounter with self-antigen expressed on peripheral tissues, which is likely to be relevant to the phenomenon of peripheral repertoire reshaping that has been described for Tregs and the observation that the Treg TCR specificities vary by anatomical location. Substantial evidence has also accumulated to support the role of CD28 costimulation and interleukin-2 in Treg homeostasis. The availability of TCR-transgenic Tregs has enabled analysis of Treg populations that are sufficient or deficient in particular genes, without the comparison being confounded by repertoire alterations. This approach has yielded insights into genes required for Treg function in vivo, with particular progress being made on the role of ctla-4 in this context. As the prospect of manipulating Treg populations in the clinic becomes reality, a full appreciation of the rules governing their homeostasis will prove increasingly important. PMID:24712457

  4. CD8α+ Dendritic cells prime TCR-peptide-reactive regulatory CD4+FOXP3− T cells

    PubMed Central

    Smith, Trevor R. F.; Maricic, Igor; Ria, Francesco; Schneider, Susan; Kumar, Vipin

    2011-01-01

    Summary CD4+ T cells with immune regulatory function can be either FOXP3+ or FOXP3−. We have previously shown that priming of naturally occurring TCR-peptide-reactive regulatory CD4+FOXP3− T cells (Treg) specifically controls Vβ8.2+CD4+ T cells mediating experimental autoimmune encephalomyelitis (EAE). However, the mechanism by which these Treg are primed to recognize their cognate antigenic determinant, which is derived from the TCRVβ8.2-chain, is not known. In this study we show that antigen presenting cells (APC) derived from splenocytes of naïve mice are able to stimulate cloned CD4+ Treg in the absence of exogenous antigen, and their stimulation capacity is augmented during EAE. Among the APC populations DC were the most efficient in stimulating the Treg. Stimulation of CD4+ Treg was dependent upon processing and presentation of TCR peptides from ingested Vβ8.2TCR+ CD4+ T cells. Additionally, dendritic cells pulsed with TCR peptide or apoptotic Vβ8.2+ T cells are able to prime Treg in vivo and mediate protection from disease in a CD8-dependent fashion. These data highlight a novel mechanism for the priming of CD4+ Treg by CD8α+ DC, and suggest a pathway that can be exploited to prime antigen-specific regulation of T cell-mediated inflammatory disease. PMID:20394075

  5. Enforcement of γδ-lineage commitment by the pre-T-cell receptor in precursors with weak γδ-TCR signals.

    PubMed

    Zarin, Payam; Wong, Gladys W; Mohtashami, Mahmood; Wiest, David L; Zúñiga-Pflücker, Juan Carlos

    2014-04-15

    Developing thymocytes bifurcate from a bipotent precursor into αβ- or γδ-lineage T cells. Considering this common origin and the fact that the T-cell receptor (TCR) β-, γ-, and δ-chains simultaneously rearrange at the double negative (DN) stage of development, the possibility exists that a given DN cell can express and transmit signals through both the pre-TCR and γδ-TCR. Here, we tested this scenario by defining the differentiation outcomes and criteria for lineage choice when both TCR-β and γδ-TCR are simultaneously expressed in Rag2(-/-) DN cells via retroviral transduction. Our results showed that Rag2(-/-) DN cells expressing both TCRs developed along the γδ-lineage, down-regulated CD24 expression, and up-regulated CD73 expression, showed a γδ-biased gene-expression profile, and produced IFN-γ in response to stimulation. However, in the absence of Inhibitor of DNA-binding 3 expression and strong γδ-TCR ligand, γδ-expressing cells showed a lower propensity to differentiate along the γδ-lineage. Importantly, differentiation along the γδ-lineage was restored by pre-TCR coexpression, which induced greater down-regulation of CD24, higher levels of CD73, Nr4a2, and Rgs1, and recovery of functional competence to produce IFN-γ. These results confirm a requirement for a strong γδ-TCR ligand engagement to promote maturation along the γδ T-cell lineage, whereas additional signals from the pre-TCR can serve to enforce a γδ-lineage choice in the case of weaker γδ-TCR signals. Taken together, these findings further cement the view that the cumulative signal strength sensed by developing DN cells serves to dictate its lineage choice. PMID:24706811

  6. The N terminus of SKAP55 enables T cell adhesion to TCR and integrin ligands via distinct mechanisms

    PubMed Central

    Ophir, Michael J.; Liu, Beiyun C.

    2013-01-01

    The T cell receptor (TCR) triggers the assembly of “SLP-76 microclusters,” which mediate signals required for T cell activation. In addition to regulating integrin activation, we show that Src kinase–associated phosphoprotein of 55 kD (SKAP55) is required for microcluster persistence and movement, junctional stabilization, and integrin-independent adhesion via the TCR. These functions require the dimerization of SKAP55 and its interaction with the adaptor adhesion and degranulation-promoting adaptor protein (ADAP). A “tandem dimer” containing two ADAP-binding SKAP55 Src homology 3 (SH3) domains stabilized SLP-76 microclusters and promoted T cell adhesion via the TCR, but could not support adhesion to integrin ligands. Finally, the SKAP55 dimerization motif (DM) enabled the coimmunoprecipitation of the Rap1-dependent integrin regulator Rap1-GTP–interacting adaptor molecule (RIAM), the recruitment of talin into TCR-induced adhesive junctions, and “inside-out” signaling to β1 integrins. Our data indicate that SKAP55 dimers stabilize SLP-76 microclusters, couple SLP-76 to the force-generating systems responsible for microcluster movement, and enable adhesion via the TCR by mechanisms independent of RIAM, talin, and β1 integrins. PMID:24368808

  7. Forced expression of the Fc receptor gamma-chain renders human T cells hyperresponsive to TCR/CD3 stimulation.

    PubMed

    Nambiar, Madhusoodana P; Fisher, Carolyn U; Kumar, Anil; Tsokos, Christos G; Warke, Vishal G; Tsokos, George C

    2003-03-15

    High level expression of Fc epsilon RI gamma chain replaces the deficient TCR zeta-chain and contributes to altered TCR/CD3-mediated signaling abnormalities in T cells of patients with systemic lupus erythematosus. Increased responsiveness to Ag has been considered to lead to autoimmunity. To test this concept, we studied early signaling events and IL-2 production in fresh cells transfected with a eukaryotic expression vector encoding the Fc epsilon RI gamma gene. We found that the overexpressed Fc epsilon RI gamma chain colocalizes with the CD3 epsilon chain on the surface membrane of T cells and that cross-linking of the new TCR/CD3 complex leads to a dramatic increase of intracytoplasmic calcium concentration, protein tyrosine phosphorylation, and IL-2 production. We observed that overexpression of Fc epsilon RI gamma is associated with increased phosphorylation of Syk kinase, while the endogenous TCR zeta-chain is down-regulated. We propose that altered composition of the CD3 complex leads to increased T cell responsiveness to TCR/CD3 stimulation and sets the biochemical grounds for the development of autoimmunity. PMID:12626537

  8. TCR ITAM multiplicity is required for the generation of follicular helper T-cells

    PubMed Central

    Hwang, SuJin; Palin, Amy C.; Li, LiQi; Song, Ki-Duk; Lee, Jan; Herz, Jasmin; Tubo, Noah; Chu, Hamlet; Pepper, Marion; Lesourne, Renaud; Zvezdova, Ekaterina; Pinkhasov, Julia; Jenkins, Marc K.; McGavern, Dorian; Love, Paul E.

    2015-01-01

    The T-cell antigen receptor (TCR) complex contains 10 copies of a di-tyrosine Immunoreceptor-Tyrosine-based-Activation-Motif (ITAM) that initiates TCR signalling by recruiting protein tyrosine kinases. ITAM multiplicity amplifies TCR signals, but the importance of this capability for T-cell responses remains undefined. Most TCR ITAMs (6 of 10) are contributed by the CD3ζ subunits. We generated ‘knock-in' mice that express non-signalling CD3ζ chains in lieu of wild-type CD3ζ. Here we demonstrate that ITAM multiplicity is important for the development of innate-like T-cells and follicular helper T-cells, events that are known to require strong/sustained TCR–ligand interactions, but is not essential for ‘general' T-cell responses including proliferation and cytokine production or for the generation of a diverse antigen-reactive TCR repertoire. PMID:25959494

  9. IL-7– and IL-15–mediated TCR sensitization enables T cell responses to self-antigens

    PubMed Central

    Deshpande, Pratima; Cavanagh, Mary M.; Le Saux, Sabine; Singh, Karnail; Weyand, Cornelia M.; Goronzy, Jörg J.

    2012-01-01

    Regulation of the ERK pathway is intimately involved in determining whether TCR stimulation is productive or induces anergy. T cells from patients with rheumatoid arthritis (RA) have increased ERK responsiveness which may be relevant for disease pathogenesis. Inflammatory cytokines such as TNF-α did not reproduce the TCR hypersensitivity typical for RA in T cells from healthy individuals. In contrast, priming with the homeostatic cytokines IL-7 and IL-15 amplified ERK phosphorylation to TCR stimulation twofold to threefold. The underlying mechanism involved a priming of the SOS-dependent amplification loop of RAS activation. The sensitization of the TCR signaling pathway has downstream consequences, such as increased proliferation and preferential Th1 differentiation. Importantly, priming with IL-7 or IL-15 enabled T cell responses to autoantigens associated with RA. Production of homeostatic cytokines is induced in lymphopenic conditions, which have been shown to predispose for autoimmunity and which appear to be present in the preclinical stages of RA. We propose that homeostatic cytokines, possibly induced by lymphopenia, decrease the signaling threshold for TCR activation and are thereby partly responsible for autoimmunity in RA. PMID:23325887

  10. Optimization of T-cell reactivity by exploiting TCR chain centricity for the purpose of safe and effective antitumor TCR gene therapy

    PubMed Central

    Ochi, Toshiki; Nakatsugawa, Munehide; Chamoto, Kenji; Tanaka, Shinya; Yamashita, Yuki; Guo, Tingxi; Fujiwara, Hiroshi; Yasukawa, Masaki; Butler, Marcus O.; Hirano, Naoto

    2015-01-01

    Adoptive transfer of T cells redirected by a high affinity antitumor T-cell receptor (TCR) is a promising treatment modality for cancer patients. Safety and efficacy depend on the selection of a TCR that induces minimal toxicity and elicits sufficient antitumor reactivity. Many, if not all, TCRs possess cross-reactivity to unrelated MHC molecules in addition to reactivity to target self-MHC/peptide complexes. Some TCRs display chain centricity, in which recognition of MHC/peptide complexes is dominated by one of the TCR hemi-chains. In this study, we comprehensively studied how TCR chain centricity impacts reactivity to target self-MHC/peptide complexes and alloreactivity using the TCR, clone TAK1, which is specific for human leukocyte antigen-A*24:02/Wilms tumor 1235–243 (A24/WT1235) and cross-reactive with B*57:01 (B57). The TAK1β, but not the TAK1α, hemi-chain possessed chain centricity. When paired with multiple clonotypic TCRα counter-chains encoding TRAV12-2, 20, 36, or 38-2, the de novo TAK1β-containing TCRs showed enhanced, weakened, or absent reactivity to A24/WT1235 and/or to B57. T cells reconstituted with these TCRα genes along with TAK1β possessed a very broad range (>3 log orders) of functional and structural avidities. These results suggest that TCR chain centricity can be exploited to enhance desired antitumor TCR reactivity and eliminate unwanted TCR cross-reactivity. TCR reactivity to target MHC/peptide complexes and cross-reactivity to unrelated MHC molecules are not inextricably linked and are separable at the TCR sequence level. However, it is still mandatory to carefully monitor for possible harmful toxicities caused by adoptive transfer of T cells redirected by thymically-unselected TCRs. PMID:25943533

  11. Optimization of T-cell Reactivity by Exploiting TCR Chain Centricity for the Purpose of Safe and Effective Antitumor TCR Gene Therapy.

    PubMed

    Ochi, Toshiki; Nakatsugawa, Munehide; Chamoto, Kenji; Tanaka, Shinya; Yamashita, Yuki; Guo, Tingxi; Fujiwara, Hiroshi; Yasukawa, Masaki; Butler, Marcus O; Hirano, Naoto

    2015-09-01

    Adoptive transfer of T cells redirected by a high-affinity antitumor T-cell receptor (TCR) is a promising treatment modality for cancer patients. Safety and efficacy depend on the selection of a TCR that induces minimal toxicity and elicits sufficient antitumor reactivity. Many, if not all, TCRs possess cross-reactivity to unrelated MHC molecules in addition to reactivity to target self-MHC/peptide complexes. Some TCRs display chain centricity, in which recognition of MHC/peptide complexes is dominated by one of the TCR hemi-chains. In this study, we comprehensively studied how TCR chain centricity affects reactivity to target self-MHC/peptide complexes and alloreactivity using the TCR, clone TAK1, which is specific for human leukocyte antigen-A*24:02/Wilms tumor 1(235-243) (A24/WT1(235)) and cross-reactive with B*57:01 (B57). The TAK1β, but not the TAK1α, hemi-chain possessed chain centricity. When paired with multiple clonotypic TCRα counter-chains encoding TRAV12-2, 20, 36, or 38-2, the de novo TAK1β-containing TCRs showed enhanced, weakened, or absent reactivity to A24/WT1(235) and/or to B57. T cells reconstituted with these TCRα genes along with TAK1β possessed a very broad range (>3 log orders) of functional and structural avidities. These results suggest that TCR chain centricity can be exploited to enhance desired antitumor TCR reactivity and eliminate unwanted TCR cross-reactivity. TCR reactivity to target MHC/peptide complexes and cross-reactivity to unrelated MHC molecules are not inextricably linked and are separable at the TCR sequence level. However, it is still mandatory to carefully monitor for possible harmful toxicities caused by adoptive transfer of T cells redirected by thymically unselected TCRs. PMID:25943533

  12. Evaluation of TCR repertoire diversity in patients after hematopoietic stem cell transplantation

    PubMed Central

    Xu, Ling

    2015-01-01

    T-cell receptor (TCR) repertoire analyses have been widely used to identify T cell populations of interest in cancer and autoimmunity and for characterizing immune repertoire reconstitution after hematopoietic stem cell transplantation (HSCT). Several decades of development and progress have led to the use of techniques for evaluating TCR repertoires in a more comprehensive, unbiased and fast manner, and the mechanisms of T cell immune reconstitution after HSCT and the new approaches used for recovering T cell repertoire diversity post HSCT have been more exhaustively documented to some degree. To better understand and characterize this progress, here we review recent studies on TCR repertoire diversity recovery in patients with leukemia and autoimmune disease who have received HSCT, impact factors and improvements in approaches for TCR repertoire recovery after HSCT.

  13. Allelic Exclusion and Peripheral Reconstitution by TCR Transgenic T Cells Arising From Transduced Human Hematopoietic Stem/Progenitor Cells

    PubMed Central

    Giannoni, Francesca; Hardee, Cinnamon L; Wherley, Jennifer; Gschweng, Eric; Senadheera, Shantha; Kaufman, Michael L; Chan, Rebecca; Bahner, Ingrid; Gersuk, Vivian; Wang, Xiaoyan; Gjertson, David; Baltimore, David; Witte, Owen N; Economou, James S; Ribas, Antoni; Kohn, Donald B

    2013-01-01

    Transduction and transplantation of human hematopoietic stem/progenitor cells (HSPC) with the genes for a T-cell receptor (TCR) that recognizes a tumor-associated antigen may lead to sustained long-term production of T cells expressing the TCR and confer specific antitumor activity. We evaluated this using a lentiviral vector (CCLc-MND-F5) carrying cDNA for a human TCR specific for an HLA-A*0201-restricted peptide of Melanoma Antigen Recognized by T cells (MART-1). CD34+ HSPC were transduced with the F5 TCR lentiviral vector or mock transduced and transplanted into neonatal NSG mice or NSG mice transgenic for human HLA-A*0201 (NSG-A2). Human CD8+ and CD4+ T cells expressing the human F5 TCR were present in the thymus, spleen, and peripheral blood after 4–5 months. Expression of human HLA-A*0201 in NSG-A2 recipient mice led to significantly increased numbers of human CD8+ and CD4+ T cells expressing the F5 TCR, compared with control NSG recipients. Transduction of the human CD34+ HSPC by the F5 TCR transgene caused a high degree of allelic exclusion, potently suppressing rearrangement of endogenous human TCR-β genes during thymopoiesis. In summary, we demonstrated the feasibility of engineering human HSPC to express a tumor-specific TCR to serve as a long-term source of tumor-targeted mature T cells for immunotherapy of melanoma. PMID:23380815

  14. TCR Affinity for Self-Ligands Influences the Development and Function of Encephalitogenic T Cells

    PubMed Central

    Sant'Angelo, Derek B.

    2011-01-01

    The specificity and affinity of self-reactive T cells is likely to impact the development of autoimmune-disease causing T cells in the thymus as well as their function in the periphery. We identified a naturally occurring, low affinity variant of an MBP Ac1-11/I-Au specific TCR that is known to induce EAE. Thymocytes in mice carrying the transgenes for this low affinity TCR were poorly positively selected, as compared to their high affinity TCR expressing counterparts. Nonetheless, CD4 T cells bearing the low affinity TCR accumulated in the periphery of the mice. Unlike mice expressing the high affinity TCR, these mice very rarely developed disease. However, if endogenous TCR expression was eliminated by breeding to RAG1 deficient mice, 100% of the mice carrying either the high or the low affinity versions of the TCR developed EAE. Intriguingly, while the incidence of EAE increased, the age of onset of disease in both mice was identical. These data suggest disease onset occurs during a short window of mouse development. PMID:21437282

  15. Inhibition of Gαs/cAMP Signaling Decreases TCR-Stimulated IL-2 transcription in CD4+ T Helper Cells

    PubMed Central

    Hynes, Thomas R.; Yost, Evan A.; Yost, Stacy M.; Hartle, Cassandra M.; Ott, Braden J.

    2015-01-01

    Background: The role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses. As the effect of cAMP is likely to depend on its cellular context, the current study investigated whether the mechanism of activation of Gαs and adenylyl cyclase influences their effect on T cell receptor (TCR)-stimulated interleukin-2 (IL-2) mRNA levels. Methods: The effect of blocking Gs-coupled receptor (GsPCR)-mediated Gs activation on TCR-stimulated IL-2 mRNA levels in CD4+ T cells was compared with that of knocking down Gαs expression or inhibiting adenylyl cyclase activity. The effect of knocking down Gαs expression on TCR-stimulated cAMP accumulation was compared with that of blocking GsPCR signaling. Results: ZM-241385, an antagonist to the Gs-coupled A2A adenosine receptor (A2AR), enhanced TCR-stimulated IL-2 mRNA levels in primary human CD4+ T helper cells and in Jurkat T cells. A dominant negative Gαs construct, GαsDN3, also enhanced TCR-stimulated IL-2 mRNA levels. Similar to GsPCR antagonists, GαsDN3 blocked GsPCR-dependent activation of both Gαs and Gβγ. In contrast, Gαs siRNA and 2’,5’-dideoxyadenosine (ddA), an adenylyl cyclase inhibitor, decreased TCR-stimulated IL-2 mRNA levels. Gαs siRNA, but not GαsDN3, decreased TCR-stimulated cAMP synthesis. Potentiation of IL-2 mRNA levels by ZM-241385 required at least two days of TCR stimulation, and addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels. Conclusions: GsPCRs play an inhibitory role in the regulation of TCR-stimulated IL-2 mRNA levels whereas Gαs and cAMP can play a stimulatory one. Additionally, TCR-dependent activation of Gαs does not appear to involve GsPCRs. These results suggest that the context of Gαs/cAMP activation and the stage of T cell activation and differentiation determine the effect on TCR-stimulated IL-2 mRNA levels. PMID

  16. TCR-induced sumoylation of the kinase PKC-θ controls T cell synapse organization and T cell activation.

    PubMed

    Wang, Xu-Dong; Gong, Yu; Chen, Zhi-Long; Gong, Bei-Ni; Xie, Ji-Ji; Zhong, Chuan-Qi; Wang, Qi-Long; Diao, Liang-Hui; Xu, Anlong; Han, Jiahuai; Altman, Amnon; Li, Yingqiu

    2015-11-01

    Sumoylation regulates many cellular processes, but its role in signaling via the T cell antigen receptor (TCR) remains unknown. We found that the kinase PKC-θ was sumoylated upon costimulation with antigen or via the TCR plus the coreceptor CD28, with Lys325 and Lys506 being the main sumoylation sites. We identified the SUMO E3 ligase PIASxβ as a ligase for PKC-θ. Analysis of primary mouse and human T cells revealed that sumoylation of PKC-θ was essential for T cell activation. Desumoylation did not affect the catalytic activity of PKC-θ but inhibited the association of CD28 with PKC-θ and filamin A and impaired the assembly of a mature immunological synapse and central co-accumulation of PKC-θ and CD28. Our findings demonstrate that sumoylation controls TCR-proximal signaling and that sumoylation of PKC-θ is essential for the formation of a mature immunological synapse and T cell activation. PMID:26390157

  17. Differential Requirements of TCR Signaling in Homeostatic Maintenance and Function of Dendritic Epidermal T Cells.

    PubMed

    Zhang, Baojun; Wu, Jianxuan; Jiao, Yiqun; Bock, Cheryl; Dai, Meifang; Chen, Benny; Chao, Nelson; Zhang, Weiguo; Zhuang, Yuan

    2015-11-01

    Dendritic epidermal T cells (DETCs) are generated exclusively in the fetal thymus and maintained in the skin epithelium throughout postnatal life of the mouse. DETCs have restricted antigenic specificity as a result of their exclusive usage of a canonical TCR. Although the importance of the TCR in DETC development has been well established, the exact role of TCR signaling in DETC homeostasis and function remains incompletely defined. In this study, we investigated TCR signaling in fully matured DETCs by lineage-restricted deletion of the Lat gene, an essential signaling molecule downstream of the TCR. We found that Lat deletion impaired TCR-dependent cytokine gene activation and the ability of DETCs to undergo proliferative expansion. However, linker for activation of T cells-deficient DETCs were able to maintain long-term population homeostasis, although with a reduced proliferation rate. Mice with Lat deletion in DETCs exhibited delayed wound healing accompanied by impaired clonal expansion within the wound area. Our study revealed differential requirements for TCR signaling in homeostatic maintenance of DETCs and in their effector function during wound healing. PMID:26408667

  18. Id1 expression promotes T regulatory cell differentiation by facilitating TCR costimulation

    PubMed Central

    Jin, Rong; Tang, Hui; Liu, Yuan-Feng; Ge, Qing; Sun, Xiao-Hong; Zhang, Yu

    2014-01-01

    T Regulatory cells (Treg) play crucial roles in the regulation of cellular immunity. The development of Treg cells depends on signals from T cell receptors (TCR) and IL-2 receptors and is influenced by a variety of transcription factors. The basic helix-loop-helix (bHLH) proteins are known to influence TCR signaling thresholds. Whether this property impacts Treg differentiation is not understood. Here, we interrogated the role of bHLH proteins in the production of Treg cells using the CD4 promoter-driven Id1 transgene. We found that Treg cells continued to accumulate as Id1 transgenic mice aged, resulting in a significant increase in Treg cell counts in the thymus as well as in the periphery compared to wild type controls. Data from mixed-bone marrow assays suggest that Id1 acts intrinsically on developing Treg cells. We made a connection between Id1 expression and CD28 co-stimulatory signaling because Id1 transgene expression facilitated the formation of Treg precursors in CD28−/− mice and the in vitro differentiation of Treg cells on thymic dendritic cells despite the blockade of costimulation by anti-CD80/CD86. Id1 expression also allowed in vitro Treg differentiation without anti-CD28 co-stimulation, which was at least in part due to enhanced production of IL-2. Notably, with full strength of co-stimulatory signals, however, Id1 expression caused modest but significant suppression of Treg induction. Finally, we demonstrate that Id1 transgenic mice were less susceptible to the induction of experimental autoimmune encephalomyelitis (EAE), thus illustrating the impact of Id1-mediated augmentation of Treg cell levels on cellular immunity. PMID:24920844

  19. Stability and translation of TCR zeta mRNA are regulated by the adenosine-uridine-rich elements in splice-deleted 3' untranslated region of zeta-chain.

    PubMed

    Chowdhury, Bhabadeb; Krishnan, Sandeep; Tsokos, Christos G; Robertson, James W; Fisher, Carolyn U; Nambiar, Madhusoodana P; Tsokos, George C

    2006-12-01

    Systemic lupus erythematosus (SLE) T cells display reduced expression of TCR zeta protein. Recently, we reported that in SLE T cells, the residual TCR zeta protein is predominantly derived from an alternatively spliced form that undergoes splice deletion of 562 nt (from 672 to 1233 bases) within the 3' untranslated region (UTR) of TCR zeta mRNA. The stability and translation of the alternatively spliced form of TCR zeta mRNA are low compared with that of the wild-type TCR zeta mRNA. We report that two adenosine-uridine-rich sequence elements (AREs), defined by the splice-deleted 3' UTR region, but not an ARE located upstream are responsible for securing TCR zeta mRNA stability and translation. The stabilizing effect of the splice-deleted region-defined AREs extended to the luciferase mRNA and was not cell type-specific. The findings demonstrate distinct sequences within the splice-deleted region 672 to 1233 of the 3' UTR, which regulate the transcription, mRNA stability, and translation of TCR zeta mRNA. The absence of these sequences represents a molecular mechanism that contributes to altered TCR zeta-chain expression in lupus. PMID:17114503

  20. Phosphoantigen Presentation to TCR γδ Cells, a Conundrum Getting Less Gray Zones

    PubMed Central

    De Libero, Gennaro; Lau, Sze-Yi; Mori, Lucia

    2015-01-01

    The mechanistic requirements of antigen recognition by T cells expressing a γδ TCR has revealed important differences with those of αβ TCR cells and, despite impressive new data generated in the very recent years, they remain poorly understood. Based on the structure of the TCR chains and the tissue distribution, γδ cells are represented in a variety of populations. The major subset of human peripheral blood γδ cells express Vγ9Vδ2 TCR heterodimers and are all stimulated by phosphorylated metabolites (commonly called phosphoantigens). Phosphoantigens are molecules with a very small mass and only stimulate Vγ9Vδ2 cells in the presence of antigen-presenting cells, suggesting a strict requirement for dedicated antigen-presenting molecules. Recent studies have identified butyrophilin (BTN) 3A1 as the molecule necessary to stimulate Vγ9Vδ2 cells. BTN3A1 extracellular, transmembrane, and cytoplasmic domains have different functions, including cognate interaction with the Vγ9Vδ2 TCR, binding of the phosphoantigens, and interaction with cytoplasmic proteins. This review mainly discusses the known molecular mechanisms of BTN3A1-mediated antigen presentation to γδ cells and proposes a model of phosphoantigen presentation, which integrates past and recent studies. PMID:25642230

  1. TRAIL-receptor costimulation inhibits proximal TCR signaling and suppresses human T cell activation and proliferation.

    PubMed

    Lehnert, Corinna; Weiswange, Maxi; Jeremias, Irmela; Bayer, Carina; Grunert, Michaela; Debatin, Klaus-Michael; Strauss, Gudrun

    2014-10-15

    The TRAIL-receptor/TRAIL system originally described to induce apoptosis preferentially in malignant cells is also known to be involved in T cell homeostasis and the response to viral infections and autoimmune diseases. Whereas the expression of TRAIL on activated NK and T cells increases their cytotoxicity, induction of TRAIL on APCs can turn them into apoptosis inducers but might also change their immunostimulatory capacity. Therefore, we analyzed how TRAIL-receptor (TRAIL-R) costimulation is modulating TCR-mediated activation of human T cells. T cells triggered by rTRAIL in combination with anti-CD3 and -CD28 Abs exhibited a strong decrease in the expression of activation markers and Th1 and Th2 cytokines compared with CD3/CD28-activated T cells. Most importantly, proliferation of TRAIL-R costimulated T cells was strongly impaired, but no apoptosis was induced. Addition of exogenous IL-2 could not rescue T cells silenced by TRAIL-R costimulation, and TRAIL-mediated inhibition of T cell proliferation only prevented TCR-triggered proliferation but was ineffective if T cells were activated downstream of the TCR. Inhibition of T cell proliferation was associated with abrogation of proximal TCR signaling by inhibiting recruitment of TCR-associated signaling molecules to lipid rafts, followed by abrogation of protein tyrosine phosphorylation of ZAP70, phospholipase C-γ1, and protein kinase C-θ, and impaired nuclear translocation of NFAT, AP-1, and NF-κB. Most importantly, TRAIL-R costimulation efficiently inhibited alloantigen-induced T cell proliferation and CD3/28-induced activation and proliferation of autoreactive T cells derived from patients with Omenn syndrome, indicating that coactivation of TRAIL-R and TCR represents a mechanism to downmodulate T cell immune responses. PMID:25217163

  2. Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation.

    PubMed

    Hashimoto-Tane, Akiko; Sakuma, Machie; Ike, Hiroshi; Yokosuka, Tadashi; Kimura, Yayoi; Ohara, Osamu; Saito, Takashi

    2016-07-25

    The immunological synapse (IS) formed at the interface between T cells and antigen-presenting cells represents a hallmark of initiation of acquired immunity. T cell activation is initiated at T cell receptor (TCR) microclusters (MCs), in which TCRs and signaling molecules assemble at the interface before IS formation. We found that each TCR-MC was transiently bordered by a ring structure made of integrin and focal adhesion molecules in the early phase of activation, which is similar in structure to the IS in microscale. The micro-adhesion ring is composed of LFA-1, focal adhesion molecules paxillin and Pyk2, and myosin II (MyoII) and is supported by F-actin core and MyoII activity through LFA-1 outside-in signals. The formation of the micro-adhesion ring was transient but especially sustained upon weak TCR stimulation to recruit linker for activation of T cells (LAT) and SLP76. Perturbation of the micro-adhesion ring induced impairment of TCR-MC development and resulted in impaired cellular signaling and cell functions. Thus, the synapse-like structure composed of the core TCR-MC and surrounding micro-adhesion ring is a critical structure for initial T cell activation through integrin outside-in signals. PMID:27354546

  3. Fully functional HLA B27-restricted CD4+ as well as CD8+ T cell responses in TCR transgenic mice.

    PubMed

    Roddis, Matthew; Carter, Robert W; Sun, Mei-Yi; Weissensteiner, Thomas; McMichael, Andrew J; Bowness, Paul; Bodmer, Helen C

    2004-01-01

    The strong association of HLA B27 with spondyloarthropathies contrasts strikingly with most autoimmune diseases, which are HLA class II associated and thought to be mediated by CD4+ T lymphocytes. By introducing a human-derived HLA B27-restricted TCR into HLA B27 transgenic mice, we have obtained a functional TCR transgenic model, GRb, dependent on HLA B27 for response. Surprisingly, HLA B27 supported CD4+ as well as CD8+ T cell responses in vivo and in vitro. Further, HLA B27-restricted CD4+ T cells were capable of differentiation into a range of Th1 and Th2 T cell subsets with normal patterns of cytokine expression. The transgenic T cells were also able to enhance clearance of recombinant vaccinia virus containing influenza nucleoprotein in vivo. This is the first description of a human HLA class I-restricted TCR transgenic line. The existence of CD4+ MHC class I-restricted T cells has significant implications for immune regulation in autoimmunity and, in particular, in HLA B27-associated arthritis. We believe that this model provides a novel system for the study of unusual T cell behavior in vivo. PMID:14688321

  4. Rudimentary TCR signaling triggers default IL-10 secretion by human Th1 cells.

    PubMed

    Burrows, G G; Chou, Y K; Wang, C; Chang, J W; Finn, T P; Culbertson, N E; Kim, J; Bourdette, D N; Lewinsohn, D A; Lewinsohn, D M; Ikeda, M; Yoshioka, T; Allen, C N; Offner, H; Vandenbark, A A

    2001-10-15

    Understanding the process of inducing T cell activation has been hampered by the complex interactions between APC and inflammatory Th1 cells. To dissociate Ag-specific signaling through the TCR from costimulatory signaling, rTCR ligands (RTL) containing the alpha1 and beta1 domains of HLA-DR2b (DRA*0101:DRB1*1501) covalently linked with either the myelin basic protein peptide 85-99 (RTL303) or CABL-b3a2 (RTL311) peptides were constructed to provide a minimal ligand for peptide-specific TCRs. When incubated with peptide-specific Th1 cell clones in the absence of APC or costimulatory molecules, only the cognate RTL induced partial activation through the TCR. This partial activation included rapid TCR zeta-chain phosphorylation, calcium mobilization, and reduced extracellular signal-related kinase activity, as well as IL-10 production, but not proliferation or other obvious phenotypic changes. On restimulation with APC/peptide, the RTL-pretreated Th1 clones had reduced proliferation and secreted less IFN-gamma; IL-10 production persisted. These findings reveal for the first time the rudimentary signaling pattern delivered by initial engagement of the external TCR interface, which is further supplemented by coactivation molecules. Activation with RTLs provides a novel strategy for generating autoantigen-specific bystander suppression useful for treatment of complex autoimmune diseases. PMID:11591763

  5. Piceatannol inhibits effector T cell functions by suppressing TcR signaling.

    PubMed

    Kim, Do-Hyun; Lee, Yong-Gab; Park, Hong-Jai; Lee, Jung-Ah; Kim, Hyun Jung; Hwang, Jae-Kwan; Choi, Je-Min

    2015-04-01

    Piceatannol, a metabolite of resveratrol found in red wine and grapes, displays a wide spectrum of biological activity. Although the anti-oxidant, anti-inflammatory, and anti-tumorigenesis activity of piceatannol has been extensively studied, its role in the adaptive immune response has received less attention. Here we investigated the role of piceatannol, a well-known Syk inhibitor, in T cell activation, proliferation, and differentiation using isolated murine splenic T cells from C57BL/6 mice. Piceatannol treatment inhibited surface expression of CD4 and CD8 T cell activation markers CD25 and CD69, reduced production of cytokines IFNγ, IL-2, and IL-17, and suppressed proliferation of activated T cells. Moreover, piceatannol treatment significantly inhibited differentiation of CD4(+)CD25(-)CD62L(+) naïve CD4 T cells into Th1, Th2, and Th17 cells, presumably due to inhibition of TcR signaling through p-Erk, p-Akt, and p-p38. Piceatannol appears to be a useful nutritional or pharmacological biomolecule that regulates effector T cell functions such as cytokine production, differentiation, and proliferation. PMID:25676533

  6. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress.

    PubMed

    Malcolm, Tim I M; Villarese, Patrick; Fairbairn, Camilla J; Lamant, Laurence; Trinquand, Amélie; Hook, C Elizabeth; Burke, G A Amos; Brugières, Laurence; Hughes, Katherine; Payet, Dominique; Merkel, Olaf; Schiefer, Ana-Iris; Ashankyty, Ibraheem; Mian, Shahid; Wasik, Mariusz; Turner, Martin; Kenner, Lukas; Asnafi, Vahid; Macintyre, Elizabeth; Turner, Suzanne D

    2016-01-01

    Anaplastic large cell lymphoma (ALCL) is a peripheral T-cell lymphoma presenting mostly in children and young adults. The natural progression of this disease is largely unknown as is the identity of its true cell of origin. Here we present a model of peripheral ALCL pathogenesis where the malignancy is initiated in early thymocytes, before T-cell receptor (TCR) β-rearrangement, which is bypassed in CD4/NPM-ALK transgenic mice following Notch1 expression. However, we find that a TCR is required for thymic egress and development of peripheral murine tumours, yet this TCR must be downregulated for T-cell lymphomagenesis. In keeping with this, clonal TCR rearrangements in human ALCL are predominantly in-frame, but often aberrant, with clonal TCRα but no comparable clonal TCRβ rearrangement, yielding events that would not normally be permissive for survival during thymic development. Children affected by ALCL may thus harbour thymic lymphoma-initiating cells capable of seeding relapse after chemotherapy. PMID:26753883

  7. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress

    PubMed Central

    Malcolm, Tim I. M.; Villarese, Patrick; Fairbairn, Camilla J.; Lamant, Laurence; Trinquand, Amélie; Hook, C. Elizabeth; Burke, G. A. Amos; Brugières, Laurence; Hughes, Katherine; Payet, Dominique; Merkel, Olaf; Schiefer, Ana-Iris; Ashankyty, Ibraheem; Mian, Shahid; Wasik, Mariusz; Turner, Martin; Kenner, Lukas; Asnafi, Vahid; Macintyre, Elizabeth; Turner, Suzanne D.

    2016-01-01

    Anaplastic large cell lymphoma (ALCL) is a peripheral T-cell lymphoma presenting mostly in children and young adults. The natural progression of this disease is largely unknown as is the identity of its true cell of origin. Here we present a model of peripheral ALCL pathogenesis where the malignancy is initiated in early thymocytes, before T-cell receptor (TCR) β-rearrangement, which is bypassed in CD4/NPM–ALK transgenic mice following Notch1 expression. However, we find that a TCR is required for thymic egress and development of peripheral murine tumours, yet this TCR must be downregulated for T-cell lymphomagenesis. In keeping with this, clonal TCR rearrangements in human ALCL are predominantly in-frame, but often aberrant, with clonal TCRα but no comparable clonal TCRβ rearrangement, yielding events that would not normally be permissive for survival during thymic development. Children affected by ALCL may thus harbour thymic lymphoma-initiating cells capable of seeding relapse after chemotherapy. PMID:26753883

  8. T cell epitope redundancy: cross-conservation of the TCR face between pathogens and self and its implications for vaccines and autoimmunity.

    PubMed

    Moise, Leonard; Beseme, Sarah; Tassone, Ryan; Liu, Rui; Kibria, Farzana; Terry, Frances; Martin, William; De Groot, Anne S

    2016-05-01

    T cells are extensively trained on 'self' in the thymus and then move to the periphery, where they seek out and destroy infections and regulate immune response to self-antigens. T cell receptors (TCRs) on T cells' surface recognize T cell epitopes, short linear strings of amino acids presented by antigen-presenting cells. Some of these epitopes activate T effectors, while others activate regulatory T cells. It was recently discovered that T cell epitopes that are highly conserved on their TCR face with human genome sequences are often associated with T cells that regulate immune response. These TCR-cross-conserved or 'redundant epitopes' are more common in proteins found in pathogens that have co-evolved with humans than in other non-commensal pathogens. Epitope redundancy might be the link between pathogens and autoimmune disease. This article reviews recently published data and addresses epitope redundancy, the "elephant in the room" for vaccine developers and T cell immunologists. PMID:26588466

  9. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling.

    PubMed

    Liu, Baoyu; Chen, Wei; Evavold, Brian D; Zhu, Cheng

    2014-04-10

    TCR-pMHC interactions initiate adaptive immune responses, but the mechanism of how such interactions under force induce T cell signaling is unclear. We show that force prolongs lifetimes of single TCR-pMHC bonds for agonists (catch bonds) but shortens those for antagonists (slip bonds). Both magnitude and duration of force are important, as the highest Ca(2+) responses were induced by 10 pN via both pMHC catch bonds whose lifetime peaks at this force and anti-TCR slip bonds whose maximum lifetime occurs at 0 pN. High Ca(2+) levels require early and rapid accumulation of bond lifetimes, whereas short-lived bonds that slow early accumulation of lifetimes correspond to low Ca(2+) responses. Our data support a model in which force on the TCR induces signaling events depending on its magnitude, duration, frequency, and timing, such that agonists form catch bonds that trigger the T cell digitally, whereas antagonists form slip bonds that fail to activate. PMID:24725404

  10. Human and Murine Clonal CD8+ T Cell Expansions Arise during Tuberculosis Because of TCR Selection

    PubMed Central

    Nunes-Alves, Cláudio; Booty, Matthew G.; Carpenter, Stephen M.; Rothchild, Alissa C.; Martin, Constance J.; Desjardins, Danielle; Steblenko, Katherine; Kløverpris, Henrik N.; Madansein, Rajhmun; Ramsuran, Duran; Leslie, Alasdair; Correia-Neves, Margarida; Behar, Samuel M.

    2015-01-01

    The immune system can recognize virtually any antigen, yet T cell responses against several pathogens, including Mycobacterium tuberculosis, are restricted to a limited number of immunodominant epitopes. The host factors that affect immunodominance are incompletely understood. Whether immunodominant epitopes elicit protective CD8+ T cell responses or instead act as decoys to subvert immunity and allow pathogens to establish chronic infection is unknown. Here we show that anatomically distinct human granulomas contain clonally expanded CD8+ T cells with overlapping T cell receptor (TCR) repertoires. Similarly, the murine CD8+ T cell response against M. tuberculosis is dominated by TB10.44-11-specific T cells with extreme TCRβ bias. Using a retrogenic model of TB10.44-11-specific CD8+ T cells, we show that TCR dominance can arise because of competition between clonotypes driven by differences in affinity. Finally, we demonstrate that TB10.4-specific CD8+ T cells mediate protection against tuberculosis, which requires interferon-γ production and TAP1-dependent antigen presentation in vivo. Our study of how immunodominance, biased TCR repertoires, and protection are inter-related, provides a new way to measure the quality of T cell immunity, which if applied to vaccine evaluation, could enhance our understanding of how to elicit protective T cell immunity. PMID:25945999

  11. T Cell Receptor (TCR) Antagonism without a Negative Signal: Evidence from T Cell Hybridomas Expressing Two Independent TCRs

    PubMed Central

    Stotz, Sabine H.; Bolliger, Luca; Carbone, Francis R.; Palmer, Ed

    1999-01-01

    Antagonist peptides inhibit T cell responses by an unknown mechanism. By coexpressing two independent T cell receptors (TCRs) on a single T cell hybridoma, we addressed the question of whether antagonist ligands induce a dominant-negative signal that inhibits the function of a second, independent TCR. The two receptors, Vα2Vβ5 and Vα2Vβ10, restricted by H-2Kb and specific for the octameric peptides SIINFEKL and SSIEFARL, respectively, were coexpressed on the same cell. Agonist stimulation demonstrated that the two receptors behaved independently with regard to antigen-induced TCR downregulation and intracellular biochemical signaling. The exposure of one TCR (Vα2Vβ5) to antagonist peptides could not inhibit a second independent TCR (Vα2Vβ10) from responding to its antigen. Thus, our data clearly demonstrate that these antagonist ligands do not generate a dominant-negative signal which affects the responsiveness of the entire cell. In addition, a kinetic analysis showed that even 12 h after engagement with their cognate antigen and 10 h after reaching a steady-state of TCR internalization, T cells were fully inhibited by the addition of antagonist peptides. The window of susceptibility to antagonist ligands correlated exactly with the time required for the responding T cells to commit to interleukin 2 production. The data support a model where antagonist ligands can competitively inhibit antigenic peptides from productively engaging the TCR. This competitive inhibition is effective during the entire commitment period, where sustained TCR engagement is essential for full T cell activation. PMID:9892608

  12. Functional TCR retrieval from single antigen-specific human T cells reveals multiple novel epitopes.

    PubMed

    Simon, Petra; Omokoko, Tana A; Breitkreuz, Andrea; Hebich, Lisa; Kreiter, Sebastian; Attig, Sebastian; Konur, Abdo; Britten, Cedrik M; Paret, Claudia; Dhaene, Karl; Türeci, Özlem; Sahin, Ugur

    2014-12-01

    The determination of the epitope specificity of disease-associated T-cell responses is relevant for the development of biomarkers and targeted immunotherapies against cancer, autoimmune, and infectious diseases. The lack of known T-cell epitopes and corresponding T-cell receptors (TCR) for novel antigens hinders the efficient development and monitoring of new therapies. We developed an integrated approach for the systematic retrieval and functional characterization of TCRs from single antigen-reactive T cells that includes the identification of epitope specificity. This is accomplished through the rapid cloning of full-length TCR-α and TCR-β chains directly from single antigen-specific CD8(+) or CD4(+) T lymphocytes. The functional validation of cloned TCRs is conducted using in vitro-transcribed RNA transfer for expression of TCRs in T cells and HLA molecules in antigen-presenting cells. This method avoids the work and bias associated with repetitive cycles of in vitro T-cell stimulation, and enables fast characterization of antigen-specific T-cell responses. We applied this strategy to viral and tumor-associated antigens (TAA), resulting in the retrieval of 56 unique functional antigen-specific TCRs from human CD8(+) and CD4(+) T cells (13 specific for CMV-pp65, 16 specific for the well-known TAA NY-ESO-1, and 27 for the novel TAA TPTE), which are directed against 39 different epitopes. The proof-of-concept studies with TAAs NY-ESO-1 and TPTE revealed multiple novel TCR specificities. Our approach enables the rational development of immunotherapy strategies by providing antigen-specific TCRs and immunogenic epitopes. PMID:25245536

  13. TCR signal strength controls thymic differentiation of discrete proinflammatory γδ T cell subsets.

    PubMed

    Muñoz-Ruiz, Miguel; Ribot, Julie C; Grosso, Ana R; Gonçalves-Sousa, Natacha; Pamplona, Ana; Pennington, Daniel J; Regueiro, José R; Fernández-Malavé, Edgar; Silva-Santos, Bruno

    2016-06-01

    The mouse thymus produces discrete γδ T cell subsets that make either interferon-γ (IFN-γ) or interleukin 17 (IL-17), but the role of the T cell antigen receptor (TCR) in this developmental process remains controversial. Here we show that Cd3g(+/-) Cd3d(+/-) (CD3 double-haploinsufficient (CD3DH)) mice have reduced TCR expression and signaling strength on γδ T cells. CD3DH mice had normal numbers and phenotypes of αβ thymocyte subsets, but impaired differentiation of fetal Vγ6(+) (but not Vγ4(+)) IL-17-producing γδ T cells and a marked depletion of IFN-γ-producing CD122(+) NK1.1(+) γδ T cells throughout ontogeny. Adult CD3DH mice showed reduced peripheral IFN-γ(+) γδ T cells and were resistant to experimental cerebral malaria. Thus, TCR signal strength within specific thymic developmental windows is a major determinant of the generation of proinflammatory γδ T cell subsets and their impact on pathophysiology. PMID:27043412

  14. The CD3-zeta chimeric antigen receptor overcomes TCR Hypo-responsiveness of human terminal late-stage T cells.

    PubMed

    Rappl, Gunter; Riet, Tobias; Awerkiew, Sabine; Schmidt, Annette; Hombach, Andreas A; Pfister, Herbert; Abken, Hinrich

    2012-01-01

    Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1(+) CD57(+) CD7(-) phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8(+) T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter. PMID:22292024

  15. Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells

    PubMed Central

    Allison, Karmel A; Sajti, Eniko; Collier, Jana G; Gosselin, David; Troutman, Ty Dale; Stone, Erica L; Hedrick, Stephen M; Glass, Christopher K

    2016-01-01

    Affinity and dose of T cell receptor (TCR) interaction with antigens govern the magnitude of CD4+ T cell responses, but questions remain regarding the quantitative translation of TCR engagement into downstream signals. We find that while the response of mouse CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit analog responses proportional to signal strength. Gene expression output reflects TCR signal strength, providing a signature of T cell activation. Expression changes rely on a pre-established enhancer landscape and quantitative acetylation at AP-1 binding sites. Finally, we show that graded expression of activation genes depends on ERK pathway activation, suggesting that an ERK-AP-1 axis plays an important role in translating TCR signal strength into proportional activation of enhancers and genes essential for T cell function. DOI: http://dx.doi.org/10.7554/eLife.10134.001 PMID:27376549

  16. Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain

    PubMed Central

    Schubert, David A.; Gordo, Susana; Chu, H. Hamlet

    2012-01-01

    The CD3ε and ζ cytoplasmic domains of the T cell receptor bind to the inner leaflet of the plasma membrane (PM), and a previous nuclear magnetic resonance structure showed that both tyrosines of the CD3ε immunoreceptor tyrosine-based activation motif partition into the bilayer. Electrostatic interactions between acidic phospholipids and clusters of basic CD3ε residues were previously shown to be essential for CD3ε and ζ membrane binding. Phosphatidylserine (PS) is the most abundant negatively charged lipid on the inner leaflet of the PM and makes a major contribution to membrane binding by the CD3ε cytoplasmic domain. Here, we show that TCR triggering by peptide–MHC complexes induces dissociation of the CD3ε cytoplasmic domain from the plasma membrane. Release of the CD3ε cytoplasmic domain from the membrane is accompanied by a substantial focal reduction in negative charge and available PS in TCR microclusters. These changes in the lipid composition of TCR microclusters even occur when TCR signaling is blocked with a Src kinase inhibitor. Local changes in the lipid composition of TCR microclusters thus render the CD3ε cytoplasmic domain accessible during early stages of T cell activation. PMID:23166358

  17. T cells survey the stability of the self: a testable hypothesis on the homeostatic role of TCR-MHC interactions.

    PubMed

    Bakács, Tibor; Mehrishi, Jitendra N; Szabados, Tamás; Varga, László; Szabó, Miklós; Tusnády, Gábor

    2007-01-01

    In the lifetime of an individual, every single gene will have undergone mutation on about 10(10) separate occasions. Nevertheless, cancer occurs mainly with advancing age. Here, we hypothesize that the evolutionary pressure driving the creation of the T cell receptor (TCR) repertoire was primarily the homeostatic surveillance of the genome. The subtly variable T cells may in fact constitute an evolutionary link between the invariable innate and hypervariable B cell systems. The new model is based on the homeostatic role of T cells, suggesting that molecular complementarity between the positively selected TCR and the self peptide-presenting major histocompatibility complex molecules establishes and regulates homeostasis, strictly limiting variations of its components. Notwithstanding, the 'homeostatic role of T cells' model offers a more realistic explanation as to how a naïve clonal immune system can cope with the much faster replicating pathogens, despite a limited repertoire that is capable of facing only a small fraction of the vast antigenic universe at a time. PMID:17541288

  18. T-T cellular interaction between CD4-CD8- regulatory T cells and T cell clones presenting TCR peptide. Its implication for TCR vaccination against experimental autoimmune encephalomyelitis.

    PubMed

    Kozovska, M F; Yamamura, T; Tabira, T

    1996-08-15

    Regulatory T cells recognizing TCR determinants presumably play a critical role in the control of experimental autoimmune encephalomyelitis, a prototype tissue-specific autoimmune disease. This study was initiated to determine whether regulatory T cells can be induced against a V beta 17a CDR2 peptide (residues 50-68) in SJL/J mice. Although the TCR peptide showed regulatory effects in vivo, the presence of T cells specific for the peptide could not be proven with conventional proliferation assays. Unexpectedly, in the presence of myelin basic protein-specific T clone cells (Tcc), the sensitized spleen cells vigorously proliferated in response to the TCR peptide. The subsequent experiment showed that this was due to the outstanding capability of the Tcc as APC for the exogenous TCR peptide. Using the Tcc as APC, we were able to establish V beta 17a50-68-specific T cell lines from in vivo primed spleen cells. The line cells were MHC class I restricted and dominated by T cells with a distinct surface phenotype (CD4-CD8-V beta 17a+). Presentation of the peptide by the Tcc was inhibited by treatment with gelonin that could block a MHC class I presentation pathway. The ability of T cells to present the TCR peptide was not related to their Ag specificity, but correlated with the expression levels of MHC class I molecules and adhesion molecules such as intercellular adhesion molecule-1 and B7-1 on their surface. The TCR peptide-specific T cells produced a soluble mediator(s) that is inhibitory for T cell activation and were protective against actively induced experimental autoimmune encephalomyelitis. These results show that V beta 17a50-68 vaccination induces regulatory CD4-CD8- T cells that could interact with T cells presenting relevant TCR fragments. PMID:8759768

  19. Physical mapping of the human T-cell antigen receptor (TCR) {beta}-chain gene complex

    SciTech Connect

    Yashim, Y.; So, A.K.

    1994-09-01

    The genetic variation of the TCR loci and their contribution to autoimmune diseases is poorly defined, in direct contrast to the clear examples of disease association with the Class I and II alleles of the major histocompatibility complex. We have therefore started to determine the gene organization and polymorphism of the TCR {beta} locus. Yeast artificial chromosomes (YACs) were used to construct a physical map of the germline human TCR {beta}-chain gene complex. Variable gene (V{beta}) sequences for the 25 known V{beta} subfamilies were amplified by PCR and were used as probes to screen a YAC library. Five positive YACs were identified. YACs designated B3, E11 and H11 of sizes 820, 400 and 600 kbp, respectively, were analyzed for their V{beta} content by pulse-field gel electrophoresis (PFGE). YAC B3 was found to contain all 25 V{beta} subfamilies, E11 for 14 and H11 for 7. B3 was also positive for the constant region genes. Restriction enzyme mapping of B3 located V{beta} and C{beta} gene regions to four Sfi I fragments of 280, 110, 90 and 125 kbp, and was in accordance with published data. The data thus showed that YAC B3 encoded a complete and unrearranged TCR {beta}-gene locus. The map was further resolved by locating restriction sites for Sal I and Bssll II on B3. Fluorescent in situ hybridization to human metaphase chromosomes localized B3 to chromosome 7q35. However, two additional signals were obtained: one attributable to V{beta} orphon cluster on chromosome 9q21; the second to the long arm of chromosome 2. PCR amplification of a chromosome 2 somatic cell hybrid using primers for all 25 V{beta} gene families revealed the signal was not attributable to a second orphon cluster. It is suggested that B3 is a chimeric YAC with an intact TCR {beta} locus flanked by chromosome 2 sequences. The determination of the TCR genomic organization will help extend studies of the role T-cells play in autoimmune diseases.

  20. TCR Sequencing Can Identify and Track Glioma-Infiltrating T Cells after DC Vaccination.

    PubMed

    Hsu, Melody S; Sedighim, Shaina; Wang, Tina; Antonios, Joseph P; Everson, Richard G; Tucker, Alexander M; Du, Lin; Emerson, Ryan; Yusko, Erik; Sanders, Catherine; Robins, Harlan S; Yong, William H; Davidson, Tom B; Li, Gang; Liau, Linda M; Prins, Robert M

    2016-05-01

    Although immunotherapeutic strategies are emerging as adjunctive treatments for cancer, sensitive methods of monitoring the immune response after treatment remain to be established. We used a novel next-generation sequencing approach to determine whether quantitative assessments of tumor-infiltrating lymphocyte (TIL) content and the degree of overlap of T-cell receptor (TCR) sequences in brain tumors and peripheral blood were predictors of immune response and overall survival in glioblastoma patients treated with autologous tumor lysate-pulsed dendritic cell immunotherapy. A statistically significant correlation was found between a higher estimated TIL content and increased time to progression and overall survival. In addition, we were able to assess the proportion of shared TCR sequences between tumor and peripheral blood at time points before and after therapy, and found the level of TCR overlap to correlate with survival outcomes. Higher degrees of overlap, or the development of an increased overlap following immunotherapy, was correlated with improved clinical outcome, and may provide insights into the successful, antigen-specific immune response. Cancer Immunol Res; 4(5); 412-8. ©2016 AACR. PMID:26968205

  1. Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability

    SciTech Connect

    Burrows, Scott R.; Chen, Zhenjun; Archbold, Julia K.; Tynan, Fleur E.; Beddoe, Travis; Kjer-Nielsen, Lars; Miles, John J.; Khanna, Rajiv; Moss, Denis J.; Liu, Yu Chih; Gras, Stephanie; Kostenko, Lyudmila; Brennan, Rebekah M.; Clements, Craig S.; Brooks, Andrew G.; Purcell, Anthony W.; McCluskey, James; Rossjohn, Jamie

    2010-07-07

    {alpha}{beta} T cell receptors (TCRs) are genetically restricted to corecognize peptide antigens bound to self-major histocompatibility complex (pMHC) molecules; however, the basis for this MHC specificity remains unclear. Despite the current dogma, evaluation of the TCR-pMHC-I structural database shows that the nongermline-encoded complementarity-determining region (CDR)-3 loops often contact the MHC-I, and the germline-encoded CDR1 and -2 loops frequently participate in peptide-mediated interactions. Nevertheless, different TCRs adopt a roughly conserved docking mode over the pMHC-I, in which three MHC-I residues (65, 69, and 155) are invariably contacted by the TCR in one way or another. Nonetheless, the impact of mutations at these three positions, either individually or together, was not uniformly detrimental to TCR recognition of pHLA-B*0801 or pHLA-B*3508. Moreover, when TCR-pMHC-I recognition was impaired, this could be partially restored by expression of the CD8 coreceptor. The structure of a TCR-pMHC-I complex in which these three (65, 69, and 155) MHC-I positions were all mutated resulted in shifting of the TCR footprint relative to the cognate complex and formation of compensatory interactions. Collectively, our findings reveal the inherent adaptability of the TCR in maintaining peptide recognition while accommodating changes to the central docking site on the pMHC-I.

  2. Strength of TCR signal from self-peptide modulates autoreactive thymocyte deletion and Foxp3(+) Treg-cell formation.

    PubMed

    Caton, Andrew J; Kropf, Elizabeth; Simons, Donald M; Aitken, Malinda; Weissler, Katherine A; Jordan, Martha S

    2014-03-01

    Autoreactive CD4(+) CD8(-) (CD4SP) thymocytes can be subjected to deletion when they encounter self-peptide during their development, but they can also undergo selection to become CD4SPFoxp3(+) Treg cells. We have analyzed the relationship between these distinct developmental fates using mice in which signals transmitted by the TCR have been attenuated by mutation of a critical tyrosine residue of the adapter protein SLP-76. In mice containing polyclonal TCR repertoires, the mutation caused increased frequencies of CD4SPFoxp3(+) thymocytes. CD4SP thymocytes expressing TCR Vβ-chains that are subjected to deletion by endogenous retroviral superantigens were also present at increased frequencies, particularly among Foxp3(+) thymocytes. In transgenic mice in which CD4SP thymocytes expressing an autoreactive TCR undergo both deletion and Treg-cell formation in response to a defined self-peptide, SLP-76 mutation abrogated deletion of autoreactive CD4SP thymocytes. Notably, Foxp3(+) Treg-cell formation still occurred, albeit with a reduced efficiency, and the mutation was also associated with decreased Nur77 expression by the autoreactive CD4SP thymocytes. These studies provide evidence that the strength of the TCR signal can play a direct role in directing the extent of both thymocyte deletion and Treg-cell differentiation, and suggest that distinct TCR signaling thresholds and/or pathways can promote CD4SP thymocyte deletion versus Treg-cell formation. PMID:24307208

  3. Single TCR-Vβ2 evaluation discloses the circulating T cell clone in Sezary syndrome: one family fits all!

    PubMed

    Scala, Enrico; Abeni, Damiano; Pomponi, Debora; Russo, Nicoletta; Russo, Giandomenico; Narducci, Maria Grazia

    2015-08-01

    Sézary Syndrome (SS/L-CTCL) is a rare but aggressive variant of cutaneous T cell lymphoma (CTCL), characterized by erythroderma, lymphadenopathy, and the presence of a circulating memory CD4(+) T cell malignant clone with a skin homing behavior, lacking CD26 and CD49d and over-expressing CD60. The availability of a panel of monoclonal antibodies recognizing distinct TCR-Vβ families, allows to typify the clone by flow cytometry in about 70 % of cases. The TCR-Vβ repertoire of 533 individuals, comprising 308 patients affected by CTCL, 50 healthy donors, and subjects affected by various non-neoplastic dermatological affections was evaluated by flow cytometry. Statistical analyses were performed using the SPSS statistical software package for Microsoft Windows (SPSS, version 21, Chicago, IL). TCR-Vβ2 levels below 5.4 % or above 39.5 %, within total CD4(+) T cells, showed the best balance between sensitivity (98.1 %) and specificity (96 %) to identify the presence of a clone in the peripheral blood of patients affected by SS. Based on this observation, a "two-step" procedure in the detection of the malignant T cell clone in CTCLs is herein suggested. TCR-Vβ2 assessment in all cases (first step). In the case of TCR-Vβ2 levels above 39.5 %, the presence of a clonal expansion of this family is suggested, deserving further confirmation by means of T cell gene rearrangement evaluation. In patients having a TCR-Vβ2 reactivity below 5.4 % (second step), the entire TCR-Vβ repertoire should be evaluated to typify the expanded clone. In conclusion, the single TCR-Vβ2 expression check, instead of the entire repertoire assessment, represents an easy and cost-effective method for the recognition of CTCL aggressive leukemic variant. PMID:25733488

  4. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL

    PubMed Central

    O'Malley, John T.; Williamson, David W.; Scott, Laura-Louise; Elco, Christopher P.; Teague, Jessica E.; Gehad, Ahmed; Lowry, Elizabeth L.; LeBoeuf, Nicole R.; Krueger, James G.; Robins, Harlan S.; Kupper, Thomas S.; Clark, Rachael A.

    2016-01-01

    Early diagnosis of CTCL is difficult and takes on average six years after presentation, in part because the clinical appearance and histopathology of CTCL can resemble that of benign inflammatory skin diseases. Detection of a malignant T cell clone is critical in making the diagnosis of CTCL but the TCRγ PCR analysis in current clinical use detect clones in only a subset of patients. High-throughput TCR sequencing (HTS) detected T cell clones in 46/46 CTCL patients, was more sensitive and specific than TCRγ PCR, and successfully discriminated CTCL from benign inflammatory diseases. HTS also accurately assessed responses to therapy and facilitated diagnosis of disease recurrence. In patients with new skin lesions and no involvement of blood by flow cytometry, HTS demonstrated hematogenous spread of small numbers of malignant T cells. Analysis of CTCL TCRγ genes demonstrated that CTCL is a malignancy derived from mature T cells. There was a maximal T cell density in skin in benign inflammatory diseases that was exceeded in CTCL, suggesting a niche of finite size may exist for benign T cells in skin. Lastly, immunostaining demonstrated that the malignant T cell clones in mycosis fungoides and leukemic CTCL localized to different anatomic compartments in the skin. In summary, HTS accurately diagnosed CTCL in all stages, discriminated CTCL from benign inflammatory skin diseases and provided insights into the cell of origin and location of malignant CTCL cells in skin. PMID:26446955

  5. Quantitative TCR:pMHC Dissociation Rate Assessment by NTAmers Reveals Antimelanoma T Cell Repertoires Enriched for High Functional Competence.

    PubMed

    Gannon, Philippe O; Wieckowski, Sébastien; Baumgaertner, Petra; Hebeisen, Michaël; Allard, Mathilde; Speiser, Daniel E; Rufer, Nathalie

    2015-07-01

    Experimental models demonstrated that therapeutic induction of CD8 T cell responses may offer protection against tumors or infectious diseases providing that T cells have sufficiently high TCR/CD8:pMHC avidity for efficient Ag recognition and consequently strong immune functions. However, comprehensive characterization of TCR/CD8:pMHC avidity in clinically relevant situations has remained elusive. In this study, using the novel NTA-His tag-containing multimer technology, we quantified the TCR:pMHC dissociation rates (koff) of tumor-specific vaccine-induced CD8 T cell clones (n = 139) derived from seven melanoma patients vaccinated with IFA, CpG, and the native/EAA or analog/ELA Melan-A(MART-1)(26-35) peptide, binding with low or high affinity to MHC, respectively. We observed substantial correlations between koff and Ca(2+) mobilization (p = 0.016) and target cell recognition (p < 0.0001), with the latter independently of the T cell differentiation state. Our strategy was successful in demonstrating that the type of peptide impacted on TCR/CD8:pMHC avidity, as tumor-reactive T cell clones derived from patients vaccinated with the low-affinity (native) peptide expressed slower koff rates than those derived from patients vaccinated with the high-affinity (analog) peptide (p < 0.0001). Furthermore, we observed that the low-affinity peptide promoted the selective differentiation of tumor-specific T cells bearing TCRs with high TCR/CD8:pMHC avidity (p < 0.0001). Altogether, TCR:pMHC interaction kinetics correlated strongly with T cell functions. Our study demonstrates the feasibility and usefulness of TCR/CD8:pMHC avidity assessment by NTA-His tag-containing multimers of naturally occurring polyclonal T cell responses, which represents a strong asset for the development of immunotherapy. PMID:26002978

  6. Inhibition of FOXP3/NFAT Interaction Enhances T Cell Function after TCR Stimulation.

    PubMed

    Lozano, Teresa; Villanueva, Lorea; Durántez, Maika; Gorraiz, Marta; Ruiz, Marta; Belsúe, Virginia; Riezu-Boj, José I; Hervás-Stubbs, Sandra; Oyarzábal, Julen; Bandukwala, Hozefa; Lourenço, Ana R; Coffer, Paul J; Sarobe, Pablo; Prieto, Jesús; Casares, Noelia; Lasarte, Juan J

    2015-10-01

    Regulatory T cell (Treg) activity is modulated by a cooperative complex between the transcription factor NFAT and FOXP3, a lineage specification factor for Tregs. FOXP3/NFAT interaction is required to repress expression of IL-2, upregulate expression of the Treg markers CTLA4 and CD25, and confer suppressor function to Tregs. However, FOXP3 is expressed transiently in conventional CD4(+) T cells upon TCR stimulation and may lead to T cell hyporesponsiveness. We found that a short synthetic peptide able to inhibit FOXP3/NFAT interaction impaired suppressor activity of conventional Tregs in vitro. Specific inhibition of FOXP3/NFAT interaction with this inhibitory peptide revealed that FOXP3 downregulates NFAT-driven promoter activity of CD40L and IL-17. Inhibition of FOXP3/NFAT interaction upregulated CD40L expression on effector T cells and enhanced T cell proliferation and IL-2, IFN-γ, IL-6, or IL-17 production in response to TCR stimulation. The inhibitory peptide impaired effector T cell conversion into induced Tregs in the presence of TGF-β. Moreover, in vivo peptide administration showed antitumor efficacy in mice bearing Hepa129 or TC1 tumor cells when combined with sorafenib or with an antitumor vaccine, respectively. Our results suggest that inhibition of NFAT/FOXP3 interaction might improve antitumor immunotherapies. PMID:26324768

  7. SYK expression endows human ZAP70-deficient CD8 T cells with residual TCR signaling.

    PubMed

    Hauck, Fabian; Blumenthal, Britta; Fuchs, Sebastian; Lenoir, Christelle; Martin, Emmanuel; Speckmann, Carsten; Vraetz, Thomas; Mannhardt-Laakmann, Wilma; Lambert, Nathalie; Gil, Marine; Borte, Stephan; Audrain, Marie; Schwarz, Klaus; Lim, Annick; Schamel, Wolfgang W; Fischer, Alain; Ehl, Stephan; Rensing-Ehl, Anne; Picard, Capucine; Latour, Sylvain

    2015-12-01

    Autosomal recessive human ZAP70 deficiency is a rare cause of combined immunodeficiency (CID) characterized by defective CD4 T cells and profound CD8 T cell lymphopenia. Herein, we report two novel patients that extend the molecular genetics, the clinical and functional phenotypes associated with the ZAP70 deficiency. The patients presented as infant-onset CID with severe infections caused by varicella zoster virus and live vaccines. Retrospective TCR excision circle newborn screening was normal in both patients. One patient carried a novel non-sense mutation (p.A495fsX75); the other a previously described misense mutation (p.A507V). In contrast to CD4 T cells, the majority of the few CD8 T cells showed expression of the ZAP70-related tyrosine kinase SYK that correlated with residual TCR signaling including calcium flux and degranulation. Our findings highlight the differential requirements of ZAP70 and SYK during thymic development, peripheral homeostasis as well as effector functions of CD4 and CD8 T cells. PMID:26187144

  8. Generation of multi-functional antigen-specific human T-cells by lentiviral TCR gene transfer.

    PubMed

    Perro, M; Tsang, J; Xue, S-A; Escors, D; Cesco-Gaspere, M; Pospori, C; Gao, L; Hart, D; Collins, M; Stauss, H; Morris, E C

    2010-06-01

    T-cell receptor (TCR) gene transfer is an attractive strategy to generate antigen-specific T-cells for adoptive immunotherapy of cancer and chronic viral infection. However, current TCR gene transfer protocols trigger T-cell differentiation into terminally differentiated effector cells, which likely have reduced ability to mediate disease protection in vivo. We have developed a lentiviral gene transfer strategy to generate TCR-transduced human T-cells without promoting T-cell differentiation. We found that a combination of interleukin-15 (IL15) and IL21 facilitated lentiviral TCR gene transfer into non-proliferating T-cells. The transduced T-cells showed redirection of antigen specificity and produced IL2, IFNgamma and TNFalpha in a peptide-dependent manner. A significantly higher proportion of the IL15/IL21-stimulated T-cells were multi-functional and able to simultaneously produce all three cytokines (P<0.01), compared with TCR-transduced T-cells generated by conventional anti-CD3 plus IL2 stimulation, which primarily secreted only one cytokine. Similarly, IL15/IL21 maintained high levels of CD62L and CD28 expression in transduced T-cells, whereas anti-CD3 plus IL2 accelerated the loss of CD62L/CD28 expression. The data demonstrate that the combination of lentiviral TCR gene transfer together with IL15/IL21 stimulation can efficiently redirect the antigen specificity of resting primary human T-cells and generate multi-functional T-cells. PMID:20164855

  9. Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation.

    PubMed

    Siggs, Owen M; Miosge, Lisa A; Daley, Stephen R; Asquith, Kelly; Foster, Paul S; Liston, Adrian; Goodnow, Christopher C

    2015-03-15

    Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies. PMID:25662996

  10. Influenza virus-specific TCR-transduced T cells as a model for adoptive immunotherapy.

    PubMed

    Berdien, Belinda; Reinhard, Henrike; Meyer, Sabrina; Spöck, Stefanie; Kröger, Nicolaus; Atanackovic, Djordje; Fehse, Boris

    2013-06-01

    Adoptive transfer of T lymphocytes equipped with tumor-antigen specific T-cell receptors (TCRs) represents a promising strategy in cancer immunotherapy, but the approach remains technically demanding. Using influenza virus (Flu)-specific T-cell responses as a model system we compared different methods for the generation of T-cell clones and isolation of antigen-specific TCRs. Altogether, we generated 12 CD8(+) T-cell clones reacting to the Flu matrix protein (Flu-M) and 6 CD4(+) T-cell clones reacting to the Flu nucleoprotein (Flu-NP) from 4 healthy donors. IFN-γ-secretion-based enrichment of antigen-specific cells, optionally combined with tetramer staining, was the most efficient way for generating T-cell clones. In contrast, the commonly used limiting dilution approach was least efficient. TCR genes were isolated from T-cell clones and cloned into both a previously used gammaretroviral LTR-vector, MP91 and the novel lentiviral self-inactivating vector LeGO-MP that contains MP91-derived promotor and regulatory elements. To directly compare their functional efficiencies, we in parallel transduced T-cell lines and primary T cells with the two vectors encoding identical TCRs. Transduction efficiencies were approximately twice higher with the gammaretroviral vector. Secretion of high amounts of IFN-γ, IL-2 and TNF-α by transduced cells after exposure to the respective influenza target epitope proved efficient specificity transfer of the isolated TCRs to primary T-cells for both vectors, at the same time indicating superior functionality of MP91-transduced cells. In conclusion, we have developed optimized strategies to obtain and transfer antigen-specific TCRs as well as designed a novel lentiviral vector for TCR-gene transfer. Our data may help to improve adoptive T-cell therapies. PMID:23428899

  11. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications.

    PubMed

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  12. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications

    PubMed Central

    Friend, Samantha F; Deason-Towne, Francina; Peterson, Lisa K; Berger, Allison J; Dragone, Leonard L

    2014-01-01

    Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling. PMID:25628960

  13. T Cells and Gene Regulation: The Switching On and Turning Up of Genes after T Cell Receptor Stimulation in CD8 T Cells

    PubMed Central

    Conley, James M.; Gallagher, Michael P.; Berg, Leslie J.

    2016-01-01

    Signaling downstream of the T cell receptor (TCR) is directly regulated by the dose and affinity of peptide antigen. The strength of TCR signaling drives a multitude of T cell functions from development to differentiation. CD8 T cells differentiate into a diverse pool of effector and memory cells after activation, a process that is critical for pathogen clearance and is highly regulated by TCR signal strength. T cells rapidly alter their gene expression upon activation. Multiple signaling pathways downstream of the TCR activate transcription factors, which are critical for this process. The dynamics between proximal TCR signaling, transcription factor activation and CD8 T cell function are discussed here. We propose that inducible T cell kinase (ITK) acts as a rheostat for gene expression. This unique regulation of TCR signaling by ITK provides a possible signaling mechanism for the promotion of a diverse T cell repertoire in response to pathogen. PMID:26973653

  14. T-cell receptor (TCR) usage in Lewis rat experimental autoimmune encephalomyelitis: TCR beta-chain-variable-region V beta 8.2-positive T cells are not essential for induction and course of disease.

    PubMed Central

    Gold, R; Giegerich, G; Hartung, H P; Toyka, K V

    1995-01-01

    Predominant usage of V beta 8.2 gene segments, encoding a T-cell receptor (TCR) beta chain variable region, has been reported for pathogenic Lewis rat T cells reactive to myelin basic protein (MBP). However, up to 75% of the alpha/beta T cells in a panel of MBP-specific T-cell lines did not display TCR V beta 8.2, V beta 8.5, V beta 10, or V beta 16 elements. To further investigate TCR usage, we sorted the T-cell lines for V beta 8.2- and V beta 10-positive T cells or depleted the lines of cells with these TCRs. V beta 8.2-positive T cells and one of the depleted T-cell lines strongly reacted against the MBP peptide MBP-(68-88). The depleted T-cell line caused marked experimental autoimmune encephalomyelitis (EAE) even in Lewis rats in which endogenous V beta 8.2-positive T cells had been eliminated by neonatal treatment with anti-V beta 8.2 monoclonal antibodies. T-cell hybridomas generated from this line predominantly used V beta 3 TCR genes coexpressed with TCR V alpha 2 transcripts, which were also used by V beta 8.2-positive T cells. Furthermore, V beta 10-positive T cells reactive to MBP-(44-67) were encephalitogenic when injected immediately after positive selection. After induction of EAE by sorted V beta 8.2- or V beta 10-positive T-cell lines, immunocytochemical analysis of the spinal cord tissue showed a predominance of the injected TCR or of nontypable alpha/beta T cells after injection of the depleted line. Our results demonstrate heterogeneity of TCR beta-chain usage even for a single autoantigen in an inbred strain. Moreover, V beta 8.2-positive T cells are not essential for the induction and progression of adoptive-transfer EAE. Images Fig. 4 Fig. 5 PMID:7597040

  15. Regulatory T Cells Expanded from HIV-1-Infected Individuals Maintain Phenotype, TCR Repertoire and Suppressive Capacity

    PubMed Central

    Angin, Mathieu; Klarenbeek, Paul L.; King, Melanie; Sharma, Siddhartha M.; Moodley, Eshia S.; Rezai, Ashley; Piechocka-Trocha, Alicja; Toth, Ildiko; Chan, Andrew T.; Goulder, Philip J.; Ndung'u, Thumbi; Kwon, Douglas S.; Addo, Marylyn M.

    2014-01-01

    While modulation of regulatory T cell (Treg) function and adoptive Treg transfer are being explored as therapeutic modalities in the context of autoimmune diseases, transplantation and cancer, their role in HIV-1 pathogenesis remains less well defined. Controversy persists regarding their beneficial or detrimental effects in HIV-1 disease, which warrants further detailed exploration. Our objectives were to investigate if functional CD4+ Tregs can be isolated and expanded from HIV-1-infected individuals for experimental or potential future therapeutic use and to determine phenotype and suppressive capacity of expanded Tregs from HIV-1 positive blood and tissue. Tregs and conventional T cell controls were isolated from blood and gut-associated lymphoid tissue of individuals with HIV-1 infection and healthy donors using flow-based cell-sorting. The phenotype of expanded Tregs was assessed by flow-cytometry and quantitative PCR. T-cell receptor ß-chain (TCR-β) repertoire diversity was investigated by deep sequencing. Flow-based T-cell proliferation and chromium release cytotoxicity assays were used to determine Treg suppressive function. Tregs from HIV-1 positive individuals, including infants, were successfully expanded from PBMC and GALT. Expanded Tregs expressed high levels of FOXP3, CTLA4, CD39 and HELIOS and exhibited a highly demethylated TSDR (Treg-specific demethylated region), characteristic of Treg lineage. The TCRß repertoire was maintained following Treg expansion and expanded Tregs remained highly suppressive in vitro. Our data demonstrate that Tregs can be expanded from blood and tissue compartments of HIV-1+ donors with preservation of Treg phenotype, function and TCR repertoire. These results are highly relevant for the investigation of potential future therapeutic use, as currently investigated for other disease states and hold great promise for detailed studies on the role of Tregs in HIV-1 infection. PMID:24498287

  16. Regulatory T cells expanded from HIV-1-infected individuals maintain phenotype, TCR repertoire and suppressive capacity.

    PubMed

    Angin, Mathieu; Klarenbeek, Paul L; King, Melanie; Sharma, Siddhartha M; Moodley, Eshia S; Rezai, Ashley; Piechocka-Trocha, Alicja; Toth, Ildiko; Chan, Andrew T; Goulder, Philip J; Ndung'u, Thumbi; Kwon, Douglas S; Addo, Marylyn M

    2014-01-01

    While modulation of regulatory T cell (Treg) function and adoptive Treg transfer are being explored as therapeutic modalities in the context of autoimmune diseases, transplantation and cancer, their role in HIV-1 pathogenesis remains less well defined. Controversy persists regarding their beneficial or detrimental effects in HIV-1 disease, which warrants further detailed exploration. Our objectives were to investigate if functional CD4(+) Tregs can be isolated and expanded from HIV-1-infected individuals for experimental or potential future therapeutic use and to determine phenotype and suppressive capacity of expanded Tregs from HIV-1 positive blood and tissue. Tregs and conventional T cell controls were isolated from blood and gut-associated lymphoid tissue of individuals with HIV-1 infection and healthy donors using flow-based cell-sorting. The phenotype of expanded Tregs was assessed by flow-cytometry and quantitative PCR. T-cell receptor ß-chain (TCR-β) repertoire diversity was investigated by deep sequencing. Flow-based T-cell proliferation and chromium release cytotoxicity assays were used to determine Treg suppressive function. Tregs from HIV-1 positive individuals, including infants, were successfully expanded from PBMC and GALT. Expanded Tregs expressed high levels of FOXP3, CTLA4, CD39 and HELIOS and exhibited a highly demethylated TSDR (Treg-specific demethylated region), characteristic of Treg lineage. The TCRß repertoire was maintained following Treg expansion and expanded Tregs remained highly suppressive in vitro. Our data demonstrate that Tregs can be expanded from blood and tissue compartments of HIV-1+ donors with preservation of Treg phenotype, function and TCR repertoire. These results are highly relevant for the investigation of potential future therapeutic use, as currently investigated for other disease states and hold great promise for detailed studies on the role of Tregs in HIV-1 infection. PMID:24498287

  17. TCR gene-modified T cells can efficiently treat established hepatitis C-associated hepatocellular carcinoma tumors.

    PubMed

    Spear, Timothy T; Callender, Glenda G; Roszkowski, Jeffrey J; Moxley, Kelly M; Simms, Patricia E; Foley, Kendra C; Murray, David C; Scurti, Gina M; Li, Mingli; Thomas, Justin T; Langerman, Alexander; Garrett-Mayer, Elizabeth; Zhang, Yi; Nishimura, Michael I

    2016-03-01

    The success in recent clinical trials using T cell receptor (TCR)-genetically engineered T cells to treat melanoma has encouraged the use of this approach toward other malignancies and viral infections. Although hepatitis C virus (HCV) infection is being treated with a new set of successful direct anti-viral agents, potential for virologic breakthrough or relapse by immune escape variants remains. Additionally, many HCV(+) patients have HCV-associated disease, including hepatocellular carcinoma (HCC), which does not respond to these novel drugs. Further exploration of other approaches to address HCV infection and its associated disease are highly warranted. Here, we demonstrate the therapeutic potential of PBL-derived T cells genetically engineered with a high-affinity, HLA-A2-restricted, HCV NS3:1406-1415-reactive TCR. HCV1406 TCR-transduced T cells can recognize naturally processed antigen and elicit CD8-independent recognition of both peptide-loaded targets and HCV(+) human HCC cell lines. Furthermore, these cells can mediate regression of established HCV(+) HCC in vivo. Our results suggest that HCV TCR-engineered antigen-reactive T cells may be a plausible immunotherapy option to treat HCV-associated malignancies, such as HCC. PMID:26842125

  18. Low-affinity TCR engagement drives IL-2-dependent post-thymic maintenance of naive CD4+ T cells in aged humans

    PubMed Central

    van der Geest, Kornelis S M; Abdulahad, Wayel H; Teteloshvili, Nato; Tete, Sarah M; Peters, Jorieke H; Horst, Gerda; Lorencetti, Pedro G; Bos, Nicolaas A; Lambeck, Annechien; Roozendaal, Caroline; Kroesen, Bart-Jan; Koenen, Hans J P M; Joosten, Irma; Brouwer, Elisabeth; Boots, Annemieke M H

    2015-01-01

    Insight into the maintenance of naive T cells is essential to understand defective immune responses in the context of aging and other immune compromised states. In humans, naive CD4+ T cells, in contrast to CD8+ T cells, are remarkably well retained with aging. Here, we show that low-affinity TCR engagement is the main driving force behind the emergence and accumulation of naive-like CD4+ T cells with enhanced sensitivity to IL-2 in aged humans. In vitro, we show that these CD45RA+CD25dimCD4+ T cells can develop from conventional naive CD25−CD4+ T cells upon CD3 cross-linking alone, in the absence of costimulation, rather than via stimulation by the homeostatic cytokines IL-2, IL-7, or IL-15. In vivo, TCR engagement likely occurs in secondary lymphoid organs as these cells were detected in lymph nodes and spleen where they showed signs of recent activation. CD45RA+CD25dimCD4+ T cells expressed a broad TCRVβ repertoire and could readily differentiate into functional T helper cells. Strikingly, no expansion of CD45RA+CD25dimCD8+ T cells was detected with aging, thereby implying that maintenance of naive CD4+ T cells is uniquely regulated. Our data provide novel insight into the homeostasis of naive T cells and may guide the development of therapies to preserve or restore immunity in the elderly. PMID:26010129

  19. A Functional γδTCR/CD3 Complex Distinct from γδT Cells Is Expressed by Human Eosinophils

    PubMed Central

    Woerly, Gaëtane; Loiseau, Sylvie; Hermann, Emmanuel; Fournié, Jean-Jacques; Héliot, Laurent; Mattot, Virginie; Soncin, Fabrice; Gougeon, Marie-Lise; Dombrowicz, David; Capron, Monique

    2009-01-01

    Background Eosinophils are effector cells during parasitic infections and allergic responses. However, their contribution to innate immunity has been only recently unravelled. Methodology/Principal Findings Here we show that human eosinophils express CD3 and γδ T Cell Receptor (TCR) but not αβ TCR. Surface expression of γδTCR/CD3 is heterogeneous between eosinophil donors and inducible by mycobacterial ligands. Surface immunoprecipitation revealed expression of the full γδTCR/CD3 complex. Real-time PCR amplification for CD3, γ and δ TCR constant regions transcripts showed a significantly lower expression in eosinophils than in γδT cells. Limited TCR rearrangements occur in eosinophils as shown by spectratyping analysis of CDR3 length profiles and in situ hybridization. Release by eosinophils of Reactive Oxygen Species, granule proteins, Eosinophil Peroxidase and Eosinophil-Derived Neurotoxin and cytokines (IFN-γ and TNF-α) was observed following activation by γδTCR-specific agonists or by mycobacteria. These effects were inhibited by anti-γδTCR blocking antibodies and antagonists. Moreover, γδTCR/CD3 was involved in eosinophil cytotoxicity against tumor cells. Conclusions/Significance Our results provide evidence that human eosinophils express a functional γδTCR/CD3 with similar, but not identical, characteristics to γδTCR from γδT cells. We propose that this receptor contributes to eosinophil innate responses against mycobacteria and tumors and may represent an additional link between lymphoid and myeloid lineages. PMID:19536290

  20. Pre-TCR ligand binding impacts thymocyte development before αβTCR expression

    PubMed Central

    Mallis, Robert J.; Bai, Ke; Arthanari, Haribabu; Hussey, Rebecca E.; Handley, Maris; Li, Zhenhai; Chingozha, Loice; Duke-Cohan, Jonathan S.; Lu, Hang; Wang, Jia-Huai; Zhu, Cheng; Wagner, Gerhard; Reinherz, Ellis L.

    2015-01-01

    Adaptive cellular immunity requires accurate self- vs. nonself-discrimination to protect against infections and tumorous transformations while at the same time excluding autoimmunity. This vital capability is programmed in the thymus through selection of αβT-cell receptors (αβTCRs) recognizing peptides bound to MHC molecules (pMHC). Here, we show that the pre-TCR (preTCR), a pTα-β heterodimer appearing before αβTCR expression, directs a previously unappreciated initial phase of repertoire selection. Contrasting with the ligand-independent model of preTCR function, we reveal through NMR and bioforce-probe analyses that the β-subunit binds pMHC using Vβ complementarity-determining regions as well as an exposed hydrophobic Vβ patch characteristic of the preTCR. Force-regulated single bonds akin to those of αβTCRs but with more promiscuous ligand specificity trigger calcium flux. Thus, thymic development involves sequential β- and then, αβ-repertoire tuning, whereby preTCR interactions with self pMHC modulate early thymocyte expansion, with implications for β-selection, immunodominant peptide recognition, and germ line-encoded MHC interaction. PMID:26056289

  1. Pre-TCR ligand binding impacts thymocyte development before αβTCR expression.

    PubMed

    Mallis, Robert J; Bai, Ke; Arthanari, Haribabu; Hussey, Rebecca E; Handley, Maris; Li, Zhenhai; Chingozha, Loice; Duke-Cohan, Jonathan S; Lu, Hang; Wang, Jia-Huai; Zhu, Cheng; Wagner, Gerhard; Reinherz, Ellis L

    2015-07-01

    Adaptive cellular immunity requires accurate self- vs. nonself-discrimination to protect against infections and tumorous transformations while at the same time excluding autoimmunity. This vital capability is programmed in the thymus through selection of αβT-cell receptors (αβTCRs) recognizing peptides bound to MHC molecules (pMHC). Here, we show that the pre-TCR (preTCR), a pTα-β heterodimer appearing before αβTCR expression, directs a previously unappreciated initial phase of repertoire selection. Contrasting with the ligand-independent model of preTCR function, we reveal through NMR and bioforce-probe analyses that the β-subunit binds pMHC using Vβ complementarity-determining regions as well as an exposed hydrophobic Vβ patch characteristic of the preTCR. Force-regulated single bonds akin to those of αβTCRs but with more promiscuous ligand specificity trigger calcium flux. Thus, thymic development involves sequential β- and then, αβ-repertoire tuning, whereby preTCR interactions with self pMHC modulate early thymocyte expansion, with implications for β-selection, immunodominant peptide recognition, and germ line-encoded MHC interaction. PMID:26056289

  2. Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1.1 {alpha}/{beta} TCR-double positive cells in vitro

    SciTech Connect

    Nozaki, Hirofumi; Itonori, Saki; Sugita, Mutsumi; Nakamura, Kimihide; Ohba, Kiyoshi; Suzuki, Akemi; Kushi, Yasunori

    2008-08-29

    Interferon (IFN)-{gamma} and interleukin (IL)-4 regulate many types of immune responses. Here we report that acidic glycosphingolipids (AGLs) of Hypsizigus marmoreus and Pleurotus eryngii induced secretion of IFN- {gamma} and IL-4 from T cells in a CD11c-positive cell-dependent manner similar to that of {alpha}-galactosylceramide ({alpha}-GalCer) and isoglobotriaosylceramide (iGb3), although activated T cells by AGLs showed less secretion of cytokine than those activated by {alpha}-GalCer. In addition, stimulation of these mushroom AGLs induced proliferation of NK1.1 {alpha}/{beta} TCR-double positive cells in splenocytes. Administration of a mixture of {alpha}-GalCer and AGLs affected the stimulation of {alpha}-GalCer and generally induced a subtle Th1 bias for splenocytes but induced an extreme Th2 bias for thymocytes. These results suggested that edible mushroom AGLs contribute to immunomodulation.

  3. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation

    PubMed Central

    Lillemeier, Björn F; Mörtelmaier, Manuel A; Forstner, Martin B; Huppa, Johannes B; Groves, Jay T; Davis, Mark M

    2010-01-01

    The organization and dynamics of receptors and other molecules in the plasma membrane are not well understood. Here we analyzed the spatio-temporal dynamics of T cell antigen receptor (TCR) complexes and linker for activation of T cells (Lat), a key adaptor molecule in the TCR signaling pathway, in T cell membranes using high-speed photoactivated localization microscopy, dual-color fluorescence cross-correlation spectroscopy and transmission electron microscopy. In quiescent T cells, both molecules existed in separate membrane domains (protein islands), and these domains concatenated after T cell activation. These concatemers were identical to signaling microclusters, a prominent hallmark of T cell activation. This separation versus physical juxtapositioning of receptor domains and domains containing downstream signaling molecules in quiescent versus activated T cells may be a general feature of plasma membrane–associated signal transduction. PMID:20010844

  4. Identification of shared TCR sequences from T cells in human breast cancer using emulsion RT-PCR

    PubMed Central

    Munson, Daniel J.; Egelston, Colt A.; Chiotti, Kami E.; Parra, Zuly E.; Bruno, Tullia C.; Moore, Brandon L.; Nakano, Taizo A.; Simons, Diana L.; Jimenez, Grecia; Yim, John H.; Rozanov, Dmitri V.; Falta, Michael T.; Fontenot, Andrew P.; Reynolds, Paul R.; Leach, Sonia M.; Borges, Virginia F.; Kappler, John W.; Spellman, Paul T.; Slansky, Jill E.

    2016-01-01

    Infiltration of T cells in breast tumors correlates with improved survival of patients with breast cancer, despite relatively few mutations in these tumors. To determine if T-cell specificity can be harnessed to augment immunotherapies of breast cancer, we sought to identify the alpha–beta paired T-cell receptors (TCRs) of tumor-infiltrating lymphocytes shared between multiple patients. Because TCRs function as heterodimeric proteins, we used an emulsion-based RT-PCR assay to link and amplify TCR pairs. Using this assay on engineered T-cell hybridomas, we observed ∼85% accurate pairing fidelity, although TCR recovery frequency varied. When we applied this technique to patient samples, we found that for any given TCR pair, the dominant alpha- or beta-binding partner comprised ∼90% of the total binding partners. Analysis of TCR sequences from primary tumors showed about fourfold more overlap in tumor-involved relative to tumor-free sentinel lymph nodes. Additionally, comparison of sequences from both tumors of a patient with bilateral breast cancer showed 10% overlap. Finally, we identified a panel of unique TCRs shared between patients’ tumors and peripheral blood that were not found in the peripheral blood of controls. These TCRs encoded a range of V, J, and complementarity determining region 3 (CDR3) sequences on the alpha-chain, and displayed restricted V-beta use. The nucleotides encoding these shared TCR CDR3s varied, suggesting immune selection of this response. Harnessing these T cells may provide practical strategies to improve the shared antigen-specific response to breast cancer. PMID:27307436

  5. Identification of shared TCR sequences from T cells in human breast cancer using emulsion RT-PCR.

    PubMed

    Munson, Daniel J; Egelston, Colt A; Chiotti, Kami E; Parra, Zuly E; Bruno, Tullia C; Moore, Brandon L; Nakano, Taizo A; Simons, Diana L; Jimenez, Grecia; Yim, John H; Rozanov, Dmitri V; Falta, Michael T; Fontenot, Andrew P; Reynolds, Paul R; Leach, Sonia M; Borges, Virginia F; Kappler, John W; Spellman, Paul T; Lee, Peter P; Slansky, Jill E

    2016-07-19

    Infiltration of T cells in breast tumors correlates with improved survival of patients with breast cancer, despite relatively few mutations in these tumors. To determine if T-cell specificity can be harnessed to augment immunotherapies of breast cancer, we sought to identify the alpha-beta paired T-cell receptors (TCRs) of tumor-infiltrating lymphocytes shared between multiple patients. Because TCRs function as heterodimeric proteins, we used an emulsion-based RT-PCR assay to link and amplify TCR pairs. Using this assay on engineered T-cell hybridomas, we observed ∼85% accurate pairing fidelity, although TCR recovery frequency varied. When we applied this technique to patient samples, we found that for any given TCR pair, the dominant alpha- or beta-binding partner comprised ∼90% of the total binding partners. Analysis of TCR sequences from primary tumors showed about fourfold more overlap in tumor-involved relative to tumor-free sentinel lymph nodes. Additionally, comparison of sequences from both tumors of a patient with bilateral breast cancer showed 10% overlap. Finally, we identified a panel of unique TCRs shared between patients' tumors and peripheral blood that were not found in the peripheral blood of controls. These TCRs encoded a range of V, J, and complementarity determining region 3 (CDR3) sequences on the alpha-chain, and displayed restricted V-beta use. The nucleotides encoding these shared TCR CDR3s varied, suggesting immune selection of this response. Harnessing these T cells may provide practical strategies to improve the shared antigen-specific response to breast cancer. PMID:27307436

  6. Naive CD8+ T-cell precursors display structured TCR repertoires and composite antigen-driven selection dynamics

    PubMed Central

    Neller, Michelle A; Ladell, Kristin; McLaren, James E; Matthews, Katherine K; Gostick, Emma; Pentier, Johanne M; Dolton, Garry; Schauenburg, Andrea JA; Koning, Dan; Fontaine Costa, Ana Isabel CA; Watkins, Thomas S; Venturi, Vanessa; Smith, Corey; Khanna, Rajiv; Miners, Kelly; Clement, Mathew; Wooldridge, Linda; Cole, David K; van Baarle, Debbie; Sewell, Andrew K; Burrows, Scott R; Price, David A; Miles, John J

    2015-01-01

    Basic parameters of the naive antigen (Ag)-specific T-cell repertoire in humans remain poorly defined. Systematic characterization of this ‘ground state' immunity in comparison with memory will allow a better understanding of clonal selection during immune challenge. Here, we used high-definition cell isolation from umbilical cord blood samples to establish the baseline frequency, phenotype and T-cell antigen receptor (TCR) repertoire of CD8+ T-cell precursor populations specific for a range of viral and self-derived Ags. Across the board, these precursor populations were phenotypically naive and occurred with hierarchical frequencies clustered by Ag specificity. The corresponding patterns of TCR architecture were highly ordered and displayed partial overlap with adult memory, indicating biased structuring of the T-cell repertoire during Ag-driven selection. Collectively, these results provide new insights into the complex nature and dynamics of the naive T-cell compartment. PMID:25801351

  7. Activation of human naïve Th cells increases surface expression of GD3 and induces neoexpression of GD2 that colocalize with TCR clusters.

    PubMed

    Villanueva-Cabello, Tania M; Mollicone, Rosella; Cruz-Muñoz, Mario E; López-Guerrero, Delia V; Martínez-Duncker, Iván

    2015-12-01

    CD4+ T helper lymphocytes (Th) orchestrate the immune response after their activation by antigen-presenting cells. Activation of naïve Th cells is reported to generate the reduction in surface epitopes of sialic acid (Sia) in α2,3 and α2,6 linkages. In this work, we report that in spite of this glycophenotype, anti-CD3/anti-CD28-activated purified human naïve Th cells show a significant increase in surface Sia, as assessed by metabolic labeling, compared with resting naïve Th cells, suggesting an increased flux of Sia toward Siaα2,8 glycoconjugates. To understand this increase as a result of ganglioside up-regulation, we observed that very early after activation, human naïve Th cells show an increased expression in surface GD3 and neoexpression of surface GD2 gangliosides, the latter clustering with the T cell receptor (TCR). Also, we report that in contrast to GM2/GD2 synthase null mice, lentiviral vector-mediated silencing of the GM2/GD2 synthase in activated human naïve Th cells reduced efficient TCR clustering and downstream signaling, as assessed by proliferation assays and IL-2 and IL-2R expression, pointing to an important role of this enzyme in activation of human naive Th cells. PMID:26263924

  8. An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells

    PubMed Central

    Knies, Diana; Klobuch, Sebastian; Xue, Shao-An; Birtel, Matthias; Echchannaoui, Hakim; Yildiz, Oezlem; Omokoko, Tana; Guillaume, Philippe; Romero, Pedro; Stauss, Hans; Sahin, Ugur; Herr, Wolfgang; Theobald, Matthias; Thomas, Simone; Voss, Ralf-Holger

    2016-01-01

    Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells. PMID:27028870

  9. Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells.

    PubMed

    Pryshchep, Sergey; Zarnitsyna, Veronika I; Hong, Jinsung; Evavold, Brian D; Zhu, Cheng

    2014-07-01

    T cell activation by Ag is one of the key events in adaptive immunity. It is triggered by interactions of the TCR and coreceptor (CD8 or CD4) with antigenic peptides embedded in MHC (pMHC) molecules expressed on APCs. The mechanism of how signal is initiated remains unclear. In this article, we complement our two-dimensional kinetic analysis of TCR-pMHC-CD8 interaction with concurrent calcium imaging to examine how ligand engagement of TCR with and without the coengagement of CD8 initiates signaling. We found that accumulation of frequently applied forces on the TCR via agonist pMHC triggered calcium, which was further enhanced by CD8 cooperative binding. Prolonging the intermission between sequential force applications impaired calcium signals. Our data support a model where rapid accumulation of serial forces on TCR-pMHC-CD8 bonds triggers calcium in T cells. PMID:24890718

  10. Chimeric antigen receptor (CAR) and T cell receptor (TCR) Modified T cells Enter Main Street and Wall Street

    PubMed Central

    Barrett, David M; Grupp, Stephan A; June, Carl H

    2015-01-01

    The field of adoptive cell transfer (ACT) is currently comprised of CAR and TCR engineered T cells and has emerged from principles of basic immunology to paradigm-shifting clinical immunotherapy. ACT of T cells engineered to express artificial receptors that target cells of choice is an exciting new approach for cancer, and holds equal promise for chronic infection and autoimmunity. Using principles of synthetic biology, advances in immunology and genetic engineering have made it possible to generate human T-cells that display desired specificities and enhanced functionalities. Clinical trials in patients with advanced B cell leukemias and lymphomas treated with CD19-specific CAR T cells have induced durable remissions in adults and children. The prospects for the widespread availability of engineered T cells have changed dramatically given the recent entry of the pharmaceutical industry to this arena. Here, we discuss some of the challenges and opportunities that face the field of ACT. PMID:26188068

  11. TCR contact residue hydrophobicity is a hallmark of immunogenic CD8+ T cell epitopes.

    PubMed

    Chowell, Diego; Krishna, Sri; Becker, Pablo D; Cocita, Clément; Shu, Jack; Tan, Xuefang; Greenberg, Philip D; Klavinskis, Linda S; Blattman, Joseph N; Anderson, Karen S

    2015-04-01

    Despite the availability of major histocompatibility complex (MHC)-binding peptide prediction algorithms, the development of T-cell vaccines against pathogen and tumor antigens remains challenged by inefficient identification of immunogenic epitopes. CD8(+) T cells must distinguish immunogenic epitopes from nonimmunogenic self peptides to respond effectively against an antigen without endangering the viability of the host. Because this discrimination is fundamental to our understanding of immune recognition and critical for rational vaccine design, we interrogated the biochemical properties of 9,888 MHC class I peptides. We identified a strong bias toward hydrophobic amino acids at T-cell receptor contact residues within immunogenic epitopes of MHC allomorphs, which permitted us to develop and train a hydrophobicity-based artificial neural network (ANN-Hydro) to predict immunogenic epitopes. The immunogenicity model was validated in a blinded in vivo overlapping epitope discovery study of 364 peptides from three HIV-1 Gag protein variants. Applying the ANN-Hydro model on existing peptide-MHC algorithms consistently reduced the number of candidate peptides across multiple antigens and may provide a correlate with immunodominance. Hydrophobicity of TCR contact residues is a hallmark of immunogenic epitopes and marks a step toward eliminating the need for empirical epitope testing for vaccine development. PMID:25831525

  12. Membrane-Mediated Regulation of the Intrinsically Disordered CD3ϵ Cytoplasmic Tail of the TCR

    PubMed Central

    López, Cesar A.; Sethi, Anurag; Goldstein, Byron; Wilson, Bridget S.; Gnanakaran, S.

    2015-01-01

    The regulation of T-cell-mediated immune responses depends on the phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) on T-cell receptors. Although many details of the signaling cascades are well understood, the initial mechanism and regulation of ITAM phosphorylation remains unknown. We used molecular dynamics simulations to study the influence of different compositions of lipid bilayers on the membrane association of the CD3ϵ cytoplasmic tails of the T-cell receptors. Our results show that binding of CD3ϵ to membranes is modulated by both the presence of negatively charged lipids and the lipid order of the membrane. Free-energy calculations reveal that the protein-membrane interaction is favored by the presence of nearby basic residues and the ITAM tyrosines. Phosphorylation minimizes membrane association, rendering the ITAM motif more accessible to binding partners. In systems mimicking biological membranes, the CD3ϵ chain localization is modulated by different facilitator lipids (e.g., gangliosides or phosphoinositols), revealing a plausible regulatory effect on activation through the regulation of lipid composition in cell membranes. PMID:25992726

  13. Development of Human Anti-Murine T-cell Receptor Antibodies in Both Responding and Non-responding Patients Enrolled in TCR Gene Therapy Trials

    PubMed Central

    Davis, Jeremy L.; Theoret, Marc R.; Zheng, Zhili; Lamers, Cor; Rosenberg, Steven A.; Morgan, Richard A.

    2010-01-01

    Purpose Immune responses to gene-modified cells are a concern in the field of human gene therapy as they may impede effective treatment. We conducted two clinical trials in which cancer patients were treated with lymphocytes genetically engineered to express murine T cell receptors (mTCR) specific for tumor-associated antigens p53 and gp100. Experimental Design Twenty-six patients treated with autologous lymphocytes expressing mTCR had blood and serum samples available for analysis. Patient sera were assayed for development of a humoral immune response. Adoptive cell transfer characteristics were analyzed to identify correlates to immune response. Results Six of 26 (23%) patients post-treatment sera exhibited specific binding of human anti-mTCR antibodies to lymphocytes transduced with the mTCR. Antibody development was found in both responding and non-responding patients. Three of these six patients post-treatment sera mediated a 60 – 99% inhibition of mTCR activity as measured by a reduction in antigen-specific IFN-γ release. Detailed analysis of post-treatment serum revealed that antibody binding was beta chain specific in one patient whereas it was alpha chain specific in another. Conclusions A subset of patients treated with mTCR engineered T-cells developed antibodies directed to the mTCR variable regions and not to the constant region domains common to all mTCR. Overall, the development of a host immune response was not associated with the level of transduced cell persistence or response to therapy. In summary, patients treated with mTCR can develop an immune response to gene-modified cells in a minority of cases, but this may not affect clinical outcome. PMID:21138872

  14. Regulatory and T Effector Cells Have Overlapping Low to High Ranges in TCR Affinities for Self during Demyelinating Disease.

    PubMed

    Hood, Jennifer D; Zarnitsyna, Veronika I; Zhu, Cheng; Evavold, Brian D

    2015-11-01

    Having regulatory T cells (Tregs) with the same Ag specificity as the responding conventional T cells is thought to be important in maintaining peripheral tolerance. It has been demonstrated that during experimental autoimmune encephalomyelitis there are myelin oligodendrocyte glycoprotein (MOG)--specific Tregs that infiltrate into the CNS. However, the affinity of naturally occurring polyclonal Tregs for any self-antigen, let alone MOG, has not been analyzed in the periphery or at the site of autoimmune disease. Utilizing the highly sensitive micropipette adhesion frequency assay, which allows one to determine on a single-cell basis the affinity and frequency of polyclonal Ag-specific T cells directly ex vivo, we demonstrate that at peak disease MOG-specific Tregs were progressively enriched in the draining cervical lymph nodes and CNS as compared with spleen. These frequencies were greater than the frequencies measured by tetramer analysis, indicative of the large fraction of lower affinity T cells that comprise the MOG-specific conventional T cell (Tconv) and Treg response. Of interest, the self-reactive CD4(+) Tconvs and Tregs displayed overlapping affinities for MOG in the periphery, yet in the CNS, the site of neuroinflammation, Tconvs skew toward higher affinities. Most of the MOG-specific Tregs in the CNS possessed the methylation signature associated with thymic-derived Tregs. These findings indicate that thymic-derived Treg affinity range matches that of their Tconvs in the periphery and suggest a change in TCR affinity as a potential mechanism for autoimmune progression and escape from immune regulation. PMID:26385521

  15. Generation of TCR-engineered T cells and their use to control the performance of T cell assays.

    PubMed

    Bidmon, Nicole; Attig, Sebastian; Rae, Richard; Schröder, Helene; Omokoko, Tana A; Simon, Petra; Kuhn, Andreas N; Kreiter, Sebastian; Sahin, Ugur; Gouttefangeas, Cécile; van der Burg, Sjoerd H; Britten, Cedrik M

    2015-06-15

    The systematic assessment of the human immune system bears huge potential to guide rational development of novel immunotherapies and clinical decision making. Multiple assays to monitor the quantity, phenotype, and function of Ag-specific T cells are commonly used to unravel patients' immune signatures in various disease settings and during therapeutic interventions. When compared with tests measuring soluble analytes, cellular immune assays have a higher variation, which is a major technical factor limiting their broad adoption in clinical immunology. The key solution may arise from continuous control of assay performance using TCR-engineered reference samples. We developed a simple, stable, robust, and scalable technology to generate reference samples that contain defined numbers of functional Ag-specific T cells. First, we show that RNA-engineered lymphocytes, equipped with selected TCRs, can repetitively deliver functional readouts of a controlled size across multiple assay platforms. We further describe a concept for the application of TCR-engineered reference samples to keep assay performance within or across institutions under tight control. Finally, we provide evidence that these novel control reagents can sensitively detect assay variation resulting from typical sources of error, such as low cell quality, loss of reagent stability, suboptimal hardware settings, or inaccurate gating. PMID:25957167

  16. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement

    PubMed Central

    Filipp, Dominik; Ballek, Ondrej; Manning, Jasper

    2012-01-01

    In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering. PMID:22701458

  17. Nck Binds to the T Cell Antigen Receptor Using Its SH3.1 and SH2 Domains in a Cooperative Manner, Promoting TCR Functioning.

    PubMed

    Paensuwan, Pussadee; Hartl, Frederike A; Yousefi, O Sascha; Ngoenkam, Jatuporn; Wipa, Piyamaporn; Beck-Garcia, Esmeralda; Dopfer, Elaine P; Khamsri, Boonruang; Sanguansermsri, Donruedee; Minguet, Susana; Schamel, Wolfgang W; Pongcharoen, Sutatip

    2016-01-01

    Ligand binding to the TCR causes a conformational change at the CD3 subunits to expose the CD3ε cytoplasmic proline-rich sequence (PRS). It was suggested that the PRS is important for TCR signaling and T cell activation. It has been shown that the purified, recombinant SH3.1 domain of the adaptor molecule noncatalytic region of tyrosine kinase (Nck) can bind to the exposed PRS of CD3ε, but the molecular mechanism of how full-length Nck binds to the TCR in cells has not been investigated so far. Using the in situ proximity ligation assay and copurifications, we show that the binding of Nck to the TCR requires partial phosphorylation of CD3ε, as it is based on two cooperating interactions. First, the SH3.1(Nck) domain has to bind to the nonphosphorylated and exposed PRS, that is, the first ITAM tyrosine has to be in the unphosphorylated state. Second, the SH2(Nck) domain has to bind to the second ITAM tyrosine in the phosphorylated state. Likewise, mutations of the SH3.1 and SH2 domains in Nck1 resulted in the loss of Nck1 binding to the TCR. Furthermore, expression of an SH3.1-mutated Nck impaired TCR signaling and T cell activation. Our data suggest that the exact pattern of CD3ε phosphorylation is critical for TCR functioning. PMID:26590318

  18. A Molecular Switch Abrogates Glycoprotein 100 (gp100) T-cell Receptor (TCR) Targeting of a Human Melanoma Antigen*

    PubMed Central

    Bianchi, Valentina; Bulek, Anna; Fuller, Anna; Lloyd, Angharad; Attaf, Meriem; Rizkallah, Pierre J.; Dolton, Garry; Sewell, Andrew K.; Cole, David K.

    2016-01-01

    Human CD8+ cytotoxic T lymphocytes can mediate tumor regression in melanoma through the specific recognition of HLA-restricted peptides. Because of the relatively weak affinity of most anti-cancer T-cell receptors (TCRs), there is growing emphasis on immunizing melanoma patients with altered peptide ligands in order to induce strong anti-tumor immunity capable of breaking tolerance toward these self-antigens. However, previous studies have shown that these immunogenic designer peptides are not always effective. The melanocyte differentiation protein, glycoprotein 100 (gp100), encodes a naturally processed epitope that is an attractive target for melanoma immunotherapies, in particular peptide-based vaccines. Previous studies have shown that substitutions at peptide residue Glu3 have a broad negative impact on polyclonal T-cell responses. Here, we describe the first atomic structure of a natural cognate TCR in complex with this gp100 epitope and highlight the relatively high affinity of the interaction. Alanine scan mutagenesis performed across the gp100280–288 peptide showed that Glu3 was critically important for TCR binding. Unexpectedly, structural analysis demonstrated that the Glu3 → Ala substitution resulted in a molecular switch that was transmitted to adjacent residues, abrogating TCR binding and T-cell recognition. These findings help to clarify the mechanism of T-cell recognition of gp100 during melanoma responses and could direct the development of altered peptides for vaccination. PMID:26917722

  19. The Protein Phosphatase 2A Regulatory Subunit B56γ Mediates Suppression of T Cell Receptor (TCR)-induced Nuclear Factor-κB (NF-κB) Activity*

    PubMed Central

    Breuer, Rebecca; Becker, Michael S.; Brechmann, Markus; Mock, Thomas; Arnold, Rüdiger; Krammer, Peter H.

    2014-01-01

    NF-κB is an important transcription factor in the immune system, and aberrant NF-κB activity contributes to malignant diseases and autoimmunity. In T cells, NF-κB is activated upon TCR stimulation, and signal transduction to NF-κB activation is triggered by a cascade of phosphorylation events. However, fine-tuning and termination of TCR signaling are only partially understood. Phosphatases oppose the role of kinases by removing phosphate moieties. The catalytic activity of the protein phosphatase PP2A has been implicated in the regulation of NF-κB. PP2A acts in trimeric complexes in which the catalytic subunit is promiscuous and the regulatory subunit confers substrate specificity. To understand and eventually target NF-κB-specific PP2A functions it is essential to define the regulatory PP2A subunit involved. So far, the regulatory PP2A subunit that mediates NF-κB suppression in T cells remained undefined. By performing a siRNA screen in Jurkat T cells harboring a NF-κB-responsive luciferase reporter, we identified the PP2A regulatory subunit B56γ as negative regulator of NF-κB in TCR signaling. B56γ was strongly up-regulated upon primary human T cell activation, and B56γ silencing induced increased IκB kinase (IKK) and IκBα phosphorylation upon TCR stimulation. B56γ silencing enhanced NF-κB activity, resulting in increased NF-κB target gene expression including the T cell cytokine IL-2. In addition, T cell proliferation was increased upon B56γ silencing. These data help to understand the physiology of PP2A function in T cells and the pathophysiology of diseases involving PP2A and NF-κB. PMID:24719332

  20. The feature of distribution and clonality of TCR γ/δ subfamilies T cells in patients with B-cell non-Hodgkin lymphoma.

    PubMed

    Wang, Liang; Xu, Meng; Wang, Chunyan; Zhu, Lihua; Hu, Junyan; Chen, Shaohua; Wu, Xiuli; Li, Bo; Li, Yangqiu

    2014-01-01

    Restricted T-cell receptor (TCR) Vα/Vβ repertoire expression and clonal expansion of αβ T cells especially for putative tumor-associated antigens were observed in patients with hematological malignancies. To further characterize the γδ T-cell immune status in B-cell non-Hodgkin lymphoma (B-NHL), we investigated the distribution and clonality of TCR Vγ/Vδ repertoire in peripheral blood (PB), bone marrow (BM), and lymph node (LN) from patients with B-NHL. Four newly diagnosed B-NHL cases, including three with diffuse large B-cell lymphoma (DLBCL) and one with small lymphocytic lymphoma (SLL), were enrolled. The restrictive expression of TCR Vγ/Vδ subfamilies with different distribution patterns could be detected in PB, BM, or LN from all of four patients, and partial subfamily T cells showed clonal proliferation. At least one clonally expanded Vδ subfamily member was found in PB from each patient. However, the expression pattern and clonality of TCR Vγ/Vδ changed in different immune organs and showed individual feature in different patients. The clonally expanded Vδ5, Vδ6, and Vδ8 were detected only in PB but neither in BM nor LN while clonally expanded Vδ2 and Vδ3 could be detected in both PB and BM/LN. In conclusion, the results provide a preliminary profile of distribution and clonality of TCR γ/δ subfamilies T cells in PB, BM, and LN from B-NHL; similar clonally expanded Vδ subfamily T cells in PB and BM may be related to the same B-cell lymphoma-associated antigens, while the different reactive clonally expanded Vγ/Vδ T cells may be due to local immune response. PMID:24963496

  1. Oxypurinol-Specific T Cells Possess Preferential TCR Clonotypes and Express Granulysin in Allopurinol-Induced Severe Cutaneous Adverse Reactions.

    PubMed

    Chung, Wen-Hung; Pan, Ren-You; Chu, Mu-Tzu; Chin, See-Wen; Huang, Yu-Lin; Wang, Wei-Chi; Chang, Jen-Yun; Hung, Shuen-Iu

    2015-09-01

    Allopurinol, a first-line drug for treating gout and hyperuricemia, is one of the leading causes of severe cutaneous adverse reactions (SCARs). To investigate the molecular mechanism of allopurinol-induced SCAR, we enrolled 21 patients (13 Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and 8 drug reaction with eosinophilia and systemic symptoms (DRESS)), 11 tolerant controls, and 23 healthy donors. We performed in vitro T-cell activation assays by culturing peripheral blood mononuclear cells (PBMCs) with allopurinol, oxypurinol, or febuxostat and measuring the expression of granulysin and IFN-γ in the supernatants of cultures. TCR repertoire was investigated by next-generation sequencing. Oxypurinol stimulation resulted in a significant increase in granulysin in the cultures of blood samples from SCAR patients (n=14) but not tolerant controls (n=11) or healthy donors (n=23). Oxypurinol induced T-cell response in a concentration- and time-dependent manner, whereas allopurinol or febuxostat did not. T cells from patients with allopurinol-SCAR showed no crossreactivity with febuxostat. Preferential TCR-V-β usage and clonal expansion of specific CDR3 (third complementarity-determining region) were found in the blister cells from skin lesions (n=8) and oxypurinol-activated T-cell cultures (n=4) from patients with allopurinol-SCAR. These data suggest that, in addition to HLA-B*58:01, clonotype-specific T cells expressing granulysin upon oxypurinol induction participate in the pathogenesis of allopurinol-induced SCAR. PMID:25946710

  2. Generation of the First TCR Transgenic Mouse with CD4(+) T Cells Recognizing an Anti-inflammatory Regulatory T Cell-Inducing Hsp70 Peptide.

    PubMed

    Jansen, Manon A A; van Herwijnen, Martijn J C; van Kooten, Peter J S; Hoek, Aad; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2016-01-01

    Antigen-specific regulatory T cells (Tregs) directed at self-antigens are difficult to study since suitable specific tools to isolate and characterize these cells are lacking. A T cell receptor (TCR)-transgenic mouse would generate possibilities to study such -antigen-specific T cells. As was shown previously, immunization with the mycobacterial heat shock protein (Hsp) 70-derived peptide B29 and its mouse homologs mB29a and mB29b induced anti-inflammatory responses. Furthermore, B29 induced antigen--specific Tregs in vivo. To study mB29b-specific Tregs, we isolated the TCR from T cell hybridomas generated against mB29b and produced a TCR transgenic mouse that expresses a MHC-class II restricted mB29b-specific TCR. These TCR transgenic CD4(+) T cells were found to cross-react with the B29 epitope as identified with peptide-induced proliferation and IL-2 production. Thus, we have successfully generated a novel mouse model with antigen-specific CD4(+) T cells that recognize self and bacterial Hsp 70-derived peptides. With this novel mouse model, it will be possible to study primary antigen-specific T cells with specificity for a regulatory Hsp70 T cell epitope. This will enable the isolation and characterization CD4(+)CD25(+) Tregs with a proven specificity. This will provide useful knowledge of the induction, activation, and mode of action of Hsp70-specific Tregs, for instance, during experimental arthritis. PMID:27014269

  3. Generation of the First TCR Transgenic Mouse with CD4+ T Cells Recognizing an Anti-inflammatory Regulatory T Cell-Inducing Hsp70 Peptide

    PubMed Central

    Jansen, Manon A. A.; van Herwijnen, Martijn J. C.; van Kooten, Peter J. S.; Hoek, Aad; van der Zee, Ruurd; van Eden, Willem; Broere, Femke

    2016-01-01

    Antigen-specific regulatory T cells (Tregs) directed at self-antigens are difficult to study since suitable specific tools to isolate and characterize these cells are lacking. A T cell receptor (TCR)-transgenic mouse would generate possibilities to study such ­antigen-specific T cells. As was shown previously, immunization with the mycobacterial heat shock protein (Hsp) 70-derived peptide B29 and its mouse homologs mB29a and mB29b induced anti-inflammatory responses. Furthermore, B29 induced antigen-­specific Tregs in vivo. To study mB29b-specific Tregs, we isolated the TCR from T cell hybridomas generated against mB29b and produced a TCR transgenic mouse that expresses a MHC-class II restricted mB29b-specific TCR. These TCR transgenic CD4+ T cells were found to cross-react with the B29 epitope as identified with peptide-induced proliferation and IL-2 production. Thus, we have successfully generated a novel mouse model with antigen-specific CD4+ T cells that recognize self and bacterial Hsp 70-derived peptides. With this novel mouse model, it will be possible to study primary antigen-specific T cells with specificity for a regulatory Hsp70 T cell epitope. This will enable the isolation and characterization CD4+CD25+ Tregs with a proven specificity. This will provide useful knowledge of the induction, activation, and mode of action of Hsp70-specific Tregs, for instance, during experimental arthritis. PMID:27014269

  4. Evidence for susceptibility of intrathymic T-cell precursors and their progeny carrying T-cell antigen receptor phenotypes TCR alpha beta + and TCR gamma delta + to human immunodeficiency virus infection: a mechanism for CD4+ (T4) lymphocyte depletion.

    PubMed Central

    Schnittman, S M; Denning, S M; Greenhouse, J J; Justement, J S; Baseler, M; Kurtzberg, J; Haynes, B F; Fauci, A S

    1990-01-01

    Individuals infected by the human immunodeficiency virus type 1 (HIV-1) demonstrate progressive depletion and qualitative dysfunction of the helper T4 (CD4+) cell population. Mechanisms proposed for attrition of CD4+ T cells include direct cytopathicity of these mature cells following infection as well as infection of early T-lymphocyte progenitors. The latter mechanism could lead to failure to regenerate mature functioning CD4+ T cells. The present study determines the susceptibility of thymocytes at various stages of maturity to infection with HIV-1. Various normal thymocyte populations were inoculated with HIV-1, including unfractionated (UF), CD3- CD4- CD8- ["triple negative" (TN)], CD4+ CD8+ ["double positive" (DP)] thymocytes, and thymocyte populations obtained by limited dilution cloning. Cultures were studied for the presence of HIV-1 DNA by polymerase chain reaction in addition to examination for reverse transcriptase activity. We determined that transformed T-cell and thymocyte cell lines completely lacking CD4 were not susceptible to infection by HIV-1, whereas all of the following lines were: UF thymocytes (70-90% CD4hi+); DP thymocytes (99% CD4hi+); TN thymocytes (0% CD4hi+); and TCR alpha beta +, TCR gamma delta +, or CD16+ CD3- (natural killer) thymocyte clones expressing variable levels of CD4 and representing the progeny of TN thymocytes. [TCR alpha beta + and TCR gamma delta + refer to the chains of the T-cell antigen receptor (TCR), and CD4hi refers to a strong rightward shift (greater than 30 linear channels) of the CD4 curve on flow cytometric analysis compared with control.] Monoclonal antibodies (mAbs) to CD4 (T4a epitope) but not to CD3 (T3) were capable of blocking infection of mature and immature CD4hi+ thymocytes. Moreover, anti-CD4(T4a) mAbs also inhibited infection of CD4hi- TN thymocytes, indicating that these T-cell precursors--despite their apparent "triple negativity" (CD3- CD4hi- CD8-)--expressed sufficient CD4 molecules to become

  5. Combined megaplex TCR isolation and SMART-based real-time quantitation methods for quantitating antigen-specific T cell clones in mycobacterial infection

    PubMed Central

    Du, George; Qiu, Liyou; Shen, Ling; Sehgal, Probhat; Shen, Yun; Huang, Dan; Letvin, Norman L.; Chen, Zheng W.

    2010-01-01

    Despite recent advances in measuring cellular immune responses, the quantitation of antigen-specific T cell clones in infections or diseases remains challenging. Here, we employed combined megaplex TCR isolation and SMART-based real-time quantitation methods to quantitate numerous antigen-specific T cell clones using limited amounts of specimens. The megaplex TCR isolation covered the repertoire comprised of recombinants from 24 Vβ families and 13 Jβ segments, and allowed us to isolate TCR VDJ clonotypic sequences from one or many PPD-specific IFNγ-producing T cells that were purified by flow cytometry sorting. The SMART amplification technique was then validated for its capacity to proportionally enrich cellular TCR mRNA/cDNA for real-time quantitation of large numbers of T cell clones. SMART amplified cDNA was shown to maintain relative expression levels of TCR genes when compared to unamplified cDNA. While the SMART-based real-time quantitative PCR conferred a detection limit of 10−5 to 10−6 antigen-specific T cells, the clonotypic primers specifically amplified and quantitated the target clone TCR but discriminated other clones that differed by ≥2 bases in the DJ regions. Furthermore, the combined megaplex TCR isolation and SMART-based real-time quantiation methods allowed us to quantitate large numbers of PPD-specific IFNγ-producing T cell clones using as few as 2×106 PBMC collected weekly after mycobacterial infection. This assay system may be useful for studies of antigen-specific T cell clones in tumors, autoimmune and infectious diseases. PMID:16403511

  6. The thymic cortical epithelium determines the TCR repertoire of IL-17-producing γδT cells

    PubMed Central

    Nitta, Takeshi; Muro, Ryunosuke; Shimizu, Yukiko; Nitta, Sachiko; Oda, Hiroyo; Ohte, Yuki; Goto, Motohito; Yanobu-Takanashi, Rieko; Narita, Tomoya; Takayanagi, Hiroshi; Yasuda, Hisataka; Okamura, Tadashi; Murata, Shigeo; Suzuki, Harumi

    2015-01-01

    The thymus provides a specialized microenvironment in which distinct subsets of thymic epithelial cells (TECs) support T-cell development. Here, we describe the significance of cortical TECs (cTECs) in T-cell development, using a newly established mouse model of cTEC deficiency. The deficiency of mature cTECs caused a massive loss of thymic cellularity and impaired the development of αβT cells and invariant natural killer T cells. Unexpectedly, the differentiation of certain γδT-cell subpopulations—interleukin-17-producing Vγ4 and Vγ6 cells—was strongly dysregulated, resulting in the perturbation of γδT-mediated inflammatory responses in peripheral tissues. These findings show that cTECs contribute to the shaping of the TCR repertoire, not only of “conventional” αβT cells but also of inflammatory “innate” γδT cells. PMID:25770130

  7. Human regulatory T cells control TCR signaling and susceptibility to suppression in CD4+ T cells.

    PubMed

    Chellappa, Stalin; Lieske, Nora V; Hagness, Morten; Line, Pål D; Taskén, Kjetil; Aandahl, Einar M

    2016-07-01

    Human CD4(+)CD25(hi)FOXP3(+) regulatory T cells maintain immunologic tolerance and prevent autoimmune and inflammatory immune responses. Regulatory T cells undergo a similar activation cycle as conventional CD4(+) T cells upon antigen stimulation. Here, we demonstrate that T cell receptors and costimulation are required to activate the regulatory T cell suppressive function. Regulatory T cells suppressed the T cell receptor signaling in effector T cells in a time-dependent manner that corresponded with inhibition of cytokine production and proliferation. Modulation of the activation level and thereby the suppressive capacity of regulatory T cells imposed distinct T cell receptor signaling signatures and hyporesponsiveness in suppressed and proliferating effector T cells and established a threshold for effector T cell proliferation. The immune suppression of effector T cells was completely reversible upon removal of regulatory T cells. However, the strength of prior immune suppression by regulatory T cells and corresponding T cell receptor signaling in effector T cells determined the susceptibility to suppression upon later reexposure to regulatory T cells. These findings demonstrate how the strength of the regulatory T cell suppressive function determines intracellular signaling, immune responsiveness, and the later susceptibility of effector T cells to immune suppression and contribute to unveiling the complex interactions between regulatory T cells and effector T cells. PMID:26715685

  8. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR

    PubMed Central

    Torikai, Hiroki; Reik, Andreas; Liu, Pei-Qi; Zhou, Yuanyue; Zhang, Ling; Maiti, Sourindra; Huls, Helen; Miller, Jeffrey C.; Kebriaei, Partow; Rabinovitch, Brian; Lee, Dean A.; Champlin, Richard E.; Bonini, Chiara; Naldini, Luigi; Rebar, Edward J.; Gregory, Philip D.; Holmes, Michael C.

    2012-01-01

    Clinical-grade T cells are genetically modified ex vivo to express a chimeric antigen receptor (CAR) to redirect specificity to a tumor associated antigen (TAA) thereby conferring antitumor activity in vivo. T cells expressing a CD19-specific CAR recognize B-cell malignancies in multiple recipients independent of major histocompatibility complex (MHC) because the specificity domains are cloned from the variable chains of a CD19 monoclonal antibody. We now report a major step toward eliminating the need to generate patient-specific T cells by generating universal allogeneic TAA-specific T cells from one donor that might be administered to multiple recipients. This was achieved by genetically editing CD19-specific CAR+ T cells to eliminate expression of the endogenous αβ T-cell receptor (TCR) to prevent a graft-versus-host response without compromising CAR-dependent effector functions. Genetically modified T cells were generated using the Sleeping Beauty system to stably introduce the CD19-specific CAR with subsequent permanent deletion of α or β TCR chains with designer zinc finger nucleases. We show that these engineered T cells display the expected property of having redirected specificity for CD19 without responding to TCR stimulation. CAR+TCRneg T cells of this type may potentially have efficacy as an off-the-shelf therapy for investigational treatment of B-lineage malignancies. PMID:22535661

  9. New Insights into How Trafficking Regulates T Cell Receptor Signaling

    PubMed Central

    Lou, Jieqiong; Rossy, Jérémie; Deng, Qiji; Pageon, Sophie V.; Gaus, Katharina

    2016-01-01

    There is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR) signaling. The trafficking molecules involved in lytic granule (LG) secretion in cytotoxic T lymphocytes (CTL) have been well-studied due to the immune disorder known as familial hemophagocytic lymphohistiocytosis (FHLH). However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions. PMID:27508206

  10. TCR sequences and tissue distribution discriminate the subsets of naïve and activated/memory Treg cells in mice.

    PubMed

    Bergot, Anne-Sophie; Chaara, Wahiba; Ruggiero, Eliana; Mariotti-Ferrandiz, Encarnita; Dulauroy, Sophie; Schmidt, Manfred; von Kalle, Christof; Six, Adrien; Klatzmann, David

    2015-05-01

    Analyses of the regulatory T (Treg) cell TCR repertoire should help elucidate the nature and diversity of their cognate antigens and thus how Treg cells protect us from autoimmune diseases. We earlier identified CD44(hi) CD62L(low) activated/memory (am) Treg cells as a Treg-cell subset with a high turnover and possible self-specificity. We now report that amTreg cells are predominantly distributed in lymph nodes (LNs) draining deep tissues. Multivariate analyses of CDR3 spectratyping first revealed that amTreg TCR repertoire is different from that of naïve Treg cells (nTreg cells) and effector T (Teff) cells. Furthermore, in deep- versus superficial LNs, TCR-β deep sequencing further revealed diversified nTreg-cell and amTreg-cell repertoires, although twofold less diverse than that of Teff cells, and with repertoire richness significantly lower in deep-LN versus superficial-LN Treg cells. Importantly, expanded clonotypes were mostly detected in deep-LN amTreg cells, some accounting for 20% of the repertoire. Strikingly, these clonotypes were absent from nTreg cells, but found at low frequency in Teff cells. Our results, obtained in nonmanipulated mice, indicate different antigenic targets for naïve and amTreg cells and that amTreg cells are self-specific. The data we present are consistent with an instructive component in Treg-cell differentiation. PMID:25726757

  11. In vivo 6-thioguanine-resistant T cells from melanoma patients have public TCR and share TCR beta amino acid sequences with melanoma-reactive T cells

    PubMed Central

    Zuleger, Cindy L.; Macklin, Michael D.; Bostwick, Bret L.; Pei, Qinglin; Newton, Michael A.; Albertini, Mark R.

    2011-01-01

    In vivo hypoxanthine-guanine phosphoribosyltransferase (HPRT)-deficient T cells (MT) from melanoma patients are enriched for T cells with in vivo clonal amplifications that traffic between blood and tumor tissues. Melanoma is thus a model cancer to test the hypothesis that in vivo MT from cancer patients can be used as immunological probes for immunogenic tumor antigens. MT were obtained by 6-thioguanine (TG) selection of lymphocytes from peripheral blood and tumor tissues, and wild-type T cells (WT) were obtained analogously without TG selection. cDNA sequences of the T cell receptor beta chains (TRB) were used as unambiguous biomarkers of in vivo clonality and as indicators of T cell specificity. Public TRB were identified in MT from the blood and tumor of different melanoma patients. Such public TRB were not found in normal control MT or WT. As an indicator of T cell specificity for melanoma, the >2600 MT and WT TRB, including the public TRB from melanoma patients, were compared to a literature-derived empirical database of >1270 TRB from melanoma-reactive T cells. Various degrees of similarity, ranging from 100% conservation to 3-amino acid motifs (3-mer), were found between both melanoma patient MT and WT TRBs and the empirical database. The frequency of 3-mer and 4-mer TRB matching to the empirical database was significantly higher in MT compared with WT in the tumor (p=0.0285 and p=0.006, respectively). In summary, in vivo MT from melanoma patients contain public TRB as well as T cells with specificity for characterized melanoma antigens. We conclude that in vivo MT merit study as novel probes for uncharacterized immunogenic antigens in melanoma and other malignancies. PMID:21182840

  12. Hepatitis C virus-cross-reactive TCR gene-modified T cells: a model for immunotherapy against diseases with genomic instability.

    PubMed

    Spear, Timothy T; Riley, Timothy P; Lyons, Gretchen E; Callender, Glenda G; Roszkowski, Jeffrey J; Wang, Yuan; Simms, Patricia E; Scurti, Gina M; Foley, Kendra C; Murray, David C; Hellman, Lance M; McMahan, Rachel H; Iwashima, Makio; Garrett-Mayer, Elizabeth; Rosen, Hugo R; Baker, Brian M; Nishimura, Michael I

    2016-09-01

    A major obstacle hindering the development of effective immunity against viral infections, their associated disease, and certain cancers is their inherent genomic instability. Accumulation of mutations can alter processing and presentation of antigens recognized by antibodies and T cells that can lead to immune escape variants. Use of an agent that can intrinsically combat rapidly mutating viral or cancer-associated antigens would be quite advantageous in developing effective immunity against such disease. We propose that T cells harboring cross-reactive TCRs could serve as a therapeutic agent in these instances. With the use of hepatitis C virus, known for its genomic instability as a model for mutated antigen recognition, we demonstrate cross-reactivity against immunogenic and mutagenic nonstructural protein 3:1406-1415 and nonstructural protein 3:1073-1081 epitopes in PBL-derived, TCR-gene-modified T cells. These single TCR-engineered T cells can CD8-independently recognize naturally occurring and epidemiologically relevant mutant variants. TCR-peptide MHC modeling data allow us to rationalize how TCR structural properties accommodate recognition of certain mutated epitopes and how these substitutions impact the requirement of CD8 affinity enhancement for recognition. A better understanding of such TCRs' promiscuous behavior may allow for exploitation of these properties to develop novel, adoptive T cell-based therapies for viral infections and cancers exhibiting similar genomic instability. PMID:26921345

  13. [Homology modeling and eukaryotic expression of a modified αβ TCR harboring the immunoglobulin-like domain of γδ TCR].

    PubMed

    Tao, Changli; Shao, Hongwei; Shen, Han; Huang, Shulin

    2016-08-01

    Objective To design, construct and express a chimeric αβ TCR harboring the immunoglobulin-like (Ig) domain of γδ TCR in Jurkat T cells. Methods The fusion sites of TCR δIg were determined by bioinformatics analysis. Then the protein structures of TCR α δIg and TCR β δIg were predicted by homology modeling. Furthermore, the structures of TCR α δIg and TCR β δIg were compared with the wild type (wt) TCR α and TCR β respectively by combinatorial extension (CE). After that, the TCR α δIg and TCR β δIg were fused to fluorescent protein ECFP and EYFP respectively via the overlap PCR, and then the fusion genes (TCR α δIg-ECFP and TCR β δIg-EYFP) were cloned into pIRES2-EGFP vector and respectively located at the upstream and downstream of an internal ribosome entry site (IRES). The recombinant prokaryotic expression vector pIRES-TCR βδIg-EYFP/TCR αδIg-ECFP was transferred into Jurkat T cells. Finally, the expression of TCR δIg in Jurkat T cells was monitored by confocal laser scanning microscopy (CLSM). Results The variable region structure of the TCR δIg did not change and the antigen recognition active regions remained stable compared to the wtTCR. The recombinant expression plasmid was successfully constructed as confirmed by PCR identification and sequencing analysis. CLSM showed that TCR δIg was expressed and located at the plasma membrane of Jurkat T cells. Conclusion The design of TCR δIg was reasonable and the TCR δIg could be expressed on Jurkat T cell surface. PMID:27412930

  14. A Higher Activation Threshold of Memory CD8+ T Cells Has a Fitness Cost That Is Modified by TCR Affinity during Tuberculosis

    PubMed Central

    Carpenter, Stephen M.; Nunes-Alves, Cláudio; Booty, Matthew G.; Way, Sing Sing; Behar, Samuel M.

    2016-01-01

    T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection. PMID:26745507

  15. Single-cell mass cytometry of TCR signaling: amplification of small initial differences results in low ERK activation in NOD mice.

    PubMed

    Mingueneau, Michael; Krishnaswamy, Smita; Spitzer, Matthew H; Bendall, Sean C; Stone, Erica L; Hedrick, Stephen M; Pe'er, Dana; Mathis, Diane; Nolan, Garry P; Benoist, Christophe

    2014-11-18

    Signaling from the T-cell receptor (TCR) conditions T-cell differentiation and activation, requiring exquisite sensitivity and discrimination. Using mass cytometry, a high-dimensional technique that can probe multiple signaling nodes at the single-cell level, we interrogate TCR signaling dynamics in control C57BL/6 and autoimmunity-prone nonobese diabetic (NOD) mice, which show ineffective ERK activation after TCR triggering. By quantitating signals at multiple steps along the signaling cascade and parsing the phosphorylation level of each node as a function of its predecessors, we show that a small impairment in initial pCD3ζ activation resonates farther down the signaling cascade and results in larger defects in activation of the ERK1/2-S6 and IκBα modules. This nonlinear property of TCR signaling networks, which magnifies small initial differences during signal propagation, also applies in cells from B6 mice activated at different levels of intensity. Impairment in pCD3ζ and pSLP76 is not a feedback consequence of a primary deficiency in ERK activation because no proximal signaling defect was observed in Erk2 KO T cells. These defects, which were manifest at all stages of T-cell differentiation from early thymic pre-T cells to memory T cells, may condition the imbalanced immunoregulation and tolerance in NOD T cells. More generally, this amplification of small initial differences in signal intensity may explain how T cells discriminate between closely related ligands and adopt strongly delineated cell fates. PMID:25362052

  16. Single-cell mass cytometry of TCR signaling: Amplification of small initial differences results in low ERK activation in NOD mice

    PubMed Central

    Mingueneau, Michael; Krishnaswamy, Smita; Spitzer, Matthew H.; Bendall, Sean C.; Stone, Erica L.; Hedrick, Stephen M.; Pe'er, Dana; Mathis, Diane; Nolan, Garry P.; Benoist, Christophe

    2014-01-01

    Signaling from the T-cell receptor (TCR) conditions T-cell differentiation and activation, requiring exquisite sensitivity and discrimination. Using mass cytometry, a high-dimensional technique that can probe multiple signaling nodes at the single-cell level, we interrogate TCR signaling dynamics in control C57BL/6 and autoimmunity-prone nonobese diabetic (NOD) mice, which show ineffective ERK activation after TCR triggering. By quantitating signals at multiple steps along the signaling cascade and parsing the phosphorylation level of each node as a function of its predecessors, we show that a small impairment in initial pCD3ζ activation resonates farther down the signaling cascade and results in larger defects in activation of the ERK1/2–S6 and IκBα modules. This nonlinear property of TCR signaling networks, which magnifies small initial differences during signal propagation, also applies in cells from B6 mice activated at different levels of intensity. Impairment in pCD3ζ and pSLP76 is not a feedback consequence of a primary deficiency in ERK activation because no proximal signaling defect was observed in Erk2 KO T cells. These defects, which were manifest at all stages of T-cell differentiation from early thymic pre-T cells to memory T cells, may condition the imbalanced immunoregulation and tolerance in NOD T cells. More generally, this amplification of small initial differences in signal intensity may explain how T cells discriminate between closely related ligands and adopt strongly delineated cell fates. PMID:25362052

  17. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination.

    PubMed

    Hu, Hongbo; Wang, Hui; Xiao, Yichuan; Jin, Jin; Chang, Jae-Hoon; Zou, Qiang; Xie, Xiaoping; Cheng, Xuhong; Sun, Shao-Cong

    2016-03-01

    Signal transduction from the T cell receptor (TCR) is crucial for T cell-mediated immune responses and, when deregulated, also contributes to the development of autoimmunity. How TCR signaling is regulated is incompletely understood. In this study, we demonstrate a ubiquitin-dependent mechanism in which the deubiquitinase Otud7b has a crucial role in facilitating TCR signaling. Upon TCR ligation, Otud7b is rapidly recruited to the tyrosine kinase Zap70, a central mediator of TCR-proximal signaling. Otud7b deficiency attenuates the activation of Zap70 and its downstream pathways and impairs T cell activation and differentiation, rendering mice refractory to T cell-mediated autoimmune and inflammatory responses. Otud7b facilitated Zap70 activation by deubiquitinating Zap70, thus preventing the association of Zap70 with the negative-regulatory phosphatases Sts1 and Sts2. These findings establish Otud7b as a positive regulator of TCR-proximal signaling and T cell activation, highlighting the importance of deubiquitination in regulating Zap70 function. PMID:26903241

  18. Dynamic changes in E-protein activity regulate T reg cell development

    PubMed Central

    Gao, Ping; Han, Xiaojuan; Zhang, Qi; Yang, Zhiqiong; Fuss, Ivan J.; Myers, Timothy G.; Gardina, Paul J.

    2014-01-01

    E-proteins are TCR-sensitive transcription factors essential for intrathymic T cell transitions. Here, we show that deletion of E-proteins leads to both enhanced peripheral TGF-β–induced regulatory T (iT reg) cell and thymic naturally arising T reg cell (nT reg cell) differentiation. In contrast, deletion of Id proteins results in reduced nT reg cell differentiation. Mechanistic analysis indicated that decreased E-protein activity leads to de-repression of signaling pathways that are essential to Foxp3 expression. Decreased E-protein binding to an IL-2Rα enhancer locus facilitated TCR-induced IL-2Rα expression. Similarly, decreased E-protein activity facilitated TCR-induced NF-κB activation and generation of c-Rel. Consistent with this, microarray analysis indicated that cells with E-protein depletion that are not yet expressing Foxp3 exhibit activation of the IL-2 and NF-κB signaling pathways as well as enhanced expression of many of the genes associated with Foxp3 induction. Finally, studies using Nur77-GFP mice to monitor TCR signaling showed that TCR signaling strength sufficient to induce Foxp3 differentiation is accompanied by down-regulation of E-protein levels. Collectively, these data suggest that TCR stimulation acts in part through down-regulation of E-protein activity to induce T reg cell lineage development. PMID:25488982

  19. NSOM/QD-Based Direct Visualization of CD3-Induced and CD28-Enhanced Nanospatial Coclustering of TCR and Coreceptor in Nanodomains in T Cell Activation

    PubMed Central

    Lu, Xiaoxu; Wang, Richard C.; Gong, Guangming; Yan, Lin; Huang, Dan; Chen, Zheng W.

    2009-01-01

    Direct molecular imaging of nano-spatial relationship between T cell receptor (TCR)/CD3 and CD4 or CD8 co-receptor before and after activation of a primary T cell has not been reported. We have recently innovated application of near-field scanning optical microscopy (NSOM) and immune-labeling quantum dots (QD) to image Ag-specific TCR response during in vivo clonal expansion, and now up-graded the NSOM/QD-based nanotechnology through dipole-polarization and dual-color imaging. Using this imaging system scanning cell-membrane molecules at a best-optical lateral resolution, we demonstrated that CD3, CD4 or CD8 molecules were distinctly distributed as single QD-bound molecules or nano-clusters equivalent to 2–4 QD fluorescence-intensity/size on cell-membrane of un-stimulated primary T cells, and ∼6–10% of CD3 were co-clustering with CD4 or CD8 as 70–110 nm nano-clusters without forming nano-domains. The ligation of TCR/CD3 on CD4 or CD8 T cells led to CD3 nanoscale co-clustering or interaction with CD4 or CD8 co-receptors forming 200–500 nm nano-domains or >500 nm micro-domains. Such nano-spatial co-clustering of CD3 and CD4 or CD3 and CD8 appeared to be an intrinsic event of TCR/CD3 ligation, not purely limited to MHC engagement, and be driven by Lck phosphorylation. Importantly, CD28 co-stimulation remarkably enhanced TCR/CD3 nanoscale co-clustering or interaction with CD4 co-receptor within nano- or micro-domains on the membrane. In contrast, CD28 co-stimulation did not enhance CD8 clustering or CD3–CD8 co-clustering in nano-domains although it increased molecular number and density of CD3 clustering in the enlarged nano-domains. These nanoscale findings provide new insights into TCR/CD3 interaction with CD4 or CD8 co-receptor in T-cell activation. PMID:19536289

  20. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation.

    PubMed

    Zhong, Liyun; Zeng, Gucheng; Lu, Xiaoxu; Wang, Richard C; Gong, Guangming; Yan, Lin; Huang, Dan; Chen, Zheng W

    2009-01-01

    Direct molecular imaging of nano-spatial relationship between T cell receptor (TCR)/CD3 and CD4 or CD8 co-receptor before and after activation of a primary T cell has not been reported. We have recently innovated application of near-field scanning optical microscopy (NSOM) and immune-labeling quantum dots (QD) to image Ag-specific TCR response during in vivo clonal expansion, and now up-graded the NSOM/QD-based nanotechnology through dipole-polarization and dual-color imaging. Using this imaging system scanning cell-membrane molecules at a best-optical lateral resolution, we demonstrated that CD3, CD4 or CD8 molecules were distinctly distributed as single QD-bound molecules or nano-clusters equivalent to 2-4 QD fluorescence-intensity/size on cell-membrane of un-stimulated primary T cells, and approximately 6-10% of CD3 were co-clustering with CD4 or CD8 as 70-110 nm nano-clusters without forming nano-domains. The ligation of TCR/CD3 on CD4 or CD8 T cells led to CD3 nanoscale co-clustering or interaction with CD4 or CD8 co-receptors forming 200-500 nm nano-domains or >500 nm micro-domains. Such nano-spatial co-clustering of CD3 and CD4 or CD3 and CD8 appeared to be an intrinsic event of TCR/CD3 ligation, not purely limited to MHC engagement, and be driven by Lck phosphorylation. Importantly, CD28 co-stimulation remarkably enhanced TCR/CD3 nanoscale co-clustering or interaction with CD4 co-receptor within nano- or micro-domains on the membrane. In contrast, CD28 co-stimulation did not enhance CD8 clustering or CD3-CD8 co-clustering in nano-domains although it increased molecular number and density of CD3 clustering in the enlarged nano-domains. These nanoscale findings provide new insights into TCR/CD3 interaction with CD4 or CD8 co-receptor in T-cell activation. PMID:19536289

  1. HIV Controller CD4+ T Cells Respond to Minimal Amounts of Gag Antigen Due to High TCR Avidity

    PubMed Central

    Vingert, Benoît; Lambotte, Olivier; Boufassa, Faroudy; Lemaître, Fabrice; Kwok, William W.; Theodorou, Ioannis; Delfraissy, Jean-François; Thèze, Jacques; Chakrabarti, Lisa A.

    2010-01-01

    HIV controllers are rare individuals who spontaneously control HIV replication in the absence of antiretroviral treatment. Emerging evidence indicates that HIV control is mediated through very active cellular immune responses, though how such responses can persist over time without immune exhaustion is not yet understood. To investigate the nature of memory CD4+ T cells responsible for long-term anti-HIV responses, we characterized the growth kinetics, Vβ repertoire, and avidity for antigen of patient-derived primary CD4+ T cell lines. Specific cell lines were obtained at a high rate for both HIV controllers (16/17) and efficiently treated patients (19/20) in response to the immunodominant Gag293 peptide. However, lines from controllers showed faster growth kinetics than those of treated patients. After normalizing for growth rates, IFN-γ responses directed against the immunodominant Gag293 peptide showed higher functional avidity in HIV controllers, indicating differentiation into highly efficient effector cells. In contrast, responses to Gag161, Gag263, or CMV peptides did not differ between groups. Gag293-specific CD4+ T cells were characterized by a diverse Vβ repertoire, suggesting that multiple clones contributed to the high avidity CD4+ T cell population in controllers. The high functional avidity of the Gag293-specific response could be explained by a high avidity interaction between the TCR and the peptide-MHC complex, as demonstrated by MHC class II tetramer binding. Thus, HIV controllers harbor a pool of memory CD4+ T cells with the intrinsic ability to recognize minimal amounts of Gag antigen, which may explain how they maintain an active antiviral response in the face of very low viremia. PMID:20195518

  2. Recombinant TCR ligand induces early TCR signaling and a unique pattern of downstream activation.

    PubMed

    Wang, Chunhe; Mooney, Jeffery L; Meza-Romero, Roberto; Chou, Yuan K; Huan, Jianya; Vandenbark, Arthur A; Offner, Halina; Burrows, Gregory G

    2003-08-15

    Recombinant TCR ligands (RTLs) consisting of covalently linked alpha(1) and beta(1) domains of MHC class II molecules tethered to specific antigenic peptides represent minimal TCR ligands. In a previous study we reported that the rat RTL201 construct, containing RT1.B MHC class II domains covalently coupled to the encephalitogenic guinea pig myelin basic protein (Gp-MBP(72-89)) peptide, could prevent and treat actively and passively induced experimental autoimmune encephalomyelitis in vivo by selectively inhibiting Gp-MBP(72-89) peptide-specific CD4(+) T cells. To evaluate the inhibitory signaling pathway, we tested the effects of immobilized RTL201 on T cell activation of the Gp-MBP(72-89)-specific A1 T cell hybridoma. Activation was exquisitely Ag-specific and could not be induced by RTL200 containing the rat MBP(72-89) peptide that differed by a threonine for serine substitution at position 80. Partial activation by RTL201 included a CD3zeta p23/p21 ratio shift, ZAP-70 phosphorylation, calcium mobilization, NFAT activation, and transient IL-2 production. In comparison, anti-CD3epsilon treatment produced stronger activation of these cellular events with additional activation of NF-kappaB and extracellular signal-regulated kinases as well as long term increased IL-2 production. These results demonstrate that RTLs can bind directly to the TCR and modify T cell behavior through a partial activation mechanism, triggering specific downstream signaling events that deplete intracellular calcium stores without fully activating T cells. The resulting Ag-specific activation of the transcription factor NFAT uncoupled from the activation of NF-kappaB or extracellular signal-regulated kinases constitutes a unique downstream activation pattern that accounts for the inhibitory effects of RTL on encephalitogenic CD4(+) T cells. PMID:12902496

  3. NKG2D performs two functions in invariant NKT cells: Direct TCR-independent activation of NK-like cytolysis, and co-stimulation of activation by CD1d

    PubMed Central

    Kuylenstierna, Carlotta; Björkström, Niklas K.; Andersson, Sofia K.; Sahlström, Peter; Bosnjak, Lidija; Paquin-Proulx, Dominic; Malmberg, Karl-Johan; Ljunggren, Hans-Gustaf; Moll, Markus; Sandberg, Johan K.

    2012-01-01

    Invariant NKT cells are important in the activation and regulation of immune responses. They can also function as CD1d-restricted killer cells. However, the role of activating innate NK cell receptors expressed on NKT cells in triggering cytolytic function is poorly characterized. Here, we initially confirmed that the cellular stress-ligand receptor NKG2D is expressed on CD4− NKT cells, whereas most CD4+ NKT cells lack this receptor. Interestingly, NKG2D+ NKT cells frequently expressed perforin, and both NKG2D and perforin localized at the site of contact with NKG2D ligand-expressing target cells. CD4− NKT cells degranulated in response to NKG2D engagement in a redirected activation assay independently of stimulation via their invariant TCR. NKT cells killed P815 cells coated with anti-NKG2D mAb and CD1d-negative K562 tumor target cells in an NKG2D-dependent manner. Furthermore, NKG2D engagement co-stimulated TCR-mediated NKT cell activation in response to endogenous CD1d-presented ligands or suboptimal levels of anti-CD3 triggering. These data indicate that the CD4− subset of human NKT cells can mediate direct lysis of target cells via NKG2D engagement independently of CD1d, and that NKG2D also functions as a co-stimulatory receptor in these cells. NKG2D thus plays both a direct and a co-stimulatory role in the activation of NKT cells. PMID:21590763

  4. Decreased stability and translation of T cell receptor zeta mRNA with an alternatively spliced 3'-untranslated region contribute to zeta chain down-regulation in patients with systemic lupus erythematosus.

    PubMed

    Chowdhury, Bhabadeb; Tsokos, Christos G; Krishnan, Sandeep; Robertson, James; Fisher, Carolyn U; Warke, Rahul G; Warke, Vishal G; Nambiar, Madhusoodana P; Tsokos, George C

    2005-05-13

    The molecular mechanisms involved in the aberrant expression of T cell receptor (TCR) zeta chain of patients with systemic lupus erythematosus are not known. Previously we demonstrated that although normal T cells express high levels of TCR zeta mRNA with wild-type (WT) 3' untranslated region (3' UTR), systemic lupus erythematosus T cells display significantly high levels of TCR zeta mRNA with the alternatively spliced (AS) 3' UTR form, which is derived by splice deletion of nucleotides 672-1233 of the TCR zeta transcript. Here we report that the stability of TCR zeta mRNA with an AS 3' UTR is low compared with TCR zeta mRNA with WT 3' UTR. AS 3' UTR, but not WT 3' UTR, conferred similar instability to the luciferase gene. Immunoblotting of cell lysates derived from transfected COS-7 cells demonstrated that TCR zeta with AS 3' UTR produced low amounts of 16-kDa protein. In vitro transcription and translation also produced low amounts of protein from TCR zeta with AS 3' UTR. Taken together our findings suggest that nucleotides 672-1233 bp of TCR zeta 3' UTR play a critical role in its stability and also have elements required for the translational regulation of TCR zeta chain expression in human T cells. PMID:15743765

  5. Anti-γδ TCR antibody-expanded γδ T cells: a better choice for the adoptive immunotherapy of lymphoid malignancies

    PubMed Central

    Zhou, Jianhua; Kang, Ning; Cui, Lianxian; Ba, Denian; He, Wei

    2012-01-01

    Cell-based immunotherapy for lymphoid malignancies has gained increasing attention as patients develop resistance to conventional treatments. γδ T cells, which have major histocompatibility complex (MHC)-unrestricted lytic activity, have become a promising candidate population for adoptive cell transfer therapy. We previously established a stable condition for expanding γδ T cells by using anti-γδ T-cell receptor (TCR) antibody. In this study, we found that adoptive transfer of the expanded γδ T cells to Daudi lymphoma-bearing nude mice significantly prolonged the survival time of the mice and improved their living status. We further investigated the characteristics of these antibody-expanded γδ T cells compared to the more commonly used phosphoantigen-expanded γδ T cells and evaluated the feasibility of employing them in the treatment of lymphoid malignancies. Slow but sustained proliferation of human peripheral blood γδ T cells was observed upon stimulation with anti-γδ TCR antibody. Compared to phosphoantigen-stimulated γδ T cells, the antibody-expanded cells manifested similar functional phenotypes and cytotoxic activity towards lymphoma cell lines. It is noteworthy that the anti-γδ TCR antibody could expand both the Vδ1 and Vδ2 subsets of γδ T cells. The in vitro-expanded Vδ1 T cells displayed comparable tumour cell-killing activity to Vδ2 T cells. Importantly, owing to higher C–C chemokine receptor 4 (CCR4) and CCR8 expression, the Vδ1 T cells were more prone to infiltrate CCL17- or CCL22-expressing lymphomas than the Vδ2 T cells. Characterizing the peripheral blood γδ T cells from lymphoma patients further confirmed that the anti-γδ TCR antibody-expanded γδ T cells could be a more efficacious choice for the treatment of lymphoid malignancies than phosphoantigen-expanded γδ T cells. PMID:21666706

  6. IL-10-producing CD4+ T cells negatively regulate fucosylation of epithelial cells in the gut

    PubMed Central

    Goto, Yoshiyuki; Lamichhane, Aayam; Kamioka, Mariko; Sato, Shintaro; Honda, Kenya; Kunisawa, Jun; Kiyono, Hiroshi

    2015-01-01

    Fucosylated glycans on the surface of epithelial cells (ECs) regulate intestinal homeostasis by serving as attachment receptors and a nutrient source for some species of bacteria. We show here that epithelial fucosylation in the ileum is negatively regulated by IL-10-producing CD4+ T cells. The number of fucosylated ECs was increased in the ileum of mice lacking T cells, especially those expressing αβ T cell receptor (TCR), CD4, and IL-10. No such effect was observed in mice lacking B cells. Adoptive transfer of αβTCR+ CD4+ T cells from normal mice, but not IL-10-deficient mice, normalized fucosylation of ECs. These findings suggest that IL-10-producing CD4+ T cells contribute to the maintenance of the function of ECs by regulating their fucosylation. PMID:26522513

  7. γδ T Cells from Tolerized αβ T Cell Receptor (TCR)–deficient Mice Inhibit Contact Sensitivity-Effector T Cells In Vivo, and Their Interferon-γ Production In Vitro

    PubMed Central

    Szczepanik, Marian; Anderson, Laurel R.; Ushio, Hiroko; Ptak, Wlodzimierz; Owen, Michael J.; Hayday, Adrian C.; Askenase, Philip W.

    1996-01-01

    Contact sensitivity (CS) responses to reactive hapten Ag, such as picryl chloride (PCl) or oxazolone (OX), are classical examples of T cell–mediated immune responses in vivo that are clearly subject to multifaceted regulation. There is abundant evidence that downregulation of CS may be mediated by T cells exposed to high doses of Ag. This is termed high dose Ag tolerance. To clarify the T cell types that effect CS responses and mediate their downregulation, we have undertaken studies of CS in mice congenitally deficient in specific subsets of lymphocytes. The first such studies, using αβ T cell–deficient (TCRα−/−) mice, are presented here. The results clearly show that TCRα−/− mice cannot mount CS, implicating αβ T cells as the critical CS-effector cells. However, TCRα−/− mice can, after high dose tolerance, downregulate α+/+ CS-effector T cells adoptively transferred into them. By mixing ex vivo and then adoptive cell transfers in vivo, the active downregulatory cells in tolerized α−/− mice are shown to include γδ TCR+ cells that also can downregulate interferon-γ production by the targeted CS-effector cells in vitro. Downregulation by γδ cells showed specificity for hapten, but was not restricted by the MHC. Together, these findings establish that γδ T cells cannot fulfill CS-effector functions performed by αβ T cells, but may fulfill an Ag-specific downregulatory role that may be directly comparable to reports of Ag-specific downregulation of IgE antibody responses by γδ T cells. Comparisons are likewise considered with downregulation by γδ T cells occurring in immune responses to pathogens, tumors, and allografts, and in systemic autoimmunity. PMID:8976169

  8. T cell diversity and TcR repertoires in teleost fish.

    PubMed

    Castro, R; Bernard, D; Lefranc, M P; Six, A; Benmansour, A; Boudinot, P

    2011-11-01

    In vertebrates, the diverse and extended range of antigenic motifs is matched to large populations of lymphocytes. The concept of immune repertoire was proposed to describe this diversity of lymphocyte receptors--IG and TR--required for the recognition specificity. Immune repertoires have become useful tools to describe lymphocyte and receptor populations during the immune system development and in pathological situations. In teleosts, the presence of conventional T cells was first proposed to explain graft rejection and optimized specific antibody production. The discovery of TR genes definitely established the reality of conventional T cells in fish. The development of genomic and EST databases recently led to the description of several key T cell markers including CD4, CD8, CD3, CD28, CTLA4, as well as important cytokines, suggesting the existence of different T helper (Th) subtypes, similar to the mammalian Th1, Th2 and Th17. Over the last decade, repertoire studies have demonstrated that both public and private responses occur in fish as they do in mammals, and in vitro specific cytotoxicity assays have been established. While such typical features of T cells are similar in both fish and mammals, the structure of particular repertoires such as the one of gut intra-epithelial lymphocytes seems to be very different. Future studies will further reveal the particular characteristics of teleost T cell repertoires and adaptive responses. PMID:20804845

  9. Structure of Staphylococcal Enterotoxin E in Complex with TCR Defines the Role of TCR Loop Positioning in Superantigen Recognition.

    PubMed

    Rödström, Karin E J; Regenthal, Paulina; Lindkvist-Petersson, Karin

    2015-01-01

    T cells are crucial players in cell-mediated immunity. The specificity of their receptor, the T cell receptor (TCR), is central for the immune system to distinguish foreign from host antigens. Superantigens are bacterial toxins capable of inducing a toxic immune response by cross-linking the TCR and the major histocompatibility complex (MHC) class II and circumventing the antigen specificity. Here, we present the structure of staphylococcal enterotoxin E (SEE) in complex with a human T cell receptor, as well as the unligated T cell receptor structure. There are clear structural changes in the TCR loops upon superantigen binding. In particular, the HV4 loop moves to circumvent steric clashes upon complex formation. In addition, a predicted ternary model of SEE in complex with both TCR and MHC class II displays intermolecular contacts between the TCR α-chain and the MHC, suggesting that the TCR α-chain is of importance for complex formation. PMID:26147596

  10. Inverted repeats in the promoter as an autoregulatory sequence for TcrX in Mycobacterium tuberculosis

    SciTech Connect

    Bhattacharya, Monolekha; Das, Amit Kumar

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer The regulatory sequences recognized by TcrX have been identified. Black-Right-Pointing-Pointer The regulatory region comprises of inverted repeats segregated by 30 bp region. Black-Right-Pointing-Pointer The mode of binding of TcrX with regulatory sequence is unique. Black-Right-Pointing-Pointer In silico TcrX-DNA docked model binds one of the inverted repeats. Black-Right-Pointing-Pointer Both phosphorylated and unphosphorylated TcrX binds regulatory sequence in vitro. -- Abstract: TcrY, a histidine kinase, and TcrX, a response regulator, constitute a two-component system in Mycobacterium tuberculosis. tcrX, which is expressed during iron scarcity, is instrumental in the survival of iron-dependent M. tuberculosis. However, the regulator of tcrX/Y has not been fully characterized. Crosslinking studies of TcrX reveal that it can form oligomers in vitro. Electrophoretic mobility shift assays (EMSAs) show that TcrX recognizes two regions in the promoter that are comprised of inverted repeats separated by {approx}30 bp. The dimeric in silico model of TcrX predicts binding to one of these inverted repeat regions. Site-directed mutagenesis and radioactive phosphorylation indicate that D54 of TcrX is phosphorylated by H256 of TcrY. However, phosphorylated and unphosphorylated TcrX bind the regulatory sequence with equal efficiency, which was shown with an EMSA using the D54A TcrX mutant.

  11. Visualization of the human CD4{sup +} T-cell response in humanized HLA-DR4-expressing NOD/Shi-scid/γc{sup null} (NOG) mice by retrogenic expression of the human TCR gene

    SciTech Connect

    Takahashi, Takeshi Katano, Ikumi; Ito, Ryoji; Ito, Mamoru

    2015-01-02

    Highlights: • β-Lactoglobulin (BLG) specific TCR genes were introduced to human HSC by retrovirus. • Human HSC with BLG-specific TCR were transplanted into NOG-HLA-DR4 I-A{sup −/−} mice. • BLG-specific TCR induced positive selection of thymocytes. • BLG-specific TCR positive CD4{sup +} T cells mediated immune responses in humanized mice. - Abstract: The development of severe immunodeficient mouse strains containing various human genes, including cytokines or HLA, has enabled the reconstitution of functional human immune systems after transplantation of human hematopoietic stem cells (HSC). Accumulating evidence has suggested that HLA-restricted antigen-specific human T-cell responses can be generated in these humanized mice. To directly monitor immune responses of human CD4{sup +} T cells, we introduced β-lactoglobulin (BLG)-specific T cell receptor (TCR) genes derived from CD4{sup +} T-cell clones of cow-milk allergy patients into HSCs, and subsequently transplanted them into NOG-HLA-DR4 transgenic/I-Aβ deficient mice (NOG-DR4/I-A{sup o}). In the thymus, thymocytes with BLG-specific TCR preferentially differentiated into CD4{sup +}CD8{sup −} single-positive cells. Adoptive transfer of mature CD4{sup +} T cells expressing the TCR into recipient NOG-DR4/I-A{sup o} mice demonstrated that human CD4{sup +} T cells proliferated in response to antigenic stimulation and produced IFN-γ in vivo, suggesting that functional T-cell reactions (especially Th1-skewed responses) were induced in humanized mice.

  12. CD161++CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner

    PubMed Central

    Ussher, James E; Bilton, Matthew; Attwod, Emma; Shadwell, Jonathan; Richardson, Rachel; de Lara, Catherine; Mettke, Elisabeth; Kurioka, Ayako; Hansen, Ted H; Klenerman, Paul; Willberg, Christian B

    2014-01-01

    CD161++CD8+ T cells represent a novel subset that is dominated in adult peripheral blood by mucosal-associated invariant T (MAIT) cells, as defined by the expression of a variable-α chain 7.2 (Vα7.2)-Jα33 TCR, and IL-18Rα. Stimulation with IL-18+IL-12 is known to induce IFN-γ by both NK cells and, to a more limited extent, T cells. Here, we show the CD161++ CD8+ T-cell population is the primary T-cell population triggered by this mechanism. Both CD161++Vα7.2+ and CD161++Vα7.2− T-cell subsets responded to IL-12+IL-18 stimulation, demonstrating this response was not restricted to the MAIT cells, but to the CD161++ phenotype. Bacteria and TLR agonists also indirectly triggered IFN-γ expression via IL-12 and IL-18. These data show that CD161++ T cells are the predominant T-cell population that responds directly to IL-12+IL-18 stimulation. Furthermore, our findings broaden the potential role of MAIT cells beyond bacterial responsiveness to potentially include viral infections and other inflammatory stimuli. PMID:24019201

  13. Dietary nucleotides increase the proportion of a TCR gammadelta+ subset of intraepithelial lymphocytes (IEL) and IL-7 production by intestinal epithelial cells (IEC); implications for modification of cellular and molecular cross-talk between IEL and IEC by dietary nucleotides.

    PubMed

    Nagafuchi, S; Totsuka, M; Hachimura, S; Goto, M; Takahashi, T; Yajima, T; Kuwata, T; Kaminogawa, S

    2000-07-01

    We have investigated the effects of dietary nucleotides on intraepithelial lymphocytes (IEL) and intestinal epithelial cells (IEC) in weanling mice. The proportion of T-cell receptor (TCR) gammadelta+ IEL in BALB/c mice fed a diet supplemented with nucleotides (NT(+) diet) was significantly higher than that in mice fed the nucleotide-free diet, while the proportion of TCR alphabeta+ IEL in NT(+) diet-fed mice was significantly decreased. The change of the TCR alphabeta+/TCR gammadelta+ ratio was mainly observed in a CD8 alphaalpha+ subset of IEL. IEC from NT(+) diet-fed mice produced a higher level of IL-7, which is important in the development of TCR gammadelta+ IEL, than those from control diet-fed mice. The expression levels of IL-7 and IL-2 receptors on IEL were not different between the two dietary groups. Our findings suggest that the increased population of a TCR gammadelta+ IEL subset by feeding nucleotides may be caused by the increased production of IL-7 by IEC. PMID:10945264

  14. TGF-beta modulates the functionality of tumor-infiltrating CD8+ T cells through effects on TCR signaling and Spred1 expression.

    PubMed

    di Bari, Maria Giovanna; Lutsiak, M E Christine; Takai, Shinji; Mostböck, Sven; Farsaci, Benedetto; Semnani, Roshanak Tolouei; Wakefield, Lalage M; Schlom, Jeffrey; Sabzevari, Helen

    2009-11-01

    This study demonstrates that CD8+ T cells in the tumor microenvironment display reduced functionality and hyporesponsiveness. TGF-beta contributed markedly to the tumor-infiltrating CD8+ T cells' (TILs) reduced functionality, which could be reversed using a small molecule TGF-beta inhibitor. Upon T-cell receptor (TCR) activation, the activation of ITK and ERK kinases were reduced in CD8+ TILs, as compared to splenic CD8+ T cells: TGF-beta inhibitor could reverse this phenomenon. This study demonstrates for the first time the association of the Spred-1 gene, an inhibitor of the Ras/MAPK pathway, with CD8+ TILs and TGF-beta activity. Spred-1 was upregulated in CD8+ TILs and TGF-beta enhanced the expression of Spred-1 in effector/memory CD8+ T cells and not in rested/memory CD8+ T cells. Based on these findings, this study supports the hypothesis that TGF-beta mediates an inhibitory mechanism on CD8+ TILs involving TCR-signaling blockade and the upregulation of Spred-1, thus implicating Spred-1 as a potential new target for future anti-tumor immune studies. PMID:19319531

  15. Characterization of Human CD8(+)TCR(-) Facilitating Cells In Vitro and In Vivo in a NOD/SCID/IL2rγ(null) Mouse Model.

    PubMed

    Huang, Y; Elliott, M J; Yolcu, E S; Miller, T O; Ratajczak, J; Bozulic, L D; Wen, Y; Xu, H; Ratajczak, M Z; Ildstad, S T

    2016-02-01

    CD8(+)/TCR(-) facilitating cells (FCs) in mouse bone marrow (BM) significantly enhance engraftment of hematopoietic stem/progenitor cells (HSPCs). Human FC phenotype and mechanism of action remain to be defined. We report, for the first time, the phenotypic characterization of human FCs and correlation of phenotype with function. Approximately half of human FCs are CD8(+)/TCR(-)/CD56 negative (CD56(neg)); the remainder are CD8(+)/TCR(-)/CD56 bright (CD56(bright)). The CD56(neg) FC subpopulation significantly promotes homing of HSPCs to BM in nonobese diabetic/severe combined immunodeficiency/IL-2 receptor γ-chain knockout mouse recipients and enhances hematopoietic colony formation in vitro. The CD56(neg) FC subpopulation promotes rapid reconstitution of donor HSPCs without graft-versus-host disease (GVHD); recipients of CD56(bright) FCs plus HSPCs exhibit low donor chimerism early after transplantation, but the level of chimerism significantly increases with time. Recipients of HSPCs plus CD56(neg) or CD56(bright) FCs showed durable donor chimerism at significantly higher levels in BM. The majority of both FC subpopulations express CXCR4. Coculture of CD56(bright) FCs with HSPCs upregulates cathelicidin and β-defensin 2, factors that prime responsiveness of HSPCs to stromal cell-derived factor 1. Both FC subpopulations significantly upregulated mRNA expression of the HSPC growth factors and Flt3 ligand. These results indicate that human FCs exert a direct effect on HSPCs to enhance engraftment. Human FCs offer a potential regulatory cell-based therapy for enhancement of engraftment and prevention of GVHD. PMID:26550777

  16. T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells.

    PubMed

    Ikeda, Hiroaki

    2016-07-01

    Immunotherapy has received the expectation that it should contribute to the therapy of cancer patients for >100 years. At long last, recent clinical trials of immunotherapy with immune checkpoint inhibitors and adoptive cell therapy with genetically engineered T cells have reported their remarkable efficacies. Nowadays, it is expected that T-cell adoptive immunotherapy can not only control tumor progression but even cure cancer in some patients. Conversely, severe adverse events associated with efficacy have frequently been reported in clinical trials, suggesting that the assessment and control of safety will be indispensable in the future development of the therapy. New approaches in T-cell adoptive immunotherapy such as reduction of adverse events, targeting of new antigens or utilization of allogeneic cells will open a new gate for less harmful and more effective immunological treatment of cancer patients. PMID:27127191

  17. CD43 REGULATES THE THRESHOLD FOR T CELL ACTIVATION BY TARGETING CBL FUNCTIONS

    PubMed Central

    Pedraza-Alva, Gustavo; Lilia, B. Mérida; del Rio, Roxana; Nora, A. Fierro; Cruz-Muñoz, Mario E.; Olivares, Norma; Melchy, Erika; Igras, Vivian; Georg, A. Holländer; Steven, J. Burakoff; Rosenstein, Yvonne

    2013-01-01

    SUMMARY T cell (TC) activation requires the coordinated signaling of the T cell receptor (TCR) and co-receptor molecules, allowing TCs to respond to lower degrees of TCR occupancy. Co-receptor molecules set the threshold for TC activation by controlling different regulatory signaling loops. The Cbl family members prevent undesired activation of TCs by regulating TCR signals. In this report we show that TC pre-stimulation by the CD43 co-receptor molecule before TCR engagement inhibits TCR-dependent c-Cbl tyrosine phosphorylation, c-Cbl interaction with the adapter molecule Crk-L and promotes Cbl-b degradation in a PKCθ–dependent manner. Consequently, the prolonged tyrosine phosphorylation and delayed degradation of ZAP-70 and of the ζ chain lead to enhanced MAPK activation and robust TC response. These data indicates that CD43-mediated signals lower the threshold for TC activation by restricting the c-Cbl and Cbl-b inhibitory effects on TCR signaling. In addition to the strength and duration of intracellular signals, our data underscore temporality with which certain molecules are engaged as yet another mechanism to fine tune TC signal quality, and ultimately immune function. PMID:21905200

  18. TGF-β modulates the functionality of tumor-infiltrating CD8+ T cells through effects on TCR signaling and Spred1 expression

    PubMed Central

    di Bari, Maria Giovanna; Lutsiak, M.E. Christine; Takai, Shinji; Mostböck, Sven; Farsaci, Benedetto; Semnani, Roshanak Tolouei; Wakefield, Lalage M.; Schlom, Jeffrey; Sabzevari, Helen

    2012-01-01

    This study demonstrates that CD8+ T cells in the tumor microenvironment display reduced functionality and hyporesponsiveness. TGF-β contributed markedly to the tumor-infiltrating CD8+ T cells’ (TILs) reduced functionality, which could be reversed using a small molecule TGF-β inhibitor. Upon T-cell receptor (TCR) activation, the activation of ITK and ERK kinases were reduced in CD8+ TILs, as compared to splenic CD8+ T cells: TGF-β inhibitor could reverse this phenomenon. This study demonstrates for the first time the association of the Spred-1 gene, an inhibitor of the Ras/MAPK pathway, with CD8+ TILs and TGF-β activity. Spred-1 was upregulated in CD8+ TILs and TGF-β enhanced the expression of Spred-1 in effector/memory CD8+ T cells and not in rested/memory CD8+ T cells. Based on these findings, this study supports the hypothesis that TGF-β mediates an inhibitory mechanism on CD8+ TILs involving TCR-signaling blockade and the upregulation of Spred-1, thus implicating Spred-1 as a potential new target for future anti-tumor immune studies. PMID:19319531

  19. Selective T-cell Ablation with Bismuth-213 Labeled Anti-TCR Alpha Beta as Nonmyeloablative Conditionaing for Allogeneic Canine Marrow Transplantion

    SciTech Connect

    Bethge, W. A.; Wilbur, D. Scott; Storb, R.; Hamlin, Donald K.; Santos, E. B.; Brechbiel, M. W.; Fisher, Darrell R.; Sandmaier, B. M.

    2003-06-15

    Two major immunological barriers, the host versus graft (HVG) and the graft versus host (GVH) reaction, must be overcome for successful allogeneic hematopoietic stem cell transplantation. T-cells are involved in these barriers in the major histocompatibility complex-identical settings. We hypothesized that selective ablation of T-cells using radioimmunotherapy, together with postgrafting immunosuppression, would ensure stable allogeneic engraftment. We developed a canine model of nonmyeloablative marrow transplantation in which host immune reactions are impaired by a single dose of 2 Gy total body irradiation (TBI), and where both GVH and residual HVG reactions are controlled by postgrafting immunosuppression with mycophenolate mofetil (MMF) and cyclosporine (CSP). We substituted the alpha-emitter bismuth-213 linked to a monoclonal antibody against TCR(alpha,beta)using the metal-binding chelate CHX-A”-DTPA, for 2 Gy TBI. Biodistribution studies using a gamma-emitting indium-111-labeled anti-TCR mAb showed uptake primarily in blood, marrow, lymph nodes, spleen and liver. In a dosimetry study, 4 dogs were treated with 0.13-0.46 mg/kg TCR mAb labeled with 3.7-5.6 mCi/kg (137-207 MBq/kg) Bi-213. The treatment was administered in 6 injections on days -3 and -2 followed by transplantion of dog leukocyte antigen-identical marrow on day 0 and postgrafting immunosuppression with MMF and CSP. Therapy was well tolerated except for elevations of transaminases, which were transient in all but one dog. No other organ toxicities or signs of graft-versus-host-disease were noted. The dogs had prompt allogeneic hematopoietic engraftment and achieved stable mixed donor-host hematopoietic chimerism with donor contributions ranging from 5-55 % with >30 weeks follow up.

  20. Tregs utilize beta-galactoside-binding protein to transiently inhibit PI3K/p21ras activity of human CD8+ T cells to block their TCR-mediated ERK activity and proliferation.

    PubMed

    Baatar, Dolgor; Olkhanud, Purevdorj B; Wells, Valerie; Indig, Fred E; Mallucci, Livio; Biragyn, Arya

    2009-10-01

    Regulatory T cells (Tregs) and beta-galactoside-binding protein (betaGBP), a regulatory protein often found expressed at sites of immunological privilege, have similar functions. Their presence affects the outcome of harmful autoimmunity and cancers, including experimental autoimmune encephalomyelitis and malignant gliomas. Here we report a novel pathway by which Tregs express and utilize betaGBP to control CD8(+) T cell responses partially activating TCR signaling but blocking PI3K activity. As a result, this leads to a loss of p21(ras), ERK and Akt activities despite activation of TCR proximal signals, such as phosphorylation of CD3zeta, Zap70, Lat and PKCtheta. Although non-processive TCR signaling often leads to cell anergy, Tregs/betaGBP did not affect cell viability. Instead, betaGBP/Tregs transiently prevented activation of CD8(+) T cells with self-antigens, while keeping their responses to xenogeneic antigens unaffected. PMID:19520156

  1. Expression of costimulatory molecules (CD80, CD86, CD28, CD152), accessory molecules (TCR alphabeta, TCR gammadelta) and T cell lineage molecules (CD4+, CD8+) in PBMC of leprosy patients using Mycobacterium leprae antigen (MLCWA) with murabutide and T cell peptide of Trat protein.

    PubMed

    Sridevi, K; Neena, Khanna; Chitralekha, K T; Arif, A K; Tomar, D; Rao, D N

    2004-01-01

    In leprosy, cell-mediated immunity (CMI) is more significant than humoral response to eliminate intracellular pathogen. T cell defect is a common feature in lepromatous leprosy (LL) patients as compared to tuberculoid type (TT) patients. For efficient initiation of CD4+, T cell response requires T cell receptor (TCR) activation and costimulation provided by molecules on antigen-presenting cells (APC) and their counter receptors on T cells. In our previous study, the defective T cell function in LL patients was restored to a proliferating state with the release of TH1 type cytokines using mycobacterial antigen(s) with two immunomodulators (Murabutide (MDP-BE) and T cell epitope of Trat protein of Escherichia coli) by presenting the antigen in particulate form in vitro to PBMC derived from leprosy patients. This observation prompted us to study the expression of the costimulatory molecules (CD80, CD86, CD28, CD152), other accessory molecules (TCR alphabeta/gammadelta) and T cell lineage molecules (CD4+ and CD8+) during constitutive and activated state of peripheral blood mononuclear cells (PBMC) derived from normal and leprosy individuals using different formulations of Mycobacterium leprae total cell wall antigen (MLCWA), Trat and MDP-BE using flow cytometric analysis. An increased surface expression of CD80, CD86 and CD28 but decreased CD152 expression was observed when PBMC of normal, BT/TT (tuberculoid) and BL/LL (lepromatous) patients were stimulated in vitro with MLCWA+MDP-BE+Trat peptide using liposomal mode of antigen delivery, while opposite results were obtained with the antigen alone. Antibody inhibition study using antihuman CD80 or CD86 completely abolished the T cell lymphoproliferation, thereby reconfirming the importance of these costimulatory molecules during T cell activation/differentiation. Though the liposome-entrapped antigen formulation has no effect on expression of alphabeta/gammadelta T cell receptor, the constitutive levels of TCR

  2. TCR Microclusters pre-exist and contain molecules necessary for TCR signal transduction.

    PubMed

    Crites, Travis J; Padhan, Kartika; Muller, James; Krogsgaard, Michelle; Gudla, Prabhakar R; Lockett, Stephen J; Varma, Rajat

    2014-07-01

    TCR-dependent signaling events have been observed to occur in TCR microclusters. We found that some TCR microclusters are present in unstimulated murine T cells, indicating that the mechanisms leading to microcluster formation do not require ligand binding. These pre-existing microclusters increase in absolute number following engagement by low-potency ligands. This increase is accompanied by an increase in cell spreading, with the result that the density of TCR microclusters on the surface of the T cell is not a strong function of ligand potency. In characterizing their composition, we observed a constant number of TCRs in a microcluster, constitutive exclusion of the phosphatase CD45, and preassociation with the signaling adapters linker for activation of T cells and growth factor receptor-bound protein 2. The existence of TCR microclusters prior to ligand binding in a state that is conducive for the initiation of downstream signaling could explain, in part, the rapid kinetics with which TCR signal transduction occurs. PMID:24860189

  3. TCR sequencing of single cells reactive to DQ2.5-glia-α2 and DQ2.5-glia-ω2 reveals clonal expansion and epitope-specific V-gene usage.

    PubMed

    Dahal-Koirala, S; Risnes, L F; Christophersen, A; Sarna, V K; Lundin, K Ea; Sollid, L M; Qiao, S W

    2016-05-01

    CD4+ T cells recognizing dietary gluten epitopes in the context of disease-associated human leukocyte antigen (HLA)-DQ2 or HLA-DQ8 molecules are the key players in celiac disease pathogenesis. Here, we conducted a large-scale single-cell paired T-cell receptor (TCR) sequencing study to characterize the TCR repertoire for two homologous immunodominant gluten epitopes, DQ2.5-glia-α2 and DQ2.5-glia-ω2, in blood of celiac disease patients after oral gluten challenge. Despite sequence similarity of the epitopes, the TCR repertoires are unique but shared several overall features. We demonstrate that clonally expanded T cells dominate the T-cell responses to both epitopes. Moreover, we find V-gene bias of TRAV26, TRAV4, and TRBV7 in DQ2.5-glia-α2 reactive TCRs, while DQ2.5-glia-ω2 TCRs displayed significant bias toward TRAV4 and TRBV4. The knowledge that antigen-specific TCR repertoire in chronic inflammatory diseases tends to be dominated by a few expanded clones that use the same TCR V-gene segments across patients is important information for HLA-associated diseases where the antigen is unknown. PMID:26838051

  4. Crossreactivity of a human autoimmune TCR is dominated by a single TCR loop.

    PubMed

    Sethi, Dhruv K; Gordo, Susana; Schubert, David A; Wucherpfennig, Kai W

    2013-01-01

    Self-reactive CD4 T cells are thought to have a central role in the pathogenesis of many chronic inflammatory human diseases. Microbial peptides can activate self-reactive T cells, but the structural basis for such crossreactivity is not well understood. The Hy.1B11 T cell receptor (TCR) originates from a patient with multiple sclerosis and recognizes the self-antigen myelin basic protein. Here we report the structural mechanism of TCR crossreactivity with two distinct peptides from human pathogens. The structures show that a single TCR residue (CDR3α F95) makes the majority of contacts with the self-peptide and both microbial peptides (66.7-80.6%) due to a highly tilted TCR-binding topology on the peptide-MHC surface. Further, a neighbouring residue located on the same TCR loop (CDR3α E98) forms an energetically critical interaction with the MHC molecule. These data show how binding by a self-reactive TCR favors crossreactivity between self and microbial antigens. PMID:24136005

  5. A Phosphatase Activity of Sts-1 Contributes to the Suppression of TCR Signaling

    SciTech Connect

    Mikhailik,A.; Ford, B.; Keller, J.; Chen, Y.; Nassar, N.; Carpino, N.

    2007-01-01

    Precise signaling by the T cell receptor (TCR) is crucial for a proper immune response. To ensure that T cells respond appropriately to antigenic stimuli, TCR signaling pathways are subject to multiple levels of regulation. Sts-1 negatively regulates signaling pathways downstream of the TCR by an unknown mechanism(s). Here, we demonstrate that Sts-1 is a phosphatase that can target the tyrosine kinase Zap-70 among other proteins. The X-ray structure of the Sts-1 C terminus reveals that it has homology to members of the phosphoglycerate mutase/acid phosphatase (PGM/AcP) family of enzymes, with residues known to be important for PGM/AcP catalytic activity conserved in nature and position in Sts-1. Point mutations that impair Sts-1 phosphatase activity in vitro also impair the ability of Sts-1 to regulate TCR signaling in T cells. These observations reveal a PGM/AcP-like enzyme activity involved in the control of antigen receptor signaling.

  6. Quantifying Distribution of Flow Cytometric TCR-Vβ Usage with Economic Statistics

    PubMed Central

    van der Geest, Kornelis S. M.; Abdulahad, Wayel H.; Horst, Gerda; Lorencetti, Pedro G.; Bijzet, Johan; Arends, Suzanne; van der Heiden, Marieke; Buisman, Anne-Marie; Kroesen, Bart-Jan; Brouwer, Elisabeth; Boots, Annemieke M. H.

    2015-01-01

    Measuring changes of the T cell receptor (TCR) repertoire is important to many fields of medicine. Flow cytometry is a popular technique to study the TCR repertoire, as it quickly provides insight into the TCR-Vβ usage among well-defined populations of T cells. However, the interpretation of the flow cytometric data remains difficult, and subtle TCR repertoire changes may go undetected. Here, we introduce a novel means for analyzing the flow cytometric data on TCR-Vβ usage. By applying economic statistics, we calculated the Gini-TCR skewing index from the flow cytometric TCR-Vβ analysis. The Gini-TCR skewing index, which is a direct measure of TCR-Vβ distribution among T cells, allowed us to track subtle changes of the TCR repertoire among distinct populations of T cells. Application of the Gini-TCR skewing index to the flow cytometric TCR-Vβ analysis will greatly help to gain better understanding of the TCR repertoire in health and disease. PMID:25923356

  7. Thymic commitment of regulatory T cells is a pathway of TCR-dependent selection that isolates repertoires undergoing positive or negative selection.

    PubMed

    Coutinho, A; Caramalho, I; Seixas, E; Demengeot, J

    2005-01-01

    autoimmune diseases (AID) result from Treg deficits, some of which might have a thymic origin, we also speculate on therapeutic strategies aiming at selectively stimulating their de novo production or peripheral function, within recent findings on Treg responses to inflammation (Caramalho et al. 2003; Lopes-Carvalho et al., submitted, Caramalho et al., submitted). In short, the MM96 argued that natural tolerance is dominant, established and maintained by the activity of Treg, which are selected upon high-affinity recognition of self-ligands on TECs, and committed intrathymically to a unique differentiative pathway geared to anti-inflammatory and antiproliferative effector functions. By postulating the intrathymic deletion of self-reactivities on hemopoietic stromal cells (THC), together with the inability of peripheral resident lymphocytes to engage in the regulatory pathway, the MM96 simultaneously explained the maintenance of responsiveness to non-self in a context of suppression mediating dominant self-tolerance. The major difficulty of the MM96 is related to the apparent tissue specificity of Treg repertoires generated intrathymically. This difficulty has now been principally solved by the work of Hanahan, Kyewski and others (Jolicoeur et al. 1994; Derbinski et al. 2001; Anderson et al. 2002; Gotter et al. 2004), demonstrating the selective expression of a variety of tissue-specific antigens by TECs, in topological patterns that are compatible with the MM96, but difficult to conciliate with recessive tolerance models (Kappler et al. 1987; Kisielow et al. 1988). While the developmentally regulated multireactivity of TCR repertoires (Gavin and Bevan 1995), as well as the peripheral recruitment of Treg among RTE (Modigliani et al. 1996a) might add to this process, it would seem that the establishment of tissue-specific tolerance essentially stems from the "promiscuous expression of tissue antigens" by TEC. The findings of AID resulting from natural mutations (reviewed in

  8. Recognition and Regulation of T Cells by NK Cells.

    PubMed

    Pallmer, Katharina; Oxenius, Annette

    2016-01-01

    Regulation of T cell responses by innate lymphoid cells (ILCs) is increasingly documented and studied. Direct or indirect crosstalk between ILCs and T cells early during and after T cell activation can affect their differentiation, polarization, and survival. Natural killer (NK) cells that belong to the ILC1 group were initially described for their function in recognizing and eliminating "altered self" and as source of early inflammatory cytokines, most notably type II interferon. Using signals conveyed by various germ-line encoded activating and inhibitory receptors, NK cells are geared to sense sudden cellular changes that can be caused by infection events, malignant transformation, or cellular stress responses. T cells, when activated by TCR engagement (signal 1), costimulation (signal 2), and cytokines (signal 3), commit to a number of cellular alterations, including entry into rapid cell cycling, metabolic changes, and acquisition of effector functions. These abrupt changes may alert NK cells, and T cells might thereby expose themselves as NK cell targets. Here, we review how activated T cells can be recognized and regulated by NK cells and what consequences such regulation bears for T cell immunity in the context of vaccination, infection, or autoimmunity. Conversely, we will discuss mechanisms by which activated T cells protect themselves against NK cell attack and outline the significance of this safeguard mechanism. PMID:27446081

  9. Recognition and Regulation of T Cells by NK Cells

    PubMed Central

    Pallmer, Katharina; Oxenius, Annette

    2016-01-01

    Regulation of T cell responses by innate lymphoid cells (ILCs) is increasingly documented and studied. Direct or indirect crosstalk between ILCs and T cells early during and after T cell activation can affect their differentiation, polarization, and survival. Natural killer (NK) cells that belong to the ILC1 group were initially described for their function in recognizing and eliminating “altered self” and as source of early inflammatory cytokines, most notably type II interferon. Using signals conveyed by various germ-line encoded activating and inhibitory receptors, NK cells are geared to sense sudden cellular changes that can be caused by infection events, malignant transformation, or cellular stress responses. T cells, when activated by TCR engagement (signal 1), costimulation (signal 2), and cytokines (signal 3), commit to a number of cellular alterations, including entry into rapid cell cycling, metabolic changes, and acquisition of effector functions. These abrupt changes may alert NK cells, and T cells might thereby expose themselves as NK cell targets. Here, we review how activated T cells can be recognized and regulated by NK cells and what consequences such regulation bears for T cell immunity in the context of vaccination, infection, or autoimmunity. Conversely, we will discuss mechanisms by which activated T cells protect themselves against NK cell attack and outline the significance of this safeguard mechanism. PMID:27446081

  10. Programmed cell death 1 and Helios distinguish TCR-αβ+ double negative (CD4-CD8-) T cells that derive from self-reactive CD8 T cells1

    PubMed Central

    Rodríguez-Rodríguez, Noé; Apostolidis, Sokratis A.; Penaloza-MacMaster, Pablo; Manuel Martín Villa, José; Barouch, Dan H.; Tsokos, George C.; Crispín, José C.

    2015-01-01

    TCR-αβ+ double negative (DN; CD4-CD8-) T cells represent a poorly understood cellular subset suggested to contribute to the pathogenesis of the autoimmune disease systemic lupus erythematosus. DN T cells have been proposed to derive from CD8+ cells. However, the conditions that govern the loss of CD8 expression after antigen encounter are unknown. Here we tracked the fate of CD8 T cells from transgenic TCR mice exposed to their cognate antigens as self or in the context of infection. We demonstrate that CD8 T cells lose CD8 expression and become DN only when cognate antigen is sensed as self. This process is restricted to tissues where the antigen is present. We also show that DN T cells derived from self-reactive CD8 cells express the inhibitory molecules PD-1 and Helios. These molecules identify a subset of DN T cells in normal mice. A similar population expands when CD8 T cells from repertoires enriched in self-reactive cells (Aire-deficient) are transferred into cognate hosts. Collectively, our data suggest that a subset of DN T cells, identified by the expression of PD-1 and Helios, represent self-reactive cells. Our results provide an explanation for the origin of DN T cells and introduce CD8 loss as a process associated to self-antigen encounter. PMID:25825451

  11. Antigen-specific CD4{sup +} effector T cells: Analysis of factors regulating clonal expansion and cytokine production

    SciTech Connect

    Ohnuki, Kazunobu; Watanabe, Yuri; Takahashi, Yusuke; Kobayashi, Sakiko; Watanabe, Shiho; Ogawa, Shuhei; Kotani, Motoko; Kozono, Haruo; Tanabe, Kazunari; Abe, Ryo

    2009-03-20

    In order to fully understand T cell-mediated immunity, the mechanisms that regulate clonal expansion and cytokine production by CD4{sup +} antigen-specific effector T cells in response to a wide range of antigenic stimulation needs clarification. For this purpose, panels of antigen-specific CD4{sup +} T cell clones with different thresholds for antigen-induced proliferation were generated by repeated stimulation with high- or low-dose antigen. Differences in antigen sensitivities did not correlate with expression of TCR, CD4, adhesion or costimulatory molecules. There was no significant difference in antigen-dependent cytokine production by TG40 cells transfected with TCR obtained from either high- or low-dose-responding T cell clones, suggesting that the affinity of TCRs for their ligands is not primary determinant of T cell antigen reactivity. The proliferative responses of all T cell clones to both peptide stimulation and to TCR{beta} crosslinking revealed parallel dose-response curves. These results suggest that the TCR signal strength of effector T cells and threshold of antigen reactivity is determined by an intrinsic property, such as the TCR signalosome and/or intracellular signaling machinery. Finally, the antigen responses of high- and low-peptide-responding T cell clones reveal that clonal expansion and cytokine production of effector T cells occur independently of antigen concentration. Based on these results, the mechanisms underlying selection of high 'avidity' effector and memory T cells in response to pathogen are discussed.

  12. Activating TCR Signaling to Thwart T-ALL.

    PubMed

    Lemonnier, François; Mak, Tak W

    2016-09-01

    Thymic negative selection is a process that aims to eliminate autoreactive T cells by inducing the apoptosis of thymocytes expressing a T-cell receptor (TCR) with high affinity for self-MHC. In this issue, Trinquand and colleagues demonstrate that TCR engagement or anti-CD3 stimulation of TCR-expressing T acute lymphoblastic leukemia cells results in their apoptosis. This cell death is reminiscent of thymic negative selection and has the potential for therapeutic exploitation. Cancer Discov; 6(9); 946-8. ©2016 AACR.See related article by Trinquand et al., p. 972. PMID:27587465

  13. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    SciTech Connect

    Liu, Chen; Jin, Rong; Wang, Hong-Cheng; Tang, Hui; Liu, Yuan-Feng; Qian, Xiao-Ping; Sun, Xiu-Yuan; Ge, Qing; Sun, Xiao-Hong; Zhang, Yu

    2013-06-21

    Highlights: •Id1 expression enables naïve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-κB activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïve CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.

  14. Crystal Structure of a Complete Ternary Complex of TCR, Superantigen and Peptide-MHC

    SciTech Connect

    Wang,L.; Zhao, Y.; Li, Z.; Guo, Y.; Jones, L.; Kranz, D.; Mourad, W.; Li, H.

    2007-01-01

    'Superantigens' (SAgs) trigger the massive activation of T cells by simultaneous interactions with MHC and TCR receptors, leading to human diseases. Here we present the first crystal structure, at 2.5-{angstrom} resolution, of a complete ternary complex between a SAg and its two receptors, HLA-DR1/HA and TCR. The most striking finding is that the SAg Mycoplasma arthritidis mitogen, unlike others, has direct contacts not only with TCR V{beta} but with TCR V{alpha}.

  15. OX40 Complexes with PI3K and PKB to Augment TCR-Dependent PKB Signaling

    PubMed Central

    So, Takanori; Choi, Heonsik; Croft, Michael

    2011-01-01

    T lymphocyte activation requires signal 1 from the T cell receptor (TCR) and signal 2 from co-stimulatory receptors. For long-lasting immunity, growth and survival signals imparted through the Akt/PKB pathway in activated or effector T cells are important, and these can be strongly influenced by signaling from OX40 (CD134), a member of the TNFR superfamily. In the absence of OX40, T cells do not expand efficiently to antigen and memory formation is impaired. How most costimulatory receptors integrate their signals with those from antigen through the TCR is not clear, including whether OX40 directly recruits PKB or molecules that regulate PKB. We show that OX40 after ligation by OX40L assembled a signaling complex that contained the adaptor TRAF2 as well as PKB and its upstream activator PI-3-Kinase. Recruitment of PKB and PI3K were dependent on TRAF2 and on translocation of OX40 into detergent insoluble membrane lipid microdomains, but independent of TCR engagement. However, OX40 only resulted in strong phosphorylation and functional activation of the PI3K/PKB pathway when antigen was recognized. Therefore OX40 primarily functions to augment PKB signaling in T cells by enhancing the amount of PI3K and PKB available to the TCR. This highlights a quantitative role of this TNFR family second signal to supplement signal 1. PMID:21289304

  16. A hypothesis accounting for the paradoxical expression of the D gene segment in the BCR and the TCR.

    PubMed

    Cohn, Melvin

    2008-07-01

    The D gene segment expressed in both the TCR and the BCR has a challenging behavior that begs interpretation. It is incorporated in three reading frames in the rearranged transcription unit but is expressed in antigen-selected cells in a preferred frame. Why was it so important to waste 2/3 of newborn cells? The hypothesis is presented that the D region is framework playing a role in both the TCR and the BCR by determining whether a signal is transmitted to the cell upon interaction with a cognate ligand. This assumption operates in determining haplotype exclusion for the BCR and in regulating the signaling orientation for the TCR. Relevant data as well as a definitive experiment challenging the validity of this hypothesis, are discussed. PMID:18546143

  17. Ubiquitylation as a Rheostat for TCR Signaling: From Targeted Approaches Toward Global Profiling

    PubMed Central

    O’Leary, Claire E.; Lewis, Emma L.; Oliver, Paula M.

    2015-01-01

    primary T cells. These methods provide an exciting opportunity for further defining how TCR signals are regulated and for identifying new targets for therapeutic modulation. PMID:26732666

  18. Immune Tolerance Maintained by Cooperative Interactions between T Cells and Antigen Presenting Cells Shapes a Diverse TCR Repertoire.

    PubMed

    Best, Katharine; Chain, Benny; Watkins, Chris

    2015-01-01

    The T cell population in an individual needs to avoid harmful activation by self peptides while maintaining the ability to respond to an unknown set of foreign peptides. This property is acquired by a combination of thymic and extra-thymic mechanisms. We extend current models for the development of self/non-self discrimination to consider the acquisition of self-tolerance as an emergent system level property of the overall T cell receptor repertoire. We propose that tolerance is established at the level of the antigen presenting cell/T cell cluster, which facilitates and integrates cooperative interactions between T cells of different specificities. The threshold for self-reactivity is therefore imposed at a population level, and not at the level of the individual T cell/antigen encounter. Mathematically, the model can be formulated as a linear programing optimization problem that can be implemented as a multiplicative update algorithm, which shows a rapid convergence to a stable state. The model constrains self-reactivity within a predefined threshold, but maintains repertoire diversity and cross reactivity which are key characteristics of human T cell immunity. We show further that the size of individual clones in the model repertoire becomes heterogeneous, and that new clones can establish themselves even when the repertoire has stabilized. Our study combines the salient features of the "danger" model of self/non-self discrimination with the concepts of quorum sensing, and extends repertoire generation models to encompass the establishment of tolerance. Furthermore, the dynamic and continuous repertoire reshaping, which underlies tolerance in this model, suggests opportunities for therapeutic intervention to achieve long-term tolerance following transplantation. PMID:26300880

  19. Immune Tolerance Maintained by Cooperative Interactions between T Cells and Antigen Presenting Cells Shapes a Diverse TCR Repertoire

    PubMed Central

    Best, Katharine; Chain, Benny; Watkins, Chris

    2015-01-01

    The T cell population in an individual needs to avoid harmful activation by self peptides while maintaining the ability to respond to an unknown set of foreign peptides. This property is acquired by a combination of thymic and extra-thymic mechanisms. We extend current models for the development of self/non-self discrimination to consider the acquisition of self-tolerance as an emergent system level property of the overall T cell receptor repertoire. We propose that tolerance is established at the level of the antigen presenting cell/T cell cluster, which facilitates and integrates cooperative interactions between T cells of different specificities. The threshold for self-reactivity is therefore imposed at a population level, and not at the level of the individual T cell/antigen encounter. Mathematically, the model can be formulated as a linear programing optimization problem that can be implemented as a multiplicative update algorithm, which shows a rapid convergence to a stable state. The model constrains self-reactivity within a predefined threshold, but maintains repertoire diversity and cross reactivity which are key characteristics of human T cell immunity. We show further that the size of individual clones in the model repertoire becomes heterogeneous, and that new clones can establish themselves even when the repertoire has stabilized. Our study combines the salient features of the “danger” model of self/non-self discrimination with the concepts of quorum sensing, and extends repertoire generation models to encompass the establishment of tolerance. Furthermore, the dynamic and continuous repertoire reshaping, which underlies tolerance in this model, suggests opportunities for therapeutic intervention to achieve long-term tolerance following transplantation. PMID:26300880

  20. Metabolic regulation of T cell differentiation and function

    PubMed Central

    Park, Benjamin V.; Pan, Fan

    2016-01-01

    Upon encountering pathogens, T cells mount immune responses by proliferating, increasing cellular mass and differentiating. These cellular changes impose significant energetic challenges on T cells. It was believed that TCR and cytokine-mediated signaling are dominant dictators of T cell-mediated immune responses. Recently, it was recognized that T cells utilize metabolic transporters and metabolic sensors that allow them to rapidly respond to nutrient-limiting inflammatory environments. Metabolic sensors allow T cells to find a balance between energy consumption (anabolic metabolism) and production (catabolic metabolism) in order to mount effective immune responses. Also, metabolic regulators interact with cytokine-dependent transcriptional regulators, suggesting a more integrative and advanced model of T cell activation and differentiation. In this review, we will discuss recent discoveries regarding the roles of metabolic regulators in effector and memory T cell development and their interaction with canonical transcription factors. PMID:26277275

  1. Conservation of Pathogenic TCR Homology Across Class II Restrictions in Anti-RNP Autoimmunity: Extended Efficacy of T Cell Vaccine Therapy1

    PubMed Central

    Zang, YunJuan; Martinez, Laisel; Fernandez, Irina; Pignac-Kobinger, Judith; Greidinger, Eric L.

    2014-01-01

    T cells have been shown to mediate aspects of anti-RNP autoimmunity, and are a potential target of therapy in lupus and related diseases. In this study, we assessed the relevance of a conserved class of anti-RNP T cells to autoimmune disease expression and therapy. Our data show that anti-RNP T cell selection induced a limited set of homologous CDR3 motifs at high frequency. Homologous CDR3 motifs have been reported in other autoimmune diseases. Vaccination with irradiated anti-RNP (but not anti-Tetanus Toxoid) CD4+ cells induced remission of anti-RNP-associated nephritis in at least 80% of treated mice, even with donor/recipient MHC Class II mismatch, and in both induced and spontaneous autoimmunity. Vaccine responder sera inhibited anti-70k T cell proliferation and bound hybridomas expressing the conserved CDR3 motifs. Our data indicate that a limited set of TCR CDR3 motifs may be important for the pathogenesis of anti-RNP lupus and other autoimmune diseases. The ability to target a consistent set of pathogenic T cells between individuals and across Class II restrictions may allow for the more practical development of a standardized anti-RNP T cell vaccine preparation useful for multiple patients. PMID:24670800

  2. Depletion of IFN-gamma, CD8+ or Tcr gamma delta+ cells in vivo during primary infection with an enteric parasite (Trichostrongylus colubriformis) enhances protective immunity.

    PubMed

    McClure, S J; Davey, R J; Lloyd, J B; Emery, D L

    1995-12-01

    In order to examine the role of CD8+ and WCI+ T cells and of IFN-gamma in the development of protective immunity against infection with the enteric nematode parasite Trichostrongylus colubriformis in sheep, mAb were administered during induction of the immune response to deplete or neutralize these components. Protection against the primary and challenge infections were assessed by faecal egg count and total worm count. Prolonged administration of mAb recognizing IFN-gamma and CD8+ resulted in significantly increased protection during the 6-week primary infection. CD8+ cells were depleted from blood but not intestinal mucosa. After injection of mAb (CC15) recognizing the surface antigen WCI, WCI+ and T cell receptor (Tcr) gamma delta+ cells were depleted from blood but not from enteric mucosa, and protection against challenge, although variable, was increased by up to 88%. It appears that CD8+ and WCI+/gamma delta+ cells and IFN-gamma all retard the potential development of naturally-acquired immunity against the parasite. PMID:8713478

  3. Comparison of induced versus natural regulatory T cells of the same TCR specificity for induction of tolerance to an environmental antigen.

    PubMed

    Huang, Hui; Ma, Yanna; Dawicki, Wojciech; Zhang, Xiaobei; Gordon, John R

    2013-08-01

    Recent evidence shows that natural CD25(+)Foxp3(+) regulatory T cells (nTreg) and induced CD25(+)Foxp3(+) regulatory T cells (iTreg) both contribute to tolerance in mouse models of colitis and asthma, but there is little evidence regarding their relative contributions to this tolerance. We compared the abilities of nTreg and iTreg, both from OVA-TCR-transgenic OTII mice, to mediate tolerance in OVA-asthmatic C57BL/6 mice. The iTreg were differentiated from Th2 effector T cells by exposure to IL-10-differentiated dendritic cells (DC10) in vitro or in vivo, whereas we purified nTreg from allergen-naive mice and exposed them to DC10 before use. Each Treg population was subsequently repurified and tested for its therapeutic efficacy in vitro and in vivo. DC10 engaged the nTreg in a cognate fashion in Forster (or fluorescence) resonance energy transfer assays, and these nTreg reduced in vitro OVA-asthmatic Th2 effector T cell responses by 41-56%, whereas the comparator iTreg reduced these responses by 72-86%. Neutralization of IL-10, but not TGF-β, eliminated the suppressive activities of iTreg but not nTreg. Delivery of 5 × 10(5) purified nTreg reduced allergen challenge-induced airway IL-4 (p ≤ 0.03) and IL-5 (p ≤ 0.001) responses of asthmatic recipients by ≤ 23% but did not affect airway hyperresponsiveness or IgE levels, whereas equal numbers of iTreg of identical TCR specificity reduced all airway responses to allergen challenge by 82-96% (p ≤ 0.001) and fully normalized airway hyperresponsiveness. These data confirm that allergen-specific iTreg and nTreg have active roles in asthma tolerance and that iTreg are substantially more tolerogenic in this setting. PMID:23817420

  4. Dynamic Regulation of TCR–Microclusters and the Microsynapse for T Cell Activation

    PubMed Central

    Hashimoto-Tane, Akiko; Saito, Takashi

    2016-01-01

    The interaction between a T cell and an antigen-presenting cell is the initiating event in T cell-mediated adaptive immunity. The Immunological Synapse (IS) is formed at the interface between these two cell types, and is the site where antigen (Ag)-specific recognition and activation are induced through the T cell receptor (TCR). This occurs at the center of the IS, and cell adhesion is supported through integrins in the area surrounding the TCR. Recently, this model has been revised based on data indicating that the initial Ag-specific activation signal is triggered prior to IS formation at TCR–microclusters (MCs), sites where TCR, kinases and adaptors of TCR proximal downstream signaling molecules accumulate as an activation signaling cluster. TCR–MCs then move into the center of the cell–cell interface to generate the cSMAC. This translocation of TCR–MCs is mediated initially by the actin cytoskeleton and then by dynein-induced movement along microtubules. The translocation of TCR–MCs and cSMAC formation is induced upon strong TCR stimulation through the assembly of a TCR–dynein super complex with microtubules. The Ag-specific activation signal is induced at TCR–MCs, but the adhesion signal is now shown to be induced by generating a “microsynapse,” which is composed of a core of TCR–MCs and the surrounding adhesion ring of integrin and focal adhesion molecules. Since the microsynapse is critical for activation, particularly under weak TCR stimulation, this structure supports a weak TCR signal through a cell–cell adhesion signal. The microsynapse has a structure similar to the IS but on a micro-scale and regulates Ag-specific activation as well as cell–cell adhesion. We describe here the dynamic regulation of TCR–MCs, responsible for inducing Ag-specific activation signals, and the microsynapse, responsible for adhesion signals critical for cell–cell interactions, and their interrelationship. PMID:27446085

  5. Proinsulin Expression Shapes the TCR Repertoire but Fails to Control the Development of Low-Avidity Insulin-Reactive CD8+ T Cells.

    PubMed

    Pearson, James A; Thayer, Terri C; McLaren, James E; Ladell, Kristin; De Leenheer, Evy; Phillips, Amy; Davies, Joanne; Kakabadse, Dimitri; Miners, Kelly; Morgan, Peter; Wen, Li; Price, David A; Wong, F Susan

    2016-06-01

    NOD mice, a model strain for human type 1 diabetes, express proinsulin (PI) in the thymus. However, insulin-reactive T cells escape negative selection, and subsequent activation of the CD8(+) T-cell clonotype G9C8, which recognizes insulin B15-23 via an αβ T-cell receptor (TCR) incorporating TRAV8-1/TRAJ9 and TRBV19/TRBJ2-3 gene rearrangements, contributes to the development of diabetes. In this study, we used fixed TRAV8-1/TRAJ9 TCRα-chain transgenic mice to assess the impact of PI isoform expression on the insulin-reactive CD8(+) T-cell repertoire. The key findings were: 1) PI2 deficiency increases the frequency of insulin B15-23-reactive TRBV19(+)CD8(+) T cells and causes diabetes; 2) insulin B15-23-reactive TRBV19(+)CD8(+) T cells are more abundant in the pancreatic lymph nodes of mice lacking PI1 and/or PI2; 3) overexpression of PI2 decreases TRBV19 usage in the global CD8(+) T-cell compartment; 4) a biased repertoire of insulin-reactive CD8(+) T cells emerges in the periphery regardless of antigen exposure; and 5) low-avidity insulin-reactive CD8(+) T cells are less affected by antigen exposure in the thymus than in the periphery. These findings inform our understanding of the diabetogenic process and reveal new avenues for therapeutic exploitation in type 1 diabetes. PMID:26953160

  6. Loss of c-Cbl RING finger function results in high-intensity TCR signaling and thymic deletion

    PubMed Central

    Thien, Christine B F; Blystad, Frøydis D; Zhan, Yifan; Lew, Andrew M; Voigt, Valentina; Andoniou, Christopher E; Langdon, Wallace Y

    2005-01-01

    Signaling from the T-cell receptor (TCR) in thymocytes is negatively regulated by the RING finger-type ubiquitin ligase c-Cbl. To further investigate this regulation, we generated mice with a loss-of-function mutation in the c-Cbl RING finger domain. These mice exhibit complete thymic deletion by young adulthood, which is not caused by a developmental block, lack of progenitors or peripheral T-cell activation. Rather, this phenotype correlates with greatly increased expression of the CD5 and CD69 activation markers and increased sensitivity to anti-CD3-induced cell death. Thymic loss contrasts the normal fate of the c-Cbl−/− thymus, even though thymocytes from both mutant mice show equivalent enhancement in proximal TCR signaling, Erk activation and calcium mobilization. Remarkably, only the RING finger mutant thymocytes show prominent TCR-directed activation of Akt. We show that the mutant c-Cbl protein itself is essential for activating this pathway by recruiting the p85 regulatory subunit of PI 3-kinase. This study provides a unique model for analyzing high-intensity TCR signals that cause thymocyte deletion and highlights multiple roles of c-Cbl in regulating this process. PMID:16211006

  7. Distinct Mechanisms Regulate Lck Spatial Organization in Activated T Cells

    PubMed Central

    Kapoor-Kaushik, Natasha; Hinde, Elizabeth; Compeer, Ewoud B.; Yamamoto, Yui; Kraus, Felix; Yang, Zhengmin; Lou, Jieqiong; Pageon, Sophie V.; Tabarin, Thibault; Gaus, Katharina; Rossy, Jérémie

    2016-01-01

    Phosphorylation of the T cell receptor (TCR) by the kinase Lck is the first detectable signaling event upon antigen engagement. The distribution of Lck within the plasma membrane, its conformational state, kinase activity, and protein–protein interactions all contribute to determine how efficiently Lck phosphorylates the engaged TCR. Here, we used cross-correlation raster image correlation spectroscopy and photoactivated localization microscopy to identify two mechanisms of Lck clustering: an intrinsic mechanism of Lck clustering induced by locking Lck in its open conformation and an extrinsic mechanism of clustering controlled by the phosphorylation of tyrosine 192, which regulates the affinity of Lck SH2 domain. Both mechanisms of clustering were differently affected by the absence of the kinase Zap70 or the adaptor Lat. We further observed that the adaptor TSAd bound to and promoted the diffusion of Lck when it is phosphorylated on tyrosine 192. Our data suggest that while Lck open conformation drives aggregation and clustering, the spatial organization of Lck is further controlled by signaling events downstream of TCR phosphorylation. PMID:27014263

  8. Attrition of TCR Vα7.2+ CD161++ MAIT cells in HIV-tuberculosis co-infection is associated with elevated levels of PD-1 expression.

    PubMed

    Saeidi, Alireza; Tien Tien, Vicky L; Al-Batran, Rami; Al-Darraji, Haider A; Tan, Hong Y; Yong, Yean K; Ponnampalavanar, Sasheela; Barathan, Muttiah; Rukumani, Devi V; Ansari, Abdul W; Velu, Vijayakumar; Kamarulzaman, Adeeba; Larsson, Marie; Shankar, Esaki M

    2015-01-01

    Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved antimicrobial MR1-restricted CD8(+) T cells co-expressing the semi-invariant TCR Vα7.2, and are numerous in the blood and mucosal tissues of humans. MAIT cells appear to undergo exhaustion in chronic viral infections. However, their role in human immunodeficiency virus type 1 (HIV-1) mono-infection and HIV/tuberculosis (TB) co-infection have seldom been elaborately investigated. We conducted a cross-sectional study to investigate the frequencies and phenotypes of CD161(++)CD8(+) T cells among anti-retroviral therapy (ART)/anti-TB therapy (ATT) treatment-naïve HIV/TB co-infected, ART/TB treated HIV/TB co-infected, ART naïve HIV-infected, ART-treated HIV-infected patients, and HIV negative healthy controls (HCs) by flow cytometry. Our data revealed that the frequency of MAIT cells was severely depleted in HIV mono- and HIV/TB co-infections. Further, PD-1 expression on MAIT cells was significantly increased in HIV mono- and HIV-TB co-infected patients. The frequency of MAIT cells did not show any significant increase despite the initiation of ART and/or ATT. Majority of the MAIT cells in HCs showed a significant increase in CCR6 expression as compared to HIV/TB co-infections. No marked difference was seen with expressions of chemokine co-receptor CCR5 and CD103 among the study groups. Decrease of CCR6 expression appears to explain why HIV-infected patients display weakened mucosal immune responses. PMID:25894562

  9. High-throughput sequencing reveals restricted TCR Vβ usage and public TCRβ clonotypes among pancreatic lymph node memory CD4(+) T cells and their involvement in autoimmune diabetes.

    PubMed

    Marrero, Idania; Aguilera, Carlos; Hamm, David E; Quinn, Anthony; Kumar, Vipin

    2016-06-01

    Islet-reactive memory CD4(+) T cells are an essential feature of type 1 diabetes (T1D) as they are involved in both spontaneous disease and in its recurrence after islet transplantation. Expansion and enrichment of memory T cells have also been shown in the peripheral blood of diabetic patients. Here, using high-throughput sequencing, we investigated the clonal diversity of the TCRβ repertoire of memory CD4(+) T cells in the pancreatic lymph nodes (PaLN) of non-obese diabetic (NOD) mice and examined their clonal overlap with islet-infiltrating memory CD4T cells. Both prediabetic and diabetic NOD mice exhibited a restricted TCRβ repertoire dominated by clones expressing TRBV13-2, TRBV13-1 or TRBV5 gene segments. There is a limited degree of TCRβ overlap between the memory CD4 repertoire of PaLN and pancreas as well as between the prediabetic and diabetic group. However, public TCRβ clonotypes were identified across several individual animals, some of them with sequences similar to the TCRs from the islet-reactive T cells suggesting their antigen-driven expansion. Moreover, the majority of the public clonotypes expressed TRBV13-2 (Vβ8.2) gene segment. Nasal vaccination with an immunodominat peptide derived from the TCR Vβ8.2 chain led to protection from diabetes, suggesting a critical role for Vβ8.2(+) CD4(+) memory T cells in T1D. These results suggest that memory CD4(+) T cells bearing limited dominant TRBV genes contribute to the autoimmune diabetes and can be potentially targeted for intervention in diabetes. Furthermore, our results have important implications for the identification of public T cell clonotypes as potential novel targets for immune manipulation in human T1D. PMID:27161799

  10. Attrition of TCR Vα7.2+ CD161++ MAIT Cells in HIV-Tuberculosis Co-Infection Is Associated with Elevated Levels of PD-1 Expression

    PubMed Central

    Saeidi, Alireza; Tien Tien, Vicky L.; Al-Batran, Rami; Al-Darraji, Haider A.; Tan, Hong Y.; Yong, Yean K.; Ponnampalavanar, Sasheela; Barathan, Muttiah; Rukumani, Devi V.; Ansari, Abdul W.; Velu, Vijayakumar; Kamarulzaman, Adeeba; Larsson, Marie; Shankar, Esaki M.

    2015-01-01

    Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved antimicrobial MR1-restricted CD8+ T cells co-expressing the semi-invariant TCR Vα7.2, and are numerous in the blood and mucosal tissues of humans. MAIT cells appear to undergo exhaustion in chronic viral infections. However, their role in human immunodeficiency virus type 1 (HIV-1) mono-infection and HIV/tuberculosis (TB) co-infection have seldom been elaborately investigated. We conducted a cross-sectional study to investigate the frequencies and phenotypes of CD161++CD8+ T cells among anti-retroviral therapy (ART)/anti-TB therapy (ATT) treatment-naïve HIV/TB co-infected, ART/TB treated HIV/TB co-infected, ART naïve HIV-infected, ART-treated HIV-infected patients, and HIV negative healthy controls (HCs) by flow cytometry. Our data revealed that the frequency of MAIT cells was severely depleted in HIV mono- and HIV/TB co-infections. Further, PD-1 expression on MAIT cells was significantly increased in HIV mono- and HIV-TB co-infected patients. The frequency of MAIT cells did not show any significant increase despite the initiation of ART and/or ATT. Majority of the MAIT cells in HCs showed a significant increase in CCR6 expression as compared to HIV/TB co-infections. No marked difference was seen with expressions of chemokine co-receptor CCR5 and CD103 among the study groups. Decrease of CCR6 expression appears to explain why HIV-infected patients display weakened mucosal immune responses. PMID:25894562

  11. Synovial Regulatory T Cells Occupy a Discrete TCR Niche in Human Arthritis and Require Local Signals To Stabilize FOXP3 Protein Expression

    PubMed Central

    Giannakopoulou, Eirini; Lom, Hannah; Wedderburn, Lucy R.

    2015-01-01

    Although there is great interest in harnessing the immunosuppressive potential of FOXP3+ regulatory T cells (Tregs) for treating autoimmunity, a sizeable knowledge gap exists regarding Treg fate in human disease. In juvenile idiopathic arthritis (JIA) patients, we have previously reported that atypical CD25+FOXP3− Treg-like cells uniquely populate the inflamed site. Intriguingly, their proportions relative to CD25+FOXP3+ Tregs associate with arthritis course, suggesting a role in disease. The ontogeny of these FOXP3− Treg-like cells is, however, unknown. In this study, we interrogated clonal relationships between CD4+ T cell subsets in JIA, using high-throughput TCR repertoire analysis. We reveal that FOXP3+ Tregs possess highly exclusive TCRβ usage from conventional T cells, in blood, and also at the inflamed site, where they are clonally expanded. Intriguingly, the repertoires of FOXP3+ Tregs in synovial fluid are highly overlapping with CD25+FOXP3− Treg-like cells, indicating fluctuations in FOXP3 expression in the inflamed joint. Furthermore, cultured synovial Tregs rapidly downregulated FOXP3 protein (but not mRNA), and this process was prevented by addition of synovial fluid from JIA patients, through an IL-6–independent mechanism. Our findings suggest that most Tregs arise from a separate lineage from conventional T cells, and that this repertoire divergence is largely maintained under chronic inflammatory conditions. We propose that subsequent Treg expansions at the inflamed site creates an environment that leads to competition for limited resources within the synovium, resulting in the destabilization of FOXP3 expression in some Tregs. PMID:26561546

  12. RhoH Regulates Subcellular Localization of ZAP-70 and Lck in T Cell Receptor Signaling

    PubMed Central

    Chae, Hee-Don; Siefring, Jamie E.; Hildeman, David A.; Gu, Yi; Williams, David A.

    2010-01-01

    RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh-/- bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway. PMID:21103055

  13. Magnetic-Activated Cell Sorting of TCR-Engineered T Cells, Using tCD34 as a Gene Marker, but Not Peptide–MHC Multimers, Results in Significant Numbers of Functional CD4+ and CD8+ T Cells

    PubMed Central

    Govers, Coen; Berrevoets, Cor; Treffers-Westerlaken, Elike; Broertjes, Marieke

    2012-01-01

    Abstract T cell-sorting technologies with peptide–MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance the therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability to enrich T cells is lacking. Here, we compared the in vitro properties of primary human T cells gene-engineered with gp100280–288/HLA-A2-specific T cell receptor-αβ (TCRαβ) on magnetic-activated cell sorting (MACS) with various peptide–MHC multimers or an antibody against truncated CD34 (tCD34). With respect to peptide–MHC multimers, we observed that Streptamer®, when compared with pentamers and tetramers, improved T cell yield as well as level and stability of enrichment, of TCR-engineered T cells (>65% of peptide–MHC-binding T cells, stable for at least 6 weeks). In agreement with these findings, Streptamer, the only detachable reagent, revealed significant T cell expansion in the first week after MACS. Sorting TCR and tCD34 gene-engineered T cells with CD34 monoclonal antibody (mAb) resulted in the most significant T cell yield and enrichment of T cells (>95% of tCD34 T cells, stable for at least 6 weeks). Notably, T cells sorted with CD34 mAb, when compared with Streptamer, bound about 2- to 3-fold less peptide–MHC but showed superior antigen-specific upregulated expression of CD107a and production of interferon (IFN)-γ. Multiparametric flow cytometry revealed that CD4+ T cells, uniquely present in CD34 mAb-sorted T cells, contributed to enhanced IFN-γ production. Taken together, we postulate that CD34 mAb-based sorting of gene-marked T cells has benefits toward applications of T cell therapy, especially those that require CD4+ T cells. PMID:22871260

  14. An alpha-chain TCR CDR3 peptide can enhance EAE induced by myelin basic protein or proteolipid protein.

    PubMed

    Yamamura, T; Geng, T C; Kozovska, M F; Yokoyama, K; Cohen, I R; Tabira, T

    1996-09-15

    Regulation of experimental autoimmune encephalomyelitis (EAE) can be induced by anti-idiotype immunity against T cell receptor (TCR) fragments associated with major histocompatibility complex (MHC) molecules. However, we have recently found that preimmunization with an alpha-chain TCR CDR3 peptide (LYFCAARSNYQL) derived from myelin basic protein (MBP)-specific clones did not suppress but rather augmented the severity of EAE induced by MBP-specific T cells in SJL/J mice. To test whether CDR3 vaccination could control only a highly restricted T cell population, we studied the effect of the peptide against EAE induced by T cells specific for different Ag/MHC ligands and autoimmune diseases affecting non-neural tissues. In contrast to expectations, the peptide was found to augment not only EAE induced by MBP-specific T cells, but also proteolipid protein (PLP)-specific T cell- or PLP peptide-induced EAE in SJL/J mice, and MBP-induced EAE and adjuvant arthritis (AA) in rats. The CDR3 peptide was neither inhibitory nor supportive for Ag-induced activation of an encephalitogenic clone in vitro. In addition, the peptide treatment neither inhibited the induction of Ag-specific T cells nor altered the APC function of spleen cells. These findings, on the one hand, confirm previous results showing TCR peptide-induced enhancement of the disease and, on the other hand, indicate that the TCR CDR3 peptide may control T cells with broader Ag/MHC specificities than could be expected. Structural similarity among TCR idiotypes of autoimmune T cells may partly account for these results. PMID:8892082

  15. The Tumor Targeted Superantigen ABR-217620 Selectively Engages TRBV7-9 and Exploits TCR-pMHC Affinity Mimicry in Mediating T Cell Cytotoxicity

    PubMed Central

    Hedlund, Gunnar; Eriksson, Helena; Sundstedt, Anette; Forsberg, Göran; Jakobsen, Bent K.; Pumphrey, Nicholas; Rödström, Karin; Lindkvist-Petersson, Karin; Björk, Per

    2013-01-01

    The T lymphocytes are the most important effector cells in immunotherapy of cancer. The conceptual objective for developing the tumor targeted superantigen (TTS) ABR-217620 (naptumomab estafenatox, 5T4Fab-SEA/E-120), now in phase 3 studies for advanced renal cell cancer, was to selectively coat tumor cells with cytotoxic T lymphocytes (CTL) target structures functionally similar to natural CTL pMHC target molecules. Here we present data showing that the molecular basis for the anti-tumor activity by ABR-217620 resides in the distinct interaction between the T cell receptor β variable (TRBV) 7-9 and the engineered superantigen (Sag) SEA/E-120 in the fusion protein bound to the 5T4 antigen on tumor cells. Multimeric but not monomeric ABR-217620 selectively stains TRBV7-9 expressing T lymphocytes from human peripheral blood similar to antigen specific staining of T cells with pMHC tetramers. SEA/E-120 selectively activates TRBV7-9 expressing T lymphocytes resulting in expansion of the subset. ABR-217620 selectively triggers TRBV7-9 expressing cytotoxic T lymphocytes to kill 5T4 positive tumor cells. Furthermore, ABR-217620 activates TRBV7-9 expressing T cell line cells in the presence of cell- and bead-bound 5T4 tumor antigen. Surface plasmon resonance analysis revealed that ABR-217620 binds to 5T4 with high affinity, to TRBV7-9 with low affinity and to MHC class II with very low affinity. The T lymphocyte engagement by ABR-217620 is constituted by displaying high affinity binding to the tumor cells (KD approximately 1 nM) and with the mimicry of natural productive immune TCR-pMHC contact using affinities of around 1 µM. This difference in kinetics between the two components of the ABR-217620 fusion protein will bias the binding towards the 5T4 target antigen, efficiently activating T-cells via SEA/E-120 only when presented by the tumor cells. PMID:24194959

  16. The tumor targeted superantigen ABR-217620 selectively engages TRBV7-9 and exploits TCR-pMHC affinity mimicry in mediating T cell cytotoxicity.

    PubMed

    Hedlund, Gunnar; Eriksson, Helena; Sundstedt, Anette; Forsberg, Göran; Jakobsen, Bent K; Pumphrey, Nicholas; Rödström, Karin; Lindkvist-Petersson, Karin; Björk, Per

    2013-01-01

    The T lymphocytes are the most important effector cells in immunotherapy of cancer. The conceptual objective for developing the tumor targeted superantigen (TTS) ABR-217620 (naptumomab estafenatox, 5T4Fab-SEA/E-120), now in phase 3 studies for advanced renal cell cancer, was to selectively coat tumor cells with cytotoxic T lymphocytes (CTL) target structures functionally similar to natural CTL pMHC target molecules. Here we present data showing that the molecular basis for the anti-tumor activity by ABR-217620 resides in the distinct interaction between the T cell receptor β variable (TRBV) 7-9 and the engineered superantigen (Sag) SEA/E-120 in the fusion protein bound to the 5T4 antigen on tumor cells. Multimeric but not monomeric ABR-217620 selectively stains TRBV7-9 expressing T lymphocytes from human peripheral blood similar to antigen specific staining of T cells with pMHC tetramers. SEA/E-120 selectively activates TRBV7-9 expressing T lymphocytes resulting in expansion of the subset. ABR-217620 selectively triggers TRBV7-9 expressing cytotoxic T lymphocytes to kill 5T4 positive tumor cells. Furthermore, ABR-217620 activates TRBV7-9 expressing T cell line cells in the presence of cell- and bead-bound 5T4 tumor antigen. Surface plasmon resonance analysis revealed that ABR-217620 binds to 5T4 with high affinity, to TRBV7-9 with low affinity and to MHC class II with very low affinity. The T lymphocyte engagement by ABR-217620 is constituted by displaying high affinity binding to the tumor cells (KD approximately 1 nM) and with the mimicry of natural productive immune TCR-pMHC contact using affinities of around 1 µM. This difference in kinetics between the two components of the ABR-217620 fusion protein will bias the binding towards the 5T4 target antigen, efficiently activating T-cells via SEA/E-120 only when presented by the tumor cells. PMID:24194959

  17. High dose of dexamethasone upregulates TCR/CD3-induced calcium response independent of TCR zeta chain expression in human T lymphocytes.

    PubMed

    Nambiar, M P; Enyedy, E J; Fisher, C U; Warke, V G; Tsokos, G C

    Glucocorticoids are very potent anti-inflammatory and immunosuppressive agents that modulate cellular immune responses, although, the molecular mechanisms that impart their complex effects have not been completely defined. We have previously demonstrated that dexamethasone (Dex), a synthetic glucocorticoid, biphasically modulates the expression of TCR (T cell receptor) zeta chain in human T cells. At 10 nM, it induced the expression of TCR zeta chain whereas at 100 nM, it inhibited its expression. In parallel to the upregulation of TCR zeta chain, the TCR/CD3-mediated [Ca(2+)](i) response was enhanced in 10 nM Dex-treated cells. However, at 100 nM, Dex treatment enhanced TCR/CD3-mediated [Ca(2+)](i) response without the induction of TCR zeta chain expression. Because the classical transcriptional model of glucocorticoid action cannot account for the effects of high dose of Dex, here we studied alternative mechanisms of action. We show that, increased and more sustained TCR/CD3-mediated [Ca(2+)](i) response was also observed in 100 nM Dex-treated cells in the presence of actinomycin D or cycloheximide suggesting that cellular transcription and/or de novo protein synthesis are not required for the induction. The TCR/CD3-mediated hyper [Ca(2+)](i) response in 100 nM Dex-treated cells was readily reversible by short-term culture in steroid-free medium. RU-486, a competitive antagonist of Dex, inhibited the increase in [Ca(2+)](i) response suggesting that the effect of Dex is mediated through the glucocorticoid receptor. Although the lipid-raft association of the TCR zeta chain was not significantly increased, high-dose of Dex increased the amount of ubiquitinated form of the TCR zeta chain in the cell membrane along with increased levels of actin. Fluorescence microscopy showed that high-dose of Dex alters the distribution of the TCR zeta chain and form more distinct clusters upon TCR/CD3 stimulation. These results suggest that high dose of Dex perturbs the membrane

  18. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients

    PubMed Central

    Muraro, Paolo A.; Douek, Daniel C.; Packer, Amy; Chung, Katherine; Guenaga, Francisco J.; Cassiani-Ingoni, Riccardo; Campbell, Catherine; Memon, Sarfraz; Nagle, James W.; Hakim, Frances T.; Gress, Ronald E.; McFarland, Henry F.; Burt, Richard K.; Martin, Roland

    2005-01-01

    Clinical trials have indicated that autologous hematopoietic stem cell transplantation (HSCT) can persistently suppress inflammatory disease activity in a subset of patients with severe multiple sclerosis (MS), but the mechanism has remained unclear. To understand whether the beneficial effects on the course of disease are mediated by lympho-depletive effects alone or are sustained by a regeneration of the immune repertoire, we examined the long-term immune reconstitution in patients with MS who received HSCT. After numeric recovery of leukocytes, at 2-yr follow-up there was on average a doubling of the frequency of naive CD4+ T cells at the expense of memory T cells. Phenotypic and T cell receptor excision circle (TREC) analysis confirmed a recent thymic origin of the expanded naive T cell subset. Analysis of the T cell receptor repertoire showed the reconstitution of an overall broader clonal diversity and an extensive renewal of clonal specificities compared with pretherapy. These data are the first to demonstrate that long-term suppression of inflammatory activity in MS patients who received HSCT does not depend on persisting lymphopenia and is associated with profound qualitative immunological changes that demonstrate a de novo regeneration of the T cell compartment. PMID:15738052

  19. Retrieval of functional TCRs from single antigen-specific T cells: Toward individualized TCR-engineered therapies

    PubMed Central

    Omokoko, Tana; Simon, Petra; Türeci, Özlem; Sahin, Ugur

    2015-01-01

    We have developed a highly versatile platform for the systematic retrieval of T-cell receptors (TCRs) from single-antigen-reactive T cells and for characterization of their function and specificity. This approach enables rapid extraction of multiple TCRs from repertoires in individuals and not only broadens the diversity of TCRs suitable for clinical use, but also sets the stage for actively personalized immunotherapeutic strategies. PMID:26140230

  20. Vaccine Adjuvants Alter TCR-Based Selection Thresholds

    PubMed Central

    Malherbe, Laurent; Mark, Linda; Fazilleau, Nicolas; McHeyzer-Williams, Louise J.; McHeyzer-Williams, Michael G.

    2009-01-01

    SUMMARY How TCR specificity evolves in vivo following protein vaccination is central to the development of T helper cell function. Most models of clonal selection in the T helper cell compartment favor TCR affinity-based thresholds. Here, we demonstrate that depot-forming vaccine adjuvants do not require TLR agonists to induce clonal dominance in antigen-specific T helper cell responses. However, readily dispersible adjuvants using TLR-9 and TLR-4 agonists skew TCR repertoire usage by increasing TCR selection thresholds and enhancing antigen-specific clonal expansion. In this manner, vaccine adjuvants control the local accumulation of T helper cells expressing TCR with the highest peptide MHC class II binding. Clonal composition was altered by mechanisms that blocked the local propagation of clonotypes independent of antigen dose and not as a consequence of inter-clonal competition. This capacity of adjuvants to modify antigen-specific Th cell clonal composition has fundamental implications for the design of future protein sub-unit vaccines. PMID:18450485

  1. A genome wide transcriptional model of the complex response to pre-TCR signalling during thymocyte differentiation.

    PubMed

    Sahni, Hemant; Ross, Susan; Barbarulo, Alessandro; Solanki, Anisha; Lau, Ching-In; Furmanski, Anna; Saldaña, José Ignacio; Ono, Masahiro; Hubank, Mike; Barenco, Martino; Crompton, Tessa

    2015-10-01

    Developing thymocytes require pre-TCR signalling to differentiate from CD4-CD8- double negative to CD4+CD8+ double positive cell. Here we followed the transcriptional response to pre-TCR signalling in a synchronised population of differentiating double negative thymocytes. This time series analysis revealed a complex transcriptional response, in which thousands of genes were up and down-regulated before changes in cell surface phenotype were detected. Genome-wide measurement of RNA degradation of individual genes showed great heterogeneity in the rate of degradation between different genes. We therefore used time course expression and degradation data and a genome wide transcriptional modelling (GWTM) strategy to model the transcriptional response of genes up-regulated on pre-TCR signal transduction. This analysis revealed five major temporally distinct transcriptional activities that up regulate transcription through time, whereas down-regulation of expression occurred in three waves. Our model thus placed known regulators in a temporal perspective, and in addition identified novel candidate regulators of thymocyte differentiation. PMID:26415229

  2. TNF-α Antibody Therapy in Combination With the T-Cell-Specific Antibody Anti-TCR Reverses the Diabetic Metabolic State in the LEW.1AR1-iddm Rat.

    PubMed

    Jörns, Anne; Ertekin, Ümüs Gül; Arndt, Tanja; Terbish, Taivankhuu; Wedekind, Dirk; Lenzen, Sigurd

    2015-08-01

    Anti-tumor necrosis factor-α (TNF-α) therapy (5 mg/kg body weight), alone or combined with the T-cell-specific antibody anti-T-cell receptor (TCR) (0.5 mg/kg body weight), was performed over 5 days immediately after disease manifestation to reverse the diabetic metabolic state in the LEW.1AR1-iddm rat, an animal model of human type 1 diabetes. Only combination therapy starting at blood glucose concentrations below 15 mmol/L restored normoglycemia and normalized C-peptide. Increased β-cell proliferation and reduced apoptosis led to a restoration of β-cell mass along with an immune cell infiltration-free pancreas 60 days after the end of therapy. This combination of two antibodies, anti-TCR/CD3, as a cornerstone compound in anti-T-cell therapy, and anti-TNF-α, as the most prominent and effective therapeutic antibody in suppressing TNF-α action in many autoimmune diseases, was able to reverse the diabetic metabolic state. With increasing blood glucose concentrations during the disease progression, however, the proapoptotic pressure on the residual β-cell mass increased, ultimately reaching a point where the reservoir of the surviving β-cells was insufficient to allow a restoration of normal β-cell mass through regeneration. The present results may open a therapeutic window for reversal of diabetic hyperglycemia in patients, worthwhile of being tested in clinical trials. PMID:25784545

  3. c-Jun and Ets2 proteins regulate expression of spleen tyrosine kinase in T cells.

    PubMed

    Ghosh, Debjani; Tsokos, George C; Kyttaris, Vasileios C

    2012-04-01

    Effector T cells and T cells from patients with systemic lupus erythematosus (SLE) express increased levels of the spleen tyrosine kinase (Syk). Syk binds to the T cell receptor (TCR)-CD3 complex and transduces the TCR-mediated signal in the cell more efficiently than the canonical CD3ζ chain. The reasons for the increased expression of Syk are unclear. In the present study, we found that Syk is regulated by the transcription factor c-Jun in cooperation with Ets2. c-Jun and Ets2 bound to the SYK promoter in close proximity and increased the promoter activity in a specific manner. Disruption of c-Jun and Ets2 expression by siRNA resulted in decreased expression of Syk. Overexpression of c-Jun but not Ets2 resulted in increase in Syk protein. c-Jun and Ets2 co-immunoprecipitated and had an additive effect on Syk expression. c-Jun-driven SYK promoter activation showed a similar pattern in B cells; however, as expected, basal promoter activity was much higher in B cells as compared with T cells. Overexpression of c-Jun led to increase in intracytoplasmic calcium flux following TCR stimulation. Moreover, we found that SLE T cells had increased levels of c-Jun at baseline and phosphorylated c-Jun upon activation. Finally, disruption of c-Jun and Ets2 in SLE T cells resulted in a decrease in calcium flux upon TCR stimulation. In conclusion, c-Jun in cooperation with Ets2 increases the expression of Syk and contributes to Syk-mediated heightened calcium responses in SLE T cells. PMID:22354960

  4. Charged MVB protein 5 is involved in T-cell receptor signaling.

    PubMed

    Wi, Sae Mi; Min, Yoon; Lee, Ki-Young

    2016-01-01

    Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)-mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5(KD)) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5(KD) Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5(KD) Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling. PMID:26821576

  5. Charged MVB protein 5 is involved in T-cell receptor signaling

    PubMed Central

    Wi, Sae Mi; Min, Yoon; Lee, Ki-Young

    2016-01-01

    Charged multivesicular body protein 5 (CHMP5) has a key role in multivesicular body biogenesis and a critical role in the downregulation of signaling pathways through receptor degradation. However, the role of CHMP5 in T-cell receptor (TCR)–mediated signaling has not been previously investigated. In this study, we utilized a short hairpin RNA-based RNA interference approach to investigate the functional role of CHMP5. Upon TCR stimulation, CHMP5-knockdown (CHMP5KD) Jurkat T cells exhibited activation of TCR downstream signaling molecules, such as PKCθ and IKKαβ, and resulted in the activation of nuclear factor-κB and the marked upregulation of TCR-induced gene expression. Moreover, we found that activator protein-1 and nuclear factor of activated T-cells transcriptional factors were markedly activated in CHMP5KD Jurkat cells in response to TCR stimulation, which led to a significant increase in interleukin-2 secretion. Biochemical studies revealed that CHMP5 endogenously forms high-molecular-weight complexes, including TCR molecules, and specifically interacts with TCRβ. Interestingly, flow cytometry analysis also revealed that CHMP5KD Jurkat T cells exhibit upregulation of TCR expression on the cell surface compared with control Jurkat T cells. Taken together, these findings demonstrated that CHMP5 might be involved in the homeostatic regulation of TCR on the cell surface, presumably through TCR recycling or degradation. Thus CHMP5 is implicated in TCR-mediated signaling. PMID:26821576

  6. Activation of the TCR complex by peptide-MHC and superantigens.

    PubMed

    Louis-Dit-Sully, Christine; Blumenthal, Britta; Duchniewicz, Marlena; Beck-Garcia, Katharina; Fiala, Gina J; Beck-García, Esmeralda; Mukenhirn, Markus; Minguet, Susana; Schamel, Wolfgang W A

    2014-01-01

    Drug hypersensitivity reactions are immune mediated, with T lymphocytes being stimulated by the drugs via their T-cell antigen receptor (TCR). In the nonpathogenic state, the TCR is activated by foreign peptides presented by major histocompatibility complex molecules (pMHC). Foreign pMHC binds with sufficient affinity to TCRαβ and thereby elicits phosphorylation of the cytoplasmic tails of the TCRαβ-associated CD3 subunits. The process is called TCR triggering. In this review, we discuss the current models of TCR triggering and which drug properties are crucial for TCR stimulation. The underlying molecular mechanisms mostly include pMHC-induced exposure of the CD3 cytoplasmic tails or alterations of the kinase-phosphatase equilibrium in the vicinity of CD3. In this review, we also discuss triggering of the TCR by small chemical compounds in context of these general mechanisms. PMID:24214615

  7. Regulation of T cell apoptosis via T cell receptors and steroid receptors.

    PubMed

    Iwata, M; Ohoka, Y; Kuwata, T; Asada, A

    1996-11-01

    Less than 5% of immature CD4/CD8 double-positive (DP) thymocytes are positively selected to survive and differentiate into single-positive CD4 and CD8 T cells, while self-reactive DP thymocytes undergo apoptosis (negative selection). Both positive and negative selection events are active processes that involve signaling through the T cell receptors (TCRs) and through some accessory molecules. The two events differ quantitatively in the strength of the interaction between TCR and peptide/major histocompatibility complex molecules. We established an in vitro model of positive selection that can be analyzed quantitatively. Positive selection is likely to inhibit glucocorticoid-induced apoptosis in DP thymocytes. Proper crosslinking of TCR together with CD4, CD8, or LFA-1 inhibits the death, and its inhibitory activity is mimicked by proper combinations of ionomycin, a calcium ionophore, and phorbol myristate acetate (PMA), a protein kinase C (PKC) activator. The drug concentrations are within narrow ranges, and are lower than those which are required for the proliferation of mature T cells. Transient stimulation with the combinations of ionomycin and PMA induces differentiation and commitment of isolated DP thymocytes to the CD4 or CD8 T cell lineage in suspension cultures. The level of PKC activity appears to determine the lineage to commit. Functional mature T cells are induced from the committed cells upon secondary stimulation. Activation of calcineurin, a Ca2+/calmodulin-dependent protein phosphatase, also appears to be essential for positive selection as well as for the inhibition of glucocorticoid-induced apoptosis. Negative selection and the regulation of mature T cell apoptosis through TCR and steroid receptors are also discussed. PMID:8948021

  8. TCR Nanoclusters as the Framework for Transmission of Conformational Changes and Cooperativity

    PubMed Central

    Blanco, Raquel; Alarcón, Balbino

    2012-01-01

    Increasing evidence favors the notion that, before triggering, the T cell antigen receptor (TCR) forms nanometer-scale oligomers that are called nanoclusters. The organization of the TCR in pre-existing oligomers cannot be ignored when analyzing the properties of ligand (pMHC) recognition and signal transduction. As with other membrane receptors, the existence of TCR oligomers points out to cooperativity phenomena. We review the data in support of conformational changes in the TCR as the basic principle to transduce the activation signal to the cytoplasm and the incipient data suggesting cooperativity within nanoclusters. PMID:22582078

  9. Functional evidence for TCR-intrinsic specificity for MHCII.

    PubMed

    Parrish, Heather L; Deshpande, Neha R; Vasic, Jelena; Kuhns, Michael S

    2016-03-15

    How T cells become restricted to binding antigenic peptides within class I or class II major histocompatibility complex molecules (pMHCI or pMHCII, respectively) via clonotypic T-cell receptors (TCRs) remains debated. During development, if TCR-pMHC interactions exceed an affinity threshold, a signal is generated that positively selects the thymocyte to become a mature CD4(+) or CD8(+) T cell that can recognize foreign peptides within MHCII or MHCI, respectively. But whether TCRs possess an intrinsic, subthreshold specificity for MHC that facilitates sampling of the peptides within MHC during positive selection or T-cell activation is undefined. Here we asked if increasing the frequency of lymphocyte-specific protein tyrosine kinase (Lck)-associated CD4 molecules in T-cell hybridomas would allow for the detection of subthreshold TCR-MHC interactions. The reactivity of 10 distinct TCRs was assessed in response to selecting and nonselecting MHCII bearing cognate, null, or "shaved" peptides with alanine substitutions at known TCR contact residues: Three of the TCRs were selected on MHCII and have defined peptide specificity, two were selected on MHCI and have a known pMHC specificity, and five were generated in vitro without defined selecting or cognate pMHC. Our central finding is that IL-2 was made when each TCR interacted with selecting or nonselecting MHCII presenting shaved peptides. These responses were abrogated by anti-CD4 antibodies and mutagenesis of CD4. They were also inhibited by anti-MHC antibodies that block TCR-MHCII interactions. We interpret these data as functional evidence for TCR-intrinsic specificity for MHCII. PMID:26831112

  10. Retinoic Acid Modulates Interferon-γ Production by Hepatic Natural Killer T Cells via Phosphatase 2A and the Extracellular Signal-Regulated Kinase Pathway

    PubMed Central

    Chang, Heng-Kwei

    2015-01-01

    Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells. PMID:25343668

  11. KIAA1530 protein is recruited by Cockayne syndrome complementation group protein A (CSA) to participate in transcription-coupled repair (TCR).

    PubMed

    Fei, Jia; Chen, Junjie

    2012-10-12

    Transcription-coupled repair (TCR) is the major pathway involved in the removal of UV-induced photolesions from the transcribed strand of active genes. Two Cockayne syndrome (CS) complementation group proteins, CSA and CSB, are important for TCR repair. The molecular mechanisms by which CS proteins regulate TCR remain elusive. Here, we report the characterization of KIAA1530, an evolutionarily conserved protein that participates in this pathway through its interaction with CSA and the TFIIH complex. We found that UV irradiation led to the recruitment of KIAA1530 onto chromatin in a CSA-dependent manner. Cells lacking KIAA1530 were highly sensitive to UV irradiation and displayed deficiency in TCR. In addition, KIAA1530 depletion abrogated stability of the CSB protein following UV irradiation. More excitingly, we found that a unique CSA mutant (W361C), which was previously identified in a patient with UV(s)S syndrome, showed defective KIAA1530 binding and resulted in a failure of recruiting KIAA1530 and stabilizing CSB after UV treatment. Together, our data not only reveal that KIAA1530 is an important player in TCR but also lead to a better understanding of the molecular mechanism underlying UV(s)S syndrome. PMID:22902626

  12. KIAA1530 Protein Is Recruited by Cockayne Syndrome Complementation Group Protein A (CSA) to Participate in Transcription-coupled Repair (TCR)

    PubMed Central

    Fei, Jia; Chen, Junjie

    2012-01-01

    Transcription-coupled repair (TCR) is the major pathway involved in the removal of UV-induced photolesions from the transcribed strand of active genes. Two Cockayne syndrome (CS) complementation group proteins, CSA and CSB, are important for TCR repair. The molecular mechanisms by which CS proteins regulate TCR remain elusive. Here, we report the characterization of KIAA1530, an evolutionarily conserved protein that participates in this pathway through its interaction with CSA and the TFIIH complex. We found that UV irradiation led to the recruitment of KIAA1530 onto chromatin in a CSA-dependent manner. Cells lacking KIAA1530 were highly sensitive to UV irradiation and displayed deficiency in TCR. In addition, KIAA1530 depletion abrogated stability of the CSB protein following UV irradiation. More excitingly, we found that a unique CSA mutant (W361C), which was previously identified in a patient with UVsS syndrome, showed defective KIAA1530 binding and resulted in a failure of recruiting KIAA1530 and stabilizing CSB after UV treatment. Together, our data not only reveal that KIAA1530 is an important player in TCR but also lead to a better understanding of the molecular mechanism underlying UVsS syndrome. PMID:22902626

  13. Dexamethasone modulates TCR zeta chain expression and antigen receptor-mediated early signaling events in human T lymphocytes.

    PubMed

    Nambiar, M P; Enyedy, E J; Fisher, C U; Warke, V G; Juang, Y T; Tsokos, G C

    2001-02-25

    Dexamethasone is a potent anti-inflammatory and immunosupressive agent that has complex, yet incompletely defined, effects on the immune response. Here, we explored the effect of dexamethasone on the expression of TCR zeta chain and TCR/CD3-induced early signaling events in human T lymphocytes. Immunoblotting studies using TCR zeta chain specific mAb showed a dose-dependent biphasic effect of dexamethasone on TCR zeta chain expression, that is, it was increased when cells were incubated with 10 nM, whereas the expression was decreased when incubated with 100 nM dexamethasone. The dose-dependent biphasic effect of dexamethsone on the TCR zeta chain expression was also revealed by FACS analysis of permeabilized cells. Time course studies showed that upregulation of the TCR zeta chain at 10 nM dexamethasone reached maximum levels at 24 h and remained elevated up to 48 h. Other subunits of the TCR/CD3 complex were minimally affected under these conditions. The increased expression of the TCR zeta chain following treatment with 10 nM dexamethasone correlated with increased anti-CD3 antibody-induced tyrosine phosphorylation of the TCR zeta chain and downstream signaling intermediate ZAP-70 and PLC gamma with faster kinetics. Similarly, the induction of TCR zeta chain expression at 10 nM dexamethasone correlated with increased and more sustained TCR/CD3-mediated [Ca(2+)](i) response. Reporter gene assays using TCR zeta chain promoter-driven luciferase gene constructs in Jurkat cells showed that treatment with 10 nM dexamethasone increased TCR zeta chain promoter activity and that the region between -160 and +58 was responsible for the observed effect. These results suggest that dexamethasone primarily acts at the transcriptional level and differentially modulates TCR zeta chain expression and antigen receptor-mediated early signaling events in human peripheral T lymphocytes. PMID:11277620

  14. Oxidative stress is involved in the heat stress-induced downregulation of TCR zeta chain expression and TCR/CD3-mediated [Ca(2+)](i) response in human T-lymphocytes.

    PubMed

    Nambiar, Madhusoodana P; Fisher, Carolyn U; Enyedy, Edith J; Warke, Vishal G; Kumar, Anil; Tsokos, George C

    2002-02-01

    Exposure of human T-lymphocytes to heat downregulates TCR zeta chain expression and inhibits (TCR)/CD3-mediated production of inositol triphosphate and [Ca(2+)](i) signaling. Here we investigated whether oxidative stress is involved in the heat-induced downregulation of TCR/CD3-mediated signaling. To this end, we have studied the effect of a thiol antioxidant, N-acetyl-L-cysteine (NAC), and a non-thiol antioxidant, allopurinol, on heat-induced downregulation of TCR/CD3-mediated signaling. We found that preincubation of cells with 10mM NAC significantly reversed the downregulation of TCR/CD3-mediated [Ca(2+)](i) response and restored the suppression of TCR zeta chain protein expression as well as prevented its increased membrane distribution in heat-treated cells. NAC also reversed the downregulation of TCR zeta chain mRNA expression and the active 94kDa TCR zeta chain transcription factor, Elf-1, in heat-treated cells. Consistent with the increase in the TCR zeta chain, preincubation with NAC increased the levels of antigen receptor-induced tyrosine phosphorylation of several cytosolic proteins. Finally, treatment with NAC was able to reverse the suppression of IL-2 production in heat-treated cells. Inactive analog, N-acetylserine, failed to reverse the heat-induced downregulation of TCR/CD3-mediated signaling. Allopurinol, another potent non-thiol antioxidant, also restored the TCR/CD3-mediated [Ca(2+)](i) response in heat-treated cells. These results demonstrate that antioxidants restore the expression of TCR zeta chain and reverse the TCR/CD3-mediated signaling abnormalities associated with heat stress and suggest that heat shock-induced oxidative stress is a mediator of the heat-induced biochemical damage that leads to downregulation of signaling in human T-lymphocytes. PMID:12202152

  15. BTB-ZF Protein Znf131 Regulates Cell Growth of Developing and Mature T Cells.

    PubMed

    Iguchi, Tomohiro; Aoki, Kazuhisa; Ikawa, Tomokatsu; Taoka, Masato; Taya, Choji; Yoshitani, Hiroshi; Toma-Hirano, Makiko; Koiwai, Osamu; Isobe, Toshiaki; Kawamoto, Hiroshi; Masai, Hisao; Miyatake, Shoichiro

    2015-08-01

    Many members of the BTB-ZF family have been shown to play important roles in lymphocyte development and function. The role of zinc finger Znf131 (also known as Zbtb35) in T cell lineage was elucidated through the production of mice with floxed allele to disrupt at different stages of development. In this article, we present that Znf131 is critical for T cell development during double-negative to double-positive stage, with which significant cell expansion triggered by the pre-TCR signal is coupled. In mature T cells, Znf131 is required for the activation of effector genes, as well as robust proliferation induced upon TCR signal. One of the cyclin-dependent kinase inhibitors, p21(Cip1) encoded by cdkn1a gene, is one of the targets of Znf131. The regulation of T cell proliferation by Znf131 is in part attributed to its suppression on the expression of p21(Cip1). PMID:26136427

  16. T-cell receptors in ectothermic vertebrates.

    PubMed

    Charlemagne, J; Fellah, J S; De Guerra, A; Kerfourn, F; Partula, S

    1998-12-01

    The structure and expression of genes encoding molecules homologous to mammalian T-cell receptors (TCR) have been recently studied in ectothermic vertebrate species representative of chondrychthians, teleosts, and amphibians. The overall TCR chain structure is well conserved in phylogeny: TCR beta- and TCR alpha-like chains were detected in all the species analyzed; TCR gamma- and TCR delta-like chains were also present in a chondrychthian species. The diversity potential of the variable (V) and joining (J) segments is rather large and, as in mammals, conserved diversity (D) segments are associated to the TCR beta and TCR delta chains. An important level of junctional diversity occurred at the V-(D)-J junctions, with the potential addition of N- and P-nucleotides. Thus, the conservation of the structure and of the potential of diversity of TCR molecules have been under a permanent selective pressure during vertebrate evolution. The structure of MHC class I and class II molecules was also well conserved in jawed vertebrates. TCR and MHC molecules are strongly functionally linked and play a determinant role in the initiation and the regulation of the specific immune responses; thus, it is not surprising that their structures have been reciprocally frozen during evolution. PMID:9914905

  17. Pak2 Controls Acquisition of NKT Cell Fate by Regulating Expression of the Transcription Factors PLZF and Egr2.

    PubMed

    O'Hagan, Kyle L; Zhao, Jie; Pryshchep, Olga; Wang, Chyung-Ru; Phee, Hyewon

    2015-12-01

    NKT cells constitute a small population of T cells developed in the thymus that produce large amounts of cytokines and chemokines in response to lipid Ags. Signaling through the Vα14-Jα18 TCR instructs commitment to the NKT cell lineage, but the precise signaling mechanisms that instruct their lineage choice are unclear. In this article, we report that the cytoskeletal remodeling protein, p21-activated kinase 2 (Pak2), was essential for NKT cell development. Loss of Pak2 in T cells reduced stage III NKT cells in the thymus and periphery. Among different NKT cell subsets, Pak2 was necessary for the generation and function of NKT1 and NKT2 cells, but not NKT17 cells. Mechanistically, expression of Egr2 and promyelocytic leukemia zinc finger (PLZF), two key transcription factors for acquiring the NKT cell fate, were markedly diminished in the absence of Pak2. Diminished expression of Egr2 and PLZF were not caused by aberrant TCR signaling, as determined using a Nur77-GFP reporter, but were likely due to impaired induction and maintenance of signaling lymphocyte activation molecule 6 expression, a TCR costimulatory receptor required for NKT cell development. These data suggest that Pak2 controls thymic NKT cell development by providing a signal that links Egr2 to induce PLZF, in part by regulating signaling lymphocyte activation molecule 6 expression. PMID:26519537

  18. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  19. Dissecting the two models of TCR structure-function relationships.

    PubMed

    Cohn, Melvin

    2016-08-01

    There are only two comprehensive models attempting to account for the TCR structure-function relationships, referred to as the Standard or Centric model (Model I) and the Tritope model (Model II). This essay is written to analyze comparatively the two formulations of restrictive reactivity, stressing in particular the logic of each. Model I is essentially built on an analogy between the TCR and the BCR. Given a TCR with only one combining site (paratope), restrictive recognition requires that its ligand be viewed as a composite structure between the peptide and restricting element. It is this relationship that entrains a set of correlates that makes Model I untenable. Model II is predicated on the postulate that the recognition of the allele-specific determinants expressed by MHC-encoded restricting elements (R) is germline encoded and selected, whereas the recognition of peptide (P) is somatically encoded and selected. These selective pressures must operate on definable structures and this, in turn, necessitates a multiply recognitive T cell antigen receptor (TCR) with independent anti-R and anti-P paratopes that function coherently to signal restrictive reactivity. The consequences of this "two repertoire" postulate give us a concept of TCR structure quite distinct from that at present generally accepted, as well as a surprising relationship between numbers of functional TCR V gene segments and allele-specific determinants in the species. In the end, both models must deal with the relationship between the epitope-paratope interaction(s) and the signals to the T cell necessary for its differentiation and function. PMID:27114367

  20. Continuous antigenic stimulation of DO11.10 TCR transgenic mice in the presence or absence of IL-1β: possible implications for mechanisms of T cell depletion in HIV disease1

    PubMed Central

    Ladell, Kristin; Hazenberg, Mette D.; Fitch, Mark; Emson, Claire; McEvoy-Hein Asgarian, Bridget K.; Mold, Jeff E.; Miller, Corey; Busch, Robert; Price, David A.; Hellerstein, Marc K.; McCune, Joseph M.

    2015-01-01

    Untreated HIV disease is associated with chronic immune activation and CD4+ T cell depletion. A variety of mechanisms have been invoked to account for CD4+ T cell depletion in this context, but the quantitative contributions of these proposed mechanisms over time remains unclear. We turned to the DO11.10 TCR transgenic (tg) mouse model, where OVA is recognized in the context of H-2d, to explore the impact of chronic antigenic stimulation on CD4+ T cell dynamics. To model dichotomous states of persistent antigen exposure in the presence or absence of proinflammatory stimulation, we administered OVA peptide (OVAp) to these mice on a continuous basis with or without the prototypic proinflammatory cytokine, interleukin 1β (IL-1β). In both cases, circulating antigen-specific CD4+ T cells were depleted. However, in the absence of IL-1β, there was limited proliferation and effector/memory conversion of antigen-specific T cells, depletion of peripheral CD4+ T cells in hematolymphoid organs, and systemic induction of regulatory FoxP3+CD4+ T cells, as often observed in late-stage HIV disease. By contrast, when OVAp was administered in the presence of IL-1β, effector/memory phenotype T cells expanded and the typical symptoms of heightened immune activation were observed. Acknowledging the imperfect and incomplete relationship between antigen-stimulated DO11.10 TCR tg mice and HIV-infected humans, our data suggest that CD4+ T cell depletion in the setting of HIV disease may reflect, at least in part, chronic antigen exposure in the absence of proinflammatory signals and/or appropriate antigen-presenting cell functions. PMID:26416271

  1. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1β: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease.

    PubMed

    Ladell, Kristin; Hazenberg, Mette D; Fitch, Mark; Emson, Claire; McEvoy-Hein Asgarian, Bridget K; Mold, Jeff E; Miller, Corey; Busch, Robert; Price, David A; Hellerstein, Marc K; McCune, Joseph M

    2015-11-01

    Untreated HIV disease is associated with chronic immune activation and CD4(+) T cell depletion. A variety of mechanisms have been invoked to account for CD4(+) T cell depletion in this setting, but the quantitative contributions of these proposed mechanisms over time remain unclear. We turned to the DO11.10 TCR transgenic mouse model, where OVA is recognized in the context of H-2(d), to explore the impact of chronic antigenic stimulation on CD4(+) T cell dynamics. To model dichotomous states of persistent Ag exposure in the presence or absence of proinflammatory stimulation, we administered OVA peptide to these mice on a continuous basis with or without the prototypic proinflammatory cytokine, IL-1β. In both cases, circulating Ag-specific CD4(+) T cells were depleted. However, in the absence of IL-1β, there was limited proliferation and effector/memory conversion of Ag-specific T cells, depletion of peripheral CD4(+) T cells in hematolymphoid organs, and systemic induction of regulatory Foxp3(+)CD4(+) T cells, as often observed in late-stage HIV disease. By contrast, when OVA peptide was administered in the presence of IL-1β, effector/memory phenotype T cells expanded and the typical symptoms of heightened immune activation were observed. Acknowledging the imperfect and incomplete relationship between Ag-stimulated DO11.10 TCR transgenic mice and HIV-infected humans, our data suggest that CD4(+) T cell depletion in the setting of HIV disease may reflect, at least in part, chronic Ag exposure in the absence of proinflammatory signals and/or appropriate APC functions. PMID:26416271

  2. CD28 costimulatory signals in T lymphocyte activation: Emerging functions beyond a qualitative and quantitative support to TCR signalling.

    PubMed

    Porciello, Nicla; Tuosto, Loretta

    2016-04-01

    CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. By binding its cognate ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional antigen presenting cells (APC), CD28 initiates several signalling cascades, which qualitatively and quantitatively support T cell receptor (TCR) signalling. More recent data evidenced that human CD28 can also act as a TCR-independent signalling unit, by delivering specific signals, which regulate the expression of pro-inflammatory cytokine/chemokines. Despite the enormous progresses made in identifying the mechanisms and molecules involved in CD28 signalling properties, much remains to be elucidated, especially in the light of the functional differences observed between human and mouse CD28. In this review we provide an overview of the current mechanisms and molecules through which CD28 support TCR signalling and highlight recent findings on the specific signalling motifs that regulate the unique pro-inflammatory activity of human CD28. PMID:26970725

  3. Two common structural motifs for TCR recognition by staphylococcal enterotoxins.

    PubMed

    Rödström, Karin E J; Regenthal, Paulina; Bahl, Christopher; Ford, Alex; Baker, David; Lindkvist-Petersson, Karin

    2016-01-01

    Superantigens are toxins produced by Staphylococcus aureus, called staphylococcal enterotoxins (abbreviated SEA to SEU). They can cross-link the T cell receptor (TCR) and major histocompatibility complex class II, triggering a massive T cell activation and hence disease. Due to high stability and toxicity, superantigens are potential agents of bioterrorism. Hence, antagonists may not only be useful in the treatment of disease but also serve as countermeasures to biological warfare. Of particular interest are inhibitors against SEA and SEB. SEA is the main cause of food poisoning, while SEB is a common toxin manufactured as a biological weapon. Here, we present the crystal structures of SEA in complex with TCR and SEE in complex with the same TCR, complemented with computational alanine-scanning mutagenesis of SEA, SEB, SEC3, SEE, and SEH. We have identified two common areas that contribute to the general TCR binding for these superantigens. This paves the way for design of single antagonists directed towards multiple toxins. PMID:27180909

  4. Two common structural motifs for TCR recognition by staphylococcal enterotoxins

    PubMed Central

    Rödström, Karin E. J.; Regenthal, Paulina; Bahl, Christopher; Ford, Alex; Baker, David; Lindkvist-Petersson, Karin

    2016-01-01

    Superantigens are toxins produced by Staphylococcus aureus, called staphylococcal enterotoxins (abbreviated SEA to SEU). They can cross-link the T cell receptor (TCR) and major histocompatibility complex class II, triggering a massive T cell activation and hence disease. Due to high stability and toxicity, superantigens are potential agents of bioterrorism. Hence, antagonists may not only be useful in the treatment of disease but also serve as countermeasures to biological warfare. Of particular interest are inhibitors against SEA and SEB. SEA is the main cause of food poisoning, while SEB is a common toxin manufactured as a biological weapon. Here, we present the crystal structures of SEA in complex with TCR and SEE in complex with the same TCR, complemented with computational alanine-scanning mutagenesis of SEA, SEB, SEC3, SEE, and SEH. We have identified two common areas that contribute to the general TCR binding for these superantigens. This paves the way for design of single antagonists directed towards multiple toxins. PMID:27180909

  5. TIM-3 Suppresses Anti-CD3/CD28-Induced TCR Activation and IL-2 Expression through the NFAT Signaling Pathway

    PubMed Central

    Tomkowicz, Brian; Walsh, Eileen; Cotty, Adam; Verona, Raluca; Sabins, Nina; Kaplan, Fred; Santulli-Marotto, Sandy; Chin, Chen-Ni; Mooney, Jill; Lingham, Russell B.; Naso, Michael; McCabe, Timothy

    2015-01-01

    TIM-3 (T cell immunoglobulin and mucin-domain containing protein 3) is a member of the TIM family of proteins that is preferentially expressed on Th1 polarized CD4+ and CD8+ T cells. Recent studies indicate that TIM-3 serves as a negative regulator of T cell function (i.e. T cell dependent immune responses, proliferation, tolerance, and exhaustion). Despite having no recognizable inhibitory signaling motifs, the intracellular tail of TIM-3 is apparently indispensable for function. Specifically, the conserved residues Y265/Y272 and surrounding amino acids appear to be critical for function. Mechanistically, several studies suggest that TIM-3 can associate with interleukin inducible T cell kinase (ITK), the Src kinases Fyn and Lck, and the p85 phosphatidylinositol 3-kinase (PI3K) adaptor protein to positively or negatively regulate IL-2 production via NF-κB/NFAT signaling pathways. To begin to address this discrepancy, we examined the effect of TIM-3 in two model systems. First, we generated several Jurkat T cell lines stably expressing human TIM-3 or murine CD28-ECD/human TIM-3 intracellular tail chimeras and examined the effects that TIM-3 exerts on T cell Receptor (TCR)-mediated activation, cytokine secretion, promoter activity, and protein kinase association. In this model, our results demonstrate that TIM-3 inhibits several TCR-mediated phenotypes: i) NF-kB/NFAT activation, ii) CD69 expression, and iii) suppression of IL-2 secretion. To confirm our Jurkat cell observations we developed a primary human CD8+ cell system that expresses endogenous levels of TIM-3. Upon TCR ligation, we observed the loss of NFAT reporter activity and IL-2 secretion, and identified the association of Src kinase Lck, and PLC-γ with TIM-3. Taken together, our results support the conclusion that TIM-3 is a negative regulator of TCR-function by attenuating activation signals mediated by CD3/CD28 co-stimulation. PMID:26492563

  6. Structure of the superantigen staphylococcal enterotoxin B in complex with TCR and peptide-MHC demonstrates absence of TCR-peptide contacts.

    PubMed

    Rödström, Karin E J; Elbing, Karin; Lindkvist-Petersson, Karin

    2014-08-15

    Superantigens are immune-stimulatory toxins produced by Staphylococcus aureus, which are able to interact with host immune receptors to induce a massive release of cytokines, causing toxic shock syndrome and possibly death. In this article, we present the x-ray structure of staphylococcal enterotoxin B (SEB) in complex with its receptors, the TCR and MHC class II, forming a ternary complex. The structure, in combination with functional analyses, clearly shows how SEB adopts a wedge-like position when binding to the β-chain of TCR, allowing for an interaction between the α-chain of TCR and MHC. Furthermore, the binding mode also circumvents contact between TCR and the peptide presented by MHC, which enables SEB to initiate a peptide-independent activation of T cells. PMID:25015819

  7. Mixed functional characteristics correlating with TCR-ligand koff -rate of MHC-tetramer reactive T cells within the naive T-cell repertoire.

    PubMed

    Hombrink, Pleun; Raz, Yotam; Kester, Michel G D; de Boer, Renate; Weißbrich, Bianca; von dem Borne, Peter A; Busch, Dirk H; Schumacher, Ton N M; Falkenburg, J H Frederik; Heemskerk, Mirjam H M

    2013-11-01

    The low frequency of antigen-specific naïve T cells has challenged numerous laboratories to develop various techniques to study the naïve T-cell repertoire. Here, we combine the generation of naïve repertoire-derived antigen-specific T-cell lines based on MHC-tetramer staining and magnetic-bead enrichment with in-depth functional assessment of the isolated T cells. Cytomegalovirus (CMV) specific T-cell lines were generated from seronegative individuals. Generated T-cell lines consisted of a variety of immunodominant CMV-epitope-specific oligoclonal T-cell populations restricted to various HLA-molecules (HLA-A1, A2, B7, B8, and B40), and the functional and structural avidity of the CMV-specific T cells was studied. Although all CMV-specific T cells were isolated based on their reactivity toward a specific peptide-MHC complex, we observed a large variation in the functional avidity of the MHC-tetramer positive T-cell populations, which correlated with the structural avidity measured by the recently developed Streptamer koff -rate assay. Our data demonstrate that MHC-tetramer staining is not always predictive for specific T-cell reactivity, and challenge the sole use of MHC-tetramers as an indication of the peripheral T-cell repertoire, independent of the analysis of functional activity or structural avidity parameters. PMID:23893393

  8. Structural Model of the Extracellular Assembly of the TCR-CD3 Complex.

    PubMed

    Natarajan, Aswin; Nadarajah, Vidushan; Felsovalyi, Klara; Wang, Wenjuan; Jeyachandran, Vivian R; Wasson, Riley A; Cardozo, Timothy; Bracken, Clay; Krogsgaard, Michelle

    2016-03-29

    Antigen recognition of peptide-major histocompatibility complexes (pMHCs) by T cells, a key step in initiating adaptive immune responses, is performed by the T cell receptor (TCR) bound to CD3 heterodimers. However, the biophysical basis of the transmission of TCR-CD3 extracellular interaction into a productive intracellular signaling sequence remains incomplete. Here we used nuclear magnetic resonance (NMR) spectroscopy combined with mutational analysis and computational docking to derive a structural model of the extracellular TCR-CD3 assembly. In the inactivated state, CD3γε interacts with the helix 3 and helix 4-F strand regions of the TCR Cβ subunit, whereas CD3δε interacts with the F and C strand regions of the TCR Cα subunit in this model, placing the CD3 subunits on opposing sides of the TCR. This work identifies the molecular contacts between the TCR and CD3 subunits, identifying a physical basis for transmitting an activating signal through the complex. PMID:26997265

  9. Costimulation of CD3/TcR complex with either integrin or nonintegrin ligands protects CD4+ allergen-specific T-cell clones from programmed cell death.

    PubMed

    Agea, E; Bistoni, O; Bini, P; Migliorati, G; Nicoletti, I; Bassotti, G; Riccardi, C; Bertotto, A; Spinozzi, F

    1995-08-01

    An optimal stimulation of CD4+ cells in an immune response requires not only signals transduced via the TcR/CD3 complex, but also costimulatory signals delivered as a consequence of interactions between T-cell surface-associated costimulatory receptors and their counterparts on antigen-presenting cells (APC). The intercellular adhesion molecule-1 (ICAM-1, CD54) efficiently costimulates proliferation of resting, but not antigen-specific, T cells. In contrast, CD28 and CD2 support interleukin (IL)-2 synthesis and proliferation of antigen-specific T cells more efficiently than those of resting T cells. The molecular basis for this differential costimulation of T cells is poorly understood. Cypress-specific T-cell clones (TCC) were generated from four allergic subjects during in vivo seasonal exposure to the allergen. Purified cypress extract was produced directly from fresh collected pollen and incubated with the patients' mononuclear cells. Repeated allergen stimulation was performed in T-cell cultures supplemented with purified extract and autologous APC. The limiting-dilution technique was then adopted to generate allergen-specific TCC, which were also characterized by their cytokine secretion pattern as Th0 (IL-4 plus interferon-gamma) or Th2 (IL-4). Costimulation-induced proliferation or apoptosis was measured by propidium iodide cytofluorometric assay. By cross-linking cypress-specific CD4+ and CD8+ T-cell clones with either anti-CD3 or anti-CD2, anti-CD28, and anti-CD54 monoclonal antibodies, we demonstrated that CD4+ clones (with Th0- or Th2-type cytokine production pattern) undergo programmed cell death only after anti-CD3 stimulation, whereas costimulation with either anti-CD54 or anti-CD28 protects target cells from apoptosis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7503404

  10. PSGL-1 Is an Immune Checkpoint Regulator that Promotes T Cell Exhaustion.

    PubMed

    Tinoco, Roberto; Carrette, Florent; Barraza, Monique L; Otero, Dennis C; Magaña, Jonathan; Bosenberg, Marcus W; Swain, Susan L; Bradley, Linda M

    2016-05-17

    Chronic viruses and cancers thwart immune responses in humans by inducing T cell dysfunction. Using a murine chronic virus that models human infections, we investigated the function of the adhesion molecule, P-selectin glycoprotein ligand-1 (PSGL-1), that is upregulated on responding T cells. PSGL-1-deficient mice cleared the virus due to increased intrinsic survival of multifunctional effector T cells that had downregulated PD-1 as well as other inhibitory receptors. Notably, this response resulted in CD4(+)-T-cell-dependent immunopathology. Mechanistically, PSGL-1 ligation on exhausted CD8(+) T cells inhibited T cell receptor (TCR) and interleukin-2 (IL-2) signaling and upregulated PD-1, leading to diminished survival with TCR stimulation. In models of melanoma cancer in which T cell dysfunction occurs, PSGL-1 deficiency led to PD-1 downregulation, improved T cell responses, and tumor control. Thus, PSGL-1 plays a fundamental role in balancing viral control and immunopathology and also functions to regulatecell responses in the tumor microenvironment. PMID:27192578

  11. CDR3β sequence motifs regulate autoreactivity of human invariant NKT cell receptors.

    PubMed

    Chamoto, Kenji; Guo, Tingxi; Imataki, Osamu; Tanaka, Makito; Nakatsugawa, Munehide; Ochi, Toshiki; Yamashita, Yuki; Saito, Akiko M; Saito, Toshiki I; Butler, Marcus O; Hirano, Naoto

    2016-04-01

    Invariant natural killer T (iNKT) cells are a subset of T lymphocytes that recognize lipid ligands presented by monomorphic CD1d. Human iNKT T cell receptor (TCR) is largely composed of invariant Vα24 (Vα24i) TCRα chain and semi-variant Vβ11 TCRβ chain, where complementarity-determining region (CDR)3β is the sole variable region. One of the characteristic features of iNKT cells is that they retain autoreactivity even after the thymic selection. However, the molecular features of human iNKT TCR CDR3β sequences that regulate autoreactivity remain unknown. Since the numbers of iNKT cells with detectable autoreactivity in peripheral blood is limited, we introduced the Vα24i gene into peripheral T cells and generated a de novo human iNKT TCR repertoire. By stimulating the transfected T cells with artificial antigen presenting cells (aAPCs) presenting self-ligands, we enriched strongly autoreactive iNKT TCRs and isolated a large panel of human iNKT TCRs with a broad range autoreactivity. From this panel of unique iNKT TCRs, we deciphered three CDR3β sequence motifs frequently encoded by strongly-autoreactive iNKT TCRs: a VD region with 2 or more acidic amino acids, usage of the Jβ2-5 allele, and a CDR3β region of 13 amino acids in length. iNKT TCRs encoding 2 or 3 sequence motifs also exhibit higher autoreactivity than those encoding 0 or 1 motifs. These data facilitate our understanding of the molecular basis for human iNKT cell autoreactivity involved in immune responses associated with human disease. PMID:26748722

  12. Superantigen-induced CD4 Memory T Cell Anergy. I. Staphylococcal Enterotoxin B Induces Fyn-mediated Negative Signaling1

    PubMed Central

    Watson, Andrew R. O.; Janik, David K.; Lee, William T.

    2012-01-01

    Memory CD4 T cells must provide robust protection for an organism while still maintaining self-tolerance. Superantigens reveal a memory cell-specific regulatory pathway, by which signaling through the TCR can lead to clonal tolerance (anergy). Here we show that the src kinase Fyn is a critical regulator of anergy in murine memory CD4 T cells induced by the bacterial superantigen staphylococcal enterotoxin B (SEB). Exposure to SEB results in impaired TCR signaling due to failed CD3/ZAP-70 complex formation. Further, signal transduction through the TCR remains similarly blocked when anergic memory cells are subsequently exposed to agonist peptide antigen. Pharmacological inhibition or genetic elimination of Fyn kinase reverses memory cell anergy, resulting in SEB-induced cell proliferation. The mechanism underlying impaired TCR signaling and subsequent memory cell anergy must involve a Fyn signaling pathway given that the suppression of Fyn activity restores CD3/ZAP-70 complex formation and TCR proximal signaling. PMID:22386537

  13. Nck adaptors are positive regulators of the size and sensitivity of the T-cell repertoire

    PubMed Central

    Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy D.; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Klevenz, Alexandra; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter; Arnold, Bernd; Pawson, Tony; Tafuri, Anna

    2010-01-01

    The size and sensitivity of the T-cell repertoire governs the effectiveness of immune responses against invading pathogens. Both are modulated by T-cell receptor (TCR) activity through molecular mechanisms, which remain unclear. Here, we provide genetic evidence that the SH2/SH3 domain containing proteins Nck lower the threshold of T-cell responsiveness. The hallmarks of Nck deletion were T-cell lymphopenia and hyporeactivity to TCR-mediated stimulation. In the absence of the Nck adaptors, peripheral T cells expressing a TCR with low avidity for self-antigens were strongly reduced, whereas an overall impairment of T-cell activation by weak antigenic stimulation was observed. Mechanistically, Nck deletion resulted in a significant decrease in calcium mobilization and ERK phosphorylation upon TCR engagement. Taken together, our findings unveil a crucial role for the Nck adaptors in shaping the T-cell repertoire to ensure maximal antigenic coverage and optimal T cell excitability. PMID:20709959

  14. Nck adaptors are positive regulators of the size and sensitivity of the T-cell repertoire.

    PubMed

    Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy D; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Klevenz, Alexandra; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter; Arnold, Bernd; Pawson, Tony; Tafuri, Anna

    2010-08-31

    The size and sensitivity of the T-cell repertoire governs the effectiveness of immune responses against invading pathogens. Both are modulated by T-cell receptor (TCR) activity through molecular mechanisms, which remain unclear. Here, we provide genetic evidence that the SH2/SH3 domain containing proteins Nck lower the threshold of T-cell responsiveness. The hallmarks of Nck deletion were T-cell lymphopenia and hyporeactivity to TCR-mediated stimulation. In the absence of the Nck adaptors, peripheral T cells expressing a TCR with low avidity for self-antigens were strongly reduced, whereas an overall impairment of T-cell activation by weak antigenic stimulation was observed. Mechanistically, Nck deletion resulted in a significant decrease in calcium mobilization and ERK phosphorylation upon TCR engagement. Taken together, our findings unveil a crucial role for the Nck adaptors in shaping the T-cell repertoire to ensure maximal antigenic coverage and optimal T cell excitability. PMID:20709959

  15. Structural interplay between germline and adaptive recognition determines TCR-peptide-MHC cross-reactivity

    PubMed Central

    Adams, Jarrett J.; Narayanan, Samanthi; Birnbaum, Michael E.; Sidhu, Sachdev S.; Blevins, Sydney J.; Gee, Marvin H.; Sibener, Leah V.; Baker, Brian M.; Kranz, David M.; Garcia, K. Christopher

    2015-01-01

    The T cell receptor - peptide-MHC interface is comprised of conserved and diverse regions, yet the relative contributions of each in shaping T cell recognition remain unclear. We isolated cross-reactive peptides with limited homology, allowing us to compare the structural properties of nine peptides for a single TCR-MHC pair. The TCR’s cross-reactivity is rooted in highly similar recognition of an apical ‘hotspot’ position in the peptide, while tolerating significant sequence variation at ancillary positions. Furthermore, we find a striking structural convergence onto a germline-mediated interaction between TCR CDR1α and the MHC α2 helix of twelve TCR-pMHC complexes. Our studies suggest that TCR-MHC germline-mediated constraints, together with a focus on a small peptide hotspot, may place limits on peptide antigen cross-reactivity. PMID:26523866

  16. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells.

    PubMed

    Ibiza, Sales; Pérez-Rodríguez, Andrea; Ortega, Angel; Martínez-Ruiz, Antonio; Barreiro, Olga; García-Domínguez, Carlota A; Víctor, Víctor M; Esplugues, Juan V; Rojas, José M; Sánchez-Madrid, Francisco; Serrador, Juan M

    2008-07-29

    Ras/ERK signaling plays an important role in T cell activation and development. We recently reported that endothelial nitric oxide synthase (eNOS)-derived NO regulates T cell receptor (TCR)-dependent ERK activation by a cGMP-independent mechanism. Here, we explore the mechanisms through which eNOS exerts this regulation. We have found that eNOS-derived NO positively regulates Ras/ERK activation in T cells stimulated with antigen on antigen-presenting cells (APCs). Intracellular activation of N-, H-, and K-Ras was monitored with fluorescent probes in T cells stably transfected with eNOS-GFP or its G2A point mutant, which is defective in activity and cellular localization. Using this system, we demonstrate that eNOS selectively activates N-Ras but not K-Ras on the Golgi complex of T cells engaged with APC, even though Ras isoforms are activated in response to NO from donors. We further show that activation of N-Ras involves eNOS-dependent S-nitrosylation on Cys(118), suggesting that upon TCR engagement, eNOS-derived NO directly activates N-Ras on the Golgi. Moreover, wild-type but not C118S N-Ras increased TCR-dependent apoptosis, suggesting that S-nitrosylation of Cys(118) contributes to activation-induced T cell death. Our data define a signaling mechanism for the regulation of the Ras/ERK pathway based on the eNOS-dependent differential activation of N-Ras and K-Ras at specific cell compartments. PMID:18641128

  17. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells

    PubMed Central

    Ibiza, Sales; Pérez-Rodríguez, Andrea; Ortega, Ángel; Martínez-Ruiz, Antonio; Barreiro, Olga; García-Domínguez, Carlota A.; Víctor, Víctor M.; Esplugues, Juan V.; Rojas, José M.; Sánchez-Madrid, Francisco; Serrador, Juan M.

    2008-01-01

    Ras/ERK signaling plays an important role in T cell activation and development. We recently reported that endothelial nitric oxide synthase (eNOS)-derived NO regulates T cell receptor (TCR)-dependent ERK activation by a cGMP-independent mechanism. Here, we explore the mechanisms through which eNOS exerts this regulation. We have found that eNOS-derived NO positively regulates Ras/ERK activation in T cells stimulated with antigen on antigen-presenting cells (APCs). Intracellular activation of N-, H-, and K-Ras was monitored with fluorescent probes in T cells stably transfected with eNOS-GFP or its G2A point mutant, which is defective in activity and cellular localization. Using this system, we demonstrate that eNOS selectively activates N-Ras but not K-Ras on the Golgi complex of T cells engaged with APC, even though Ras isoforms are activated in response to NO from donors. We further show that activation of N-Ras involves eNOS-dependent S-nitrosylation on Cys118, suggesting that upon TCR engagement, eNOS-derived NO directly activates N-Ras on the Golgi. Moreover, wild-type but not C118S N-Ras increased TCR-dependent apoptosis, suggesting that S-nitrosylation of Cys118 contributes to activation-induced T cell death. Our data define a signaling mechanism for the regulation of the Ras/ERK pathway based on the eNOS-dependent differential activation of N-Ras and K-Ras at specific cell compartments. PMID:18641128

  18. The kinases MEKK2 and MEKK3 regulate transforming growth factor-β-mediated helper T cell differentiation.

    PubMed

    Chang, Xing; Liu, Fang; Wang, Xiaofang; Lin, Aiping; Zhao, Hongyu; Su, Bing

    2011-02-25

    Mitogen-activated protein kinases (MAPKs) are key mediators of the T cell receptor (TCR) signals but their roles in T helper (Th) cell differentiation are unclear. Here we showed that the MAPK kinase kinases MEKK2 (encoded by Map3k2) and MEKK3 (encoded by Map3k3) negatively regulated transforming growth factor-β (TGF-β)-mediated Th cell differentiation. Map3k2(-/-)Map3k3(Lck-Cre/-) mice showed an abnormal accumulation of regulatory T (Treg) and Th17 cells in the periphery, consistent with Map3k2(-/-)Map3k3(Lck-Cre/-) naive CD4(+) T cells' differentiation into Treg and Th17 cells with a higher frequency than wild-type (WT) cells after TGF-β stimulation in vitro. In addition, Map3k2(-/-)Map3k3(Lck-Cre/-) mice developed more severe experimental autoimmune encephalomyelitis. Map3k2(-/-)Map3k3(Lck-Cre/-) T cells exhibited impaired phosphorylation of SMAD2 and SMAD3 proteins at their linker regions, which negatively regulated the TGF-β responses in T cells. Thus, the crosstalk between TCR-induced MAPK and the TGF-β signaling pathways is important in regulating Th cell differentiation. PMID:21333552

  19. Structural Features of the αβTCR Mechanotransduction Apparatus That Promote pMHC Discrimination

    PubMed Central

    Brazin, Kristine N.; Mallis, Robert J.; Das, Dibyendu Kumar; Feng, Yinnian; Hwang, Wonmuk; Wang, Jia-huai; Wagner, Gerhard; Lang, Matthew J.; Reinherz, Ellis L.

    2015-01-01

    The αβTCR was recently revealed to function as a mechanoreceptor. That is, it leverages mechanical energy generated during immune surveillance and at the immunological synapse to drive biochemical signaling following ligation by a specific foreign peptide–MHC complex (pMHC). Here, we review the structural features that optimize this transmembrane (TM) receptor for mechanotransduction. Specialized adaptations include (1) the CβFG loop region positioned between Vβ and Cβ domains that allosterically gates both dynamic T cell receptor (TCR)–pMHC bond formation and lifetime; (2) the rigid super β-sheet amalgams of heterodimeric CD3εγ and CD3εδ ectodomain components of the αβTCR complex; (3) the αβTCR subunit connecting peptides linking the extracellular and TM segments, particularly the oxidized CxxC motif in each CD3 heterodimeric subunit that facilitates force transfer through the TM segments and surrounding lipid, impacting cytoplasmic tail conformation; and (4) quaternary changes in the αβTCR complex that accompany pMHC ligation under load. How bioforces foster specific αβTCR-based pMHC discrimination and why dynamic bond formation is a primary basis for kinetic proofreading are discussed. We suggest that the details of the molecular rearrangements of individual αβTCR subunit components can be analyzed utilizing a combination of structural biology, single-molecule FRET, optical tweezers, and nanobiology, guided by insightful atomistic molecular dynamic studies. Finally, we review very recent data showing that the pre-TCR complex employs a similar mechanobiology to that of the αβTCR to interact with self-pMHC ligands, impacting early thymic repertoire selection prior to the CD4+CD8+ double positive thymocyte stage of development. PMID:26388869

  20. Distinctive properties of identical twins' TCR repertoires revealed by high-throughput sequencing.

    PubMed

    Zvyagin, Ivan V; Pogorelyy, Mikhail V; Ivanova, Marina E; Komech, Ekaterina A; Shugay, Mikhail; Bolotin, Dmitry A; Shelenkov, Andrey A; Kurnosov, Alexey A; Staroverov, Dmitriy B; Chudakov, Dmitriy M; Lebedev, Yuri B; Mamedov, Ilgar Z

    2014-04-22

    Adaptive immunity in humans is provided by hypervariable Ig-like molecules on the surface of B and T cells. The final set of these molecules in each organism is formed under the influence of two forces: individual genetic traits and the environment, which includes the diverse spectra of alien and self-antigens. Here we assess the impact of individual genetic factors on the formation of the adaptive immunity by analyzing the T-cell receptor (TCR) repertoires of three pairs of monozygous twins by next-generation sequencing. Surprisingly, we found that an overlap between the TCR repertoires of monozygous twins is similar to an overlap between the TCR repertoires of nonrelated individuals. However, the number of identical complementary determining region 3 sequences in two individuals is significantly increased for twin pairs in the fraction of highly abundant TCR molecules, which is enriched by the antigen-experienced T cells. We found that the initial recruitment of particular TCR V genes for recombination and subsequent selection in the thymus is strictly determined by individual genetic factors. J genes of TCRs are selected randomly for recombination; however, the subsequent selection in the thymus gives preference to some α but not β J segments. These findings provide a deeper insight into the mechanism of TCR repertoire generation. PMID:24711416

  1. Identification of peptide-specific TCR genes by in vitro peptide stimulation and CDR3 length polymorphism analysis.

    PubMed

    Shao, Hongwei; Lin, Yanmei; Wang, Teng; Ou, Yusheng; Shen, Han; Tao, Changli; Wu, Fenglin; Zhang, Wenfeng; Bo, Huaben; Wang, Hui; Huang, Shulin

    2015-07-10

    Identification of TCR genes specific for tumor-associated antigens (TAAs) is necessary for TCR gene modification of T cells, which is applied in anti-tumor adoptive T cell therapy (ACT). The usual identification methods are based on isolating single peptide-responding T cells and cloning the TCR gene by in vitro expansion or by single-cell RT-PCR. However, the long and exacting in vitro culture period and demanding operational requirements restrict the application of these methods. Immunoscope is an effective tool that profiles a repertoire of TCRs and identifies significantly expanded clones through CDR3 length analysis. In this study, a survivin-derived mutant peptide optimized for HLA-A2 binding was selected to load DCs and activate T cells. The monoclonal expansion of TCRA and TCRB genes was separately identified by Immunoscope analysis and following sequence identification, the properly paired TCR genes were transferred into T cells. Peptide recognition and cytotoxicity assays indicated that TCR-modified PBMCs could respond to both the mutant and wild type peptides and lyse target cells. These results show that combining Immunoscope with in vitro peptide stimulation provides an alternative and superior method for identifying specific TCR genes, which represents a significant advance for the application of TCR gene-modified T cells. PMID:25890221

  2. Regulation of T cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm

    PubMed Central

    Beemiller, Peter; Krummel, Matthew F.

    2013-01-01

    Summary The actin cytoskeleton plays essential roles in modulating T-cell activation. Most models of T-cell receptor (TCR) triggering, signalosome assembl, y and immune synapse formation invoke actin-dependent mechanisms. As T cells are constitutively motile cells, TCR triggering and signaling occur against a cytoskeletal backdrop that is constantly remodeling. While the interplay between actin dynamics and TCR signaling have been the focus of research for many years, much of the work in T cells has considered actin largely for its ‘scaffolding’ function. We examine the roles of the actin cytoskeleton in TCR signaling and immune synapse formation with an emphasis on how poroelasticity, an ensemble feature of actin dynamics with the cytosol, relates to how T cells respond to stimulation. PMID:24117819

  3. Regulation of T-cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm.

    PubMed

    Beemiller, Peter; Krummel, Matthew F

    2013-11-01

    The actin cytoskeleton plays essential roles in modulating T-cell activation. Most models of T-cell receptor (TCR) triggering signalosome assembly and immune synapse formation invoke actin-dependent mechanisms. As T cells are constitutively motile cells, TCR triggering and signaling occur against a cytoskeletal backdrop that is constantly remodeling. While the interplay between actin dynamics and TCR signaling have been the focus of research for many years, much of the work in T cells has considered actin largely for its 'scaffolding' function. We examine the roles of the actin cytoskeleton in TCR signaling and immune synapse formation with an emphasis on how poroelasticity, an ensemble feature of actin dynamics with the cytosol, relates to how T cells respond to stimulation. PMID:24117819

  4. How many TCR clonotypes does a body maintain?

    PubMed Central

    Lythe, Grant; Callard, Robin E.; Hoare, Rollo L.; Molina-París, Carmen

    2016-01-01

    We consider the lifetime of a T cell clonotype, the set of T cells with the same T cell receptor, from its thymic origin to its extinction in a multiclonal repertoire. Using published estimates of total cell numbers and thymic production rates, we calculate the mean number of cells per TCR clonotype, and the total number of clonotypes, in mice and humans. When there is little peripheral division, as in a mouse, the number of cells per clonotype is small and governed by the number of cells with identical TCR that exit the thymus. In humans, peripheral division is important and a clonotype may survive for decades, during which it expands to comprise many cells. We therefore devise and analyse a computational model of homeostasis of a multiclonal population. Each T cell in the model competes for self pMHC stimuli, cells of any one clonotype only recognising a small fraction of the many subsets of stimuli. A constant mean total number of cells is maintained by a balance between cell division and death, and a stable number of clonotypes by a balance between thymic production of new clonotypes and extinction of existing ones. The number of distinct clonotypes in a human body may be smaller than the total number of naive T cells by only one order of magnitude. PMID:26546971

  5. Negative regulators of cell proliferation

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Cell proliferation is governed by the influence of both mitogens and inhibitors. Although cell contact has long been thought to play a fundamental role in cell cycling regulation, and negative regulators have long been suspected to exist, their isolation and purification has been complicated by a variety of technical difficulties. Nevertheless, over recent years an ever-expanding list of putative negative regulators have emerged. In many cases, their biological inhibitory activities are consistent with density-dependent growth inhibition. Most likely their interactions with mitogenic agents, at an intracellular level, are responsible for either mitotic arrest or continued cell cycling. A review of naturally occurring cell growth inhibitors is presented with an emphasis on those factors shown to be residents of the cell surface membrane. Particular attention is focused on a cell surface sialoglycopeptide, isolated from intact bovine cerebral cortex cells, which has been shown to inhibit the proliferation of an unusually wide range of target cells. The glycopeptide arrest cells obtained from diverse species, both fibroblasts and epithelial cells, and a broad variety of transformed cells. Signal transduction events and a limited spectrum of cells that are refractory to the sialoglycopeptide have provided insight into the molecular events mediated by this cell surface inhibitor.

  6. Relating TCR-peptide-MHC affinity to immunogenicity for the design of tumor vaccines

    PubMed Central

    McMahan, Rachel H.; McWilliams, Jennifer A.; Jordan, Kimberly R.; Dow, Steven W.; Wilson, Darcy B.; Slansky, Jill E.

    2006-01-01

    One approach to enhancing the T cell response to tumors is vaccination with mimotopes, mimics of tumor epitopes. While mimotopes can stimulate proliferation of T cells that recognize tumor-associated antigens (TAAs), this expansion does not always correlate with control of tumor growth. We hypothesized that vaccination with mimotopes of optimal affinity in this interaction will improve antitumor immunity. Using a combinatorial peptide library and a cytotoxic T lymphocyte clone that recognizes a TAA, we identified a panel of mimotopes that, when complexed with MHC, bound the TAA-specific TCR with a range of affinities. As expected, in vitro assays showed that the affinity of the TCR-peptide-MHC (TCR-pMHC) interaction correlated with activity of the T cell clone. However, only vaccination with mimotopes in the intermediate-affinity range elicited functional T cells and provided protection against tumor growth in vivo. Vaccination with mimotopes with the highest-affinity TCR-pMHC interactions elicited TAA-specific T cells to the tumor, but did not control tumor growth at any of the peptide concentrations tested. Further analysis of these T cells showed functional defects in response to the TAA. Thus, stimulation of an antitumor response by mimotopes may be optimal with peptides that increase but do not maximize the affinity of the TCR-pMHC interaction. PMID:16932807

  7. Nuclear transfer nTreg model reveals fate-determining TCR-β and novel peripheral nTreg precursors.

    PubMed

    Ku, Manching; Chang, Shih-En; Hernandez, Julio; Abadejos, Justin R; Sabouri-Ghomi, Mohsen; Muenchmeier, Niklas J; Schwarz, Anna; Valencia, Anna M; Kirak, Oktay

    2016-04-19

    To study the development and function of "natural-arising" T regulatory (nTreg) cells, we developed a novel nTreg model on pure nonobese diabetic background using epigenetic reprogramming via somatic cell nuclear transfer. On RAG1-deficient background, we found that monoclonal FoxP3(+)CD4(+)Treg cells developed in the thymus in the absence of other T cells. Adoptive transfer experiments revealed that the thymic niche is not a limiting factor in nTreg development. In addition, we showed that the T-cell receptor (TCR) β-chain of our nTreg model was not only sufficient to bias T-cell development toward the CD4 lineage, but we also demonstrated that this TCR β-chain was able to provide stronger TCR signals. This TCR-β-driven mechanism would thus unify former per se contradicting hypotheses of TCR-dependent and -independent nTreg development. Strikingly, peripheral FoxP3(-)CD4(+)T cells expressing the same TCR as this somatic cell nuclear transfer nTreg model had a reduced capability to differentiate into Th1 cells but were poised to differentiate better into induced nTreg cells, both in vitro and in vivo, representing a novel peripheral precursor subset of nTreg cells to which we refer to as pre-nTreg cells. PMID:27044095

  8. Anergy in CD4 Memory T Lymphocytes: II. Abrogation of TCR-induced Formation of Membrane Signaling Complexes1

    PubMed Central

    Lee, William T.; Prasad, Aparna; Watson, Andrew R. O.

    2012-01-01

    Memory and naive CD4 T cells have unique regulatory pathways for self/non-self discrimination. A memory cell specific regulatory pathway was revealed using superantigens to trigger the TCR. Upon stimulation by bacterial superantigens, like staphylococcal enterotoxin B (SEB), TCR proximal signaling is impaired leading to clonal tolerance (anergy). In the present report, we show that memory cell anergy results from the sequestration of the protein tyrosine kinase ZAP-70 away from the TCR/CD3ζ chain. During SEB-induced signaling, ZAP-70 is excluded from both detergent-resistant membrane microdomains and the immunological synapse, thus blocking downstream signaling. We also show that the mechanism underlying memory cell anergy must involve Fyn kinase, given that the suppression of Fyn activity restores the movement of ZAP-70 to the immunological synapse, TCR proximal signaling, and cell proliferation. Thus, toleragens, including microbial toxins, may modulate memory responses by targeting the organizational structure of memory cell signaling complexes. PMID:22663768

  9. RUNX1-dependent RAG1 deposition instigates human TCR-δ locus rearrangement

    PubMed Central

    Cieslak, Agata; Le Noir, Sandrine; Trinquand, Amélie; Lhermitte, Ludovic; Franchini, Don-Marc; Villarese, Patrick; Gon, Stéphanie; Bond, Jonathan; Simonin, Mathieu; Vanhille, Laurent; Reimann, Christian; Verhoeyen, Els; Larghero, Jerome; Six, Emmanuelle; Spicuglia, Salvatore; André-Schmutz, Isabelle; Langerak, Anton; Nadel, Bertrand; Macintyre, Elizabeth

    2014-01-01

    V(D)J recombination of TCR loci is regulated by chromatin accessibility to RAG1/2 proteins, rendering RAG1/2 targeting a potentially important regulator of lymphoid differentiation. We show that within the human TCR-α/δ locus, Dδ2-Dδ3 rearrangements occur at a very immature thymic, CD34+/CD1a−/CD7+dim stage, before Dδ2(Dδ3)-Jδ1 rearrangements. These strictly ordered rearrangements are regulated by mechanisms acting beyond chromatin accessibility. Importantly, direct Dδ2-Jδ1 rearrangements are prohibited by a B12/23 restriction and ordered human TCR-δ gene assembly requires RUNX1 protein, which binds to the Dδ2-23RSS, interacts with RAG1, and enhances RAG1 deposition at this site. This RUNX1-mediated V(D)J recombinase targeting imposes the use of two Dδ gene segments in human TCR-δ chains. Absence of this RUNX1 binding site in the homologous mouse Dδ1-23RSS provides a molecular explanation for the lack of ordered TCR-δ gene assembly in mice and may underlie differences in early lymphoid differentiation between these species. PMID:25135298

  10. CD5-mediated inhibition of TCR signaling proceeds normally in the absence of SHP-1.

    PubMed

    Dong, Baoxia; Somani, Ally-Khan; Love, Paul E; Zheng, Xuan; Chen, Xiequn; Zhang, Jinyi

    2016-07-01

    The CD5 transmembrane glycoprotein functions as a co-receptor in the signaling pathway linking T-cell antigen receptor (TCR) engagement to activation and differentiation. Although CD5 effects on TCR signaling have been shown to be primarily inhibitory, the underlying mechanisms remain unclear. In view of recent data revealing the ability of CD5 to associate with the SHP-1 tyrosine phosphatase, a protein that also downregulates TCR signaling, we examined the role of SHP-1 in modulating CD5 function using thymocytes from SHP-1‑deficient viable motheaten (mev) mice. The results revealed the association of SHP-1 with CD5 to be markedly increased following TCR stimulation and indicated that this interaction was enhanced by and was dependent on CD5 tyrosine phosphorylation. However, there was no difference of the tyrosine phosphorylation status of CD5 between resting and TCR-stimulated cells in SHP-1‑deficient compared to wild-type thymocytes. Lack of SHP-1 activity did not affect the levels of CD5 surface expression, CD5 co-immunoprecipitable tyrosine phosphatase activity and intracellular calcium increase following co-crosslinking of the TCR and CD5. Similarly, an analysis of T‑cell thymocyte populations in mev mice expressing an H-Y transgene as well as a construct mediating T‑cell restricted CD5 overexpression, revealed that the reduction in the positive selection conferred by CD5 overexpression was unaffected by SHP-1 deficiency. CD5 is not a SHP-1 substrate and SHP-1 is not required for and possibly not involved in the CD5-mediated modulation of TCR signaling. PMID:27221212

  11. Rapid Evolution of the CD8+ TCR Repertoire in Neonatal Mice.

    PubMed

    Carey, Alison J; Gracias, Donald T; Thayer, Jillian L; Boesteanu, Alina C; Kumova, Ogan K; Mueller, Yvonne M; Hope, Jennifer L; Fraietta, Joseph A; van Zessen, David B H; Katsikis, Peter D

    2016-03-15

    Currently, there is little consensus regarding the most appropriate animal model to study acute infection and the virus-specific CD8(+) T cell (CTL) responses in neonates. TCRβ high-throughput sequencing in naive CTL of differently aged neonatal mice was performed, which demonstrated differential Vβ family gene usage. Using an acute influenza infection model, we examined the TCR repertoire of the CTL response in neonatal and adult mice infected with influenza type A virus. Three-day-old mice mounted a greatly reduced primary NP(366-374)-specific CTL response when compared with 7-d-old and adult mice, whereas secondary CTL responses were normal. Analysis of NP(366-374)-specific CTL TCR repertoire revealed different Vβ gene usage and greatly reduced public clonotypes in 3-d-old neonates. This could underlie the impaired CTL response in these neonates. To directly test this, we examined whether controlling the TCR would restore neonatal CTL responses. We performed adoptive transfers of both nontransgenic and TCR-transgenic OVA(257-264)-specific (OT-I) CD8(+) T cells into influenza-infected hosts, which revealed that naive neonatal and adult OT-I cells expand equally well in neonatal and adult hosts. In contrast, nontransgenic neonatal CD8(+) T cells when transferred into adults failed to expand. We further demonstrate that differences in TCR avidity may contribute to decreased expansion of the endogenous neonatal CTL. These studies highlight the rapid evolution of the neonatal TCR repertoire during the first week of life and show that impaired neonatal CTL immunity results from an immature TCR repertoire, rather than intrinsic signaling defects or a suppressive environment. PMID:26873987

  12. CD5-mediated inhibition of TCR signaling proceeds normally in the absence of SHP-1

    PubMed Central

    DONG, BAOXIA; SOMANI, ALLY-KHAN; LOVE, PAUL E.; ZHENG, XUAN; CHEN, XIEQUN; ZHANG, JINYI

    2016-01-01

    The CD5 transmembrane glycoprotein functions as a co-receptor in the signaling pathway linking T-cell antigen receptor (TCR) engagement to activation and differentiation. Although CD5 effects on TCR signaling have been shown to be primarily inhibitory, the underlying mechanisms remain unclear. In view of recent data revealing the ability of CD5 to associate with the SHP-1 tyrosine phosphatase, a protein that also downregulates TCR signaling, we examined the role of SHP-1 in modulating CD5 function using thymocytes from SHP-1-deficient viable motheaten (mev) mice. The results revealed the association of SHP-1 with CD5 to be markedly increased following TCR stimulation and indicated that this interaction was enhanced by and was dependent on CD5 tyrosine phosphorylation. However, there was no difference of the tyrosine phosphorylation status of CD5 between resting and TCR-stimulated cells in SHP-1-deficient compared to wild-type thymocytes. Lack of SHP-1 activity did not affect the levels of CD5 surface expression, CD5 co-immunoprecipitable tyrosine phosphatase activity and intracellular calcium increase following co-crosslinking of the TCR and CD5. Similarly, an analysis of T-cell thymocyte populations in mev mice expressing an H-Y transgene as well as a construct mediating T-cell restricted CD5 overexpression, revealed that the reduction in the positive selection conferred by CD5 overexpression was unaffected by SHP-1 deficiency. CD5 is not a SHP-1 substrate and SHP-1 is not required for and possibly not involved in the CD5-mediated modulation of TCR signaling. PMID:27221212

  13. A Cholesterol-Based Allostery Model of T Cell Receptor Phosphorylation.

    PubMed

    Swamy, Mahima; Beck-Garcia, Katharina; Beck-Garcia, Esmeralda; Hartl, Frederike A; Morath, Anna; Yousefi, O Sascha; Dopfer, Elaine Pashupati; Molnár, Eszter; Schulze, Anna K; Blanco, Raquel; Borroto, Aldo; Martín-Blanco, Nadia; Alarcon, Balbino; Höfer, Thomas; Minguet, Susana; Schamel, Wolfgang W A

    2016-05-17

    Signaling through the T cell receptor (TCR) controls adaptive immune responses. Antigen binding to TCRαβ transmits signals through the plasma membrane to induce phosphorylation of the CD3 cytoplasmic tails by incompletely understood mechanisms. Here we show that cholesterol bound to the TCRβ transmembrane region keeps the TCR in a resting, inactive conformation that cannot be phosphorylated by active kinases. Only TCRs that spontaneously detached from cholesterol could switch to the active conformation (termed primed TCRs) and then be phosphorylated. Indeed, by modulating cholesterol binding genetically or enzymatically, we could switch the TCR between the resting and primed states. The active conformation was stabilized by binding to peptide-MHC, which thus controlled TCR signaling. These data are explained by a model of reciprocal allosteric regulation of TCR phosphorylation by cholesterol and ligand binding. Our results provide both a molecular mechanism and a conceptual framework for how lipid-receptor interactions regulate signal transduction. PMID:27192576

  14. Computational spatiotemporal analysis identifies WAVE2 and cofilin as joint regulators of costimulation-mediated T cell actin dynamics.

    PubMed

    Roybal, Kole T; Buck, Taráz E; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J; Ambler, Rachel; Tunbridge, Helen M; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F

    2016-01-01

    Fluorescence microscopy is one of the most important tools in cell biology research because it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells. However, given extensive cell-to-cell variation, these data cannot be readily assembled into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. We have developed a method to enable comparison of imaging data from many cells and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28. We imaged actin and eight core actin regulators to generate over a thousand movies of T cells under conditions in which CD28 was either engaged or blocked in the context of a strong TCR signal. Our computational analysis showed that the primary effect of costimulation blockade was to decrease recruitment of the activator of actin nucleation WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) and the actin-severing protein cofilin to F-actin. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics caused by costimulation blockade. Thus, we have developed and validated an approach to quantify protein distributions in time and space for the analysis of complex regulatory systems. PMID:27095595

  15. Developmental regulation of p53-dependent radiation-induced thymocyte apoptosis in mice

    PubMed Central

    Gentil Dit Maurin, A; Lemercier, C; Collin-Faure, V; Marche, P N; Jouvin-Marche, E; Candéias, S M

    2015-01-01

    The production of T cell receptor αβ+ (TCRαβ+) T lymphocytes in the thymus is a tightly regulated process that can be monitored by the regulated expression of several surface molecules, including CD4, CD8, cKit, CD25 and the TCR itself, after TCR genes have been assembled from discrete V, D (for TCR-β) and J gene segments by a site-directed genetic recombination. Thymocyte differentiation is the result of a delicate balance between cell death and survival: developing thymocytes die unless they receive a positive signal to proceed to the next stage. This equilibrium is altered in response to various physiological or physical stresses such as ionizing radiation, which induces a massive p53-dependent apoptosis of CD4+CD8+ double-positive (DP) thymocytes. Interestingly, these cells are actively rearranging their TCR-α chain genes. To unravel an eventual link between V(D)J recombination activity and thymocyte radio-sensitivity, we analysed the dynamics of thymocyte apoptosis and regeneration following exposure of wild-type and p53-deficient mice to different doses of γ-radiation. p53-dependent radio-sensitivity was already found to be high in immature CD4−CD8− (double-negative, DN) cKit+CD25+ thymocytes, where TCR-β gene rearrangement is initiated. However, TCR-αβ−CD8+ immature single-positive thymocytes, an actively cycling intermediate population between the DN and DP stages, are the most radio-sensitive cells in the thymus, even though their apoptosis is only partially p53-dependent. Within the DP population, TCR-αβ+ thymocytes that completed TCR-α gene recombination are more radio-resistant than their TCR-αβ− progenitors. Finally, we found no correlation between p53 activation and thymocyte sensitivity to radiation-induced apoptosis. PMID:24635132

  16. The binding affinity of a soluble TCR-Fc fusion protein is significantly improved by crosslinkage with an anti-C{beta} antibody

    SciTech Connect

    Ozawa, Tatsuhiko; Horii, Masae; Kobayashi, Eiji; Jin, Aishun; Kishi, Hiroyuki; Muraguchi, Atsushi

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer A novel soluble TCR composed of TCR V and C regions with Ig Fc region is generated. Black-Right-Pointing-Pointer TCR-Fc protein immobilized by an anti-C{beta} antibody bound to a p/MHC tetramer. Black-Right-Pointing-Pointer Binding affinity of TCR-Fc was markedly increased by binding with anti-C{beta} antibody. -- Abstract: The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a very low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100-200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-C{beta} antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 Multiplication-Sign 10{sup -5} M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-C{beta} antibody, its binding affinity for p/MHC increased by 5-fold (2.2 Multiplication-Sign 10{sup -6} M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-C{beta} antibody, which is probably due to the stabilization of the V

  17. γδ T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-αβ+/CD19+ lymphocytes

    PubMed Central

    Bertaina, Alice; Prigione, Ignazia; Zorzoli, Alessia; Pagliara, Daria; Cocco, Claudia; Meazza, Raffaella; Loiacono, Fabrizio; Lucarelli, Barbarella; Bernardo, Maria Ester; Barbarito, Giulia; Pende, Daniela; Moretta, Alessandro; Pistoia, Vito; Moretta, Lorenzo; Locatelli, Franco

    2015-01-01

    We prospectively assessed functional and phenotypic characteristics of γδ T lymphocytes up to 7 months after HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT) depleted of αβ+ T cells and CD19+ B cells in 27 children with either malignant or nonmalignant disorders. We demonstrate that (1) γδ T cells are the predominant T-cell population in patients during the first weeks after transplantation, being mainly, albeit not only, derived from cells infused with the graft and expanding in vivo; (2) central-memory cells predominated very early posttransplantation for both Vδ1 and Vδ2 subsets; (3) Vδ1 cells are specifically expanded in patients experiencing cytomegalovirus reactivation and are more cytotoxic compared with those of children who did not experience reactivation; (4) these subsets display a cytotoxic phenotype and degranulate when challenged with primary acute myeloid and lymphoid leukemia blasts; and (5) Vδ2 cells are expanded in vitro after exposure to zoledronic acid (ZOL) and efficiently lyse primary lymphoid and myeloid blasts. This is the first detailed characterization of γδ T cells emerging in peripheral blood of children after CD19+ B-cell and αβ+ T-cell–depleted haplo-HSCT. Our results can be instrumental to the development of clinical trials using ZOL for improving γδ T-cell killing capacity against leukemia cells. This trial was registered at www.clinicaltrials.gov as #NCT01810120. PMID:25612623

  18. SLy1 regulates T-cell proliferation during Listeria monocytogenes infection in a Foxo1-dependent manner.

    PubMed

    Schäll, Daniel; Schmitt, Fee; Reis, Bernhard; Brandt, Simone; Beer-Hammer, Sandra

    2015-11-01

    Infection of mice with Listeria monocytogenes results in a strong T-cell response that is critical for an efficient defense. Here, we demonstrate that the adapter protein SLy1 (SH3-domain protein expressed in Lymphocytes 1) is essential for the generation of a fully functional T-cell response. The lack of SLy1 leads to reduced survival rates of infected mice. The increased susceptibility of SLy1 knock-out (KO) mice was caused by reduced proliferation of differentiated T cells. Ex vivo analyses of isolated SLy1 KO T cells displayed a dysregulation of Forkhead box protein O1 shuttling after TCR signaling, which resulted in an increased expression of cell cycle inhibiting genes, and therefore, reduced expansion of the T-cell population. Forkhead box protein O1 shuttles to the cytoplasm after phosphorylation in a protein complex including 14-3-3 proteins. Interestingly, we observed a similar regulation for the adapter protein SLy1, where TCR stimulation results in SLy1 phosphorylation and SLy1 export to the cytoplasm. Moreover, immunoprecipitation analyses revealed a binding of SLy1 to 14-3-3 proteins. Altogether, this study describes SLy1 as an immunoregulatory protein, which is involved in the generation of adaptive immune responses during L. monocytogenes infection, and provides a model of how SLy1 regulates T-cell proliferation. PMID:26306874

  19. Unraveling a Hotspot for TCR Recognition on HLA-A2: Evidence Against the Existence of Peptide-independent TCR Binding Determinants

    SciTech Connect

    Gagnon, Susan J.; Borbulevych, Oleg Y.; Davis-Harrison, Rebecca L.; Baxter, Tiffany K.; Clemens, John R.; Armstrong, Kathryn M.; Turner, Richard V.; Damirjian, Marale; Biddison, William E.; Baker, Brian M.

    2010-07-19

    T cell receptor (TCR) recognition of peptide takes place in the context of the major histocompatibility complex (MHC) molecule, which accounts for approximately two-thirds of the peptide/MHC buried surface. Using the class I MHC HLA-A2 and a large panel of mutants, we have previously shown that surface mutations that disrupt TCR recognition vary with the identity of the peptide. The single exception is Lys66 on the HLA-A2 {alpha}1 helix, which when mutated to alanine disrupts recognition for 93% of over 250 different T cell clones or lines, independent of which peptide is bound. Thus, Lys66 could serve as a peptide-independent TCR binding determinant. Here, we have examined the role of Lys66 in TCR recognition of HLA-A2 in detail. The structure of a peptide/HLA-A2 molecule with the K66A mutation indicates that although the mutation induces no major structural changes, it results in the exposure of a negatively charged glutamate (Glu63) underneath Lys66. Concurrent replacement of Glu63 with glutamine restores TCR binding and function for T cells specific for five different peptides presented by HLA-A2. Thus, the positive charge on Lys66 does not serve to guide all TCRs onto the HLA-A2 molecule in a manner required for productive signaling. Furthermore, electrostatic calculations indicate that Lys66 does not contribute to the stability of two TCR-peptide/HLA-A2 complexes. Our findings are consistent with the notion that each TCR arrives at a unique solution of how to bind a peptide/MHC, most strongly influenced by the chemical and structural features of the bound peptide. This would not rule out an intrinsic affinity of TCRs for MHC molecules achieved through multiple weak interactions, but for HLA-A2 the collective mutational data place limits on the role of any single MHC amino acid side-chain in driving TCR binding in a peptide-independent fashion.

  20. A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells

    PubMed Central

    Eckle, Sidonia B.G.; Birkinshaw, Richard W.; Kostenko, Lyudmila; Corbett, Alexandra J.; McWilliam, Hamish E.G.; Reantragoon, Rangsima; Chen, Zhenjun; Gherardin, Nicholas A.; Beddoe, Travis; Liu, Ligong; Patel, Onisha; Meehan, Bronwyn; Fairlie, David P.; Villadangos, Jose A.; Godfrey, Dale I.

    2014-01-01

    Mucosal-associated invariant T (MAIT) cells express an invariant T cell receptor (TCR) α-chain (TRAV1-2 joined to TRAJ33, TRAJ20, or TRAJ12 in humans), which pairs with an array of TCR β-chains. MAIT TCRs can bind folate- and riboflavin-based metabolites restricted by the major histocompatibility complex (MHC)-related class I−like molecule, MR1. However, the impact of MAIT TCR and MR1-ligand heterogeneity on MAIT cell biology is unclear. We show how a previously uncharacterized MR1 ligand, acetyl-6-formylpterin (Ac-6-FP), markedly stabilized MR1, potently up-regulated MR1 cell surface expression, and inhibited MAIT cell activation. These enhanced properties of Ac-6-FP were attributable to structural alterations in MR1 that subsequently affected MAIT TCR recognition via conformational changes within the complementarity-determining region (CDR) 3β loop. Analysis of seven TRBV6-1+ MAIT TCRs demonstrated how CDR3β hypervariability impacted on MAIT TCR recognition by altering TCR flexibility and contacts with MR1 and the Ag itself. Ternary structures of TRBV6-1, TRBV6-4, and TRBV20+ MAIT TCRs in complex with MR1 bound to a potent riboflavin-based antigen (Ag) showed how variations in TRBV gene usage exclusively impacted on MR1 contacts within a consensus MAIT TCR-MR1 footprint. Moreover, differential TRAJ gene usage was readily accommodated within a conserved MAIT TCR-MR1-Ag docking mode. Collectively, MAIT TCR heterogeneity can fine-tune MR1 recognition in an Ag-dependent manner, thereby modulating MAIT cell recognition. PMID:25049336

  1. TCR Signaling Emerges from the Sum of Many Parts

    PubMed Central

    Kuhns, Michael S.; Davis, Mark M.

    2012-01-01

    “How does T cell receptor signaling begin?” Answering this question requires an understanding of how the parts of the molecular machinery that mediates this process fit and work together. Ultimately this molecular architecture must (i) trigger the relay of information from the TCR-pMHC interface to the signaling substrates of the CD3 molecules and (ii) bring the kinases that modify these substrates in close proximity to interact, initiate, and sustain signaling. In this contribution we will discuss advances of the last decade that have increased our understanding of the complex machinery and interactions that underlie this type of signaling. PMID:22737151

  2. Human CD4+ effector T lymphocytes generated upon TCR engagement with self-peptides respond defectively to IL-7 in their transition to memory cells

    PubMed Central

    González-Pérez, Gabriela; Segovia, Norma C; Rivas-Carvalho, Amaranta; Reyes, Diana P; Torres-Aguilar, Honorio; Aguilar-Ruiz, Sergio R; Irles, Claudine; Soldevila, Gloria; Sánchez-Torres, Carmen

    2013-01-01

    The peripheral repertoire of CD4+ T lymphocytes contains autoreactive cells that remain tolerant through several mechanisms. However, nonspecific CD4+ T cells can be activated in physiological conditions as in the course of an ongoing immune response, and their outcome is not yet fully understood. Here, we investigate the fate of human naive CD4+ lymphocytes activated by dendritic cells (DCs) presenting endogenous self-peptides in comparison with lymphocytes involved in alloresponses. We generated memory cells (Tmem) from primary effectors activated with mature autologous DCs plus interleukin (IL)-2 (Tmauto), simulating the circumstances of an active immune response, or allogeneic DCs (Tmallo). Tmem were generated from effector cells that were rested in the absence of antigenic stimuli, with or without IL-7. Tmem were less activated than effectors (demonstrated by CD25 downregulation) particularly with IL-7, suggesting that this cytokine may favour the transition to quiescence. Tmauto and Tmallo showed an effector memory phenotype, and responded similarly to polyclonal and antigen-specific stimuli. Biochemically, IL-7-treated Tmallo were closely related to conventional memory lymphocytes based on Erk-1/2 activation, whereas Tmauto were more similar to effectors. Autologous effectors exhibited lower responses to IL-7 than allogeneic cells, which were reflected in their reduced proliferation and higher cell death. This was not related to IL-7 receptor expression but rather to signalling deficiencies, according to STAT5 activation These results suggest that ineffective responses to IL-7 could impair the transition to memory cells of naive CD4+ T lymphocytes recognizing self-peptides in the setting of strong costimulation. PMID:23454917

  3. The thermal-circulatory ratio (TCR)

    PubMed Central

    Ketko, Itay; Eliyahu, Uri; Epstein, Yoram; Heled, Yuval

    2014-01-01

    Introduction The common practice in the Israel Defense Force is that all exertional heat related injuries victims undergo a heat tolerance test (HTT) as a part of the “return to duty” process. The purpose of this study was to develop a quantitative, supportive physiological index for the assessment of the HTT based on the understanding that heat strain level should combine the thermal and cardiovascular strains. Materials and methods The HTT results of 104 individuals with a history of heat injuries were retrospectively analyzed after randomly divided into two groups (an analysis group and a validation group). Rectal temperature and heart rate were monitored continuously during the test. Using the ratio between those two variables we constructed the TCR (Thermal-Circulatory Ratio) index and defined thresholds for determining heat tolerance based on the HTT. Results Using a TCR value of 0.279 [°C/bpm] or less after completing the 120 min HTT can be used as a significant measure to distinguish between heat tolerance and heat intolerance individuals with sensitivity and specificity of 100% of 89%, respectively. In addition, a TCR value of 0.320 [°C/bpm] or less calculated after 60 min was found as a significant measure to determine heat tolerance with 100% sensitivity and 69% specificity. The latter threshold may assist in significantly shortening the HTT for those individuals whose TCR value matches this criterion. Discussion and conclusion A new index (TCR) that combines the thermal and cardiovascular responses to exercise-heat stress was found to be a valid measure, with high sensitivity and specificity, to support the distinguishing between heat tolerance and heat intolerance individuals following a HTT. Furthermore, the suggested index may enable to shorten the HTT, which will make the test more efficient.

  4. A Novel Strategy to Screen Bacillus Calmette-Guérin Protein Antigen Recognized by γδ TCR

    PubMed Central

    Xi, XueYan; Zhang, XiaoYan; Wang, Bei; Wang, Ji; Huang, He; Cui, LianXian; Han, XiQin; Li, Liang; He, Wei; Zhao, ZhenDong

    2011-01-01

    Background Phosphoantigen was originally identified as the main γδ TCR-recognized antigen that could activate γδ T cells to promote immune protection against mycobacterial infection. However, new evidence shows that the γδ T cells activated by phosphoantigen can only provide partial immune protection against mycobacterial infection. In contrast, whole lysates of Mycobacterium could activate immune protection more potently, implying that other γδ TCR-recognized antigens that elicit protective immune responses. To date, only a few distinct mycobacterial antigens recognized by the γδ TCR have been characterized. Methodology/Principal Findings In the present study, we established a new approach to screen epitopes or protein antigens recognized by the γδ TCR using Bacillus Calmette-Guérin- (BCG-) specific γ TCR transfected cells as probes to pan a 12-mer random-peptide phage-displayed library. Through binding assays and functional analysis, we identified a peptide (BP3) that not only binds to the BCG-specific γδ TCR but also effectively activates γδ T cells isolated from human subjects inoculated with BCG. Importantly, the γδ T cells activated by peptide BP3 had a cytotoxic effect on THP-1 cells infected with BCG. Moreover, the oxidative stress response regulatory protein (OXYS), a BCG protein that matches perfectly with peptide BP3 according to bioinformatics analysis, was confirmed as a ligand for the γδ TCR and was found to activate γδ T cells from human subjects inoculated with BCG. Conclusions/Significance In conclusion, our study provides a novel strategy to identify epitopes or protein antigens for the γδ TCR, and provides a potential means to screen mycobacterial vaccines or candidates for adjuvant. PMID:21526117

  5. Identification of multiple public TCR repertoires in chronic beryllium disease.

    PubMed

    Bowerman, Natalie A; Falta, Michael T; Mack, Douglas G; Wehrmann, Fabian; Crawford, Frances; Mroz, Margaret M; Maier, Lisa A; Kappler, John W; Fontenot, Andrew P

    2014-05-15

    Chronic beryllium disease (CBD) is a granulomatous lung disease characterized by the accumulation of beryllium (Be)-specific CD4(+) T cells in bronchoalveolar lavage. These expanded CD4(+) T cells are composed of oligoclonal T cell subsets, suggesting their recruitment to the lung in response to conventional Ag. In the current study, we noted that all bronchoalveolar lavage-derived T cell lines from HLA-DP2-expressing CBD patients contained an expansion of Be-responsive Vβ5.1(+) CD4(+) T cells. Using Be-loaded HLA-DP2-peptide tetramers, the majority of tetramer-binding T cells also expressed Vβ5.1 with a highly conserved CDR3β motif. Interestingly, Be-specific, Vβ5.1-expressing CD4(+) T cells displayed differential HLA-DP2-peptide tetramer staining intensity, and sequence analysis of the distinct tetramer-binding subsets showed that the two populations differed by a single conserved amino acid in the CDR3β motif. TCR Vα-chain analysis of purified Vβ5.1(+) CD4(+) T cells based on differential tetramer-binding intensity showed differing TCR Vα-chain pairing requirements, with the high-affinity population having promiscuous Vα-chain pairing and the low-affinity subset requiring restricted Vα-chain usage. Importantly, disease severity, as measured by loss of lung function, was inversely correlated with the frequency of tetramer-binding CD4(+) T cells in the lung. Our findings suggest the presence of a dominant Be-specific, Vβ5.1-expressing public T cell repertoire in the lungs of HLA-DP2-expressing CBD patients using promiscuous Vα-chain pairing to recognize an identical HLA-DP2-peptide/Be complex. Importantly, the inverse relationship between expansion of CD4(+) T cells expressing these public TCRs and disease severity suggests a pathogenic role for these T cells in CBD. PMID:24719461

  6. Ligand engaged TCR is triggered by Lck not associated with CD8 coreceptor

    PubMed Central

    Casas, Javier; Brzostek, Joanna; Zarnitsyna, Veronika I.; Hong, Jin-sung; Wei, Qianru; Hoerter, John A.H.; Fu, Guo; Ampudia, Jeanette; Zamoyska, Rose; Zhu, Cheng; Gascoigne, Nicholas R.J.

    2014-01-01

    The earliest molecular events in T cell recognition have not yet been fully described, and the initial T cell receptor (TCR) triggering mechanism remains a subject of controversy. Here, using TIRF/FRET microscopy, we observe a two-stage interaction between TCR, CD8, and MHCp. There is an early (within seconds) interaction between CD3ζ and the coreceptor CD8 that is independent of the binding of CD8 to MHC, but that requires CD8 association with Lck. Later (several minutes) CD3ζ-CD8 interactions require CD8-MHC binding. Lck can be found free or bound to the coreceptor. This work indicates that the initial TCR triggering event is induced by free Lck. PMID:25427562

  7. Cross-Reactivity of TCR Repertoire: Current Concepts, Challenges, and Implication for Allotransplantation

    PubMed Central

    Degauque, Nicolas; Brouard, Sophie; Soulillou, Jean-Paul

    2016-01-01

    Being able to track donor reactive T cells during the course of organ transplantation is a key to improve the graft survival, to prevent graft dysfunction, and to adapt the immunosuppressive regimen. The attempts of transplant immunologists have been for long hampered by the large size of the alloreactive T cell repertoire. Understanding how self-TCR can interact with allogeneic MHC is a key to critically appraise the different assays available to analyze the TCR Vβ repertoire usage. In this report, we will review conceptually and experimentally the process of cross-reactivity. We will then highlight what can be learned from allotransplantation, a situation of artificial cross-reactivity. Finally, the low- and high-resolution techniques to characterize the TCR Vβ repertoire usage in transplantation will be critically discussed. PMID:27047489

  8. Upregulation of cAMP-specific PDE-4 activity following ligation of the TCR complex on thymocytes is blocked by selective inhibitors of protein kinase C and tyrosyl kinases.

    PubMed

    Michie, A M; Rena, G; Harnett, M M; Houslay, M D

    1998-01-01

    We have previously shown that the major cAMP phosphodiesterase (PDE) isoforms present in murine thymocytes are the cGMP-stimulated PDE activity (PDE-2) and the cAMP-specific PDE activity (PDE-4), and that these isoforms are differentially regulated following ligation of the TCR (Michie, A.M., Lobban, M. D., Mueller, T., Harnett, M. M., and Houslay, M.D. [1996] Cell. Signalling 8, 97-110). We show here that the anti-CD3-stimulated elevation in PDE-4 activity in murine thymocytes is dependent on protein tyrosine kinase and protein kinase C (PKC)-mediated signals as the TCR-coupled increase in PDE-4 activity can be abrogated by both the tyrosine kinase inhibitor, genistein, and the PKC selective inhibitors chelerythrine and staurosporine. Moreover, the PKC-activating phorbol ester, phorbol-12-myristate, 13-acetate (PMA) caused an increase in PDE-4 activity, similar to that observed in cells challenged with anti-CD3 monoclonal antibodies and which was not additive with cochallenge using anti-CD3 antibodies. Both the PMA- and the anti-CD3 antibody-mediated increases in PDE-4 activity were blocked by treatment with either cycloheximide or actinomycin D. Despite the upregulation of PDE-4 activity consequent to TCR ligation, intracellular cAMP levels increased on challenge of thymocytes with anti-CD3 antibody, indicating that adenylate cyclase activity was also increased by TCR ligation. It is suggested that the anti-CD3-mediated increase in PDE-4 activity was owing to a rapid PKC-dependent induction of PDE-4 activity following crosslinking of the TCR complex. This identifies "crosstalk" occurring between the PKA and PKC signaling pathways initiated by ligation of the antigen receptor in murine thymocytes. That both adenylate cyclase and PDE-4 activities were increased may indicate the presence of compartmentalized cAMP responses present in these cells. PMID:9515165

  9. Ly-6A is required for T cell receptor expression and protein tyrosine kinase fyn activity.

    PubMed Central

    Lee, S K; Su, B; Maher, S E; Bothwell, A L

    1994-01-01

    To characterize the function of the Ly-6A antigen in T cell activation, antisense Ly-6 RNA was expressed in a stably transfected antigen-specific T cell clone. Reduced Ly-6A expression results in inhibition of responses to antigen, anti-TCR (anti-T cell receptor) crosslinking and concanavalin A plus recombinant interleukin 1 and causes impairment of in vitro fyn tyrosine kinase activity. More substantial reduction of Ly-6A results in reduction of TCR expression. Analysis of mRNA species indicates that the reduction is specific for the TCR beta chain. These data demonstrate that Ly-6A may regulate TCR expression and may be involved in early events of T cell activation via regulation of fyn tyrosine kinase activity. Images PMID:8187770

  10. Antigen-induced regulation of T-cell motility, interaction with antigen-presenting cells and activation through endogenous thrombospondin-1 and its receptors

    PubMed Central

    Bergström, Sten-Erik; Uzunel, Mehmet; Talme, Toomas; Bergdahl, Eva; Sundqvist, Karl-Gösta

    2015-01-01

    Antigen recognition reduces T-cell motility, and induces prolonged contact with antigen-presenting cells and activation through mechanisms that remain unclear. Here we show that the T-cell receptor (TCR) and CD28 regulate T-cell motility, contact with antigen-presenting cells and activation through endogenous thrombospondin-1 (TSP-1) and its receptors low-density lipoprotein receptor-related protein 1 (LRP1), calreticulin and CD47. Antigen stimulation induced a prominent up-regulation of TSP-1 expression, and transiently increased and subsequently decreased LRP1 expression whereas calreticulin was unaffected. This antigen-induced TSP-1/LRP1 response down-regulated a motogenic mechanism directed by LRP1-mediated processing of TSP-1 in cis within the same plasma membrane while promoting contact with antigen-presenting cells and activation through cis interaction of the C-terminal domain of TSP-1 with CD47 in response to N-terminal TSP-1 triggering by calreticulin. The antigen-induced TSP-1/LRP1 response maintained a reduced but significant motility level in activated cells. Blocking CD28 co-stimulation abrogated LRP1 and TSP-1 expression and motility. TCR/CD3 ligation alone enhanced TSP-1 expression whereas CD28 ligation alone enhanced LRP1 expression. Silencing of TSP-1 inhibited T-cell conjugation to antigen-presenting cells and T helper type 1 (Th1) and Th2 cytokine responses. The Th1 response enhanced motility and increased TSP-1 expression through interleukin-2, whereas the Th2 response weakened motility and reduced LRP1 expression through interleukin-4. Ligation of the TCR and CD28 therefore elicits a TSP-1/LRP1 response that stimulates prolonged contact with antigen-presenting cells and, although down-regulating motility, maintains a significant motility level to allow serial contacts and activation. Th1 and Th2 cytokine responses differentially regulate T-cell expression of TSP-1 and LRP1 and motility. PMID:25393517