Science.gov

Sample records for cells regulating immune

  1. Programmed Cell Death of Dendritic Cells in Immune Regulation

    PubMed Central

    Chen, Min; Wang, Jin

    2010-01-01

    Summary Programmed cell death is essential for the maintenance of lymphocyte homeostasis and immune tolerance. Dendritic cells (DCs), the most efficient antigen presenting cells, represent a small cell population in the immune system. However, DCs play major roles in the regulation of both innate and adaptive immune responses. Programmed cell death in DCs is essential for regulating DC homeostasis and consequently, the scope of immune responses. Interestingly, different DC subsets show varied turnover rates in vivo. The conventional DCs are relatively short-lived in most lymphoid organs, while plasmacytoid DCs are long-lived cells. Mitochondrion-dependent programmed cell death plays an important role in regulating spontaneous DC turnover. Antigen-specific T cells are also capable of killing DCs, thereby providing a mechanism for negative feedback regulation of immune responses. It has been shown that a surplus of DCs due to defects in programmed cell death leads to overactivation of lymphocytes and the onset of autoimmunity. Studying programmed cell death in DCs will shed light on the roles for DC turnover in the regulation of the duration and magnitude of immune responses in vivo, and in the maintenance of immune tolerance. PMID:20636805

  2. Regulation of Th2 Cell Immunity by Dendritic Cells

    PubMed Central

    Na, Hyeongjin

    2016-01-01

    Th2 cell immunity is required for host defense against helminths, but it is detrimental in allergic diseases in humans. Unlike Th1 cell and Th17 cell subsets, the mechanism by which dendritic cells modulate Th2 cell responses has been obscure, in part because of the inability of dendritic cells to provide IL-4, which is indispensable for Th2 cell lineage commitment. In this regard, immune cells other than dendritic cells, such as basophils and innate lymphoid cells, have been suggested as Th2 cell inducers. More recently, multiple independent researchers have shown that specialized subsets of dendritic cells mediate Th2 cell responses. This review will discuss the current understanding related to the regulation of Th2 cell responses by dendritic cells and other immune cells. PMID:26937227

  3. Cell mediated immune regulation in autoimmunity.

    PubMed

    Gillissen, G; Pusztai-Markos, Z

    1979-01-01

    Autoimmunity is the term for the immune conditions characterized by a specific humoral or cell mediated response to the body's own tissues. The termination of the natural state of self tolerance may lead to immunopathological manifestations with clinical consequences, i.e. autoimmune diseases. In a very general sense, one may classify autoimmune diseases into two groups with respect to the underlying mechanism: 1. There are autoimmune diseases which develop in the presence of a normal intact regulation mechanism. 2. Another group whose development must be understood on the basis of a cellular dysfunction. In the first case, dequestered or semi-sequestered autoantigens are liberated as a consequence of exogenic influences inducing the sensitization of immunocompetent cells. The immune system then reacts with these autoantigens in the same way as with foreign substances. This kind of autoimmune disease will, however, not be dealt with here. In the second case, autoantigens are normally, i.e. in healthy individuals, accessible to the immunocompetent cells. To understand the reason for the development of an autoimmune reaction one must first clarify the mechanism of self tolerance. Then one must examine the way in which a break of this physiological state takes place. One of the major unanswered questions is the relative importance of antibody-mediated and cell-mediated immune mechanisms in the onset and further development of autoimmune diseases. Recently it has been suggested that a dysfunction at the cellular level might represent the basic cause which induces the termination of selftolerance. Most of the conceptions about the mechanism by which autoimmune diseases are triggered were gained through experiments with animals. It is, however, difficult to use these experimental results to explain human diseases; in humans many questions are still open. Undoubtedly, the mechanisms of induction and maintenance of self tolerance and also the ways in which autoimmune

  4. Mesenchymal Stem Cells and Myeloid Derived Suppressor Cells: Common Traits in Immune Regulation

    PubMed Central

    Nikolaev, Alexander

    2016-01-01

    To protect host against immune-mediated damage, immune responses are tightly regulated. The regulation of immune responses is mediated by various populations of mature immune cells, such as T regulatory cells and B regulatory cells, but also by immature cells of different origins. In this review, we discuss regulatory properties and mechanisms whereby two distinct populations of immature cells, mesenchymal stem cells, and myeloid derived suppressor cells mediate immune regulation, focusing on their similarities, discrepancies, and potential clinical applications. PMID:27529074

  5. Myeloid cell-driven angiogenesis and immune regulation in tumors

    PubMed Central

    Rivera, Lee B.; Bergers, Gabriele

    2015-01-01

    Angiogenesis is a hallmark of cancer as its induction is indispensable to fuel an expanding tumor. The tumor microenvironment contributes to tumor vessel growth, and distinct myeloid cells recruited by the tumor have been shown to not only support angiogenesis but to foster an immune suppressive environment that supports tumor expansion and progression. Recent findings suggest that the intertwined regulation of angiogenesis and immune modulation can offer therapeutic opportunities for the treatment of cancer. Here we review the mechanisms by which distinct myeloid cell populations contribute to tumor angiogenesis, discuss current approaches in the clinic that are targeting both angiogenic and immune suppressive pathways, and highlight important areas of future research. PMID:25770923

  6. Regulation of local immunity by airway epithelial cells.

    PubMed

    Mayer, Anja K; Dalpke, Alexander H

    2007-01-01

    Epithelial cells are the first line of defense against invading microbial pathogens. They are important contributors to innate mucosal immunity and generate various and sophisticated anti-microbial defense mechanisms, including the formation of a tight barrier and secretion of anti-microbial substances as well as inflammatory mediators. To provide these active defense mechanisms, epithelial cells functionally express various pattern-recognition receptors. Toll-like receptors have been shown to recognize conserved microbial patterns mediating inducible activation of innate immunity. Mucosal surfaces, however, are prone to contact with pathogenic as well as non-pathogenic microbes and, therefore, immune-recognition principles have to be strictly regulated to avoid uncontrolled permanent activation. This review will focus on mechanisms by which epithelial cells regulate mucosal immune responses, thus creating an organ-specific microenvironment. This includes local adaptations in microbial recognition, regulation of local immune homeostasis, and modulation of antigen-presenting cells and adaptive immune responses. These regulatory mechanisms serve the special needs of controlled microbial recognition in mucosal compartments. PMID:18060372

  7. Regulation of innate immune cell function by mTOR.

    PubMed

    Weichhart, Thomas; Hengstschläger, Markus; Linke, Monika

    2015-10-01

    The innate immune system is central for the maintenance of tissue homeostasis and quickly responds to local or systemic perturbations by pathogenic or sterile insults. This rapid response must be metabolically supported to allow cell migration and proliferation and to enable efficient production of cytokines and lipid mediators. This Review focuses on the role of mammalian target of rapamycin (mTOR) in controlling and shaping the effector responses of innate immune cells. mTOR reconfigures cellular metabolism and regulates translation, cytokine responses, antigen presentation, macrophage polarization and cell migration. The mTOR network emerges as an integrative rheostat that couples cellular activation to the environmental and intracellular nutritional status to dictate and optimize the inflammatory response. A detailed understanding of how mTOR metabolically coordinates effector responses by myeloid cells will provide important insights into immunity in health and disease. PMID:26403194

  8. Genetic variants regulating immune cell levels in health and disease.

    PubMed

    Orrù, Valeria; Steri, Maristella; Sole, Gabriella; Sidore, Carlo; Virdis, Francesca; Dei, Mariano; Lai, Sandra; Zoledziewska, Magdalena; Busonero, Fabio; Mulas, Antonella; Floris, Matteo; Mentzen, Wieslawa I; Urru, Silvana A M; Olla, Stefania; Marongiu, Michele; Piras, Maria G; Lobina, Monia; Maschio, Andrea; Pitzalis, Maristella; Urru, Maria F; Marcelli, Marco; Cusano, Roberto; Deidda, Francesca; Serra, Valentina; Oppo, Manuela; Pilu, Rosella; Reinier, Frederic; Berutti, Riccardo; Pireddu, Luca; Zara, Ilenia; Porcu, Eleonora; Kwong, Alan; Brennan, Christine; Tarrier, Brendan; Lyons, Robert; Kang, Hyun M; Uzzau, Sergio; Atzeni, Rossano; Valentini, Maria; Firinu, Davide; Leoni, Lidia; Rotta, Gianluca; Naitza, Silvia; Angius, Andrea; Congia, Mauro; Whalen, Michael B; Jones, Chris M; Schlessinger, David; Abecasis, Gonçalo R; Fiorillo, Edoardo; Sanna, Serena; Cucca, Francesco

    2013-09-26

    The complex network of specialized cells and molecules in the immune system has evolved to defend against pathogens, but inadvertent immune system attacks on "self" result in autoimmune disease. Both genetic regulation of immune cell levels and their relationships with autoimmunity are largely undetermined. Here, we report genetic contributions to quantitative levels of 95 cell types encompassing 272 immune traits, in a cohort of 1,629 individuals from four clustered Sardinian villages. We first estimated trait heritability, showing that it can be substantial, accounting for up to 87% of the variance (mean 41%). Next, by assessing ∼8.2 million variants that we identified and confirmed in an extended set of 2,870 individuals, 23 independent variants at 13 loci associated with at least one trait. Notably, variants at three loci (HLA, IL2RA, and SH2B3/ATXN2) overlap with known autoimmune disease associations. These results connect specific cellular phenotypes to specific genetic variants, helping to explicate their involvement in disease. PMID:24074872

  9. Immune regulation of epithelial cell function: Implications for GI pathologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mammalian immune system is a complex and dynamic network that recognizes, responds, and adapts to numerous foreign and self molecules. CD4+ T cells orchestrate adaptive immune responses, and upon stimulation by antigen, naive CD4+ T cells proliferate and differentiate into various T cell subsets...

  10. Regulation of Intestinal Immune System by Dendritic Cells

    PubMed Central

    Ko, Hyun-Jeong

    2015-01-01

    Innate immune cells survey antigenic materials beneath our body surfaces and provide a front-line response to internal and external danger signals. Dendritic cells (DCs), a subset of innate immune cells, are critical sentinels that perform multiple roles in immune responses, from acting as principal modulators to priming an adaptive immune response through antigen-specific signaling. In the gut, DCs meet exogenous, non-harmful food antigens as well as vast commensal microbes under steady-state conditions. In other instances, they must combat pathogenic microbes to prevent infections. In this review, we focus on the function of intestinal DCs in maintaining intestinal immune homeostasis. Specifically, we describe how intestinal DCs affect IgA production from B cells and influence the generation of unique subsets of T cell. PMID:25713503

  11. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome

    PubMed Central

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika PMID:27212842

  12. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome.

    PubMed

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika. PMID:27212842

  13. Siglecs and Immune Regulation

    PubMed Central

    Pillai, Shiv; Netravali, Ilka Arun; Cariappa, Annaiah; Mattoo, Hamid

    2013-01-01

    Sialic acid binding Ig-like lectins or Siglecs vary in their specificity for sialic acid containing ligands and are mainly expressed by cells of the immune system. Many siglecs are inhibitory receptors expressed in innate immune cells that regulate inflammation mediated by DAMPs and PAMPs. This family also includes molecules involved in adhesion and phagocytosis and receptors that can associate with the ITAM containing DAP12 adaptor. Siglecs contribute to the inhibition of immune cells both by binding to cis-ligands (expressed in the same cells) as well as by responding to pathogen derived sialoglycoconjugates. They can help maintain tolerance in B lymphocytes, modulate the activation of conventional and plasmacytoid dendritic cells, and contribute to the regulation of T cell function both directly and indirectly. Siglecs modulate immune responses influencing almost every cell in the immune system, and are of relevance both in health and disease. PMID:22224769

  14. B cell regulation of anti-tumor immune response.

    PubMed

    Zhang, Yu; Morgan, Richard; Podack, Eckhard R; Rosenblatt, Joseph

    2013-12-01

    Our laboratory has been investigating the role of B cells on tumor immunity. We have studied the immune response in mice that are genetically lacking in B cells (BCDM) using a variety of syngeneic mouse tumors and compared immune responses in BCDM with those seen in wild type (WT) immunocompetent mice (ICM). A variety of murine tumors are rejected or inhibited in their growth in BCDM, compared with ICM, including the EL4 thymoma, and the MC38 colon carcinoma in C57BL/6 mice, as well as the EMT-6 breast carcinoma in BALB/c mice. In all three murine models, tumors show reduced growth in BCDM which is accompanied by increased T cell and NK cell infiltration, and a more vigorous Th1 cytokine response, and increased cytolytic T cell response in the absence of B cells. Reconstitution of the mice with B cells results in augmented tumor growth due to a diminished anti-tumor immune response and in reduction in CD8+ T cell and NK cell infiltration. Studies involving BCR transgenic mice indicated that B cells inhibit anti-tumor T cell responses through antigen non-specific mechanisms. More recent studies using the EMT-6 model demonstrated that both the number and function of Treg cells in ICM was increased relative to that seen in BCDM. Increased expansion of Treg cells was evident following EMT-6 implantation in ICM relative to that seen in non-tumor-bearing mice or BCDM. The percentage and number of Tregs in spleen, tumor draining lymph nodes, and the tumor bed are increased in ICM compared with BCDM. Treg functional capacity as measured by suppression assays appears to be reduced in BCDM compared with ICM. In contrast to other described types of B regulatory activity, adoptive transfer of B cells can rescue tumor growth independently of the ability of B cells to secrete IL-10, and also independently of MHC-II expression. In experiments using the MC38 adenocarcinoma model, BCDM reconstituted with WT B cells support tumor growth while tumor growth continues to be inhibited

  15. The evolving paradigm of cell-nonautonomous UPR-based regulation of immunity by cancer cells.

    PubMed

    Zanetti, M; Rodvold, J J; Mahadevan, N R

    2016-01-21

    The endoplasmic reticulum (ER) stress response/unfolded protein response (UPR) has been thought to influence tumorigenesis mainly through cell-intrinsic, pro-survival effects. In recent years, however, new evidence has emerged showing that the UPR is also the source of cell-extrinsic effects, particularly directed at those immune cells within the tumor microenvironment. Here we will review and discuss this new body of information with focus on the role of cell-extrinsic effects on innate and adaptive immunity, suggesting that the transmission of ER stress from cancer cells to myeloid cells in particular is an expedient used by cancer cells to control the immune microenvironment, which acquires pro-inflammatory as well as immune-suppressive characteristics. These new findings can now be seen in the broader context of similar phenomena described in Caenorhabditis elegans, and an analogy with quorum sensing and 'community effects' in prokaryotes and eukaryotes can be drawn, arguing that a cell-nonautonomous UPR-based regulation of heterologous cells may be phylogenetically conserved. Finally, we will discuss the role of aneuploidy as an inducer of proteotoxic stress and potential initiator of cell-nonautonomous UPR-based regulation. In presenting these new views, we wish to bring attention to the cell-extrinsic regulation of tumor growth, including tumor UPR-based cell-nonautonomous signaling as a mechanism of maintaining tumor heterogeneity and resistance to therapy, and suggest therapeutically targeting such mechanisms within the tumor microenvironment. PMID:25893303

  16. Hormonal regulation of uterine chemokines and immune cells

    PubMed Central

    Park, Dong-Wook

    2011-01-01

    The ultimate function of the endometrium is to allow the implantation of a blastocyst and to support pregnancy. Cycles of tissue remodeling ensure that the endometrium is in a receptive state during the putative 'implantation window', the few days of each menstrual cycle when an appropriately developed blastocyst may be available to implant in the uterus. A successful pregnancy requires strict temporal regulation of maternal immune function to accommodate a semi-allogeneic embryo. To preparing immunological tolerance at the onset of implantation, tight temporal regulations are required between the immune and endocrine networks. This review will discuss about the action of steroid hormones on the human endometrium and particularly their role in regulating the inflammatory processes associated with endometrial receptivity. PMID:22384440

  17. Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation

    PubMed Central

    Arce-Sillas, Asiel; Álvarez-Luquín, Diana Denisse; Tamaya-Domínguez, Beatriz; Gomez-Fuentes, Sandra; Trejo-García, Abel; Melo-Salas, Marlene; Cárdenas, Graciela; Rodríguez-Ramírez, Juan; Adalid-Peralta, Laura

    2016-01-01

    T regulatory cells play a key role in the control of the immune response, both in health and during illness. While the mechanisms through which T regulatory cells exert their function have been extensively described, their molecular effects on effector cells have received little attention. Thus, this revision is aimed at summarizing our current knowledge on those regulation mechanisms on the target cells from a molecular perspective. PMID:27298831

  18. T regulatory cells and their counterparts: masters of immune regulation.

    PubMed

    Ozdemir, C; Akdis, M; Akdis, C A

    2009-05-01

    The interaction of environmental and genetic factors with the immune system can lead to the development of allergic diseases. The essential step in this progress is the generation of allergen-specific CD4(+) T-helper (Th) type 2 cells that mediate several effector functions. The influence of Th2 cytokines leads to the production of allergen-specific IgE antibodies by B cells, development and recruitment of eosinophils, mucus production and bronchial hyperreactivity, as well as tissue homing of other Th2 cells and eosinophils. Meanwhile, Th1 cells may contribute to chronicity and the effector phases. T cells termed T regulatory (Treg) cells, which have immunosuppressive functions and cytokine profiles distinct from that of either Th1 or Th2 cells, have been intensely investigated during the last 13 years. Treg cell response is characterized by an abolished allergen-specific T cell proliferation and the suppressed secretion of Th1 and Th2-type cytokines. Treg cells are able to inhibit the development of allergen-specific Th2 and Th1 cell responses and therefore play an important role in a healthy immune response to allergens. In addition, Treg cells potently suppress IgE production and directly or indirectly suppress the activity of effector cells of allergic inflammation, such as eosinophils, basophils and mast cells. Currently, Treg cells represent an exciting area of research, where understanding the mechanisms of peripheral tolerance to allergens may soon lead to more rational and safer approaches for the prevention and cure of allergic diseases. PMID:19422105

  19. PD-L1hi B cells are critical regulators of humoral immunity.

    PubMed

    Khan, Adnan R; Hams, Emily; Floudas, Achilleas; Sparwasser, Tim; Weaver, Casey T; Fallon, Padraic G

    2015-01-01

    Specific B-cell subsets can regulate T-cell immune responses, and are termed regulatory B cells (Breg). The majority of Breg cells described in mouse and man have been identified by IL-10 production and are known to suppress allergy and autoimmunity. However, Breg cell mediated immune suppression, independent of IL-10, also occurs. Here we show that Breg cells play a critical role in regulating humoral immunity mediated by CD4(+)CXCR5(+)PD-1(+) follicular helper T cells, and can suppress inflammation in autoimmune disease through elevated expression of PD-L1. We have also identified that these B cells are resistant to αCD20 B-cell depletion. This work describes how Breg cells are critical in humoral homoeostasis and may have implications for the regulation of autoimmune diseases. PMID:25609381

  20. mTOR Regulation of Lymphoid Cells in Immunity to Pathogens

    PubMed Central

    Keating, Rachael; McGargill, Maureen Ann

    2016-01-01

    Immunity to pathogens exists as a fine balance between promoting activation and expansion of effector cells, while simultaneously limiting normal and aberrant responses. These seemingly opposing functions are kept in check by immune regulators. The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that senses nutrient availability and, in turn, regulates cell metabolism, growth, and survival accordingly. mTOR plays a pivotal role in facilitating immune defense against invading pathogens by regulating the differentiation, activation, and effector functions of lymphoid cells. Here, we focus on the emerging and sometimes contradictory roles of mTOR in orchestrating lymphoid cell-mediated host immune responses to pathogens. A thorough understanding of how mTOR impacts lymphoid cells in pathogen defense will provide the necessary base for developing therapeutic interventions for infectious diseases. PMID:27242787

  1. mTOR Regulation of Lymphoid Cells in Immunity to Pathogens.

    PubMed

    Keating, Rachael; McGargill, Maureen Ann

    2016-01-01

    Immunity to pathogens exists as a fine balance between promoting activation and expansion of effector cells, while simultaneously limiting normal and aberrant responses. These seemingly opposing functions are kept in check by immune regulators. The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that senses nutrient availability and, in turn, regulates cell metabolism, growth, and survival accordingly. mTOR plays a pivotal role in facilitating immune defense against invading pathogens by regulating the differentiation, activation, and effector functions of lymphoid cells. Here, we focus on the emerging and sometimes contradictory roles of mTOR in orchestrating lymphoid cell-mediated host immune responses to pathogens. A thorough understanding of how mTOR impacts lymphoid cells in pathogen defense will provide the necessary base for developing therapeutic interventions for infectious diseases. PMID:27242787

  2. Cell-Mediated Immune Function and Cytokine Regulation During Space Flight

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    The changes in immune function which occur during space flight potentially expose the crews to an increased risk for development of illness. Decreased cellular immune function has been repeatedly documented after space flight and confirmed during flight by in vivo delayed-type hypersensitivity testing. However, correlation of immune changes with a clinically significant risk factor has not yet been performed. Our hypothesis is that space flight induces a decrease in cell-mediated immune function accompanied by a shift from a type 1 cytokine pattern (favoring cell-mediated immunity) to a type 2 cytokine pattern (favoring humoral immunity). We further hypothesize that reactivation of latent viruses will occur during space flight in association with the decreased cellular immunity. To test these hypotheses, we will determine the effects of space flight on cell-mediated immunity and viral reactivation. We will utilize delayed-type hypersensitivity testing as an in vivo measure of integrated cell-mediated immune function. The production of cytokines and immunoregulatory factors by lymphocytes and monocytes will be measured to determine whether changes in cytokine patterns are associated with the space flight-induced immune dysregulation. Correlation of antigen-specific immune changes with reactivation of latent herpes viruses will be determined by measuring peripheral levels of viral (CMV, VZV, EBV) antigen-specific T cells and comparing to the levels of EBV-infected B-cells by fluorescence in situ hybridization and flow cytometry. A comparison of cell-mediated immune function, cytokine regulation and viral reactivation will provide new insights into crew member health risks during flight.

  3. Human Gastric Epithelial Cells Contribute to Gastric Immune Regulation by Providing Retinoic Acid to Dendritic Cells

    PubMed Central

    Bimczok, Diane; Kao, John Y.; Zhang, Min; Cochrun, Steven; Mannon, Peter; Peter, Shajan; Wilcox, Charles M.; Mönkemüller, Klaus E.; Harris, Paul R.; Grams, Jayleen M.; Stahl, Richard D.; Smith, Phillip D.; Smythies, Lesley E.

    2014-01-01

    Despite the high prevalence of chronic gastritis caused by H. pylori, the gastric mucosa has received little investigative attention as a unique immune environment. Here, we analyzed whether retinoic acid (RA), an important homeostatic factor in the small intestinal mucosa, also contributes to gastric immune regulation. We report that human gastric tissue contains high levels of the RA precursor molecule, retinol, and that gastric epithelial cells express both RA biosynthesis genes and RA response genes, indicative of active RA biosynthesis. Moreover, primary gastric epithelial cells cultured in the presence of retinol synthesized RA in vitro and induced RA biosynthesis in co-cultured monocytes through an RA-dependent mechanism, suggesting that gastric epithelial cells may also confer the ability to generate RA on gastric DCs. Indeed, DCs purified from gastric mucosa had similar levels of aldehyde dehydrogenase activity and RA biosynthesis gene expression as small intestinal DCs, although gastric DCs lacked CD103. In H. pylori-infected gastric mucosa, gastric RA biosynthesis gene expression was severely disrupted, which may lead to reduced RA signaling and thus contribute to disease progression. Collectively, our results support a critical role for RA in human gastric immune regulation. PMID:25249167

  4. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis.

    PubMed

    Klose, Christoph S N; Artis, David

    2016-06-21

    Research over the last 7 years has led to the formal identification of innate lymphoid cells (ILCs), increased the understanding of their tissue distribution and has established essential functions of ILCs in diverse physiological processes. These include resistance to pathogens, the regulation of autoimmune inflammation, tissue remodeling, cancer and metabolic homeostasis. Notably, many ILC functions appear to be regulated by mechanisms distinct from those of other innate and adaptive immune cells. In this Review, we focus on how group 2 ILC (ILC2) and group 3 ILC (ILC3) responses are regulated and how these cells interact with other immune and non-immune cells to mediate their functions. We highlight experimental evidence from mouse models and patient-based studies that have elucidated the effects of ILCs on the maintenance of tissue homeostasis and the consequences for health and disease. PMID:27328006

  5. NKp46 Clusters at the Immune Synapse and Regulates NK Cell Polarization

    PubMed Central

    Hadad, Uzi; Thauland, Timothy J.; Martinez, Olivia M.; Butte, Manish J.; Porgador, Angel; Krams, Sheri M.

    2015-01-01

    Natural killer (NK) cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell surface expressed inhibitory and activating receptors. NKp46 is a major NK cell-activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However, the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study, we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function. PMID:26441997

  6. Immune responses of macrophages and dendritic cells regulated by mTOR signalling.

    PubMed

    Katholnig, Karl; Linke, Monika; Pham, Ha; Hengstschläger, Markus; Weichhart, Thomas

    2013-08-01

    The innate myeloid immune system is a complex network of cells that protect against disease by identifying and killing pathogens and tumour cells, but it is also implicated in homoeostatic mechanisms such as tissue remodelling and wound healing. Myeloid phagocytes such as monocytes, macrophages or dendritic cells are at the basis of controlling these immune responses in all tissues of the body. In the present review, we summarize recent studies demonstrating that mTOR [mammalian (or mechanistic) target of rapamycin] regulates innate immune reactions in macrophages and dendritic cells. The mTOR pathway serves as a decision maker to control the cellular response to pathogens and tumours by regulating the expression of inflammatory mediators such as cytokines, chemokines or interferons. In addition to various in vivo mouse models, kidney transplant patients under mTOR inhibitor therapy allowed the elucidation of important innate immune functions regulated by mTOR in humans. The role of the mTOR pathway in macrophages and dendritic cells enhances our understanding of the immune system and suggests new therapeutic avenues for the regulation of pro- versus anti-inflammatory mediators with potential relevance to cancer therapy, the design of novel adjuvants and the control of distinct infectious and autoimmune diseases. PMID:23863158

  7. Epigenetic regulation of immune cell functions during post-septic immunosuppression

    PubMed Central

    Cavassani, Karen A; Dou, Yali; Kunkel, Steven L

    2011-01-01

    Studies in humans and animal models indicate that profound immunosuppression is one of the chronic consequences of severe sepsis. This immune dysfunction encompasses deficiencies in activation of cells in both the myeloid and lymphoid cell lineages. As a result, survivors of severe sepsis are at risk of succumbing to infections perpetrated by opportunistic pathogens that are normally controlled by a fully functioning immune system. Recent studies have indicated that epigenetic mechanisms may be one driving force behind this immunosuppression, through suppression of proinflammatory gene production and subsequent immune cell activation, proliferation and effector function. A better understanding of epigenetics and post-septic immunosuppression can improve our diagnostic tools and may be an important potential source of novel molecular targets for new therapies. This review will discuss important pathways of immune cell activation affected by severe sepsis, and highlight pathways of epigenetic regulation that may be involved in post-septic immunosuppression. PMID:21048427

  8. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORγt⁺ T cells.

    PubMed

    Ohnmacht, Caspar; Park, Joo-Hong; Cording, Sascha; Wing, James B; Atarashi, Koji; Obata, Yuuki; Gaboriau-Routhiau, Valérie; Marques, Rute; Dulauroy, Sophie; Fedoseeva, Maria; Busslinger, Meinrad; Cerf-Bensussan, Nadine; Boneca, Ivo G; Voehringer, David; Hase, Koji; Honda, Kenya; Sakaguchi, Shimon; Eberl, Gérard

    2015-08-28

    Changes to the symbiotic microbiota early in life, or the absence of it, can lead to exacerbated type 2 immunity and allergic inflammations. Although it is unclear how the microbiota regulates type 2 immunity, it is a strong inducer of proinflammatory T helper 17 (T(H)17) cells and regulatory T cells (T(regs)) in the intestine. Here, we report that microbiota-induced T(regs) express the nuclear hormone receptor RORγt and differentiate along a pathway that also leads to T(H)17 cells. In the absence of RORγt(+) T(regs), T(H)2-driven defense against helminths is more efficient, whereas T(H)2-associated pathology is exacerbated. Thus, the microbiota regulates type 2 responses through the induction of type 3 RORγt(+) T(regs) and T(H)17 cells and acts as a key factor in balancing immune responses at mucosal surfaces. PMID:26160380

  9. Biochemical and Functional Insights into the Integrated Regulation of Innate Immune Cell Responses by Teleost Leukocyte Immune-Type Receptors

    PubMed Central

    Fei, Chenjie; Pemberton, Joshua G.; Lillico, Dustin M. E.; Zwozdesky, Myron A.; Stafford, James L.

    2016-01-01

    Across vertebrates, innate immunity consists of a complex assortment of highly specialized cells capable of unleashing potent effector responses designed to destroy or mitigate foreign pathogens. The execution of various innate cellular behaviors such as phagocytosis, degranulation, or cell-mediated cytotoxicity are functionally indistinguishable when being performed by immune cells isolated from humans or teleost fishes; vertebrates that diverged from one another more than 450 million years ago. This suggests that vital components of the vertebrate innate defense machinery are conserved and investigating such processes in a range of model systems provides an important opportunity to identify fundamental features of vertebrate immunity. One characteristic that is highly conserved across vertebrate systems is that cellular immune responses are dependent on specialized immunoregulatory receptors that sense environmental stimuli and initiate intracellular cascades that can elicit appropriate effector responses. A wide variety of immunoregulatory receptor families have been extensively studied in mammals, and many have been identified as cell- and function-specific regulators of a range of innate responses. Although much less is known in fish, the growing database of genomic information has recently allowed for the identification of several immunoregulatory receptor gene families in teleosts. Many of these putative immunoregulatory receptors have yet to be assigned any specific role(s), and much of what is known has been based solely on structural and/or phylogenetic relationships with mammalian receptor families. As an attempt to address some of these shortcomings, this review will focus on our growing understanding of the functional roles played by specific members of the channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs), which appear to be important regulators of several innate cellular responses via classical as well as unique

  10. Indoleamine 2,3 dioxygenase and regulation of T cell immunity

    SciTech Connect

    Mellor, Andrew . E-mail: amellor@mcg.edu

    2005-12-09

    Regulation of adaptive immune responses is critically important to allow the adaptive immune system to eradicate infections while causing minimal collateral damage to infected tissues, as well as preventing autoimmune disease mediated by self-reactive lymphocytes. Tumors and pathogens that cause persistent infections can subvert immunoregulatory processes to protect themselves from destruction by T cells, to the detriment of patients. A growing body of evidence supports the hypothesis that specialized subsets of dendritic cells expressing indoleamine 2,3 dioxygenase (IDO), which catalyzes oxidative catabolism of tryptophan, play critical roles in regulation of T cell-mediated immune responses. IDO-dependent T cell suppression by dendritic cells suggests that biochemical changes due to tryptophan catabolism have profound effects on T cell proliferation, differentiation, effector functions, and viability. This has critical implications for immunotherapeutic manipulations designed for patients with cancer and chronic infectious diseases. In this review, I focus on dendritic cells that can express IDO, and which acquire potent T cell regulatory functions as a consequence.

  11. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells.

    PubMed

    Rimoldi, Monica; Chieppa, Marcello; Salucci, Valentina; Avogadri, Francesca; Sonzogni, Angelica; Sampietro, Gianluca M; Nespoli, Angelo; Viale, Giuseppe; Allavena, Paola; Rescigno, Maria

    2005-05-01

    The control of damaging inflammation by the mucosal immune system in response to commensal and harmful ingested bacteria is unknown. Here we show epithelial cells conditioned mucosal dendritic cells through the constitutive release of thymic stromal lymphopoietin and other mediators, resulting in the induction of 'noninflammatory' dendritic cells. Epithelial cell-conditioned dendritic cells released interleukins 10 and 6 but not interleukin 12, and they promoted the polarization of T cells toward a 'classical' noninflammatory T helper type 2 response, even after exposure to a T helper type 1-inducing pathogen. This control of immune responses seemed to be lost in patients with Crohn disease. Thus, the intimate interplay between intestinal epithelial cells and dendritic cells may help to maintain gut immune homeostasis. PMID:15821737

  12. Complex regulation of nucleoside transporter expression in epithelial and immune system cells.

    PubMed

    Pastor-Anglada, M; Casado, F J; Valdés, R; Mata, J; García-Manteiga, J; Molina, M

    2001-01-01

    Nucleoside transporters have a variety of functions in the cell, such as the provision of substrates for nucleic acid synthesis and the modulation of purine receptors by determining agonist availability. They also transport a wide range of nucleoside-derived antiviral and anticancer drugs. Most mammalian cells co-express several nucleoside transporter isoforms at the plasma membrane, which are differentially regulated. This paper reviews studies on nucleoside transporter regulation, which has been extensively characterized in the laboratory in several model systems: the hepatocyte, an epithelial cell type, and immune system cells, in particular B cells, which are non-polarized and highly specialized. The hepatocyte co-expresses at least two Na+-dependent nucleoside transporters, CNT1 and CNT2, which are up-regulated during cell proliferation but may undergo selective loss in certain experimental models of hepatocarcinomas. This feature is consistent with evidence that CNT expression also depends on the differentiation status of the hepatocyte. Moreover, substrate availability also modulates CNT expression in epithelial cells, as reported for hepatocytes and jejunum epithelia from rats fed nucleotide-deprived diets. In human B cell lines, CNT and ENT transporters are co-expressed but differentially regulated after B cell activation triggered by cytokines or phorbol esters, as described for murine bone marrow macrophages induced either to activate or to proliferate. The complex regulation of the expression and activity of nucleoside transporters hints at their relevance in cell physiology. PMID:11396615

  13. Two macrophage migration inhibitory factors regulate starfish larval immune cell chemotaxis.

    PubMed

    Furukawa, Ryohei; Tamaki, Kana; Kaneko, Hiroyuki

    2016-04-01

    Immune cell recruitment is critical step in the inflammatory response and associated diseases. However, the underlying regulatory mechanisms are poorly understood in invertebrates. Mesenchyme cells of the starfish larvae, which allowed Metchnikoff to complete his landmark experiments, are important model for analysis of immune cell migration. The present study investigated the role of macrophage migration inhibitory factor (MIF)-an evolutionarily conserved cytokine that is functionally similar to chemokines-in the larvae of the starfish Patiria (Asterina) pectinifera, which were found to possess two orthologs, ApMIF1 and ApMIF2. ApMIF1 and ApMIF2 clustered with mammalian MIF and its homolog D-dopachrome tautomerase (DDT), respectively, in the phylogenetic analysis. In contrast to the functional similarity between mammalian MIF and DDT, ApMIF1 knockdown resulted in the excessive recruitment of mesenchyme cells in vivo, whereas ApMIF2 deficiency inhibited the recruitment of these cells to foreign bodies. Mesenchyme cells migrated along a gradient of recombinant ApMIF2 in vitro, whereas recombinant ApMIF1 completely blocked ApMIF2-induced directed migration. Moreover, the expression patterns of ApMIF1 and ApMIF2 messenger RNA in bacteria-challenged mesenchyme cells were consistent with in vivo observations of cell behaviors. These results indicate that ApMIF1 and ApMIF2 act as chemotactic inhibitory and stimulatory factors, respectively, and coordinately regulate mesenchyme cell recruitment during the immune response in starfish larvae. This is the first report describing opposing functions for MIF- and DDT-like molecules. Our findings provide novel insight into the mechanisms underlying immune regulation in invertebrates. PMID:26833025

  14. Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity

    PubMed Central

    Giacomin, Paul R.; Moy, Ryan H.; Noti, Mario; Osborne, Lisa C.; Siracusa, Mark C.; Alenghat, Theresa; Liu, Bigang; McCorkell, Kelly A.; Troy, Amy E.; Rak, Gregory D.; Hu, Yinling; May, Michael J.; Ma, Hak-Ling; Fouser, Lynette A.; Sonnenberg, Gregory F.

    2015-01-01

    Innate lymphoid cells (ILCs) are critical for maintaining epithelial barrier integrity at mucosal surfaces; however, the tissue-specific factors that regulate ILC responses remain poorly characterized. Using mice with intestinal epithelial cell (IEC)–specific deletions in either inhibitor of κB kinase (IKK)α or IKKβ, two critical regulators of NFκB activation, we demonstrate that IEC-intrinsic IKKα expression selectively regulates group 3 ILC (ILC3)–dependent antibacterial immunity in the intestine. Although IKKβΔIEC mice efficiently controlled Citrobacter rodentium infection, IKKαΔIEC mice exhibited severe intestinal inflammation, increased bacterial dissemination to peripheral organs, and increased host mortality. Consistent with weakened innate immunity to C. rodentium, IKKαΔIEC mice displayed impaired IL-22 production by RORγt+ ILC3s, and therapeutic delivery of rIL-22 or transfer of sort-purified IL-22–competent ILCs from control mice could protect IKKαΔIEC mice from C. rodentium–induced morbidity. Defective ILC3 responses in IKKαΔIEC mice were associated with overproduction of thymic stromal lymphopoietin (TSLP) by IECs, which negatively regulated IL-22 production by ILC3s and impaired innate immunity to C. rodentium. IEC-intrinsic IKKα expression was similarly critical for regulation of intestinal inflammation after chemically induced intestinal damage and colitis. Collectively, these data identify a previously unrecognized role for epithelial cell–intrinsic IKKα expression and TSLP in regulating ILC3 responses required to maintain intestinal barrier immunity. PMID:26371187

  15. Immunometabolism: Cellular Metabolism Turns Immune Regulator.

    PubMed

    Loftus, Róisín M; Finlay, David K

    2016-01-01

    Immune cells are highly dynamic in terms of their growth, proliferation, and effector functions as they respond to immunological challenges. Different immune cells can adopt distinct metabolic configurations that allow the cell to balance its requirements for energy, molecular biosynthesis, and longevity. However, in addition to facilitating immune cell responses, it is now becoming clear that cellular metabolism has direct roles in regulating immune cell function. This review article describes the distinct metabolic signatures of key immune cells, explains how these metabolic setups facilitate immune function, and discusses the emerging evidence that intracellular metabolism has an integral role in controlling immune responses. PMID:26534957

  16. Myeloid cell TRAF3 regulates immune responses and inhibits inflammation and tumor development in mice.

    PubMed

    Lalani, Almin I; Moore, Carissa R; Luo, Chang; Kreider, Benjamin Z; Liu, Yan; Morse, Herbert C; Xie, Ping

    2015-01-01

    Myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells, are crucial players in innate immunity and inflammation. These cells constitutively or inducibly express a number of receptors of the TNFR and TLR families, whose signals are transduced by TNFR-associated factor (TRAF) molecules. In vitro studies showed that TRAF3 is required for TLR-induced type I IFN production, but the in vivo function of TRAF3 in myeloid cells remains unknown. In this article, we report the generation and characterization of myeloid cell-specific TRAF3-deficient (M-TRAF3(-/-)) mice, which allowed us to gain insights into the in vivo functions of TRAF3 in myeloid cells. We found that TRAF3 ablation did not affect the maturation or homeostasis of myeloid cells in young adult mice, even though TRAF3-deficient macrophages and neutrophils exhibited constitutive NF-κB2 activation. However, in response to injections with LPS (a bacterial mimic) or polyinosinic-polycytidylic acid (a viral mimic), M-TRAF3(-/-) mice exhibited an altered profile of cytokine production. M-TRAF3(-/-) mice immunized with T cell-independent and -dependent Ags displayed elevated T cell-independent IgG3 and T cell-dependent IgG2b responses. Interestingly, 15- to 22-mo-old M-TRAF3(-/-) mice spontaneously developed chronic inflammation or tumors, often affecting multiple organs. Taken together, our findings indicate that TRAF3 expressed in myeloid cells regulates immune responses in myeloid cells and acts to inhibit inflammation and tumor development in mice. PMID:25422508

  17. Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment.

    PubMed

    Chen, Xinfeng; Song, Mengjia; Zhang, Bin; Zhang, Yi

    2016-01-01

    Reactive oxygen species (ROS) produced by cellular metabolism play an important role as signaling messengers in immune system. ROS elevated in the tumor microenvironment are associated with tumor-induced immunosuppression. T cell-based therapy has been recently approved to be effective for cancer treatment. However, T cells often become dysfunctional after reaching the tumor site. It has been reported that ROS participate extensively in T cells activation, apoptosis, and hyporesponsiveness. The sensitivity of T cells to ROS varies among different subsets. ROS can be regulated by cytokines, amino acid metabolism, and enzymatic activity. Immunosuppressive cells accumulate in the tumor microenvironment and induce apoptosis and functional suppression of T cells by producing ROS. Thus, modulating the level of ROS may be important to prolong survival of T cells and enhance their antitumor function. Combining T cell-based therapy with antioxidant treatment such as administration of ROS scavenger should be considered as a promising strategy in cancer treatment, aiming to improve antitumor T cells immunity. PMID:27547291

  18. Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment

    PubMed Central

    Chen, Xinfeng; Song, Mengjia

    2016-01-01

    Reactive oxygen species (ROS) produced by cellular metabolism play an important role as signaling messengers in immune system. ROS elevated in the tumor microenvironment are associated with tumor-induced immunosuppression. T cell-based therapy has been recently approved to be effective for cancer treatment. However, T cells often become dysfunctional after reaching the tumor site. It has been reported that ROS participate extensively in T cells activation, apoptosis, and hyporesponsiveness. The sensitivity of T cells to ROS varies among different subsets. ROS can be regulated by cytokines, amino acid metabolism, and enzymatic activity. Immunosuppressive cells accumulate in the tumor microenvironment and induce apoptosis and functional suppression of T cells by producing ROS. Thus, modulating the level of ROS may be important to prolong survival of T cells and enhance their antitumor function. Combining T cell-based therapy with antioxidant treatment such as administration of ROS scavenger should be considered as a promising strategy in cancer treatment, aiming to improve antitumor T cells immunity. PMID:27547291

  19. Cyclic AMP Represents a Crucial Component of Treg Cell-Mediated Immune Regulation.

    PubMed

    Klein, Matthias; Bopp, Tobias

    2016-01-01

    T regulatory (Treg) cells are one of the key players in the immune tolerance network, and a plethora of manuscripts have described their development and function in the course of the last two decades. Nevertheless, it is still a matter of debate as to which mechanisms and agents are employed by Treg cells, providing the basis of their suppressive potency. One of the important candidates is cyclic AMP (cAMP), which is long known as a potent suppressor at least of T cell activation and function. While this suppressive function by itself is widely accepted, the source and the mechanism of action of cAMP are less clear, and a multitude of seemingly contradictory data allow for, in principle, two different scenarios of cAMP-mediated suppression. In one scenario, Treg cells contain high amounts of cAMP and convey this small molecule via gap junction intercellular communication directly to the effector T cells (Teff) leading to their suppression. Alternatively, it was shown that Treg cells represent the origin of considerable amounts of adenosine, which trigger the adenylate cyclases in Teff cells via A2A and A2B receptors, thus strongly increasing intracellular cAMP. This review will present and discuss initial findings and recent developments concerning the function of cAMP for Treg cells and its impact on immune regulation. PMID:27621729

  20. Cyclic AMP Represents a Crucial Component of Treg Cell-Mediated Immune Regulation

    PubMed Central

    Klein, Matthias; Bopp, Tobias

    2016-01-01

    T regulatory (Treg) cells are one of the key players in the immune tolerance network, and a plethora of manuscripts have described their development and function in the course of the last two decades. Nevertheless, it is still a matter of debate as to which mechanisms and agents are employed by Treg cells, providing the basis of their suppressive potency. One of the important candidates is cyclic AMP (cAMP), which is long known as a potent suppressor at least of T cell activation and function. While this suppressive function by itself is widely accepted, the source and the mechanism of action of cAMP are less clear, and a multitude of seemingly contradictory data allow for, in principle, two different scenarios of cAMP-mediated suppression. In one scenario, Treg cells contain high amounts of cAMP and convey this small molecule via gap junction intercellular communication directly to the effector T cells (Teff) leading to their suppression. Alternatively, it was shown that Treg cells represent the origin of considerable amounts of adenosine, which trigger the adenylate cyclases in Teff cells via A2A and A2B receptors, thus strongly increasing intracellular cAMP. This review will present and discuss initial findings and recent developments concerning the function of cAMP for Treg cells and its impact on immune regulation.

  1. Role of ion channels in regulating Ca2+ homeostasis during the interplay between immune and cancer cells

    PubMed Central

    Bose, T; Cieślar-Pobuda, A; Wiechec, E

    2015-01-01

    Ion channels are abundantly expressed in both excitable and non-excitable cells, thereby regulating the Ca2+ influx and downstream signaling pathways of physiological processes. The immune system is specialized in the process of cancer cell recognition and elimination, and is regulated by different ion channels. In comparison with the immune cells, ion channels behave differently in cancer cells by making the tumor cells more hyperpolarized and influence cancer cell proliferation and metastasis. Therefore, ion channels comprise an important therapeutic target in anti-cancer treatment. In this review, we discuss the implication of ion channels in regulation of Ca2+ homeostasis during the crosstalk between immune and cancer cell as well as their role in cancer progression. PMID:25695601

  2. Cell intrinsic role of NF-κB-inducing kinase in regulating T cell-mediated immune and autoimmune responses

    PubMed Central

    Li, Yanchuan; Wang, Hui; Zhou, Xiaofei; Xie, Xiaoping; Chen, Xiang; Jie, Zuliang; Zou, Qiang; Hu, Hongbo; Zhu, Lele; Cheng, Xuhong; Brightbill, Hans D; Wu, Lawren C.; Wang, Linfang; Sun, Shao-Cong

    2016-01-01

    NF-κB inducing kinase (NIK) is a central component of the noncanonical NF-κB signaling pathway. Although NIK has been extensively studied for its function in the regulation of lymphoid organ development and B-cell maturation, the role of NIK in regulating T cell functions remains unclear and controversial. Using T cell-conditional NIK knockout mice, we here demonstrate that although NIK is dispensable for thymocyte development, it has a cell-intrinsic role in regulating the homeostasis and function of peripheral T cells. T cell-specific NIK ablation reduced the frequency of effector/memory-like T cells and impaired T cell responses to bacterial infection. The T cell-conditional NIK knockout mice were also defective in generation of inflammatory T cells and refractory to the induction of a T cell-dependent autoimmune disease, experimental autoimmune encephalomyelitis. Our data suggest a crucial role for NIK in mediating the generation of effector T cells and their recall responses to antigens. Together, these findings establish NIK as a cell-intrinsic mediator of T cell functions in both immune and autoimmune responses. PMID:26912039

  3. PSGL-1 Is an Immune Checkpoint Regulator that Promotes T Cell Exhaustion.

    PubMed

    Tinoco, Roberto; Carrette, Florent; Barraza, Monique L; Otero, Dennis C; Magaña, Jonathan; Bosenberg, Marcus W; Swain, Susan L; Bradley, Linda M

    2016-05-17

    Chronic viruses and cancers thwart immune responses in humans by inducing T cell dysfunction. Using a murine chronic virus that models human infections, we investigated the function of the adhesion molecule, P-selectin glycoprotein ligand-1 (PSGL-1), that is upregulated on responding T cells. PSGL-1-deficient mice cleared the virus due to increased intrinsic survival of multifunctional effector T cells that had downregulated PD-1 as well as other inhibitory receptors. Notably, this response resulted in CD4(+)-T-cell-dependent immunopathology. Mechanistically, PSGL-1 ligation on exhausted CD8(+) T cells inhibited T cell receptor (TCR) and interleukin-2 (IL-2) signaling and upregulated PD-1, leading to diminished survival with TCR stimulation. In models of melanoma cancer in which T cell dysfunction occurs, PSGL-1 deficiency led to PD-1 downregulation, improved T cell responses, and tumor control. Thus, PSGL-1 plays a fundamental role in balancing viral control and immunopathology and also functions to regulatecell responses in the tumor microenvironment. PMID:27192578

  4. Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation

    PubMed Central

    Nair, Shiny; Boddupalli, Chandra Sekhar; Verma, Rakesh; Liu, Jun; Yang, Ruhua; Pastores, Gregory M.; Mistry, Pramod K.

    2015-01-01

    Chronic inflammation including B-cell activation is commonly observed in both inherited (Gaucher disease [GD]) and acquired disorders of lipid metabolism. However, the cellular mechanisms underlying B-cell activation in these settings remain to be elucidated. Here, we report that β-glucosylceramide 22:0 (βGL1-22) and glucosylsphingosine (LGL1), 2 major sphingolipids accumulated in GD, can be recognized by a distinct subset of CD1d-restricted human and murine type II natural killer T (NKT) cells. Human βGL1-22– and LGL1-reactive CD1d tetramer–positive T cells have a distinct T-cell receptor usage and genomic and cytokine profiles compared with the classical type I NKT cells. In contrast to type I NKT cells, βGL1-22– and LGL1-specific NKT cells constitutively express T-follicular helper (TFH) phenotype. Injection of these lipids leads to an increase in respective lipid-specific type II NKT cells in vivo and downstream induction of germinal center B cells, hypergammaglobulinemia, and production of antilipid antibodies. Human βGL1-22– and LGL1-specific NKT cells can provide efficient cognate help to B cells in vitro. Frequency of LGL1-specific T cells in GD mouse models and patients correlates with disease activity and therapeutic response. Our studies identify a novel type II NKT-mediated pathway for glucosphingolipid-mediated dysregulation of humoral immunity and increased risk of B-cell malignancy observed in metabolic lipid disorders. PMID:25499455

  5. Adaptive Immune Regulation of Mammary Postnatal Organogenesis.

    PubMed

    Plaks, Vicki; Boldajipour, Bijan; Linnemann, Jelena R; Nguyen, Nguyen H; Kersten, Kelly; Wolf, Yochai; Casbon, Amy-Jo; Kong, Niwen; van den Bijgaart, Renske J E; Sheppard, Dean; Melton, Andrew C; Krummel, Matthew F; Werb, Zena

    2015-09-14

    Postnatal organogenesis occurs in an immune competent environment and is tightly controlled by interplay between positive and negative regulators. Innate immune cells have beneficial roles in postnatal tissue remodeling, but roles for the adaptive immune system are currently unexplored. Here we show that adaptive immune responses participate in the normal postnatal development of a non-lymphoid epithelial tissue. Since the mammary gland (MG) is the only organ developing predominantly after birth, we utilized it as a powerful system to study adaptive immune regulation of organogenesis. We found that antigen-mediated interactions between mammary antigen-presenting cells and interferon-γ (IFNγ)-producing CD4+ T helper 1 cells participate in MG postnatal organogenesis as negative regulators, locally orchestrating epithelial rearrangement. IFNγ then affects luminal lineage differentiation. This function of adaptive immune responses, regulating normal development, changes the paradigm for studying players of postnatal organogenesis and provides insights into immune surveillance and cancer transformation. PMID:26321127

  6. CD8+ T-Cells as Immune Regulators of Multiple Sclerosis

    PubMed Central

    Sinha, Sushmita; Boyden, Alexander W.; Itani, Farah R.; Crawford, Michael P.; Karandikar, Nitin J.

    2015-01-01

    The vast majority of studies regarding the immune basis of MS (and its animal model, EAE) have largely focused on CD4+ T-cells as mediators and regulators of disease. Interestingly, CD8+ T-cells represent the predominant T-cell population in human MS lesions and are oligoclonally expanded at the site of pathology. However, their role in the autoimmune pathologic process has been both understudied and controversial. Several animal models and MS patient studies support a pathogenic role for CNS-specific CD8+ T-cells, whereas we and others have demonstrated a regulatory role for these cells in disease. In this review, we describe studies that have investigated the role of CD8+ T-cells in MS and EAE, presenting evidence for both pathogenic and regulatory functions. In our studies, we have shown that cytotoxic/suppressor CD8+ T-cells are CNS antigen-specific, MHC class I-restricted, IFNγ- and perforin-dependent, and are able to inhibit disease. The clinical relevance for CD8+ T-cell suppressive function is best described by a lack of their function during MS relapse, and importantly, restoration of their suppressive function during quiescence. Furthermore, CD8+ T-cells with immunosuppressive functions can be therapeutically induced in MS patients by glatiramer acetate (GA) treatment. Unlike CNS-specific CD8+ T-cells, these immunosuppressive GA-induced CD8+ T-cells appear to be HLA-E restricted. These studies have provided greater fundamental insight into the role of autoreactive as well as therapeutically induced CD8+ T-cells in disease amelioration. The clinical implications for these findings are immense and we propose that this natural process can be harnessed toward the development of an effective immunotherapeutic strategy. PMID:26697014

  7. Immunobiotic lactic acid bacteria beneficially regulate immune response triggered by poly(I:C) in porcine intestinal epithelial cells

    PubMed Central

    2011-01-01

    This study analyzed the functional expression of TLR3 in various gastrointestinal tissues from adult swine and shows that TLR3 is expressed preferentially in intestinal epithelial cells (IEC), CD172a+CD11R1high and CD4+ cells from ileal Peyer's patches. We characterized the inflammatory immune response triggered by TLR3 activation in a clonal porcine intestinal epitheliocyte cell line (PIE cells) and in PIE-immune cell co-cultures, and demonstrated that these systems are valuable tools to study in vitro the immune response triggered by TLR3 on IEC and the interaction between IEC and immune cells. In addition, we selected an immunobiotic lactic acid bacteria strain, Lactobacillus casei MEP221106, able to beneficially regulate the anti-viral immune response triggered by poly(I:C) stimulation in PIE cells. Moreover, we deepened our understanding of the possible mechanisms of immunobiotic action by demonstrating that L. casei MEP221106 modulates the interaction between IEC and immune cells during the generation of a TLR3-mediated immune response. PMID:22046952

  8. Dioxin and immune regulation

    PubMed Central

    Marshall, Nikki B.; Kerkvliet, Nancy I.

    2014-01-01

    The immune toxicity of the ubiquitous environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), commonly referred to as dioxin, has been studied for over 35 years but only recently has the profound immune suppression induced by TCDD exposure been linked to induction of regulatory T cells (Tregs). The effects of TCDD are mediated through its binding to the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor. The subsequent AHR-dependent effects on immune responses are determined by the cell types involved, their activation status, and the type of antigenic stimulus. Collectively, studies indicate that TCDD inhibits CD4+ T cell differentiation into T helper (Th)1, Th2, and Th17 effector cells, while inducing Foxp3-negative and/or preserving Foxp3+ Tregs. Although it is not yet clear how activation of AHR by TCDD induces Tregs, there is a potential therapeutic role for alternative AHR ligands in the treatment of immune-mediated disorders. PMID:20146706

  9. SARS-CoV Regulates Immune Function-Related Gene Expression in Human Monocytic Cells

    PubMed Central

    Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang

    2012-01-01

    Abstract Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS. PMID:22876772

  10. Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion.

    PubMed

    Lorenzi, Tommaso; Chisholm, Rebecca H; Melensi, Matteo; Lorz, Alexander; Delitala, Marcello

    2015-10-01

    T cells are key players in immune action against the invasion of target cells expressing non-self antigens. During an immune response, antigen-specific T cells dynamically sculpt the antigenic distribution of target cells, and target cells concurrently shape the host's repertoire of antigen-specific T cells. The succession of these reciprocal selective sweeps can result in 'chase-and-escape' dynamics and lead to immune evasion. It has been proposed that immune evasion can be countered by immunotherapy strategies aimed at regulating the three phases of the immune response orchestrated by antigen-specific T cells: expansion, contraction and memory. Here, we test this hypothesis with a mathematical model that considers the immune response as a selection contest between T cells and target cells. The outcomes of our model suggest that shortening the duration of the contraction phase and stabilizing as many T cells as possible inside the long-lived memory reservoir, using dual immunotherapies based on the cytokines interleukin-7 and/or interleukin-15 in combination with molecular factors that can keep the immunomodulatory action of these interleukins under control, should be an important focus of future immunotherapy research. PMID:26119966

  11. Pathogenic fungi regulate immunity by inducing neutrophilic myeloid-derived suppressor cells.

    PubMed

    Rieber, Nikolaus; Singh, Anurag; Öz, Hasan; Carevic, Melanie; Bouzani, Maria; Amich, Jorge; Ost, Michael; Ye, Zhiyong; Ballbach, Marlene; Schäfer, Iris; Mezger, Markus; Klimosch, Sascha N; Weber, Alexander N R; Handgretinger, Rupert; Krappmann, Sven; Liese, Johannes; Engeholm, Maik; Schüle, Rebecca; Salih, Helmut Rainer; Marodi, Laszlo; Speckmann, Carsten; Grimbacher, Bodo; Ruland, Jürgen; Brown, Gordon D; Beilhack, Andreas; Loeffler, Juergen; Hartl, Dominik

    2015-04-01

    Despite continuous contact with fungi, immunocompetent individuals rarely develop pro-inflammatory antifungal immune responses. The underlying tolerogenic mechanisms are incompletely understood. Using both mouse models and human patients, we show that infection with the human pathogenic fungi Aspergillus fumigatus and Candida albicans induces a distinct subset of neutrophilic myeloid-derived suppressor cells (MDSCs), which functionally suppress T and NK cell responses. Mechanistically, pathogenic fungi induce neutrophilic MDSCs through the pattern recognition receptor Dectin-1 and its downstream adaptor protein CARD9. Fungal MDSC induction is further dependent on pathways downstream of Dectin-1 signaling, notably reactive oxygen species (ROS) generation as well as caspase-8 activity and interleukin-1 (IL-1) production. Additionally, exogenous IL-1β induces MDSCs to comparable levels observed during C. albicans infection. Adoptive transfer and survival experiments show that MDSCs are protective during invasive C. albicans infection, but not A. fumigatus infection. These studies define an innate immune mechanism by which pathogenic fungi regulate host defense. PMID:25771792

  12. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets

    PubMed Central

    Muller, Laurent; Mitsuhashi, Masato; Simms, Patricia; Gooding, William E.; Whiteside, Theresa L.

    2016-01-01

    Tumor cell-derived exosomes (TEX) suppress functions of immune cells. Here, changes in the gene profiles of primary human T lymphocytes exposed in vitro to exosomes were evaluated. CD4+ Tconv, CD8+ T or CD4+ CD39+ Treg were isolated from normal donors’ peripheral blood and co-incubated with TEX or exosomes isolated from supernatants of cultured dendritic cells (DEX). Expression levels of 24–27 immune response-related genes in these T cells were quantified by qRT-PCR. In activated T cells, TEX and DEX up-regulated mRNA expression levels of multiple genes. Multifactorial data analysis of ΔCt values identified T cell activation and the immune cell type, but not exosome source, as factors regulating gene expression by exosomes. Treg were more sensitive to TEX-mediated effects than other T cell subsets. In Treg, TEX-mediated down-regulation of genes regulating the adenosine pathway translated into high expression of CD39 and increased adenosine production. TEX also induced up-regulation of inhibitory genes in CD4+ Tconv, which translated into a loss of CD69 on their surface and a functional decline. Exosomes are not internalized by T cells, but signals they carry and deliver to cell surface receptors modulate gene expression and functions of human T lymphocytes. PMID:26842680

  13. Tetraspanin-3 regulates protective immunity against Eimera tenella infection following immunization with dendritic cell-derived exosomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of immunization with dendritic cell (DC) exosomes, which had been incubated or non-incubated with an anti-tetraspanin-3 (Tspan-3) blocking antibody (Ab), were studied using an experimental model of Eimeria tenella avian coccidiosis. Purified exosomes from cecal tonsil and splenic DCs exp...

  14. MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis.

    PubMed

    Ouimet, Mireille; Ediriweera, Hasini N; Gundra, U Mahesh; Sheedy, Frederick J; Ramkhelawon, Bhama; Hutchison, Susan B; Rinehold, Kaitlyn; van Solingen, Coen; Fullerton, Morgan D; Cecchini, Katharine; Rayner, Katey J; Steinberg, Gregory R; Zamore, Phillip D; Fisher, Edward A; Loke, P'ng; Moore, Kathryn J

    2015-12-01

    Cellular metabolism is increasingly recognized as a controller of immune cell fate and function. MicroRNA-33 (miR-33) regulates cellular lipid metabolism and represses genes involved in cholesterol efflux, HDL biogenesis, and fatty acid oxidation. Here, we determined that miR-33-mediated disruption of the balance of aerobic glycolysis and mitochondrial oxidative phosphorylation instructs macrophage inflammatory polarization and shapes innate and adaptive immune responses. Macrophage-specific Mir33 deletion increased oxidative respiration, enhanced spare respiratory capacity, and induced an M2 macrophage polarization-associated gene profile. Furthermore, miR-33-mediated M2 polarization required miR-33 targeting of the energy sensor AMP-activated protein kinase (AMPK), but not cholesterol efflux. Notably, miR-33 inhibition increased macrophage expression of the retinoic acid-producing enzyme aldehyde dehydrogenase family 1, subfamily A2 (ALDH1A2) and retinal dehydrogenase activity both in vitro and in a mouse model. Consistent with the ability of retinoic acid to foster inducible Tregs, miR-33-depleted macrophages had an enhanced capacity to induce forkhead box P3 (FOXP3) expression in naive CD4(+) T cells. Finally, treatment of hypercholesterolemic mice with miR-33 inhibitors for 8 weeks resulted in accumulation of inflammation-suppressing M2 macrophages and FOXP3(+) Tregs in plaques and reduced atherosclerosis progression. Collectively, these results reveal that miR-33 regulates macrophage inflammation and demonstrate that miR-33 antagonism is atheroprotective, in part, by reducing plaque inflammation by promoting M2 macrophage polarization and Treg induction. PMID:26517695

  15. Regulation of the human cathelicidin antimicrobial peptide gene by 1α,25-dihydroxyvitamin D3 in primary immune cells.

    PubMed

    Lowry, Malcolm B; Guo, Chunxiao; Borregaard, Niels; Gombart, Adrian F

    2014-09-01

    Production of the human cathelicidin antimicrobial peptide gene (hCAP18/LL-37), is regulated by 1α,25-dihydroxyvitamin D3 (1,25D3) and is critical in the killing of pathogens by innate immune cells. In addition, secreted LL-37 binds extracellular receptors and modulates the recruitment and activity of both innate and adaptive immune cells. Evidence suggests that during infections activated immune cells locally produce increased levels of 1,25D3 thus increasing production of hCAP18/LL-37. The relative expression levels of hCAP18/LL-37 among different immune cell types are not well characterized. The aim of this study was to determine the relative levels of hCAP18/LL-37 in human peripheral blood immune cells and determine to what extent 1,25D3 increased its expression in peripheral blood-derived cells. We show for the first time, a hierarchy of expression of hCAP18 in freshly isolated cells with low levels in lymphocytes, intermediate levels in monocytes and the highest levels found in neutrophils. In peripheral blood-derived cells, the highest levels of hCAP18 following treatment with 1,25D3 were in macrophages, while comparatively lower levels were found in GM-CSF-derived dendritic cells and osteoclasts. We also tested whether treatment with parathyroid hormone in combination with 1,25D3 would enhance hCAP18 induction as has been reported in skin cells, but we did not find enhancement in any immune cells tested. Our results indicate that hCAP18 is expressed at different levels according to cell type and lineage. Furthermore, potent induction of hCAP18 by 1,25D3 in macrophages and dendritic cells may modulate functions of both innate and adaptive immune cells at sites of infection. PMID:24565560

  16. Cdc42 is a key regulator of B cell differentiation and is required for antiviral humoral immunity

    PubMed Central

    Burbage, Marianne; Keppler, Selina J.; Gasparrini, Francesca; Martínez-Martín, Nuria; Gaya, Mauro; Feest, Christoph; Domart, Marie-Charlotte; Brakebusch, Cord; Collinson, Lucy; Bruckbauer, Andreas

    2015-01-01

    The small Rho GTPase Cdc42, known to interact with Wiskott–Aldrich syndrome (WAS) protein, is an important regulator of actin remodeling. Here, we show that genetic ablation of Cdc42 exclusively in the B cell lineage is sufficient to render mice unable to mount antibody responses. Indeed Cdc42-deficient mice are incapable of forming germinal centers or generating plasma B cells upon either viral infection or immunization. Such severe immune deficiency is caused by multiple and profound B cell abnormalities, including early blocks during B cell development; impaired antigen-driven BCR signaling and actin remodeling; defective antigen presentation and in vivo interaction with T cells; and a severe B cell–intrinsic block in plasma cell differentiation. Thus, our study presents a new perspective on Cdc42 as key regulator of B cell physiology. PMID:25547673

  17. Dickkopf-3 Contributes to the Regulation of Anti-Tumor Immune Responses by Mesenchymal Stem Cells

    PubMed Central

    Lu, Kun-Hui; Tounsi, Amel; Shridhar, Naveen; Küblbeck, Günter; Klevenz, Alexandra; Prokosch, Sandra; Bald, Tobias; Tüting, Thomas; Arnold, Bernd

    2015-01-01

    Mesenchymal stem cells (MSCs) are known to limit immune responses in vivo by multiple soluble factors. Dickkopf-3 (DKK3), a secreted glycoprotein, has recently been identified as a novel immune modulator. Since DKK3 has been reported to be produced by MSCs, we investigated whether DKK3 contributes to the immune suppression of anti-tumor responses by MSCs. Whereas wild-type MSCs inhibited immune responses against two different transplantation tumors, DKK3-deficient MSCs did not affect the rejection process. Increased CD8+ T cell and reduced M2-type macrophages infiltration was observed in tumors inoculated together with DKK3-deficient MSCs. Thus, DKK3 could alter the composition of the tumor stroma, thereby supporting the MSCs-mediated suppression of immune responses against these tumor transplants. PMID:26734010

  18. IL-28B down-regulates regulatory T cells but does not improve the protective immunity following tuberculosis subunit vaccine immunization.

    PubMed

    Luo, Yanping; Ma, Xingming; Liu, Xun; Lu, Xiaoling; Niu, Hongxia; Yu, Hongjuan; Bai, Chunxiang; Peng, Jinxiu; Xian, Qiaoyang; Wang, Yong; Zhu, Bingdong

    2016-02-01

    Regulatory T cells (Tregs), which could be down-regulated by IL-28B, were reported to suppress T-cell-mediated immunity. The aim of this study was to investigate the role of IL-28B on the immune responses and protective efficacy of a tuberculosis (TB) subunit vaccine. First, a recombinant adenoviral vector expressing mouse IL-28B (rAd-mIL-28B) was constructed; then C57BL/6 mice were immunized with subunit vaccine ESAT6-Ag85B-Mpt64(190-198)-Mtb8.4-HspX (EAMMH) and rAd-mIL-28B together thrice or primed with Mycobacterium bovis bacillus Calmette-Gue'rin (BCG) and boosted by EAMMH and rAd-mIL-28B twice. At last the immune responses were evaluated, and the mice primed with BCG and boosted by subunit vaccines were challenged with virulent Mycobacterium tuberculosis H37Rv to evaluate the protective efficacy. The results showed that rAd-mIL-28B treatment significantly down-regulated the frequency of Tregs at 4 weeks after the last immunization but did not increase the Th1-type immune responses. Moreover, in the regimen of BCG priming and EAMMH boosting, rAd-mIL-28B treatment did not increase the antigen-specific cellular and humoral immune responses, and consequently did not reduce the bacteria load following H37Rv challenge. Instead, it induced more serious pathology reaction. In conclusion, IL-28B down-regulates Tregs following EAMMH vaccination but does not improve the protective immune responses. PMID:26521300

  19. [Exploration of novel therapeutic targets for neuropathic pain based on the regulation of immune cells].

    PubMed

    Kobayashi, Yuka; Kiguchi, Norikazu; Saika, Fumihiro; Kishioka, Shiroh

    2015-06-01

    The pathogenesis of neuropathic pain is quite complicated and diverse. Because pre-existing analgesics, such as opioid analgesics and nonsteroidal anti-inflammatory drugs, are not sufficient to treat it, it is a serious task to establish a strategy of remedy for neuropathic pain. Recently, increasing evidence suggests that immune cell-mediated neuroinflammation in the nervous system induces central and peripheral sensitization, resulting in chronic pain. Initially, the immune system plays an important role in host defense. Although intravital homeostasis is kept constant by innate and adaptive immunity, the immune system is activated excessively due to infection, stress and tissue injury. Activated immune cells produce and release several kinds of inflammatory mediators, which act directly on sensory neurons and promote a recruitment of immune cells, developing the feedback loop of inflammatory exacerbation. We've focused on the role of crosstalk between immune cells and neurons in peripheral neuroinflammation, and explored a novel candidate for a remedy of neuropathic pain. In this review, we will introduce recent reports and our research work that suggest the functional significance of neuroinflammation in neuropathic pain, and survey possibilities of new strategies for chronic pain from the point of view of basic research. PMID:26281298

  20. MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase

    PubMed Central

    Wang, Huafeng; Hung, Chiung Yu; Sinha, Meenal; Lee, Linda M.; Wiesner, Darin L.; LeBert, Vanessa; Lerksuthirat, Tassanee; Suresh, Marulasiddappa; DeFranco, Anthony L.; Lowell, Clifford A.; Klein, Bruce S.; Wüthrich, Marcel

    2016-01-01

    Soaring rates of systemic fungal infections worldwide underscore the need for vaccine prevention. An understanding of the elements that promote vaccine immunity is essential. We previously reported that Th17 cells are required for vaccine immunity to the systemic dimorphic fungi of North America, and that Card9 and MyD88 signaling are required for the development of protective Th17 cells. Herein, we investigated where, when and how MyD88 regulates T cell development. We uncovered a novel mechanism in which MyD88 extrinsically regulates the survival of activated T cells during the contraction phase and in the absence of inflammation, but is dispensable for the expansion and differentiation of the cells. The poor survival of activated T cells in Myd88-/- mice is linked to increased caspase3-mediated apoptosis, but not to Fas- or Bim-dependent apoptotic pathways, nor to reduced expression of the anti-apoptotic molecules Bcl-2 or Bcl-xL. Moreover, TLR3, 7, and/or 9, but not TLR2 or 4, also were required extrinsically for MyD88-dependent Th17 cell responses and vaccine immunity. Similar MyD88 requirements governed the survival of virus primed T cells. Our data identify unappreciated new requirements for eliciting adaptive immunity and have implications for designing vaccines. PMID:27542117

  1. The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4(+) T cells.

    PubMed

    Munir, Shamaila; Andersen, Gitte Holmen; Svane, Inge Marie; Andersen, Mads Hald

    2013-04-01

    Programmed cell death 1 ligand 1 (PD-L1) is an important regulator of T-cell responses and may consequently limit anticancer immunity. We have recently identified PD-L1-specific, cytotoxic CD8(+) T cells. In the present study, we develop these findings and report that CD4(+) helper T cells spontaneously recognize PD-L1. We examined the locality of a previously identified HLA-A*0201-restricted PD-L1-epitope for the presence of possible CD4(+) T-cell epitopes. Thus, we identified naturally occurring PD-L1-specific CD4(+) T cells among the peripheral blood lymphocytes of cancer patients and - to lesser extents - healthy donors, by means of ELISPOT assays. PD-L1-specific CD4(+) T cells appeared to be TH17 cells exhibiting an effector T-cell cytokine profile. Hence, PD-L1-specific CD4(+) T cells released interferon γ (IFNγ), tumor necrosis factor α (TNFα) and interleukin-17 (IL-17) in response to a long PD-L1-derived peptide. Furthermore, we demonstrate that the specific recognition of PD-L1 by CD4(+) T cells is MHC class II-restricted. Natural T-cell responses against PD-L1 are noteworthy as they may play a prominent role in the regulation of the immune system. Thus, cytokine release from PD-L1-specific CD4(+) T cells may surmount the overall immunosuppressive actions of this immune checkpoint regulator. Moreover, PD-L1-specific T cells might be useful for anticancer immunotherapy, as they may counteract common mechanisms of immune escape mediated by the PD-L1/PD-1 pathway. PMID:23734334

  2. The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4+ T cells

    PubMed Central

    Munir, Shamaila; Andersen, Gitte Holmen; Svane, Inge Marie; Andersen, Mads Hald

    2013-01-01

    Programmed cell death 1 ligand 1 (PD-L1) is an important regulator of T-cell responses and may consequently limit anticancer immunity. We have recently identified PD-L1-specific, cytotoxic CD8+ T cells. In the present study, we develop these findings and report that CD4+ helper T cells spontaneously recognize PD-L1. We examined the locality of a previously identified HLA-A*0201-restricted PD-L1-epitope for the presence of possible CD4+ T-cell epitopes. Thus, we identified naturally occurring PD-L1-specific CD4+ T cells among the peripheral blood lymphocytes of cancer patients and - to lesser extents - healthy donors, by means of ELISPOT assays. PD-L1-specific CD4+ T cells appeared to be TH17 cells exhibiting an effector T-cell cytokine profile. Hence, PD-L1-specific CD4+ T cells released interferon γ (IFNγ), tumor necrosis factor α (TNFα) and interleukin-17 (IL-17) in response to a long PD-L1-derived peptide. Furthermore, we demonstrate that the specific recognition of PD-L1 by CD4+ T cells is MHC class II-restricted. Natural T-cell responses against PD-L1 are noteworthy as they may play a prominent role in the regulation of the immune system. Thus, cytokine release from PD-L1-specific CD4+ T cells may surmount the overall immunosuppressive actions of this immune checkpoint regulator. Moreover, PD-L1-specific T cells might be useful for anticancer immunotherapy, as they may counteract common mechanisms of immune escape mediated by the PD-L1/PD-1 pathway. PMID:23734334

  3. p120-catenin expressed in alveolar type II cells is essential for the regulation of lung innate immune response.

    PubMed

    Chignalia, Andreia Z; Vogel, Stephen M; Reynolds, Albert B; Mehta, Dolly; Dull, Randal O; Minshall, Richard D; Malik, Asrar B; Liu, Yuru

    2015-05-01

    The integrity of the lung alveolar epithelial barrier is required for the gas exchange and is important for immune regulation. Alveolar epithelial barrier is composed of flat type I cells, which make up approximately 95% of the gas-exchange surface, and cuboidal type II cells, which secrete surfactants and modulate lung immunity. p120-catenin (p120; gene symbol CTNND1) is an important component of adherens junctions of epithelial cells; however, its function in lung alveolar epithelial barrier has not been addressed in genetic models. Here, we created an inducible type II cell-specific p120-knockout mouse (p120EKO). The mutant lungs showed chronic inflammation, and the alveolar epithelial barrier was leaky to (125)I-albumin tracer compared to wild type. The mutant lungs also demonstrated marked infiltration of inflammatory cells and activation of NF-κB. Intracellular adhesion molecule 1, Toll-like receptor 4, and macrophage inflammatory protein 2 were all up-regulated. p120EKO lungs showed increased expression of the surfactant proteins Sp-B, Sp-C, and Sp-D, and displayed severe inflammation after pneumonia caused by Pseudomonas aeruginosa compared with wild type. In p120-deficient type II cell monolayers, we observed reduced transepithelial resistance compared to control, consistent with formation of defective adherens junctions. Thus, although type II cells constitute only 5% of the alveolar surface area, p120 expressed in these cells plays a critical role in regulating the innate immunity of the entire lung. PMID:25773174

  4. CD45, CD148, and Lyp/Pep: Critical Phosphatases Regulating Src Family Kinase Signaling Networks in Immune Cells

    PubMed Central

    Hermiston, Michelle L.; Zikherman, Julie; Zhu, Jing W.

    2009-01-01

    Summary Reciprocal regulation of tyrosine phosphorylation by protein tyrosine kinases and phosphatases is central to normal immune cell function. Disruption of the equilibrium between protein tyrosine kinase and phosphatase activity can result in immunodeficiency, autoimmunity, or malignancy. Src family kinases play a central role in both immune cell function and disease due to their proximal position in numerous signal transduction cascades including those emanating from integrin, T and B cell antigen receptors, Fc, growth factor, and cytokine receptors. Given that tight regulation of Src family kinase activity is critical for appropriate responses to stimulation of these various signaling pathways, it is perhaps not surprising that multiple protein tyrosine phosphatases are involved in their regulation. Here, we focus on the role of three phosphatases, CD45, CD148, and LYP/PEP, which are critical regulators of src family kinase activity in hematopoietic cells. We review our current understanding of their structures, expression, functions in different hematopoietic cell subsets, regulation, and putative roles in disease. Finally, we discuss remaining questions that must be addressed if we are to have a clearer understanding of the coordinated regulation of tyrosine phosphorylation and signaling networks in hematopoietic cells and how they could potentially be manipulated therapeutically in disease. PMID:19290935

  5. p120-Catenin Expressed in Alveolar Type II Cells Is Essential for the Regulation of Lung Innate Immune Response

    PubMed Central

    Chignalia, Andreia Z.; Vogel, Stephen M.; Reynolds, Albert B.; Mehta, Dolly; Dull, Randal O.; Minshall, Richard D.; Malik, Asrar B.; Liu, Yuru

    2016-01-01

    The integrity of the lung alveolar epithelial barrier is required for the gas exchange and is important for immune regulation. Alveolar epithelial barrier is composed of flat type I cells, which make up approximately 95% of the gas-exchange surface, and cuboidal type II cells, which secrete surfactants and modulate lung immunity. p120-catenin (p120; gene symbol CTNND1) is an important component of adherens junctions of epithelial cells; however, its function in lung alveolar epithelial barrier has not been addressed in genetic models. Here, we created an inducible type II cell–specific p120-knockout mouse (p120EKO). The mutant lungs showed chronic inflammation, and the alveolar epithelial barrier was leaky to 125I-albumin tracer compared to wild type. The mutant lungs also demonstrated marked infiltration of inflammatory cells and activation of NF-κB. Intracellular adhesion molecule 1, Toll-like receptor 4, and macrophage inflammatory protein 2 were all up-regulated. p120EKO lungs showed increased expression of the surfactant proteins Sp-B, Sp-C, and Sp-D, and displayed severe inflammation after pneumonia caused by Pseudomonas aeruginosa compared with wild type. In p120-deficient type II cell monolayers, we observed reduced transepithelial resistance compared to control, consistent with formation of defective adherens junctions. Thus, although type II cells constitute only 5% of the alveolar surface area, p120 expressed in these cells plays a critical role in regulating the innate immunity of the entire lung. PMID:25773174

  6. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity

    PubMed Central

    Xu, Yuanming; Zhao, Fang; Qiu, Quan; Chen, Kun; Wei, Juncheng; Kong, Qingfei; Gao, Beixue; Melo-Cardenas, Johanna; Zhang, Bin; Zhang, Jinping; Song, Jianxun; Zhang, Donna D.; Zhang, Jianing; Fan, Yunping; Li, Huabin; Fang, Deyu

    2016-01-01

    Identification of positive regulators of T-cell immunity induced during autoimmune diseases is critical for developing novel therapies. The endoplasmic reticulum resident ubiquitin ligase Hrd1 has recently emerged as a critical regulator of dendritic cell antigen presentation, but its role in T-cell immunity is unknown. Here we show that genetic deletion of Hrd1 in mice inhibits T-cell proliferation, production of IL-2, and differentiation of Th1 and Th17 cells, and consequently protects mice from experimental autoimmune encephalomyelitis. Hrd1 facilitates T-cell proliferation by the destruction of cyclin-dependent kinase inhibitor p27kip1, and deletion of p27kip1 in Hrd1-null T-cells rescues proliferative capacity but not the production of cytokines, including IL-2, IFN-γ and IL-17. T-cell expression of Hrd1 is higher in patients with multiple sclerosis than in healthy individuals, and knockdown of Hrd1 in human CD4+ T cells inhibits activation and differentiation to Th1 and Th17 cells. Our study identifies Hrd1 as a previously unappreciated positive regulator of T cells and implies that Hrd1 is a potential therapeutic target for autoimmune diseases. PMID:27417417

  7. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity.

    PubMed

    Xu, Yuanming; Zhao, Fang; Qiu, Quan; Chen, Kun; Wei, Juncheng; Kong, Qingfei; Gao, Beixue; Melo-Cardenas, Johanna; Zhang, Bin; Zhang, Jinping; Song, Jianxun; Zhang, Donna D; Zhang, Jianing; Fan, Yunping; Li, Huabin; Fang, Deyu

    2016-01-01

    Identification of positive regulators of T-cell immunity induced during autoimmune diseases is critical for developing novel therapies. The endoplasmic reticulum resident ubiquitin ligase Hrd1 has recently emerged as a critical regulator of dendritic cell antigen presentation, but its role in T-cell immunity is unknown. Here we show that genetic deletion of Hrd1 in mice inhibits T-cell proliferation, production of IL-2, and differentiation of Th1 and Th17 cells, and consequently protects mice from experimental autoimmune encephalomyelitis. Hrd1 facilitates T-cell proliferation by the destruction of cyclin-dependent kinase inhibitor p27(kip1), and deletion of p27(kip1) in Hrd1-null T-cells rescues proliferative capacity but not the production of cytokines, including IL-2, IFN-γ and IL-17. T-cell expression of Hrd1 is higher in patients with multiple sclerosis than in healthy individuals, and knockdown of Hrd1 in human CD4(+) T cells inhibits activation and differentiation to Th1 and Th17 cells. Our study identifies Hrd1 as a previously unappreciated positive regulator of T cells and implies that Hrd1 is a potential therapeutic target for autoimmune diseases. PMID:27417417

  8. Role and mechanism of action of complement in regulating T cell immunity

    PubMed Central

    Dunkelberger, Jason R; Song, Wen-Chao

    2010-01-01

    Complement is a part of the innate immune system that contributes to first-line host defense. It is also implicated in a number of human inflammatory conditions and has attracted interest as a potential therapeutic target. Understanding the basic biology of complement and its mechanism(s) of action is imperative for developing complement-based treatments for infectious and autoimmune diseases. One of the exciting new developments in this regard is the revelation that complement plays an important role in T cell immunity. In this review, we highlight recent published studies implicating complement in models of CD4+ and CD8+ T cell immune responses, and discuss its potential mechanism(s) action in these processes. We also comment on issues that may impact data interpretation and draw attention to their consideration in future studies. PMID:20603023

  9. Immune regulation by mesenchymal stem cells derived from adult spleen and thymus.

    PubMed

    Krampera, Mauro; Sartoris, Silvia; Liotta, Francesco; Pasini, Annalisa; Angeli, Roberta; Cosmi, Lorenzo; Andreini, Angelo; Mosna, Federico; Bonetti, Bruno; Rebellato, Elisabetta; Testi, Maria Grazia; Frosali, Francesca; Pizzolo, Giovanni; Tridente, Giuseppe; Maggi, Enrico; Romagnani, Sergio; Annunziato, Francesco

    2007-10-01

    We show here that human and mouse mesenchymal stem cells (MSCs) can be obtained not only from bone marrow (BM), but also from adult spleen and thymus. In vitro, both human and mouse spleen- and thymus-derived MSCs exhibit immunophenotypic characteristics and differentiation potential completely comparable to BM-MSCs. In addition, they can inhibit immune responses mediated by activated T lymphocytes with efficiency comparable to BM-MSCs. In vivo, mouse MSCs from BM, spleen, and thymus, if injected together with a genetically modified tumor cell vaccine, can equally prevent the onset of an anti-tumor memory immune response, thus leading to tumor growth in normally resistant mice. Our data suggest that not only do spleen and thymus have a stem cell reservoir to build up their stromal architecture, but also contain microenviromental immunoregulatory cells with the same properties of BM-MSCs. PMID:17999601

  10. Immune adaptor ADAP in T cells regulates HIV-1 transcription and cell-cell viral spread via different co-receptors

    PubMed Central

    2013-01-01

    Background Immune cell adaptor protein ADAP (adhesion and degranulation-promoting adaptor protein) mediates aspects of T-cell adhesion and proliferation. Despite this, a connection between ADAP and infection by the HIV-1 (human immunodeficiency virus-1) has not been explored. Results In this paper, we show for the first time that ADAP and its binding to SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) regulate HIV-1 infection via two distinct mechanisms and co-receptors. siRNA down-regulation of ADAP, or expression of a mutant that is defective in associating to its binding partner SLP-76 (termed M12), inhibited the propagation of HIV-1 in T-cell lines and primary human T-cells. In one step, ADAP and its binding to SLP-76 were needed for the activation of NF-κB and its transcription of the HIV-1 long terminal repeat (LTR) in cooperation with ligation of co-receptor CD28, but not LFA-1. In a second step, the ADAP-SLP-76 module cooperated with LFA-1 to regulate conjugate formation between T-cells and dendritic cells or other T-cells as well as the development of the virological synapse (VS) and viral spread between immune cells. Conclusions These findings indicate that ADAP regulates two steps of HIV-1 infection cooperatively with two distinct receptors, and as such, serves as a new potential target in the blockade of HIV-1 infection. PMID:24047317

  11. Regulation of Immunity by Butyrophilins.

    PubMed

    Rhodes, David A; Reith, Walter; Trowsdale, John

    2016-05-20

    Butyrophilin molecules (commonly contracted to BTN), collectively take their name from the eponymous protein in cow's milk. They are considered to be members of the B7 family of costimulatory receptors, which includes B7.1 (CD80), B7.2 (CD86), and related molecules, such as PD-L1 (B7-H1, CD274), ICOS-L (CD275), and B7-H3 (CD276). These coreceptors modulate T cell responses upon antigen presentation by major histocompatibility complex and cognate αβ T cell receptor engagement. Molecules such as BTN3A1 (CD277), myelin oligodendrocyte glycoprotein, and mouse Skint1 and Btnl2, all members of the butyrophilin family, show greater structural and functional diversity than the canonical B7 receptors. Some butyrophilins mediate complex interactions between antigen-presenting cells and conventional αβ T cells, and others regulate the immune responses of specific γδ T cell subsets by mechanisms that have characteristics of both innate and adaptive immunity. PMID:26772212

  12. Dual epithelial and immune cell function of Dvl1 regulates gut microbiota composition and intestinal homeostasis

    PubMed Central

    Belinson, Haim; Savage, Adam K.; Fadrosh, Douglas; Kuo, Yien-Ming; Lin, Din; Valladares, Ricardo; Nusse, Ysbrand; Wynshaw-Boris, Anthony; Lynch, Susan V.; Locksley, Richard M.; Klein, Ophir D.

    2016-01-01

    Homeostasis of the gastrointestinal (GI) tract is controlled by complex interactions between epithelial and immune cells and the resident microbiota. Here, we studied the role of Wnt signaling in GI homeostasis using Disheveled 1 knockout (Dvl1−/−) mice, which display an increase in whole gut transit time. This phenotype is associated with a reduction and mislocalization of Paneth cells and an increase in CD8+ T cells in the lamina propria. Bone marrow chimera experiments demonstrated that GI dysfunction requires abnormalities in both epithelial and immune cells. Dvl1−/− mice exhibit a significantly distinct GI microbiota, and manipulation of the gut microbiota in mutant mice rescued the GI transit abnormality without correcting the Paneth and CD8+ T cell abnormalities. Moreover, manipulation of the gut microbiota in wild-type mice induced a GI transit abnormality akin to that seen in Dvl1−/− mice. Together, these data indicate that microbiota manipulation can overcome host dysfunction to correct GI transit abnormalities. Our findings illustrate a mechanism by which the epithelium and immune system coregulate gut microbiota composition to promote normal GI function. PMID:27525310

  13. The antimicrobial/elastase inhibitor elafin regulates lung dendritic cells and adaptive immunity.

    PubMed

    Roghanian, Ali; Williams, Steven E; Sheldrake, Tara A; Brown, Tom I; Oberheim, Karen; Xing, Zhou; Howie, Sarah E M; Sallenave, Jean-Michel

    2006-05-01

    Infections with bacteria and viruses such as adenovirus are a feature of chronic lung diseases such as chronic obstructive pulmonary diseases (COPD), and may be instrumental in the generation of disease exacerbations. We have previously shown in acute models that elafin (a lung natural chemotactic molecule for macrophages and neutrophils, with potent antimicrobial and neutrophil elastase inhibitor activity) is upregulated in infection and modulates innate immunity. Here we present data using two independent systems of elafin overexpression in vivo (recombinant adenovirus [Ad-elafin] and an elafin transgenic mouse line) to examine the function of elafin in adaptive immunity. We show that elafin increases the number (immunofluorescence) and activation status (flow cytometric measurement) of CD11c+/MHCII+ lung dendritic cells in vivo. Analysis of cytokines produced by spleen and lung cells, and of antibodies measured in serum and bronchoalveolar lavage fluid, shows that the immunity induced is biased toward a type 1 response (production of IL-12, IFN-gamma, and IgG2a). Furthermore, elafin overexpression protected mice against further challenge with Ad-LacZ, as assessed by antibody levels and neutralization titer, as well as LacZ expression in lung tissue. Thus, the pleiotropic molecule elafin has significant potential in modulating antigen-presenting cell numbers and activity, and could be beneficial in mucosal protective strategies. PMID:16424380

  14. Small Heterodimer Partner and Innate Immune Regulation

    PubMed Central

    Jin, Hyo Sun

    2016-01-01

    The nuclear receptor superfamily consists of the steroid and non-steroid hormone receptors and the orphan nuclear receptors. Small heterodimer partner (SHP) is an orphan family nuclear receptor that plays an essential role in the regulation of glucose and cholesterol metabolism. Recent studies reported a previously unidentified role for SHP in the regulation of innate immunity and inflammation. The innate immune system has a critical function in the initial response against a variety of microbial and danger signals. Activation of the innate immune response results in the induction of inflammatory cytokines and chemokines to promote anti-microbial effects. An excessive or uncontrolled inflammatory response is potentially harmful to the host, and can cause tissue damage or pathological threat. Therefore, the innate immune response should be tightly regulated to enhance host defense while preventing unwanted immune pathologic responses. In this review, we discuss recent studies showing that SHP is involved in the negative regulation of toll-like receptor-induced and NLRP3 (NACHT, LRR and PYD domains-containing protein 3)-mediated inflammatory responses in innate immune cells. Understanding the function of SHP in innate immune cells will allow us to prevent or modulate acute and chronic inflammation processes in cases where dysregulated innate immune activation results in damage to normal tissues. PMID:26754583

  15. Small Heterodimer Partner and Innate Immune Regulation.

    PubMed

    Yuk, Jae Min; Jin, Hyo Sun; Jo, Eun Kyeong

    2016-03-01

    The nuclear receptor superfamily consists of the steroid and non-steroid hormone receptors and the orphan nuclear receptors. Small heterodimer partner (SHP) is an orphan family nuclear receptor that plays an essential role in the regulation of glucose and cholesterol metabolism. Recent studies reported a previously unidentified role for SHP in the regulation of innate immunity and inflammation. The innate immune system has a critical function in the initial response against a variety of microbial and danger signals. Activation of the innate immune response results in the induction of inflammatory cytokines and chemokines to promote anti-microbial effects. An excessive or uncontrolled inflammatory response is potentially harmful to the host, and can cause tissue damage or pathological threat. Therefore, the innate immune response should be tightly regulated to enhance host defense while preventing unwanted immune pathologic responses. In this review, we discuss recent studies showing that SHP is involved in the negative regulation of toll-like receptor-induced and NLRP3 (NACHT, LRR and PYD domains-containing protein 3)-mediated inflammatory responses in innate immune cells. Understanding the function of SHP in innate immune cells will allow us to prevent or modulate acute and chronic inflammation processes in cases where dysregulated innate immune activation results in damage to normal tissues. PMID:26754583

  16. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    PubMed Central

    Kumagai, Kenichi; Horikawa, Tatsuya; Shigematsu, Hiroaki; Matsubara, Ryota; Kitaura, Kazutaka; Eguchi, Takanori; Kobayashi, Hiroshi; Nakasone, Yasunari; Sato, Koichiro; Yamada, Hiroyuki; Suzuki, Satsuki; Hamada, Yoshiki; Suzuki, Ryuji

    2016-01-01

    Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK) T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis. PMID:26771600

  17. T-cell immune adaptor SKAP1 regulates the induction of collagen-induced arthritis in mice.

    PubMed

    Smith, Xin; Taylor, Alison; Rudd, Christopher E

    2016-08-01

    SKAP1 is an immune cell adaptor that couples the T-cell receptor with the 'inside-out' signalling pathway for LFA-1 mediated adhesion in T-cells. A connection of SKAP1 to the regulation of an autoimmune disorder has not previously been reported. In this study, we show that Skap1-deficient (skap1-/-) mice are highly resistant to the induction of collagen-induced arthritis (CIA), both in terms of incidence or severity. Skap1-/- T-cells were characterised by a selective reduction in the presence IL-17+ (Th17) in response to CII peptide and a marked reduction of joint infiltrating T-cells in Skap1-/- mice. SKAP1 therefore represents a novel connection to Th17 producing T-cells and is new potential target in the therapeutic intervention in autoimmune and inflammatory diseases. PMID:27181093

  18. Nitrated Alpha Synuclein Induced Alterations in Microglial Immunity is Regulated by CD4+ T Cell Subsets1

    PubMed Central

    Reynolds, Ashley D.; Stone, David K.; Mosley, R. Lee; Gendelman, Howard E.

    2009-01-01

    Microglial inflammatory neuroregulatory activities affect the tempo of nigrostriatal degeneration during Parkinson's disease (PD). Such activities are induced, in part, by misfolded, nitrated alpha-synuclein (N-α-syn) within Lewy bodies released from dying or dead dopaminergic neurons. Such pathobiologic events initiate innate and adaptive immune responses affecting neurodegeneration. We posit that the neurobiological activities of activated microglia are affected by cell-protein and cell-cell contacts, in that microglial interactions with N-α-syn and CD4+ T cells substantively alter the microglial proteome. This leads to alterations in cell homeostatic functions and disease. CD4+CD25+ regulatory T cells (Treg) suppress N-α-syn microglial induced reactive oxygen species and nuclear factor kappa B activation by modulating redox-active enzymes, cell migration, phagocytosis, and bioenergetic protein expression and cell function. In contrast, CD4+CD25− effector T cells exacerbate microglial inflammation and induce “putative” neurotoxic responses. These data support the importance of adaptive immunity in the regulation of PD-associated microglial inflammation. PMID:19299711

  19. Burkholderia pseudomallei Differentially Regulates Host Innate Immune Response Genes for Intracellular Survival in Lung Epithelial Cells

    PubMed Central

    Vellasamy, Kumutha Malar; Mariappan, Vanitha; Shankar, Esaki M.; Vadivelu, Jamuna

    2016-01-01

    Background Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood. Methods We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS). Results We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages. Conclusion Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections. PMID:27367858

  20. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis.

    PubMed

    Kawamoto, Shimpei; Maruya, Mikako; Kato, Lucia M; Suda, Wataru; Atarashi, Koji; Doi, Yasuko; Tsutsui, Yumi; Qin, Hongyan; Honda, Kenya; Okada, Takaharu; Hattori, Masahira; Fagarasan, Sidonia

    2014-07-17

    Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis. PMID:25017466

  1. Human immunodeficiency virus (HIV) type 1 Vpr induces differential regulation of T cell costimulatory molecules: Direct effect of Vpr on T cell activation and immune function

    SciTech Connect

    Venkatachari, Narasimhan J.; Majumder, Biswanath; Ayyavoo, Velpandi . E-mail: velpandi@pitt.edu

    2007-02-20

    Human immunodeficiency virus type 1 (HIV-1) viral proteins disrupt the normal host cellular immune pathways thus exploiting the cellular machinery for replication, survival and to escape host immune attack. Here we evaluated the direct effects of HIV-1 Vpr-mediated immune modulation of infected T cells. Vpr specifically downregulated the expression of CD28 and increased the expression of CTLA-4, whereas no significant difference in the expression of CD25 and HLA-DR was observed. Interferon gamma (IFN-{gamma}) production in T cells was evaluated as a measure of the downstream effector functions. Results indicate that Vpr significantly inhibited IFN-{gamma} production and this may, in part, due to Vpr's ability to inhibit the nuclear translocation of NF-{kappa}B, and its transcriptional regulation. Together these results support that HIV-1 Vpr selectively dysregulates the immune functions at multiple levels and exerts its inhibitory effects in the presence of other viral proteins.

  2. Regulation of immune cell function by short-chain fatty acids.

    PubMed

    Corrêa-Oliveira, Renan; Fachi, José Luís; Vieira, Aline; Sato, Fabio Takeo; Vinolo, Marco Aurélio R

    2016-04-01

    Short-chain fatty acids (SCFAs) are bacterial fermentation products, which are chemically composed by a carboxylic acid moiety and a small hydrocarbon chain. Among them, acetic, propionic and butyric acids are the most studied, presenting, respectively, two, three and four carbons in their chemical structure. These metabolites are found in high concentrations in the intestinal tract, from where they are uptaken by intestinal epithelial cells (IECs). The SCFAs are partially used as a source of ATP by these cells. In addition, these molecules act as a link between the microbiota and the immune system by modulating different aspects of IECs and leukocytes development, survival and function through activation of G protein coupled receptors (FFAR2, FFAR3, GPR109a and Olfr78) and by modulation of the activity of enzymes and transcription factors including the histone acetyltransferase and deacetylase and the hypoxia-inducible factor. Considering that, it is not a surprise, the fact that these molecules and/or their targets are suggested to have an important role in the maintenance of intestinal homeostasis and that changes in components of this system are associated with pathological conditions including inflammatory bowel disease, obesity and others. The aim of this review is to present a clear and updated description of the effects of the SCFAs derived from bacteria on host immune system, as well as the molecular mechanisms involved on them. PMID:27195116

  3. Regulation of immune cell function by short-chain fatty acids

    PubMed Central

    Corrêa-Oliveira, Renan; Fachi, José Luís; Vieira, Aline; Sato, Fabio Takeo; Vinolo, Marco Aurélio R

    2016-01-01

    Short-chain fatty acids (SCFAs) are bacterial fermentation products, which are chemically composed by a carboxylic acid moiety and a small hydrocarbon chain. Among them, acetic, propionic and butyric acids are the most studied, presenting, respectively, two, three and four carbons in their chemical structure. These metabolites are found in high concentrations in the intestinal tract, from where they are uptaken by intestinal epithelial cells (IECs). The SCFAs are partially used as a source of ATP by these cells. In addition, these molecules act as a link between the microbiota and the immune system by modulating different aspects of IECs and leukocytes development, survival and function through activation of G protein coupled receptors (FFAR2, FFAR3, GPR109a and Olfr78) and by modulation of the activity of enzymes and transcription factors including the histone acetyltransferase and deacetylase and the hypoxia-inducible factor. Considering that, it is not a surprise, the fact that these molecules and/or their targets are suggested to have an important role in the maintenance of intestinal homeostasis and that changes in components of this system are associated with pathological conditions including inflammatory bowel disease, obesity and others. The aim of this review is to present a clear and updated description of the effects of the SCFAs derived from bacteria on host immune system, as well as the molecular mechanisms involved on them. PMID:27195116

  4. Environmental Enrichment Stimulates Immune Cell Secretion of Exosomes that Promote CNS Myelination and May Regulate Inflammation.

    PubMed

    Pusic, Kae M; Pusic, Aya D; Kraig, Richard P

    2016-04-01

    Environmental enrichment (EE) consists of increased physical, intellectual, and social activity, and has wide-ranging effects, including enhancing cognition, learning and memory, and motor coordination. Animal studies have demonstrated that EE improves outcome of brain trauma and neurodegenerative disorders, including demyelinating diseases like multiple sclerosis, making it a promising therapeutic option. However, the complexity of applying a robust EE paradigm makes clinical use difficult. A better understanding of the signaling involved in EE-based neuroprotection may allow for development of effective mimetics as an alternative. In prior work, we found that exosomes isolated from the serum of rats exposed to EE impact CNS myelination. Exosomes are naturally occurring nanovesicles containing mRNA, miRNA, and protein, which play important roles in cell function, disease, and immunomodulation. When applied to hippocampal slice cultures or nasally administered to naïve rats, EE-serum exosomes significantly increase myelin content, oligodendrocyte precursor (OPC) and neural stem cell levels, and reduce oxidative stress (OS). We found that rat EE exosomes were enriched in miR-219, which is necessary and sufficient for OPC differentiation into myelinating cells. Thus, peripherally produced exosomes may be a useful therapy for remyelination. Here, we aim to better characterize the impact of EE on CNS health and to determine the cellular source of nutritive exosomes found in serum. We found that exosomes isolated from various circulating immune cell types all increased slice culture myelin content, contained miR-219, and reduced OS, suggesting that EE globally alters immune function in a way that supports brain health. PMID:26993508

  5. Regulation of Immune Responses by Extracellular Vesicles

    PubMed Central

    Robbins, Paul D.; Morelli, Adrian E.

    2015-01-01

    Extracellular vesicles (EVs) including exosomes, are small membrane vesicles derived from multivesicular bodies or from the plasma membrane. Most, if not all, cell types release EVs that then enter the bodily fluids. These vesicles contain a subset of proteins, lipids and nucleic acids that are derived from the parent cell. It is postulated that EVs have important roles in intercellular communication, both locally and systemically, by transferring their contents, including protein, lipids and RNAs, between cells. EVs are involved in numerous physiological processes, and vesicles from both non-immune and immune cells have important roles in immune regulation. Moreover, EV-based therapeutics are being developed and tested clinically for treatment of inflammatory and autoimmune diseases and cancer. Given the tremendous therapeutic potential of EVs this review focuses on the role of EVs in modulating immune responses and the therapeutic applications. PMID:24566916

  6. CCR10 regulates balanced maintenance and function of resident regulatory and effector T cells to promote immune homeostasis in skin

    PubMed Central

    Xia, Mingcan; Hu, Shaomin; Fu, Yaoyao; Jin, Wensen; Yi, Qiyi; Matsui, Yurika; Yang, Jie; McDowell, Mary Ann; Sarkar, Surojit; Kalia, Vandana; Xiong, Na

    2014-01-01

    Background CCR10 and CCL27 are the most skin-specific chemokine receptor/ligand pair implicated in skin allergy and inflammatory diseases including atopic dermatitis and psoriasis. This pair is thought to regulate migration and/or maintenance of skin T cells and suggested as therapeutic targets for treatment of skin diseases. However, the functional importance of CCR10/CCL27 in vivo remains elusive. Objective We sought to determine expression and function of CCR10 in different subsets of skin T cells under both homeostatic and inflammatory conditions to gain a mechanistic insight into potential roles of CCR10 during skin inflammation. Methods Using heterozygous and homozygous CCR10-knockout/EGFP-knockin mice, we assessed expression of CCR10 on regulatory and effector T cells of healthy and inflamed skin induced by chemicals, pathogens and auto-reactive T cells. In addition, we assessed the effect of CCR10-knockout on the maintenance and functions of different T cells and inflammatory status in the skin during different phases of the immune response. Results CCR10 expression is preferentially induced on memory-like skin-resident T cells and their progenitors for their maintenance in homeostatic skin but not expressed on most skin-infiltrating effector T cells during inflammation. In CCR10-knockout mice, the imbalanced presence and dysregulated function of resident regulatory and effector T cells result in over-reactive and prolonged innate and memory responses in the skin, leading to increased clearance of Leishmamia infection in the skin. Conclusion CCR10 is a critical regulator of skin immune homeostasis. PMID:24767879

  7. Th1-biased immune responses induced by DNA-based immunizations are mediated via action on professional antigen-presenting cells to up-regulate IL-12 production

    PubMed Central

    Asakura, Y; Liu, L -J; Shono, N; Hinkula, J; Kjerrström, A; Aoki, I; Okuda, K; Wahren, B; Fukushima, J

    2000-01-01

    The efficacy of DNA-based immunization in conferring protective immunity against certain microbial pathogens including human immunodeficiency virus type 1 (HIV-1) has been described. The potential advantage of DNA-based immunization over the traditional vaccines largely results from its capacity to efficiently induce Th1-biased immune responses against an encoded antigen. We describe how Th1-biased immune responses are induced by DNA-based immunization, using a DNA vaccine construct encoding HIV-1 gp160 cDNA and an eukaryotic expression plasmid carrying murine IFN-γ cDNA. Transfection of an eukaryotic expression plasmid carrying immunostimulatory sequences (ISS) as well as a gene of interest (DNA vaccine) into professional antigen presenting cells (APC) induced transactivation of IL-12 mRNA, which resulted in antigen-specific Th1-biased immune responses against the encoded antigen. Th1-biased immune responses induced by DNA-based immunization were substantially upregulated by a codelivery of an ectopic IFN-γ expression system, and this augmentation was mediated via action on professional antigen presenting cells to upregulate IL-12 production. Taken together, it appears likely that Th1-biased immune responses induced by DNA-based immunization are mediated via action on professional antigen-presenting cells to produce IL-12. Interestingly, the model provided strikingly resembles that previously described in infection with Listeria monocytogenes, an intracellular Gram-positive bacterium that induces strong Th1-biased immune responses. The result suggests that DNA-based immunization mimics certain aspects of natural infection with microbial organisms like attenuated vaccines, which in turn provides a rationale to the question of why DNA-based immunization so efficiently induces protective immunity against these microbial pathogens. PMID:10606974

  8. Adrenergic regulation of innate immunity: a review

    PubMed Central

    Scanzano, Angela; Cosentino, Marco

    2015-01-01

    The sympathetic nervous system has a major role in the brain-immune cross-talk, but few information exist on the sympathoadrenergic regulation of innate immune system. The aim of this review is to summarize available knowledge regarding the sympathetic modulation of the innate immune response, providing a rational background for the possible repurposing of adrenergic drugs as immunomodulating agents. The cells of immune system express adrenoceptors (AR), which represent the target for noradrenaline and adrenaline. In human neutrophils, adrenaline and noradrenaline inhibit migration, CD11b/CD18 expression, and oxidative metabolism, possibly through β-AR, although the role of α1- and α2-AR requires further investigation. Natural Killer express β-AR, which are usually inhibitory. Monocytes express β-AR and their activation is usually antiinflammatory. On murine Dentritic cells (DC), β-AR mediate sympathetic influence on DC-T cells interactions. In human DC β2-AR may affect Th1/2 differentiation of CD4+ T cells. In microglia and in astrocytes, β2-AR dysregulation may contribute to neuroinflammation in autoimmune and neurodegenerative disease. In conclusion, extensive evidence supports a critical role for adrenergic mechanisms in the regulation of innate immunity, in peripheral tissues as well as in the CNS. Sympathoadrenergic pathways in the innate immune system may represent novel antiinflammatory and immunomodulating targets with significant therapeutic potential. PMID:26321956

  9. Cyclic AMP concentrations in dendritic cells induce and regulate Th2 immunity and allergic asthma

    PubMed Central

    Lee, Jihyung; Kim, Tae Hoon; Murray, Fiona; Li, Xiangli; Choi, Sara S.; Broide, David H.; Corr, Maripat; Lee, Jongdae; Webster, Nicholas J. G.; Insel, Paul A.; Raz, Eyal

    2015-01-01

    The inductive role of dendritic cells (DC) in Th2 differentiation has not been fully defined. We addressed this gap in knowledge by focusing on signaling events mediated by the heterotrimeric GTP binding proteins Gαs, and Gαi, which respectively stimulate and inhibit the activation of adenylyl cyclases and the synthesis of cAMP. We show here that deletion of Gnas, the gene that encodes Gαs in mouse CD11c+ cells (GnasΔCD11c mice), and the accompanying decrease in cAMP provoke Th2 polarization and yields a prominent allergic phenotype, whereas increases in cAMP inhibit these responses. The effects of cAMP on DC can be demonstrated in vitro and in vivo and are mediated via PKA. Certain gene products made by GnasΔCD11c DC affect the Th2 bias. These findings imply that G protein-coupled receptors, the physiological regulators of Gαs and Gαi activation and cAMP formation, act via PKA to regulate Th bias in DC and in turn, Th2-mediated immunopathologies. PMID:25605931

  10. Immune Regulation and Antitumor Effect of TIM-1

    PubMed Central

    Du, Peng; Xiong, Ruihua; Li, Xiaodong; Jiang, Jingting

    2016-01-01

    T cells play an important role in antitumor immunity, and the T cell immunoglobulin domain and the mucin domain protein-1 (TIM-1) on its surface, as a costimulatory molecule, has a strong regulatory effect on T cells. TIM-1 can regulate and enhance type 1 immune response of tumor association. Therefore, TIM-1 costimulatory pathways may be a promising therapeutic target in future tumor immunotherapy. This review describes the immune regulation and antitumor effect of TIM-1. PMID:27413764

  11. Differences in the regulation of CD4 and CD8 T-cell clones during immune responses.

    PubMed Central

    Beverley, P C; Maini, M K

    2000-01-01

    The functional units of immune response are lymphocyte clones. Analysis of lymphocyte life span in vivo shows that the overall turnover of CD4 and CD8 lymphocytes does not differ greatly. Recently, molecular methods have been developed which allow a global analysis of T-cell clones responding to an antigen in vivo. We have used a sensitive, modified heteroduplex analysis to follow T-cell clones responding to Epstein-Barr virus in acute infectious mononucleosis (AIM). Strikingly, all the many large clones detected in freshly isolated AIM blood were found within the CD8 fraction. CD4 clonal populations responding to the soluble recall antigen tetanus toxoid could only be detected after in vitro re-stimulation. These data imply that CD4 responses may be more polyclonal than those of CD8 cells and that the size of CD4 clones is more tightly regulated. Several molecular mechanisms may contribute to this. Up-regulation of telomerase allows very large expansions of CD8 cells to occur without exhaustion of proliferative capacity. PMID:10794061

  12. Emerging role of long noncoding RNAs as regulators of innate immune cell development and inflammatory gene expression.

    PubMed

    Elling, Roland; Chan, Jennie; Fitzgerald, Katherine A

    2016-03-01

    The innate immune system represents the first line of defense during infection and is initiated by the detection of conserved microbial products by germline-encoded pattern recognition receptors (PRRs). Sensing through PRRs induces broad transcriptional changes that elicit powerful inflammatory responses. Tight regulation of these processes depends on multiple regulatory checkpoints, including noncoding RNA species such as microRNAs. In addition, long noncoding RNAs (lncRNAs) have recently gained attention as important regulators of gene expression acting through versatile interactions with DNA, RNA, or proteins. As such, these RNAs have a multitude of mechanisms to modulate gene expression. Here, we summarize recent advances in this rapidly moving and evolving field. We highlight the contribution of lncRNAs to both the development and activation of innate immune cells, whether it is in the nucleus, where lncRNAs alter the transcription of target genes through interaction with transcription factors, chromatin-modifying complexes or heterogeneous ribonucleoprotein complexes, or in the cytosol where they can control the stability of target mRNAs. In addition, we discuss experimental approaches required to comprehensively investigate the function of a candidate noncoding RNA locus, including loss-of-function approaches encompassing genomic deletions, RNA interference, locked nucleic acids, and various adaptions of the CRISPR/Cas9 technology. PMID:26820238

  13. RNA-seq Analysis of δ9-Tetrahydrocannabinol-treated T Cells Reveals Altered Gene Expression Profiles That Regulate Immune Response and Cell Proliferation.

    PubMed

    Yang, Xiaoming; Bam, Marpe; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2016-07-22

    Marijuana has drawn significant public attention and concern both for its medicinal and recreational use. Δ9-Tetrahydrocannabinol (THC), which is the main bioactive component in marijuana, has also been shown to possess potent anti-inflammatory properties by virtue of its ability to activate cannabinoid receptor-2 (CB-2) expressed on immune cells. In this study, we used RNA-seq to quantify the transcriptomes and transcript variants that are differentially regulated by THC in super antigen-activated lymph node cells and CD4(+) T cells. We found that the expressions of many transcripts were altered by THC in both total lymph node cells and CD4(+) T cells. Furthermore, the abundance of many miRNA precursors and long non-coding RNAs was dramatically altered in THC-treated mice. For example, the expression of miR-17/92 cluster and miR-374b/421 cluster was down-regulated by THC. On the other hand miR-146a, which has been shown to induce apoptosis, was up-regulated by THC. Long non-coding RNAs that are expressed from the opposite strand of CD27 and Appbp2 were induced by THC. In addition, THC treatment also caused alternative promoter usage and splicing. The functions of those altered transcripts were mainly related to immune response and cell proliferation. PMID:27268054

  14. Ezrin-Radixin-Moesin family proteins in the regulation of B cell immune response

    PubMed Central

    Pore, Debasis; Gupta, Neetu

    2015-01-01

    Dynamic reorganization of the cortical cytoskeleton is essential for numerous cellular processes including B and T cell activation and migration. The Ezrin, Radixin and Moesin (ERM) family proteins play structural and regulatory roles in the rearrangement of plasma membrane flexibility and protrusions through their reversible interaction with cortical actin filaments and plasma membrane. Recent studies demonstrate that ERM proteins are not only involved in cytoskeletal organization but also offer a platform for the transmission of signals in response to a variety of extracellular stimuli through their ability to crosslink transmembrane receptors with downstream signaling components. In this review, we summarize the present knowledge and recent progress made towards elucidating a novel role of ERM proteins in the regulation of B function in health and disease. PMID:25746045

  15. Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft vs. host disease

    PubMed Central

    Hanash, Alan M.; Dudakov, Jarrod A.; Hua, Guoqiang; O’Connor, Margaret H.; Young, Lauren F.; Singer, Natalie V.; West, Mallory L.; Jenq, Robert R.; Holland, Amanda M.; Kappel, Lucy W.; Ghosh, Arnab; Tsai, Jennifer J.; Rao, Uttam K.; Yim, Nury L.; Smith, Odette M.; Velardi, Enrico; Hawryluk, Elena; Murphy, George F.; Liu, Chen; Fouser, Lynette A.; Kolesnick, Richard; Blazar, Bruce R.; van den Brink, Marcel R.M.

    2012-01-01

    Summary Little is known about the maintenance of intestinal stem cells (ISCs) and progenitors during immune-mediated tissue damage or about the susceptibility of transplant recipients to tissue damage mediated by the donor immune system during graft vs. host disease (GVHD). We demonstrate here that deficiency of recipient-derived IL-22 increased acute GVHD tissue damage and mortality, that ISCs were eliminated during GVHD, and that ISCs as well as their downstream progenitors expressed the IL-22 receptor. Intestinal IL-22 was produced after bone marrow transplant by IL-23-responsive innate lymphoid cells (ILCs) from the transplant recipients, and intestinal IL-22 increased in response to pre-transplant conditioning. However, ILC frequency and IL-22 amounts were decreased by GVHD. Recipient IL-22 deficiency led to increased crypt apoptosis, depletion of ISCs, and loss of epithelial integrity. Our findings reveal IL-22 as a critical regulator of tissue sensitivity to GVHD and a protective factor for ISC during inflammatory intestinal damage. PMID:22921121

  16. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis.

    PubMed

    Hamdoun, Safae; Zhang, Chong; Gill, Manroop; Kumar, Narender; Churchman, Michelle; Larkin, John C; Kwon, Ashley; Lu, Hua

    2016-01-01

    Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions. PMID:26561564

  17. Regulation of Exacerbated Immune Responses in Human Peripheral Blood Cells by Hydrolysed Egg White Proteins

    PubMed Central

    Lozano-Ojalvo, Daniel; Molina, Elena; López-Fandiño, Rosina

    2016-01-01

    The anti-allergic potential of egg white protein hydrolysates (from ovalbumin, lysozyme and ovomucoid) was evaluated as their ability to hinder cytokine and IgE production by Th2-skewed human peripheral blood mononuclear cells (PBMCs), as well as the release of pro-inflammatory factors and generation of reactive oxygen species from Th1-stimulated peripheral blood leukocytes (PBLs). The binding to IgE of egg allergic patients was determined and the peptides present in the hydrolysates were identified. The hydrolysates with alcalase down-regulated the production of Th2-biased cytokines and the secretion of IgE to the culture media of Th2-skewed PBMCs, and they significantly neutralized oxidative stress in PBLs. The hydrolysates of ovalbumin and ovomucoid with pepsin helped to re-establish the Th1/Th2 balance in Th2-biased PBMCs, while they also inhibited the release of pro-inflammatory mediators and reduced oxidative stress in PBLs treated with inflammatory stimuli. The hydrolysates with alcalase, in addition to equilibrating Th2 differentiation, exhibited a low IgE-binding. Therefore, they would elicit mild allergic reactions while retaining T cell-stimulating abilities, which might correlate with an anti-allergic benefit. PMID:27007699

  18. Regulation of Exacerbated Immune Responses in Human Peripheral Blood Cells by Hydrolysed Egg White Proteins.

    PubMed

    Lozano-Ojalvo, Daniel; Molina, Elena; López-Fandiño, Rosina

    2016-01-01

    The anti-allergic potential of egg white protein hydrolysates (from ovalbumin, lysozyme and ovomucoid) was evaluated as their ability to hinder cytokine and IgE production by Th2-skewed human peripheral blood mononuclear cells (PBMCs), as well as the release of pro-inflammatory factors and generation of reactive oxygen species from Th1-stimulated peripheral blood leukocytes (PBLs). The binding to IgE of egg allergic patients was determined and the peptides present in the hydrolysates were identified. The hydrolysates with alcalase down-regulated the production of Th2-biased cytokines and the secretion of IgE to the culture media of Th2-skewed PBMCs, and they significantly neutralized oxidative stress in PBLs. The hydrolysates of ovalbumin and ovomucoid with pepsin helped to re-establish the Th1/Th2 balance in Th2-biased PBMCs, while they also inhibited the release of pro-inflammatory mediators and reduced oxidative stress in PBLs treated with inflammatory stimuli. The hydrolysates with alcalase, in addition to equilibrating Th2 differentiation, exhibited a low IgE-binding. Therefore, they would elicit mild allergic reactions while retaining T cell-stimulating abilities, which might correlate with an anti-allergic benefit. PMID:27007699

  19. Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells.

    PubMed

    Dardalhon, Valerie; Anderson, Ana C; Karman, Jozsef; Apetoh, Lionel; Chandwaskar, Rucha; Lee, David H; Cornejo, Melanie; Nishi, Nozomu; Yamauchi, Akira; Quintana, Francisco J; Sobel, Raymond A; Hirashima, Mitsuomi; Kuchroo, Vijay K

    2010-08-01

    IFN-gamma plays a central role in antitumor immunity. T cell Ig and mucin domain (Tim-3) is expressed on IFN-gamma-producing Th1 cells; on interaction with its ligand, galectin-9, Th1 immunity is terminated. In this study, we show that transgenic overexpression of Tim-3 on T cells results in an increase in CD11b(+)Ly-6G(+) cells and inhibition of immune responses. Molecular characterization of CD11b(+)Ly-6G(+) cells reveals a phenotype consistent with granulocytic myeloid-derived suppressor cells. Accordingly, we find that modulation of the Tim-3/galectin-9 (Gal-9) pathway impacts on tumor growth. Similarly, overexpression of Tim-3 ligand, Gal-9, results in an increase in CD11b(+)Ly-6G(+) cells and inhibition of immune responses. Loss of Tim-3 restores normal levels of CD11b(+)Ly-6G(+) cells and normal immune responses in Gal-9 transgenic mice. Our data uncover a novel mechanism by which the Tim-3/Gal-9 pathway regulates immune responses and identifies this pathway as a therapeutic target in diseases where myeloid-derived suppressor cells are disadvantageous. PMID:20574007

  20. CD11chi Dendritic Cells Regulate Ly-6Chi Monocyte Differentiation to Preserve Immune-privileged CNS in Lethal Neuroinflammation

    PubMed Central

    Kim, Jin Hyoung; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebelig; Patil, Ajit Mahadev; Han, Young Woo; Park, Sang-Youel; Lee, John Hwa; Kim, Koanhoi; Eo, Seong Kug

    2015-01-01

    Although the roles of dendritic cells (DCs) in adaptive defense have been defined well, the contribution of DCs to T cell-independent innate defense and subsequent neuroimmunopathology in immune-privileged CNS upon infection with neurotropic viruses has not been completely defined. Notably, DC roles in regulating innate CD11b+Ly-6Chi monocyte functions during neuroinflammation have not yet been addressed. Using selective ablation of CD11chiPDCA-1int/lo DCs without alteration in CD11cintPDCA-1hi plasmacytoid DC number, we found that CD11chi DCs are essential to control neuroinflammation caused by infection with neurotropic Japanese encephalitis virus, through early and increased infiltration of CD11b+Ly-6Chi monocytes and higher expression of CC chemokines. More interestingly, selective CD11chi DC ablation provided altered differentiation and function of infiltrated CD11b+Ly-6Chi monocytes in the CNS through Flt3-L and GM-CSF, which was closely associated with severely enhanced neuroinflammation. Furthermore, CD11b+Ly-6Chi monocytes generated in CD11chi DC-ablated environment had a deleterious rather than protective role during neuroinflammation, and were more quickly recruited into inflamed CNS, depending on CCR2, thereby exacerbating neuroinflammation via enhanced supply of virus from the periphery. Therefore, our data demonstrate that CD11chi DCs provide a critical and unexpected role to preserve the immune-privileged CNS in lethal neuroinflammation via regulating the differentiation, function, and trafficking of CD11b+Ly-6Chi monocytes. PMID:26626303

  1. MicroRNA-33–dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis

    PubMed Central

    Ouimet, Mireille; Ediriweera, Hasini N.; Gundra, U. Mahesh; Sheedy, Frederick J.; Ramkhelawon, Bhama; Hutchison, Susan B.; Rinehold, Kaitlyn; van Solingen, Coen; Fullerton, Morgan D.; Cecchini, Katharine; Rayner, Katey J.; Steinberg, Gregory R.; Zamore, Phillip D.; Fisher, Edward A.; Loke, P’ng; Moore, Kathryn J.

    2015-01-01

    Cellular metabolism is increasingly recognized as a controller of immune cell fate and function. MicroRNA-33 (miR-33) regulates cellular lipid metabolism and represses genes involved in cholesterol efflux, HDL biogenesis, and fatty acid oxidation. Here, we determined that miR-33–mediated disruption of the balance of aerobic glycolysis and mitochondrial oxidative phosphorylation instructs macrophage inflammatory polarization and shapes innate and adaptive immune responses. Macrophage-specific Mir33 deletion increased oxidative respiration, enhanced spare respiratory capacity, and induced an M2 macrophage polarization–associated gene profile. Furthermore, miR-33–mediated M2 polarization required miR-33 targeting of the energy sensor AMP-activated protein kinase (AMPK), but not cholesterol efflux. Notably, miR-33 inhibition increased macrophage expression of the retinoic acid–producing enzyme aldehyde dehydrogenase family 1, subfamily A2 (ALDH1A2) and retinal dehydrogenase activity both in vitro and in a mouse model. Consistent with the ability of retinoic acid to foster inducible Tregs, miR-33–depleted macrophages had an enhanced capacity to induce forkhead box P3 (FOXP3) expression in naive CD4+ T cells. Finally, treatment of hypercholesterolemic mice with miR-33 inhibitors for 8 weeks resulted in accumulation of inflammation-suppressing M2 macrophages and FOXP3+ Tregs in plaques and reduced atherosclerosis progression. Collectively, these results reveal that miR-33 regulates macrophage inflammation and demonstrate that miR-33 antagonism is atheroprotective, in part, by reducing plaque inflammation by promoting M2 macrophage polarization and Treg induction. PMID:26517695

  2. PI3Kα and STAT1 Interplay Regulates Human Mesenchymal Stem Cell Immune Polarization

    PubMed Central

    Mounayar, Marwan; Kefaloyianni, Eirini; Smith, Brian; Solhjou, Zhabiz; Maarouf, Omar H.; Azzi, Jamil; Chabtini, Lola; Fiorina, Paolo; Kraus, Morey; Briddell, Robert; Fodor, William; Herrlich, Andreas; Abdi, Reza

    2016-01-01

    The immunomodulatory capacity of mesenchymal stem cells (MSCs) is critical for their use in therapeutic applications. MSC response to specific inflammatory cues allows them to switch between a proinflammatory (MSC1) or anti-inflammatory (MSC2) phenotype. Regulatory mechanisms controlling this switch remain to be defined. One characteristic feature of MSC2 is their ability to respond to IFNγ with induction of indoleamine 2,3-dioxygenase (IDO), representing the key immunoregulatory molecule released by human MSC. Here, we show that STAT1 and PI3Kα pathways interplay regulates IFNγ-induced IDO production in MSC. Chemical phosphoinositide 3-kinase (PI3K) pan-inhibition, PI3Kα-specific inhibition or shRNA knockdown diminished IFNγ-induced IDO production. This effect involved PI3Kα-mediated upregulation of STAT1 protein levels and phosphorylation at Ser727. Overexpression of STAT1 or of a constitutively active PI3Kα mutant failed to induce basal IDO production, but shifted MSC into an MSC2-like phenotype by strongly enhancing IDO production in response to IFNγ as compared to controls. STAT1 overexpression strongly enhanced MSC-mediated T-cell suppression. The same effect could be induced using short-term pretreatment of MSC with a chemical inhibitor of the counter player of PI3K, phosphatase and tensin homolog. Finally, downregulation of STAT1 abrogated the immunosuppressive capacity of MSC. Our results for the first time identify critical upstream signals for the induced production of IDO in MSCs that could be manipulated therapeutically to enhance their immunosuppressive phenotype. PMID:25753288

  3. Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor.

    PubMed

    Gudesblat, Gustavo E; Torres, Pablo S; Vojnov, Adrián A

    2009-02-01

    Pathogen-induced stomatal closure is part of the plant innate immune response. Phytopathogens using stomata as a way of entry into the leaf must avoid the stomatal response of the host. In this article, we describe a factor secreted by the bacterial phytopathogen Xanthomonas campestris pv campestris (Xcc) capable of interfering with stomatal closure induced by bacteria or abscisic acid (ABA). We found that living Xcc, as well as ethyl acetate extracts from Xcc culture supernatants, are capable of reverting stomatal closure induced by bacteria, lipopolysaccharide, or ABA. Xcc ethyl acetate extracts also complemented the infectivity of Pseudomonas syringae pv tomato (Pst) mutants deficient in the production of the coronatine toxin, which is required to overcome stomatal defense. By contrast, the rpfF and rpfC mutant strains of Xcc, which are unable to respectively synthesize or perceive a diffusible molecule involved in bacterial cell-to-cell signaling, were incapable of reverting stomatal closure, indicating that suppression of stomatal response by Xcc requires an intact rpf/diffusible signal factor system. In addition, we found that guard cell-specific Arabidopsis (Arabidopsis thaliana) Mitogen-Activated Protein Kinase3 (MPK3) antisense mutants were unresponsive to bacteria or lipopolysaccharide in promotion of stomatal closure, and also more sensitive to Pst coronatine-deficient mutants, showing that MPK3 is required for stomatal immune response. Additionally, we found that, unlike in wild-type Arabidopsis, ABA-induced stomatal closure in MPK3 antisense mutants is not affected by Xcc or by extracts from Xcc culture supernatants, suggesting that the Xcc factor might target some signaling component in the same pathway as MPK3. PMID:19091877

  4. The Short isoform of the CEACAM1 receptor in intestinal T cells regulates mucosal immunity and homeostasis via Tfh cell induction

    PubMed Central

    Chen, Lanfen; Chen, Zhangguo; Baker, Kristi; Halvorsen, E lizabeth M.; da Cunha, Andre Pires; Flak, Magdalena B.; Gerber, Georg; Huang, Yu-Hwa; Hosomi, Shuhei; Arthur, J anelle C.; Dery, Ken J.; Nagaishi, Takashi; Beauchemin, Nicole; Holmes, Kathryn V.; Ho, Joshua W. K.; Shively, John E.; Jobin, Christian; Onderdonk, Andrew B.; Bry, Lynn; Weiner, Howard L.; Higgins, Darren E.; Blumberg, Richard S.

    2012-01-01

    Summary Carcinoembryonic antigen cell adhesion molecule like I (CEACAM1) is expressed on activated T cells and signals through either a long (L) cytoplasmic tail containing immune receptor tyrosine based inhibitory motifs, which provide inhibitory function, or a short (S) cytoplasmic tail with an unknown role. Previous studies on peripheral T cells show that CEACAM1-L isoforms predominate with little to no detectable CEACAM1-S isoforms in mouse and human. We show here that this was not the case in tissue resident T cells of intestines and gut associated lymphoid tissues which demonstrated predominant expression of CEACAM1-S isoforms relative to CEACAM1-L isoforms in human and mouse. This tissue resident predominance of CEACAM1-S expression was determined by the intestinal environment where it served a stimulatory function leading to the regulation of T cell subsets associated with generation of secretory IgA immunity, the regulation of mucosal commensalism, and defense of the barrier against enteropathogens. PMID:23123061

  5. The HGF receptor/Met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity.

    PubMed

    Baek, Jea-Hyun; Birchmeier, Carmen; Zenke, Martin; Hieronymus, Thomas

    2012-08-15

    The Met tyrosine kinase has a pivotal role in embryonic development and tissue regeneration, and deregulated Met signaling contributes to tumorigenesis. After binding of its cognate ligand hepatocyte growth factor, Met signaling confers mitogenic, morphogenic, and motogenic activity to various cells. Met expression in the hematopoietic compartment is limited to progenitor cells and their Ag-presenting progeny, including dendritic cells (DCs). In this study, we demonstrate that Met signaling in skin-resident DCs is essential for their emigration toward draining lymph nodes upon inflammation-induced activation. By using a conditional Met-deficient mouse model (Met(flox/flox)), we show that Met acts on the initial step of DC release from skin tissue. Met-deficient DCs fail to reach skin-draining lymph nodes upon activation while exhibiting an activated phenotype. Contact hypersensitivity reactions in response to various contact allergens is strongly impaired in Met-deficient mice. Inhibition of Met signaling by single-dose epicutaneous administration of the Met kinase-specific inhibitor SU11274 also suppressed contact hypersensitivity in wild-type mice. Additionally, we found that Met signaling regulates matrix metalloproteinase MMP2 and MMP9 activity, which is important for DC migration through extracellular matrix. These data unveil Met signaling in DCs as a critical determinant for the maintenance of normal immune function and suggest Met as a potential target for treatment of autoimmune skin diseases. PMID:22802413

  6. Stem Cell Therapies for Intervertebral Disc Degeneration: Immune Privilege Reinforcement by Fas/FasL Regulating Machinery.

    PubMed

    Ma, Chi-Jiao; Liu, Xu; Che, Lu; Liu, Zhi-Heng; Samartzis, Dino; Wang, Hai-Qiang

    2015-01-01

    As a main contributing factor to low back pain, intervertebral disc degeneration (IDD) is the fundamental basis for various debilitating spinal diseases. The pros and cons of current treatment modalities necessitate biological treatment strategies targeting for reversing or altering the degeneration process in terms of molecules or genes. The advances in stem cell research facilitate the studies aiming for possible clinical application of stem cell therapies for IDD. Human NP cells are versatile with cell morphology full of variety, capable of synthesizing extracellular matrix components, engulfing substances by autophagy and phagocytosis, mitochondrial vacuolization indicating dysfunction, expressing Fas and FasL as significant omens of immune privileged sites. Human discs belong to immune privilege organs with functional FasL expression, which can interact with invasive immune cells by Fas-FasL regulatory machinery. IDD is characterized by decreased expression level of FasL with dysfunctional FasL, which in turn unbalances the interaction between NP cells and immune cells. Certain modulation factors might play a role in the process, such as miR-155. Accumulating evidence indicates that Fas-FasL network expresses in a variety of stem cells. Given the expression of functional FasL and insensitive Fas in stem cells (we term as FasL privilege), transplantation of stem cells into the disc may regenerate the degenerative disc by not only differentiating into NP-like cells, increasing extracellular matrix, but also reinforce immune privilege via interaction with immune cells by Fas-FasL network. PMID:25381758

  7. The microbiome and regulation of mucosal immunity.

    PubMed

    McDermott, Andrew J; Huffnagle, Gary B

    2014-05-01

    The gastrointestinal tract is a mucosal surface constantly exposed to foreign antigens and microbes, and is protected by a vast array of immunologically active structures and cells. Epithelial cells directly participate in immunological surveillance and direction of host responses in the gut and can express numerous pattern recognition receptors, including Toll-like receptor 5 (TLR5), TLR1, TLR2, TLR3, TLR9, and nucleotide oligomerization domain 2, as well as produce chemotactic factors for both myeloid and lymphoid cells following inflammatory stimulation. Within the epithelium and in the underlying lamina propria resides a population of innate lymphoid cells that, following stimulation, can become activated and produce effector cytokines and exert both protective and pathogenic roles during inflammation. Lamina propria dendritic cells play a large role in determining whether the response to a particular antigen will be inflammatory or anti-inflammatory. It is becoming clear that the composition and metabolic activity of the intestinal microbiome, as a whole community, exerts a profound influence on mucosal immune regulation. The microbiome produces short-chain fatty acids, polysaccharide A, α-galactosylceramide and tryptophan metabolites, which can induce interleukin-22, Reg3γ, IgA and interleukin-17 responses. However, much of what is known about microbiome-host immune interactions has come from the study of single bacterial members of the gastrointestinal microbiome and their impact on intestinal mucosal immunity. Additionally, evidence continues to accumulate that alterations of the intestinal microbiome can impact not only gastrointestinal immunity but also immune regulation at distal mucosal sites. PMID:24329495

  8. Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β.

    PubMed

    Palomares, O; Martín-Fontecha, M; Lauener, R; Traidl-Hoffmann, C; Cavkaytar, O; Akdis, M; Akdis, C A

    2014-12-01

    The prevalence of allergic diseases has significantly increased in industrialized countries. Allergen-specific immunotherapy (AIT) remains as the only curative treatment. The knowledge about the mechanisms underlying healthy immune responses to allergens, the development of allergic reactions and restoration of appropriate immune responses to allergens has significantly improved over the last decades. It is now well-accepted that the generation and maintenance of functional allergen-specific regulatory T (Treg) cells and regulatory B (Breg) cells are essential for healthy immune responses to environmental proteins and successful AIT. Treg cells comprise different subsets of T cells with suppressive capacity, which control the development and maintenance of allergic diseases by various ways of action. Molecular mechanisms of generation of Treg cells, the identification of novel immunological organs, where this might occur in vivo, such as tonsils, and related epigenetic mechanisms are starting to be deciphered. The key role played by the suppressor cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β produced by functional Treg cells during the generation of immune tolerance to allergens is now well established. Treg and Breg cells together have a role in suppression of IgE and induction of IgG4 isotype allergen-specific antibodies particularly mediated by IL-10. Other cell types such as subsets of dendritic cells, NK-T cells and natural killer cells producing high levels of IL-10 may also contribute to the generation of healthy immune responses to allergens. In conclusion, better understanding of the immune regulatory mechanisms operating at different stages of allergic diseases will significantly help the development of better diagnostic and predictive biomarkers and therapeutic interventions. PMID:25056447

  9. Regulation of immune responses by neutrophils.

    PubMed

    Wang, Jing; Arase, Hisashi

    2014-06-01

    Neutrophils, the most abundant circulating cells in humans, are major pathogen-killing immune cells. For many years, these cells were considered to be simple killers at the "bottom" of immune responses. However, recent studies have revealed more sophisticated mechanisms associated with neutrophilic cytotoxic functions, and neutrophils have been shown to contribute to various infectious and inflammatory diseases. In this review, we discuss the key features of neutrophils during inflammatory responses, from their release from the bone marrow to their death in inflammatory loci. We also discuss the expanding roles of neutrophils that have been identified in the context of several inflammatory diseases. We further focus on the mechanisms that regulate neutrophil recruitment to inflamed tissues and neutrophil cytotoxic activities against both pathogens and host tissues. PMID:24850053

  10. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis

    PubMed Central

    Maricic, Igor; Halder, Ramesh; Bischof, Felix; Kumar, Vipin

    2014-01-01

    CD1d-restricted NKT cells can be divided into two groups: type I NKT cells utilize a semi-invariant TCR whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the central nervous system tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. Here we have addressed the mechanism of regulation as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of PLP139-151/I-As–tetramer+ cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells in the periphery as well as CNS-resident microglia are inactivated following sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not αGalCer, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Since CD1 molecules are non-polymorphic, the sulfatide-mediated immune regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases. PMID:24973441

  11. Sirtuin 1 regulates dendritic cell activation and autophagy during Respiratory Syncytial Virus-induced immune responses1

    PubMed Central

    Owczarczyk, Anna B.; Schaller, Matthew A.; Reed, Michelle; Rasky, Andrew J.; Lombard, David B.; Lukacs, Nicholas W.

    2015-01-01

    Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infection in children worldwide. Sirtuin 1 (SIRT1), an NAD+ dependent deacetylase, has been associated with the induction of autophagy and the regulation of inflammatory mediators. We found that Sirt1 was upregulated in mouse lung after RSV infection. Infected animals that received EX-527, a selective SIRT1 inhibitor, displayed exacerbated lung pathology, with increased mucus production, elevated viral load, and enhanced Th2 cytokine production. Gene expression analysis of isolated cell populations revealed that Sirt1 was most highly upregulated in RSV-treated dendritic cells (DCs). Upon RSV infection, EX-527-treated DCs, Sirt1 siRNA-treated DCs, or DCs from conditional knockout (Sirt1f/f-CD11c–Cre+) mice showed downregulated inflammatory cytokine gene expression and attenuated autophagy. Finally, RSV infection of Sirt1f/f-CD11c–Cre+ mice resulted in altered lung and lymph node cytokine responses, leading to exacerbated pathology. These data indicate that SIRT1 promotes DC activation associated with autophagy-mediated processes during RSV infection, thereby directing efficient antiviral immune responses. PMID:26157176

  12. Immune Regulation and Control of Regulatory T cells by OX40 and 4-1BB

    PubMed Central

    So, Takanori; Lee, Seung-Woo; Croft, Michael

    2008-01-01

    The TNFR family members OX40 (CD134) and 4-1BB (CD137) have been found to play major roles as costimulatory receptors for both CD4 and CD8 T cells. In particular, in many situations, they can control proliferation, survival, and cytokine production, and hence are thought to dictate accumulation of protective T cells during anti-viral and anti-tumor responses and pathogenic T cells during autoimmune reactions. As opposed to simply controlling the activity of naïve, effector, and memory T cells, recent data have suggested that both molecules are also instrumental in controlling the generation and activity of so-called regulatory or suppressor T cells (Treg), perhaps in both positive and negative manners. Part of the action on Treg might function to further promote protective or pathogenic T cells, but alternate activities of OX40 and 4-1BB on Treg are also being described that suggest there might be control by these molecules at multiple levels that will alter the biological outcome when these receptors are ligated. This review specifically focuses on recent studies of regulatory T cells, and regulatory or suppressive activity, that are modulated by OX40 or 4-1BB. PMID:18508403

  13. miR-146a is directly regulated by STAT3 in human hepatocellular carcinoma cells and involved in anti-tumor immune suppression

    PubMed Central

    Sun, Xiaoxia; Zhang, Jian; Hou, Zhaohua; Han, Qiuju; Zhang, Cai; Tian, Zhigang

    2015-01-01

    MicroRNAs (miRNAs) play an important role in tumorigenesis, but their role in tumor-induced immune suppression is largely unknown. STAT3 signaling, a key pathway mediating immune suppression in the tumor microenvironment, is responsible for the transcription of several important miRNAs. In this study, we observed that miR-146a, a known important regulator of immune responses, was downregulated by blocking activated STAT3 in hepatocellular carcinoma (HCC) cells. Furthermore, miR-146a inhibition in HCC cells not only altered the STAT3 activation–associated cytokine profile but also reversed HCC-induced NK cell dysfunction in vitro and improved the anti-tumor effect of lymphocytes in vivo. Importantly, ChIP and luciferase reporter assays confirmed that STAT3 directly bound to the miR-146a promoter and induced miR-146a expression. These findings indicated that miR-146a expression was regulated by aberrantly activated STAT3 in HCC cells and exerted negative effects on anti-tumor immune response, which resulted in the upregulation of cytokines such as TGF-β, IL-17, VEGF and downregulation of type I IFN to create an immunosuppressive microenvironment. This further insight into understanding the mechanism responsible for tumor-induced immune suppression highlights the potential application of miR-146a as a novel immunotherapeutic target for HCC. PMID:25607648

  14. Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity

    PubMed Central

    Waugh, Katherine A.; Leach, Sonia M.; Slansky, Jill E.

    2015-01-01

    Transcription is a dynamic process influenced by the cellular environment: healthy, transformed, and otherwise. Genome-wide mRNA expression profiles reflect the collective impact of pathways modulating cell function under different conditions. In this review we focus on the transcriptional pathways that control tumor infiltrating CD8+ T cell (TIL) function. Simultaneous restraint of overlapping inhibitory pathways may confer TIL resistance to multiple mechanisms of suppression traditionally referred to as exhaustion, tolerance, or anergy. Although decades of work have laid a solid foundation of altered transcriptional networks underlying various subsets of hypofunctional or “dysfunctional” CD8+ T cells, an understanding of the relevance in TIL has just begun. With recent technological advances, it is now feasible to further elucidate and utilize these pathways in immunotherapy platforms that seek to increase TIL function. PMID:26393659

  15. Regulation of Immune Responses by mTOR

    PubMed Central

    Powell, Jonathan D.; Pollizzi, Kristen N.; Heikamp, Emily B.; Horton, Maureen R.

    2013-01-01

    mTOR is an evolutionarily conserved serine/threonine kinase that plays a central role in integrating environmental cues in the form of growth factors, amino acids, and energy. In the study of the immune system, mTOR is emerging as a critical regulator of immune function because of its role in sensing and integrating cues from the immune microenvironment. With the greater appreciation of cellular metabolism as an important regulator of immune cell function, mTOR is proving to be a vital link between immune function and metabolism. In this review, we discuss the ability of mTOR to direct the adaptive immune response. Specifically, we focus on the role of mTOR in promoting differentiation, activation, and function in T cells, B cells, and antigen-presenting cells. PMID:22136167

  16. Exosomes and their roles in immune regulation and cancer.

    PubMed

    Greening, David W; Gopal, Shashi K; Xu, Rong; Simpson, Richard J; Chen, Weisan

    2015-04-01

    Exosomes, a subset of extracellular vesicles (EVs), function as a mode of intercellular communication and molecular transfer. Exosomes facilitate the direct extracellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells in vitro and in vivo. The immunological activities of exosomes affect immunoregulation mechanisms including modulating antigen presentation, immune activation, immune suppression, immune surveillance, and intercellular communication. Besides immune cells, cancer cells secrete immunologically active exosomes that influence both physiological and pathological processes. The observation that exosomes isolated from immune cells such as dendritic cells (DCs) modulate the immune response has enforced the way these membranous vesicles are being considered as potential immunotherapeutic reagents. Indeed, tumour- and immune cell-derived exosomes have been shown to carry tumour antigens and promote immunity, leading to eradication of established tumours by CD8(+) T cells and CD4(+) T cells, as well as directly suppressing tumour growth and resistance to malignant tumour development. Further understanding of these areas of exosome biology, and especially of molecular mechanisms involved in immune cell targeting, interaction and manipulation, is likely to provide significant insights into immunorecognition and therapeutic intervention. Here, we review the emerging roles of exosomes in immune regulation and the therapeutic potential in cancer. PMID:25724562

  17. The Multivesicular Bodies (MVBs)-Localized AAA ATPase LRD6-6 Inhibits Immunity and Cell Death Likely through Regulating MVBs-Mediated Vesicular Trafficking in Rice.

    PubMed

    Zhu, Xiaobo; Yin, Junjie; Liang, Sihui; Liang, Ruihong; Zhou, Xiaogang; Chen, Zhixiong; Zhao, Wen; Wang, Jing; Li, Weitao; He, Min; Yuan, Can; Miyamoto, Koji; Ma, Bingtian; Wang, Jichun; Qin, Peng; Chen, Weilan; Wang, Yuping; Wang, Wenming; Wu, Xianjun; Yamane, Hisakazu; Zhu, Lihuang; Li, Shigui; Chen, Xuewei

    2016-09-01

    Previous studies have shown that multivesicular bodies (MVBs)/endosomes-mediated vesicular trafficking may play key roles in plant immunity and cell death. However, the molecular regulation is poorly understood in rice. Here we report the identification and characterization of a MVBs-localized AAA ATPase LRD6-6 in rice. Disruption of LRD6-6 leads to enhanced immunity and cell death in rice. The ATPase activity and homo-dimerization of LRD6-6 is essential for its regulation on plant immunity and cell death. An ATPase inactive mutation (LRD6-6E315Q) leads to dominant-negative inhibition in plants. The LRD6-6 protein co-localizes with the MVBs marker protein RabF1/ARA6 and interacts with ESCRT-III components OsSNF7 and OsVPS2. Further analysis reveals that LRD6-6 is required for MVBs-mediated vesicular trafficking and inhibits the biosynthesis of antimicrobial compounds. Collectively, our study shows that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice. PMID:27618555

  18. Differential innate immune cell signatures and effects regulated by toll-like receptor 4 during murine lung tumor promotion.

    PubMed

    Alexander, Carla-Maria; Xiong, Ka-Na; Velmurugan, Kalpana; Xiong, Julie; Osgood, Ross S; Bauer, Alison K

    2016-04-01

    Tumor promotion is an early and critical stage during lung adenocarcinoma (ADC). We previously demonstrated that Tlr4 mutant mice were more susceptible to butylated hydroxytoluene (BHT)-induced pulmonary inflammation and tumor promotion in comparison to Tlr4-sufficient mice. Our study objective was to elucidate the underlying differences in Tlr4 mutant mice in innate immune cell populations, their functional responses, and the influence of these cellular differences on ADC progenitor (type II) cells following BHT-treatment. BALB (Tlr4-sufficient) and C.C3-Tlr4(Lps-d)/J (BALB(Lpsd); Tlr4 mutant) mice were treated with BHT (promoter) followed by bronchoalveolar lavage (BAL) and flow cytometry processing on the lungs. ELISAs, Club cell enrichment, macrophage function, and RNA isolation were also performed. Bone marrow-derived macrophages (BMDM) co-cultured with a type II cell line were used for wound healing assays. Innate immune cells significantly increased in whole lung in BHT-treated BALB(Lpsd) mice compared to BALB mice. BHT-treated BALB(Lpsd) mice demonstrated enhanced macrophage functionality, increased epithelial wound closure via BMDMs, and increased Club cell number in BALB(Lpsd) mice, all compared to BALB BHT-treated mice. Cytokine/chemokine (Kc, Mcp1) and growth factor (Igf1) levels also significantly differed among the strains and within macrophages, gene expression, and cell surface markers collectively demonstrated a more plastic phenotype in BALB(Lpsd) mice. Therefore, these correlative studies suggest that distinct innate immune cell populations are associated with the differences observed in the Tlr4-mutant model. Future studies will investigate the macrophage origins and the utility of the pathways identified herein as indicators of immune system deficiencies and lung tumorigenesis. PMID:27093379

  19. Down Regulation of the TCR Complex CD3ζ-Chain on CD3+ T Cells: A Potential Mechanism for Helminth-Mediated Immune Modulation

    PubMed Central

    Appleby, Laura J.; Nausch, Norman; Heard, Francesca; Erskine, Louise; Bourke, Claire D.; Midzi, Nicholas; Mduluza, Takafira; Allen, Judith E.; Mutapi, Francisca

    2015-01-01

    The CD3ζ forms part of the T cell receptor (TCR) where it plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways leading to T cell effector functions. Down regulation of CD3ζ leads to impairment of immune responses including reduced cell proliferation and cytokine production. In experimental models, helminth parasites have been shown to modulate immune responses directed against them and unrelated antigens, so called bystander antigens, but there is a lack of studies validating these observations in humans. This study investigated the relationship between expression levels of the TCR CD3ζ chain with lymphocyte cell proliferation during human infection with the helminth parasite, Schistosoma haematobium, which causes uro-genital schistosomiasis. Using flow cytometry, peripheral blood mononuclear cells (PBMCs) from individuals naturally exposed to S. haematobium in rural Zimbabwe were phenotyped, and expression levels of CD3ζ on T cells were related to intensity of infection. In this population, parasite infection intensity was inversely related to CD3ζ expression levels (p < 0.05), consistent with downregulation of CD3ζ expression during helminth infection. Furthermore, PBMC proliferation was positively related to expression levels of CD3ζ (p < 0.05) after allowing for confounding variables (host age, sex, and infection level). CD3ζ expression levels had a differing relationship between immune correlates of susceptibility and immunity, measured by antibody responses, indicating a complex relationship between immune activation status and immunity. The relationships between the CD3ζ chain of the TCR and schistosome infection, PBMC proliferation and schistosome-specific antibody responses have not previously been reported, and these results may indicate a mechanism for the impaired T cell proliferative responses observed during human schistosome infection. PMID:25741337

  20. Programmed Death-1 Ligand 2-Mediated Regulation of the PD-L1 to PD-1 Axis Is Essential for Establishing CD4(+) T Cell Immunity.

    PubMed

    Karunarathne, Deshapriya S; Horne-Debets, Joshua M; Huang, Johnny X; Faleiro, Rebecca; Leow, Chiuan Yee; Amante, Fiona; Watkins, Thomas S; Miles, John J; Dwyer, Patrick J; Stacey, Katryn J; Yarski, Michael; Poh, Chek Meng; Lee, Jason S; Cooper, Matthew A; Rénia, Laurent; Richard, Derek; McCarthy, James S; Sharpe, Arlene H; Wykes, Michelle N

    2016-08-16

    Many pathogens, including Plasmodium spp., exploit the interaction of programmed death-1 (PD-1) with PD-1-ligand-1 (PD-L1) to "deactivate" T cell functions, but the role of PD-L2 remains unclear. We studied malarial infections to understand the contribution of PD-L2 to immunity. Here we have shown that higher PD-L2 expression on blood dendritic cells, from Plasmodium falciparum-infected individuals, correlated with lower parasitemia. Mechanistic studies in mice showed that PD-L2 was indispensable for establishing effective CD4(+) T cell immunity against malaria, because it not only inhibited PD-L1 to PD-1 activity but also increased CD3 and inducible co-stimulator (ICOS) expression on T cells. Importantly, administration of soluble multimeric PD-L2 to mice with lethal malaria was sufficient to dramatically improve immunity and survival. These studies show immuno-regulation by PD-L2, which has the potential to be translated into an effective treatment for malaria and other diseases where T cell immunity is ineffective or short-lived due to PD-1-mediated signaling. PMID:27533014

  1. IL-17A expression in HIV-specific CD8 T cells is regulated by IL-4/IL-13 following HIV-1 prime-boost immunization.

    PubMed

    Ravichandran, Jayashree; Jackson, Ronald J; Trivedi, Shubhanshi; Ranasinghe, Charani

    2015-03-01

    Although Th1 and Th2 cytokines can inhibit interleukin (IL)-17-secreting T cells, how these cells are regulated under different infectious conditions is still debated. Our previous studies have shown that vaccination of IL-4 and IL-13 gene knockout (KO) mice can induce high-avidity HIV K(d)Gag197-205-specific CD8 T cells with better protective efficacy. In this study, when IL-13, IL-4, STAT6 KO, and wild-type BALB/c mice were prime-boost immunized with an HIV poxviral modality, elevated numbers of IL-17A(+) splenic K(d)Gag197-205-specific CD8 T cells were observed in all the KO mice compared with the wt BALB/c control. Similarly, when wt BALB/c mice were immunized with IL-13Rα2-adjuvanted HIV vaccines (that transiently inhibited IL-13 activity and induced high-avidity CD8 T cells with enhanced protective efficacy), elevated IL-17A(+) K(d)Gag197-205-specific CD8 T cells were detected both in the lung and the spleen. However, at the transcriptional level, elevated TGF-β, IL-6, ROR-γt, and IL-17A mRNA copy numbers were mainly detected in IL-4 KO, but not the IL-13 KO mice. These data suggested that TGF-β, IL-6, ROR-γt, but not IL-23a, played a role in IL-17A regulation in K(d)Gag197-205-specific CD8 T cells. Collectively, our findings suggest that IL-4 and IL-13 differentially regulate the expression of IL-17A in K(d)Gag197-205-specific CD8 T cells at the transcriptional and translational level, respectively, implicating IL-17A as an indirect modulator of CD8 T cell avidity and protective immunity. PMID:25493691

  2. Location, location, location: tissue-specific regulation of immune responses

    PubMed Central

    Hu, Wei; Pasare, Chandrashekhar

    2013-01-01

    Discovery of DCs and PRRs has contributed immensely to our understanding of induction of innate and adaptive immune responses. Activation of PRRs leads to secretion of inflammatory cytokines that regulate priming and differentiation of antigen-specific T and B lymphocytes. Pathogens enter the body via different routes, and although the same set of PRRs is likely to be activated, it is becoming clear that the route of immune challenge determines the nature of outcome of adaptive immunity. In addition to the signaling events initiated following innate-immune receptor activation, the cells of the immune system are influenced by the microenvironments in which they reside, and this has a direct impact on the resulting immune response. Specifically, immune responses could be influenced by specialized DCs, specific factors secreted by stromal cells, and also, by commensal microbiota present in certain organs. Following microbial detection, the complex interactions among DCs, stromal cells, and tissue-specific factors influence outcome of immune responses. In this review, we summarize recent findings on the phenotypic heterogeneity of innate and adaptive immune cells and how tissue-specific factors in the systemic and mucosal immune system influence the outcome of adaptive-immune responses. PMID:23825388

  3. Effects of In Vitro Exposure to Diarrheic Toxin Producer Prorocentrum lima on Gene Expressions Related to Cell Cycle Regulation and Immune Response in Crassostrea gigas

    PubMed Central

    de Jesús Romero-Geraldo, Reyna; García-Lagunas, Norma; Hernández-Saavedra, Norma Yolanda

    2014-01-01

    Background Crassostrea gigas accumulates diarrheic shellfish toxins (DSP) associated to Prorocentrum lima of which Okadaic acid (OA) causes specific inhibitions of serine and threonine phosphatases 1 and 2A. Its toxic effects have been extensively reported in bivalve mollusks at cellular and physiological levels, but genomic approaches have been scarcely studied. Methodology/Principal Findings Acute and sub-chronic exposure effects of P. lima were investigated on farmed juvenile C. gigas (3–5 mm). The Pacific oysters were fed with three dinoflagellate concentrations: 0.3, 3, and 30×103 cells mL−1 along with a nontoxic control diet of Isochrysis galbana. The effects of P. lima on C. gigas were followed by analyzing expression levels of a total of four genes, three involved in cell cycle regulation and one in immune response by polymerase chain reaction and real time quantitative PCR, where changes in time and cell concentration were found. The highest expression levels were found in oysters fed 3×103 cells mL−1 at 168 h for the cycle regulator p21 protein (9 fold), chromatin assembly factor 1 p55 subunit (8 fold), elongation factor 2 (2 fold), and lipopolysaccharide/β-1, 3 glucan binding protein (13 fold above base line). Additionally, the transcript level of all the genes decreased in oysters fed wich the mixed diet 30×103 cells mL−1 of dinoflagellate after 72 h and was lowest in the chromatin assembly factor 1 p55 subunit (0.9 fold below baseline). Conclusions On C. gigas the whole cell ingestion of P lima caused a clear mRNA modulation expression of the genes involved in cell cycle regulation and immune system. Over-expression could be related to DNA damage, disturbances in cell cycle continuity, probably a genotoxic effect, as well as an activation of its innate immune system as first line of defense. PMID:24825133

  4. Regulation of NKT cell-mediated immune responses to tumours and liver inflammation by mitochondrial PGAM5-Drp1 signalling

    PubMed Central

    Kang, Young Jun; Bang, Bo-Ram; Han, Kyung Ho; Hong, Lixin; Shim, Eun-Jin; Ma, Jianhui; Lerner, Richard A.; Otsuka, Motoyuki

    2015-01-01

    The receptor-interacting protein kinase 3 (RIPK3) plays crucial roles in programmed necrosis and innate inflammatory responses. However, a little is known about the involvement of RIPK3 in NKT cell-mediated immune responses. Here, we demonstrate that RIPK3 plays an essential role in NKT cell function via activation of the mitochondrial phosphatase phosphoglycerate mutase 5 (PGAM5). RIPK3-mediated activation of PGAM5 promotes the expression of cytokines by facilitating nuclear translocation of NFAT and dephosphorylation of dynamin-related protein 1 (Drp1), a GTPase is essential for mitochondrial homoeostasis. Ripk3−/− mice show reduced NKT cell responses to metastatic tumour cells, and both deletion of RIPK3 and pharmacological inhibition of Drp1 protects mice from NKT cell-mediated induction of acute liver damage. Collectively, the results identify a crucial role for RIPK3-PGAM5-Drp1/NFAT signalling in NKT cell activation, and further suggest that RIPK3-PGAM5 signalling may mediate crosstalk between mitochondrial function and immune signalling. PMID:26381214

  5. Mica Nanoparticle, STB-HO Eliminates the Human Breast Carcinoma Cells by Regulating the Interaction of Tumor with its Immune Microenvironment

    PubMed Central

    Kang, Tae-Wook; Kim, Hyung-Sik; Lee, Byung-Chul; Shin, Tae-Hoon; Choi, Soon Won; Kim, Yoon-Jin; Lee, Hwa-Yong; Jung, Yeon-Kwon; Seo, Kwang-Won; Kang, Kyung-Sun

    2015-01-01

    Mica, an aluminosilicate mineral, has been proven to possess anti-tumor and immunostimulatory effects. However, its efficacy and mechanisms in treating various types of tumor are less verified and the mechanistic link between anti-tumor and immunostimulatory effects has not been elucidated. We sought to investigate the therapeutic effect of STB-HO (mica nanoparticles) against one of the most prevalent cancers, the breast cancer. STB-HO was orally administered into MCF-7 xenograft model or directly added to culture media and tumor growth was monitored. STB-HO administration exhibited significant suppressive effects on the growth of MCF-7 cells in vivo, whereas STB-HO did not affect the proliferation and apoptosis of MCF-7 cells in vitro. To address this discrepancy between in vivo and in vitro results, we investigated the effects of STB-HO treatment on the interaction of MCF-7 cells with macrophages, dendritic cells (DCs) and natural killer (NK) cells, which constitute the cellular composition of tumor microenvironment. Importantly, STB-HO not only increased the susceptibility of MCF-7 cells to immune cells, but also stimulated the immunocytes to eliminate cancer cells. In conclusion, our study highlights the possible role of STB-HO in the suppression of MCF-7 cell growth via the regulation of interactions between tumor cells and anti-tumor immune cells. PMID:26631982

  6. Regulation of chronic inflammatory and immune processes by extracellular vesicles.

    PubMed

    Robbins, Paul D; Dorronsoro, Akaitz; Booker, Cori N

    2016-04-01

    Almost all cell types release extracellular vesicles (EVs), which are derived either from multivesicular bodies or from the plasma membrane. EVs contain a subset of proteins, lipids, and nucleic acids from the cell from which they are derived. EV factors, particularly small RNAs such as miRNAs, likely play important roles in cell-to-cell communication both locally and systemically. Most of the functions associated with EVs are in the regulation of immune responses to pathogens and cancer, as well as in regulating autoimmunity. This Review will focus on the different modes of immune regulation, both direct and indirect, by EVs. The therapeutic utility of EVs for the regulation of immune responses will also be discussed. PMID:27035808

  7. Hyaluronan as an Immune Regulator in Human Diseases

    PubMed Central

    NOBLE, PAUL W.; LIANG, JIURONG; JIANG, DIANHUA

    2010-01-01

    Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on a variety of cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage by interacting with TLR2 and TLR4 on these parenchymal cells. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and stem cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases. PMID:21248167

  8. Mechanisms of immune regulation in the peripheral nervous system.

    PubMed

    Gold, R; Archelos, J J; Hartung, H P

    1999-04-01

    The peripheral nervous system (PNS) is a target for heterogenous immune attacks mediated by different components of the systemic immune compartment. T cells, B cells, and macrophages can interact with endogenous, partially immune-competent glial cells and contribute to local inflammation. Cellular and humoral immune functions of Schwann cells have been well characterized in vitro. In addition, the interaction of the humoral and cellular immune system with the cellular and extracellular components in the PNS may determine the extent of tissue inflammation and repair processes such as remyelination and neuronal outgrowth. The animal model experimental autoimmune neuritis (EAN) allows direct monitoring of these immune responses in vivo. In EAN contributions to regulate autoimmunity in the PNS are made by adhesion molecules and by cytokines that orchestrate cellular interactions. The PNS has a significant potential to eliminate T cell inflammation via apoptosis, which is almost lacking in other tissues such as muscle and skin. In vitro experiments suggest different scenarios how specific cellular and humoral elements in the PNS may sensitize autoreactive T cells for apoptosis in vivo. Interestingly several conventional and novel immunotherapeutic approaches like glucocorticosteroids and high-dose antigen therapy induce T cell apoptosis in situ in EAN. A better understanding of immune regulation and its failure in the PNS may help to develop improved, more specific immunotherapies. PMID:10219750

  9. Erlotinib inhibits T-cell-mediated immune response via down-regulation of the c-Raf/ERK cascade and Akt signaling pathway

    SciTech Connect

    Luo Qiong; Gu Yanhong; Zheng Wei; Wu Xingxin; Gong Fangyuan; Gu Liyun; Sun Yang; Xu Qiang

    2011-03-01

    Erlotinib is a potent inhibitor of epidermal growth factor receptor tyrosine kinase and has been demonstrated to treat advanced or metastatic non-small cell lung cancer to prolong survival after failure of first-line or second-line chemotherapy. However, little is known about its effects on immune system. In the present study, we aimed to investigate the immunosuppressive activity of erlotinib on T lymphocytes both in vitro and in vivo, and further explore its potential molecular mechanism. Erlotinib exerted a significant inhibition on the T cell proliferation and activation induced by concanavalin A, anti-CD3 plus anti-CD28, staphylococcal enterotoxin B or phorbol myristate acetate respectively in a concentration-dependent manner and it also inhibited the secretion of the proinflammatory cytokines such as IL-2 and IFN-{gamma} of activated T cells. Further study showed that erlotinib caused G0/G1 arrest and suppressed the phosphorylations of c-Raf, ERK and Akt in activated T cells. Moreover, erlotinib significantly ameliorated picryl chloride-induced ear contact dermatitis in a dose-dependent manner in vivo. In summary, these findings suggest that erlotinib may cause the impairment of T-cell-mediated immune response both in vitro and in vivo through inhibiting T cell proliferation and activation, which is closely associated with its potent down-regulation of the c-Raf/ERK cascade and Akt signaling pathway. - Graphical abstract: Erlotinib may cause the impairment of T-cell-mediated immune response both in vitro and in vivo through inhibiting T cell proliferation and activation, which is closely associated with its potent down-regulation of the c-Raf/ERK cascade and Akt signaling pathway. Display Omitted

  10. Hyaluronan Is Not a Ligand but a Regulator of Toll-Like Receptor Signaling in Mesangial Cells: Role of Extracellular Matrix in Innate Immunity

    PubMed Central

    Ebid, Rainer; Anders, Hans-Joachim

    2014-01-01

    Glomerular mesangial cells (MC), like most cell types secrete hyaluronan (HA), which attached to the cell surface via CD44, is the backbone of a hydrophilic gel matrix around these cells. Reduced extracellular matrix thickness and viscosity result from HA cleavage during inflammation. HA fragments were reported to trigger innate immunity via Toll-like receptor-(TLR-) 2 and/or TLR4 in immune cells. We questioned whether HA fragments also regulate the immunostimulatory capacity of smooth muscle cell-like MC. LPS (TLR4-ligand) and PAM3CysSK4 (TLR2-ligand) induced IL-6 secretion in MC; highly purified endotoxin-free HA < 3000 Da up to 50 μg/mL did not. Bovine-testis-hyaluronidase from was used to digest MC-HA into HA fragments of different size directly in the cell culture. Resultant HA fragments did not activate TLR4-deficient MC, while TLR2-deficient MC responded to LPS-contamination of hyaluronidase, not to produced HA fragments. Hyaluronidase increased the stimulatory effect of TLR2-/-3/-5 ligands on their TLR-receptors in TLR4-deficient MC, excluding any effect by LPS-contamination. Supplemented heparin suppressed every stimulatory effect in a dose-dependent manner. We conclude that the glycosaminoglycan HA creates a pericellular jelly barrier, which covers surface receptors like the TLRs. Barrier-thickness and viscosity balanced by HA-synthesis and degradation and the amount of HA-receptors on the cell surface regulate innate immunity via the accessibility of the receptors. PMID:24967246

  11. [Psychoneuroimmunology--regulation of immunity at the systemic level].

    PubMed

    Boranić, Milivoj; Sabioncello, Ante; Gabrilovac, Jelka

    2008-01-01

    Innate and acquired immune reactions are controlled by their intrinsic regulatory mechanisms, ie. by an array of cytokines that mediate communication among cells of the immune system itself and with other cells and tissues, e. g. in areas of inflammation. In addition, the immune system is also subjected to systemic regulation by the vegetative and endocrine systems since immune cells express receptors for neurotransmitters and hormones. Neuroendocrine signals may enhance or suppress the immune reaction, accelerate or slow it, but do not affect specificity. Various stressful factors, including the psychosocial ones, affect immunity. In turn, cytokines generated by the immune system influence hormonal secretion and central nervous system, producing specific behavioral changes (the "sickness behavior") accompanying infectious and inflammatory diseases. That includes somnolence, loss of apetite, depression or anxiety and decrease of cognitive abilities, attention and memory. Local immune systems in skin and mucosa are also subjected to systemic neuroendocrine regulation and possess intrinsic neuroregulatory networks as well. These mechanisms render skin and respiratory and digestive tracts responsive to various forms of stress. Examples are neurodermitis, asthma and ulcerative colitis. In children, the immune and the neuroendocrine systems are still developing, particularly in fetal, neonatal and early infant periods, and exposure to stressful experiences at that time may result in late consequences in the form of deficient immunity or greater risks for allergic or autoimmune reactions. Recognition of the participation of neuroendocrine mechanisms in regulation of immunity helps us understand alterations and disturbances of immune reactions under the influence of stressful factors but so far has not produced reliable therapeutic implications. Psychosocial interventions involving the child and its family may be useful. PMID:18592962

  12. T cell immunity using transgenic B lymphocytes

    NASA Astrophysics Data System (ADS)

    Gerloni, Mara; Rizzi, Marta; Castiglioni, Paola; Zanetti, Maurizio

    2004-03-01

    Adaptive immunity exists in all vertebrates and plays a defense role against microbial pathogens and tumors. T cell responses begin when precursor T cells recognize antigen on specialized antigen-presenting cells and differentiate into effector cells. Currently, dendritic cells are considered the only cells capable of stimulating T lymphocytes. Here, we show that mature naïve B lymphocytes can be genetically programmed by using nonviral DNA and turned into powerful antigen-presenting cells with a dual capacity of synthesis and presentation of antigen to T cells in vivo. A single i.v. injection of transgenic lymphocytes activates T cell responses reproducibly and specifically even at very low cell doses (102). We also demonstrate that T cell priming can occur in the absence of dendritic cells and results in immunological memory with protective effector functions. These findings disclose aspects in the regulation of adaptive immunity and indicate possibilities for vaccination against viruses and cancer in humans.

  13. RabGDIα is a negative regulator of interferon-γ-inducible GTPase-dependent cell-autonomous immunity to Toxoplasma gondii.

    PubMed

    Ohshima, Jun; Sasai, Miwa; Liu, Jianfa; Yamashita, Kazuo; Ma, Ji Su; Lee, Youngae; Bando, Hironori; Howard, Jonathan C; Ebisu, Shigeyuki; Hayashi, Mikako; Takeda, Kiyoshi; Standley, Daron M; Frickel, Eva-Maria; Yamamoto, Masahiro

    2015-08-18

    IFN-γ orchestrates cell-autonomous host defense against various intracellular vacuolar pathogens. IFN-γ-inducible GTPases, such as p47 immunity-related GTPases (IRGs) and p65 guanylate-binding proteins (GBPs), are recruited to pathogen-containing vacuoles, which is important for disruption of the vacuoles, culminating in the cell-autonomous clearance. Although the positive regulation for the proper recruitment of IRGs and GBPs to the vacuoles has been elucidated, the suppressive mechanism is unclear. Here, we show that Rab GDP dissociation inhibitor α (RabGDIα), originally identified as a Rab small GTPase inhibitor, is a negative regulator of IFN-γ-inducible GTPases in cell-autonomous immunity to the intracellular pathogen Toxoplasma gondii. Overexpression of RabGDIα, but not of RabGDIβ, impaired IFN-γ-dependent reduction of T. gondii numbers. Conversely, RabGDIα deletion in macrophages and fibroblasts enhanced the IFN-γ-induced clearance of T. gondii. Furthermore, upon a high dose of infection by T. gondii, RabGDIα-deficient mice exhibited a decreased parasite burden in the brain and increased resistance in the chronic phase than did control mice. Among members of IRGs and GBPs important for the parasite clearance, Irga6 and Gbp2 alone were more frequently recruited to T. gondii-forming parasitophorous vacuoles in RabGDIα-deficient cells. Notably, Gbp2 positively controlled Irga6 recruitment that was inhibited by direct and specific interactions of RabGDIα with Gbp2 through the lipid-binding pocket. Taken together, our results suggest that RabGDIα inhibits host defense against T. gondii by negatively regulating the Gbp2-Irga6 axis of IFN-γ-dependent cell-autonomous immunity. PMID:26240314

  14. RabGDIα is a negative regulator of interferon-γ–inducible GTPase-dependent cell-autonomous immunity to Toxoplasma gondii

    PubMed Central

    Ohshima, Jun; Sasai, Miwa; Liu, Jianfa; Yamashita, Kazuo; Ma, Ji Su; Lee, Youngae; Bando, Hironori; Howard, Jonathan C.; Ebisu, Shigeyuki; Hayashi, Mikako; Takeda, Kiyoshi; Standley, Daron M.; Frickel, Eva-Maria; Yamamoto, Masahiro

    2015-01-01

    IFN-γ orchestrates cell-autonomous host defense against various intracellular vacuolar pathogens. IFN-γ–inducible GTPases, such as p47 immunity-related GTPases (IRGs) and p65 guanylate-binding proteins (GBPs), are recruited to pathogen-containing vacuoles, which is important for disruption of the vacuoles, culminating in the cell-autonomous clearance. Although the positive regulation for the proper recruitment of IRGs and GBPs to the vacuoles has been elucidated, the suppressive mechanism is unclear. Here, we show that Rab GDP dissociation inhibitor α (RabGDIα), originally identified as a Rab small GTPase inhibitor, is a negative regulator of IFN-γ–inducible GTPases in cell-autonomous immunity to the intracellular pathogen Toxoplasma gondii. Overexpression of RabGDIα, but not of RabGDIβ, impaired IFN-γ–dependent reduction of T. gondii numbers. Conversely, RabGDIα deletion in macrophages and fibroblasts enhanced the IFN-γ–induced clearance of T. gondii. Furthermore, upon a high dose of infection by T. gondii, RabGDIα-deficient mice exhibited a decreased parasite burden in the brain and increased resistance in the chronic phase than did control mice. Among members of IRGs and GBPs important for the parasite clearance, Irga6 and Gbp2 alone were more frequently recruited to T. gondii-forming parasitophorous vacuoles in RabGDIα-deficient cells. Notably, Gbp2 positively controlled Irga6 recruitment that was inhibited by direct and specific interactions of RabGDIα with Gbp2 through the lipid-binding pocket. Taken together, our results suggest that RabGDIα inhibits host defense against T. gondii by negatively regulating the Gbp2–Irga6 axis of IFN-γ–dependent cell-autonomous immunity. PMID:26240314

  15. Innate Immune Regulation by STAT-mediated Transcriptional Mechanisms

    PubMed Central

    Li, Haiyan S.; Watowich, Stephanie S.

    2014-01-01

    Summary The term innate immunity typically refers to a quick but nonspecific host defense response against invading pathogens. The innate immune system comprises particular immune cell populations, epithelial barriers, and numerous secretory mediators including cytokines, chemokines, and defense peptides. Innate immune cells are also now recognized to play important contributing roles in cancer and pathological inflammatory conditions. Innate immunity relies on rapid signal transduction elicited upon pathogen recognition via pattern recognition receptors (PRRs) and cell:cell communication conducted by soluble mediators, including cytokines. A majority of cytokines involved in innate immune signaling use a molecular cascade encompassing receptor-associated Jak protein tyrosine kinases and STAT (signal transducer and activator of transcription) transcriptional regulators. Here, we focus on roles for STAT proteins in three major innate immune subsets: neutrophils, macrophages, and dendritic cells (DCs). While knowledge in this area is only now emerging, understanding the molecular regulation of these cell types is necessary for developing new approaches to treat human disorders such as inflammatory conditions, autoimmunity, and cancer. PMID:25123278

  16. Role of p47phox in Antigen-Presenting Cell-Mediated Regulation of Humoral Immunity in Mice

    PubMed Central

    Vasilevsky, Sam; Liu, Qi; Koontz, Sherry M.; Kastenmayer, Robin; Shea, Katherine; Jackson, Sharon H.

    2011-01-01

    Microbial-induced inflammation is important for eliciting humoral immunity. Genetic defects of NADPH oxidase 2–based proteins interrupt phagocyte superoxide generation and are the basis for the human immunodeficiency chronic granulomatous disease (CGD). Hyperinflammation is also a significant clinical manifestation of CGD. Herein, we evaluated humoral immunity in the phagocyte oxidase p47phox-deficient model of CGD and found that UV-inactivated Streptococcus pneumoniae and Listeria monocytogenes (Lm) elicited higher specific antibody (Ab) titers in p47phox-/- mice than wild-type (WT) mice. Both organisms elicited robust and distinct antigen-presenting cell maturation phenotypes, including IL-12 hypersecretion, and higher major histocompatibility complex II and costimulatory protein expression in Lm-stimulated p47phox-/- dendritic cells (DCs) relative to WT DCs. Furthermore, p47phox-/- DCs pulsed with Lm and adoptively transferred into naïve WT mice elicited Ab titers, whereas Lm-pulsed WT DCs did not elicit these titers. The observed robust p47phox-/- mouse humoral response was recapitulated with live Lm and sustained in vivo in p47phox-/- mice. Notably, anti–serum samples from p47phox-/- mice that survived secondary Lm infection were protective in WT and p47phox-/- mice that were rechallenged with secondary lethal Lm infection. These findings demonstrate a novel benefit of NADPH oxidase 2 deficiency (ie, dependent inflammation in antigen-presenting cell–mediated humoral immunity) and that anti-Lm Ab can be protective in an immunodeficient CGD host. PMID:21641399

  17. Innate and Adaptive Immune Regulation During Chronic Viral Infections

    PubMed Central

    Zuniga, Elina I.; Macal, Monica; Lewis, Gavin M.; Harker, James A.

    2015-01-01

    Chronic viral infections represent a unique challenge to the infected host. Persistently replicating viruses outcompete or subvert the initial antiviral response, allowing the establishment of chronic infections that result in continuous stimulation of both the innate and adaptive immune compartments. This causes a profound reprogramming of the host immune system, including attenuation and persistent low levels of type I interferons, progressive loss (or exhaustion) of CD8+ T cell functions, and specialization of CD4+ T cells to produce interleukin-21 and promote antibody-mediated immunity and immune regulation. Epigenetic, transcriptional, posttranscriptional, and metabolic changes underlie this adaptation or recalibration of immune cells to the emerging new environment in order to strike an often imperfect balance between the host and the infectious pathogen. In this review we discuss the common immunological hallmarks observed across a range of different persistently replicating viruses and host species, the underlying molecular mechanisms, and the biological and clinical implications. PMID:26958929

  18. Nanoengineering of Immune Cell Function

    PubMed Central

    Shen, Keyue; Milone, Michael C.; Dustin, Michael L.; Kam, Lance C.

    2010-01-01

    T lymphocytes are a key regulatory component of the adaptive immune system. Understanding how the micro- and nano-scale details of the extracellular environment influence T cell activation may have wide impact on the use of T cells for therapeutic purposes. In this article, we examine how the micro- and nano-scale presentation of ligands to cell surface receptors, including microscale organization and nanoscale mobility, influences the activation of T cells. We extend these studies to include the role of cell-generated forces, and the rigidity of the microenvironment, on T cell activation. These approaches enable delivery of defined signals to T cells, a step toward understanding the cell-cell communication in the immune system, and developing micro/nano- and material- engineered systems for tailoring immune responses for adoptive T cell therapies. PMID:21562611

  19. Immune cell promotion of metastasis

    PubMed Central

    Kitamura, Takanori; Qian, Bin-Zhi; Pollard, Jeffrey W.

    2015-01-01

    Metastatic disease is the major cause of death from cancer, and immunotherapy and chemotherapy have had limited success in reversing its progression. Data from mouse models suggest that the recruitment of immunosuppressive cells to tumours protects metastatic cancer cells from surveillance by killer cells, which nullifies the effects of immunotherapy and thus establishes metastasis. Furthermore, in most cases, tumour-infiltrating immune cells differentiate into cells that promote each step of the metastatic cascade and thus are novel targets for therapy. In this Review, we describe how tumour-infiltrating immune cells contribute to the metastatic cascade and we discuss potential therapeutic strategies to target these cells. PMID:25614318

  20. Chemoattractant Receptors BLT1 and CXCR3 Regulate Antitumor Immunity by Facilitating CD8+ T Cell Migration into Tumors.

    PubMed

    Chheda, Zinal S; Sharma, Rajesh K; Jala, Venkatakrishna R; Luster, Andrew D; Haribabu, Bodduluri

    2016-09-01

    Immunotherapies have shown considerable efficacy for the treatment of various cancers, but a multitude of patients remain unresponsive for various reasons, including poor homing of T cells into tumors. In this study, we investigated the roles of the leukotriene B4 receptor, BLT1, and CXCR3, the receptor for CXCL9, CXCL10, and CXCL11, under endogenous as well as vaccine-induced antitumor immune response in a syngeneic murine model of B16 melanoma. Significant accelerations in tumor growth and reduced survival were observed in both BLT1(-/-) and CXCR3(-/-) mice as compared with wild-type (WT) mice. Analysis of tumor-infiltrating leukocytes revealed significant reduction of CD8(+) T cells in the tumors of BLT1(-/-) and CXCR3(-/-) mice as compared with WT tumors, despite their similar frequencies in the periphery. Adoptive transfer of WT but not BLT1(-/-) or CXCR3(-/-) CTLs significantly reduced tumor growth in Rag2(-/-) mice, a function attributed to reduced infiltration of knockout CTLs into tumors. Cotransfer experiments suggested that WT CTLs do not facilitate the infiltration of knockout CTLs to tumors. Anti-programmed cell death-1 (PD-1) treatment reduced the tumor growth rate in WT mice but not in BLT1(-/-), CXCR3(-/-), or BLT1(-/-)CXCR3(-/-) mice. The loss of efficacy correlated with failure of the knockout CTLs to infiltrate into tumors upon anti-PD-1 treatment, suggesting an obligate requirement for both BLT1 and CXCR3 in mediating anti-PD-1 based antitumor immune response. These results demonstrate a critical role for both BLT1 and CXCR3 in CTL migration to tumors and thus may be targeted to enhance efficacy of CTL-based immunotherapies. PMID:27465528

  1. Autophagy is involved in regulating the immune response of dendritic cells to influenza A (H1N1) pdm09 infection.

    PubMed

    Zang, Farong; Chen, Yinghu; Lin, Zhendong; Cai, Zhijian; Yu, Lei; Xu, Feng; Wang, Jiaoli; Zhu, Weiguo; Lu, Huoquan

    2016-05-01

    Autophagy can mediate antiviral immunity. However, it remains unknown whether autophagy regulates the immune response of dendritic cells (DCs) to influenza A (H1N1) pdm09 infection. In this study, we found that infection with the H1N1 virus induced DC autophagy in an endocytosis-dependent manner. Compared with autophagy-deficient Beclin-1(+/-) mice, we found that bone-marrow-derived DCs from wild-type mice (WT BMDCs) presented a more mature phenotype on H1N1 infection. Wild-type BMDCs secreted higher levels of interleukin-6 (IL-6), tumour necrosis factor- α (TNF-α), interferon-β (IFN-β), IL-12p70 and IFN-γ than did Beclin-1(+/-) BMDCs. In contrast to Beclin-1(+/-) BMDCs, H1N1-infected WT BMDCs exhibited increased activation of extracellular signal-regulated kinase, Jun N-terminal kinase, p38, and nuclear factor-κB as well as IFN regulatory factor 7 nuclear translocation. Blockade of autophagosomal and lysosomal fusion by bafilomycin A1 decreased the co-localization of H1N1 viruses, autophagosomes and lysosomes as well as the secretion of IL-6, TNF-α and IFN-β in H1N1-infected BMDCs. In contrast to Beclin-1(+/-) BMDCs, H1N1-infected WT BMDCs were more efficient in inducing allogeneic CD4(+) T-cell proliferation and driving T helper type 1, 2 and 17 cell differentiation while inhibiting CD4(+) Foxp3(+) regulatory T-cell differentiation. Moreover, WT BMDCs were more efficient at cross-presenting the ovalbumin antigen to CD8(+) T cells. We consistently found that Beclin-1(+/-) BMDCs were inferior in their inhibition of H1N1 virus replication and their induction of H1N1-specific CD4(+) and CD8(+) T-cell responses, which produced lower levels of IL-6, TNF-α and IFN-β in vivo. Our data indicate that autophagy is important in the regulation of the DC immune response to H1N1 infection, thereby extending our understanding of host immune responses to the virus. PMID:26800655

  2. Immune regulation of metabolic homeostasis in health and disease

    PubMed Central

    Brestoff, Jonathan R.; Artis, David

    2015-01-01

    Obesity is an increasingly prevalent disease worldwide. While genetic and environmental factors are known to regulate the development of obesity and associated metabolic diseases, emerging studies indicate that innate and adaptive immune cell responses in adipose tissue have critical roles in the regulation of metabolic homeostasis. In the lean state, type 2 cytokine-associated immune cell responses predominate in white adipose tissue and protect against weight gain and insulin resistance through direct effects on adipocytes and elicitation of beige adipose. In obesity, these metabolically beneficial immunologic pathways become dysregulated, and adipocytes and other factors initiate metabolically deleterious type 1 inflammation that impairs glucose metabolism. This review discusses our current understanding of the functions of different types of adipose tissue, how immune cells regulate adipocyte function and metabolic homeostasis in the context of health and disease, and highlights the potential of targeting immuno-metabolic pathways as a therapeutic strategy to treat obesity and associated diseases. PMID:25815992

  3. Parasite-derived arginase influences secondary anti-Leishmania immunity by regulating PD-1-mediated CD4+ T cell exhaustion1

    PubMed Central

    Mou, Zhirong; Muleme, Helen M; Liu, Dong; Jia, Ping; Okwor, Ifeoma B.; Kuriakose, Shiby M.; Beverley, Stephen M.; Uzonna, Jude E

    2013-01-01

    The breakdown of L-arginine to ornithine and urea by host arginase supports Leishmania proliferation in macrophages. Studies using arginase-null mutants show that Leishmania-derived arginase plays an important role in disease pathogenesis. We investigated the role of parasite-derived arginase in secondary (memory) anti-Leishmania immunity in the resistant C57BL/6 mice. We found that C57BL/6 mice infected with arginase deficient (arg−) L. major failed to completely resolve their lesion and maintained chronic pathology after 16 weeks, a time when the lesion induced by wild type (WT) L. major is completely resolved. This chronic disease was associated with impaired antigen-specific proliferation and IFN-γ production, a concomitant increase in programmed cell death-1 (PD-1) expression on CD4+ T cells and failure to induce protection against secondary L. major challenge. Treatment with anti-PD-1 monoclonal antibody restored T cell proliferation and IFN-γ production in vitro and led to complete resolution of chronic lesion in arg− L. major-infected mice. These results show that infection with arg− L. major results in chronic disease due in part to PD-1-mediated clonal exhaustion of T cells, suggesting that parasite-derived arginase contributes to the overall quality of the host immune response and subsequent disease outcome in L. major-infected mice. They also indicate that persistent parasites alone do not regulate the quality of secondary anti-Leishmania immunity in mice and that the quality of the primary immune response may be playing a hitherto unrecognized dominant role in this process. PMID:23460745

  4. Functional diversity of long non-coding RNAs in immune regulation

    PubMed Central

    Geng, Hua; Tan, Xiao-Di

    2016-01-01

    Precise and dynamic regulation of gene expression is a key feature of immunity. In recent years, rapid advances in transcriptome profiling analysis have led to recognize long non-coding RNAs (lncRNAs) as an additional layer of gene regulation context. In the immune system, lncRNAs are found to be widely expressed in immune cells including monocytes, macrophages, dendritic cells (DCs), neutrophils, T cells and B cells during their development, differentiation and activation. However, the functional importance of immune-related lncRNAs is just emerging to be characterized. In this review, we discuss the up-to-date knowledge of lncRNAs in immune regulation.

  5. Co-stimulation with TLR7/8 and TLR9 agonists induce down-regulation of innate immune responses in sheep blood mononuclear and B cells.

    PubMed

    Booth, Jayaum S; Buza, Joram J; Potter, Andrew; Babiuk, Lorne A; Mutwiri, George K

    2010-05-01

    Toll-like receptors (TLRs) play an important role in the activation of innate and adaptive immune responses. Stimulation with multiple TLR agonists may result in synergistic, complimentary or inhibitory effects on innate immune responses. In this study, we investigated the effects of co-stimulation of sheep peripheral blood mononuclear cells (PBMC) and B cells with agonists for TLR3, 4, 7/8 and 9. Sheep PBMC stimulated with either CpG (TLR9 agonist) or RNA oligoribonucleotides ([ORNs], TLR7/8 agonist) exhibited significant IL-12 production, but only CpG induced IFNalpha, IgM and proliferative responses. In contrast, poly(I:C) (TLR3 agonist) and LPS (TLR4 agonist) did not induce any of these responses. Interestingly, we observed that co-stimulation of PBMC with CpG+ORN or CpG+imiquimod (another TLR7/8 agonist) resulted in significant reduction in CpG-induced IFNalpha production, B cell proliferation and IgM responses. Pre-incubation of cells with CpG prior to exposure of the cells to imiquimod resulted in similar inhibitory responses indicating that the down-regulatory mechanisms are not associated with competition for cellular uptake or for receptors of the two agonists. Sheep B cells constitutively expressed TLR7, TLR8 and TLR9 mRNA transcripts, suggesting a possible role of TLR cross-talk in the down-regulatory mechanisms. Down-regulation of responses by co-stimulation with closely related TLRs may be a regulatory mechanism by which the host prevents overstimulation of innate immune responses. PMID:20051250

  6. Vitamin D regulation of immune function.

    PubMed

    Bikle, Daniel D

    2011-01-01

    Although the best known actions of vitamin D involve its regulation of bone mineral homeostasis, vitamin D exerts its influence on many physiologic processes. One of these processes is the immune system. Both the adaptive and innate immune systems are impacted by the active metabolite of vitamin D, 1,25(OH)(2)D. These observations have important implications for understanding the predisposition of individuals with vitamin D deficiency to infectious diseases such as tuberculosis as well as to autoimmune diseases such as type 1 diabetes mellitus and multiple sclerosis. However, depending on the disease process not all actions of vitamin D may be beneficial. In this review, I examine the regulation by 1,25(OH)(2)D of immune function, then assess the evidence implicating vitamin D deficiency in human disease resulting from immune dysfunction. PMID:21419265

  7. Lymphatic vessels regulate immune microenvironments in human and murine melanoma.

    PubMed

    Lund, Amanda W; Wagner, Marek; Fankhauser, Manuel; Steinskog, Eli S; Broggi, Maria A; Spranger, Stefani; Gajewski, Thomas F; Alitalo, Kari; Eikesdal, Hans P; Wiig, Helge; Swartz, Melody A

    2016-09-01

    Lymphatic remodeling in tumor microenvironments correlates with progression and metastasis, and local lymphatic vessels play complex and poorly understood roles in tumor immunity. Tumor lymphangiogenesis is associated with increased immune suppression, yet lymphatic vessels are required for fluid drainage and immune cell trafficking to lymph nodes, where adaptive immune responses are mounted. Here, we examined the contribution of lymphatic drainage to tumor inflammation and immunity using a mouse model that lacks dermal lymphatic vessels (K14-VEGFR3-Ig mice). Melanomas implanted in these mice grew robustly, but exhibited drastically reduced cytokine expression and leukocyte infiltration compared with those implanted in control animals. In the absence of local immune suppression, transferred cytotoxic T cells more effectively controlled tumors in K14-VEGFR3-Ig mice than in control mice. Furthermore, gene expression analysis of human melanoma samples revealed that patient immune parameters are markedly stratified by levels of lymphatic markers. This work suggests that the establishment of tumor-associated inflammation and immunity critically depends on lymphatic vessel remodeling and drainage. Moreover, these results have implications for immunotherapies, the efficacies of which are regulated by the tumor immune microenvironment. PMID:27525437

  8. Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and Innate Immunity by the Regulatory Receptor-Like Kinase BAK1

    PubMed Central

    Schwessinger, Benjamin; Roux, Milena; Kadota, Yasuhiro; Ntoukakis, Vardis; Sklenar, Jan; Jones, Alexandra; Zipfel, Cyril

    2011-01-01

    Plants rely heavily on receptor-like kinases (RLKs) for perception and integration of external and internal stimuli. The Arabidopsis regulatory leucine-rich repeat RLK (LRR-RLK) BAK1 is involved in steroid hormone responses, innate immunity, and cell death control. Here, we describe the differential regulation of three different BAK1-dependent signaling pathways by a novel allele of BAK1, bak1-5. Innate immune signaling mediated by the BAK1-dependent RKs FLS2 and EFR is severely compromised in bak1-5 mutant plants. However, bak1-5 mutants are not impaired in BR signaling or cell death control. We also show that, in contrast to the RD kinase BRI1, the non-RD kinases FLS2 and EFR have very low kinase activity, and we show that neither was able to trans-phosphorylate BAK1 in vitro. Furthermore, kinase activity for all partners is completely dispensable for the ligand-induced heteromerization of FLS2 or EFR with BAK1 in planta, revealing another pathway specific mechanistic difference. The specific suppression of FLS2- and EFR-dependent signaling in bak1-5 is not due to a differential interaction of BAK1-5 with the respective ligand-binding RK but requires BAK1-5 kinase activity. Overall our results demonstrate a phosphorylation-dependent differential control of plant growth, innate immunity, and cell death by the regulatory RLK BAK1, which may reveal key differences in the molecular mechanisms underlying the regulation of ligand-binding RD and non-RD RKs. PMID:21593986

  9. The Mucosal Immune System and Its Regulation by Autophagy

    PubMed Central

    Kabat, Agnieszka M.; Pott, Johanna; Maloy, Kevin J.

    2016-01-01

    The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a “self-eating” survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders. PMID:27446072

  10. The immune system as a regulator of thyroid hormone activity.

    PubMed

    Klein, John R

    2006-03-01

    It has been known for decades that the neuroendocrine system can both directly and indirectly influence the developmental and functional activity of the immune system. In contrast, far less is known about the extent to which the immune system collaborates in the regulation of endocrine activity. This is particularly true for immune-endocrine interactions of the hypothalamus-pituitary-thyroid axis. Although thyroid-stimulating hormone (TSH) can be produced by many types of extra-pituitary cells--including T cells, B cells, splenic dendritic cells, bone marrow hematopoietic cells, intestinal epithelial cells, and lymphocytes--the functional significance of those TSH pathways remains elusive and historically has been largely ignored from a research perspective. There is now, however, evidence linking cells of the immune system to the regulation of thyroid hormone activity in normal physiological conditions as well as during times of immunological stress. Although the mechanisms behind this are poorly understood, they appear to reflect a process of local intrathyroidal synthesis of TSH mediated by a population of bone marrow cells that traffic to the thyroid. This hitherto undescribed cell population has the potential to microregulate thyroid hormone secretion leading to critical alterations in metabolic activity independent of pituitary TSH output, and it has expansive implications for understanding mechanisms by which the immune system may act to modulate neuroendocrine function during times of host stress. In this article, the basic underpinnings of the hematopoietic-thyroid connection are described, and a model is presented in which the immune system participates in the regulation of thyroid hormone activity during acute infection. PMID:16514168

  11. Are mesenchymal stromal cells immune cells?

    PubMed

    Hoogduijn, Martin J

    2015-01-01

    Mesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities. Pre-clinical models have shown beneficial effects of MSCs in multiple immunological diseases and a number of phase 1/2 clinical trials carried out so far have reported signs of immune modulation after MSC infusion. These data indicate that MSCs play a central role in the immune response. This raises the academic question whether MSCs are immune cells or whether they are tissue precursor cells with immunoregulatory capacity. Correct understanding of the immunological properties and origin of MSCs will aid in the appropriate and safe use of the cells for clinical therapy. In this review the whole spectrum of immunological properties of MSCs is discussed with the aim of determining the position of MSCs in the immune system. PMID:25880839

  12. T-bet as a key regulator of mucosal immunity.

    PubMed

    Mohamed, Rami; Lord, Graham M

    2016-04-01

    Initially understood to be a key regulator of interferon-γ-producing helper T cells, our knowledge of T-bet's functional roles has expanded to encompass a growing range of cellular lineages. In addition to regulating other interferon-γ-producing adaptive immune cells, it is now clear that T-bet plays a fundamental role in the regulation of innate immune responses across mucosal surfaces. This homeostatic role is demonstrated by the spontaneous colitis that occurs when T-bet is deleted from innate immune cells in RAG(-/-) mice. Using this model as a focal point, we review our understanding of T-bet's regulation of adaptive and innate immune systems, focusing particularly on mucosal populations including innate lymphoid cells, dendritic cells and intraepithelial lymphocytes. With the increasingly diverse effects of T-bet on different lineages, the classical binding-centric paradigm of T-bet's molecular functionality has increasingly struggled to account for the versatility of T-bet's biological effects. Recent recognition of the synergistic interactions between T-bet and other canonical transcription factors has led to a co-operative paradigm that has provided greater explanatory power. Synthesizing insights from ChIP-seq and comparative biology, we expand the co-operative paradigm further and suggest a network approach as a powerful way to understand and model T-bet's diverse functionality. PMID:26726991

  13. The acute phase protein haptoglobin regulates host immunity

    PubMed Central

    Huntoon, Kristin M.; Wang, Yanping; Eppolito, Cheryl A.; Barbour, Karen W.; Berger, Franklin G.; Shrikant, Protul A.; Baumann, Heinz

    2008-01-01

    The contribution of acute phase plasma proteins to host immune responses remains poorly characterized. To better understand the role of the acute phase reactant and major hemoglobin-binding protein haptoglobin (Hp) on the function of immune cells, we generated Hp-deficient C57BL/6J mice. These mice exhibit stunted development of lymphoid organs associated with lower counts of mature T and B cells in the blood and secondary lymphoid compartments. Moreover, these mice show markedly reduced adaptive immune responses as represented by reduced accumulation of IgG antibody after immunization with adjuvant and nominal antigen, abrogation of Th1-dominated delayed-type hypersensitivity reaction, loss of mitogenic responses mounted by T cells, and reduced T cell responses conveyed by APCs. Collectively, these defects are in agreement with the observations that Hp-deficient mice are not capable of generating a recall response or deterring a Salmonella infection as well as failing to generate tumor antigen-specific responses. The administration of Hp to lymphocytes in tissue culture partially ameliorates these functional defects, lending further support to our contention that the acute phase response protein Hp has the ability to regulate immune cell responses and host immunity. The phenotype of Hp-deficient mice suggests a major regulatory activity for Hp in supporting proliferation and functional differentiation of B and T cells as part of homeostasis and in response to antigen stimulation. PMID:18436583

  14. Activation and Regulation of DNA-Driven Immune Responses

    PubMed Central

    2015-01-01

    SUMMARY The innate immune system provides early defense against infections and also plays a key role in monitoring alterations of homeostasis in the body. DNA is highly immunostimulatory, and recent advances in this field have led to the identification of the innate immune sensors responsible for the recognition of DNA as well as the downstream pathways that are activated. Moreover, information on how cells regulate DNA-driven immune responses to avoid excessive inflammation is now emerging. Finally, several reports have demonstrated how defects in DNA sensing, signaling, and regulation are associated with susceptibility to infections or inflammatory diseases in humans and model organisms. In this review, the current literature on DNA-stimulated innate immune activation is discussed, and important new questions facing this field are proposed. PMID:25926682

  15. Phosphoinositide binding by the SNX27 FERM domain regulates its localization at the immune synapse of activated T-cells

    PubMed Central

    Ghai, Rajesh; Tello-Lafoz, Maria; Norwood, Suzanne J.; Yang, Zhe; Clairfeuille, Thomas; Teasdale, Rohan D.; Mérida, Isabel; Collins, Brett M.

    2015-01-01

    ABSTRACT Sorting nexin 27 (SNX27) controls the endosomal-to-cell-surface recycling of diverse transmembrane protein cargos. Crucial to this function is the recruitment of SNX27 to endosomes which is mediated by the binding of phosphatidylinositol-3-phosphate (PtdIns3P) by its phox homology (PX) domain. In T-cells, SNX27 localizes to the immunological synapse in an activation-dependent manner, but the molecular mechanisms underlying SNX27 translocation remain to be clarified. Here, we examined the phosphoinositide-lipid-binding capabilities of full-length SNX27, and discovered a new PtdInsP-binding site within the C-terminal 4.1, ezrin, radixin, moesin (FERM) domain. This binding site showed a clear preference for bi- and tri-phosphorylated phophoinositides, and the interaction was confirmed through biophysical, mutagenesis and modeling approaches. At the immunological synapse of activated T-cells, cell signaling regulates phosphoinositide dynamics, and we find that perturbing phosphoinositide binding by the SNX27 FERM domain alters the SNX27 distribution in both endosomal recycling compartments and PtdIns(3,4,5)P3-enriched domains of the plasma membrane during synapse formation. Our results suggest that SNX27 undergoes dynamic partitioning between different membrane domains during immunological synapse assembly, and underscore the contribution of unique lipid interactions for SNX27 orchestration of cargo trafficking. PMID:25472716

  16. Staying alive: cell death in antiviral immunity.

    PubMed

    Upton, Jason W; Chan, Francis Ka-Ming

    2014-04-24

    Programmed cell death is an integral part of host defense against invading intracellular pathogens. Apoptosis, programmed necrosis, and pyroptosis each serve to limit pathogen replication in infected cells, while simultaneously promoting the inflammatory and innate responses that shape effective long-term host immunity. The importance of carefully regulated cell death is evident in the spectrum of inflammatory and autoimmune disorders caused by defects in these pathways. Moreover, many viruses encode inhibitors of programmed cell death to subvert these host responses during infection, thereby facilitating their own replication and persistence. Thus, as both virus and cell vie for control of these pathways, the battle for survival has shaped a complex host-pathogen interaction. This review will discuss the multifaceted role that programmed cell death plays in maintaining the immune system and its critical function in host defense, with a special emphasis on viral infections. PMID:24766891

  17. Regulation of type 2 immunity by basophils.

    PubMed

    Voehringer, David

    2013-01-01

    The immune response against helminths and allergens is generally characterized by high levels of IgE and increased numbers of Th2 cells, eosinophils, and basophils. Basophils represent a relatively rare population of effector cells and their in vivo functions are incompletely understood. Recent studies with basophil-depleting antibodies revealed that these cells might play an important role during the early and late stages of type 2 immune responses. To further characterize the relevance of basophils for protective immunity and orchestration of allergic inflammation, we generated constitutively basophil-deficient mice. We observed a normal Th2 response induced by helminth infections or immunization with alum/OVA or papain/OVA. However, basophils contributed to worm expulsion during secondary helminth infection and mediated an IgE-dependent inflammatory response of the skin. These results argue against a critical role of basophils as antigen-presenting cells for induction of Th2 polarization and highlight their effector cell potential during later stages of a type 2 immune response. PMID:23456835

  18. Multiple Domain Associations within the Arabidopsis Immune Receptor RPP1 Regulate the Activation of Programmed Cell Death

    PubMed Central

    Schreiber, Karl J.; Bentham, Adam; Williams, Simon J.; Kobe, Bostjan; Staskawicz, Brian J.

    2016-01-01

    Upon recognition of pathogen virulence effectors, plant nucleotide-binding leucine-rich repeat (NLR) proteins induce defense responses including localized host cell death. In an effort to understand the molecular mechanisms leading to this response, we examined the Arabidopsis thaliana NLR protein RECOGNITION OF PERONOSPORA PARASITICA1 (RPP1), which recognizes the Hyaloperonospora arabidopsidis effector ARABIDOPSIS THALIANA RECOGNIZED1 (ATR1). Expression of the N-terminus of RPP1, including the Toll/interleukin-1 receptor (TIR) domain (“N-TIR”), elicited an effector-independent cell death response, and we used allelic variation in TIR domain sequences to define the key residues that contribute to this phenotype. Further biochemical characterization indicated that cell death induction was correlated with N-TIR domain self-association. In addition, we demonstrated that the nucleotide-binding (NB)-ARC1 region of RPP1 self-associates and plays a critical role in cell death activation, likely by facilitating TIR:TIR interactions. Structural homology modeling of the NB subdomain allowed us to identify a putative oligomerization interface that was shown to influence NB-ARC1 self-association. Significantly, full-length RPP1 exhibited effector-dependent oligomerization and, although mutations at the NB-ARC1 oligomerization interface eliminated cell death induction, RPP1 self-association was unaffected, suggesting that additional regions contribute to oligomerization. Indeed, the leucine-rich repeat domain of RPP1 also self-associates, indicating that multiple interaction interfaces exist within activated RPP1 oligomers. Finally, we observed numerous intramolecular interactions that likely function to negatively regulate RPP1, and present a model describing the transition to an active NLR protein. PMID:27427964

  19. Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses.

    PubMed

    Ruane, Darren; Chorny, Alejo; Lee, Haekyung; Faith, Jeremiah; Pandey, Gaurav; Shan, Meimei; Simchoni, Noa; Rahman, Adeeb; Garg, Aakash; Weinstein, Erica G; Oropallo, Michael; Gaylord, Michelle; Ungaro, Ryan; Cunningham-Rundles, Charlotte; Alexandropoulos, Konstantina; Mucida, Daniel; Merad, Miriam; Cerutti, Andrea; Mehandru, Saurabh

    2016-01-11

    Protective immunoglobulin A (IgA) responses to oral antigens are usually orchestrated by gut dendritic cells (DCs). Here, we show that lung CD103(+) and CD24(+)CD11b(+) DCs induced IgA class-switch recombination (CSR) by activating B cells through T cell-dependent or -independent pathways. Compared with lung DCs (LDC), lung CD64(+) macrophages had decreased expression of B cell activation genes and induced significantly less IgA production. Microbial stimuli, acting through Toll-like receptors, induced transforming growth factor-β (TGF-β) production by LDCs and exerted a profound influence on LDC-mediated IgA CSR. After intranasal immunization with inactive cholera toxin (CT), LDCs stimulated retinoic acid-dependent up-regulation of α4β7 and CCR9 gut-homing receptors on local IgA-expressing B cells. Migration of these B cells to the gut resulted in IgA-mediated protection against an oral challenge with active CT. However, in germ-free mice, the levels of LDC-induced, CT-specific IgA in the gut are significantly reduced. Herein, we demonstrate an unexpected role of the microbiota in modulating the protective efficacy of intranasal vaccination through their effect on the IgA class-switching function of LDCs. PMID:26712806

  20. Regulation of Immune Response by Autogenous Antibody against Receptor

    PubMed Central

    Kluskens, L.; Köhler, H.

    1974-01-01

    BALB/c mice repeatedly immunized with Pneumococcus R36A vaccine produce antibodies to phosphorylcholine having the TEPC-15 myeloma idiotype (murine IgA myeloma protein that binds phosphorylcholine). The plaque-forming cell response to phosphorylcholine shows a decrease with repeated immunizations. In contrast, spleen cells from multiply immunized mice responded better in vitro than spleen cells from nonimmunized mice. The serum of animals immunized four or five times agglutinates TEPC-15-coated sheep erythrocytes. Inhibition of hemagglutination shows that the agglutinating activity is directed against the TEPC-15 idiotype. Sera from these mice, when added to cultures of normal spleen cells, specifically suppress the response to phosphorylcholine. The suppressive activity in the serum can be removed by solid absorption with TEPC-15. Evidently, repeated immunization with antigen induces two kinds of antibody responses: one directed against antigen and the other directed against the antibody to the antigen. It is proposed that this “auto” antibody against receptor is involved in the regulation of the immune response. PMID:4140517

  1. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis1[OPEN

    PubMed Central

    Hamdoun, Safae; Zhang, Chong; Gill, Manroop; Churchman, Michelle; Larkin, John C.

    2016-01-01

    Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions. PMID:26561564

  2. Distinct Roles for FOXP3+ and FOXP3− CD4+ T Cells in Regulating Cellular Immunity to Uncomplicated and Severe Plasmodium falciparum Malaria

    PubMed Central

    Walther, Michael; Jeffries, David; Finney, Olivia C.; Njie, Madi; Ebonyi, Augustine; Deininger, Susanne; Lawrence, Emma; Ngwa-Amambua, Alfred; Jayasooriya, Shamanthi; Cheeseman, Ian H.; Gomez-Escobar, Natalia; Okebe, Joseph; Conway, David J.; Riley, Eleanor M.

    2009-01-01

    Failure to establish an appropriate balance between pro- and anti-inflammatory immune responses is believed to contribute to pathogenesis of severe malaria. To determine whether this balance is maintained by classical regulatory T cells (CD4+ FOXP3+ CD127−/low; Tregs) we compared cellular responses between Gambian children (n = 124) with severe Plasmodium falciparum malaria or uncomplicated malaria infections. Although no significant differences in Treg numbers or function were observed between the groups, Treg activity during acute disease was inversely correlated with malaria-specific memory responses detectable 28 days later. Thus, while Tregs may not regulate acute malarial inflammation, they may limit memory responses to levels that subsequently facilitate parasite clearance without causing immunopathology. Importantly, we identified a population of FOXP3−, CD45RO+ CD4+ T cells which coproduce IL-10 and IFN-γ. These cells are more prevalent in children with uncomplicated malaria than in those with severe disease, suggesting that they may be the regulators of acute malarial inflammation. PMID:19343213

  3. Microbiota regulate the ability of lung dendritic cells to induce IgA class-switch recombination and generate protective gastrointestinal immune responses

    PubMed Central

    Ruane, Darren; Chorny, Alejo; Lee, Haekyung; Faith, Jeremiah; Pandey, Gaurav; Shan, Meimei; Simchoni, Noa; Rahman, Adeeb; Garg, Aakash; Weinstein, Erica G.; Oropallo, Michael; Gaylord, Michelle; Ungaro, Ryan; Cunningham-Rundles, Charlotte; Alexandropoulos, Konstantina; Mucida, Daniel; Merad, Miriam; Cerutti, Andrea

    2016-01-01

    Protective immunoglobulin A (IgA) responses to oral antigens are usually orchestrated by gut dendritic cells (DCs). Here, we show that lung CD103+ and CD24+CD11b+ DCs induced IgA class-switch recombination (CSR) by activating B cells through T cell–dependent or –independent pathways. Compared with lung DCs (LDC), lung CD64+ macrophages had decreased expression of B cell activation genes and induced significantly less IgA production. Microbial stimuli, acting through Toll-like receptors, induced transforming growth factor-β (TGF-β) production by LDCs and exerted a profound influence on LDC-mediated IgA CSR. After intranasal immunization with inactive cholera toxin (CT), LDCs stimulated retinoic acid–dependent up-regulation of α4β7 and CCR9 gut-homing receptors on local IgA-expressing B cells. Migration of these B cells to the gut resulted in IgA-mediated protection against an oral challenge with active CT. However, in germ-free mice, the levels of LDC-induced, CT–specific IgA in the gut are significantly reduced. Herein, we demonstrate an unexpected role of the microbiota in modulating the protective efficacy of intranasal vaccination through their effect on the IgA class-switching function of LDCs. PMID:26712806

  4. Mycobacterium tuberculosis infection of the 'non-classical immune cell'.

    PubMed

    Randall, Philippa J; Hsu, Nai-Jen; Quesniaux, Valerie; Ryffel, Bernhard; Jacobs, Muazzam

    2015-10-01

    Mycobacterium tuberculosis can infect 'non-classical immune cells', which comprise a significant constituency of cells that reside outside of those defined as 'classical immune cells' from myeloid or lymphoid origin. Here we address the influence of specific 'non-classical immune cells' in host responses and their effects in controlling mycobacterial growth or enabling an environment conducive for bacilli persistence. The interaction of M. tuberculosis with epithelial cells, endothelial cells, fibroblasts, adipocytes, glia and neurons and downstream cellular responses that often dictate immune regulation and disease outcome are discussed. Functional integration and synergy between 'classical' and 'non-classical immune cells' are highlighted as critical for determining optimal immune outcomes that favour the host. PMID:25801479

  5. Soluble Mediators Regulating Immunity in Early Life

    PubMed Central

    Pettengill, Matthew Aaron; van Haren, Simon Daniël; Levy, Ofer

    2014-01-01

    Soluble factors in blood plasma have a substantial impact on both the innate and adaptive immune responses. The complement system, antibodies, and anti-microbial proteins and peptides can directly interact with potential pathogens, protecting against systemic infection. Levels of these innate effector proteins are generally lower in neonatal circulation at term delivery than in adults, and lower still at preterm delivery. The extracellular environment also has a critical influence on immune cell maturation, activation, and effector functions, and many of the factors in plasma, including hormones, vitamins, and purines, have been shown to influence these processes for leukocytes of both the innate and adaptive immune systems. The ontogeny of plasma factors can be viewed in the context of a lower effectiveness of immune responses to infection and immunization in early life, which may be influenced by the striking neonatal deficiency of complement system proteins or enhanced neonatal production of the anti-inflammatory cytokine IL-10, among other ontogenic differences. Accordingly, we survey here a number of soluble mediators in plasma for which age-dependent differences in abundance may influence the ontogeny of immune function, particularly direct innate interaction and skewing of adaptive lymphocyte activity in response to infectious microorganisms and adjuvanted vaccines. PMID:25309541

  6. Evolution of B Cell Immunity

    PubMed Central

    Sunyer, J. Oriol

    2013-01-01

    Two types of adaptive immune strategies are known to have evolved in vertebrates: the VLR-based system, which is present in jawless organisms and is mediated by VLRA and VLRB lymphocytes, and the BCR/TCR-based system, which is present in jawed species and is provided by B and T cell receptors expressed on B and T cells, respectively. Here we summarize features of B cells and their predecessors in the different animal phyla, focusing the review on B cells from jawed vertebrates. We point out the critical role of nonclassical species and comparative immunology studies in the understanding of B cell immunity. Because nonclassical models include species relevant to veterinary medicine, basic science research performed in these animals contributes to the knowledge required for the development of more efficacious vaccines against emerging pathogens. PMID:25340015

  7. Tryptophan hydroxylase-1 regulates immune tolerance and inflammation.

    PubMed

    Nowak, Elizabeth C; de Vries, Victor C; Wasiuk, Anna; Ahonen, Cory; Bennett, Kathryn A; Le Mercier, Isabelle; Ha, Dae-Gon; Noelle, Randolph J

    2012-10-22

    Nutrient deprivation based on the loss of essential amino acids by catabolic enzymes in the microenvironment is a critical means to control inflammatory responses and immune tolerance. Here we report the novel finding that Tph-1 (tryptophan hydroxylase-1), a synthase which catalyses the conversion of tryptophan to serotonin and exhausts tryptophan, is a potent regulator of immunity. In models of skin allograft tolerance, tumor growth, and experimental autoimmune encephalomyelitis, Tph-1 deficiency breaks allograft tolerance, induces tumor remission, and intensifies neuroinflammation, respectively. All of these effects of Tph-1 deficiency are independent of its downstream product serotonin. Because mast cells (MCs) appear to be the major source of Tph-1 and restoration of Tph-1 in the MC compartment in vivo compensates for the defect, these experiments introduce a fundamentally new mechanism of MC-mediated immune suppression that broadly impacts multiple arms of immunity. PMID:23008335

  8. Immune Regulation of the Metastatic Process: Implications for Therapy.

    PubMed

    de Mingo Pulido, A; Ruffell, B

    2016-01-01

    Metastatic disease is the major cause of fatalities in cancer patients, but few therapies are designed to target the metastatic process. Cancer cells must perform a number of steps to successfully establish metastatic foci, including local invasion, intravasation, survival, extravasation, and growth in ectopic tissue. Due to the nonrandom distribution of metastasis, it has long been recognized that the tissue microenvironment must be an important determinant of colonization. More recently it has been established in animal models that immune cells regulate the metastatic process, including a dominant role for monocytes and macrophages, and emerging roles for neutrophils and various lymphocyte populations. While most research has focused on the early dissemination process, patients usually present clinically with disseminated, if not macroscopic, disease. Identifying pathways by which immune cells regulate growth and therapeutic resistance within metastatic sites is therefore key to the development of pharmacological agents that will significantly extend patient survival. PMID:27613132

  9. Control of local immunity by airway epithelial cells.

    PubMed

    Weitnauer, M; Mijošek, V; Dalpke, A H

    2016-03-01

    The lung is ventilated by thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbial compounds, most of them harmless contaminants. Airway epithelial cells are known to have innate sensor functions, thus being able to detect microbial danger. To avoid chronic inflammation, the pulmonary system has developed specific means to control local immune responses. Even though airway epithelial cells can act as proinflammatory promoters, we propose that under homeostatic conditions airway epithelial cells are important modulators of immune responses in the lung. In this review, we discuss epithelial cell regulatory functions that control reactivity of professional immune cells within the microenvironment of the airways and how these mechanisms are altered in pulmonary diseases. Regulation by epithelial cells can be divided into two mechanisms: (1) mediators regulate epithelial cells' innate sensitivity in cis and (2) factors are produced that limit reactivity of immune cells in trans. PMID:26627458

  10. Immune Cells in Blood Recognize Tumors

    Cancer.gov

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  11. Invariant natural killer T cells: bridging innate and adaptive immunity

    PubMed Central

    Parekh, Vrajesh V.; Wu, Lan

    2013-01-01

    Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system. PMID:20734065

  12. S-nitrosothiols regulate cell-surface pH buffering by airway epithelial cells during the human immune response to rhinovirus.

    PubMed

    Carraro, Silvia; Doherty, Joseph; Zaman, Khalequz; Gainov, Iain; Turner, Ronald; Vaughan, John; Hunt, John F; Márquez, Javier; Gaston, Benjamin

    2006-05-01

    Human rhinovirus infection is a common trigger for asthma exacerbations. Asthma exacerbations and rhinovirus infections are both associated with markedly decreased pH and ammonium levels in exhaled breath condensates. This observation is thought to be related, in part, to decreased activity of airway epithelial glutaminase. We studied whether direct rhinovirus infection and/or the host immune response to the infection decreased airway epithelial cell surface pH in vitro. Interferon-gamma and tumor necrosis factor-alpha, but not direct rhinovirus infection, decreased pH, an effect partly associated with decreased ammonium concentrations. This effect was 1) prevented by nitric oxide synthase inhibition; 2) independent of cyclic GMP; 3) associated with an increase in endogenous airway epithelial cell S-nitrosothiol concentration; 4) mimicked by the exogenous S-nitrosothiol, S-nitroso-N-acetyl cysteine; and 5) independent of glutaminase expression and activity. We then confirmed that decreased epithelial pH inhibits human rhinovirus replication in airway epithelial cells. These data suggest that a nitric oxide synthase-dependent host response to viral infection mediated by S-nitrosothiols, rather than direct infection itself, plays a role in decreased airway surface pH during human rhinovirus infection. This host immune response may serve to protect the lower airways from direct infection in the normal host. In patients with asthma, however, this fall in pH could be associated with the increased mucus production, augmented inflammatory cell degranulation, bronchoconstriction, and cough characteristic of an asthma exacerbation. PMID:16603595

  13. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection.

    PubMed

    Torrado, Egidio; Fountain, Jeffrey J; Liao, Mingfeng; Tighe, Michael; Reiley, William W; Lai, Rachel P; Meintjes, Graeme; Pearl, John E; Chen, Xinchun; Zak, Daniel E; Thompson, Ethan G; Aderem, Alan; Ghilardi, Nico; Solache, Alejandra; McKinstry, K Kai; Strutt, Tara M; Wilkinson, Robert J; Swain, Susan L; Cooper, Andrea M

    2015-08-24

    CD4+ T cells mediate protection against Mycobacterium tuberculosis (Mtb); however, the phenotype of protective T cells is undefined, thereby confounding vaccination efforts. IL-27 is highly expressed during human tuberculosis (TB), and absence of IL-27R (Il27ra) specifically on T cells results in increased protection. IL-27R deficiency during chronic Mtb infection does not impact antigen-specific CD4+ T cell number but maintains programmed death-1 (PD-1), CD69, and CD127 expression while reducing T-bet and killer cell lectin-like receptor G1 (KLRG1) expression. Furthermore, T-bet haploinsufficiency results in failure to generate KLRG1+, antigen-specific CD4+ T cells, and in improved protection. T cells in Il27ra(-/-) mice accumulate preferentially in the lung parenchyma within close proximity to Mtb, and antigen-specific CD4+ T cells lacking IL-27R are intrinsically more fit than intact T cells and maintain IL-2 production. Improved fitness of IL-27R-deficient T cells is not associated with increased proliferation but with decreased expression of cell death-associated markers. Therefore, during Mtb infection, IL-27R acts intrinsically on T cells to limit protection and reduce fitness, whereas the IL-27R-deficient environment alters the phenotype and location of T cells. The significant expression of IL-27 in TB and the negative influence of IL-27R on T cell function demonstrate the pathway by which this cytokine/receptor pair is detrimental in TB. PMID:26282876

  14. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection

    PubMed Central

    Torrado, Egidio; Fountain, Jeffrey J.; Liao, Mingfeng; Tighe, Michael; Reiley, William W.; Lai, Rachel P.; Meintjes, Graeme; Pearl, John E.; Chen, Xinchun; Zak, Daniel E.; Thompson, Ethan G.; Aderem, Alan; Ghilardi, Nico; Solache, Alejandra; McKinstry, K. Kai; Strutt, Tara M.; Wilkinson, Robert J.; Swain, Susan L.

    2015-01-01

    CD4+ T cells mediate protection against Mycobacterium tuberculosis (Mtb); however, the phenotype of protective T cells is undefined, thereby confounding vaccination efforts. IL-27 is highly expressed during human tuberculosis (TB), and absence of IL-27R (Il27ra) specifically on T cells results in increased protection. IL-27R deficiency during chronic Mtb infection does not impact antigen-specific CD4+ T cell number but maintains programmed death-1 (PD-1), CD69, and CD127 expression while reducing T-bet and killer cell lectin-like receptor G1 (KLRG1) expression. Furthermore, T-bet haploinsufficiency results in failure to generate KLRG1+, antigen-specific CD4+ T cells, and in improved protection. T cells in Il27ra−/− mice accumulate preferentially in the lung parenchyma within close proximity to Mtb, and antigen-specific CD4+ T cells lacking IL-27R are intrinsically more fit than intact T cells and maintain IL-2 production. Improved fitness of IL-27R–deficient T cells is not associated with increased proliferation but with decreased expression of cell death–associated markers. Therefore, during Mtb infection, IL-27R acts intrinsically on T cells to limit protection and reduce fitness, whereas the IL-27R–deficient environment alters the phenotype and location of T cells. The significant expression of IL-27 in TB and the negative influence of IL-27R on T cell function demonstrate the pathway by which this cytokine/receptor pair is detrimental in TB. PMID:26282876

  15. Cdx2 Expression and Intestinal Metaplasia Induced by H. pylori Infection of Gastric Cells Is Regulated by NOD1-Mediated Innate Immune Responses

    PubMed Central

    Asano, Naoki; Imatani, Akira; Watanabe, Tomohiro; Fushiya, Jun; Kondo, Yutaka; Jin, Xiaoyi; Ara, Nobuyuki; Uno, Kaname; Iijima, Katsunori; Koike, Tomoyuki; Strober, Warren; Shimosegawa, Tooru

    2016-01-01

    Chronic infection with the bacterial Helicobacter pylori is a major cause of gastric and duodenal ulcer disease, gastric mucosal atrophy, and cancer. H. pylori–induced expression of the intestinal epithelial–specific transcription factor caudal-related homeobox 2 (Cdx2) contributes to intestinal metaplasia, a precursor event to gastric cancer. Given a role for the bacterial pattern recognition molecule nucleotide-binding oligomerization domain 1 (NOD1) in the innate immune response to bacterial infection, we investigated mechanisms used by NOD1 to regulate H. pylori infection and its propensity towards the development of intestinal metaplasia. We found that Cdx2 was induced by H. pylori infection in both normal and neoplastic gastric epithelial cells in a manner that was inversely related to NOD1 signaling. Mechanistic investigations revealed that Cdx2 induction relied upon activation of NF-κB but was suppressed by NOD1-mediated activation of TRAF3, a negative regulator of NF-κB. In vivo, prolonged infection of NOD1-deficient mice with H. pylori led to increased Cdx2 expression and intestinal metaplasia. Furthermore, gastric epithelial cells from these mice exhibited increased nuclear expression of the NF-κB p65 subunit and decreased expression of TRAF3. Overall, our findings illuminated a role for NOD1 signaling in attenuating H. pylori–induced Cdx2 expression in gastric epithelial cells, suggesting a rationale to augment NOD1 signaling in H. pylori–infected patients to limit their risks of accumulating precancerous gastric lesions. PMID:26759244

  16. Extracellular RNAs: A Secret Arm of Immune System Regulation.

    PubMed

    de Candia, Paola; De Rosa, Veronica; Casiraghi, Maurizio; Matarese, Giuseppe

    2016-04-01

    The immune system has evolved to protect multicellular organisms from the attack of a variety of pathogens. To exert this function efficiently, the system has developed the capacity to coordinate the function of different cell types and the ability to down-modulate the response when the foreign attack is over. For decades, immunologists believed that these two characteristics were primarily related to cytokine/chemokine-based communication and cell-to-cell direct contact. More recently, it has been shown that immune cells also communicate by transferring regulatory RNAs, microRNAs in particular, from one cell to the other. Several studies have suggested a functional role of extracellular regulatory RNAs in cell-to-cell communication in different cellular contexts. This minireview focuses on the potential role of extracellular RNA transfer in the regulation of adaptive immune response, also contextualizing it in a broader field of what is known of cell-free RNAs in communication among different organisms in the evolutionary scale. PMID:26887954

  17. Xanthomonas campestris Overcomes Arabidopsis Stomatal Innate Immunity through a DSF Cell-to-Cell Signal-Regulated Virulence Factor1[OA

    PubMed Central

    Gudesblat, Gustavo E.; Torres, Pablo S.; Vojnov, Adrián A.

    2009-01-01

    Pathogen-induced stomatal closure is part of the plant innate immune response. Phytopathogens using stomata as a way of entry into the leaf must avoid the stomatal response of the host. In this article, we describe a factor secreted by the bacterial phytopathogen Xanthomonas campestris pv campestris (Xcc) capable of interfering with stomatal closure induced by bacteria or abscisic acid (ABA). We found that living Xcc, as well as ethyl acetate extracts from Xcc culture supernatants, are capable of reverting stomatal closure induced by bacteria, lipopolysaccharide, or ABA. Xcc ethyl acetate extracts also complemented the infectivity of Pseudomonas syringae pv tomato (Pst) mutants deficient in the production of the coronatine toxin, which is required to overcome stomatal defense. By contrast, the rpfF and rpfC mutant strains of Xcc, which are unable to respectively synthesize or perceive a diffusible molecule involved in bacterial cell-to-cell signaling, were incapable of reverting stomatal closure, indicating that suppression of stomatal response by Xcc requires an intact rpf/diffusible signal factor system. In addition, we found that guard cell-specific Arabidopsis (Arabidopsis thaliana) Mitogen-Activated Protein Kinase3 (MPK3) antisense mutants were unresponsive to bacteria or lipopolysaccharide in promotion of stomatal closure, and also more sensitive to Pst coronatine-deficient mutants, showing that MPK3 is required for stomatal immune response. Additionally, we found that, unlike in wild-type Arabidopsis, ABA-induced stomatal closure in MPK3 antisense mutants is not affected by Xcc or by extracts from Xcc culture supernatants, suggesting that the Xcc factor might target some signaling component in the same pathway as MPK3. PMID:19091877

  18. Mitochondrial DNA in the regulation of innate immune responses.

    PubMed

    Fang, Chunju; Wei, Xiawei; Wei, Yuquan

    2016-01-01

    Mitochondrion is known as the energy factory of the cell, which is also a unique mammalian organelle and considered to be evolved from aerobic prokaryotes more than a billion years ago. Mitochondrial DNA, similar to that of its bacterial ancestor’s, consists of a circular loop and contains significant number of unmethylated DNA as CpG islands. The innate immune system plays an important role in the mammalian immune response. Recent research has demonstrated that mitochondrial DNA (mtDNA) activates several innate immune pathways involving TLR9, NLRP3 and STING signaling, which contributes to the signaling platforms and results in effector responses. In addition to facilitating antibacterial immunity and regulating antiviral signaling, mounting evidence suggests that mtDNA contributes to inflammatory diseases following cellular damage and stress. Therefore, in addition to its well-appreciated roles in cellular metabolism and energy production,mtDNA appears to function as a key member in the innate immune system. Here, we highlight the emerging roles of mtDNA in innate immunity. PMID:26498951

  19. Programmed cell death in the plant immune system

    PubMed Central

    Coll, N S; Epple, P; Dangl, J L

    2011-01-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms. PMID:21475301

  20. Gaucher disease gene GBA functions in immune regulation

    PubMed Central

    Liu, Jun; Halene, Stephanie; Yang, Mei; Iqbal, Jameel; Yang, Ruhua; Mehal, Wajahat Z.; Chuang, Wei-Lien; Jain, Dhanpat; Yuen, Tony; Sun, Li; Zaidi, Mone; Mistry, Pramod K.

    2012-01-01

    Inherited deficiency of acid β-glucosidase (GCase) due to biallelic mutations in the GBA (glucosidase, β, acid) gene causes the classic manifestations of Gaucher disease (GD) involving the viscera, the skeleton, and the lungs. Clinical observations point to immune defects in GD beyond the accumulation of activated macrophages engorged with lysosomal glucosylceramide. Here, we show a plethora of immune cell aberrations in mice in which the GBA gene is deleted conditionally in hematopoietic stem cells (HSCs). The thymus exhibited the earliest and most striking alterations reminiscent of impaired T-cell maturation, aberrant B-cell recruitment, enhanced antigen presentation, and impaired egress of mature thymocytes. These changes correlated strongly with disease severity. In contrast to the profound defects in the thymus, there were only limited cellular defects in peripheral lymphoid organs, mainly restricted to mice with severe disease. The cellular changes in GCase deficiency were accompanied by elevated T-helper (Th)1 and Th2 cytokines that also tracked with disease severity. Finally, the proliferation of GCase-deficient HSCs was inhibited significantly by both GL1 and Lyso-GL1, suggesting that the “supply” of early thymic progenitors from bone marrow may, in fact, be reduced in GBA deficiency. The results not only point to a fundamental role for GBA in immune regulation but also suggest that GBA mutations in GD may cause widespread immune dysregulation through the accumulation of substrates. PMID:22665763

  1. [Regulation of innate immunity during xenogenic changes in blood circulation].

    PubMed

    Shevchenko, V S

    2001-01-01

    Calcium-dependent innate immune response with participation of the superfamily of immunoglobulins to several intra- and extracorporal xenobiotics were studied at 216 recipients during synthetic cardiac valves implantation or veins transplantation in coronary arteries. It was shown that immediate immune response to xenobiotics was manifested by generation of the antitissue anodical autoprecipitin with specificity to the surface cell membrane component. This reaction initiated and regulated the subsequent dynamics of the two different fibrinogen autoimmune complexes formation, resulting in development of the immunogenic damages of blood circulation. Correction of these rapid innate immune responses is important for prevention and normalisation of the xenogenic damages of blood circulation during trans- and implantation on the heart impaired with endocarditis or aterosclerosis. PMID:11571927

  2. [SEROTONERGIC REGULATION OF IMMUNITY. PART I].

    PubMed

    Terentev, A A; Lychkova, A E; Kazimirsky, A N; Puzikov, A M

    2016-01-01

    The review describes the influence of serotonin (5-HT) and its receptor, transporter SERT and nuclear factor Nf-kB on the immune function of the body, particularly in the digestive tract. The mechanisms of the synthesis, metabolism and catab. olism of 5-HT are characterized. The targets for serotonin on cell level are immunoactive cells--neutrophils, eosinophils, leukocytes, monocytes and dendritic cells. Receptor and non-receptor described mechanisms of action of peripheral serotonin are described. immunoactive cells express on their membrane 5 HT1A-5-HT1E-5-HT2A-5-HT3-, 5-HT4- and 5-HT7-serotonin receptor subtypes. Activation of these receptors modulate the release of TNF-α, secretion of interleukins IL-1β, IL-6, IL-8/CXCL8, IL-12p40. Mediators of the non-receptor mechanisms are transporter SERT, tryptophan hydroxylase-1 and nuclear factor Nf-kB. Target-genes for Nf-kB are genes encoding cytokines. The cooperation of non/receptory pathways involved 5-HT1A- and 5-HT3 receptors. It is concluded that the diversity of ways of peripheral serotonin on the immune function of the body are existed. PMID:27301140

  3. [Immune Checkpoint Therapy for Non-Small-Cell Lung Cancer].

    PubMed

    Miyauchi, Eisaku; Inoue, Akira

    2016-06-01

    Nivolumab is an anti-PD-1 antibody that has recently been approved in Japan, and has shown high response rates and more favorable safety profiles in 2 phase III clinical trials. Accordingly, immune checkpoint therapy has now been included as a new standard treatment for non-small-cell lung cancer. These immune checkpoints are receptors expressed on T cells that regulate the immune response. The PD-1/PD-L1 signal inhibits cytotoxic T lymphocyte proliferation and survival, induces apoptosis of infiltrative T cells, and increases the amount of regulatory T cells in the tumor microenvironment. Therefore, severe immune-related adverse event(irAE)have been observed, including enterocolitis, neuropathies, and endocrinopathies. There are different management approaches to irAEs with conventional cytotoxic drugs. This article reviews the available data regarding immune checkpoint therapy for patients with non-small-cell lung cancer. PMID:27306803

  4. VISTA regulates the development of protective anti-tumor immunity

    PubMed Central

    LeMercier, Isabelle; Chen, Wenna; Lines, Janet L.; Day, Maria; Li, Jiannan; Sergent, Petra; Noelle, Randolph J.; Wang, Li

    2014-01-01

    V-domain Ig suppressor of T cell activation (VISTA) is a novel negative checkpoint ligand that is homologous to PD-L1 and suppresses T cell activation. This study demonstrates the multiple mechanisms whereby VISTA relieves negative regulation by hematopoietic cells and enhances protective anti-tumor immunity. VISTA is highly expressed on myeloid cells and Foxp3+CD4+ regulatory cells, but not on tumor cells within the tumor microenvironment (TME). VISTA monoclonal antibody (mab) treatment increased the number of tumor-specific T cells in the periphery, and enhanced the infiltration, proliferation and effector function of tumor-reactive T cells within the TME. VISTA blockade altered the suppressive feature of the TME, by decreasing the presence of monocytic myeloid-derived suppressor cells and increasing the presence of activated DCs within the TME. In addition, VISTA blockade impaired the suppressive function and reduced the emergence of tumor-specific Foxp3+CD4+ regulatory T cells. Consequently, VISTA mab administration as a monotherapy significantly suppressed the growth of both transplantable and inducible melanoma. Initial studies explored a combinatorial regimen using VISTA blockade and a peptide-based cancer vaccine with TLR agonists as adjuvants. VISTA blockade synergized with the vaccine to effectively impair the growth of established tumors. Our study therefore establishes a foundation for designing VISTA-targeted approaches either as a monotherapy or in combination with additional immune-targeted strategies for cancer immunotherapy. PMID:24691994

  5. Genetically engineered immune privileged Sertoli cells

    PubMed Central

    Kaur, Gurvinder; Long, Charles R.; Dufour, Jannette M.

    2012-01-01

    Sertoli cells are immune privileged cells, important for controlling the immune response to male germ cells as well as maintaining the tolerogenic environment in the testis. Additionally, ectopic Sertoli cells have been shown to survive and protect co-grafted cells when transplanted across immunological barriers. The survival of ectopic Sertoli cells has led to the idea that they could be used in cell based gene therapy. In this review, we provide a brief overview of testis immune privilege and Sertoli cell transplantation, factors contributing to Sertoli cell immune privilege, the challenges faced by viral vector gene therapy, the use of immune privileged cells in cell based gene therapy and describe several recent studies on the use of genetically engineered Sertoli cells to provide continuous delivery of therapeutic proteins. PMID:22553487

  6. Regulation of immunity during visceral Leishmania infection.

    PubMed

    Rodrigues, Vasco; Cordeiro-da-Silva, Anabela; Laforge, Mireille; Silvestre, Ricardo; Estaquier, Jérôme

    2016-01-01

    Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease. PMID:26932389

  7. Purinergic regulation of the immune system.

    PubMed

    Cekic, Caglar; Linden, Joel

    2016-03-01

    Cellular stress or apoptosis triggers the release of ATP, ADP and other nucleotides into the extracellular space. Extracellular nucleotides function as autocrine and paracrine signalling molecules by activating cell-surface P2 purinergic receptors that elicit pro-inflammatory immune responses. Over time, extracellular nucleotides are metabolized to adenosine, leading to reduced P2 signalling and increased signalling through anti-inflammatory adenosine (P1 purinergic) receptors. Here, we review how local purinergic signalling changes over time during tissue responses to injury or disease, and we discuss the potential of targeting purinergic signalling pathways for the immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer. PMID:26922909

  8. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1998-01-01

    The specific aims of the project were: (1) Application of the NASA bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC). (2) Compare the frequency and function of DC in normal donors and immunocompromised cancer patients. (3) Analyze the effectiveness of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in a murine model of experimental fungal disease. Our investigations have provided new insight into DC immunobiology and have led to the development of methodology to evaluate DC in blood of normal donors and patients. Information gained from these studies has broadened our understanding of possible mechanisms involved in the immune dysfunction of space travelers and earth-bound cancer patients, and could contribute to the design of novel therapies to restore/preserve immunity in these individuals. Several new avenues of investigation were also revealed. The results of studies completed during Round 2 are summarized.

  9. Toll-like receptor signaling and regulation of intestinal immunity.

    PubMed

    Kamdar, Karishma; Nguyen, Vivien; DePaolo, R William

    2013-04-01

    The intestine is a complex organ that must maintain tolerance to innocuous food antigens and commensal microbiota while being also able to mount inflammatory responses against invading pathogenic microorganisms. The ability to restrain tolerogenic responses while permitting inflammatory responses requires communication between commensal bacteria, intestinal epithelial cells and immune cells. Disruption or improper signaling between any of these factors may lead to uncontrolled inflammation and the development of inflammatory diseases. Toll-like receptors (TLR) recognize conserved molecular motifs of microorganisms and, not surprisingly, are important for maintaining tolerance to commensal microbiota, as well as inducing inflammation against pathogens. Perturbations in individual TLR signaling can lead to a number of different outcomes and illustrate a system of regulation within the intestine in which each TLR plays a largely non-redundant role in mucosal immunity. This review will discuss recent findings on the roles of individual TLRs and intestinal homeostasis. PMID:23334153

  10. Vitamin D, immune regulation, the microbiota, and inflammatory bowel disease

    PubMed Central

    Cantorna, Margherita T.; McDaniel, Kaitlin; Bora, Stephanie; Chen, Jing; James, Jamaal

    2014-01-01

    The inflammatory bowel diseases (IBD) are complex diseases caused by environmental, immunological and genetic factors. Vitamin D status is low in patients with IBD and experimental IBD is more severe in vitamin D deficient or vitamin D receptor knockout animals. Vitamin D is beneficial in IBD because it regulates multiple checkpoints and processes essential for homeostasis in the gut. Vitamin D inhibits IFN-γ and IL-17 production while inducing regulatory T cells. In addition, vitamin D regulates epithelial cell integrity, innate immune responses, and the composition of the gut microbiota. Overall vitamin D regulates multiple pathways that maintain gastrointestinal homeostasis. The data support improving vitamin D status in patients with IBD. PMID:24668555

  11. Immune cells in the female reproductive tract.

    PubMed

    Lee, Sung Ki; Kim, Chul Jung; Kim, Dong-Jae; Kang, Jee-Hyun

    2015-02-01

    The female reproductive tract has two main functions: protection against microbial challenge and maintenance of pregnancy to term. The upper reproductive tract comprises the fallopian tubes and the uterus, including the endocervix, and the lower tract consists of the ectocervix and the vagina. Immune cells residing in the reproductive tract play contradictory roles: they maintain immunity against vaginal pathogens in the lower tract and establish immune tolerance for sperm and an embryo/fetus in the upper tract. The immune system is significantly influenced by sex steroid hormones, although leukocytes in the reproductive tract lack receptors for estrogen and progesterone. The leukocytes in the reproductive tract are distributed in either an aggregated or a dispersed form in the epithelial layer, lamina propria, and stroma. Even though immune cells are differentially distributed in each organ of the reproductive tract, the predominant immune cells are T cells, macrophages/dendritic cells, natural killer (NK) cells, neutrophils, and mast cells. B cells are rare in the female reproductive tract. NK cells in the endometrium significantly expand in the late secretory phase and further increase their number during early pregnancy. It is evident that NK cells and regulatory T (Treg) cells are extremely important in decidual angiogenesis, trophoblast migration, and immune tolerance during pregnancy. Dysregulation of endometrial/decidual immune cells is strongly related to infertility, miscarriage, and other obstetric complications. Understanding the immune system of the female reproductive tract will significantly contribute to women's health and to success in pregnancy. PMID:25713505

  12. Fine-tuning Tumor Immunity with Integrin Trans-regulation.

    PubMed

    Cantor, Joseph M; Rose, David M; Slepak, Marina; Ginsberg, Mark H

    2015-06-01

    Inefficient T-cell homing to tissues limits adoptive T-cell immunotherapy of solid tumors. αLβ2 and α4β1 integrins mediate trafficking of T cells into tissues via engagement of ICAM-1 and VCAM-1, respectively. Inhibiting protein kinase A (PKA)-mediated phosphorylation of α4 integrin in cells results in an increase in αLβ2-mediated migration on mixed ICAM-1-VCAM-1 substrates in vitro, a phenomenon termed "integrin trans-regulation." Here, we created an α4(S988A)-bearing mouse, which precludes PKA-mediated α4 phosphorylation, to examine the effect of integrin trans-regulation in vivo. The α4(S988A) mouse exhibited a dramatic and selective increase in migration of lymphocytes, but not myeloid cells, to sites of inflammation. Importantly, we found that the α4(S988A) mice exhibited a marked increase in T-cell entry into and reduced growth of B16 melanomas, consistent with antitumor roles of infiltrating T cells and progrowth functions of tumor-associated macrophages. Thus, increased α4 trans-regulation of αLβ2 integrin function biases leukocyte emigration toward lymphocytes relative to myeloid cells and enhances tumor immunity. PMID:25600437

  13. ``Backpack'' Functionalized Living Immune Cells

    NASA Astrophysics Data System (ADS)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael

    2009-03-01

    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  14. Dendritic cells and cytokines in immune rejection of cancer.

    PubMed

    Ferrantini, Maria; Capone, Imerio; Belardelli, Filippo

    2008-02-01

    Dendritic cells (DCs) play a crucial role in linking innate and adaptive immunity and, thus, in the generation of a protective immune response against both infectious diseases and tumors. The ability of DCs to prime and expand an immune response is regulated by signals acting through soluble mediators, mainly cytokines and chemokines. Understanding how cytokines influence DC functions and orchestrate the interactions of DCs with other immune cells is strictly instrumental to the progress in cancer immunotherapy. Herein, we will illustrate how certain cytokines and immune stimulating molecules can induce and sustain the antitumor immune response by acting on DCs. We will also discuss these cytokine-DC interactions in the light of clinical results in cancer patients. PMID:18054517

  15. Aryl Hydrocarbon Receptor-Dependent Pathways in Immune Regulation.

    PubMed

    Gargaro, M; Pirro, M; Romani, R; Zelante, T; Fallarino, F

    2016-08-01

    The idea of possible involvement of the aryl hydrocarbon receptor (AhR) in transplant tolerance can be traced back >30 years, when very low doses of dioxin-the most potent AhR ligand-were found to markedly reduce the generation of cytotoxic T lymphocytes in response to alloantigen challenge in vivo. AhR is a ligand-activated transcription factor that is activated by dioxins and other environmental pollutants. We now know that AhR can bind a broad variety of activating ligands that are disparate in nature, including endogenous molecules and those formed in the gut from food and bacterial products. Consequently, in addition to its classical role as a toxicological signal mediator, AhR is emerging as a transcription factor involved in the regulation of both innate and adaptive immune responses in various immune cell types, including lymphocytes and antigen-presenting cells (APCs). Allograft rejection is mostly a T cell-mediated alloimmune response initiated by the recognition of alloantigens presented by donor and recipient APCs to recipient CD4(+) and CD8(+) T cells. Based on those findings, AhR may function as a critical sensor of outside and inside environments, leading to changes in the immune system that may have relevance in transplantation. PMID:26751261

  16. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity

    PubMed Central

    Zhang, Qian; Dove, Christopher G.; Hor, Jyh Liang; Murdock, Heardley M.; Strauss-Albee, Dara M.; Garcia, Jordan A.; Mandl, Judith N.; Grodick, Rachael A.; Jing, Huie; Chandler-Brown, Devon B.; Lenardo, Timothy E.; Crawford, Greg; Matthews, Helen F.; Freeman, Alexandra F.; Cornall, Richard J.; Germain, Ronald N.

    2014-01-01

    DOCK8 mutations result in an inherited combined immunodeficiency characterized by increased susceptibility to skin and other infections. We show that when DOCK8-deficient T and NK cells migrate through confined spaces, they develop cell shape and nuclear deformation abnormalities that do not impair chemotaxis but contribute to a distinct form of catastrophic cell death we term cytothripsis. Such defects arise during lymphocyte migration in collagen-dense tissues when DOCK8, through CDC42 and p21-activated kinase (PAK), is unavailable to coordinate cytoskeletal structures. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells, which in turn impairs control of herpesvirus skin infections. Our results establish that DOCK8-regulated shape integrity of lymphocytes prevents cytothripsis and promotes antiviral immunity in the skin. PMID:25422492

  17. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity.

    PubMed

    Zhang, Qian; Dove, Christopher G; Hor, Jyh Liang; Murdock, Heardley M; Strauss-Albee, Dara M; Garcia, Jordan A; Mandl, Judith N; Grodick, Rachael A; Jing, Huie; Chandler-Brown, Devon B; Lenardo, Timothy E; Crawford, Greg; Matthews, Helen F; Freeman, Alexandra F; Cornall, Richard J; Germain, Ronald N; Mueller, Scott N; Su, Helen C

    2014-12-15

    DOCK8 mutations result in an inherited combined immunodeficiency characterized by increased susceptibility to skin and other infections. We show that when DOCK8-deficient T and NK cells migrate through confined spaces, they develop cell shape and nuclear deformation abnormalities that do not impair chemotaxis but contribute to a distinct form of catastrophic cell death we term cytothripsis. Such defects arise during lymphocyte migration in collagen-dense tissues when DOCK8, through CDC42 and p21-activated kinase (PAK), is unavailable to coordinate cytoskeletal structures. Cytothripsis of DOCK8-deficient cells prevents the generation of long-lived skin-resident memory CD8 T cells, which in turn impairs control of herpesvirus skin infections. Our results establish that DOCK8-regulated shape integrity of lymphocytes prevents cytothripsis and promotes antiviral immunity in the skin. PMID:25422492

  18. NKT Cell Immune Responses to Viral Infection

    PubMed Central

    Tessmer, Marlowe S.; Fatima, Ayesha; Paget, Christophe; Trottein, François; Brossay, Laurent

    2010-01-01

    Background Natural killer T (NKT) cells are a heterogeneous population of innate T cells that have attracted recent interest because of their potential to regulate immune responses to a variety of pathogens. The most widely studied NKT cell subset is the invariant (i)NKT cells that recognize glycolipids in the context of the CD1d molecule. The multifaceted methods of activation iNKT cells possess and their ability to produce regulatory cytokines has made them a primary target for therapeutic studies. Objective/Methods This review gives insight into the roles of iNKT cells during infectious diseases, particularly viral infections. We also highlight the different mechanisms leading to iNKT cell activation in response to pathogens. Conclusions The iNKT cell versatility allows them to detect and respond to several viral infections. However, therapeutic approaches to specifically target iNKT cells will require additional research. Notably, examination of the roles of non-invariant NKT cells in response to pathogens warrant further investigations. PMID:19236234

  19. γδ T Cell and Other Immune Cells Crosstalk in Cellular Immunity

    PubMed Central

    He, Ying; Wu, Kangni; Hu, Yongxian; Sheng, Lixia; Tie, Ruxiu; Wang, Binsheng; Huang, He

    2014-01-01

    γδ T cells have been recognized as effectors with immunomodulatory functions in cellular immunity. These abilities enable them to interact with other immune cells, thus having the potential for treatment of various immune-mediated diseases with adoptive cell therapy. So far, the interactions between γδ T cell and other immune cells have not been well defined. Here we will discuss the interactivities among them and the perspective on γδ T cells for their use in immunotherapy could be imagined. The understanding of the crosstalk among the immune cells in immunopathology might be beneficial for the clinical application of γδ T cell. PMID:24741636

  20. Glycosylation in immune cell trafficking

    PubMed Central

    Sperandio, Markus; Gleissner, Christian A.; Ley, Klaus

    2009-01-01

    Summary Leukocyte recruitment encompasses cell adhesion and activation steps that enable circulating leukocytes to roll, arrest, and firmly adhere on the endothelial surface before they extravasate into distinct tissue locations. This complex sequence of events relies on adhesive interactions between surface structures on leukocytes and endothelial cells and also on signals generated during the cell-cell contacts. Cell surface glycans play a crucial role in leukocyte recruitment. Several glycosyltransferases such as α1,3 fucosyltransferases, α2,3 sialyltransferases, core 2 N-acetylglucosaminlytransferases, β1,4 galactosyltransferases and polypeptide N-acetylgalactosaminyltransferases have been implicated in the generation of functional selectin ligands that mediate leukocyte rolling via binding to selectins. Recent evidence also suggests a role of α2,3 sialylated carbohydrate determinants in triggering chemokine-mediated leukocyte arrest and influencing β1 integrin function. Additional mechanisms by galectin- and siglec-dependent processes contribute to the growing number of reports emphasizing the significant role of glycans for the successful recruitment of leukocytes into tissues. Advancing the knowledge on glycan function into appropriate pathology models is likely to suggest interesting new therapeutic strategies in the treatment of immune- and inflammation-mediated diseases. PMID:19594631

  1. Intrinsic and Extrinsic Regulation of Innate Immune Receptors

    PubMed Central

    Jeong, Eunshil

    2011-01-01

    Pattern recognition receptors (PRRs) in innate immune cells play a pivotal role in the first line of host defense system. PRRs recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) to initiate and regulate innate and adaptive immune responses. PRRs include Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs), which have their own features in ligand recognition and cellular location. Activated PRRs deliver signals to adaptor molecules (MyD88, TRIF, MAL/TIRAP, TRAM, IPS-1) which act as important messengers to activate downstream kinases (IKK complex, MAPKs, TBK1, RIP-1) and transcription factors (NF-κB, AP-1, IRF3), which produce effecter molecules including cytokines, chemokines, inflammatory enzymes, and type I interferones. Since excessive PRR activation is closely linked to the development of chronic inflammatory diseases, the role of intrinsic and extrinsic regulators in the prevention of over- or unnecessary activation of PRRs has been widely studied. Intracellular regulators include MyD88s, SOCS1, TOLLIP, A20, and CYLD. Extrinsic regulators have also been identified with their molecular targets in PRR signaling pathways. TLR dimerization has been suggested as an inhibitory target for small molecules such as curcumin, cinnamaldehyde, and sulforaphane. TBK1 kinase can be a target for certain flavonoids such as EGCG, luteolin, quercetin, chrysin, and eriodictyol to regulate TRIF-dependent TLR pathways. This review focuses on the features of PRR signaling pathways and the therapeutic targets of intrinsic and extrinsic regulators in order to provide beneficial strategies for controlling the activity of PRRs and the related inflammatory diseases and immune disorders. PMID:21488180

  2. Tumor infiltrating immune cells in gliomas and meningiomas.

    PubMed

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Miranda, David; Ruiz, Laura; Sousa, Pablo; Ciudad, Juana; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores

    2016-03-01

    Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control. PMID:26216710

  3. Immune cells in term and preterm labor.

    PubMed

    Gomez-Lopez, Nardhy; StLouis, Derek; Lehr, Marcus A; Sanchez-Rodriguez, Elly N; Arenas-Hernandez, Marcia

    2014-11-01

    Labor resembles an inflammatory response that includes secretion of cytokines/chemokines by resident and infiltrating immune cells into reproductive tissues and the maternal/fetal interface. Untimely activation of these inflammatory pathways leads to preterm labor, which can result in preterm birth. Preterm birth is a major determinant of neonatal mortality and morbidity; therefore, the elucidation of the process of labor at a cellular and molecular level is essential for understanding the pathophysiology of preterm labor. Here, we summarize the role of innate and adaptive immune cells in the physiological or pathological activation of labor. We review published literature regarding the role of innate and adaptive immune cells in the cervix, myometrium, fetal membranes, decidua and the fetus in late pregnancy and labor at term and preterm. Accumulating evidence suggests that innate immune cells (neutrophils, macrophages and mast cells) mediate the process of labor by releasing pro-inflammatory factors such as cytokines, chemokines and matrix metalloproteinases. Adaptive immune cells (T-cell subsets and B cells) participate in the maintenance of fetomaternal tolerance during pregnancy, and an alteration in their function or abundance may lead to labor at term or preterm. Also, immune cells that bridge the innate and adaptive immune systems (natural killer T (NKT) cells and dendritic cells (DCs)) seem to participate in the pathophysiology of preterm labor. In conclusion, a balance between innate and adaptive immune cells is required in order to sustain pregnancy; an alteration of this balance will lead to labor at term or preterm. PMID:24954221

  4. Innate immune cells cast an eye on DNA.

    PubMed

    Sander, Leif E; Blander, J Magarian

    2009-12-01

    The threonine phosphatase eyes absent (EYA) has been identified as a novel regulator of innate immune responses to cytosolic nucleic acids and undigested DNA from apoptotic cells. EYA regulates responses of yet unidentified DNA sensors and enhances interferon-beta and CXCL10 transcription. PMID:19789172

  5. Roles of CD48 in regulating immunity and tolerance.

    PubMed

    McArdel, Shannon L; Terhorst, Cox; Sharpe, Arlene H

    2016-03-01

    CD48, a member of the signaling lymphocyte activation molecule family, participates in adhesion and activation of immune cells. Although constitutively expressed on most hematopoietic cells, CD48 is upregulated on subsets of activated cells. CD48 can have activating roles on T cells, antigen presenting cells and granulocytes, by binding to CD2 or bacterial FimH, and through cell intrinsic effects. Interactions between CD48 and its high affinity ligand CD244 are more complex, with both stimulatory and inhibitory outcomes. CD244:CD48 interactions regulate target cell lysis by NK cells and CTLs, which are important for viral clearance and regulation of effector/memory T cell generation and survival. Here we review roles of CD48 in infection, tolerance, autoimmunity, and allergy, as well as the tools used to investigate this receptor. We discuss stimulatory and regulatory roles for CD48, its potential as a therapeutic target in human disease, and current challenges to investigation of this immunoregulatory receptor. PMID:26794910

  6. An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway

    PubMed Central

    Robertson, Kevin A.; Hsieh, Wei Yuan; Forster, Thorsten; Blanc, Mathieu; Lu, Hongjin; Crick, Peter J.; Yutuc, Eylan; Watterson, Steven; Martin, Kimberly; Griffiths, Samantha J.; Enright, Anton J.; Yamamoto, Mami; Pradeepa, Madapura M.; Lennox, Kimberly A.; Behlke, Mark A.; Talbot, Simon; Haas, Jürgen; Dölken, Lars; Griffiths, William J.; Wang, Yuqin; Angulo, Ana; Ghazal, Peter

    2016-01-01

    In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway. PMID:26938778

  7. Innate immunity, decidual cells, and preeclampsia.

    PubMed

    Yeh, Chang-Ching; Chao, Kuan-Chong; Huang, S Joseph

    2013-04-01

    Preeclampsia (PE) manifested by hypertension and proteinuria complicates 3% to 8% of pregnancies and is a leading cause of fetal-maternal morbidity and mortality worldwide. It may lead to intrauterine growth restriction, preterm delivery, and long-term sequelae in women and fetuses, and consequently cause socioeconomic burden to the affected families and society as a whole. Balanced immune responses are required for the maintenance of successful pregnancy. Although not a focus of most studies, decidual cells, the major resident cell type at the fetal-maternal interface, have been shown to modulate the local immune balance by interacting with other cell types, such as bone marrow derived-immune cells, endothelial cells, and invading extravillous trophoblasts. Accumulating evidence suggests that an imbalanced innate immunity, facilitated by decidual cells, plays an important role in the pathogenesis of PE. Thus, this review will discuss the role of innate immunity and the potential contribution of decidual cells in the pathogenesis of PE. PMID:22814099

  8. Immune regulation of therapy-resistant niches: emerging targets for improving anticancer drug responses.

    PubMed

    Jinushi, Masahisa

    2014-09-01

    Emerging evidence has unveiled a critical role for immunological parameters in predicting tumor prognosis and clinical responses to anticancer therapeutics. On the other hand, responsiveness to anticancer drugs greatly modifies the repertoires, phenotypes, and immunogenicity of tumor-infiltrating immune cells, serving as a critical factor to regulate tumorigenic activities and the emergence of therapy-resistant phenotypes. Tumor-associated immune functions are influenced by distinct or overlapping sets of therapeutic modalities, such as cytotoxic chemotherapy, radiotherapy, or molecular-targeted therapy, and various anticancer modalities have unique properties to influence the mode of cross-talk between tumor cells and immune cells in tumor microenvironments. Thus, it is critical to understand precise molecular machineries whereby each anticancer strategy has a distinct or overlapping role in regulating the dynamism of reciprocal communication between tumor and immune cells in tumor microenvironments. Such an understanding will open new therapeutic opportunities by harnessing the immune system to overcome resistance to conventional anticancer drugs. PMID:24756203

  9. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation

    PubMed Central

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  10. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation.

    PubMed

    Burrello, Jacopo; Monticone, Silvia; Gai, Chiara; Gomez, Yonathan; Kholia, Sharad; Camussi, Giovanni

    2016-01-01

    Extra-cellular vesicles (EVs) are bilayer membrane structures enriched with proteins, nucleic acids, and other active molecules and have been implicated in many physiological and pathological processes over the past decade. Recently, evidence suggests EVs to play a more dichotomic role in the regulation of the immune system, whereby an immune response may be enhanced or supressed by EVs depending on their cell of origin and its functional state. EVs derived from antigen (Ag)-presenting cells for instance, have been involved in both innate and acquired (or adaptive) immune responses, as Ag carriers or presenters, or as vehicles for delivering active signaling molecules. On the other hand, tumor and stem cell derived EVs have been identified to exert an inhibitory effect on immune responses by carrying immuno-modulatory effectors, such as transcriptional factors, non-coding RNA (Species), and cytokines. In addition, stem cell-derived EVs have also been reported to impair dendritic cell maturation and to regulate the activation, differentiation, and proliferation of B cells. They have been shown to control natural killer cell activity and to suppress the innate immune response (IIR). Studies reporting the role of EVs on T lymphocyte modulation are controversial. Discrepancy in literature may be due to stem cell culture conditions, methods of EV purification, EV molecular content, and functional state of both parental and target cells. However, mesenchymal stem cell-derived EVs were shown to play a more suppressive role by shifting T cells from an activated to a T regulatory phenotype. In this review, we will discuss how stem cell-derived EVs may contribute toward the modulation of the immune response. Collectively, stem cell-derived EVs mainly exhibit an inhibitory effect on the immune system. PMID:27597941

  11. Immune cell interplay in colorectal cancer prognosis

    PubMed Central

    Norton, Samuel E; Ward-Hartstonge, Kirsten A; Taylor, Edward S; Kemp, Roslyn A

    2015-01-01

    The immune response to colorectal cancer has proven to be a reliable measure of patient outcome in several studies. However, the complexity of the immune response in this disease is not well understood, particularly the interactions between tumour-associated cells and cells of the innate and adaptive immune system. This review will discuss the relationship between cancer associated fibroblasts and macrophages, as well as between macrophages and T cells, and demonstrate how each population may support or prevent tumour growth in a different immune environment. PMID:26483876

  12. LSm14A Plays a Critical Role in Antiviral Immune Responses by Regulating MITA Level in a Cell-Specific Manner.

    PubMed

    Liu, Tian-Tian; Yang, Qing; Li, Mi; Zhong, Bo; Ran, Yong; Liu, Li-Li; Yang, Yan; Wang, Yan-Yi; Shu, Hong-Bing

    2016-06-15

    Viral infection triggers induction of antiviral cytokines and effectors, which are critical mediators of innate antiviral immune response. It has been shown that the processing body-associated protein LSm14A is involved in the induction of antiviral cytokines in cell lines but in vivo evidence is lacking. By generating LSm14A-deficient mice, in this study, we show that LSm14A plays a critical and specific role in the induction of antiviral cytokines in dendritic cells (DCs) but not in macrophages and fibroblasts. Induction of antiviral cytokines triggered by the DNA viruses HSV-1 and murid herpesvirus 68 and the RNA virus vesicular stomatitis virus but not Sendai virus was impaired in Lsm14a(-/-) DCs, which is correlated to the functions of the adaptor protein MITA/STING in the antiviral signaling pathways. LSm14A deficiency specifically downregulated MITA/STING level in DCs by impairing its nuclear mRNA precursor processing and subsequently impaired antiviral innate and adaptive immune responses. Our findings reveal a nuclear mRNA precursor processing and cell-specific regulatory mechanism of antiviral immune responses. PMID:27183626

  13. Mesenchymal stem cells: immune evasive, not immune privileged

    PubMed Central

    Ankrum, James A.; Ong, Joon Faii; Karp, Jeffrey M.

    2014-01-01

    The diverse immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) may be exploited for treatment of a multitude of inflammatory conditions. MSCs have long been reported to be hypoimmunogenic or ‘immune privileged’; this property is thought to enable MSC transplantation across major histocompatibility barriers and the creation of off-the-shelf therapies consisting of MSCs grown in culture. However, recent studies describing generation of antibodies against and immune rejection of allogeneic donor MSCs suggest that MSCs may not actually be immune privileged. Nevertheless, whether rejection of donor MSCs influences the efficacy of allogeneic MSC therapies is not known, and no definitive clinical advantage of autologous MSCs over allogeneic MSCs has been demonstrated to date. Although MSCs may exert therapeutic function through a brief ‘hit and run’ mechanism, protecting MSCs from immune detection and prolonging their persistence in vivo may improve clinical outcomes and prevent patient sensitization toward donor antigens. PMID:24561556

  14. Retinoic Acid as a Modulator of T Cell Immunity.

    PubMed

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  15. Retinoic Acid as a Modulator of T Cell Immunity

    PubMed Central

    Bono, Maria Rosa; Tejon, Gabriela; Flores-Santibañez, Felipe; Fernandez, Dominique; Rosemblatt, Mario; Sauma, Daniela

    2016-01-01

    Vitamin A, a generic designation for an array of organic molecules that includes retinal, retinol and retinoic acid, is an essential nutrient needed in a wide array of aspects including the proper functioning of the visual system, maintenance of cell function and differentiation, epithelial surface integrity, erythrocyte production, reproduction, and normal immune function. Vitamin A deficiency is one of the most common micronutrient deficiencies worldwide and is associated with defects in adaptive immunity. Reports from epidemiological studies, clinical trials and experimental studies have clearly demonstrated that vitamin A plays a central role in immunity and that its deficiency is the cause of broad immune alterations including decreased humoral and cellular responses, inadequate immune regulation, weak response to vaccines and poor lymphoid organ development. In this review, we will examine the role of vitamin A in immunity and focus on several aspects of T cell biology such as T helper cell differentiation, function and homing, as well as lymphoid organ development. Further, we will provide an overview of the effects of vitamin A deficiency in the adaptive immune responses and how retinoic acid, through its effect on T cells can fine-tune the balance between tolerance and immunity. PMID:27304965

  16. Retinoid-X-Receptors (α/β) in Melanocytes Modulate Innate Immune Responses and Differentially Regulate Cell Survival following UV Irradiation

    PubMed Central

    Coleman, Daniel J.; Garcia, Gloria; Hyter, Stephen; Jang, Hyo Sang; Chagani, Sharmeen; Liang, Xiaobo; Larue, Lionel; Ganguli-Indra, Gitali; Indra, Arup K.

    2014-01-01

    Understanding the molecular mechanisms of ultraviolet (UV) induced melanoma formation is becoming crucial with more reported cases each year. Expression of type II nuclear receptor Retinoid-X-Receptor α (RXRα) is lost during melanoma progression in humans. Here, we observed that in mice with melanocyte-specific ablation of RXRα and RXRβ, melanocytes attract fewer IFN-γ secreting immune cells than in wild-type mice following acute UVR exposure, via altered expression of several chemoattractive and chemorepulsive chemokines/cytokines. Reduced IFN-γ in the microenvironment alters UVR-induced apoptosis, and due to this, the survival of surrounding dermal fibroblasts is significantly decreased in mice lacking RXRα/β. Interestingly, post-UVR survival of the melanocytes themselves is enhanced in the absence of RXRα/β. Loss of RXRs α/β specifically in the melanocytes results in an endogenous shift in homeostasis of pro- and anti-apoptotic genes in these cells and enhances their survival compared to the wild type melanocytes. Therefore, RXRs modulate post-UVR survival of dermal fibroblasts in a “non-cell autonomous” manner, underscoring their role in immune surveillance, while independently mediating post-UVR melanocyte survival in a “cell autonomous” manner. Our results emphasize a novel immunomodulatory role of melanocytes in controlling survival of neighboring cell types besides controlling their own, and identifies RXRs as potential targets for therapy against UV induced melanoma. PMID:24810760

  17. Stress Hyperglycemia, Insulin Treatment, and Innate Immune Cells

    PubMed Central

    Xiu, Fangming; Jeschke, Marc G.

    2014-01-01

    Hyperglycemia (HG) and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients. PMID:24899891

  18. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection

    PubMed Central

    Duan, Susu; Thomas, Paul G.

    2016-01-01

    Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022

  19. Balancing Immune Protection and Immune Pathology by CD8(+) T-Cell Responses to Influenza Infection.

    PubMed

    Duan, Susu; Thomas, Paul G

    2016-01-01

    Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8(+) cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity. PMID:26904022

  20. Beneficial Autoimmunity at Body Surfaces – Immune Surveillance and Rapid Type 2 Immunity Regulate Tissue Homeostasis and Cancer

    PubMed Central

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis. PMID:25101088

  1. Oral immune regulation: a novel method for modulation of anti-viral immunity.

    PubMed

    Margalit, Maya; Ilan, Yaron

    2004-12-01

    Chronic viral infections, including hepatitis B and C and human immunodeficiency virus (HIV) infections, afflict a significant part of the world's population. In many of these diseases, chronicity has been linked to defective anti-viral immunity that damages host tissues without producing viral clearance. Currently available therapeutic measures for chronic viral infections are limited. Oral immune regulation, the manipulation of immune responses towards antigens by their oral administration, is a relatively simple and antigen-specific immune-modulatory tool. Recent evidence suggests that induction of oral immune-regulation towards viral antigens may entail a complex immune effect, characterized by simultaneous enhancement and suppression of different elements of the immune response in a manner that benefits the host. Such manipulation of the immune response towards viruses may achieve a combination of upregulated specific anti-viral immunity and inhibition of immune-mediated damage. Oral immune regulation may prove to be an important addition to the available therapeutic arsenal for chronic viral infections. PMID:15567096

  2. Immune regulation in chronically transfused allo-antibody responder and nonresponder patients with sickle cell disease and β-thalassemia major.

    PubMed

    Bao, Weili; Zhong, Hui; Li, Xiaojuan; Lee, Margaret T; Schwartz, Joseph; Sheth, Sujit; Yazdanbakhsh, Karina

    2011-12-01

    Red blood cell alloimmunization is a major complication of transfusion therapy. Host immune markers that can predict antibody responders remain poorly described. As regulatory T cells (Tregs) play a role in alloimmunization in mouse models, we analyzed the Treg compartment of a cohort of chronically transfused patients with sickle cell disease (SCD, n = 22) and β-thalassemia major (n = 8) with and without alloantibodies. We found reduced Treg activity in alloantibody responders compared with nonresponders as seen in mice. Higher circulating anti-inflammatory IL-10 levels and lower IFN-γ levels were detected in non-alloimmunized SCD patients. Stimulated sorted CD4+ cells from half of the alloimmunized patients had increased frequency of IL-4 expression compared with nonresponders, indicating a skewed T helper (Th) 2 humoral immune response in a subgroup of antibody responders. All patients had increased Th17 responses, suggesting an underlying inflammatory state. Although small, our study indicates an altered immunoregulatory state in alloantibody responders which may help future identification of potential molecular risk factors for alloimmunization. PMID:21953592

  3. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses

    PubMed Central

    Verma, Saguna; Hoffmann, FuKun W.; Kumar, Mukesh; Huang, Zhi; Roe, Kelsey; Nguyen-Wu, Elizabeth; Hashimoto, Ann S.; Hoffmann, Peter R.

    2011-01-01

    Selenoprotein K (Sel K) is a selenium-containing protein for which no function has been identified. We found that Sel K is an endoplasmic reticulum (ER) transmembrane protein expressed at relatively high levels in immune cells and is regulated by dietary selenium. Sel K−/− mice were generated and found to be similar to WT controls regarding growth and fertility. Immune system development was not affected by Sel K deletion, but specific immune cell defects were found in Sel K−/− mice. Receptor-mediated Ca2+ flux was decreased in T cells, neutrophils, and macrophages from Sel K−/− mice compare to controls. Ca2+-dependent functions including T cell proliferation, T cell and neutrophil migration, and Fcγ-receptor-mediated oxidative burst in macrophages were decreased in cells from Sel K−/− mice compared to controls. West Nile virus (WNV) infections were performed and Sel K−/− mice exhibited decreased viral clearance in the periphery and increased viral titers in brain. Furthermore, WNV-infected Sel K−/− mice demonstrated significantly lower survival (2/23; 8.7%) compared to WT controls (10/26; 38.5%). These results establish Sel K as an ER-membrane protein important for promoting effective Ca2+ flux during immune cell activation and provide insight into molecular mechanisms by which dietary selenium enhances immune responses. PMID:21220695

  4. TGF-β in tolerance, development and regulation of immunity

    PubMed Central

    Johnston, Chris J.C.; Smyth, Danielle J.; Dresser, David W.; Maizels, Rick M.

    2016-01-01

    The TGF-β superfamily is an ancient metazoan protein class which cuts across cell and tissue differentiation, developmental biology and immunology. Its many members are regulated at multiple levels from intricate control of gene transcription, post-translational processing and activation, and signaling through overlapping receptor structures and downstream intracellular messengers. We have been interested in TGF-β homologues firstly as key players in the induction of immunological tolerance, the topic so closely associated with Ray Owen. Secondly, our interests in how parasites may manipulate the immune system of their host has also brought us to study the TGF-β pathway in infections with longlived, essentially tolerogenic, helminth parasites. Finally, within the spectrum of mammalian TGF-β proteins is an exquisitely tightly-regulated gene, anti-Müllerian hormone (AMH), whose role in sex determination underpins the phenotype of freemartin calves that formed the focus of Ray’s seminal work on immunological tolerance. PMID:26617281

  5. MiR-381-3p Regulates the Antigen-Presenting Capability of Dendritic Cells and Represses Antituberculosis Cellular Immune Responses by Targeting CD1c.

    PubMed

    Wen, Qian; Zhou, Chaoying; Xiong, Wenjing; Su, Jing; He, Jianchun; Zhang, Shimeng; Du, Xialin; Liu, Sudong; Wang, Juanjuan; Ma, Li

    2016-07-15

    Tuberculosis is still the widest spread infectious disease in the world, and more in-depth studies are needed on the interaction between the pathogen and the host. Due to the highest lipid components in Mycobacterium tuberculosis, the CD1 family that specifically presents antigenic lipids plays important roles in the antituberculosis immunity, especially CD1c, which functions as the intracellular Ag inspector at the full intracellular range. However, downregulation of the CD1c mRNA level has been observed in M. tuberculosis-infected cells, which is consistent with the regulatory mechanism of miRNA on gene expression. In this study, through combinatory analysis of previous miRNA transcriptomic assays and bioinformatic predictions by web-based algorithms, miR-381-3p was predicted to bind the 3'-untranslated region of CD1c gene. In vivo expression of miR-381-3p in dendritic cells (DCs) of TB patients is higher than in DCs of healthy individuals, inversely related to CD1c. Suppression of CD1c expression in bacillus Calmette-Guérin (BCG)-infected DCs was accompanied with upregulation of miR-381-3p, whereas inhibition of miR-381-3p could reverse suppression of CD1c expression and promote T cell responses against BCG infection. Further study indicated that miR-381-3p is also one of the mediators of the immune suppressor IL-10. Collectively, these results demonstrated the mechanism that suppression of CD1c by BCG infection is mediated by miR-381-3p. This finding may provide a novel approach to boost immune responses to M. tuberculosis. PMID:27296666

  6. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization

    PubMed Central

    Wang, Yujia; Bao, Ji; Wu, Xiujuan; Wu, Qiong; Li, Yi; Zhou, Yongjie; Li, Li; Bu, Hong

    2016-01-01

    Decellularized xenogeneic whole-liver matrices are plausible biomedical materials for the bioengineering of liver transplantation. A common method to reduce the inflammatory potential of xenogeneic matrices is crosslinking. Nevertheless, a comprehensive analysis of the immunogenic features of cross-linked decellularized tissue is still lacking. We aimed to reduce the immunogenicity of decellularized porcine whole-liver matrix through crosslinking with glutaraldehyde or genipin, a new natural agent, and investigated the mechanism of the immune-mediated responses. The histologic assessment of the host’s immune reaction activated in response to these scaffolds, as well as the M1/M2 phenotypic polarization profile of macrophages, was studied in vivo. The genipin-fixed scaffold elicited a predominantly M2 phenotype response, while the glutaraldehyde-fixed scaffold resulted in disrupted host tissue remodeling and a mixed macrophage polarization profile. The specific subsets of immune cells involved in the responses to the scaffolds were identified in vitro. Crosslinking alleviated the host response by reducing the proliferation of lymphocytes and their subsets, accompanied by a decreased release of both Th1 and Th2 cytokines. Therefore, we conclude that the natural genipin crosslinking could lower the immunogenic potential of xenogeneic decellularized whole-liver scaffolds. PMID:27098308

  7. Genipin crosslinking reduced the immunogenicity of xenogeneic decellularized porcine whole-liver matrices through regulation of immune cell proliferation and polarization

    NASA Astrophysics Data System (ADS)

    Wang, Yujia; Bao, Ji; Wu, Xiujuan; Wu, Qiong; Li, Yi; Zhou, Yongjie; Li, Li; Bu, Hong

    2016-04-01

    Decellularized xenogeneic whole-liver matrices are plausible biomedical materials for the bioengineering of liver transplantation. A common method to reduce the inflammatory potential of xenogeneic matrices is crosslinking. Nevertheless, a comprehensive analysis of the immunogenic features of cross-linked decellularized tissue is still lacking. We aimed to reduce the immunogenicity of decellularized porcine whole-liver matrix through crosslinking with glutaraldehyde or genipin, a new natural agent, and investigated the mechanism of the immune-mediated responses. The histologic assessment of the host’s immune reaction activated in response to these scaffolds, as well as the M1/M2 phenotypic polarization profile of macrophages, was studied in vivo. The genipin-fixed scaffold elicited a predominantly M2 phenotype response, while the glutaraldehyde-fixed scaffold resulted in disrupted host tissue remodeling and a mixed macrophage polarization profile. The specific subsets of immune cells involved in the responses to the scaffolds were identified in vitro. Crosslinking alleviated the host response by reducing the proliferation of lymphocytes and their subsets, accompanied by a decreased release of both Th1 and Th2 cytokines. Therefore, we conclude that the natural genipin crosslinking could lower the immunogenic potential of xenogeneic decellularized whole-liver scaffolds.

  8. Regulation of dendritic cell migration and adaptive immune response by leukotriene B4 receptors: a role for LTB4 in up-regulation of CCR7 expression and function

    PubMed Central

    Del Prete, Annalisa; Shao, Wen-Hai; Mitola, Stefania; Santoro, Giuseppe; Sozzani, Silvano; Haribabu, Bodduluri

    2007-01-01

    Trafficking of dendritic cells (DCs) to peripheral tissues and to secondary lymphoid organs depends on chemokines and lipid mediators. Here, we show that bone marrow–derived DCs (BM-DCs) express functional leukotriene B4 (LTB4) receptors as observed in dose-dependent chemotaxis and calcium mobilization responses. LTB4, at low concentrations, promoted the migration of immature and mature DCs to CCL19 and CCL21, which was associated with a rapid (30-minute) increase of CCR7 expression at the membrane level. At longer incubation times (6 hours), gene array analysis revealed a promoting role of LTB4, showing a significant increase of CCR7 and CCL19 mRNA levels. BM-DCs cultured from BLT1−/− or BLT1/2−/− mice showed a normal phenotype, but in vivo BLT1/2−/−DCs showed dramatic decrease in migration to the draining lymph nodes relative to wild-type (WT) DCs. Consistent with these observations, BLT1/2−/− mice showed a reduced response in a model of 2,4-dinitro-fluorobenzene (DNFB)–induced contact hypersensitivity. Adoptive transfer of 2,4-dinitrobenzene sulfonic acid (DNBS)–pulsed DCs directly implicated the defect in DC migration to lymph node with the defect in contact hypersensitivity. These results provide strong evidence for a role of LTB4 in regulating DC migration and the induction of adaptive immune responses. PMID:16985179

  9. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity.

    PubMed

    Chan, Pamela Y; Carrera Silva, Eugenio A; De Kouchkovsky, Dimitri; Joannas, Leonel D; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S; Herbert, De'Broski R; Craft, Joseph E; Flavell, Richard A; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G; Torgerson, Dara G; Ghosh, Sourav; Rothlin, Carla V

    2016-04-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded byTyro3in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell-specificPros1knockouts phenocopied the loss ofTyro3 Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses. PMID:27034374

  10. Natural killer cell regulation - beyond the receptors

    PubMed Central

    Urlaub, Doris; Fasbender, Frank; Claus, Maren

    2014-01-01

    Natural killer (NK) cells are lymphocytes that are important for early and effective immune responses against infections and cancer. In the last 40 years, many receptors, their corresponding ligands and signaling pathways that regulate NK cell functions have been identified. However, we now know that additional processes, such as NK cell education, differentiation and also the formation of NK cell memory, have a great impact on the reactivity of these cells. Here, we summarize the current knowledge about these modulatory processes. PMID:25374665

  11. Mucosal dendritic cells shape mucosal immunity

    PubMed Central

    Chang, Sun-Young; Ko, Hyun-Jeong; Kweon, Mi-Na

    2014-01-01

    Dendritic cells (DCs) are key modulators that shape the immune system. In mucosal tissues, DCs act as surveillance systems to sense infection and also function as professional antigen-presenting cells that stimulate the differentiation of naive T and B cells. On the basis of their molecular expression, DCs can be divided into several subsets with unique functions. In this review, we focus on intestinal DC subsets and their function in bridging the innate signaling and adaptive immune systems to maintain the homeostasis of the intestinal immune environment. We also review the current strategies for manipulating mucosal DCs for the development of efficient mucosal vaccines to protect against infectious diseases. PMID:24626170

  12. Maintenance of Immune Homeostasis through ILC/T Cell Interactions

    PubMed Central

    von Burg, Nicole; Turchinovich, Gleb; Finke, Daniela

    2015-01-01

    Innate lymphoid cells (ILCs) have emerged as a new family of immune cells with crucial functions in innate and adaptive immunity. ILC subsets mirror the cytokine and transcriptional profile of CD4+ T helper (TH) cell subsets. Hence, group 1 (ILC1), group 2 (ILC2), and group 3 (ILC3) ILCs can be distinguished by the production of TH1, TH2, and TH17-type cytokines, respectively. Cytokine release by ILCs not only shapes early innate immunity but can also orchestrate TH immune responses to microbial or allergen exposure. Recent studies have identified an unexpected effector function of ILCs as antigen presenting cells. Both ILC2s and ILC3s are able to process and present foreign antigens (Ags) via major histocompatibility complex class II, and to induce cognate CD4+ T cell responses. In addition, Ag-stimulated T cells promote ILC activation and effector functions indicating a reciprocal interaction between the adaptive and innate immune system. A fundamental puzzle in ILC function is how ILC/T cell interactions promote host protection and prevent autoimmune diseases. Furthermore, the way in which microenvironmental and inflammatory signals determine the outcome of ILC/T cell immune responses in various tissues is not yet understood. This review focuses on recent advances in understanding the mechanisms that coordinate the collaboration between ILCs and T cells under homeostatic and inflammatory conditions. We also discuss the potential roles of T cells and other immune cells to regulate ILC functions and to maintain homeostasis in mucosal tissues. PMID:26322047

  13. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    PubMed Central

    Curtale, Graziella; Citarella, Franca

    2013-01-01

    Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs) in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs) are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs) could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response. PMID:23975170

  14. Tomato 14-3-3 protein 7 (TFT7) positively regulates immunity-associated programmed cell death by enhancing accumulation and signaling ability of MAPKKKalpha

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Programmed cell death (PCD) is triggered when Pto, a serine-threonine protein kinase recognizes either the AvrPto or AvrPtoB effector from Pseudomonas syringae pv. tomato. This PCD requires MAPKKKalpha as a positive regulator in tomato and Nicotiana benthamiana. To examine how PCD-eliciting activi...

  15. Orchestration of Angiogenesis by Immune Cells

    PubMed Central

    Bruno, Antonino; Pagani, Arianna; Pulze, Laura; Albini, Adriana; Dallaglio, Katiuscia; Noonan, Douglas M.; Mortara, Lorenzo

    2014-01-01

    It is widely accepted that the tumor microenvironment (TUMIC) plays a major role in cancer and is indispensable for tumor progression. The TUMIC involves many “players” going well beyond the malignant-transformed cells, including stromal, immune, and endothelial cells (ECs). The non-malignant cells can acquire tumor-promoting functions during carcinogenesis. In particular, these cells can “orchestrate” the “symphony” of the angiogenic switch, permitting the creation of new blood vessels that allows rapid expansion and progression toward malignancy. Considerable attention within the context of tumor angiogenesis should focus not only on the ECs, representing a fundamental unit, but also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating tumors typically show a tumor-induced polarization associated with attenuation of anti-tumor functions and generation of pro-tumor activities, among these angiogenesis. Here, we propose a scenario suggesting that the angiogenic switch is an immune switch arising from the pro-angiogenic polarization of immune cells. This view links immunity, inflammation, and angiogenesis to tumor progression. Here, we review the data in the literature and seek to identify the “conductors” of this “orchestra.” We also suggest that interrupting the immune → inflammation → angiogenesis → tumor progression process can delay or prevent tumor insurgence and malignant disease. PMID:25072019

  16. Microbiota activation and regulation of innate and adaptive immunity

    PubMed Central

    Alexander, Katie L.; Targan, Stephan R.; Elson, Charles O.

    2014-01-01

    Summary The human host has co-evolved with the collective of bacteria species, termed microbiota, in a complex fashion that affects both innate and adaptive immunity. Differential regulation of regulatory T-cell and effector T-cell responses are a direct result of specific microbial species present within the gut, and this relationship is subject is dysregulation during inflammation and disease. The microbiota varies widely between individuals and has a profound effect on how one reacts to various environmental stimuli, particularly if a person is genetically predisposed to an immune-mediated inflammatory disorder such as inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC). Approximately half of all CD patients have elevated antibodies to CBir1, a microbiota flagellin common to mice and humans, demonstrating flagellins as immunodominant antigens in the intestines. This review focuses on the use of flagellins as probes to study microbiota specific responses in the context of health and disease as well as probes of innate and adaptive responses employed by the host to deal with the overwhelming bacterial presence of the microbiota. PMID:24942691

  17. Mitochondria in the regulation of innate and adaptive immunity

    PubMed Central

    Weinberg, Samuel E.; Sena, Laura A.; Chandel, Navdeep S.

    2015-01-01

    Summary Mitochondria are well appreciated for their role as biosynthetic and bioenergetic organelles. In the past two decades, mitochondria have emerged as signaling organelles that contribute critical decisions about cell proliferation, death and differentiation. Mitochondria not only sustain immune cell phenotypes but also are necessary for establishing immune cell phenotype and their function. Mitochondria can rapidly switch from primarily being catabolic organelles generating ATP to anabolic organelles that generate both ATP and building blocks for macromolecule synthesis. This enables them to fulfill appropriate metabolic demands of different immune cells. Mitochondria have multiple mechanisms that allow them to activate signaling pathways in the cytosol including altering in AMP/ATP ratio, the release of ROS and TCA cycle metabolites, as well as the localization of immune regulatory proteins on the outer mitochondrial membrane. In this Review, we discuss the evidence and mechanisms that mitochondrial dependent signaling controls innate and adaptive immune responses. PMID:25786173

  18. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity

    PubMed Central

    Chan, Pamela Y.; Carrera Silva, Eugenio A.; De Kouchkovsky, Dimitri; Joannas, Leonel D.; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S.; Herbert, De’Broski R.; Craft, Joseph E.; Flavell, Richard A.; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G.; Torgerson, Dara G.; Ghosh, Sourav; Rothlin, Carla V.

    2016-01-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded by Tyro3 in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell–specific Pros1 knockouts phenocopied the loss of Tyro3. Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses. PMID:27034374

  19. Effect of dietary selenium on T cell immunity and cancer xenograft in nude mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenium is known to regulate carcinogenesis and immunity at nutritional and supranutritional levels. Because the immune system provides one of the main body defenses against cancer, we asked whether T cell immunity can modulate selenium chemoprevention. Twenty-four homozygous NU/J nude mice were fe...

  20. Oxidative stress in the haematopoietic niche regulates the cellular immune response in Drosophila.

    PubMed

    Sinenko, Sergey A; Shim, Jiwon; Banerjee, Utpal

    2012-01-01

    Oxidative stress induced by high levels of reactive oxygen species (ROS) is associated with the development of different pathological conditions, including cancers and autoimmune diseases. We analysed whether oxidatively challenged tissue can have systemic effects on the development of cellular immune responses using Drosophila as a model system. Indeed, the haematopoietic niche that normally maintains blood progenitors can sense oxidative stress and regulate the cellular immune response. Pathogen infection induces ROS in the niche cells, resulting in the secretion of an epidermal growth factor-like cytokine signal that leads to the differentiation of specialized cells involved in innate immune responses. PMID:22134547

  1. The role of airway epithelial cells and innate immune cells in chronic respiratory disease

    PubMed Central

    Holtzman, Michael J.; Byers, Derek E.; Alexander-Brett, Jennifer; Wang, Xinyu

    2016-01-01

    An abnormal immune response to environmental agents is generally thought to be responsible for causing chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Based on studies of experimental models and human subjects, there is increasing evidence that the response of the innate immune system is crucial for the development of this type of airway disease. Airway epithelial cells and innate immune cells represent key components of the pathogenesis of chronic airway disease and are emerging targets for new therapies. In this Review, we summarize the innate immune mechanisms by which airway epithelial cells and innate immune cells regulate the development of chronic respiratory diseases. We also explain how these pathways are being targeted in the clinic to treat patients with these diseases. PMID:25234144

  2. Meeting the challenges of measuring human immune regulation.

    PubMed

    Martino, David; Allen, Katrina

    2015-09-01

    Data is now emerging that many human diseases not previously considered immune diseases have an immunological basis. As such human immunology is in need of more standardized systems-wide methods for monitoring immune regulation. Despite significant advances in basic immunology research, thousands of patients visiting health practitioners daily still have no reliable immunological metrics by which to assess the status of their immune health beyond the standard blood count. Further investigations are costly, time consuming and often don't offer significant insights into the mechanics of immune deviation or regulation. The immune system meets many criteria of complex biological networks and therefore systems-wide approaches are highly suitable to determining the emergent properties of immune responses. Standardization of immune monitoring, the development of new technology and integrated informatics approaches are needed in order to identify useful hematological and serological markers that are informative for immune health. This brief review outlines some of the more promising developments in systems immunology. PMID:25956036

  3. Immune signature of tumor infiltrating immune cells in renal cancer

    PubMed Central

    Geissler, Katharina; Fornara, Paolo; Lautenschläger, Christine; Holzhausen, Hans-Jürgen; Seliger, Barbara; Riemann, Dagmar

    2015-01-01

    Tumor-associated immune cells have been discussed as an essential factor for the prediction of the outcome of tumor patients. Lymphocyte-specific genes are associated with a favorable prognosis in colorectal cancer but with poor survival in renal cell carcinoma (RCC). Flow cytometric analyses combined with immunohistochemistry were performed to study the phenotypic profiles of tumor infiltrating lymphocytes (TIL) and the frequency of T cells and macrophages in RCC lesions. Data were correlated with clinicopathological parameters and survival of patients. Comparing oncocytoma and clear cell (cc)RCC, T cell numbers as well as activation-associated T cell markers were higher in ccRCC, whereas the frequency of NK cells was higher in oncocytoma. An intratumoral increase of T cell numbers was found with higher tumor grades (G1:G2:G3/4 = 1:3:4). Tumor-associated macrophages slightly increased with dedifferentiation, although the macrophage-to-T cell ratio was highest in G1 tumor lesions. A high expression of CD57 was found in T cells of early tumor grades, whereas T cells in dedifferentiated RCC lesions expressed higher levels of CD69 and CTLA4. TIL composition did not differ between older (>70 y) and younger (<58 y) patients. Enhanced patients’ survival was associated with a higher percentage of tumor infiltrating NK cells and Th1 markers, e.g. HLA-DR+ and CXCR3+ T cells, whereas a high number of T cells, especially with high CD69 expression correlated with a worse prognosis of patients. Our results suggest that immunomonitoring of RCC patients might represent a useful tool for the prediction of the outcome of RCC patients. PMID:25949868

  4. Abnormal immune regulation and low-grade inflammation in IBS: does one size fit all?

    PubMed

    Schmulson, Max; Chey, William D

    2012-02-01

    Evidences suggest that there is low-grade inflammation in the colonic mucosa and/or a state of immune activation in patients with irritable bowel syndrome (IBS). Results from available studies are inconsistent mainly because of differences in measures, methodologies and study populations. In this issue, Chang et al. evaluated a comprehensive set of cytokines, immune markers and immune-related cells in patients with non post infectious IBS (non PI-IBS) and controls. The main finding was a lower expression of the mRNA of the anti-inflammatory IL-10 cytokine in the colonic mucosa of women with non PI-IBS without any differences in the cell counts. These results suggest that in non PI-IBS, there is altered immune regulation/activation without evidence of low-grade mucosal inflammation. Further, PI and non PI-IBS may be associated with different alterations in immune function/activation. PMID:22306945

  5. [RGS proteins (regulators of G protein signaling) and their roles in regulation of immune response].

    PubMed

    Lewandowicz, Anna M; Kowalski, Marek L; Pawliczak, Rafał

    2004-01-01

    RGS proteins (Regulators of G-protein Signaling) comprise a protein family responsible for regulating G proteins. By enhancing the GTPase activity of the a subunit, they speed up the reconstruction of the heterotrimeric structure of G protein, thus inhibiting its signal transduction. Sst2 protein in yeast Saccharomyces cervisiae, FlbA in fungus Aspergillus nidulans, and Egl-10 in the nematode Caenorhabditis elegans are the first native G regulators with GTPase activity (GAPs:--GTPase-activating proteins). The existence of over 30 RGS human proteins has been confirmed thus far, and they have been grouped and classified into six subfamilies. In immunocompetent cells, RGS proteins are entangled in a complicate net of different interrelating signal pathways. They are connected with B- and T-cell chemokine susceptibility, efficient T cell proliferation, and the regulation of B cell maturation. They also take an essential part in inflammation. High hopes are held for drugs, which handle would be RGS proteins and which would further provide the possibility of modifying the pharmacokinetics of drugs acting through G protein- coupled receptors. The aim of this review is to discuss the new RGS protein family and explain the potential involvement of RGS proteins in the modulation of the immune response PMID:15459549

  6. Tissue Specific Heterogeneity in Effector Immune Cell Response

    PubMed Central

    Tufail, Saba; Badrealam, Khan Farheen; Sherwani, Asif; Gupta, Umesh D.; Owais, Mohammad

    2013-01-01

    Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct “homing codes” (adhesion molecules and chemokine receptors) during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A) and sunlight (vitamin D3) prime dendritic cells, imprinting them to play centre stage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue-tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues along with giving an overview of tissue tropism in B cells. PMID:23986763

  7. Inflammatory and Immune Activation in Intestinal Myofibroblasts Is Developmentally Regulated.

    PubMed

    Zawahir, Sharmila; Li, Guanghui; Banerjee, Aditi; Shiu, Jessica; Blanchard, Thomas G; Okogbule-Wonodi, Adora C

    2015-08-01

    We previously demonstrated that intestinal myofibroblasts from immature tissue produce excessive IL-8 in response to Escherichia coli lipopolysaccharide (LPS) compared to cells from mature tissue. However, it is unknown whether other cytokines and TLR agonists contribute to this developmentally regulated response. The aim of this study was to further characterize differences in inflammatory signaling in human primary intestinal fibroblasts from fetal (FIF) and infant (IIF) tissue and examine their potential to activate the adaptive immune response in vitro. Cytokine profiles of LPS-stimulated FIF and IIF were assessed by cytokine profile array. IL-8, IL-6, and IL-10 production in response to TLR2, TLR2/6, TLR4, and TLR5 agonists was determined by quantitative ELISA. The potential of activated myofibroblasts to activate adaptive immunity was determined by measuring surface class II MHC expression using flow cytometry. LPS-stimulated FIF produced a distinct proinflammatory cytokine profile consisting of MCP-1, GRO-alpha, IL-6, and IL-8 expression. FIF produced significant IL-8 and IL-6 in response to TLR4 agonist. IIF produced significant levels of IL-8 and IL-6 in the presence of TLR5 and TLR2 agonists. IFN-γ-treated FIF expressed greater HLA-DR levels compared to unstimulated controls and IFN-γ- and LPS-treated IIF. Activated FIF produce a more diverse inflammatory cytokine profile and greater levels of IL-8 and IL-6 in response to TLR4 stimulation compared to IIF. FIF express class II MHC proteins associated with activation of the adaptive immune response. These data suggest that FIF may contribute to bacterial-associated gut inflammation in the immature intestine. PMID:26101946

  8. Inflammatory and Immune Activation in Intestinal Myofibroblasts Is Developmentally Regulated

    PubMed Central

    Zawahir, Sharmila; Li, Guanghui; Banerjee, Aditi; Shiu, Jessica; Blanchard, Thomas G.

    2015-01-01

    We previously demonstrated that intestinal myofibroblasts from immature tissue produce excessive IL-8 in response to Escherichia coli lipopolysaccharide (LPS) compared to cells from mature tissue. However, it is unknown whether other cytokines and TLR agonists contribute to this developmentally regulated response. The aim of this study was to further characterize differences in inflammatory signaling in human primary intestinal fibroblasts from fetal (FIF) and infant (IIF) tissue and examine their potential to activate the adaptive immune response in vitro. Cytokine profiles of LPS-stimulated FIF and IIF were assessed by cytokine profile array. IL-8, IL-6, and IL-10 production in response to TLR2, TLR2/6, TLR4, and TLR5 agonists was determined by quantitative ELISA. The potential of activated myofibroblasts to activate adaptive immunity was determined by measuring surface class II MHC expression using flow cytometry. LPS-stimulated FIF produced a distinct proinflammatory cytokine profile consisting of MCP-1, GRO-alpha, IL-6, and IL-8 expression. FIF produced significant IL-8 and IL-6 in response to TLR4 agonist. IIF produced significant levels of IL-8 and IL-6 in the presence of TLR5 and TLR2 agonists. IFN-γ-treated FIF expressed greater HLA-DR levels compared to unstimulated controls and IFN-γ- and LPS-treated IIF. Activated FIF produce a more diverse inflammatory cytokine profile and greater levels of IL-8 and IL-6 in response to TLR4 stimulation compared to IIF. FIF express class II MHC proteins associated with activation of the adaptive immune response. These data suggest that FIF may contribute to bacterial-associated gut inflammation in the immature intestine. PMID:26101946

  9. PreImplantation factor (PIF*) regulates systemic immunity and targets protective regulatory and cytoskeleton proteins.

    PubMed

    Barnea, Eytan R; Hayrabedyan, Soren; Todorova, Krassimira; Almogi-Hazan, Osnat; Or, Reuven; Guingab, Joy; McElhinney, James; Fernandez, Nelson; Barder, Timothy

    2016-07-01

    Secreted by viable embryos, PIF is expressed by the placenta and found in maternal circulation. It promotes implantation and trophoblast invasion, achieving systemic immune homeostasis. Synthetic PIF successfully transposes endogenous PIF features to non-pregnant immune and transplant models. PIF affects innate and activated PBMC cytokines and genes expression. We report that PIF targets similar proteins in CD14+, CD4+ and CD8+ cells instigating integrated immune regulation. PIF-affinity chromatography followed by mass-spectrometry, pathway and heatmap analysis reveals that SET-apoptosis inhibitor, vimentin, myosin-9 and calmodulin are pivotal for immune regulation. PIF acts on macrophages down-stream of LPS (lipopolysaccharide-bacterial antigen) CD14/TLR4/MD2 complex, targeting myosin-9, thymosin-α1 and 14-3-3eta. PIF mainly targets platelet aggregation in CD4+, and skeletal proteins in CD8+ cells. Pathway analysis demonstrates that PIF targets and regulates SET, tubulin, actin-b, and S100 genes expression. PIF targets systemic immunity and has a short circulating half-life. Collectively, PIF targets identified; protective, immune regulatory and cytoskeleton proteins reveal mechanisms involved in the observed efficacy against immune disorders. PMID:26944449

  10. Regulation of immune responses and tolerance: the microRNA perspective

    PubMed Central

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-01-01

    Summary Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/ or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. PMID:23550642

  11. Hepatocytes: a key cell type for innate immunity.

    PubMed

    Zhou, Zhou; Xu, Ming-Jiang; Gao, Bin

    2016-05-01

    Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis. PMID:26685902

  12. Hepatocytes: a key cell type for innate immunity

    PubMed Central

    Zhou, Zhou; Xu, Ming-Jiang; Gao, Bin

    2016-01-01

    Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis. PMID:26685902

  13. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D

    PubMed Central

    Wei, Ran; Christakos, Sylvia

    2015-01-01

    Non-classical actions of vitamin D were first suggested over 30 years ago when receptors for the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), were detected in various tissues and cells that are not associated with the regulation of calcium homeostasis, including activated human inflammatory cells. The question that remained was the biological significance of the presence of vitamin D receptors in the different tissues and cells and, with regard to the immune system, whether or not vitamin D plays a role in the normal immune response and in modifying immune mediated diseases. In this article findings indicating that vitamin D is a key factor regulating both innate and adaptive immunity are reviewed with a focus on the molecular mechanisms involved. In addition, the physiological significance of vitamin D action, as suggested by in vivo studies in mouse models is discussed. Together, the findings indicate the importance of 1,25(OH)2D3 as a regulator of key components of the immune system. An understanding of the mechanisms involved will lead to potential therapeutic applications for the treatment of immune mediated diseases. PMID:26404359

  14. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity

    PubMed Central

    McGaha, Tracy L.; Huang, Lei; Lemos, Henrique; Metz, Richard; Mautino, Mario; Prendergast, George C.; Mellor, Andrew L.

    2014-01-01

    Summary Enhanced amino acid catabolism is a common response to inflammation, but the immunologic significance of altered amino acid consumption remains unclear. The finding that tryptophan catabolism helped maintain fetal tolerance during pregnancy provided novel insights into the significance of amino acid metabolism in controlling immunity. Recent advances in identifying molecular pathways that enhance amino acid catabolism and downstream mechanisms that affect immune cells in response to inflammatory cues support the notion that amino acid catabolism regulates innate and adaptive immune cells in pathologic settings. Cells expressing enzymes that degrade amino acids modulate antigen-presenting cell and lymphocyte functions and reveal critical roles for amino acid- and catabolite-sensing pathways in controlling gene expression, functions, and survival of immune cells. Basal amino acid catabolism may contribute to immune homeostasis that prevents autoimmunity, whereas elevated amino acid catalytic activity may reinforce immune suppression to promote tumorigenesis and persistence of some pathogens that cause chronic infections. For these reasons, there is considerable interest in generating novel drugs that inhibit or induce amino acid consumption and target downstream molecular pathways that control immunity. In this review, we summarize recent developments and highlight novel concepts and key outstanding questions in this active research field. PMID:22889220

  15. Regulation of innate and acquired immunity in African trypanosomiasis.

    PubMed

    Mansfield, J M; Paulnock, D M

    2005-01-01

    African trypanosomes are well known for their ability to avoid immune elimination by switching the immunodominant variant surface glycoprotein (VSG) coat during infection. However, antigenic variation is only one of several means by which trypanosomes manipulate the immune system of their hosts. In this article, the role of parasite factors such as GPI anchor residues of the shed VSG molecule and the release of CpG DNA, in addition to host factors such as IFN-gamma, in regulating key aspects of innate and acquired immunity during infection is examined. The biological relevance of these immunoregulatory events is discussed in the context of host and parasite survival. PMID:16179030

  16. The spleen in local and systemic regulation of immunity

    PubMed Central

    Bronte, Vincenzo; Pittet, Mikael J

    2013-01-01

    Summary The spleen is the main filter for blood-borne pathogens and antigens, as well as a key organ for iron metabolism and erythrocyte homeostasis. However, immune and hematopoietic functions have been recently unveiled for the mouse spleen, suggesting additional roles for this secondary lymphoid organ. Here we discuss the integration of the spleen in the regulation of immune responses locally and in the whole body and present the relevance of findings for our understanding of inflammatory and degenerative diseases and their treatments. We also consider whether equivalent activities in humans are known, as well as initial therapeutic attempts to target the spleen for modulating innate and adaptive immunity. PMID:24238338

  17. Extracellular Membrane Vesicles and Immune Regulation in the Brain

    PubMed Central

    Cossetti, Chiara; Smith, Jayden A.; Iraci, Nunzio; Leonardi, Tommaso; Alfaro-Cervello, Clara; Pluchino, Stefano

    2012-01-01

    The brain is characterized by a complex and integrated network of interacting cells in which cell-to-cell communication is critical for proper development and function. Initially considered as an immune privileged site, the brain is now regarded as an immune specialized system. Accumulating evidence reveals the presence of immune components in the brain, as well as extensive bidirectional communication that takes place between the nervous and the immune system both under homeostatic and pathological conditions. In recent years the secretion of extracellular membrane vesicles (EMVs) has been described as a new and evolutionary well-conserved mechanism of cell-to-cell communication, with EMVs influencing the microenvironment through the traffic of bioactive molecules that include proteins and nucleic acids, such as DNA, protein coding, and non-coding RNAs. Increasing evidence suggests that EMVs are a promising candidate to study cross-boundary cell-to-cell communication pathways. Herein we review the role of EMVs secreted by neural cells in modulating the immune response(s) within the brain under physiological and pathological circumstances. PMID:22557978

  18. Mating triggers dynamic immune regulations in wood ant queens.

    PubMed

    Castella, G; Christe, P; Chapuisat, M

    2009-03-01

    Mating can affect female immunity in multiple ways. On the one hand, the immune system may be activated by pathogens transmitted during mating, sperm and seminal proteins, or wounds inflicted by males. On the other hand, immune defences may also be down-regulated to reallocate resources to reproduction. Ants are interesting models to study post-mating immune regulation because queens mate early in life, store sperm for many years, and use it until their death many years later, while males typically die after mating. This long-term commitment between queens and their mates limits the opportunity for sexual conflict but raises the new constraint of long-term sperm survival. In this study, we examine experimentally the effect of mating on immunity in wood ant queens. Specifically, we compared the phenoloxidase and antibacterial activities of mated and virgin Formica paralugubris queens. Queens had reduced levels of active phenoloxidase after mating, but elevated antibacterial activity 7 days after mating. These results indicate that the process of mating, dealation and ovary activation triggers dynamic patterns of immune regulation in ant queens that probably reflect functional responses to mating and pathogen exposure that are independent of sexual conflict. PMID:19170815

  19. Identification of cellular microRNA-136 as a dual regulator of RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in A549 cells

    PubMed Central

    Zhao, Lianzhong; Zhu, Jiping; Zhou, Hongbo; Zhao, Zongzheng; Zou, Zhong; Liu, Xiaokun; Lin, Xian; Zhang, Xue; Deng, Xuexia; Wang, Ruifang; Chen, Huanchun; Jin, Meilin

    2015-01-01

    H5N1 influenza A virus (IAV) causes severe respiratory diseases and high mortality rates in animals and humans. MicroRNAs are being increasingly studied to evaluate their potential as therapeutic entities to combat viral infection. However, mechanistic studies delineating the roles of microRNAs in regulating host-H5N1 virus interactions remain scarce. Here, we performed microRNA microarray analysis using A549 human lung epithelial cells infected with a highly pathogenic avian influenza virus. The microRNA expression profile of infected cells identified a small number of microRNAs being dysregulated upon H5N1 influenza A virus infection. Of the differentially expressed microRNAs, miR-136 was up-regulated 5-fold and exhibited potent antiviral activity in vitro against H5N1 influenza A virus, as well as vesicular stomatitis virus. On the one hand, 3′-untranslated region (UTR) reporter analysis revealed a miR-136 binding site in the 3′ UTR of IL-6. However, on the other hand, we subsequently determined that miR-136 meanwhile acts as an immune agonist of retinoic acid-inducible gene 1 (RIG-I), thereby causing IL-6 and IFN-β accumulation in A549 cells. Overall, this study implicates the dual role of miRNA-136 in the regulation of host antiviral innate immunity and suggests an important role for the microRNA-activated pathway in viral infection via pattern recognition receptors. PMID:26450567

  20. Identification of cellular microRNA-136 as a dual regulator of RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in A549 cells.

    PubMed

    Zhao, Lianzhong; Zhu, Jiping; Zhou, Hongbo; Zhao, Zongzheng; Zou, Zhong; Liu, Xiaokun; Lin, Xian; Zhang, Xue; Deng, Xuexia; Wang, Ruifang; Chen, Huanchun; Jin, Meilin

    2015-01-01

    H5N1 influenza A virus (IAV) causes severe respiratory diseases and high mortality rates in animals and humans. MicroRNAs are being increasingly studied to evaluate their potential as therapeutic entities to combat viral infection. However, mechanistic studies delineating the roles of microRNAs in regulating host-H5N1 virus interactions remain scarce. Here, we performed microRNA microarray analysis using A549 human lung epithelial cells infected with a highly pathogenic avian influenza virus. The microRNA expression profile of infected cells identified a small number of microRNAs being dysregulated upon H5N1 influenza A virus infection. Of the differentially expressed microRNAs, miR-136 was up-regulated 5-fold and exhibited potent antiviral activity in vitro against H5N1 influenza A virus, as well as vesicular stomatitis virus. On the one hand, 3'-untranslated region (UTR) reporter analysis revealed a miR-136 binding site in the 3' UTR of IL-6. However, on the other hand, we subsequently determined that miR-136 meanwhile acts as an immune agonist of retinoic acid-inducible gene 1 (RIG-I), thereby causing IL-6 and IFN-β accumulation in A549 cells. Overall, this study implicates the dual role of miRNA-136 in the regulation of host antiviral innate immunity and suggests an important role for the microRNA-activated pathway in viral infection via pattern recognition receptors. PMID:26450567

  1. Lymph node trafficking of regulatory T cells is prerequisite for immune suppression.

    PubMed

    Huang, Miao-Tzu; Lin, Been-Ren; Liu, Wei-Liang; Lu, Chun-Wei; Chiang, Bor-Luen

    2016-04-01

    Regulatory T cells have a crucial role in health and disease because of their immune regulation function. However, the anatomic sites where regulatory T cells exert optimal immune regulation are open to debate. In our current study with the use of a shear-stress flow assay, we found that regulatory T cells exhibited significantly decreased adhesion to either activated endothelial monolayer or intercellular adhesion molecule 1 or E-selectin-coated surfaces compared with activated effector T cells. The less transmigration capacity of the regulatory T cells prompted our speculation of preferential lymph node localization for the regulatory T cells that endowed these cells with immune regulation function in the most efficient manner. To test this hypothesis, the role of lymph node localization in regulatory T cell-mediated immune suppression was evaluated with a footpad inflammation model. We found that adoptively transferred regulatory T cells inhibited the development of footpad inflammation. In addition, although blockage of CCR7 or CD62L had no effect on the immune suppressive function of the regulatory T cells per se, pretreatment of the regulatory T cells with either CCR7 or CD62L blocking antibodies prevented their recruitment into draining lymph nodes and concomitantly abrogated the immune suppressive effects of adoptively transferred regulatory T cells during footpad inflammation. Our data demonstrate the crucial role of lymph node localization in regulatory T cell-mediated immune suppression and suggest a probable hierarchy in the anatomic sites for optimal immune regulation. Elucidating the relationships between the transmigration characteristics of the regulatory T cells and their immune regulation function will provide insightful information for regulatory T cell-based cell therapy. PMID:26543091

  2. Variant innate immune responses of mammary epithelial cells to challenge by Staphylococcus aureus, Escherichia coli and the regulating effect of taurine on these bioprocesses.

    PubMed

    Zheng, Liuhai; Xu, Yuanyuan; Lu, Jinye; Liu, Ming; Bin Dai; Miao, Jinfeng; Yin, Yulong

    2016-07-01

    Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are important pathogens causing subclinical and clinical bovine mastitis, respectively. Taurine, an organic acid found in animal tissues, has been used for the treatment of various superficial infections and chronic inflammations. We challenged a bovine mammary epithelial cell (MEC) line (MAC-T) or a mouse mammary epithelial cell line (EpH4-Ev) with either E. coli or S. aureus and compared the responses of MECs to these 2 pathogens. We also examined the regulatory effects of taurine on these responses. Receptor analyses showed that both TLR2 and TLR4 are upregulated upon exposure to either E. coli or S. aureus. Taurine pre-treatment dampened upregulation to some extent. E. coli and S. aureus stimulated comparable levels of ROS, which could be inhibited by taurine pre-treatment. E. coli infection elicited a dramatic change in iNOS expression. Taurine significantly decreased iNOS expression in the S. aureus challenged group. Protein microarray demonstrated that 32/40 and 8/40 inflammatory molecules/mediators were increased after E. coli or S. aureus challenge, respectively. The fold changes of most molecules were higher in the E. coli infection group than that in the S. aureus infection group. Taurine negatively regulated the inflammatory profile in both bacterial infections. Pro-inflammatory cytokines (such as TNF-α) connected with TLR activation were down-regulated by taurine pre-treatment. The influence of TAK-242 and OxPAPC on cytokine/molecule expression profiles to E. coli challenge are different than to S. aureus. Some important factors (MyD88, TNF-α, IL-1β, iNOS and IL-6) mediated by TLR activation were suppressed either in protein microarray or special assay (PCR/kits) or both. TAK-242 restrained ROS production and NAGase activity similar to the effect of taurine in E. coli challenge groups. The detection of 3 indices (T-AOC, SOD and MDA) reflecting oxidative stress in vivo, showed that

  3. Epigenetic Dysfunction in Turner Syndrome Immune Cells.

    PubMed

    Thrasher, Bradly J; Hong, Lee Kyung; Whitmire, Jason K; Su, Maureen A

    2016-05-01

    Turner syndrome (TS) is a chromosomal condition associated with partial or complete absence of the X chromosome that involves characteristic findings in multiple organ systems. In addition to well-known clinical characteristics such as short stature and gonadal failure, TS is also associated with T cell immune alterations and chronic otitis media, suggestive of a possible immune deficiency. Recently, ubiquitously transcribed tetratricopeptide repeat on the X chromosome (UTX), a histone H3 lysine 27 (H3K27) demethylase, has been identified as a downregulated gene in TS immune cells. Importantly, UTX is an X-linked gene that escapes X-chromosome inactivation and thus is haploinsufficient in TS. Mice with T cell-specific UTX deficiency have impaired clearance of chronic viral infection due to decreased frequencies of T follicular helper (Tfh) cells, which are critical for B cell antibody generation. In parallel, TS patients have decreased Tfh frequencies in peripheral blood. Together, these findings suggest that haploinsufficiency of the X-linked UTX gene in TS T cells underlies an immune deficit, which may manifest as increased predisposition to chronic otitis media. PMID:27039394

  4. Spatiotemporal Regulation of Hsp90–Ligand Complex Leads to Immune Activation

    PubMed Central

    Tamura, Yasuaki; Yoneda, Akihiro; Takei, Norio; Sawada, Kaori

    2016-01-01

    Although heat shock proteins (HSPs) primarily play a pivotal role in the maintenance of cellular homeostasis while reducing extracellular as well as intracellular stresses, their role in immunologically relevant scenarios, including activation of innate immunity as danger signals, antitumor immunity, and autoimmune diseases, is now gaining much attention. The most prominent feature of HSPs is that they function both in their own and as an HSP–ligand complex. We here show as a unique feature of extracellular HSPs that they target chaperoned molecules into a particular endosomal compartment of dendritic cells, thereby inducing innate and adaptive immune responses via spatiotemporal regulation. PMID:27252703

  5. The immune microenvironment in Hodgkin lymphoma: T cells, B cells, and immune checkpoints

    PubMed Central

    Vardhana, Santosha; Younes, Anas

    2016-01-01

    Classical Hodgkin lymphoma is curable in the majority of cases with chemotherapy and/or radiation. However, 15–20% of patients ultimately relapse and succumb to their disease. Pathologically, classical Hodgkin lymphoma is characterized by rare tumor-initiating Reed-Sternberg cells surrounded by a dense immune microenvironment. However, the role of the immune microenvironment, particularly T and B cells, in either promoting or restricting Classical Hodgkin lymphoma growth remains undefined. Recent dramatic clinical responses seen using monoclonal antibodies against PD-1, a cell surface receptor whose primary function is to restrict T cell activation, have reignited questions regarding the function of the adaptive immune system in classical Hodgkin lymphoma. This review summarizes what is known regarding T cells, B cells, and immune checkpoints in classical Hodgkin lymphoma. PMID:27365459

  6. Splenic Immune Cells In Experimental Neonatal Hypoxia-Ischemia

    PubMed Central

    Fathali, Nancy; Ostrowski, Robert P.; Hasegawa, Yu; Lekic, Tim; Tang, Jiping; Zhang, John H.

    2013-01-01

    Summary Neuroimmune processes contribute to hypoxic-ischemic damage in the immature brain and may play a role in the progression of particular variants of neonatal encephalopathy. The present study was designed to elucidate molecular mediators of interactions between astrocytes, neurons and infiltrating peripheral immune cells after experimental neonatal hypoxia-ischemia (HI). Splenectomy was performed on postnatal day-7 Sprague-Dawley rats 3 days prior to HI surgery; in which the right common carotid artery was permanently ligated followed by 2 hours of hypoxia (8% O2). Quantitative analysis showed that natural killer (NK) and T cell expression was reduced in spleen but increased in the brain following HI. Elevations in cyclooxygenase-2 (COX-2) expression after HI by immune cells promoted interleukin-15 expression in astrocytes and infiltration of inflammatory cells to site of injury; additionally, down-regulated the pro-survival protein, phosphoinositide-3-kinase, resulting in caspase-3 mediated neuronal death. The removal of the largest pool of peripheral immune cells in the body by splenectomy, COX-2 inhibitors, as well as rendering NK cells inactive by CD161 knockdown, significantly ameliorated cerebral infarct volume at 72 hours, diminished body weight loss and brain and systemic organ atrophy, and reduced neurobehavioral deficits at 3 weeks. Herein we demonstrate with the use of surgical approach (splenectomy), with pharmacological loss-gain function approach using COX-2 inhibitors/agonists, as well as with NK cell-type specific siRNA that after neonatal HI, the infiltrating peripheral immune cells may modulate downstream targets of cell death and neuroinflammation by COX-2 regulated signals. PMID:23626659

  7. Regulation and evasion of antiviral immune responses by porcine reproductive and respiratory syndrome virus.

    PubMed

    Huang, Chen; Zhang, Qiong; Feng, Wen-hai

    2015-04-16

    Virus infection of mammalian cells triggers host innate immune responses to restrict viral replication and induces adaptive immunity for viral elimination. In order to survive and propagate, viruses have evolved sophisticated mechanisms to subvert host defense system by encoding proteins that target key components of the immune signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV), a RNA virus, impairs several processes of host immune responses including interfering with interferon production and signaling, modulating cytokine expression, manipulating apoptotic responses and regulating adaptive immunity. In this review, we highlight the molecular mechanisms of how PRRSV interferes with the different steps of initial antiviral host responses to establish persistent infection in pigs. Dissection of the PRRSV-host interaction is the key in understanding PRRSV pathogenesis and will provide a basis for the rational design of vaccines. PMID:25529442

  8. The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation.

    PubMed

    Wang, Ya-Jing; Wei, Xiao-Yong; Jing, Xiu-Qing; Chang, Yan-Li; Hu, Chun-Hong; Wang, Xiang; Chen, Kun-Ming

    2016-01-01

    NADPH oxidases (NOXs), also known as respiratory burst oxidase homologs (RBOHs), are the major source of reactive oxygen species (ROS), and are involved in many important processes in plants such as regulation of acclimatory signaling and programmed cell death (PCD). Increasing evidence shows that NOXs play crucial roles in plant immunity and their functions in plant immune responses are not as separate individuals but with other signal molecules such as kinases, Rac/Rop small GTPases and hormones, mediating a series of signal transmissions. In a similar way, NOX-mediated signaling also participates in abiotic stress response of plants. We summarized here the complex role and regulation mechanism of NOXs in mediating plant immune response, and the viewpoint that abiotic stress response of plants may be a kind of special plant immunity is also proposed. PMID:27240354

  9. The Fundamental Role of NOX Family Proteins in Plant Immunity and Their Regulation

    PubMed Central

    Wang, Ya-Jing; Wei, Xiao-Yong; Jing, Xiu-Qing; Chang, Yan-Li; Hu, Chun-Hong; Wang, Xiang; Chen, Kun-Ming

    2016-01-01

    NADPH oxidases (NOXs), also known as respiratory burst oxidase homologs (RBOHs), are the major source of reactive oxygen species (ROS), and are involved in many important processes in plants such as regulation of acclimatory signaling and programmed cell death (PCD). Increasing evidence shows that NOXs play crucial roles in plant immunity and their functions in plant immune responses are not as separate individuals but with other signal molecules such as kinases, Rac/Rop small GTPases and hormones, mediating a series of signal transmissions. In a similar way, NOX-mediated signaling also participates in abiotic stress response of plants. We summarized here the complex role and regulation mechanism of NOXs in mediating plant immune response, and the viewpoint that abiotic stress response of plants may be a kind of special plant immunity is also proposed. PMID:27240354

  10. MYC regulates the antitumor immune response through CD47 and PD-L1.

    PubMed

    Casey, Stephanie C; Tong, Ling; Li, Yulin; Do, Rachel; Walz, Susanne; Fitzgerald, Kelly N; Gouw, Arvin M; Baylot, Virginie; Gütgemann, Ines; Eilers, Martin; Felsher, Dean W

    2016-04-01

    The MYC oncogene codes for a transcription factor that is overexpressed in many human cancers. Here we show that MYC regulates the expression of two immune checkpoint proteins on the tumor cell surface: the innate immune regulator CD47 (cluster of differentiation 47) and the adaptive immune checkpoint PD-L1 (programmed death-ligand 1). Suppression of MYC in mouse tumors and human tumor cells caused a reduction in the levels of CD47 and PD-L1 messenger RNA and protein. MYC was found to bind directly to the promoters of the Cd47 and Pd-l1 genes. MYC inactivation in mouse tumors down-regulated CD47 and PD-L1 expression and enhanced the antitumor immune response. In contrast, when MYC was inactivated in tumors with enforced expression of CD47 or PD-L1, the immune response was suppressed, and tumors continued to grow. Thus, MYC appears to initiate and maintain tumorigenesis, in part, through the modulation of immune regulatory molecules. PMID:26966191

  11. The Human Natural Killer Cell Immune Synapse

    NASA Astrophysics Data System (ADS)

    Davis, Daniel M.; Chiu, Isaac; Fassett, Marlys; Cohen, George B.; Mandelboim, Ofer; Strominger, Jack L.

    1999-12-01

    Inhibitory killer Ig-like receptors (KIR) at the surface of natural killer (NK) cells induced clustering of HLA-C at the contacting surface of target cells. In this manner, inhibitory immune synapses were formed as human NK cells surveyed target cells. At target/NK cell synapses, HLA-C/KIR distributed into rings around central patches of intercellular adhesion molecule-1/lymphocyte function-associated antigen-1, the opposite orientation to mature murine T cell-activating synapses. This organization of protein was stable for at least 20 min. Cells could support multiple synapses simultaneously, and clusters of HLA-C moved as NK cells crawled over target cells. Clustering required a divalent metal cation, explaining how metal chelators inhibit KIR function. Surprisingly, however, formation of inhibitory synapses was unaffected by ATP depletion and the cytoskeletal inhibitors, colchicine and cytochalsins B and D. Clearly, supramolecular organization within plasma membranes is critical for NK cell immunosurveillance.

  12. [Immune cells on the IUD].

    PubMed

    Trebichavský, I; Nyklícek, O; Zahradnícková, M

    1989-06-01

    Cells isolated on the surface of just removed IUD "DANA" were characterized by means of monoclonal antibodies and the avidin-biotin method. Activated macrophages with the membrane sign CD 14 and transferrin receptors (25-72%) and B lymphocytes producing IgA and IgG (14-56%) contained strong transplantation antigens class II. By these glycoproteins macrophages and B cells are able to differentiate alie and thus also paternal antigens. The presence of these cells in the uterus may be the stimulus for triggering an aggressive cytotoxic reaction against the blastocyst and explains the contraceptive action of intrauterine devices. PMID:2791001

  13. Regulation of Natural Killer Cell Function by STAT3.

    PubMed

    Cacalano, Nicholas A

    2016-01-01

    Natural killer (NK) cells, key members of a distinct hematopoietic lineage, innate lymphoid cells, are not only critical effectors that mediate cytotoxicity toward tumor and virally infected cells but also regulate inflammation, antigen presentation, and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response, such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell-cell contact, and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The signal transducer and activator of transcription (STAT)-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of "immune surveillance." Even after tumors become established, NK cells are critical components of anticancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients, and the lack of NK cells in the tumor microenvironment often correlates to poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells, which determine the outcome of cancer immunity, are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of NK cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses. PMID:27148255

  14. Modeling Systems-Level Regulation of Host Immune Responses

    PubMed Central

    Thakar, Juilee; Pilione, Mylisa; Kirimanjeswara, Girish; Harvill, Eric T; Albert, Réka

    2007-01-01

    Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the most active immune processes. We compare and discuss the effect of the species-specific virulence factors on disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis that is not always possible using traditional methods. PMID:17559300

  15. Regulation of intestinal homeostasis by innate and adaptive immunity.

    PubMed

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis. PMID:22962437

  16. T cell metabolism drives immunity

    PubMed Central

    Buck, Michael D.; O’Sullivan, David

    2015-01-01

    Lymphocytes must adapt to a wide array of environmental stressors as part of their normal development, during which they undergo a dramatic metabolic remodeling process. Research in this area has yielded surprising findings on the roles of diverse metabolic pathways and metabolites, which have been found to regulate lymphocyte signaling and influence differentiation, function and fate. In this review, we integrate the latest findings in the field to provide an up-to-date resource on lymphocyte metabolism. PMID:26261266

  17. Myeloid-Derived Suppressor Cells: Critical Cells Driving Immune Suppression in the Tumor Microenvironment

    PubMed Central

    Parker, Katherine H.; Beury, Daniel W.; Ostrand-Rosenberg, Suzanne

    2015-01-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that suppress innate and adaptive immunity. MDSCs are present in many disease settings; however, in cancer, they are a major obstacle for both natural antitumor immunity and immunotherapy. Tumor and host cells in the tumor microenvironment (TME) produce a myriad of pro-inflammatory mediators that activate MDSCs and drive their accumulation and suppressive activity. MDSCs utilize a variety of mechanisms to suppress T cell activation, induce other immune-suppressive cell populations, regulate inflammation in the TME, and promote the switching of the immune system to one that tolerates and enhances tumor growth. Because MDSCs are present in most cancer patients and are potent immune-suppressive cells, MDSCs have been the focus of intense research in recent years. This review describes the history and identification of MDSCs, the role of inflammation and intracellular signaling events governing MDSC accumulation and suppressive activity, immune-suppressive mechanisms utilized by MDSCs, and recent therapeutics that target MDSCs to enhance antitumor immunity. PMID:26216631

  18. Intestinal epithelial cells as mediators of the commensal–host immune crosstalk

    PubMed Central

    Goto, Yoshiyuki; Ivanov, Ivaylo I

    2014-01-01

    Commensal bacteria regulate the homeostasis of host effector immune cell subsets. The mechanisms involved in this commensal–host crosstalk are not well understood. Intestinal epithelial cells (IECs) not only create a physical barrier between the commensals and immune cells in host tissues, but also facilitate interactions between them. Perturbations of epithelial homeostasis or function lead to the development of intestinal disorders such as inflammatory bowel diseases (IBD) and intestinal cancer. IECs receive signals from commensals and produce effector immune molecules. IECs also affect the function of immune cells in the lamina propria. Here we discuss some of these properties of IECs that define them as innate immune cells. We focus on how IECs may integrate and transmit signals from individual commensal bacteria to mucosal innate and adaptive immune cells for the establishment of the unique mucosal immunological equilibrium. PMID:23318659

  19. Novel immune modulators used in hematology: impact on NK cells.

    PubMed

    Krieg, Stephanie; Ullrich, Evelyn

    2012-01-01

    There is a wide range of important pharmaceuticals used in treatment of cancer. Besides their known effects on tumor cells, there is growing evidence for modulation of the immune system. Immunomodulatory drugs (IMiDs(®)) play an important role in the treatment of patients with multiple myeloma or myelodysplastic syndrome and have already demonstrated antitumor, anti-angiogenic, and immunostimulating effects, in particular on natural killer (NK) cells. Tyrosine kinase inhibitors are directly targeting different kinases and are known to regulate effector NK cells and expression of NKG2D ligands (NKG2DLs) on tumor cells. Demethylating agents, histone deacetylases, and proteasome inhibitors interfere with the epigenetic regulation and protein degradation of malignant cells. There are first hints that these drugs also sensitize tumor cells to chemotherapy, radiation, and NK cell-mediated cytotoxicity by enhanced expression of TRAIL and NKG2DLs. However, these pharmaceuticals may also impair NK cell function in a dose- and time-dependent manner. In summary, this review provides an update on the effects of different novel molecules on the immune system focusing NK cells. PMID:23316191

  20. Novel immune modulators used in hematology: impact on NK cells

    PubMed Central

    Krieg, Stephanie; Ullrich, Evelyn

    2013-01-01

    There is a wide range of important pharmaceuticals used in treatment of cancer. Besides their known effects on tumor cells, there is growing evidence for modulation of the immune system. Immunomodulatory drugs (IMiDs®) play an important role in the treatment of patients with multiple myeloma or myelodysplastic syndrome and have already demonstrated antitumor, anti-angiogenic, and immunostimulating effects, in particular on natural killer (NK) cells. Tyrosine kinase inhibitors are directly targeting different kinases and are known to regulate effector NK cells and expression of NKG2D ligands (NKG2DLs) on tumor cells. Demethylating agents, histone deacetylases, and proteasome inhibitors interfere with the epigenetic regulation and protein degradation of malignant cells. There are first hints that these drugs also sensitize tumor cells to chemotherapy, radiation, and NK cell-mediated cytotoxicity by enhanced expression of TRAIL and NKG2DLs. However, these pharmaceuticals may also impair NK cell function in a dose- and time-dependent manner. In summary, this review provides an update on the effects of different novel molecules on the immune system focusing NK cells. PMID:23316191

  1. Regulation of Natural Killer Cell Function by STAT3

    PubMed Central

    Cacalano, Nicholas A.

    2016-01-01

    Natural killer (NK) cells, key members of a distinct hematopoietic lineage, innate lymphoid cells, are not only critical effectors that mediate cytotoxicity toward tumor and virally infected cells but also regulate inflammation, antigen presentation, and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response, such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell–cell contact, and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The signal transducer and activator of transcription (STAT)-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of “immune surveillance.” Even after tumors become established, NK cells are critical components of anticancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients, and the lack of NK cells in the tumor microenvironment often correlates to poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells, which determine the outcome of cancer immunity, are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of NK cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses. PMID:27148255

  2. Immune cell identity: perspective from a palimpsest

    PubMed Central

    Rothenberg, Ellen V.

    2016-01-01

    The immune system in mammals is composed of multiple different immune cell types that migrate through the body and are made continuously throughout life. Lymphocytes and myeloid cells interact with each other and depend upon each other, but are each highly diverse and specialized for different roles. Lymphocytes uniquely require developmentally programmed mutational changes in the genome itself for their maturation. Despite profound differences between their mechanisms of threat recognition and threat response, however, the developmental origins of lymphocytes and myeloid cells are interlinked, and important aspects of their response mechanisms remain shared. As the immune defense system has been elucidated in the past 50 years, it is notable that the chain of logic toward our current understanding was driven by strongly posited models that led to crucial discoveries even though these models ended up being partly wrong. It has been the predictive strength of these models and their success as guides to incisive experimental research that has also illuminated the limits of each model’s explanatory scope, beyond which another model needed to assume the lead. This brief review describes how a succession of distinct paradigms has helped to clarify a sophisticated picture of immune cell generation and control. PMID:26750603

  3. Disrupting Immune Regulation Incurs Transient Costs in Male Reproductive Function

    PubMed Central

    Belloni, Virginia; Sorci, Gabriele; Paccagnini, Eugenio; Guerreiro, Romain; Bellenger, Jérôme; Faivre, Bruno

    2014-01-01

    Background Immune protection against pathogenic organisms has been shown to incur costs. Previous studies investigating the cost of immunity have mostly focused on the metabolic requirements of immune maintenance and activation. In addition to these metabolic costs, the immune system can induce damage to the host if the immune response is mis-targeted or over-expressed. Given its non-specific nature, an over-expressed inflammatory response is often associated with substantial damage for the host. Here, we investigated the cost of an over-expressed inflammatory response in the reproductive function of male mice. Methodology/Principal Findings We experimentally blocked the receptors of an anti-inflammatory cytokine (IL-10) in male mice exposed to a mild inflammatory challenge, with each treatment having an appropriate control group. The experiment was conducted on two age classes, young (3 month old) and old (15 month old) mice, to assess any age-related difference in the cost of a disrupted immune regulation. We found that the concomitant exposure to an inflammatory insult and the blockade of IL-10 induced a reduction in testis mass, compared to the three other groups. The frequency of abnormal sperm morphology was also higher in the group of mice exposed to the inflammatory challenge but did not depend on the blockade of the IL-10. Conclusions Our results provide evidence that immune regulation confers protection against the risk of inflammation-induced infertility during infection. They also suggest that disruption of the effectors involved in the regulation of the inflammatory response can have serious fitness consequences even under mild inflammatory insult and benign environmental conditions. PMID:24400103

  4. Lymphocyte-derived ACh regulates local innate but not adaptive immunity

    PubMed Central

    Reardon, Colin; Duncan, Gordon S.; Brüstle, Anne; Brenner, Dirk; Tusche, Michael W.; Olofsson, Peder S.; Rosas-Ballina, Mauricio; Tracey, Kevin J.; Mak, Tak W.

    2013-01-01

    Appropriate control of immune responses is a critical determinant of health. Here, we show that choline acetyltransferase (ChAT) is expressed and ACh is produced by B cells and other immune cells that have an impact on innate immunity. ChAT expression occurs in mucosal-associated lymph tissue, subsequent to microbial colonization, and is reduced by antibiotic treatment. MyD88-dependent Toll-like receptor up-regulates ChAT in a transient manner. Unlike the previously described CD4+ T-cell population that is stimulated by norepinephrine to release ACh, ChAT+ B cells release ACh after stimulation with sulfated cholecystokinin but not norepinephrine. ACh-producing B-cells reduce peritoneal neutrophil recruitment during sterile endotoxemia independent of the vagus nerve, without affecting innate immune cell activation. Endothelial cells treated with ACh in vitro reduced endothelial cell adhesion molecule expression in a muscarinic receptor-dependent manner. Despite this ability, ChAT+ B cells were unable to suppress effector T-cell function in vivo. Therefore, ACh produced by lymphocytes has specific functions, with ChAT+ B cells controlling the local recruitment of neutrophils. PMID:23297238

  5. Epithelial Cell Regulation of Allergic Diseases.

    PubMed

    Gour, Naina; Lajoie, Stephane

    2016-09-01

    Allergic diseases, which have escalated in prevalence in recent years, arise as a result of maladaptive immune responses to ubiquitous environmental stimuli. Why only certain individuals mount inappropriate type 2 immune responses to these otherwise harmless allergens has remained an unanswered question. Mounting evidence suggests that the epithelium, by sensing its environment, is the central regulator of allergic diseases. Once considered to be a passive barrier to allergens, epithelial cells at mucosal surfaces are now considered to be the cornerstone of the allergic diathesis. Beyond their function as maintaining barrier at mucosal surfaces, mucosal epithelial cells through the secretion of mediators like IL-25, IL-33, and TSLP control the fate of downstream allergic immune responses. In this review, we will discuss the advances in recent years regarding the process of allergen recognition and secretion of soluble mediators by epithelial cells that shape the development of the allergic response. PMID:27534656

  6. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism.

    PubMed

    Fessler, Michael B

    2015-08-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  7. Regulation of Adaptive Immunity in Health and Disease by Cholesterol Metabolism

    PubMed Central

    Fessler, Michael B.

    2015-01-01

    Four decades ago, it was observed that stimulation of T cells induces rapid changes in cellular cholesterol that are required before proliferation can commence. Investigators returning to this phenomenon have finally revealed its molecular underpinnings. Cholesterol trafficking and its dysregulation are now also recognized to strongly influence dendritic cell function, T cell polarization, and antibody responses. In this review, the state of the literature is reviewed on how cholesterol and its trafficking regulate the cells of the adaptive immune response and in vivo disease phenotypes of dysregulated adaptive immunity, including allergy, asthma, and autoimmune disease. Emerging evidence supporting a potential role for statins and other lipid-targeted therapies in the treatment of these diseases is presented. Just as vascular biologists have embraced immunity in the pathogenesis and treatment of atherosclerosis, so should basic and clinical immunologists in allergy, pulmonology, and other disciplines seek to encompass a basic understanding of lipid science. PMID:26149587

  8. Role of IL-21 in immune-regulation and tumor immunotherapy.

    PubMed

    di Carlo, Emma; de Totero, Daniela; Piazza, Tiziana; Fabbi, Marina; Ferrini, Silvano

    2007-09-01

    IL-21, the most recently discovered member of the IL-2 cytokine family, is an attractive subject for research due to its involvement in experimental models of autoimmunity, its ability to down-regulate IgE production, and its anti-tumor properties. Its interest for cancer immunotherapy stems from its physiological immune-enhancing functions. These include regulation of T, B and NK cell proliferation, survival, differentiation, and effector functions. IL-21's functional activities partially overlap those of IL-2. Both cytokines display similar structural features and use the common gamma-chain receptor and its downstream signaling pathways. Besides its activities on normal lymphoid cells, IL-21 is an in vitro growth factor for myeloma and acute-T cell leukemia cells, whereas it induces the apoptosis of B-CLL (chronic lymphocytic leukemia) cells. These findings indicate that the IL-21/IL-21R system exerts opposite functions in different lymphoid neoplasias, and suggest its employment in B-CLL therapy. Since IL-2, but not IL-21, is specifically required for the development of regulatory T (Treg) cell immune-suppressive functions, IL-21 may be a new tool for cancer immunotherapy. It is, in fact, a powerful anti-tumor agent in a variety of murine experimental tumor models through its activation of specific or innate immune responses against neoplastic cells. The preliminary data from phase-I clinical studies suggest that the use of IL-21 is feasible and may result in immune-enhancing effects. PMID:17447063

  9. Novel Immune Check-Point Regulators in Tolerance Maintenance.

    PubMed

    Guo, Yanxia; Wang, Adele Y

    2015-01-01

    The great success of anti-cytotoxic lymphocyte antigen 4 (CTLA4) and anti-programed cell death protein 1 (PD1) in cancer treatment has encouraged more effort in harnessing the immune response through immunomodulatory molecules in various diseases. The immunoglobulin (Ig) super family comprises the majority of immunomodulatory molecules. Discovery of novel Ig super family members has brought novel insights into the function of different immune cells in tolerance maintenance. In this review, we discuss the function of newly identified B7 family molecules, B7-H4 and V-domain Ig Suppressor of T cell Activation (VISTA), and the butyrophilin/butyrophilin-like family members. We discuss the current stages of immunomodulatory molecules in clinical trials of organ transplantation. The potential of engaging the novel Ig superfamily members in tolerance maintenance is also discussed. We conclude with the challenges remaining to manipulate these molecules in the immune response. PMID:26347744

  10. Novel Immune Check-Point Regulators in Tolerance Maintenance

    PubMed Central

    Guo, Yanxia; Wang, Adele Y.

    2015-01-01

    The great success of anti-cytotoxic lymphocyte antigen 4 (CTLA4) and anti-programed cell death protein 1 (PD1) in cancer treatment has encouraged more effort in harnessing the immune response through immunomodulatory molecules in various diseases. The immunoglobulin (Ig) super family comprises the majority of immunomodulatory molecules. Discovery of novel Ig super family members has brought novel insights into the function of different immune cells in tolerance maintenance. In this review, we discuss the function of newly identified B7 family molecules, B7-H4 and V-domain Ig Suppressor of T cell Activation (VISTA), and the butyrophilin/butyrophilin-like family members. We discuss the current stages of immunomodulatory molecules in clinical trials of organ transplantation. The potential of engaging the novel Ig superfamily members in tolerance maintenance is also discussed. We conclude with the challenges remaining to manipulate these molecules in the immune response. PMID:26347744

  11. Epigenetic Control of B Cell Development and B-Cell-Related Immune Disorders.

    PubMed

    Bao, Yan; Cao, Xuetao

    2016-06-01

    B lymphocytes are generally recognized as the essential component of humoral immunity and also a regulator of innate immunity. The development of B cells is precisely regulated by a variety of factors via different mechanisms, including cytokine/cytokine receptors, signal transduction molecules, and transcription factors. Recent findings suggest that epigenetic factors, such as DNA methylation, histone modification, and non-coding RNA, play critical roles in establishing B cell lineage-specific gene expression profiles to define and sustain B cell identity and function. Epigenetic modifications are also sensitive to external stimuli and might bridge genetic and environmental factors in the pathogenesis or control of B-cell-related immune disorders, such as autoimmune diseases, lymphoma, and leukemia. Better understanding of the epigenetic mechanisms for regulating B cell development and involving B cell abnormal differentiation and function will shed light on the design of new therapeutic approaches to B-cell-related diseases, and potential candidates of epigenetic modulators may be identified to target epigenetic pathways to prevent or treat B cell disorders. We summarize the relevance of epigenetic marks and landscapes in the stages of B cell development, discuss the interaction of the transcriptional networks and epigenetic changes, and review the involvement of epigenetic risk in the pathogenesis of B-cell-related diseases. Understanding how specific epigenetic alterations contribute to the development of B-cell-related autoimmunity and malignancies is instrumental to control B cell disorders. PMID:26066671

  12. Immune Cells and Inflammation in Diabetic Nephropathy

    PubMed Central

    Zheng, Zihan; Zheng, Feng

    2016-01-01

    Diabetic nephropathy (DN) is a serious complication of diabetes. At its core, DN is a metabolic disorder which can also manifest itself in terms of local inflammation in the kidneys. Such inflammation can then drive the classical markers of fibrosis and structural remodeling. As a result, resolution of immune-mediated inflammation is critical towards achieving a cure for DN. Many immune cells play a part in DN, including key members of both the innate and adaptive immune systems. While these cells were classically understood to primarily function against pathogen insult, it has also become increasingly clear that they also serve a major role as internal sensors of damage. In fact, damage sensing may serve as the impetus for much of the inflammation that occurs in DN, in a vicious positive feedback cycle. Although direct targeting of these proinflammatory cells may be difficult, new approaches that focus on their metabolic profiles may be able to alleviate DN significantly, especially since dysregulation of the local metabolic environment may well be responsible for triggering inflammation to begin with. In this review, the authors consider the metabolic profile of several relevant immune types and discuss their respective roles. PMID:26824038

  13. [Immune-regulating effect of phenibut under lipopolysaccharide-induced immune stress conditions].

    PubMed

    Samotrueva, M A; Tiurenkov, I N; Teplyĭ, D L; Kuleshevskaia, N R; Khlebtsova, E V

    2010-05-01

    The immunoregulating effect of phenibut has been demonstrated on the model of immune stress caused by the injection of lipopolysaccharide from Pseudomonas aeruginosa. The degree of expression of the specific (in a delayed-type hypersensitivity reaction and passive hemagglutination) and nonspecific (phagocytic activity of neutrophils) links of immunomodulation was studied. The formation of lipopolysaccharide (LPS) induced immune stress is characterized by the increase of the indicated parameters of immunity. It is found that phenibut (under intraabdominal injection of 25 mg/kg within 5 days) removes the manifestations of hyperreactivity of the cellular link of immunity, and also restores the amount of phagocytic cells, which is evidence of the immunomodulating properties of the drug under conditions of hyperimmunization. PMID:20597368

  14. Innate immune cells in the pathogenesis of primary systemic vasculitis.

    PubMed

    Misra, Durga Prasanna; Agarwal, Vikas

    2016-02-01

    Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis. PMID:26403285

  15. Immunity to Pathogens Taught by Specialized Human Dendritic Cell Subsets

    PubMed Central

    Geginat, Jens; Nizzoli, Giulia; Paroni, Moira; Maglie, Stefano; Larghi, Paola; Pascolo, Steve; Abrignani, Sergio

    2015-01-01

    Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role in immune responses because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and upregulate MHC molecules and costimulatory receptors to activate antigen-specific CD4+ and CD8+ T cells. It is now well established that DCs are not a homogeneous population but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DCs (pDCs) rapidly produce large amounts of IFN-α, which has potent antiviral functions and activates several other immune cells. However, pDCs are not particularly potent APCs and induce the tolerogenic cytokine IL-10 in CD4+ T cells. In contrast, myeloid DCs (mDCs) are very potent APCs and possess the unique capacity to prime naive T cells and consequently to initiate a primary adaptive immune response. Different subsets of mDCs with specialized functions have been identified. In mice, CD8α+ mDCs capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T-cell responses to control intracellular pathogens. Conversely, CD8α− mDCs preferentially prime CD4+ T cells and promote Th2 or Th17 differentiation. BDCA-3+ mDC2 are the human homologue of CD8α+ mDCs, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8+ T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggest specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the development of vaccines against

  16. Immunity to Pathogens Taught by Specialized Human Dendritic Cell Subsets.

    PubMed

    Geginat, Jens; Nizzoli, Giulia; Paroni, Moira; Maglie, Stefano; Larghi, Paola; Pascolo, Steve; Abrignani, Sergio

    2015-01-01

    Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that have a key role in immune responses because they bridge the innate and adaptive arms of the immune system. They mature upon recognition of pathogens and upregulate MHC molecules and costimulatory receptors to activate antigen-specific CD4(+) and CD8(+) T cells. It is now well established that DCs are not a homogeneous population but are composed of different subsets with specialized functions in immune responses to specific pathogens. Upon viral infections, plasmacytoid DCs (pDCs) rapidly produce large amounts of IFN-α, which has potent antiviral functions and activates several other immune cells. However, pDCs are not particularly potent APCs and induce the tolerogenic cytokine IL-10 in CD4(+) T cells. In contrast, myeloid DCs (mDCs) are very potent APCs and possess the unique capacity to prime naive T cells and consequently to initiate a primary adaptive immune response. Different subsets of mDCs with specialized functions have been identified. In mice, CD8α(+) mDCs capture antigenic material from necrotic cells, secrete high levels of IL-12, and prime Th1 and cytotoxic T-cell responses to control intracellular pathogens. Conversely, CD8α(-) mDCs preferentially prime CD4(+) T cells and promote Th2 or Th17 differentiation. BDCA-3(+) mDC2 are the human homologue of CD8α(+) mDCs, since they share the expression of several key molecules, the capacity to cross-present antigens to CD8(+) T-cells and to produce IFN-λ. However, although several features of the DC network are conserved between humans and mice, the expression of several toll-like receptors as well as the production of cytokines that regulate T-cell differentiation are different. Intriguingly, recent data suggest specific roles for human DC subsets in immune responses against individual pathogens. The biology of human DC subsets holds the promise to be exploitable in translational medicine, in particular for the development of

  17. “Natural Regulators”: NK Cells as Modulators of T Cell Immunity

    PubMed Central

    Schuster, Iona S.; Coudert, Jerome D.; Andoniou, Christopher E.; Degli-Esposti, Mariapia A.

    2016-01-01

    Natural killer (NK) cells are known as frontline responders capable of rapidly mediating a response upon encountering transformed or infected cells. Recent findings indicate that NK cells, in addition to acting as innate effectors, can also regulate adaptive immune responses. Here, we review recent studies on the immunoregulatory function of NK cells with a specific focus on their ability to affect the generation of early, as well as long-term antiviral T cell responses, and their role in modulating immune pathology and disease. In addition, we summarize the current knowledge of the factors governing regulatory NK cell responses and discuss origin, tissue specificity, and open questions about the classification of regulatory NK cells as classical NK cells versus group 1 innate lymphoid cells. PMID:27379097

  18. Secretome identification of immune cell factors mediating metastatic cell homing

    PubMed Central

    Aguado, Brian A.; Wu, Jia J.; Azarin, Samira M.; Nanavati, Dhaval; Rao, Shreyas S.; Bushnell, Grace G.; Medicherla, Chaitanya B.; Shea, Lonnie D.

    2015-01-01

    Metastatic cell homing is a complex process mediated in part by diffusible factors secreted from immune cells found at a pre-metastatic niche. We report on connecting secretomics and TRanscriptional Activity CEll aRray (TRACER) data to identify functional paracrine interactions between immune cells and metastatic cells as novel mediators of homing. Metastatic breast cancer mouse models were used to generate a diseased splenocyte conditioned media (D-SCM) containing immune cell secreted factors. MDA-MB-231 metastatic cell activity including cell invasion, migration, transendothelial migration, and proliferation were increased in D-SCM relative to control media. Our D-SCM secretome analysis yielded 144 secreted factor candidates that contribute to increased metastatic cell activity. The functional mediators of homing were identified using MetaCore software to determine interactions between the immune cell secretome and the TRACER-identified active transcription factors within metastatic cells. Among the 5 candidate homing factors identified, haptoglobin was selected and validated in vitro and in vivo as a key mediator of homing. Our studies demonstrate a novel systems biology approach to identify functional signaling factors associated with a cellular phenotype, which provides an enabling tool that complements large-scale protein identification provided by proteomics. PMID:26634905

  19. Testosterone regulates thyroid cancer progression by modifying tumor suppressor genes and tumor immunity

    PubMed Central

    Zhang, Lisa J.; Xiong, Yin; Nilubol, Naris; He, Mei; Bommareddi, Swaroop; Zhu, Xuguang; Jia, Li; Xiao, Zhen; Park, Jeong-Won; Xu, Xia; Patel, Dhaval; Willingham, Mark C.; Cheng, Sheue-yann; Kebebew, Electron

    2015-01-01

    Cancer gender disparity has been observed for a variety of human malignancies. Thyroid cancer is one such cancer with a higher incidence in women, but more aggressive disease in men. There is scant evidence on the role of sex hormones on cancer initiation/progression. Using a transgenic mouse model of follicular thyroid cancer (FTC), we found castration led to lower rates of cancer in females and less advanced cancer in males. Mechanistically, less advanced cancer in castrated males was due to increased expression of tumor suppressor (Glipr1, Sfrp1) and immune-regulatory genes and higher tumor infiltration with M1 macrophages and CD8 cells. Functional study showed that GLIPR1 reduced cell growth and increased chemokine secretion (Ccl5) that activates immune cells. Our data demonstrate that testosterone regulates thyroid cancer progression by reducing tumor suppressor gene expression and tumor immunity. PMID:25576159

  20. Targeting Rho-GTPases in immune cell migration and inflammation

    PubMed Central

    Biro, Maté; Munoz, Marcia A; Weninger, Wolfgang

    2014-01-01

    Leukocytes are unmatched migrators capable of traversing barriers and tissues of remarkably varied structural composition. An effective immune response relies on the ability of its constituent cells to infiltrate target sites. Yet, unwarranted mobilization of immune cells can lead to inflammatory diseases and tissue damage ranging in severity from mild to life-threatening. The efficacy and plasticity of leukocyte migration is driven by the precise spatiotemporal regulation of the actin cytoskeleton. The small GTPases of the Rho family (Rho-GTPases), and their immediate downstream effector kinases, are key regulators of cellular actomyosin dynamics and are therefore considered prime pharmacological targets for stemming leukocyte motility in inflammatory disorders. This review describes advances in the development of small-molecule inhibitors aimed at modulating the Rho-GTPase-centric regulatory pathways governing motility, many of which stem from studies of cancer invasiveness. These inhibitors promise the advent of novel treatment options with high selectivity and potency against immune-mediated pathologies. Linked Articles This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24 PMID:24571448

  1. Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses.

    PubMed

    Chiurchiù, Valerio; Leuti, Alessandro; Maccarrone, Mauro

    2015-06-01

    The concept of the central nervous system (CNS) as an immune-privileged site, essentially due to the presence of the blood brain barrier, appears to be overly simplistic. Indeed, within healthy CNS immune activities are permitted and are required for neuronal function and host defense, not only due to the presence of the resident innate immune cells of the brain, but also by virtue of a complex cross-talk of the CNS with peripheral immune cells. Nonetheless, long-standing and persisting neuroinflammatory responses are most often detrimental and characterize several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and amyotrophic lateral sclerosis. A growing body of evidence suggests that Cannabis sativa-derived phytocannabinoids, as well as synthetic cannabinoids, are endowed with significant immunoregulatory and anti-inflammatory properties, both in peripheral tissues and in the CNS, through the activation of cannabinoid receptors. In this review, the immunomodulatory effects of cannabinoid signaling on the most relevant brain immune cells will be discussed. In addition, the impact of cannabinoid regulation on the overall integration of the manifold brain immune responses will also be highlighted, along with the implication of these compounds as potential agents for the management of neuroinflammatory disorders. PMID:25601726

  2. Helicobacter pylori-induced IL-1β secretion in innate immune cells is regulated by the NLRP3 inflammasome and requires the cag pathogenicity island.

    PubMed

    Semper, Raphaela P; Mejías-Luque, Raquel; Groß, Christina; Anderl, Florian; Müller, Anne; Vieth, Michael; Busch, Dirk H; Prazeres da Costa, Clarissa; Ruland, Jürgen; Groß, Olaf; Gerhard, Markus

    2014-10-01

    Infection with the gram-negative bacterium Helicobacter pylori is the most prevalent chronic bacterial infection, affecting ∼50% of the world's population, and is the main risk factor of gastric cancer. The proinflammatory cytokine IL-1β plays a crucial role in the development of gastric tumors and polymorphisms in the IL-1 gene cluster leading to increased IL-1β production have been associated with increased risk for gastric cancer. To be active, pro-IL-1β must be cleaved by the inflammasome, an intracellular multiprotein complex implicated in physiological and pathological inflammation. Recently, H. pylori was postulated to activate the inflammasome in murine bone marrow-derived dendritic cells; however, the molecular mechanisms as well as the bacterial virulence factor acting as signal 2 activating the inflammasome remain elusive. In this study, we analyzed the inflammasome complex regulating IL-1β upon H. pylori infection as well as the molecular mechanisms involved. Our results indicate that H. pylori-induced IL-1β secretion is mediated by activation of the nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 inflammasome. We also show that reactive oxygen species, potassium efflux, and lysosomal destabilization are the main cellular mechanisms responsible of nucleotide-binding oligomerization domain family, pyrin domain-containing 3 inflammasome activation upon H. pylori infection, and identify vacuolating cytotoxin A and cag pathogenicity island as the bacterial virulence determinants involved. Moreover, in vivo experiments indicate an important role for the inflammasome in the onset and establishment of H. pylori infection and in the subsequent inflammatory response of the host. PMID:25172489

  3. Quantitative reduction of the TCR adapter protein SLP-76 unbalances immunity and immune regulation.

    PubMed

    Siggs, Owen M; Miosge, Lisa A; Daley, Stephen R; Asquith, Kelly; Foster, Paul S; Liston, Adrian; Goodnow, Christopher C

    2015-03-15

    Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies. PMID:25662996

  4. Targeting KIT on innate immune cells to enhance the antitumor activity of checkpoint inhibitors.

    PubMed

    Stahl, Maximilian; Gedrich, Richard; Peck, Ronald; LaVallee, Theresa; Eder, Joseph Paul

    2016-06-01

    Innate immune cells such as mast cells and myeloid-derived suppressor cells are key components of the tumor microenvironment. Recent evidence indicates that levels of myeloid-derived suppressor cells in melanoma patients are associated with poor survival to checkpoint inhibitors. This suggests that targeting both the innate and adaptive suppressive components of the immune system will maximize clinical benefit and elicit more durable responses in cancer patients. Preclinical data suggest that targeting signaling by the receptor tyrosine kinase KIT, particularly on mast cells, may modulate innate immune cell numbers and activity in tumors. Here, we review data highlighting the importance of the KIT signaling in regulating antitumor immune responses and the potential benefit of combining selective KIT inhibitors with immune checkpoint inhibitors. PMID:27349976

  5. Coordinated regulation of natural killer receptor expression in the maturing human immune system

    PubMed Central

    Strauss-Albee, Dara M.; Horowitz, Amir; Parham, Peter; Blish, Catherine A.

    2014-01-01

    Natural killer (NK) cells are responsible for recognizing and killing transformed, stressed, and infected cells. They recognize a set of non-antigen-specific features termed “altered self” through combinatorial signals from activating and inhibitory receptors. These natural killer cell receptors (NKR) are also expressed on CD4+ and CD8+ T cells, B cells, and monocytes, though a comprehensive inventory of NKR expression patterns across leukocyte lineages has never been performed. Using mass cytometry, we found that NKR expression patterns distinguish cell lineages in human peripheral blood. In individuals with high levels of CD57, indicative of a mature immune repertoire, NKR are more likely to be expressed on non-NK cells, especially CD8+ T cells. Mature NK and CD8+ T cell populations show increased diversity of NKR surface expression patterns, but with distinct determinants: mature NK cells acquire primarily inhibitory receptors, while CD8+ T cells attain a specific subset of both activating and inhibitory receptors, potentially imbuing them with a distinct functional role. Concurrently, monocytes show decreased expression of the generalized inhibitory receptor LILRB1, consistent with an increased activation threshold. Therefore, NKR expression is coordinately regulated as the immune system matures, resulting in the transfer of “altered self” recognition potential among leukocyte lineages. This likely reduces antigen specificity in the mature human immune system, and implies that vaccines and therapeutics that engage both its innate and adaptive branches may be more effective in the settings of aging and chronic infection. PMID:25288567

  6. Nod2: a key regulator linking microbiota to intestinal mucosal immunity

    PubMed Central

    Biswas, Amlan; Petnicki-Ocwieja, Tanja; Kobayashi, Koichi S.

    2012-01-01

    The human intestine harbors a large number of bacteria that are constantly interacting with the intestinal immune system, eliciting non-pathological basal level immune responses. Increasing evidence points to dysbiosis of microbiota in the intestine as an underlying factor in inflammatory bowel disease susceptibility. Loss of function mutations in NOD2 are among the stronger genetic factors linked to ileal Crohn’s disease. Indeed, Nod2 is a key regulator of microbiota in the intestine, as microflora in the terminal ileum is dysregulated in Nod2-deficient mice. Nod2 is highly expressed in Paneth cells, which are responsible for the regulation of ileal microflora by anti-microbial compounds, and Nod2-deficient ileal intestinal epithelia are unable to kill bacteria efficiently. It is therefore likely that NOD2 mutations in Crohn’s disease may increase disease susceptibility by altering interactions between ileal microbiota and mucosal immunity. PMID:21861185

  7. 'Order from disorder sprung': recognition and regulation in the immune system

    NASA Astrophysics Data System (ADS)

    Mak, Tak W.

    2003-06-01

    Milton's epic poem Paradise lost supplies a colourful metaphor for the immune system and its responses to pathogens. With the role of Satan played by pathogens seeking to destroy the paradise of human health, GOD intervenes and imposes order out of chaos. In this context, GOD means 'generation of diversity': the capacity of the innate and specific immune responses to recognize and eliminate a universe of pathogens. Thus, the immune system can be thought of as an entity that self-assembles the elements required to combat bodily invasion and injury. In so doing, it brings to bear the power of specific recognition: the ability to distinguish self from non-self, and the threatening from the benign. This ability to define and protect self is evolutionarily very old. Self-recognition and biochemical and barrier defences can be detected in primitive organisms, and elements of these mechanisms are built upon in an orderly way to establish the mammalian immune system. Innate immune responses depend on the use of a limited number of germline-encoded receptors to recognize conserved molecular patterns that occur on the surfaces of a broad range of pathogens. The B and T lymphocytes of the specific immune response use complex gene-rearrangement machinery to generate a diversity of antigen receptors capable of recognizing any pathogen in the universe. Binding to receptors on both innate and specific immune-system cells triggers intricate intracellular signalling pathways that lead to new gene transcription and effector-cell activation. And yet, regulation is imposed on these responses so that Paradise is not lost to the turning of the immune system onto self-tissues, the spectre of autoimmunity. Lymphocyte activation requires multiple signals and intercellular interactions. Mechanisms exist to establish tolerance to self by the selection and elimination of cells recognizing self-antigens. Immune system cell populations are reduced by programmed cell death once the pathogen

  8. 'Order from disorder sprung': recognition and regulation in the immune system.

    PubMed

    Mak, Tak W

    2003-06-15

    Milton's epic poem Paradise lost supplies a colourful metaphor for the immune system and its responses to pathogens. With the role of Satan played by pathogens seeking to destroy the paradise of human health, GOD intervenes and imposes order out of chaos. In this context, GOD means 'generation of diversity': the capacity of the innate and specific immune responses to recognize and eliminate a universe of pathogens. Thus, the immune system can be thought of as an entity that self-assembles the elements required to combat bodily invasion and injury. In so doing, it brings to bear the power of specific recognition: the ability to distinguish self from non-self, and the threatening from the benign. This ability to define and protect self is evolutionarily very old. Self-recognition and biochemical and barrier defences can be detected in primitive organisms, and elements of these mechanisms are built upon in an orderly way to establish the mammalian immune system. Innate immune responses depend on the use of a limited number of germline-encoded receptors to recognize conserved molecular patterns that occur on the surfaces of a broad range of pathogens. The B and T lymphocytes of the specific immune response use complex gene-rearrangement machinery to generate a diversity of antigen receptors capable of recognizing any pathogen in the universe. Binding to receptors on both innate and specific immune-system cells triggers intricate intracellular signalling pathways that lead to new gene transcription and effector-cell activation. And yet, regulation is imposed on these responses so that Paradise is not lost to the turning of the immune system onto self-tissues, the spectre of autoimmunity. Lymphocyte activation requires multiple signals and intercellular interactions. Mechanisms exist to establish tolerance to self by the selection and elimination of cells recognizing self-antigens. Immune system cell populations are reduced by programmed cell death once the pathogen

  9. Immune Cells and Molecular Networks in Experimentally Induced Pulpitis.

    PubMed

    Renard, E; Gaudin, A; Bienvenu, G; Amiaud, J; Farges, J C; Cuturi, M C; Moreau, A; Alliot-Licht, B

    2016-02-01

    Dental pulp is a dynamic tissue able to resist external irritation during tooth decay by using immunocompetent cells involved in innate and adaptive responses. To better understand the immune response of pulp toward gram-negative bacteria, we analyzed biological mediators and immunocompetent cells in rat incisor pulp experimentally inflamed by either lipopolysaccharide (LPS) or saline solution (phosphate-buffered saline [PBS]). Untreated teeth were used as control. Expression of pro- and anti-inflammatory cytokines, chemokine ligands, growth factors, and enzymes were evaluated at the transcript level, and the recruitment of the different leukocytes in pulp was measured by fluorescence-activated cell-sorting analysis after 3 h, 9 h, and 3 d post-PBS or post-LPS treatment. After 3 d, injured rat incisors showed pulp wound healing and production of reparative dentin in both LPS and PBS conditions, testifying to the reversible pulpitis status of this model. IL6, IL1-β, TNF-α, CCL2, CXCL1, CXCL2, MMP9, and iNOS gene expression were significantly upregulated after 3 h of LPS stimulation as compared with PBS. The immunoregulatory cytokine IL10 was also upregulated after 3 h, suggesting that LPS stimulates not only inflammation but also immunoregulation. Fluorescence-activated cell-sorting analysis revealed a significant, rapid, and transient increase in leukocyte levels 9 h after PBS and LPS stimulation. The quantity of dendritic cells was significantly upregulated with LPS versus PBS. Interestingly, we identified a myeloid-derived suppressor cell-enriched cell population in noninjured rodent incisor dental pulp. The percentage of this population, known to regulate immune response, was higher 9 h after inflammation triggered with PBS and LPS as compared with the control. Taken together, these data offer a better understanding of the mechanisms involved in the regulation of dental pulp immunity that may be elicited by gram-negative bacteria. PMID:26472753

  10. Immune Functions in Mice Lacking Clnk, an SLP-76-Related Adaptor Expressed in a Subset of Immune Cells

    PubMed Central

    Utting, Oliver; Sedgmen, Bradley J.; Watts, Tania H.; Shi, Xiaoshu; Rottapel, Robert; Iulianella, Angelo; Lohnes, David; Veillette, André

    2004-01-01

    The SLP-76 family of immune cell-specific adaptors is composed of three distinct members named SLP-76, Blnk, and Clnk. They have been implicated in the signaling pathways coupled to immunoreceptors such as the antigen receptors and Fc receptors. Previous studies using gene-targeted mice and deficient cell lines showed that SLP-76 plays a central role in T-cell development and activation. Moreover, it is essential for normal mast cell and platelet activation. In contrast, Blnk is necessary for B-cell development and activation. While the precise function of Clnk is not known, it was reported that Clnk is selectively expressed in mast cells, natural killer (NK) cells, and previously activated T-cells. Moreover, ectopic expression of Clnk was shown to rescue T-cell receptor-mediated signal transduction in an SLP-76-deficient T-cell line, suggesting that, like its relatives, Clnk is involved in the positive regulation of immunoreceptor signaling. Stimulatory effects of Clnk on immunoreceptor signaling were also reported to occur in transfected B-cell and basophil leukemia cell lines. Herein, we attempted to address the physiological role of Clnk in immune cells by the generation of Clnk-deficient mice. The results of our studies demonstrated that Clnk is dispensable for normal differentiation and function of T cells, mast cells, and NK cells. Hence, unlike its relatives, Clnk is not essential for normal immune functions. PMID:15199160

  11. Platelets and their interactions with other immune cells

    PubMed Central

    Lam, Fong W.; Vijayan, K. Vinod; Rumbaut, Rolando E.

    2015-01-01

    Platelets are anucleate blood cells, long known to be critically involved in hemostasis and thrombosis. In addition to their role in blood clots, increasing evidence reveals significant roles for platelets in inflammation and immunity. However, the notion that platelets represent immune cells is not broadly recognized in the field of Physiology. This manuscript reviews the role of platelets in inflammation and immune responses, and highlights their interactions with other immune cells, including examples of major functional consequences of these interactions. PMID:26140718

  12. Metabolic regulation of T cell differentiation and function

    PubMed Central

    Park, Benjamin V.; Pan, Fan

    2016-01-01

    Upon encountering pathogens, T cells mount immune responses by proliferating, increasing cellular mass and differentiating. These cellular changes impose significant energetic challenges on T cells. It was believed that TCR and cytokine-mediated signaling are dominant dictators of T cell-mediated immune responses. Recently, it was recognized that T cells utilize metabolic transporters and metabolic sensors that allow them to rapidly respond to nutrient-limiting inflammatory environments. Metabolic sensors allow T cells to find a balance between energy consumption (anabolic metabolism) and production (catabolic metabolism) in order to mount effective immune responses. Also, metabolic regulators interact with cytokine-dependent transcriptional regulators, suggesting a more integrative and advanced model of T cell activation and differentiation. In this review, we will discuss recent discoveries regarding the roles of metabolic regulators in effector and memory T cell development and their interaction with canonical transcription factors. PMID:26277275

  13. Regulation of antiviral T cell responses by type I interferons.

    PubMed

    Crouse, Josh; Kalinke, Ulrich; Oxenius, Annette

    2015-04-01

    Type I interferons (IFNs) are pro-inflammatory cytokines that are rapidly induced in different cell types during viral infections. The consequences of type I IFN signalling include direct antiviral activity, innate immune cell activation and regulation of adaptive immune responses. In this Review, we discuss recent conceptual advances in our understanding of indirect and direct regulation of T cell immunity by type I IFNs, which can either promote or inhibit T cell activation, proliferation, differentiation and survival. This regulation depends, to a large extent, on the timing of type I IFN exposure relative to T cell receptor signalling. Type I IFNs also provide activated T cells with resistance to natural killer cell-mediated elimination. PMID:25790790

  14. Transcriptional Regulation of Pattern-Triggered Immunity in Plants.

    PubMed

    Li, Bo; Meng, Xiangzong; Shan, Libo; He, Ping

    2016-05-11

    Perception of microbe-associated molecular patterns (MAMPs) by cell-surface-resident pattern recognition receptors (PRRs) induces rapid, robust, and selective transcriptional reprogramming, which is central for launching effective pattern-triggered immunity (PTI) in plants. Signal relay from PRR complexes to the nuclear transcriptional machinery via intracellular kinase cascades rapidly activates primary immune response genes. The coordinated action of gene-specific transcription factors and the general transcriptional machinery contribute to the selectivity of immune gene activation. In addition, PRR complexes and signaling components are often transcriptionally upregulated upon MAMP perception to ensure the robustness and sustainability of PTI outputs. In this review, we discuss recent advances in deciphering the signaling pathways and regulatory mechanisms that coordinately lead to timely and accurate MAMP-induced gene expression in plants. PMID:27173932

  15. A distinct plasmablast and naïve B-cell phenotype in primary immune thrombocytopenia

    PubMed Central

    Flint, Shaun M.; Gibson, Adele; Lucas, Geoff; Nandigam, Raghava; Taylor, Louise; Provan, Drew; Newland, Adrian C.; Savage, Caroline O.; Henderson, Robert B.

    2016-01-01

    Primary immune thrombocytopenia is an autoimmune disorder in which platelet destruction is a consequence of both B- and T-cell dysregulation. Flow cytometry was used to further characterize the B- and T-cell compartments in a cross-sectional cohort of 26 immune thrombocytopenia patients including antiplatelet antibody positive (n=14) and negative (n=12) patients exposed to a range of therapies, and a cohort of matched healthy volunteers. Markers for B-cell activating factor and its receptors, relevant B-cell activation markers (CD95 and CD21) and markers for CD4+ T-cell subsets, including circulating T-follicular helper-like cells, were included. Our results indicate that an expanded population of CD95+ naïve B cells correlated with disease activity in immune thrombocytopenia patients regardless of treatment status. A population of CD21-naïve B cells was specifically expanded in autoantibody-positive immune thrombocytopenia patients. Furthermore, the B-cell maturation antigen, a receptor for B-cell activating factor, was consistently and strongly up-regulated on plasmablasts from immune thrombocytopenia patients. These observations have parallels in other autoantibody-mediated diseases and suggest that loss of peripheral tolerance in naïve B cells may be an important component of immune thrombocytopenia pathogenesis. Moreover, the B-cell maturation antigen represents a potential target for plasma cell directed therapies in immune thrombocytopenia. PMID:26969086

  16. Intestinal immune cells in Strongyloides stercoralis infection.

    PubMed Central

    Trajman, A; MacDonald, T T; Elia, C C

    1997-01-01

    BACKGROUND: Strongyloides stercoralis can cause a wide spectrum of disease in man, ranging from a chronic asymptomatic infection to a hyperinfective, often fatal syndrome. In rodents, spontaneous expulsion of Strongyloides spp occurs after experimental infection. Mast cells, goblet cells, and eosinophils have been identified as possible effectors of this expulsion. AIMS: To investigate intestinal histopathology and mucosal immunity in immunocompetent patients with chronic S stercoralis infection. METHODS: Jejunal biopsies were performed in 19 immunocompetent patients with a positive stool examination for S stercoralis and few or no symptoms, and in seven healthy controls. Specimens were processed for histopathological analysis and stained by the immunoperoxidase technique, using the following monoclonal antibodies: CD2, CD3, CD4, CD8, anti-T cell receptor (TcR) gamma/delta, RFD1 and RFD7 (two different macrophage markers), Ki67+ (proliferating) cells, antihuman leucocyte antigen (HLA)-DR, and anticollagen IV. In addition, CD25+ cells, mast cells, IgE expressing cells, calprotectin containing cells, and neutrophil elastase positive cells were stained by the alkaline phosphatase method. RESULTS: Jejunal morphology and the numbers of different T cell subsets, mast cells, IgE expressing cells, eosinophils, and goblet cells were unaffected by S stercoralis infection. Conversely, the numbers of mature macrophages and dividing enterocytes in the crypts were reduced significantly. Crypt enterocytes did not express HLA-DR in both groups. The expression of HLA-DR by villus enterocytes was also comparable in patients and controls. There were no activated (CD25+) cells in the mucosa of either patients or controls. CONCLUSIONS: Compared with seven healthy uninfected volunteers, a group of 19 Brazilians with clinically mild strongyloides infection showed no abnormality of mucosal structure and no increase in non-specific inflammatory cells. Likewise, there was no increase in

  17. Pulmonary Th17 Antifungal Immunity Is Regulated by the Gut Microbiome.

    PubMed

    McAleer, Jeremy P; Nguyen, Nikki L H; Chen, Kong; Kumar, Pawan; Ricks, David M; Binnie, Matthew; Armentrout, Rachel A; Pociask, Derek A; Hein, Aaron; Yu, Amy; Vikram, Amit; Bibby, Kyle; Umesaki, Yoshinori; Rivera, Amariliz; Sheppard, Dean; Ouyang, Wenjun; Hooper, Lora V; Kolls, Jay K

    2016-07-01

    Commensal microbiota are critical for the development of local immune responses. In this article, we show that gut microbiota can regulate CD4 T cell polarization during pulmonary fungal infections. Vancomycin drinking water significantly decreased lung Th17 cell numbers during acute infection, demonstrating that Gram-positive commensals contribute to systemic inflammation. We next tested a role for RegIIIγ, an IL-22-inducible antimicrobial protein with specificity for Gram-positive bacteria. Following infection, increased accumulation of Th17 cells in the lungs of RegIIIγ(-/-) and Il22(-/-) mice was associated with intestinal segmented filamentous bacteria (SFB) colonization. Although gastrointestinal delivery of rRegIIIγ decreased lung inflammatory gene expression and protected Il22(-/-) mice from weight loss during infection, it had no direct effect on SFB colonization, fungal clearance, or lung Th17 immunity. We further show that vancomycin only decreased lung IL-17 production in mice colonized with SFB. To determine the link between gut microbiota and lung immunity, serum-transfer experiments revealed that IL-1R ligands increase the accumulation of lung Th17 cells. These data suggest that intestinal microbiota, including SFB, can regulate pulmonary adaptive immune responses. PMID:27217583

  18. A GRHL3-regulated repair pathway suppresses immune-mediated epidermal hyperplasia

    PubMed Central

    Gordon, William M.; Zeller, Michael D.; Klein, Rachel H.; Swindell, William R.; Ho, Hsiang; Espetia, Francisco; Gudjonsson, Johann E.; Baldi, Pierre F.; Andersen, Bogi

    2014-01-01

    Dermal infiltration of T cells is an important step in the onset and progression of immune-mediated skin diseases such as psoriasis; however, it is not known whether epidermal factors play a primary role in the development of these diseases. Here, we determined that the prodifferentiation transcription factor grainyhead-like 3 (GRHL3), which is essential during epidermal development, is dispensable for adult skin homeostasis, but required for barrier repair after adult epidermal injury. Consistent with activation of a GRHL3-regulated repair pathway in psoriasis, we found that GRHL3 is upregulated in lesional skin and binds known epidermal differentiation gene targets. Using an imiquimod-induced model of immune-mediated epidermal hyperplasia, we found that mice lacking GRHL3 have an exacerbated epidermal damage response, greater sensitivity to disease induction, delayed resolution of epidermal lesions, and resistance to anti–IL-22 therapy compared with WT animals. ChIP-Seq and gene expression profiling of murine skin revealed that while GRHL3 regulates differentiation pathways both during development and during repair from immune-mediated damage, it targets distinct sets of genes in the 2 processes. In particular, GRHL3 suppressed a number of alarmin and other proinflammatory genes after immune injury. This study identifies a GRHL3-regulated epidermal barrier repair pathway that suppresses disease initiation and helps resolve existing lesions in immune-mediated epidermal hyperplasia. PMID:25347468

  19. The role of IL-10 in regulating immunity to persistent viral infections

    PubMed Central

    Wilson, Elizabeth B.; Brooks, David G.

    2012-01-01

    The immune system has evolved multipronged responses that are critical to effectively defend the body from invading pathogens and to clear infection. However, the same weapons employed to eradicate infection can have caustic effects on normal bystander cells. Therefore, tight regulation is vital and the host must balance engendering correct and sufficient immune responses to pathogens while limiting errant and excessive immunopathology. To accomplish this task a complex network of positive and negative immune signals are delivered that in most instances successfully eliminate pathogen. However, in response to some viral infections, immune function is rapidly suppressed leading to viral persistence. Immune suppression is a critical obstacle to the control of many persistent virus infections such as HIV, hepatitis C and hepatitis B virus, which together affect more than 500 million individuals worldwide. Thus, the ability to therapeutically enhance immunity is a potentially powerful approach to resolve persistent infections. The host derived cytokine IL-10 is a key player in the establishment and perpetuation of viral persistence. This chapter discusses the role of IL-10 in viral persistence and explores the exciting prospect of therapeutically blocking IL-10 to increase antiviral immunity and vaccine efficacy. PMID:20703965

  20. Active chinese mistletoe lectin-55 enhances colon cancer surveillance through regulating innate and adaptive immune responses

    PubMed Central

    Ma, Yan-Hui; Cheng, Wei-Zhi; Gong, Fang; Ma, An-Lun; Yu, Qi-Wen; Zhang, Ji-Ying; Hu, Chao-Ying; Chen, Xue-Hua; Zhang, Dong-Qing

    2008-01-01

    AIM: To investigate the potential role of Active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance. METHODS: In this study, an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5 × 105 cells) into BALB/c mice. The experimental treatment was orally administered with ACML-55 or PBS, followed by the inoculation of colon cancer cell line CT26. Intracellular cytokine staining was used to detect IFN-γ production by tumor antigen specific CD8+ T cells. FACS analysis was employed to profile composition and activation of CD4+, CD8+, γδ T and NK cells. RESULTS: Our results showed, compared to PBS treated mice, ACML-55 treatment significantly delayed colon cancer development in colon cancer -bearing Balb/c mice in vivo. Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells, and increased the number of tumor Ag specific CD8+ T cells. It was more important to increase the frequency of tumor Ag specific IFN-γ producing-CD8+ T cells. Interestingly, ACML-55 treatment also showed increased cell number of NK, and γδT cells, indicating the role of ACML-55 in activation of innate lymphocytes. CONCLUSION: Our results demonstrate that ACML-55 therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses. PMID:18785279

  1. Immunoregulatory molecules are master regulators of inflammation during the immune response

    PubMed Central

    Sánchez-Madrid, Francisco

    2014-01-01

    The balance between pro- and anti-inflammatory signalling is critical to maintain the immune homeostasis under physiological conditions as well as for the control of inflammation in different pathological settings. Recent progress in the signalling pathways that control this balance has led to the development of novel therapeutic agents for diseases characterized by alterations in the activation/suppression of the immune response. Different molecules have a key role in the regulation of the immune system, including the receptors PD-1 (Programmed cell Death 1), CTLA-4 (Cytotoxic T-Lymphocyte Antigen 4) and galectins; or the intracellular enzyme IDO (indoleamine 2,3-dioxygenase). In addition, other molecules as CD69, AhR (Aryl hydrocarbon Receptor), and GADD45 (Growth Arrest and DNA Damage-inducible 45) family members, have emerged as potential targets for the regulation of the activation/suppression balance of immune cells. This review offers a perspective on well-characterized as well as emergent negative immune regulatory molecules in the context of autoimmune inflammatory diseases. PMID:22819828

  2. Long noncoding RNAs as regulators of Toll-like receptor signaling and innate immunity.

    PubMed

    Murphy, Michael B; Medvedev, Andrei E

    2016-06-01

    Sensing of microbial pathogens and endogenous "alarmins" by macrophages and dendritic cells is reliant on pattern recognition receptors, including membrane-associated TLRs, cytosolic nucleotide-binding and oligomerization domain leucine-rich repeat-containing receptors, retinoic acid-inducible gene I-like receptors, and absent in melanoma 2-like receptors. Engagement of TLRs elicits signaling pathways that activate inflammatory genes whose expression is regulated by chromatin-modifying complexes and transcription factors. Long noncoding RNAs have emerged as new regulators of inflammatory mediators in the immune system. They are expressed in macrophages, dendritic cells, neutrophils, NK cells, and T- and B-lymphocytes and are involved in immune cell differentiation and activation. Long noncoding RNAs act via repression or activation of transcription factors, modulation of stability of mRNA and microRNA, regulation of ribosome entry and translation of mRNAs, and controlling components of the epigenetic machinery. In this review, we focus on recent advances in deciphering the mechanisms by which long noncoding RNAs regulate TLR-driven responses in macrophages and dendritic cells and discuss the involvement of long noncoding RNAs in endotoxin tolerance, autoimmune, and inflammatory diseases. The dissection of the role of long noncoding RNAs will improve our understanding of the mechanisms of regulation of inflammation and may provide new targets for therapeutic intervention. PMID:26965636

  3. Lentiviral Vectors for Immune Cells Targeting

    PubMed Central

    Froelich, Steven; Tai, April; Wang, Pin

    2009-01-01

    Lentiviral vectors are efficient gene delivery vehicles suitable for delivering long-term transgene expression in various cell types. Engineering lentiviral vectors to have the capacity to transduce specific cell types is of great interest to advance the translation of lentiviral vectors towards the clinic. Here we provide an overview of innovative approaches to target lentiviral vectors to cells of the immune system. In this overview we distinguish between two types of lentiviral vector targeting strategies: 1) targeting of the vectors to specific cells by lentiviral vector surface modifications, and 2) targeting at the level of transgene transcription by insertion of tissue-specific promoters to drive transgene expression. It is clear that each strategy is of enormous value but ultimately combining these approaches may help reduce the effects of off-target expression and improve the efficiency and saftey of lentiviral vectors for gene therapy. PMID:20085508

  4. Cell-mediated immunity in epidermodysplasia verruciformis.

    PubMed

    Gliński, W; Jablonska, S; Langner, A; Obalek, S; Haftek, M; Proniewska, M

    1976-01-01

    Investigations were performed in 6 cases of epidermodysplasia verruciformis and 2 healthy family members. Nonspecific cell-mediated immunity (CMI) was studied by measuring response to phytohemagglutinin (PHA) and concanavalin A (Con A), percentrages of E- and EAC-rosette-forming lymphocytes, bacterial skin tests, and allergic reactions to dinitrochloro-benzene (DNCB). Impairment of CMI was manifested by reduction in the percentage of E rosettes, and lowered response to PHA, and- to a lesser degree- to Con A. The immune response to DNCB sensitization was invariably negative. Impairment of CMI was greater in cases of long duration and with extensive lesions. The cases of similar duration and extent of lesions, which never showed tendency to tumor formation, were not different in CMI in comparison with cases with numerous tumors. Only in cases with very advanced tumors CMI was impaired parallel to the gravity of the patient's general condition. PMID:1017532

  5. B10 cell regulation of health and disease

    PubMed Central

    Candando, Kathleen M.; Lykken, Jacquelyn M.; Tedder, Thomas F.

    2014-01-01

    Summary While B cells are traditionally regarded as promoters of the immune response via antibody secretion and pro-inflammatory cytokine production, recent studies have also confirmed an important role for B-cell-mediated negative regulation of immunity. Tremendous advances in the characterization of the mechanisms by which regulatory B cells function has led to the identification of a novel subset of regulatory B cells known as B10 cells, which regulate immune responses through the production of the anti-inflammatory cytokine interleukin-10 (IL-10). B10 cells are best defined by their functional ability to produce IL-10, as they are not confined to any particular phenotypic subset. B10 cells function in an antigen-specific manner that requires cognate interactions with T cells in vivo to regulate immune responses and have been demonstrated to be potent regulators of allergic and autoimmune disease, cancer, infection, and transplant rejection. Importantly, the recent discovery of human B10 cells has accelerated this field to the forefront of clinical research where the possibility of harnessing the regulatory potential of B10 cells for treatment of aberrant immune responses and diseases may become feasible. PMID:24712471

  6. Fever and the thermal regulation of immunity: the immune system feels the heat

    PubMed Central

    Evans, Sharon S.; Repasky, Elizabeth A.; Fisher, Daniel T.

    2016-01-01

    Fever is a cardinal response to infection that has been conserved in warm and cold-blooded vertebrates for over 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. Here, we review our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction as well as during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. Finally, we discuss the emerging evidence that suggests the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513

  7. Fever and the thermal regulation of immunity: the immune system feels the heat.

    PubMed

    Evans, Sharon S; Repasky, Elizabeth A; Fisher, Daniel T

    2015-06-01

    Fever is a cardinal response to infection that has been conserved in warm-blooded and cold-blooded vertebrates for more than 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. In this Review, we discuss our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction and during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. We also discuss the emerging evidence suggesting that the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513

  8. Recognition and Regulation of T Cells by NK Cells.

    PubMed

    Pallmer, Katharina; Oxenius, Annette

    2016-01-01

    Regulation of T cell responses by innate lymphoid cells (ILCs) is increasingly documented and studied. Direct or indirect crosstalk between ILCs and T cells early during and after T cell activation can affect their differentiation, polarization, and survival. Natural killer (NK) cells that belong to the ILC1 group were initially described for their function in recognizing and eliminating "altered self" and as source of early inflammatory cytokines, most notably type II interferon. Using signals conveyed by various germ-line encoded activating and inhibitory receptors, NK cells are geared to sense sudden cellular changes that can be caused by infection events, malignant transformation, or cellular stress responses. T cells, when activated by TCR engagement (signal 1), costimulation (signal 2), and cytokines (signal 3), commit to a number of cellular alterations, including entry into rapid cell cycling, metabolic changes, and acquisition of effector functions. These abrupt changes may alert NK cells, and T cells might thereby expose themselves as NK cell targets. Here, we review how activated T cells can be recognized and regulated by NK cells and what consequences such regulation bears for T cell immunity in the context of vaccination, infection, or autoimmunity. Conversely, we will discuss mechanisms by which activated T cells protect themselves against NK cell attack and outline the significance of this safeguard mechanism. PMID:27446081

  9. Recognition and Regulation of T Cells by NK Cells

    PubMed Central

    Pallmer, Katharina; Oxenius, Annette

    2016-01-01

    Regulation of T cell responses by innate lymphoid cells (ILCs) is increasingly documented and studied. Direct or indirect crosstalk between ILCs and T cells early during and after T cell activation can affect their differentiation, polarization, and survival. Natural killer (NK) cells that belong to the ILC1 group were initially described for their function in recognizing and eliminating “altered self” and as source of early inflammatory cytokines, most notably type II interferon. Using signals conveyed by various germ-line encoded activating and inhibitory receptors, NK cells are geared to sense sudden cellular changes that can be caused by infection events, malignant transformation, or cellular stress responses. T cells, when activated by TCR engagement (signal 1), costimulation (signal 2), and cytokines (signal 3), commit to a number of cellular alterations, including entry into rapid cell cycling, metabolic changes, and acquisition of effector functions. These abrupt changes may alert NK cells, and T cells might thereby expose themselves as NK cell targets. Here, we review how activated T cells can be recognized and regulated by NK cells and what consequences such regulation bears for T cell immunity in the context of vaccination, infection, or autoimmunity. Conversely, we will discuss mechanisms by which activated T cells protect themselves against NK cell attack and outline the significance of this safeguard mechanism. PMID:27446081

  10. Immunization with adenovirus LIGHT-engineered dendritic cells induces potent T cell responses and therapeutic immunity in HBV transgenic mice.

    PubMed

    Jiang, Wenzheng; Chen, Ran; Kong, Xiaobo; Long, Fengying; Shi, Yaru

    2014-07-31

    LIGHT, a TNF superfamily member (TNFSF14), is a type II transmembrane protein expressed on activated T cells and immature dendritic cells (DCs). However, the expression of LIGHT on mature DCs is down-regulated. Recent studies demonstrated that LIGHT provides potent costimulatory activity for T cells, enhancing proliferation and the production of Th1 cytokines independently of the B7-CD28 pathway. Here, we evaluated the effectiveness of peptide-pulsed DC-mediated antiviral immunity in HBV transgenic mice and the immunoadjuvant effect of LIGHT. The bone marrow-derived DCs were modified in vitro with an adenovirus (Ad) vector expressing mouse LIGHT (Ad-LIGHT), the expression of costimulatory molecules was up-regulated and the secretion of cytokines IL-12 and IFN-γ increased. LIGHT-modified DCs enhanced allostimulation for T cells in mixed lymphocyte reaction (MLR). HBV peptide-pulsed DCs elicited HBV specific CD8+ T cell response and reduced the level of HBsAg and HBV DNA in sera of HBV transgenic mice. Importantly, LIGHT-modified DCs could induce stronger antiviral immunity. These results support the concept that genetic modification of DCs with a recombinant LIGHT adenovirus vector may be a useful strategy for antiviral immunotherapy. PMID:24951859

  11. Essential oil of clove (Eugenia caryophyllata) augments the humoral immune response but decreases cell mediated immunity.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2011-08-01

    The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. PMID:21796701

  12. B Cells and Humoral Immunity in Atherosclerosis

    PubMed Central

    Tsiantoulas, Dimitrios; Diehl, Cody J.; Witztum, Joseph L.; Binder, Christoph J.

    2014-01-01

    Insights into the important contribution of inflammation and immune functions in the development and progression of atherosclerosis have greatly improved our understanding of this disease. Although the role of T cells has been extensively studied for decades, only recently has the role of B cells gained more attention. Recent studies have identified differential effects of different B-cell subsets and helped to clarify the still poorly understood mechanisms by which these act. B1 cells have been shown to prevent lesion formation, whereas B2 cells have been suggested to promote it. Natural IgM antibodies, mainly derived from B1 cells, have been shown to mediate atheroprotective effects, but the functional role of other immunoglobulin classes, particularly IgG, still remains elusive. In this review, we will focus on recent insights on the role of B cells and various immunoglobulin classes and how these may mediate their effects in atherosclerotic lesion formation. Moreover, we will highlight potential therapeutic approaches focusing on B-cell depletion that could be used to translate experimental evidence to human disease. PMID:24855199

  13. Promoting Immune Regulation in Type 1 Diabetes Using Low-Dose Interleukin-2.

    PubMed

    Dwyer, Connor J; Ward, Natasha C; Pugliese, Alberto; Malek, Thomas R

    2016-06-01

    Dysregulation of the immune system contributes to the breakdown of immune regulation, leading to autoimmune diseases, such as type 1 diabetes (T1D). Current therapies for T1D include daily insulin, due to pancreatic β-cell destruction to maintain blood glucose levels, suppressive immunotherapy to decrease the symptoms associated with autoimmunity, and islet transplantation. Genetic risks for T1D have been linked to IL-2 and IL-2R signaling pathways that lead to the breakdown of self-tolerance mechanisms, primarily through altered regulatory T cell (Treg) function and homeostasis. In attempt to correct such deficits, therapeutic administration of IL-2 at low doses has gained attention due to the capacity to boost Tregs without the unwanted stimulation of effector T cells. Preclinical and clinical studies utilizing low-dose IL-2 have shown promising results to expand Tregs due to their high selective sensitivity to respond to IL-2. These results suggest that low-dose IL-2 therapy represents a new class of immunotherapy for T1D by promoting immune regulation rather than broadly suppressing unwanted and beneficial immune responses. PMID:27076179

  14. Cell-mediated immunity in anorexia nervosa.

    PubMed Central

    Cason, J; Ainley, C C; Wolstencroft, R A; Norton, K R; Thompson, R P

    1986-01-01

    Twelve patients with anorexia nervosa were studied for cell-mediated immunity in terms of delayed hypersensitivity reactions to recall antigens, lymphocyte transformation responses to T-cell mitogens, and numbers of circulating leucocytes and T-cell subpopulations. Compared to controls, all patients had reduced cutaneous reactions and four were anergic. There was a mild leucopenia in patients and both T4+ and T3+ numbers were slightly reduced. Mean peak transformation responses for patients were slightly lower than controls for phytohaemagglutinin, but not for concanavalin A; however, patients required greater doses of mitogens to elicit peak transformation responses. Plasmas from patients did not contain inhibitors of transformation responses. We conclude that there are functional cellular abnormalities associated with the under-nutrition of anorexia nervosa. PMID:3742879

  15. Protein synthesis regulation, a pillar of strength for innate immunity?

    PubMed

    Argüello, Rafael J; Rodriguez Rodrigues, Christian; Gatti, Evelina; Pierre, Philippe

    2015-02-01

    Recognition of pathogen derived molecules by Pattern Recognition Receptors (PRR) induces the production of cytokines (i.e. type I interferons) that stimulate the surrounding cells to transcribe and translate hundreds of genes, in order to prevent further infection and organize the immune response. Here, we report on the rising matter that metabolism sensing and gene expression control at the level of mRNA translation, allow swift responses that mobilize host defenses and coordinate innate responses to infection. PMID:25553394

  16. Calcitonin Gene-Related Peptide: Key Regulator of Cutaneous Immunity

    PubMed Central

    Granstein, Richard D.; Wagner, John A.; Stohl, Lori L.; Ding, Wanhong

    2014-01-01

    Calcitonin gene-related peptide (CGRP) has been viewed as a neuropeptide and vasodilator. However, CGRP is more appropriately thought of as a pleiotropic signaling molecule. Indeed, CGRP has key regulatory functions on immune and inflammatory processes within the skin. CGRP-containing nerves are intimately associated with epidermal LCs and CGRP has profound regulatory effects on Langerhans cell antigen-presenting capability. When LCs are exposed to CGRP in vitro, their ability to present antigen for in vivo priming of naïve mice or elicitation of delayed-type hypersensitivity is inhibited in at least some situations. Administration of CGRP intradermally inhibits acquisition of immunity to Th1-dominant haptens applied to the injected site while augmenting immunity to Th2-dominant haptens, although the cellular targets of activity in these experiments remains unclear. Although CGRP can be a pro-inflammatory agent, several studies have demonstrated that administration of CGRP can inhibit the elicitation of inflammation by inflammatory stimuli in vivo. In this regard, CGRP inhibits the release of certain chemokines by stimulated endothelial cells. This is likely to be physiologically relevant since cutaneous blood vessels are innervated by sensory nerves. Exciting new studies suggest a significant role for CGRP in the pathogenesis of psoriasis and, most strikingly, that CGRP inhibit the ability of LCs to transmit the human immunodeficiency virus 1 to T lymphocytes. A more complete understanding of the role of CGRP in the skin immune system may lead to new and novel approaches for the therapy of immune mediated skin disorders. PMID:25534428

  17. Platelet Interaction with Innate Immune Cells

    PubMed Central

    Kral, Julia Barbara; Schrottmaier, Waltraud Cornelia; Salzmann, Manuel; Assinger, Alice

    2016-01-01

    Summary Beyond their traditional role in haemostasis and thrombosis, platelets are increasingly recognised as immune modulatory cells. Activated platelets and platelet-derived microparticles can bind to leukocytes, which stimulates mutual activation and results in rapid, local release of platelet-derived cytokines. Thereby platelets modulate leukocyte effector functions and contribute to inflammatory and immune responses to injury or infection. Platelets enhance leukocyte extravasation, differentiation and cytokine release. Platelet-neutrophil interactions boost oxidative burst, neutrophil extracellular trap formation and phagocytosis and play an important role in host defence. Platelet interactions with monocytes propagate their differentiation into macrophages, modulate cytokine release and attenuate macrophage functions. Depending on the underlying pathology, platelets can enhance or diminish leukocyte cytokine production, indicating that platelet-leukocyte interactions represent a fine balanced system to restrict excessive inflammation during infection. In atherosclerosis, platelet interaction with neutrophils, monocytes and dendritic cells accelerates key steps of atherogenesis by promoting leukocyte extravasation and foam cell formation. Platelet-leukocyte interactions at sites of atherosclerotic lesions destabilise atherosclerotic plaques and promote plaque rupture. Leukocytes in turn also modulate platelet function and production, which either results in enhanced platelet destruction or increased platelet production. This review aims to summarise the key effects of platelet-leukocyte interactions in inflammation, infection and atherosclerosis. PMID:27226790

  18. Platelet Interaction with Innate Immune Cells.

    PubMed

    Kral, Julia Barbara; Schrottmaier, Waltraud Cornelia; Salzmann, Manuel; Assinger, Alice

    2016-03-01

    Beyond their traditional role in haemostasis and thrombosis, platelets are increasingly recognised as immune modulatory cells. Activated platelets and platelet-derived microparticles can bind to leukocytes, which stimulates mutual activation and results in rapid, local release of platelet-derived cytokines. Thereby platelets modulate leukocyte effector functions and contribute to inflammatory and immune responses to injury or infection. Platelets enhance leukocyte extravasation, differentiation and cytokine release. Platelet-neutrophil interactions boost oxidative burst, neutrophil extracellular trap formation and phagocytosis and play an important role in host defence. Platelet interactions with monocytes propagate their differentiation into macrophages, modulate cytokine release and attenuate macrophage functions. Depending on the underlying pathology, platelets can enhance or diminish leukocyte cytokine production, indicating that platelet-leukocyte interactions represent a fine balanced system to restrict excessive inflammation during infection. In atherosclerosis, platelet interaction with neutrophils, monocytes and dendritic cells accelerates key steps of atherogenesis by promoting leukocyte extravasation and foam cell formation. Platelet-leukocyte interactions at sites of atherosclerotic lesions destabilise atherosclerotic plaques and promote plaque rupture. Leukocytes in turn also modulate platelet function and production, which either results in enhanced platelet destruction or increased platelet production. This review aims to summarise the key effects of platelet-leukocyte interactions in inflammation, infection and atherosclerosis. PMID:27226790

  19. Osteonecrosis of the Jaw Developed in Mice: DISEASE VARIANTS REGULATED BY γδ T CELLS IN ORAL MUCOSAL BARRIER IMMUNITY.

    PubMed

    Park, Sil; Kanayama, Keiichi; Kaur, Kawaljit; Tseng, Han-Ching Helen; Banankhah, Sina; Quje, Davood Talebi; Sayre, James W; Jewett, Anahid; Nishimura, Ichiro

    2015-07-10

    Osteonecrosis of the jaw (ONJ), an uncommon co-morbidity in patients treated with bisphosphonates (BP), occurs in the segment of jawbone interfacing oral mucosa. This study aimed to investigate a role of oral mucosal barrier γδ T cells in the pathogenesis of ONJ. Female C57Bl/6J (B6) mice received a bolus zoledronate intravenous injection (ZOL, 540 μg/kg), and their maxillary left first molars were extracted 1 week later. ZOL-treated mice (WT ZOL) delayed oral wound healing with patent open wounds 4 weeks after tooth extraction with characteristic oral epithelial hyperplasia. γδ T cells appeared within the tooth extraction site and hyperplastic epithelium in WT ZOL mice. In ZOL-treated γδ T cell null (Tcrd(-/-) ZOL) mice, the tooth extraction open wound progressively closed; however, histological ONJ-like lesions were identified in 75 and 60% of WT ZOL and Tcrd(-/-) ZOL mice, respectively. Although the bone exposure phenotype of ONJ was predominantly observed in WT ZOL mice, Tcrd(-/-) ZOL mice developed the pustule/fistula disease phenotype. We further addressed the role of γδ T cells from human peripheral blood (h-γδ T cells). When co-cultured with ZOL-pretreated human osteoclasts in vitro, h-γδ T cells exhibited rapid expansion and robust IFN-γ secretion. When h-γδ T cells were injected into ZOL-treated immunodeficient (Rag2(-/-) ZOL) mice, the oral epithelial hyperplasia developed. However, Rag2(-/-) ZOL mice did not develop osteonecrosis. The results indicate that γδ T cells are unlikely to influence the core osteonecrosis mechanism; however, they may serve as a critical modifier contributing to the different oral mucosal disease variations of ONJ. PMID:26013832

  20. Respiratory epithelial cells orchestrate pulmonary innate immunity.

    PubMed

    Whitsett, Jeffrey A; Alenghat, Theresa

    2015-01-01

    The epithelial surfaces of the lungs are in direct contact with the environment and are subjected to dynamic physical forces as airway tubes and alveoli are stretched and compressed during ventilation. Mucociliary clearance in conducting airways, reduction of surface tension in the alveoli, and maintenance of near sterility have been accommodated by the evolution of a multi-tiered innate host-defense system. The biophysical nature of pulmonary host defenses are integrated with the ability of respiratory epithelial cells to respond to and 'instruct' the professional immune system to protect the lungs from infection and injury. PMID:25521682

  1. Regulation of host innate immunity by hepatitis C virus: crosstalk between hepatocyte and NK/DC

    PubMed Central

    Park, Sung-Jae; Hahn, Young S.

    2014-01-01

    Hepatitis C virus (HCV) infection in humans is remarkably efficient in establishing viral persistence, leading to the development of liver cirrhosis and hepatocellular carcinoma. CD8+ T cells are involved in controlling HCV infection; but, in chronic HCV patients, severe CD4+ and CD8+ T cell dysfunction has been observed. This suggests that HCV may employ numerous mechanisms to counteract or possibly suppress the host T cell responses. The primary site of HCV replication occurs within hepatocytes in the liver. As a result of liver enodothelial cells perforated by fenestrations, parenchymal cells (hepatocytes) are not separated by a basal membrane, and thereby HCV-infected hepatocytes are extensively capable of interacting with innate immune cells including NK, DC. Recent studies reveal that the function of NK and DC function is significantly impaired in chronic HCV patients. Given a critical role of NK and DC in limiting HCV replication at the early phase of viral infection, it is likely that HCV-infected hepatocytes might be responsible for impairing NK and DC function by enhancing the expression of immunoregulatory molecules (either soluble or cell surface). Thus, this impairment of innate immunity attributes to the failure of generating effective T cell responses to clear HCV infection. In this article, we will review studies highlighting the regulation of innate immunity by HCV and crosstalk between hepatocytes and NK/DC in the hepatic environment. PMID:24688607

  2. Cytoskeleton mediated spreading dynamics of immune cells

    NASA Astrophysics Data System (ADS)

    Hui, King-Lam; Wayt, Jessica; Grooman, Brian; Upadhyaya, Arpita

    2009-03-01

    We have studied the spreading of Jurkat T-cells on anti-CD3 antibody-coated substrates as a model of immune synapse formation. Cell adhesion area versus time was measured via interference reflection contrast microscopy. We found that the spread area exhibited a sigmoidal growth as a function of time in contrast to the previously proposed universal power-law growth for spreading cells. We used high-resolution total internal reflection fluorescence microscopy of these cells transfected with GFP-actin to study cytoskeletal dynamics during the spreading process. Actin filaments spontaneously organized into a variety of structures including traveling waves, target patterns, and mobile clusters emanating from an organizing center. We quantify these dynamic structures and relate them to the spreading rates. We propose that the spreading kinetics are determined by active rearrangements of the cytoskeleton initiated by signaling events upon antibody binding by T-cell receptors. Membrane deformations induced by such wavelike organization of the cytoskeleton may be a general phenomenon that underlies cell movement and cell-substrate interactions.

  3. Collecting duct intercalated cell function and regulation.

    PubMed

    Roy, Ankita; Al-bataineh, Mohammad M; Pastor-Soler, Núria M

    2015-02-01

    Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule. PMID:25632105

  4. Stromal cell contributions to the homeostasis and functionality of the immune system

    PubMed Central

    Mueller, Scott N.; Germain, Ronald N.

    2009-01-01

    A defining characteristic of the immune system is the constant movement of many of its constituent cells through the secondary lymphoid tissues, mainly the spleen and lymph nodes, where crucial interactions that underlie homeostatic regulation, peripheral tolerance, and effective development of adaptive immunity take place. What has only recently been recognized is the role that non-haematopoietic stromal elements have in multiple aspects of immune cell migration, activation and survival. In this Review, we summarize our current understanding of lymphoid compartment stromal cells, examine their possible heterogeneity, discuss how these cells contribute to immune homeostasis and the efficient initiation of adaptive immunity, and highlight how targeting of these elements by some pathogens can influence the host response. PMID:19644499

  5. VHL-dependent alterations in the secretome of renal cell carcinoma: Association with immune cell response?

    PubMed

    Stehle, Franziska; Leisz, Sandra; Schulz, Kristin; Schwurack, Nicolle; Weber, Nico; Massa, Chiara; Kalich, Jana; Fahldieck, Corinna; Seliger, Barbara

    2015-12-22

    Secreted proteins could modulate the interaction between tumor, stroma and immune cells within the tumor microenvironment thereby mounting an immunosuppressive tumor microenvironment. In order to determine the secretome-mediated, von Hippel Lindau (VHL)-regulated cross-talk between tumor cells and T lymphocytes peripheral blood mononuclear cells (PBMC) from healthy donors were either cultured in conditioned media obtained from normoxic and hypoxic human VHL-deficient renal cell carcinoma (RCC) cell line (786-0VHL-) and its wild type (wt) VHL-transfected counterpart (786-0VHL+) or directly co-cultured with both cell lines. An increased T cell proliferation was detected in the presence of 786-0VHL+-conditioned medium. By applying a quantitative proteomic-based approach using differential gel electrophoresis followed by mass spectrometry fourteen proteins were identified to be differentially expressed within the secretome of 786-0VHL- cells when compared to that of 786-0VHL+ cells. All proteins identified were involved in multiple tumor-associated biological functions including immune responses. Functional studies on manganese superoxide dismutase 2 (MnSOD2) demonstrated that it was a regulator of T cell activation-induced oxidative signaling and cell death. Direct effects of soluble MnSOD2 on the growth properties and interleukin 2 (IL-2) secretion of T cells could be demonstrated underlining the critical role of extracellular MnSOD2 levels for T cell proliferation and activation. PMID:26486078

  6. VHL-dependent alterations in the secretome of renal cell carcinoma: Association with immune cell response?

    PubMed Central

    Stehle, Franziska; Leisz, Sandra; Schulz, Kristin; Schwurack, Nicolle; Weber, Nico; Massa, Chiara; Kalich, Jana; Fahldieck, Corinna; Seliger, Barbara

    2015-01-01

    Secreted proteins could modulate the interaction between tumor, stroma and immune cells within the tumor microenvironment thereby mounting an immunosuppressive tumor microenvironment. In order to determine the secretome-mediated, von Hippel Lindau (VHL)-regulated cross-talk between tumor cells and T lymphocytes peripheral blood mononuclear cells (PBMC) from healthy donors were either cultured in conditioned media obtained from normoxic and hypoxic human VHL-deficient renal cell carcinoma (RCC) cell line (786-0VHL−) and its wild type (wt) VHL-transfected counterpart (786-0VHL+) or directly co-cultured with both cell lines. An increased T cell proliferation was detected in the presence of 786-0VHL+-conditioned medium. By applying a quantitative proteomic-based approach using differential gel electrophoresis followed by mass spectrometry fourteen proteins were identified to be differentially expressed within the secretome of 786-0VHL− cells when compared to that of 786-0VHL+ cells. All proteins identified were involved in multiple tumor-associated biological functions including immune responses. Functional studies on manganese superoxide dismutase 2 (MnSOD2) demonstrated that it was a regulator of T cell activation-induced oxidative signaling and cell death. Direct effects of soluble MnSOD2 on the growth properties and interleukin 2 (IL-2) secretion of T cells could be demonstrated underlining the critical role of extracellular MnSOD2 levels for T cell proliferation and activation. PMID:26486078

  7. TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression

    PubMed Central

    Yang, Li; Pang, Yanli; Moses, Harold L.

    2010-01-01

    Transforming growth factor β (TGF-β) plays an important role in tumor initiation and progression, functioning as both a suppressor and a promoter. The mechanisms underlying this dual role of TGF-β remain unclear. TGF-β exerts systemic immune suppression and inhibits host immunosurveillance. Neutralizing TGF-β enhances CD8+ T-cell- and NK-cell-mediated anti-tumor immune responses. It also increases neutrophil-attracting chemokines resulting in recruitment and activation of neutrophils with an antitumor phenotype. In addition to its systemic effects, TGF-β regulates infiltration of inflammatory/immune cells and cancer-associated fibroblasts in the tumor microenvironment causing direct changes in tumor cells. Understanding TGF-β regulation at the interface of tumor and host immunity should provide insights into developing effective TGF-β antagonists and biomarkers for patient selection and efficacy of TGF-β antagonist treatment. PMID:20538542

  8. Cell-mediated immune deficiency in Hodgkin's disease.

    PubMed

    Kumar, R K; Penny, R

    1982-10-01

    Disturbances of the immune system frequently accompany the development of lymphomas in man. In the early stages of non-Hodgkin's lymphomas, abnormalities of immunological function are usually minimal, but impairment of both antibody- and cell-mediated immunity is often noted in advanced disease. In contrast, while antibody-mediated immune responses in patients with Hodgkin's disease usually remain intact until late in the course of the illness, cell-mediated immune dysfunction is an early and consistent feature. Here Rakesh Kumar and Ronald Penny discuss the abnormalities of cell-mediated immunity in Hodgkin's disease. PMID:25290229

  9. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    PubMed Central

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity. PMID:26966693

  10. CD81 is essential for the formation of membrane protrusions and regulates Rac1-activation in adhesion-dependent immune cell migration.

    PubMed

    Quast, Thomas; Eppler, Felix; Semmling, Verena; Schild, Cora; Homsi, Yahya; Levy, Shoshana; Lang, Thorsten; Kurts, Christian; Kolanus, Waldemar

    2011-08-18

    CD81 (TAPA-1) is a member of the widely expressed and evolutionary conserved tetraspanin family that forms complexes with a variety of other cell surface receptors and facilitates hepatitis C virus entry. Here, we show that CD81 is specifically required for the formation of lamellipodia in migrating dendritic cells (DCs). Mouse CD81(-/-) DCs, or murine and human CD81 RNA interference knockdown DCs lacked the ability to form actin protrusions, thereby impairing their motility dramatically. Moreover, we observed a selective loss of Rac1 activity in the absence of CD81, the latter of which is exclusively required for integrin-dependent migration on 2-dimensional substrates. Neither integrin affinity for substrate nor the size of basal integrin clusters was affected by CD81 deficiency in adherent DCs. However, the use of total internal reflection fluorescence microscopy revealed an accumulation of integrin clusters above the basal layer in CD81 knockdown cells. Furthermore, β1- or β2-integrins, actin, and Rac are strongly colocalized at the leading edge of DCs, but the very fronts of these cells protrude CD81-containing membranes that project outward from the actin-integrin area. Taken together, these data suggest a thus far unappreciated role for CD81 in the mobilization of preformed integrin clusters into the leading edge of migratory DCs on 2-dimensional surfaces. PMID:21677313

  11. Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells.

    PubMed

    Lorton, Dianne; Bellinger, Denise L

    2015-01-01

    Cross-talk between the sympathetic nervous system (SNS) and immune system is vital for health and well-being. Infection, tissue injury and inflammation raise firing rates of sympathetic nerves, increasing their release of norepinephrine (NE) in lymphoid organs and tissues. NE stimulation of β2-adrenergic receptors (ARs) in immune cells activates the cAMP-protein kinase A (PKA) intracellular signaling pathway, a pathway that interfaces with other signaling pathways that regulate proliferation, differentiation, maturation and effector functions in immune cells. Immune-SNS cross-talk is required to maintain homeostasis under normal conditions, to develop an immune response of appropriate magnitude after injury or immune challenge, and subsequently restore homeostasis. Typically, β2-AR-induced cAMP is immunosuppressive. However, many studies report actions of β2-AR stimulation in immune cells that are inconsistent with typical cAMP-PKA signal transduction. Research during the last decade in non-immune organs, has unveiled novel alternative signaling mechanisms induced by β2-AR activation, such as a signaling switch from cAMP-PKA to mitogen-activated protein kinase (MAPK) pathways. If alternative signaling occurs in immune cells, it may explain inconsistent findings of sympathetic regulation of immune function. Here, we review β2-AR signaling, assess the available evidence for alternative signaling in immune cells, and provide insight into the circumstances necessary for "signal switching" in immune cells. PMID:25768345

  12. Cell Surface Changes Associated with Cellular Immune Reactions in Drosophila

    NASA Astrophysics Data System (ADS)

    Nappi, Anthony J.; Silvers, Michael

    1984-09-01

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts.

  13. Cell surface changes associated with cellular immune reactions in Drosophila.

    PubMed

    Nappi, A J; Silvers, M

    1984-09-14

    In Drosophila melanogaster a temperature-induced change in immune competence accompanies cell surface alterations that cause its blood cells to adhere and to encapsulate a parasite. At 29 degrees C the blood cells of the tumorous-lethal (Tuml) mutant show a high degree of immune competence and encapsulate the eggs of the parasitic wasp Leptopilina heterotoma. At 21 degrees C the blood cells are essentially immune incompetent. High percentages of lectin binding cells were found under conditions which potentiated cellular encapsulation responses. Some immune reactive blood cells did not bind lectin. The low percentages of lectin binding cells in susceptible hosts suggest that developing parasites alter the cell surface of the blood cells of immune reactive hosts. PMID:6433482

  14. Regulation of Intestinal Immune Responses through TLR Activation: Implications for Pro- and Prebiotics.

    PubMed

    de Kivit, Sander; Tobin, Mary C; Forsyth, Christopher B; Keshavarzian, Ali; Landay, Alan L

    2014-01-01

    The intestinal mucosa is constantly facing a high load of antigens including bacterial antigens derived from the microbiota and food. Despite this, the immune cells present in the gastrointestinal tract do not initiate a pro-inflammatory immune response. Toll-like receptors (TLRs) are pattern recognition receptors expressed by various cells in the gastrointestinal tract, including intestinal epithelial cells (IEC) and resident immune cells in the lamina propria. Many diseases, including chronic intestinal inflammation (e.g., inflammatory bowel disease), irritable bowel syndrome (IBS), allergic gastroenteritis (e.g., eosinophilic gastroenteritis and allergic IBS), and infections are nowadays associated with a deregulated microbiota. The microbiota may directly interact with TLR. In addition, differences in intestinal TLR expression in health and disease may suggest that TLRs play an essential role in disease pathogenesis and may be novel targets for therapy. TLR signaling in the gut is involved in either maintaining intestinal homeostasis or the induction of an inflammatory response. This mini review provides an overview of the current knowledge regarding the contribution of intestinal epithelial TLR signaling in both tolerance induction or promoting intestinal inflammation, with a focus on food allergy. We will also highlight a potential role of the microbiota in regulating gut immune responses, especially through TLR activation. PMID:24600450

  15. Purinergic Signaling During Immune Cell Trafficking.

    PubMed

    Ferrari, Davide; McNamee, Eóin N; Idzko, Marco; Gambari, Roberto; Eltzschig, Holger K

    2016-06-01

    Migration and positioning of immune cells is fundamental for their differentiation and recruitment at sites of infection. Besides the fundamental role played by chemokines and their receptors, recent studies demonstrate that a complex network of purinergic signaling events plays a key role in these trafficking events. This process includes the release of nucleotides (such as ATP and ADP) and subsequent autocrine and paracrine signaling events through nucleotide receptors. At the same time, surface-expressed ectoapyrases and nucleotidases convert extracellular nucleotides to adenosine, and adenosine signaling events play additional functional roles in leucocyte trafficking. In this review we revisit classical paradigms of inflammatory cell trafficking in the context of recent studies implicating purinergic signaling events in this process. PMID:27142306

  16. [Genetic basis of immune response of lymphocyte-like cells in the mucosal immune system of Lampetra japonica].

    PubMed

    Xin, Liu; Xueying, Song; Xiaoping, Zhang; Yinglun, Han; Ting, Zhu; Rong, Xiao; Qingwei, Li

    2015-11-01

    In recent years, the antigen recognition mechanism based on variable lymphocyte receptors (VLRs) was found in agnathan lamprey. To illuminate the genetic basis of immune response of lymphocyte-like cells in the mucosal immune system of lamprey and explore the evolutionary relationship of adaptive immune responses between the jawless and jawed vertebrates, we constructed cDNA libraries of lamprey (Lampetra japonica) gills before and after stimulation, and then performed high-throughput transcriptome sequencing and analysis. Through functional annotation of 88 525 assembled unigenes, 21 704 and 9769 unigenes were annotated in Gene Ontology (GO) and Kyto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. Among 999 unigenes involved in multiple pathways of immune system, 184 unigenes were highly homologous to 51 TCR (T cell receptor) and BCR (B cell receptor) signalling molecules in higher vertebrates, indicating that molecules involved in adaptive immune signalling pathways in higher vertebrates also exist in lampreys. In addition, identification of five VLRA, seven VLRB and four VLRC molecules suggest that at least three types of lymphocyte subsets are distributed in lamprey gill mucosal immune tissues. The results of real-time fluorescence quantitative PCR showed that the expression levels of Lck, Fyn and Zap70 were up-regulated after immune stimulation while those of Syk, Btk and Blnk were not changed significantly, indicating the activation of TCR-like signal transduction pathway after antigen stimulation in lamprey gill tissues. Our studies preliminaryly proved that two parallel adaptive immune systems in jawless and jawed vertebrates have common genetic basis, and also provided valuable clues to the exploration of signalling processes of VLRA⁺, VLRB⁺, and VLRC⁺ lymphocyte-like cells in response to antigens. PMID:26582529

  17. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1.

    PubMed

    Couto, Daniel; Niebergall, Roda; Liang, Xiangxiu; Bücherl, Christoph A; Sklenar, Jan; Macho, Alberto P; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Maclean, Dan; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min; Zipfel, Cyril

    2016-08-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component. PMID:27494702

  18. The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1

    PubMed Central

    Liang, Xiangxiu; Bücherl, Christoph A.; Sklenar, Jan; Macho, Alberto P.; Ntoukakis, Vardis; Derbyshire, Paul; Altenbach, Denise; Robatzek, Silke; Uhrig, Joachim; Menke, Frank; Zhou, Jian-Min

    2016-01-01

    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component. PMID:27494702

  19. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses.

    PubMed

    Elinav, E; Henao-Mejia, J; Flavell, R A

    2013-01-01

    The mammalian intestinal tract harbors a vast and diverse ecosystem of microbes that are separated from the sterile host milieu by a single layer of epithelial cells. While this bio-geographical configuration is critical for host biological processes, it imposes a risk for microbial penetration and life-threatening systemic invasion. Inflammasomes are cytosolic multi-protein platforms that sense both microbial and damage-associated molecular patterns and initiate a potent innate immune anti-microbial response. In this review, we will highlight the role of inflammasomes in the orchestration and regulation of the intestinal immune response, focusing on the roles of inflammasomes in maintenance of intestinal homeostasis, enteric infection, auto-inflammation, and tumorigenesis. We highlight the centrality of inflammasome signaling in the complex cross-talk between host mucosal immune arms and the environment, in particular the microflora, with emphasis on the spatial and temporal integration of inflammasome activation with signals from other innate signaling platforms. PMID:23212196

  20. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection.

    PubMed

    Côme, Christophe; Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H; Ollert, Markus W; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; Hrabě de Angelis, Martin; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  1. CIP2A Promotes T-Cell Activation and Immune Response to Listeria monocytogenes Infection

    PubMed Central

    Cvrljevic, Anna; Khan, Mohd Moin; Treise, Irina; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Au-Yeung, Byron; Sittig, Eleonora; Laajala, Teemu Daniel; Chen, Yiling; Oeder, Sebastian; Calzada-Wack, Julia; Horsch, Marion; Aittokallio, Tero; Busch, Dirk H.; Ollert, Markus W.; Neff, Frauke; Beckers, Johannes; Gailus-Durner, Valerie; Fuchs, Helmut; de Angelis, Martin Hrabě; Chen, Zhi; Lahesmaa, Riitta; Westermarck, Jukka

    2016-01-01

    The oncoprotein Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is overexpressed in most malignancies and is an obvious candidate target protein for future cancer therapies. However, the physiological importance of CIP2A-mediated PP2A inhibition is largely unknown. As PP2A regulates immune responses, we investigated the role of CIP2A in normal immune system development and during immune response in vivo. We show that CIP2A-deficient mice (CIP2AHOZ) present a normal immune system development and function in unchallenged conditions. However when challenged with Listeria monocytogenes, CIP2AHOZ mice display an impaired adaptive immune response that is combined with decreased frequency of both CD4+ T-cells and CD8+ effector T-cells. Importantly, the cell autonomous effect of CIP2A deficiency for T-cell activation was confirmed. Induction of CIP2A expression during T-cell activation was dependent on Zap70 activity. Thus, we reveal CIP2A as a hitherto unrecognized mediator of T-cell activation during adaptive immune response. These results also reveal CIP2AHOZ as a possible novel mouse model for studying the role of PP2A activity in immune regulation. On the other hand, the results also indicate that CIP2A targeting cancer therapies would not cause serious immunological side-effects. PMID:27100879

  2. Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment.

    PubMed

    Woodham, Andrew W; Skeate, Joseph G; Sanna, Adriana M; Taylor, Julia R; Da Silva, Diane M; Cannon, Paula M; Kast, W Martin

    2016-07-01

    In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4(+) T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection. PMID:27410493

  3. Roquin-a multifunctional regulator of immune homeostasis.

    PubMed

    Schaefer, J S; Klein, J R

    2016-03-01

    Roquin-1 (Rc3h1) is an E3 ubiquitin ligase originally discovered in a mutational screen for genetic factors contributory to systemic lupus erythematosus-like symptoms in mice. A single base-pair mutation in the Rc3h1 gene resulted in the manifestation of autoantibody production and sustained immunological inflammation characterized by excessive T follicular helper cell activation and formation of germinal centers. Subsequent studies have uncovered a multifactorial process by which Roquin-1 contributes to the maintenance of immune homeostasis. Through its interactions with partner proteins, Roquin-1 targets mRNAs for decay with inducible costimulator being a primary target. In this review, we discuss newly discovered functions of Roquin-1 in the immune system and inflammation, and in disease manifestation, and discuss avenues of further research. A model is presented for the role of Roquin in health and disease. PMID:26673963

  4. Roquin – a multifunctional regulator of immune homeostasis

    PubMed Central

    Schaefer, J. S.; Klein, J. R.

    2015-01-01

    Roquin-1 (Rc3h1) is an E3 ubiquitin ligase originally discovered in a mutational screen for genetic factors contributory to systemic lupus erythematosus-like symptoms in mice. A single base pair mutation in the Rc3h1 gene resulted in the manifestation of autoantibody production and sustained immunological inflammation characterized by excessive T follicular helper cell activation and formation of germinal centers. Subsequent studies have uncovered a multifactorial process by which Roquin-1 contributes to the maintenance of immune homeostasis. Through its interactions with partner proteins, Roquin-1 targets mRNAs for decay with inducible costimulator being a primary target. In this review, we discuss newly discovered functions of Roquin-1 in the immune system and inflammation, and in disease manifestation, and discuss avenues of further research. A model is presented for the role of Roquin in health and disease. PMID:26673963

  5. Roles and Regulation of Gastrointestinal Eosinophils in Immunity and Disease

    PubMed Central

    Jung, YunJae; Rothenberg, Marc E.

    2014-01-01

    Eosinophils have been considered to be destructive end-stage effector cells that have a role in parasitic infections and allergy reactions by the release of their granule-derived cytotoxic proteins. However, an increasing number of experimental observations indicate that eosinophils also are multifunctional leukocytes involved in diverse inflammatory and physiologic immune responses. Under homeostatic conditions, eosinophils are particularly abundant in the lamina propria of the gastrointestinal tract where their involvement in various biological processes within the gastrointestinal tract has been posited. In this review, we summarize the molecular steps involved in eosinophil development and describe eosinophil trafficking to the gastrointestinal tract. We synthesize the current findings on the phenotypic and functional properties of gastrointestinal eosinophils and the accumulating evidence that they have a contributory role in gastrointestinal disorders, with a focus on primary eosinophilic gastrointestinal disorders. Finally, we discuss the potential role of eosinophils as modulators of the intestinal immune system. PMID:25049430

  6. Plant TRAF Proteins Regulate NLR Immune Receptor Turnover.

    PubMed

    Huang, Shuai; Chen, Xuejin; Zhong, Xionghui; Li, Meng; Ao, Kevin; Huang, Jianhua; Li, Xin

    2016-02-10

    In animals, Tumor necrosis factor receptor-associated factor (TRAF) proteins are molecular adaptors that regulate innate and adaptive immunity, development, and abiotic stress responses. Although gene families encoding TRAF domain-containing proteins exhibit enriched diversity in higher plants, their biological roles are poorly defined. Here, we report the identification of two redundant TRAF proteins, Mutant, snc1-enhancing 13 (MUSE13) and MUSE14, that contribute to the turnover of nucleotide-binding domain and leucine-rich repeat-containing (NLR) immune receptors SNC1 and RPS2. Loss of both MUSE13 and MUSE14 leads to enhanced pathogen resistance, NLR accumulation, and autoimmunity, while MUSE13 overexpression results in reduced NLR levels and activity. In planta, MUSE13 associates with SNC1, RPS2, and the E3 ubiquitin ligase SCF(CPR1). Taken together, we speculate that MUSE13 and MUSE14 associate with the SCF E3 ligase complex to form a plant-type TRAFasome, which modulates ubiquitination and subsequent degradation of NLR immune sensors to maintain their homeostasis. PMID:26867179

  7. Regulation of Heliothis virescens Innate Immune Responses to the Endoparasitoid Campoletis sonorensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect immune responses play important roles in host defense against pathogens and parasitoids. In this study, we propose that the regulation of host immune responses may determine the successful parasitization of Campoletis sonorensis in the host. To investigate the regulation of innate immune resp...

  8. Immune cells tracing using quantum dots

    NASA Astrophysics Data System (ADS)

    Hoshino, Akiyoshi; Fujioka, Kouki; Kawamura, Yuki I.; Toyama-Sorimachi, Noriko; Yasuhara, Masato; Dohi, Taeko; Yamamoto, Kenji

    2006-02-01

    Fluorescent nanoparticles, such as nanocrystal quantum dots (QDs), have potential to be applied to molecular biology and bioimaging, since some nanocrystals emit higher and longer lasting fluorescence than conventional organic probes do. Here we report an example of labeling immune cells by QDs. We collected splenic CD4 + T-lymphocyte and peritoneal macrophages from mice. Then cells were labeled with QDs. QDs are incorporated into the T-lymphocyte and macrophages immediately after addition and located in the cytoplasm via endocytosis pathway. The fluorescence of QDs held in the endosomes was easily detected for more than a week. In addition, T-lymphocytes labeled with QDs were stable and cell proliferation or cytokine production including IL-2 and IFN-γ was not affected. When QD-labeled T-lymphocytes were adoptively transferred intravenously to mice, they remained in the peripheral blood and spleen up to a week. Using QD-labeled peritoneal macrophages, we studied cell traffic during inflammation on viscera in peritoneum cavity. QD-labeled macrophages were transplanted into the peritoneum of the mouse, and colitis was induced by intracolonic injection of a hapten, trinitrobenzensulfonic acid. With the aid of stong signals of QDs, we found that macrophage accumuled on the inflammation site of the colon. These results suggested that fluorescent probes of QDs might be useful as bioimaging tools for tracing target cells in vivo.

  9. Tracking immune cells in vivo using magnetic resonance imaging

    PubMed Central

    Ahrens, Eric T.; Bulte, Jeff W. M.

    2013-01-01

    The increasing complexity of in vivo imaging technologies, coupled with the development of cell therapies, has fuelled a revolution in immune cell tracking in vivo. Powerful magnetic resonance imaging (MRI) methods are now being developed that use iron oxide- and 19F-based probes. These MRI technologies can be used for image-guided immune cell delivery and for the visualization of immune cell homing and engraftment, inflammation, cell physiology and gene expression. MRI-based cell tracking is now also being applied to evaluate therapeutics that modulate endogenous immune cell recruitment and to monitor emerging cellular immunotherapies. These recent uses show that MRI has the potential to be developed in many applications to follow the fate of immune cells in vivo. PMID:24013185

  10. Particular activation phenotype of T cells expressing HLA-DR but not CD38 in GALT from HIV-controllers is associated with immune regulation and delayed progression to AIDS.

    PubMed

    Gonzalez, Sandra M; Taborda, Natalia A; Correa, Luis A; Castro, Gustavo A; Hernandez, Juan C; Montoya, Carlos J; Rugeles, Maria T

    2016-06-01

    The spontaneous control of HIV replication in HIV-controllers underlines the importance of these subjects for exploring factors related to delayed progression. Several studies have revealed fewer immune alterations and effector mechanisms related to viral control, mainly in peripheral blood, in these individuals compared to normal progressors. However, immune characterization of gut-associated lymphoid tissue (GALT), the major target of infection, has not been thoroughly explored in these subjects. We evaluated the following parameters in GALT samples from 11 HIV-controllers and 15 HIV-progressors: (i) frequency and activation phenotype of T cells; (ii) expression of transcription factors associated with immune response profiles; and (iii) frequency of apoptotic cells. Interestingly, HIV-controllers exhibited a particular activation phenotype, with predominance of T cells expressing HLA-DR but not CD38 in GALT. This phenotype, previously associated with better control of infection, was correlated with low viral load and higher CD4(+) T cell count. Furthermore, a positive correlation of this activation phenotype with higher expression of Foxp3 and RORγT transcription factors suggested a key role for Treg and Th17 cells in the control of the immune activation and in the maintenance of gut mucosal integrity. Although we evaluated apoptosis by measuring expression of cleaved caspase-3 in GALT, we did not find differences between HIV-controllers and HIV-progressors. Taken together, our findings suggest that predominance of HLA-DR(+) T cells, along with lower immune activation and higher expression of transcription factors required for the development of Treg and Th17 cells, is associated with better viral control and delayed progression to AIDS. PMID:26724942

  11. GITR Activation Positively Regulates Immune Responses against Toxoplasma gondii

    PubMed Central

    Costa, Frederico R. C.; Mota, Caroline M.; Santiago, Fernanda M.; Silva, Murilo V.; Ferreira, Marcela D.; Fonseca, Denise M.; Silva, João S.; Mineo, José R.; Mineo, Tiago W. P.

    2016-01-01

    Toxoplasma gondii is a widespread parasite responsible for causing clinical diseases especially in pregnant and immunosuppressed individuals. Glucocorticoid-induced TNF receptor (GITR), which is also known as TNFRS18 and belongs to the TNF receptor superfamily, is found to be expressed in various cell types of the immune system and provides an important costimulatory signal for T cells and myeloid cells. However, the precise role of this receptor in the context of T. gondii infection remains elusive. Therefore, the current study investigated the role of GITR activation in the immunoregulation mechanisms induced during the experimental infection of mice with T. gondii. Our data show that T. gondii infection slightly upregulates GITR expression in Treg cells and B cells, but the most robust increment in expression was observed in macrophages and dendritic cells. Interestingly, mice infected and treated with an agonistic antibody anti-GITR (DTA-1) presented a robust increase in pro-inflammatory cytokine production at preferential sites of parasite replication, which was associated with the decrease in latent brain parasitism of mice under treatment with DTA-1. Several in vivo and in vitro analysis were performed to identify the cellular mechanisms involved in GITR activation upon infection, however no clear alterations were detected in the phenotype/function of macrophages, Tregs and B cells under treatment with DTA-1. Therefore, GITR appears as a potential target for intervention during infection by the parasite Toxoplasma gondii, even though further studies are still necessary to better characterize the immune response triggered by GITR activation during T. gondii infection. PMID:27027302

  12. Altered immunity in male patients with alcoholic liver disease: evidence for defective immune regulation.

    PubMed

    Smith, W I; Van Thiel, D H; Whiteside, T; Janoson, B; Magovern, J; Puet, T; Rabin, B S

    1980-04-01

    We sought evidence for altered immunity in patients with alcoholic liver disease, and we correlated the observed immunologic abnormalities with the extent of histologically proven liver disease. Total circulating lymphocytes and the absolute number of T lymphocytes were decreased in alcoholics (p less than 0.01) compared to controls. Immunoglobulins G and A were elevated significantly (p less than 0.05) in alcoholic patients with hepatic fibrosis or cirrhosis compared to controls and alcoholics without liver histopathology. In alcoholics with fibrosis or cirrhosis at time of admission, IgE levels were also elevated (p less than 0.01) but decreased 50% during hospitalization. Forty-eight percent of the patients with alcoholic liver disease had antibodies to small bowel epithelium, and 33% had antibodies to fibroblast cytoplasm. In addition, we found that alcoholics immunized with polyvalent pneumococcal polysaccharide responded with significantly elevated (p less than 0.025) antibody titers compared to hospitalized controls. In aggregate, these findings in patients with alcoholic liver disease are consistent with a defect in immune regulation. PMID:6990823

  13. Oxysterol-EBI2 signaling in immune regulation and viral infection

    PubMed Central

    Daugvilaite, Viktorija; Arfelt, Kristine Niss; Benned-Jensen, Tau; Sailer, Andreas W; Rosenkilde, Mette M

    2014-01-01

    The seven transmembrane G protein-coupled receptor Epstein-Barr virus (EBV) induced gene 2 (EBI2; also known as GPR183) was identified in 1993 on the basis of its substantial upregulation in EBV-infected cells. It is primarily expressed in lymphoid cells; most abundantly in B cells. EBI2 is central for the positioning of B cells within the lymphoid organs, a process that is regulated in part by a chemotactic gradient formed by the endogenous lipid agonists, and in part by a fine-tuned regulation of EBI2 cell surface expression. The most potent endogenous EBI2 agonist is 7α, 25-dihydroxyxcholesterol (7α,25-OHC), yet many structurally related oxysterols can bind to an EBI2 pocket that is defined by the upper parts of the transmembrane helices and extracellular receptor regions. EBI2 signals via Gαi, as well as via G protein-independent pathways like β-arrestin recruitment. The concerted action of these pathways leads to cell migration. By genetically interfering with its up- and downregulation, EBI2 was also recently shown to induce cell proliferation, an action that could be inhibited by small molecule antagonists. Here, we focus on the oxysterol–EBI2 axis in immune control, including its role in the EBV life cycle. We also summarize the structural and functional properties of EBI2 interaction with oxysterol agonists and small molecule antagonists and discuss EBI2 as therapeutic target for diseases of the immune system. PMID:24810762

  14. Progranulin does not bind tumor necrosis factor (TNF) receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells.

    PubMed

    Chen, Xi; Chang, Jianjun; Deng, Qiudong; Xu, Jie; Nguyen, Thi A; Martens, Lauren H; Cenik, Basar; Taylor, Georgia; Hudson, Kathryn F; Chung, Jaegwon; Yu, Kimberley; Yu, Phillip; Herz, Joachim; Farese, Robert V; Kukar, Thomas; Tansey, Malú G

    2013-05-22

    Progranulin (PGRN) is a secreted glycoprotein expressed in neurons and glia that is implicated in neuronal survival on the basis that mutations in the GRN gene causing haploinsufficiency result in a familial form of frontotemporal dementia (FTD). Recently, a direct interaction between PGRN and tumor necrosis factor receptors (TNFR I/II) was reported and proposed to be a mechanism by which PGRN exerts anti-inflammatory activity, raising the possibility that aberrant PGRN-TNFR interactions underlie the molecular basis for neuroinflammation in frontotemporal lobar degeneration pathogenesis. Here, we report that we find no evidence for a direct physical or functional interaction between PGRN and TNFRs. Using coimmunoprecipitation and surface plasmon resonance (SPR) we replicated the interaction between PGRN and sortilin and that between TNF and TNFRI/II, but not the interaction between PGRN and TNFRs. Recombinant PGRN or transfection of a cDNA encoding PGRN did not antagonize TNF-dependent NFκB, Akt, and Erk1/2 pathway activation; inflammatory gene expression; or secretion of inflammatory factors in BV2 microglia and bone marrow-derived macrophages (BMDMs). Moreover, PGRN did not antagonize TNF-induced cytotoxicity on dopaminergic neuroblastoma cells. Last, co-addition or pre-incubation with various N- or C-terminal-tagged recombinant PGRNs did not alter lipopolysaccharide-induced inflammatory gene expression or cytokine secretion in any cell type examined, including BMDMs from Grn+/- or Grn-/- mice. Therefore, the neuroinflammatory phenotype associated with PGRN deficiency in the CNS is not a direct consequence of the loss of TNF antagonism by PGRN, but may be a secondary response by glia to disrupted interactions between PGRN and Sortilin and/or other binding partners yet to be identified. PMID:23699531

  15. Progranulin Does Not Bind Tumor Necrosis Factor (TNF) Receptors and Is Not a Direct Regulator of TNF-Dependent Signaling or Bioactivity in Immune or Neuronal Cells

    PubMed Central

    Chen, Xi; Chang, Jianjun; Deng, Qiudong; Xu, Jie; Nguyen, Thi A.; Martens, Lauren H.; Cenik, Basar; Taylor, Georgia; Hudson, Kathryn F.; Chung, Jaegwon; Yu, Kimberley; Yu, Phillip; Herz, Joachim; Farese, Robert V.; Kukar, Thomas; Tansey, Malú G.

    2013-01-01

    Progranulin (PGRN) is a secreted glycoprotein expressed in neurons and glia that is implicated in neuronal survival on the basis that mutations in the GRN gene causing haploinsufficiency result in a familial form of frontotemporal dementia (FTD). Recently, a direct interaction between PGRN and tumor necrosis factor receptors (TNFR I/II) was reported and proposed to be a mechanism by which PGRN exerts anti-inflammatory activity, raising the possibility that aberrant PGRN–TNFR interactions underlie the molecular basis for neuroinflammation in frontotemporal lobar degeneration pathogenesis. Here, we report that we find no evidence for a direct physical or functional interaction between PGRN and TNFRs. Using coimmunoprecipitation and surface plasmon resonance (SPR) we replicated the interaction between PGRN and sortilin and that between TNF and TNFRI/II, but not the interaction between PGRN and TNFRs. Recombinant PGRN or transfection of a cDNA encoding PGRN did not antagonize TNF-dependent NFκB, Akt, and Erk1/2 pathway activation; inflammatory gene expression; or secretion of inflammatory factors in BV2 microglia and bone marrow-derived macrophages (BMDMs). Moreover, PGRN did not antagonize TNF-induced cytotoxicity on dopaminergic neuroblastoma cells. Last, co-addition or pre-incubation with various N- or C-terminal-tagged recombinant PGRNs did not alter lipopolysaccharide-induced inflammatory gene expression or cytokine secretion in any cell type examined, including BMDMs from Grn+/− or Grn−/− mice. Therefore, the neuroinflammatory phenotype associated with PGRN deficiency in the CNS is not a direct consequence of the loss of TNF antagonism by PGRN, but may be a secondary response by glia to disrupted interactions between PGRN and Sortilin and/or other binding partners yet to be identified. PMID:23699531

  16. Mast Cells as Cellular Sensors in Inflammation and Immunity

    PubMed Central

    Beghdadi, Walid; Madjene, Lydia Célia; Benhamou, Marc; Charles, Nicolas; Gautier, Gregory; Launay, Pierre; Blank, Ulrich

    2011-01-01

    Mast cells are localized in tissues. Intense research on these cells over the years has demonstrated their role as effector cells in the maintenance of tissue integrity following injury produced by infectious agents, toxins, metabolic states, etc. After stimulation they release a sophisticated array of inflammatory mediators, cytokines, and growth factors to orchestrate an inflammatory response. These mediators can directly initiate tissue responses on resident cells, but they have also been shown to regulate other infiltrating immune cell functions. Research in recent years has revealed that the outcome of mast cell actions is not always detrimental for the host but can also limit disease development. In addition, mast cell functions highly depend on the physiological context in the organism. Depending on the genetic background, strength of the injurious event, the particular microenvironment, mast cells direct responses ranging from pro- to anti-inflammatory. It appears that they have evolved as cellular sensors to discern their environment in order to initiate an appropriate physiological response either aimed to favor inflammation for repair or at the contrary limit the inflammatory process to prevent further damage. Like every sophisticated machinery, its dysregulation leads to pathology. Given the broad distribution of mast cells in tissues this also explains their implication in many inflammatory diseases. PMID:22566827

  17. High-Content Quantification of Single-Cell Immune Dynamics

    PubMed Central

    Junkin, Michael; Kaestli, Alicia J.; Cheng, Zhang; Jordi, Christian; Albayrak, Cem; Hoffmann, Alexander; Tay, Savaş

    2016-01-01

    Summary Cells receive time-varying signals from the environment and generate functional responses by secreting their own signaling molecules. Characterizing dynamic input-output relationships in single cells is crucial for understanding and modeling cellular systems. We developed an automated microfluidic system that delivers precisely defined dynamical inputs to individual living cells and simultaneously measures key immune parameters dynamically. Our system combines nanoliter immunoassays, microfluidic input generation, and time-lapse microscopy, enabling study of previously untestable aspects of immunity by measuring time-dependent cytokine secretion and transcription factor activity from single cells stimulated with dynamic inflammatory inputs. Employing this system to analyze macrophage signal processing under pathogen inputs, we found that the dynamics of TNF secretion are highly heterogeneous and surprisingly uncorrelated with the dynamics of NF-κB, the transcription factor controlling TNF production. Computational modeling of the LPS/TLR4 pathway shows that post-transcriptional regulation by TRIF is a key determinant of noisy and uncorrelated TNF secretion dynamics in single macrophages. PMID:27050527

  18. Involvement of Immune Cell Network in Aortic Valve Stenosis: Communication between Valvular Interstitial Cells and Immune Cells

    PubMed Central

    Lee, Seung Hyun

    2016-01-01

    Aortic valve stenosis is a heart disease prevalent in the elderly characterized by valvular calcification, fibrosis, and inflammation, but its exact pathogenesis remains unclear. Previously, aortic valve stenosis was thought to be caused by chronic passive and degenerative changes associated with aging. However, recent studies have demonstrated that atherosclerotic processes and inflammation can induce valvular calcification and bone deposition, leading to valvular stenosis. In particular, the most abundant cell type in cardiac valves, valvular interstitial cells, can differentiate into myofibroblasts and osteoblast-like cells, leading to valvular calcification and stenosis. Differentiation of valvular interstitial cells can be trigged by inflammatory stimuli from several immune cell types, including macrophages, dendritic cells, T cells, B cells, and mast cells. This review indicates that crosstalk between immune cells and valvular interstitial cells plays an important role in the development of aortic valve stenosis. PMID:26937229

  19. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    PubMed

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions. PMID:25287236

  20. Understanding regulation of the host-mediated gut symbiont population and the symbiont-mediated host immunity in the Riptortus-Burkholderia symbiosis system.

    PubMed

    Kim, Jiyeun Kate; Lee, Jun Beom; Jang, Ho Am; Han, Yeon Soo; Fukatsu, Takema; Lee, Bok Luel

    2016-11-01

    Valuable insect models have tremendously contributed to our understanding of innate immunity and symbiosis. Bean bug, Riptortus pedestris, is a useful insect symbiosis model due to harboring cultivable monospecific gut symbiont, genus Burkholderia. Bean bug is a hemimetabolous insect whose immunity is not well-understood. However, we recently identified three major antimicrobial peptides of Riptortus and examined the relationship between gut symbiosis and host immunity. We found that the presence of Burkholderia gut symbiont positively affects Riptortus immunity. From studying host regulation mechanisms of symbiont population, we revealed that the symbiotic Burkholderia cells are much more susceptible to Riptortus immune responses than the cultured cells. We further elucidated that the immune-susceptibility of the Burkholderia gut symbionts is due to the drastic change of bacterial cell envelope. Finally, we show that the immune-susceptible Burkholderia symbionts are able to prosper in host owing to the suppression of immune responses of the symbiotic midgut. PMID:26774501

  1. Regulation of the T cell response.

    PubMed

    Romagnani, S

    2006-11-01

    The T cell branch of the immune system can respond to a virtually infinite variety of exogenous antigens, thus including the possibility of self-antigen recognition and dangerous autoimmune reactions. Therefore, regulatory mechanisms operate both during ontogeny within the thymus and after birth in the periphery. The control of self-reactive T cells occurs through a process of negative selection that results in apoptosis of T cells showing high affinity for self-peptides expressed at the thymic level by means of promiscuous gene expression. Self-reactive T cells escaped to negative selection are controlled in the periphery by other regulatory mechanisms, the most important being natural Foxp3+ T regulatory (Treg) cells. Regulation is also required to control excessive effector T cell responses against exogenous antigens, when they become dangerous for the body. Three types of effector T cells have been recognized: T helper 1 (Th1) cells, which are protective against intracellular bacteria; Th2 cells, which play some role in the protection against nematodes, but are responsible for allergic reactions; Th17 cells, which are probably effective in the protection against extracellular bacteria, but also play a role in the amplification of autoimmune disorders. Abnormal or excessive Th effector responses are regulated by different mechanisms. Redirection or immune deviation of Th1- or Th2-dominated responses is provided by cytokines [interferon-gamma (IFN-gamma) vs. interleukin-4 (IL-4)] produced by the same cell types and by the CXCR3-binding chemokines CXCL4 and CXCL10. Moreover, both Th1 and Th2 responses can be suppressed by adaptive Treg cells through contact-dependent mechanisms and/or the production of IL-10 and transforming growth factor-beta (TGF-beta). Finally, TGF-beta1 can promote the development of both Th17 effector and adaptive Treg cells, while the contemporaneous production of IL-6 contributes to the development of Th17 cells, but inhibits Treg cells

  2. Mechanisms and pathways of innate immune activation and regulation in health and cancer

    PubMed Central

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2015-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer. PMID:25625930

  3. Mechanisms and pathways of innate immune activation and regulation in health and cancer.

    PubMed

    Cui, Jun; Chen, Yongjun; Wang, Helen Y; Wang, Rong-Fu

    2014-01-01

    Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer. PMID:25625930

  4. Understanding How Commensal Obligate Anaerobic Bacteria Regulate Immune Functions in the Large Intestine

    PubMed Central

    Maier, Eva; Anderson, Rachel C.; Roy, Nicole C.

    2014-01-01

    The human gastrointestinal tract is colonised by trillions of commensal bacteria, most of which are obligate anaerobes residing in the large intestine. Appropriate bacterial colonisation is generally known to be critical for human health. In particular, the development and function of the immune system depends on microbial colonisation, and a regulated cross-talk between commensal bacteria, intestinal epithelial cells and immune cells is required to maintain mucosal immune homeostasis. This homeostasis is disturbed in various inflammatory disorders, such as inflammatory bowel diseases. Several in vitro and in vivo studies indicate a role for Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Bacteroides fragilis, Akkermansia muciniphila and segmented filamentous bacteria in maintaining intestinal immune homeostasis. These obligate anaerobes are abundant in the healthy intestine but reduced in several inflammatory diseases, suggesting an association with protective effects on human health. However, knowledge of the mechanisms underlying the effects of obligate anaerobic intestinal bacteria remains limited, in part due to the difficulty of co-culturing obligate anaerobes together with oxygen-requiring human epithelial cells. By using novel dual-environment co-culture models, it will be possible to investigate the effects of the unstudied majority of intestinal microorganisms on the human epithelia. This knowledge will provide opportunities for improving human health and reducing the risk of inflammatory diseases. PMID:25545102

  5. Innate lymphoid cells integrate stromal and immune signals to enhance antibody production by splenic marginal zone B cells

    PubMed Central

    Bascones, Sabrina; Mortha, Arthur; Puga, Irene; Cassis, Linda; Barra, Carolina M.; Comerma, Laura; Chudnovskiy, Aleksey; Gentile, Maurizio; Llige, David; Cols, Montserrat; Serrano, Sergi; Aróstegui, Juan Ignacio; Juan, Manel; Yagüe, Jordi; Merad, Miriam; Fagarasan, Sidonia; Cerutti, Andrea

    2014-01-01

    Innate lymphoid cells (ILCs) regulate stromal, epithelial and immune cells, but their impact on B cells remains unclear. We identified RORγt+ ILCs nearby the marginal zone (MZ), a splenic compartment containing innate-like B cells that respond to circulating T cell-independent (TI) antigens. Spenic ILCs established a bidirectional crosstalk with MAdCAM-1+ marginal reticular cells by providing tumor necrosis factor (TNF) and lymphotoxin, and activated MZ B cells via BAFF, CD40 ligand and the Notch ligand, Delta-like 1. Splenic ILCs further helped MZ B cells and their plasma cell progeny by co-opting neutrophils through the release of GM-CSF. Consequently, ILC depletion impaired both pre- and post-immune TI antibody responses. Thus, ILCs integrate stromal and myeloid signals to orchestrate innate-like antibody production at the interface between the immune and circulatory systems. PMID:24562309

  6. The Tetraspanin Protein CD37 Regulates IgA Responses and Anti-Fungal Immunity

    PubMed Central

    van Spriel, Annemiek B.; Sofi, Mariam; Gartlan, Kate H.; van der Schaaf, Alie; Verschueren, Ineke; Torensma, Ruurd; Raymakers, Reinier A. P.; Loveland, Bruce E.; Netea, Mihai G.; Adema, Gosse J.

    2009-01-01

    Immunoglobulin A (IgA) secretion by plasma cells in the immune system is critical for protecting the host from environmental and microbial infections. However, the molecular mechanisms underlying the generation of IgA+ plasma cells remain poorly understood. Here, we report that the B cell–expressed tetraspanin CD37 inhibits IgA immune responses in vivo. CD37-deficient (CD37−/−) mice exhibit a 15-fold increased level of IgA in serum and significantly elevated numbers of IgA+ plasma cells in spleen, mucosal-associated lymphoid tissue, as well as bone marrow. Analyses of bone marrow chimeric mice revealed that CD37–deficiency on B cells was directly responsible for the increased IgA production. We identified high local interleukin-6 (IL-6) production in germinal centers of CD37−/− mice after immunization. Notably, neutralizing IL-6 in vivo reversed the increased IgA response in CD37−/− mice. To demonstrate the importance of CD37—which can associate with the pattern-recognition receptor dectin-1—in immunity to infection, CD37−/− mice were exposed to Candida albicans. We report that CD37−/− mice are evidently better protected from infection than wild-type (WT) mice, which was accompanied by increased IL-6 levels and C. albicans–specific IgA antibodies. Importantly, adoptive transfer of CD37−/− serum mediated protection in WT mice and the underlying mechanism involved direct neutralization of fungal cells by IgA. Taken together, tetraspanin protein CD37 inhibits IgA responses and regulates the anti-fungal immune response. PMID:19282981

  7. Group B Streptococcus CovR regulation modulates host immune signaling pathways to promote vaginal colonization

    PubMed Central

    Patras, Kathryn A.; Wang, Nai-Yu; Fletcher, Erin M.; Cavaco, Courtney K.; Jimenez, Alyssa; Garg, Mansi; Fierer, Joshua; Sheen, Tamsin R.; Rajagopal, Lakshmi; Doran, Kelly S.

    2013-01-01

    Summary Streptococcus agalactiae (Group B Streptococcus, GBS) is a frequent commensal organism of the vaginal tract of healthy women. However, GBS can transition to a pathogen in susceptible hosts, but host and microbial factors that contribute to this conversion are not well understood. GBS CovR/S (CsrR/S) is a two component regulatory system that regulates key virulence elements including adherence and toxin production. We performed global transcription profiling of human vaginal epithelial cells exposed to WT, CovR deficient, and toxin deficient strains, and observed that insufficient regulation by CovR and subsequent increased toxin production results in a drastic increase in host inflammatory responses, particularly in cytokine signaling pathways promoted by IL-8 and CXCL2. Additionally, we observed that CovR regulation impacts epithelial cell attachment and intracellular invasion. In our mouse model of GBS vaginal colonization, we further demonstrated that CovR regulation promotes vaginal persistence, as infection with a CovR deficient strain resulted in a heightened host immune response as measured by cytokine production and neutrophil activation. Using CXCr2 KO mice, we determined that this immune alteration occurs, at least in part, via signaling through the CXCL2 receptor. Taken together, we conclude that CovR is an important regulator of GBS vaginal colonization and loss of this regulatory function may contribute to the inflammatory havoc seen during the course of infection. PMID:23298320

  8. Group B Streptococcus CovR regulation modulates host immune signalling pathways to promote vaginal colonization.

    PubMed

    Patras, Kathryn A; Wang, Nai-Yu; Fletcher, Erin M; Cavaco, Courtney K; Jimenez, Alyssa; Garg, Mansi; Fierer, Joshua; Sheen, Tamsin R; Rajagopal, Lakshmi; Doran, Kelly S

    2013-07-01

    Streptococcus agalactiae (Group B Streptococcus, GBS) is a frequent commensal organism of the vaginal tract of healthy women. However, GBS can transition to a pathogen in susceptible hosts, but host and microbial factors that contribute to this conversion are not well understood. GBS CovR/S (CsrR/S) is a two component regulatory system that regulates key virulence elements including adherence and toxin production. We performed global transcription profiling of human vaginal epithelial cells exposed to WT, CovR deficient, and toxin deficient strains, and observed that insufficient regulation by CovR and subsequent increased toxin production results in a drastic increase in host inflammatory responses, particularly in cytokine signalling pathways promoted by IL-8 and CXCL2. Additionally, we observed that CovR regulation impacts epithelial cell attachment and intracellular invasion. In our mouse model of GBS vaginal colonization, we further demonstrated that CovR regulation promotes vaginal persistence, as infection with a CovR deficient strainresulted in a heightened host immune response as measured by cytokine production and neutrophil activation. Using CXCr2 KO mice, we determined that this immune alteration occurs, at least in part, via signalling through the CXCL2 receptor. Taken together, we conclude that CovR is an important regulator of GBS vaginal colonization and loss of this regulatory function may contribute to the inflammatory havoc seen during the course of infection. PMID:23298320

  9. Innate immune cell response upon Candida albicans infection.

    PubMed

    Qin, Yulin; Zhang, Lulu; Xu, Zheng; Zhang, Jinyu; Jiang, Yuan-Ying; Cao, Yongbing; Yan, Tianhua

    2016-07-01

    Candida albicans is a polymorphic fungus which is the predominant cause of superficial and deep tissue fungal infections. This microorganism has developed efficient strategies to invade the host and evade host defense systems. However, the host immune system will be prepared for defense against the microbe by recognition of receptors, activation of signal transduction pathways and cooperation of immune cells. As a consequence, C. albicans could either be eliminated by immune cells rapidly or disseminate hematogenously, leading to life-threatening systemic infections. The interplay between Candida albicans and the host is complex, requiring recognition of the invaded pathogens, activation of intricate pathways and collaboration of various immune cells. In this review, we will focus on the effects of innate immunity that emphasize the first line protection of host defense against invaded C. albicans including the basis of receptor-mediated recognition and the mechanisms of cell-mediated immunity. PMID:27078171

  10. The role of IL-33/ST2L signals in the immune cells.

    PubMed

    Lu, Jingli; Kang, Jian; Zhang, Chengliang; Zhang, Xiaojian

    2015-03-01

    Interleukin (IL)-33 signals influence various immune cells during differentiation, immune responses and homeostasis. As discussed in this Review, IL-33 via TI/ST2L regulates the functions of immune cells including T cells, B cells, DCs, macrophages, mast cells, and innate lymphoid cells (ILCs). Stimulation with IL-33 is crucial for CD4+ T cell polarized into Th2 immunity and for the induction of Treg. CD8+ T cells can also express ST2L and IL-33 promotes features of effector CD8+ T cells. For macrophages and ILCs, ST2L presents on these cells and IL-33 induces Th2 cytokine production. IL-33 modulates adhesion, activation, maturation, and cytokine production by mast cells. ST2 is expressed in B1 and is important for differentiation of IL-10-producing B cells. Understanding the specific role of IL-33/ST2L in different immune cells will help to answer the remaining questions that are important for diseases pathologies and intervention strategies by targeting the IL-33/ST2L signals. PMID:25662624

  11. Autoimmune disease-associated variants of extracellular endoplasmic reticulum aminopeptidase 1 induce altered innate immune responses by human immune cells.

    PubMed

    Aldhamen, Yasser A; Pepelyayeva, Yuliya; Rastall, David P W; Seregin, Sergey S; Zervoudi, Efthalia; Koumantou, Despoina; Aylsworth, Charles F; Quiroga, Dionisia; Godbehere, Sarah; Georgiadis, Dimitris; Stratikos, Efstratios; Amalfitano, Andrea

    2015-01-01

    Endoplasmic reticulum aminopeptidase 1 (ERAP1) gene polymorphisms have been linked to several autoimmune diseases; however, the molecular mechanisms underlying these associations are not well understood. Recently, we demonstrated that ERAP1 regulates key aspects of the innate immune response. Previous studies show ERAP1 to be endoplasmic reticulum-localized and secreted during inflammation. Herein, we investigate the possible roles that ERAP1 polymorphic variants may have in modulating the innate immune responses of human peripheral blood mononuclear cells (hPBMCs) using two experimental methods: extracellular exposure of hPBMCs to ERAP1 variants and adenovirus (Ad)-based ERAP1 expression. We found that exposure of hPBMCs to ERAP1 variant proteins as well as ERAP1 overexpression by Ad5 vectors increased inflammatory cytokine and chemokine production, and enhanced immune cell activation. Investigating the molecular mechanisms behind these responses revealed that ERAP1 is able to activate innate immunity via multiple pathways, including the NLRP3 (NOD-like receptor, pyrin domain-containing 3) inflammasome. Importantly, these responses varied if autoimmune disease-associated variants of ERAP1 were examined in the assay systems. Unexpectedly, blocking ERAP1 cellular internalization augmented IL-1β production. To our knowledge, this is the first report identifying ERAP1 as being involved in modulating innate responses of human immune cells, a finding that may explain why ERAP1 has been genetically associated with several autoimmune diseases. PMID:25591727

  12. Role of Dendritic Cells in Immune Dysfunction

    NASA Technical Reports Server (NTRS)

    Savary, Cherylyn A.

    1997-01-01

    Specific aims include: (1) Application of the bioreactor to enhance cytokine-regulated proliferation and maturation of dendritic cells (DC); (2) Based on clues from spaceflight: compare the frequency and function of DC in normal donors and immunocompromised cancer patients; and (3) Initiate studies on the efficiency of cytokine therapy and DC-assisted immunotherapy (using bioreactor-expanded DC) in animal models of experimental fungal infections.

  13. Regulation of the gut microbiota by the mucosal immune system in mice

    PubMed Central

    Hasegawa, Mizuho

    2014-01-01

    The benefits of commensal bacteria to the health of the host have been well documented, such as providing stimulation to potentiate host immune responses, generation of useful metabolites, and direct competition with pathogens. However, the ability of the host immune system to control the microbiota remains less well understood. Recent microbiota analyses in mouse models have revealed detailed structures and diversities of microbiota at different sites of the digestive tract in mouse populations. The contradictory findings of previous studies on the role of host immune responses in overall microbiota composition are likely attributable to the high β-diversity in mouse populations as well as technical limitations of the methods to analyze microbiota. The host employs multiple systems to strictly regulate their interactions with the microbiota. A spatial segregation between the host and microbiota is achieved with the mucosal epithelium, which is further fortified with a mucus layer on the luminal side and Paneth cells that produce antimicrobial peptides. When commensal bacteria or pathogens breach the epithelial barrier and translocate to peripheral tissues, the host immune system is activated to eliminate them. Defective segregation and tissue elimination of commensals result in exaggerated inflammatory responses and possibly death of the host. In this review, we discuss the current understanding of mouse microbiota, its common features with human microbiota, the technologies utilized to analyze microbiota, and finally the challenges faced to delineate the role of host immune responses in the composition of the luminal microbiota. PMID:24792038

  14. Four receptor-like cytoplasmic kinases regulate development and immunity in rice.

    PubMed

    Zhou, Xiaogang; Wang, Jing; Peng, Chunfang; Zhu, Xiaobo; Yin, Junjie; Li, Weitao; He, Min; Wang, Jichun; Chern, Mawsheng; Yuan, Can; Wu, Wenguan; Ma, Weiwei; Qin, Peng; Ma, Bintian; Wu, Xianjun; Li, Shigui; Ronald, Pamela; Chen, Xuewei

    2016-06-01

    Receptor-like cytoplasmic kinases (RLCKs) represent a large family of proteins in plants. However, few RLCKs have been well characterized. Here, we report the functional characterization of four rice RLCKs - OsRLCK57, OsRLCK107, OsRLCK118 and OsRLCK176 from subfamily VII. These OsRLCKs interact with the rice brassinosteroid receptor, OsBRI1 in yeast cell, but not the XA21 immune receptor. Transgenic lines silenced for each of these genes have enlarged leaf angles and are hypersensitive to brassinolide treatment compared to wild type rice. Transgenic plants silenced for OsRLCK57 had significantly fewer tillers and reduced panicle secondary branching, and lines silenced for OsRLCK107 and OsRLCK118 produce fewer seeds. Silencing of these genes decreased Xa21 gene expression and compromised XA21-mediated immunity to Xanthomonas oryzae pv. oryzae. Our study demonstrates that these OsRLCKs negatively regulate BR signalling, while positively regulating immune responses by contributing to the expression of the immune receptor XA21. PMID:26679011

  15. Germinal center B cells recognize antigen through a specialized immune synapse architecture.

    PubMed

    Nowosad, Carla R; Spillane, Katelyn M; Tolar, Pavel

    2016-07-01

    B cell activation is regulated by B cell antigen receptor (BCR) signaling and antigen internalization in immune synapses. Using large-scale imaging across B cell subsets, we found that, in contrast with naive and memory B cells, which gathered antigen toward the synapse center before internalization, germinal center (GC) B cells extracted antigen by a distinct pathway using small peripheral clusters. Both naive and GC B cell synapses required proximal BCR signaling, but GC cells signaled less through the protein kinase C-β-NF-κB pathway and produced stronger tugging forces on the BCR, thereby more stringently regulating antigen binding. Consequently, GC B cells extracted antigen with better affinity discrimination than naive B cells, suggesting that specialized biomechanical patterns in B cell synapses regulate T cell-dependent selection of high-affinity B cells in GCs. PMID:27183103

  16. Microparticles as Immune Regulators in Infectious Disease – An Opinion

    PubMed Central

    Ling, Zheng Lung; Combes, Valery; Grau, Georges E.; King, Nicholas J. C.

    2011-01-01

    Despite their clear relationship to immunology, few existing studies have examined the potential role of microparticles (MP) in infectious disease. MP have a different size range from exosomes and apoptotic bodies, with which they are often grouped and arise by different mechanisms in association with inflammatory cytokine action or stress on the source cell. Infection with pathogens usually leads to the expression of a range of inflammatory cytokines and chemokines, as well as significant stress in both infected and uninfected cells. It is thus reasonable to infer that infection-associated inflammation also leads to MP production. MP are produced by most of the major cell types in the immune system, and appear to be involved at both innate and adaptive levels, potentially serving different functions in each. Thus, they do not appear to have a universal function; instead their functions are source- or stimulus-dependent, although likely to be primarily either pro- or anti-inflammatory. We argue that in infectious diseases, MP may be able to deliver antigen, derived from the biological cargo acquired from their cells of origin, to antigen-presenting cells. Another potential benefit of MP would be to transfer and/or disseminate phenotype and function to target cells. However, MP may also potentially be manipulated, particularly by intracellular pathogens, for survival advantage. PMID:22566856

  17. Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance.

    PubMed

    Zeng, Hanyu; Zhang, Rong; Jin, Boquan; Chen, Lihua

    2015-09-01

    The lack of immune response to an antigen, a process known as immune tolerance, is essential for the preservation of immune homeostasis. To date, two mechanisms that drive immune tolerance have been described extensively: central tolerance and peripheral tolerance. Under the new nomenclature, thymus-derived regulatory T (tT(reg)) cells are the major mediators of central immune tolerance, whereas peripherally derived regulatory T (pT(reg)) cells function to regulate peripheral immune tolerance. A third type of T(reg) cells, termed iT(reg), represents only the in vitro-induced T(reg) cells(1). Depending on whether the cells stably express Foxp3, pT(reg), and iT(reg) cells may be divided into two subsets: the classical CD4(+)Foxp3(+) T(reg) cells and the CD4(+)Foxp3(-) type 1 regulatory T (Tr1) cells(2). This review focuses on the discovery, associated biomarkers, regulatory functions, methods of induction, association with disease, and clinical trials of Tr1 cells. PMID:26051475

  18. Immunosuppressive cells in tumor immune escape and metastasis.

    PubMed

    Liu, Yang; Cao, Xuetao

    2016-05-01

    Tumor immune escape and the initiation of metastasis are critical steps in malignant progression of tumors and have been implicated in the failure of some clinical cancer immunotherapy. Tumors develop numerous strategies to escape immune surveillance or metastasize: Tumors not only modulate the recruitment and expansion of immunosuppressive cell populations to develop the tumor microenvironment or pre-metastatic niche but also switch the phenotype and function of normal immune cells from a potentially tumor-reactive state to a tumor-promoting state. Immunosuppressive cells facilitate tumor immune escape by inhibiting antitumor immune responses and furthermore promote tumor metastasis by inducing immunosuppression, promoting tumor cell invasion and intravasation, establishing a pre-metastatic niche, facilitating epithelial-mesenchymal transition, and inducing angiogenesis at primary tumor or metastatic sites. Numerous translational studies indicate that it is possible to inhibit tumor immune escape and prevent tumor metastasis by blocking immunosuppressive cells and eliminating immunosuppressive mechanisms that are induced by either immunosuppressive cells or tumor cells. Furthermore, many clinical trials targeting immunosuppressive cells have also achieved good outcome. In this review, we focus on the underlying mechanisms of immunosuppressive cells in promoting tumor immune escape and metastasis, discuss our current understanding of the interactions between immunosuppressive cells and tumor cells in the tumor microenvironment, and suggest future research directions as well as potential clinical strategies in cancer immunotherapy. PMID:26689709

  19. Impaired immune regulation after radioiodine therapy for Graves' disease and the protective effect of Methimazole.

    PubMed

    Côté-Bigras, Sarah; Tran, Viet; Turcotte, Sylvie; Rola-Pleszczynski, Marek; Verreault, Jean; Rottembourg, Diane

    2016-06-01

    Both therapies for Graves' disease (GD), radioactive iodine (RAI) and antithyroid drugs (ATD), were reported to have specific immune effects. We aimed at investigating the effects of RAI therapy on cellular subsets involved in immune regulation. We conducted a thirty day follow-up prospective cohort study of adult patients. Patients eligible for RAI therapy at our centre were approached. Twenty seven patients with GD were recruited, among whom 11 were treated with ATD. Twenty-two healthy subjects (HS) were also studied. Over time, frequency of regulatory T cells (Treg) and of invariant natural killer T cells (iNKT), along with Treg cell-mediated suppression and underlying mechanisms, were monitored in the peripheral blood. Variance in frequency of Treg and iNKT after RAI therapy was higher in GD patients than in HS over time (p < 0.0001). Reduced Treg suppressive function was observed after RAI therapy in GD patients (p = 0.002). ATD medication prior to RAI dampened these outcomes: less variation of Treg frequency (p = 0.0394), a trend toward less impaired Treg function, and prevention of reduced levels of suppressive cytokines (p < 0.05). Shortly after RAI therapy, alterations in immunoregulatory cells in patients with GD were observed and partially prevented by an ATD pretreatment. Worsening of autoimmunity after RAI was explained in previous studies by enhanced immune activity. This study adds new highlights on immune regulation deficiencies after therapeutic interventions in thyroid autoimmunity. PMID:26701678

  20. Differential protein network analysis of the immune cell lineage.

    PubMed

    Clancy, Trevor; Hovig, Eivind

    2014-01-01

    Recently, the Immunological Genome Project (ImmGen) completed the first phase of the goal to understand the molecular circuitry underlying the immune cell lineage in mice. That milestone resulted in the creation of the most comprehensive collection of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying mechanisms governing the differentiation and the differential functional activity across the immune cell lineage. This approach may not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage, but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks. PMID:25309909

  1. Epithelial cells, the "switchboard" of respiratory immune defense responses: effects of air pollutants.

    PubMed

    Müller, Loretta; Jaspers, Ilona

    2012-01-01

    "Epimmunome", a term introduced recently by Swamy and colleagues, describes all molecules and pathways used by epithelial cells (ECs) to instruct immune cells. Today, we know that ECs are among the first sites within the human body to be exposed to pathogens (such as influenza viruses) and that the release of chemokine and cytokines by ECs is influenced by inhaled agents. The role of the ECs as a switchboard to initiate and regulate immune responses is altered through air pollutant exposure, such as ozone, tobacco smoke and diesel exhaust emissions. The details of the interplay between ECs and immune cells are not yet fully understood and need to be investigated further. Co-culture models, cell specific genetically-modified mice and the analysis of human biopsies provide great tools to gain knowledge about potential mechanisms. Increasing our understanding about the role of ECs in respiratory immunity may yield novel therapeutic targets to modulate downstream diseases. PMID:22851042

  2. Flg22-Triggered Immunity Negatively Regulates Key BR Biosynthetic Genes

    PubMed Central

    Jiménez-Góngora, Tamara; Kim, Seong-Ki; Lozano-Durán, Rosa; Zipfel, Cyril

    2015-01-01

    In plants, activation of growth and activation of immunity are opposing processes that define a trade-off. In the past few years, the growth-promoting hormones brassinosteroids (BR) have emerged as negative regulators of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), promoting growth at the expense of defense. The crosstalk between BR and PTI signaling was described as negative and unidirectional, since activation of PTI does not affect several analyzed steps in the BR signaling pathway. In this work, we describe that activation of PTI by the bacterial PAMP flg22 results in the reduced expression of BR biosynthetic genes. This effect does not require BR perception or signaling, and occurs within 15 min of flg22 treatment. Since the described PTI-induced repression of gene expression may result in a reduction in BR biosynthesis, the crosstalk between PTI and BR could actually be negative and bidirectional, a possibility that should be taken into account when considering the interaction between these two pathways. PMID:26617621

  3. Development and regulation of immune responses to food antigens in pre- and postnatal life.

    PubMed

    Renz, Harald; Pfefferle, Petra Ina; Teich, René; Garn, Holger

    2009-01-01

    Food antigens are harmless environmental components. The physiological response is the development of clinical and immunological tolerance. It is now well appreciated that tolerance development is the result of active immunoregulation and depends on a close interaction between the innate and adaptive immune system resulting in the development of tolerance-mediating T-cell responses. Programming of the immune system, particularly with regard to tolerance development, already starts before birth and stays under close control of the maternal immune system. Therefore, the pre-and postnatal period represents an important 'window of opportunity' for immunoprogramming. Underlying mechanisms include maternal cell transmission, antibody transfer, transfer of mediates/cytokines, and transmission of antigens and allergens. Immunoprogramming is fostered and augmented in the context of microbial components. Recently, several microbes have been identified which possess the capacity of immunoprogramming early in life. Epigenetic regulation represents an important novel mechanism in this regard. This concept opens new avenues for the development of preventive strategies to avoid inappropriate immune responses against food antigens. PMID:19710520

  4. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation.

    PubMed

    Anderson, Ana C; Joller, Nicole; Kuchroo, Vijay K

    2016-05-17

    Co-inhibitory receptors, such as CTLA-4 and PD-1, have an important role in regulatingcell responses and have proven to be effective targets in the setting of chronic diseases where constitutive co-inhibitory receptor expression on T cells dampens effector T cell responses. Unfortunately, many patients still fail to respond to therapies that target CTLA-4 and PD-1. The next wave of co-inhibitory receptor targets that are being explored in clinical trials include Lag-3, Tim-3, and TIGIT. These receptors, although they belong to the same class of receptors as PD-1 and CTLA-4, exhibit unique functions, especially at tissue sites where they regulate distinct aspects of immunity. Increased understanding of the specialized functions of these receptors will inform the rational application of therapies that target these receptors to the clinic. PMID:27192565

  5. Leptin and zinc relation: In regulation of food intake and immunity.

    PubMed

    Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim

    2012-12-01

    Leptin is synthesized and released by the adipose tissue. Leptin, which carries the information about energy reserves of the body to the brain, controls food intake by acting on neuropeptide Y (NPY), which exercises a food-intake-increasing effect through relevant receptors in the hypothalamus. Zinc deficiency is claimed to result in anorexia, weight loss, poor food efficiency, and growth impairment. The fact that obese individuals have low zinc and high leptin levels suggests that there is a relation between zinc and nutrition, and consequently also between zinc and leptin. Leptin deficiency increases the predisposition to infections and this increase is associated with the impairments in the production of cytokines. Zinc has a key role in the sustenance of immune resistance against infections. Dietary zinc deficiency negatively affects CD(+) 4 cells, Th functions, and consequently, cell-mediated immunity by causing a decrease in the production of IL-2, IF-γ, and TNF-α, which are Th1 products. The relation between zinc and the concerned cytokines in particular, and the fact that leptin has a part in the immune responses mediated by these cytokines demonstrate that an interaction among cellular immunity, leptin and zinc is inevitable. An overall evaluation of the information presented above suggests that there are complex relations among food intake, leptin and zinc on one hand and among cellular immunity, leptin and zinc on the other. The aim of the present review was to draw attention to the possible relation between zinc and leptin in dietary regulation and cellular immunity. PMID:23565497

  6. Leptin and zinc relation: In regulation of food intake and immunity

    PubMed Central

    Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim

    2012-01-01

    Leptin is synthesized and released by the adipose tissue. Leptin, which carries the information about energy reserves of the body to the brain, controls food intake by acting on neuropeptide Y (NPY), which exercises a food-intake-increasing effect through relevant receptors in the hypothalamus. Zinc deficiency is claimed to result in anorexia, weight loss, poor food efficiency, and growth impairment. The fact that obese individuals have low zinc and high leptin levels suggests that there is a relation between zinc and nutrition, and consequently also between zinc and leptin. Leptin deficiency increases the predisposition to infections and this increase is associated with the impairments in the production of cytokines. Zinc has a key role in the sustenance of immune resistance against infections. Dietary zinc deficiency negatively affects CD+4 cells, Th functions, and consequently, cell-mediated immunity by causing a decrease in the production of IL-2, IF-γ, and TNF-α, which are Th1 products. The relation between zinc and the concerned cytokines in particular, and the fact that leptin has a part in the immune responses mediated by these cytokines demonstrate that an interaction among cellular immunity, leptin and zinc is inevitable. An overall evaluation of the information presented above suggests that there are complex relations among food intake, leptin and zinc on one hand and among cellular immunity, leptin and zinc on the other. The aim of the present review was to draw attention to the possible relation between zinc and leptin in dietary regulation and cellular immunity. PMID:23565497

  7. The Dynamics of Interactions Among Immune and Glioblastoma Cells.

    PubMed

    Eder, Katalin; Kalman, Bernadette

    2015-12-01

    Glioblastoma is the most common intracranial malignancy that constitutes about 50 % of all gliomas. Despite aggressive, multimodal therapy consisting of surgery, radiation, and chemotherapy, the outcome of patients with glioblastoma remains poor with 5-year survival rates of <10 %. Resistance to conventional therapies is most likely caused by several factors. Alterations in the functions of local immune mediators may represent a critical contributor to this resistance. The tumor microenvironment contains innate and adaptive immune cells in addition to the cancer cells and their surrounding stroma. These various cells communicate with each other by means of direct cell-cell contact or by soluble factors including cytokines and chemokines, and act in autocrine and paracrine manners to modulate tumor growth. There are dynamic interactions among the local immune elements and the tumor cells, where primarily the protective immune cells attempt to overcome the malignant cells. However, by developing somatic mutations and epigenetic modifications, the glioblastoma tumor cells acquire the capability of counteracting the local immune responses, and even exploit the immune cells and products for their own growth benefits. In this review, we survey those immune mechanisms that likely contribute to glioblastoma pathogenesis and may serve as a basis for novel treatment strategies. PMID:26224516

  8. PIF direct immune regulation: Blocks mitogen-activated PBMCs proliferation, promotes TH2/TH1 bias, independent of Ca(2+).

    PubMed

    Barnea, Eytan R; Kirk, David; Todorova, Krassimira; McElhinney, James; Hayrabedyan, Soren; Fernández, Nelson

    2015-07-01

    PreImplantation Factor (PIF(9&15)) secreted by viable embryos exerts an essential transplant acceptance and immune regulatory role in pregnancy. Synthetic PIF replicates endogenous PIF's effect in pregnant and non-pregnant immune disorder models. PIF binds macrophages to regulate CD3/CD28-induced T-cell response. We present evidence that PIF regulates the co-stimulatory T-cell receptor, CD2, which binds to and is activated by phytohemagglutinin (PHA), a potent mitogen, confirming PIF's ability to systemically respond to diverse immune stimulants. PIF's effect on PHA-activated PBMC (male and non-pregnant females) proliferation and cytokine secretion was tested, showing that both PIF(9&15) block PHA-induced PBMC proliferation and promote anti-inflammatory IL10 secretion, while reducing pro-inflammatory IFNγ secretion. Thus favoring a T(H)2 cytokine bias. Surface plasmon resonance spectroscopy, immunocytochemistry and Flex station experiments reveal that PIF effect is direct. PIF targets intracellular targets but does not affect early Ca(2+) mobilization. By promoting the CD2 receptor in activated T-cells and through inhibition of co-ligand CD58 expression, PIF regulates antigen-presenting cell (APC)-T-cell interactions required for PHA action. Structure-based design demonstrated that PIF15 offers improved target specificity as compared to PIF9. Collectively, PIF directly regulates mitogen-induced PBMC activation. Results support PIF translation for therapy of immune disorders. PMID:25766203

  9. Exosomes and nanotubes: Control of immune cell communication.

    PubMed

    McCoy-Simandle, Kessler; Hanna, Samer J; Cox, Dianne

    2016-02-01

    Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature. PMID:26704468

  10. Neutrophils negatively regulate induction of mucosal IgA responses after sublingual immunization.

    PubMed

    Jee, J; Bonnegarde-Bernard, A; Duverger, A; Iwakura, Y; Cormet-Boyaka, E; Martin, T L; Steiner, H E; Bachman, R C; Boyaka, P N

    2015-07-01

    Induction of mucosal immunoglobulin-A (IgA) capable of providing a first line of defense against bacterial and viral pathogens remains a major goal of needle-free vaccines given via mucosal routes. Innate immune cells are known to play a central role in induction of IgA responses by mucosal vaccines, but the relative contribution of myeloid cell subsets to these responses has not firmly been established. Using an in vivo model of sublingual vaccination with Bacillus anthracis edema toxin (EdTx) as adjuvant, we examined the role of myeloid cell subsets for mucosal secretory IgA responses. Sublingual immunization of wild-type mice resulted in a transient increase of neutrophils in sublingual tissues and cervical lymph nodes. These mice later developed Ag-specific serum IgG responses, but not serum or mucosal IgA. Interestingly, EdTx failed to increase neutrophils in sublingual tissues and cervical lymph nodes of IKKβ(ΔMye) mice, and these mice developed IgA responses. Partial depletion of neutrophils before immunization of wild-type mice allowed the development of both mucosal and serum IgA responses. Finally, co-culture of B cells with neutrophils from either wild-type or IKKβ(ΔMye) mice suppressed secretion of IgA, but not IgM or IgG. These results identify a new role for neutrophils as negative regulators of IgA responses. PMID:25563500

  11. Neutrophils negatively regulate induction of mucosal IgA responses after sublingual immunization

    PubMed Central

    Jee, Junbae; Bonnegarde-Bernard, Astrid; Duverger, Alexandra; Iwakura, Yoichiro; Cormet-Boyaka, Estelle; Martin, Tara L.; Steiner, Haley E.; Bachman, Ryan C.; Boyaka, Prosper N.

    2015-01-01

    Induction of mucosal IgA capable of providing a first line of defense against bacterial and viral pathogens remains a major goal of needle-free vaccines given via mucosal routes. Innate immune cells are known to play a central role in induction of IgA responses by mucosal vaccines, but the relative contribution of myeloid cell subsets to these responses has not firmly been established. Using an in vivo model of sublingual vaccination with Bacillus anthracis edema toxin (EdTx) as adjuvant, we examined the role of myeloid cell subsets for mucosal secretory IgA responses. Sublingual immunization of wild-type mice resulted in a transient increase of neutrophils in sublingual tissues and cervical lymph nodes. These mice later developed Ag-specific serum IgG responses, but not serum or mucosal IgA. Interestingly, EdTx failed to increase neutrophils in sublingual tissues of IKKβΔMye mice, and these mice developed IgA responses. Partial depletion of neutrophils before immunization of wild-type mice allowed the development of both mucosal and serum IgA responses. Finally, co-culture of B cells with neutrophils from either wild-type or IKKβΔMye mice suppressed production of IgA, but not IgM or IgG. These results identify a new role for neutrophils as negative regulators of IgA responses. PMID:25563500

  12. Negative regulators of cell proliferation

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Cell proliferation is governed by the influence of both mitogens and inhibitors. Although cell contact has long been thought to play a fundamental role in cell cycling regulation, and negative regulators have long been suspected to exist, their isolation and purification has been complicated by a variety of technical difficulties. Nevertheless, over recent years an ever-expanding list of putative negative regulators have emerged. In many cases, their biological inhibitory activities are consistent with density-dependent growth inhibition. Most likely their interactions with mitogenic agents, at an intracellular level, are responsible for either mitotic arrest or continued cell cycling. A review of naturally occurring cell growth inhibitors is presented with an emphasis on those factors shown to be residents of the cell surface membrane. Particular attention is focused on a cell surface sialoglycopeptide, isolated from intact bovine cerebral cortex cells, which has been shown to inhibit the proliferation of an unusually wide range of target cells. The glycopeptide arrest cells obtained from diverse species, both fibroblasts and epithelial cells, and a broad variety of transformed cells. Signal transduction events and a limited spectrum of cells that are refractory to the sialoglycopeptide have provided insight into the molecular events mediated by this cell surface inhibitor.

  13. Regulation of Mucosal Immunity in the Female Reproductive Tract: The Role of Sex Hormones in Immune Protection Against Sexually Transmitted Pathogens

    PubMed Central

    Wira, Charles R.; Fahey, John V.; Rodriguez-Garcia, Marta; Shen, Zheng; Patel, Mickey V.

    2015-01-01

    The immune system in the female reproductive tract (FRT) does not mount an attack against human immunodeficiency virus (HIV) or other sexually transmitted infections (STI) with a single endogenously produced microbicide or with a single arm of the immune system. Instead, the body deploys dozens of innate antimicrobials to the secretions of the FRT. Working together, these antimicrobials along with mucosal antibodies attack viral, bacterial, and fungal targets. Within the FRT, the unique challenges of protection against sexually transmitted pathogens coupled with the need to sustain the development of an allogeneic fetus, has evolved in such a way that sex hormones precisely regulate immune function to accomplish both tasks. The studies presented in this review demonstrate that estradiol (E2) and progesterone secreted during the menstrual cycle act both directly and indirectly on epithelial cells, fibroblasts and immune cells in the reproductive tract to modify immune function in a way that is unique to specific sites throughout the FRT. As presented in this review, studies from our laboratory and others demonstrate that the innate and adaptive immune systems are under hormonal control, that protection varies with the stage of the menstrual cycle and as such, is dampened during the secretory stage of the cycle to optimize conditions for fertilization and pregnancy. In doing so, a window of STI vulnerability is created during which potential pathogens including HIV enter the reproductive tract to infect host targets. PMID:24734774

  14. EAF2 mediates germinal centre B-cell apoptosis to suppress excessive immune responses and prevent autoimmunity.

    PubMed

    Li, Yingqian; Takahashi, Yoshimasa; Fujii, Shin-ichiro; Zhou, Yang; Hong, Rongjian; Suzuki, Akari; Tsubata, Takeshi; Hase, Koji; Wang, Ji-Yang

    2016-01-01

    Regulated apoptosis of germinal centre (GC) B cells is critical for normal humoral immune responses. ELL-associated factor 2 (EAF2) regulates transcription elongation and has been shown to be an androgen-responsive potential tumour suppressor in prostate by inducing apoptosis. Here we show that EAF2 is selectively upregulated in GC B cells among various immune cell types and promotes apoptosis of GC B cells both in vitro and in vivo. EAF2 deficiency results in enlarged GCs and elevated antibody production during a T-dependent immune response. After immunization with type II collagen, mice lacking EAF2 produce high levels of collagen-specific autoantibodies and rapidly develop severe arthritis. Moreover, the mutant mice spontaneously produce anti-dsDNA, rheumatoid factor and anti-nuclear antibodies as they age. These results demonstrate that EAF2-mediated apoptosis in GC B cells limits excessive humoral immune responses and is important for maintaining self-tolerance. PMID:26935903

  15. Autoimmune disease-associated variants of extracellular endoplasmic reticulum aminopeptidase 1 induce altered innate immune responses by human immune cells

    PubMed Central

    Aldhamen, Yasser A.; Pepelyayeva, Yuliya; Rastall, David P.W.; Seregin, Sergey S.; Zervoudi, Efthalia; Koumantou, Despoina; Aylsworth, Charles F.; Quiroga, Dionisia; Godbehere, Sarah; Georgiadis, Dimitris; Stratikos, Efstratios; Amalfitano, Andrea

    2015-01-01

    ERAP1 gene polymorphisms have been linked to several autoimmune diseases; however, the molecular mechanisms underlying these associations are not well understood. Recently, we have demonstrated that ERAP1 regulates key aspects of the innate immune response. Moreover, previous studies show ERAP1 to be ER-localized and secreted during inflammation. Herein, we investigate the possible roles that ERAP1 polymorphic variants may have in modulating innate immune responses of human PBMCs using two experimental methods: extracellular exposure of hPBMCs to ERAP1 variants and adenovirus-based ERAP1 expression. We found that exposure of hPBMCs to ERAP1 variant proteins as well as ERAP1 overexpression by Ad vectors increased inflammatory cytokine and chemokine production, and enhanced immune cell activation. Investigating the molecular mechanisms behind these responses revealed that ERAP1 is able to activate innate immunity via multiple pathways, including the NLRP3 inflammasome. Importantly, these responses varied if autoimmune-disease-associated variants of ERAP1 were examined in the assay systems. Unexpectedly, blocking ERAP1 cellular internalization augmented IL-1β production. To our knowledge, this is the first report identifying ERAP1 as being involved in modulating innate responses of human immune cells, a finding that may explain why ERAP1 has been genetically associated with several autoimmune diseases. PMID:25591727

  16. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells

    PubMed Central

    Horst, Andrea Kristina; Neumann, Katrin; Diehl, Linda; Tiegs, Gisa

    2016-01-01

    The liver is a tolerogenic organ with exquisite mechanisms of immune regulation that ensure upkeep of local and systemic immune tolerance to self and foreign antigens, but that is also able to mount effective immune responses against pathogens. The immune privilege of liver allografts was recognized first in pigs in spite of major histo-compatibility complex mismatch, and termed the “liver tolerance effect”. Furthermore, liver transplants are spontaneously accepted with only low-dose immunosuppression, and induce tolerance for non-hepatic co-transplanted allografts of the same donor. Although this immunotolerogenic environment is favorable in the setting of organ transplantation, it is detrimental in chronic infectious liver diseases like hepatitis B or C, malaria, schistosomiasis or tumorigenesis, leading to pathogen persistence and weak anti-tumor effects. The liver is a primary site of T-cell activation, but it elicits poor or incomplete activation of T cells, leading to their abortive activation, exhaustion, suppression of their effector function and early death. This is exploited by pathogens and can impair pathogen control and clearance or allow tumor growth. Hepatic priming of T cells is mediated by a number of local conventional and nonconventional antigen-presenting cells (APCs), which promote tolerance by immune deviation, induction of T-cell anergy or apoptosis, and generating and expanding regulatory T cells. This review will focus on the communication between classical and nonclassical APCs and lymphocytes in the liver in tolerance induction and will discuss recent insights into the role of innate lymphocytes in this process. PMID:27041638

  17. Role of Treg in immune regulation of allergic diseases.

    PubMed

    Palomares, Oscar; Yaman, Görkem; Azkur, Ahmet K; Akkoc, Tunc; Akdis, Mübeccel; Akdis, Cezmi A

    2010-05-01

    Allergy is a Th2-mediated disease that involves the formation of specific IgE antibodies against innocuous environmental substances. The prevalence of allergic diseases has dramatically increased over the past decades, affecting up to 30% of the population in industrialized countries. The understanding of mechanisms underlying allergic diseases as well as those operating in non-allergic healthy responses and allergen-specific immunotherapy has experienced exciting advances over the past 15 years. Studies in healthy non-atopic individuals and several clinical trials of allergen-specific immunotherapy have demonstrated that the induction of a tolerant state in peripheral T cells represent a key step in healthy immune responses to allergens. Both naturally occurring thymus-derived CD4+CD25+FOXP3+ Treg and inducible type 1 Treg inhibit the development of allergy via several mechanisms, including suppression of other effector Th1, Th2, Th17 cells; suppression of eosinophils, mast cells and basophils; Ab isotype change from IgE to IgG4; suppression of inflammatory DC; and suppression of inflammatory cell migration to tissues. The identification of the molecules involved in these processes will contribute to the development of more efficient and safer treatment modalities. PMID:20148422

  18. Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage.

    PubMed

    Malchow, Sven; Leventhal, Daniel S; Lee, Victoria; Nishi, Saki; Socci, Nicholas D; Savage, Peter A

    2016-05-17

    The promiscuous expression of tissue-restricted antigens in the thymus, driven in part by autoimmune regulator (Aire), is critical for the protection of peripheral tissues from autoimmune attack. Aire-dependent processes are thought to promote both clonal deletion and the development of Foxp3(+) regulatory T (Treg) cells, suggesting that autoimmunity associated with Aire deficiency results from two failed tolerance mechanisms. Here, examination of autoimmune lesions in Aire(-/-) mice revealed an unexpected third possibility. We found that the predominant conventional T cell clonotypes infiltrating target lesions express antigen receptors that were preferentially expressed by Foxp3(+) Treg cells in Aire(+/+) mice. Thus, Aire enforces immune tolerance by ensuring that distinct autoreactive T cell specificities differentiate into the Treg cell lineage; dysregulation of this process results in the diversion of Treg cell-biased clonotypes into pathogenic conventional T cells. PMID:27130899

  19. How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases

    PubMed Central

    Pluchino, Stefano; Cossetti, Chiara

    2014-01-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288

  20. Complement Deposition on Nanoparticles Can Modulate Immune Responses by Macrophage, B and T Cells.

    PubMed

    Pondman, Kirsten M; Tsolaki, Anthony G; Paudyal, Basudev; Shamji, Mohamed H; Switzer, Amy; Pathan, Ansar A; Abozaid, Suhair M; Ten Haken, Bennie; Stenbeck, Gudrun; Sim, Robert B; Kishore, Uday

    2016-01-01

    Nanoparticles are attractive drug delivery vehicles for targeted organ-specific as well as systemic therapy. However, their interaction with the immune system offers an intriguing challenge to the success of nanotherapeutics in vivo. Recently, we showed that pristine and derivatised carbon nanotubes (CNT) can activate complement mainly via the classical pathway leading to enhanced uptake by phagocytic cells, and transcriptional down-regulation of pro-inflammatory cytokines. Here, we report the interaction of complement-activating CC-CNT and RNA-CNT, and non-complement-activating gold-nickel (Au-Ni) nanowires with cell lines representing macrophage, B and T cells. Complement deposition considerably enhanced uptake of CNTs by immune cells known to overexpress complement receptors. Real-Time qPCR and multiplex array analyses showed complement-dependent down-regulation of TNF-α and IL-1β and up-regulation of IL-12 by CMC- and RNA-CNTs, in addition to revealing IL-10 as a crucial regulator during nanoparticle-immune cell interaction. It appears that complement system can recognize molecular patterns differentially displayed by nanoparticles and thus, modulate subsequent processing of nanoparticles by antigen capturing and antigen presenting cells, which can shape innate and adaptive immune axes. PMID:27301184

  1. Mineralocorticoid receptors in immune cells: emerging role in cardiovascular disease.

    PubMed

    Bene, Nicholas C; Alcaide, Pilar; Wortis, Henry H; Jaffe, Iris Z

    2014-12-01

    Mineralocorticoid receptors (MRs) contribute to the pathophysiology of hypertension and cardiovascular disease in humans. As such, MR antagonists improve cardiovascular outcomes but the molecular mechanisms remain unclear. The actions of the MR in the kidney to increase blood pressure are well known, but the recent identification of MRs in immune cells has led to novel discoveries in the pathogenesis of cardiovascular disease that are reviewed here. MR regulates macrophage activation to the pro-inflammatory M1 phenotype and this process contributes to the pathogenesis of cardiovascular fibrosis in response to hypertension and to outcomes in mouse models of stroke. T lymphocytes have recently been implicated in the development of hypertension and cardiovascular fibrosis in mouse models. MR activation in vivo promotes T lymphocyte differentiation to the pro-inflammatory Th1 and Th17 subsets while decreasing the number of anti-inflammatory T regulatory lymphocytes. The mechanism likely involves activation of MR in antigen presenting dendritic cells that subsequently regulate Th1/Th17 polarization by production of cytokines. Alteration of the balance between T helper and T regulatory lymphocytes contributes to the pathogenesis of hypertension and atherosclerosis and the associated complications. B lymphocytes also express the MR and specific B lymphocyte-derived antibodies modulate the progression of atherosclerosis. However, the role of MR in B lymphocyte function remains to be explored. Overall, recent studies of MR in immune cells have identified new mechanisms by which MR activation may contribute to the pathogenesis of organ damage in patients with cardiovascular risk factors. Conversely, inhibition of leukocyte MR may contribute to the protective effects of MR antagonist drugs in cardiovascular patients. Further understanding of the role of MR in leukocyte function could yield novel drug targets for cardiovascular disease. PMID:24769248

  2. Mineralocorticoid Receptors in Immune Cells; Emerging Role in Cardiovascular Disease

    PubMed Central

    Bene, Nicholas C.; Alcaide, Pilar; Wortis, Henry H.; Jaffe, Iris Z.

    2014-01-01

    Mineralocorticoid receptors (MR) contribute to the pathophysiology of hypertension and cardiovascular disease in humans. As such, MR antagonists improve cardiovascular outcomes but the molecular mechanisms remain unclear. The actions of the MR in the kidney to increase blood pressure are well known, but the recent identification of MRs in immune cells has led to novel discoveries in the pathogenesis of cardiovascular disease that are reviewed here. MR regulates macrophage activation to the pro-inflammatory M1 phenotype and this process contributes to the pathogenesis of cardiovascular fibrosis in response to hypertension and to outcomes in mouse models of stroke. T lymphocytes have recently been implicated in the development of hypertension and cardiovascular fibrosis in mouse models. MR activation in vivo promotes T lymphocyte differentiation to the pro-inflammatory Th1 and Th17 subsets while decreasing the number of anti-inflammatory T regulatory lymphocytes. The mechanism likely involves activation of MR in antigen presenting dendritic cells that subsequently regulate Th1/Th17 polarization by production of cytokines. Alteration of the balance between T helper and T regulatory lymphocytes contributes to the pathogenesis of hypertension and atherosclerosis and the associated complications. B lymphocytes also express the MR and specific B lymphocyte-derived antibodies modulate the progression of atherosclerosis. However, the role of MR in B lymphocyte function remains to be explored. Overall, recent studies of MR in immune cells have identified new mechanisms by which MR activation may contribute to the pathogenesis of organ damage in patients with cardiovascular risk factors. Conversely, inhibition of leukocyte MR may contribute to the protective effects of MR antagonist drugs in cardiovascular patients. Further understanding of the role of MR in leukocyte function could yield novel drug targets for cardiovascular disease. PMID:24769248

  3. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis

    PubMed Central

    Zinselmeyer, Bernd H.; Heydari, Sara; Sacristán, Catarina; Nayak, Debasis; Cammer, Michael; Herz, Jasmin; Cheng, Xiaoxiao; Davis, Simon J.; Dustin, Michael L.

    2013-01-01

    Immune responses to persistent viral infections and cancer often fail because of intense regulation of antigen-specific T cells—a process referred to as immune exhaustion. The mechanisms that underlie the induction of exhaustion are not completely understood. To gain novel insights into this process, we simultaneously examined the dynamics of virus-specific CD8+ and CD4+ T cells in the living spleen by two-photon microscopy (TPM) during the establishment of an acute or persistent viral infection. We demonstrate that immune exhaustion during viral persistence maps anatomically to the splenic marginal zone/red pulp and is defined by prolonged motility paralysis of virus-specific CD8+ and CD4+ T cells. Unexpectedly, therapeutic blockade of PD-1–PD-L1 restored CD8+ T cell motility within 30 min, despite the presence of high viral loads. This result was supported by planar bilayer data showing that PD-L1 localizes to the central supramolecular activation cluster, decreases antiviral CD8+ T cell motility, and promotes stable immunological synapse formation. Restoration of T cell motility in vivo was followed by recovery of cell signaling and effector functions, which gave rise to a fatal disease mediated by IFN-γ. We conclude that motility paralysis is a manifestation of immune exhaustion induced by PD-1 that prevents antiviral CD8+ T cells from performing their effector functions and subjects them to prolonged states of negative immune regulation. PMID:23530125

  4. Cell death, clearance and immunity in the skeletal muscle.

    PubMed

    Sciorati, C; Rigamonti, E; Manfredi, A A; Rovere-Querini, P

    2016-06-01

    The skeletal muscle is an immunologically unique tissue. Leukocytes, virtually absent in physiological conditions, are quickly recruited into the tissue upon injury and persist during regeneration. Apoptosis, necrosis and autophagy coexist in the injured/regenerating muscles, including those of patients with neuromuscular disorders, such as inflammatory myopathies, dystrophies, metabolic and mitochondrial myopathies and drug-induced myopathies. Macrophages are able to alter their function in response to microenvironment conditions and as a consequence coordinate changes within the tissue from the early injury throughout regeneration and eventual healing, and regulate the activation and the function of stem cells. Early after injury, classically activated macrophages ('M1') dominate the picture. Alternatively activated M2 macrophages predominate during resolution phases and regulate the termination of the inflammatory responses. The dynamic M1/M2 transition is increasingly felt to be the key to the homeostasis of the muscle. Recognition and clearance of debris originating from damaged myofibers and from dying stem/progenitor cells, stromal cells and leukocytes are fundamental actions of macrophages. Clearance of apoptotic cells and M1/M2 transition are causally connected and represent limiting steps for muscle healing. The accumulation of apoptotic cells, which reflects their defective clearance, has been demonstrated in various tissues to prompt autoimmunity against intracellular autoantigens. In the muscle, in the presence of type I interferon, apoptotic myoblasts indeed cause the production of autoantibodies, lymphocyte infiltration and continuous cycles of muscle injury and regeneration, mimicking human inflammatory myopathies. The clearance of apoptotic cells thus modulates the homeostatic response of the skeletal muscle to injury. Conversely, defects in the process may have deleterious local effects, guiding maladaptive tissue remodeling with collagen and fat

  5. Immunoglobulin G-mediated regulation of the murine immune response to transfused red blood cells occurs in the absence of active immune suppression: implications for the mechanism of action of anti-D in the prevention of haemolytic disease of the fetus and newborn?

    PubMed Central

    Brinc, Davor; Le-Tien, Hoang; Crow, Andrew R; Siragam, Vinayakumar; Freedman, John; Lazarus, Alan H

    2008-01-01

    Anti-D has been widely and effectively used in Rhesus blood group D negative mothers for the prevention of haemolytic disease of the fetus and newborn; its mechanism of action however, often referred to as antibody-mediated immune suppression (AMIS), remains largely unresolved. We investigated, in a murine model, whether active immune suppression or clonal deletion mediated by anti-red blood cell (RBC) immunoglobulin G (IgG) could explain the phenomenon of AMIS. Transfusion of IgG-opsonized foreign RBCs (i.e. AMIS) strongly attenuated antibody responses compared to transfusion of untreated foreign RBCs. When the AMIS-mice were subsequently transfused with untreated RBCs, no immune suppression was observed at 5 and 35 days after AMIS induction; in fact, the mice responded to retransfusion with untreated RBCs in a manner that was characteristic of a secondary immune response. When IgG-opsonized RBCs were transfused concurrently with untreated RBCs, a dose-dependent reduction of the antibody response was observed. This work suggests that the attenuation of the antibody responsiveness by anti-RBC IgG is not associated with active immune suppression or clonal deletion at either the T-cell or B-cell level; rather, the effect appears more characteristic of B-cell unresponsiveness to IgG-opsonized RBCs. These results may have implications for the understanding of the mechanism of action of anti-D in haemolytic disease of the fetus and newborn. PMID:18266717

  6. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue.

    PubMed

    Cook, D N; Prosser, D M; Forster, R; Zhang, J; Kuklin, N A; Abbondanzo, S J; Niu, X D; Chen, S C; Manfra, D J; Wiekowski, M T; Sullivan, L M; Smith, S R; Greenberg, H B; Narula, S K; Lipp, M; Lira, S A

    2000-05-01

    Chemokine-directed migration of leukocyte subsets may contribute to the qualitative differences between systemic and mucosal immunity. Here, we demonstrate that in mice lacking the chemokine receptor CCR6, dendritic cells expressing CD11c and CD11b are absent from the subepithelial dome of Peyer's patches. These mice also have an impaired humoral immune response to orally administered antigen and to the enteropathic virus rotavirus. In addition, CCR6(-/-) mice have a 2-fold to 15-fold increase in cells of select T lymphocyte populations within the mucosa, including CD4+ and CD8+ alphabeta-TCR T cells. By contrast, systemic immune responses to subcutaneous antigens in CCR6(-/-) mice are normal. These findings demonstrate that CCR6 is a mucosa-specific regulator of humoral immunity and lymphocyte homeostasis in the intestinal mucosa. PMID:10843382

  7. Immune Cell Isolation from Mouse Femur Bone Marrow

    PubMed Central

    Liu, Xiaoyu; Quan, Ning

    2016-01-01

    The bone marrow is the site of hematopoesis and contains mixed population of blood cells including erythrocytes, granulocytes, monocytes, dendritic cells, lymphocytes and hematopoietic stem cells. The following protocol provides a simple and fast method for isolation of bone marrow immune cells (no erythrocytes) from mouse femurs with a yield of approximate 8 × 107 cells in 5 ml culture media (1.6 × 104 cells/μl). Further isolation or flow cytometric analysis might be required for study of specific immune cell types.

  8. Overcoming Hypoxia-Mediated Tumor Progression: Combinatorial Approaches Targeting pH Regulation, Angiogenesis and Immune Dysfunction

    PubMed Central

    McDonald, Paul C.; Chafe, Shawn C.; Dedhar, Shoukat

    2016-01-01

    Hypoxia is an important contributor to the heterogeneity of the microenvironment of solid tumors and is a significant environmental stressor that drives adaptations which are essential for the survival and metastatic capabilities of tumor cells. Critical adaptive mechanisms include altered metabolism, pH regulation, epithelial-mesenchymal transition, angiogenesis, migration/invasion, diminished response to immune cells and resistance to chemotherapy and radiation therapy. In particular, pH regulation by hypoxic tumor cells, through the modulation of cell surface molecules such as extracellular carbonic anhydrases (CAIX and CAXII) and monocarboxylate transporters (MCT-1 and MCT-4) functions to increase cancer cell survival and enhance cell invasion while also contributing to immune evasion. Indeed, CAIX is a vital regulator of hypoxia mediated tumor progression, and targeted inhibition of its function results in reduced tumor growth, metastasis, and cancer stem cell function. However, the integrated contributions of the repertoire of hypoxia-induced effectors of pH regulation for tumor survival and invasion remain to be fully explored and exploited as therapeutic avenues. For example, the clinical use of anti-angiogenic agents has identified a conundrum whereby this treatment increases hypoxia and cancer stem cell components of tumors, and accelerates metastasis. Furthermore, hypoxia results in the infiltration of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg) and Tumor Associated Macrophages (TAMs), and also stimulates the expression of PD-L1 on tumor cells, which collectively suppress T-cell mediated tumor cell killing. Therefore, combinatorial targeting of angiogenesis, the immune system and pH regulation in the context of hypoxia may lead to more effective strategies for curbing tumor progression and therapeutic resistance, thereby increasing therapeutic efficacy and leading to more effective strategies for the treatment of patients with

  9. Associations between transcriptional changes and protein phenotypes provide insights into immune regulation in corals.

    PubMed

    Fuess, Lauren E; Pinzόn C, Jorge H; Weil, Ernesto; Mydlarz, Laura D

    2016-09-01

    Disease outbreaks in marine ecosystems have driven worldwide declines of numerous taxa, including corals. Some corals, such as Orbicella faveolata, are particularly susceptible to disease. To explore the mechanisms contributing to susceptibility, colonies of O. faveolata were exposed to immune challenge with lipopolysaccharides. RNA sequencing and protein activity assays were used to characterize the response of corals to immune challenge. Differential expression analyses identified 17 immune-related transcripts that varied in expression post-immune challenge. Network analyses revealed several groups of transcripts correlated to immune protein activity. Several transcripts, which were annotated as positive regulators of immunity were included in these groups, and some were downregulated following immune challenge. Correlations between expression of these transcripts and protein activity results further supported the role of these transcripts in positive regulation of immunity. The observed pattern of gene expression and protein activity may elucidate the processes contributing to the disease susceptibility of species like O. faveolata. PMID:27109903

  10. Tumoral NKG2D alters cell cycle of acute myeloid leukemic cells and reduces NK cell-mediated immune surveillance.

    PubMed

    Tang, Mingying; Acheampong, Desmond Omane; Wang, Youfu; Xie, Wei; Wang, Min; Zhang, Juan

    2016-06-01

    The stimulatory natural killer group 2 member D (NKG2D) lymphocyte receptor, initially discovered and expressed mostly on natural killer (NK) cells, T cells and natural killer T cells, can promote tumor immune surveillance. However, with increasing tumor grade, tumors themselves express NKG2D to self-stimulate oncogenic pathways. To confirm that cancer cells themselves express NKG2D, we have now investigated the role of the tumoral NKG2D in NK cell-mediated immune surveillance. Both anti-NKG2D and shRNA to that down-regulated tumoral NKG2D increased the number of cells in G1 phase and S phase, increased the expression of cyclin E-CDK2 and decreased P21. In addition, CD107a, IFN-γ and TNF-α increased when the cells were treated with anti-NKG2D which suggests that blocking tumoral NKG2D could augment tumor surveillance of NK cells. Altogether, tumoral NKG2D stimulates cell propagation and immune escape in acute myeloid leukemia cells. PMID:26740330

  11. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages.

    PubMed

    Pastore, Nunzia; Brady, Owen A; Diab, Heba I; Martina, José A; Sun, Lu; Huynh, Tuong; Lim, Jeong-A; Zare, Hossein; Raben, Nina; Ballabio, Andrea; Puertollano, Rosa

    2016-08-01

    The activation of transcription factors is critical to ensure an effective defense against pathogens. In this study we identify a critical and complementary role of the transcription factors TFEB and TFE3 in innate immune response. By using a combination of chromatin immunoprecipitation, CRISPR-Cas9-mediated genome-editing technology, and in vivo models, we determined that TFEB and TFE3 collaborate with each other in activated macrophages and microglia to promote efficient autophagy induction, increased lysosomal biogenesis, and transcriptional upregulation of numerous proinflammatory cytokines. Furthermore, secretion of key mediators of the inflammatory response (CSF2, IL1B, IL2, and IL27), macrophage differentiation (CSF1), and macrophage infiltration and migration to sites of inflammation (CCL2) was significantly reduced in TFEB and TFE3 deficient cells. These new insights provide us with a deeper understanding of the transcriptional regulation of the innate immune response. PMID:27171064

  12. Hospital For Special Surgery/Immune System REgulation In Musculoskeletal Disorders

    SciTech Connect

    Eric Meffre; Lionel Ivashkiv

    2007-08-20

    Inflammation on musculoskeletal disorders such as rheumatoid arthritis (RA) is the result of dysregulation of the immune system. When the immune system, which maintains the integrity of the organism in an environment rich in infectious microbes, becomes misdirected toward components of one’s own tissue, autoimmune disease can result with autoantibodies contributing to the inflammation and tissue damage. RA is a chronic autoimmune disease marked by severe inflammation that causes pain, swelling, stiffness and loss of function in the joints, which is estimated to affect 1 percent of the US adult population. Furthermore, autoimmune diseases, which affect women at a higher rate, are the fourth largest cause of disability among women in the US and among the top ten causes of death. The long range goal of this study is to elucidate the mechanisms that regulate the generation of autoantibodies by B cells in normal individuals and in patients with autoimmune diseases and provide insights into potential therapeutic interventions.

  13. Regulating the mucosal immune system: the contrasting roles of LIGHT, HVEM, and their various partners

    PubMed Central

    Steinberg, Marcos W.; Shui, Jr-Wen; Ware, Carl F.; Kronenberg, Mitchell

    2009-01-01

    LIGHT and herpes virus entry mediator (HVEM) comprise a ligand–receptor pair in the tumor necrosis factor superfamily. These molecules play an important role in regulating immunity, particularly in the intestinal mucosa. LIGHT also binds the lymphotoxin β receptor, and HVEM can act as a ligand for immunoglobulin family molecules, including B- and T-lymphocyte attenuator, which suppresses immune responses. Complexity in this pivotal system arises from several factors, including the non-monogamous pairing of ligands and receptors, and reverse signaling or the ability of some ligands to serve as receptors. As a result, recognition events in this fascinating network of interacting molecules can have pro- or anti-inflammatory consequences. Despite complexity, experiments we and others are carrying out are establishing rules for understanding when and in what cell types these molecules contribute to intestinal inflammation. PMID:19495760

  14. Th17 Cell Plasticity and Functions in Cancer Immunity

    PubMed Central

    Guéry, Leslie; Hugues, Stéphanie

    2015-01-01

    Th17 cells represent a particular subset of T helper lymphocytes characterized by high production of IL-17 and other inflammatory cytokines. Th17 cells participate in antimicrobial immunity at mucosal and epithelial barriers and particularly fight against extracellular bacteria and fungi. While a role for Th17 cells in promoting inflammation and autoimmune disorders has been extensively and elegantly demonstrated, it is still controversial whether and how Th17 cells influence tumor immunity. Although Th17 cells specifically accumulate in many different types of tumors compared to healthy tissues, the outcome might however differ from a tumor type to another. Th17 cells were consequently associated with both good and bad prognoses. The high plasticity of those cells toward cells exhibiting either anti-inflammatory or in contrast pathogenic functions might contribute to Th17 versatile functions in the tumor context. On one hand, Th17 cells promote tumor growth by inducing angiogenesis (via IL-17) and by exerting themselves immunosuppressive functions. On the other hand, Th17 cells drive antitumor immune responses by recruiting immune cells into tumors, activating effector CD8+ T cells, or even directly by converting toward Th1 phenotype and producing IFN-γ. In this review, we are discussing the impact of the tumor microenvironment on Th17 cell plasticity and function and its implications in cancer immunity. PMID:26583099

  15. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer.

    PubMed

    Bindea, Gabriela; Mlecnik, Bernhard; Tosolini, Marie; Kirilovsky, Amos; Waldner, Maximilian; Obenauf, Anna C; Angell, Helen; Fredriksen, Tessa; Lafontaine, Lucie; Berger, Anne; Bruneval, Patrick; Fridman, Wolf Herman; Becker, Christoph; Pagès, Franck; Speicher, Michael R; Trajanoski, Zlatko; Galon, Jérôme

    2013-10-17

    The complex interactions between tumors and their microenvironment remain to be elucidated. Combining large-scale approaches, we examined the spatio-temporal dynamics of 28 different immune cell types (immunome) infiltrating tumors. We found that the immune infiltrate composition changed at each tumor stage and that particular cells had a major impact on survival. Densities of T follicular helper (Tfh) cells and innate cells increased, whereas most T cell densities decreased along with tumor progression. The number of B cells, which are key players in the core immune network and are associated with prolonged survival, increased at a late stage and showed a dual effect on recurrence and tumor progression. The immune control relevance was demonstrated in three endoscopic orthotopic colon-cancer mouse models. Genomic instability of the chemokine CXCL13 was a mechanism associated with Tfh and B cell infiltration. CXCL13 and IL21 were pivotal factors for the Tfh/B cell axis correlating with survival. This integrative study reveals the immune landscape in human colorectal cancer and the major hallmarks of the microenvironment associated with tumor progression and recurrence. PMID:24138885

  16. Cell-mediated immunity in experimental Nocardia asteroides infection.

    PubMed Central

    Sundararaj, T; Agarwal, S C

    1977-01-01

    Experimental mycetoma-like lesions developed in guinea pigs after subcutaneous injection of Nocardia asteroides. Although delayed hypersensitivity appeared earlier, increased macrophage migration inhibition and microbicidal activity appeared after 7 weeks. When the lesions healed, high cell-mediated immunity was present. Cell-mediated immunity was transferred to normal recipient guinea pigs from healed donor guinea pigs by spleen cell transfer. Recipient guinea pigs showed marked protection against challenge with N. asteroides. PMID:321348

  17. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity

    PubMed Central

    Uto, Tomofumi; Fukaya, Tomohiro; Takagi, Hideaki; Arimura, Keiichi; Nakamura, Takeshi; Kojima, Naoya; Malissen, Bernard; Sato, Katsuaki

    2016-01-01

    Dendritic cells (DCs) comprise several subsets that are critically involved in the initiation and regulation of immunity. Clec4A4/DC immunoreceptor 2 (DCIR2) is a C-type lectin receptor (CLR) exclusively expressed on CD8α− conventional DCs (cDCs). However, how Clec4A4 controls immune responses through regulation of the function of CD8α− cDCs remains unclear. Here we show that Clec4A4 is a regulatory receptor for the activation of CD8α− cDCs that impairs inflammation and T-cell immunity. Clec4a4−/−CD8α− cDCs show enhanced cytokine production and T-cell priming following Toll-like receptor (TLR)-mediated activation. Furthermore, Clec4a4−/− mice exhibit TLR-mediated hyperinflammation. On antigenic immunization, Clec4a4−/− mice show not only augmented T-cell responses but also progressive autoimmune pathogenesis. Conversely, Clec4a4−/− mice exhibit resistance to microbial infection, accompanied by enhanced T-cell responses against microbes. Thus, our findings highlight roles of Clec4A4 in regulation of the function of CD8α− cDCs for control of the magnitude and quality of immune response. PMID:27068492

  18. Innate cell communication kick-starts pathogen-specific immunity

    PubMed Central

    Rivera, Amariliz; Siracusa, Mark C.; Yap, George S.; Gause, William C.

    2016-01-01

    Innate cells are responsible for the rapid recognition of infection and mediate essential mechanisms of pathogen elimination, and also facilitate adaptive immune responses. We review here the numerous intricate interactions among innate cells that initiate protective immunity. The efficient eradication of pathogens depends on the coordinated actions of multiple cells, including innate cells and epithelial cells. Rather than acting as isolated effector cells, innate cells are in constant communication with other responding cells of the immune system, locally and distally. These interactions are critically important for the efficient control of primary infections as well for the development of ‘trained’ innate cells that facilitate the rapid elimination of homologous or heterologous infections. PMID:27002843

  19. Essential Function for the Nuclear Protein Akirin2 in B Cell Activation and Humoral Immune Responses.

    PubMed

    Tartey, Sarang; Matsushita, Kazufumi; Imamura, Tomoko; Wakabayashi, Atsuko; Ori, Daisuke; Mino, Takashi; Takeuchi, Osamu

    2015-07-15

    Akirin2, an evolutionarily conserved nuclear protein, is an important factor regulating inflammatory gene transcription in mammalian innate immune cells by bridging the NF-κB and SWI/SNF complexes. Although Akirin is critical for Drosophila immune responses, which totally rely on innate immunity, the mammalian NF-κB system is critical not only for the innate but also for the acquired immune system. Therefore, we investigated the role of mouse Akirin2 in acquired immune cells by ablating Akirin2 function in B lymphocytes. B cell-specific Akirin2-deficient (Cd19(Cre/+)Akirin2(fl/fl)) mice showed profound decrease in the splenic follicular (FO) and peritoneal B-1, but not splenic marginal zone (MZ), B cell numbers. However, both Akirin2-deficient FO and MZ B cells showed severe proliferation defect and are prone to undergo apoptosis in response to TLR ligands, CD40, and BCR stimulation. Furthermore, B cell cycling was defective in the absence of Akirin2 owing to impaired expression of genes encoding cyclin D and c-Myc. Additionally, Brg1 recruitment to the Myc and Ccnd2 promoter was severely impaired in Akirin2-deficient B cells. Cd19(Cre/+)Akirin2(fl/fl) mice showed impaired in vivo immune responses to T-dependent and -independent Ags. Collectively, these results demonstrate that Akirin2 is critical for the mitogen-induced B cell cycle progression and humoral immune responses by controlling the SWI/SNF complex, further emphasizing the significant function of Akirin2 not only in the innate, but also in adaptive immune cells. PMID:26041538

  20. Single cell transcriptional analysis reveals novel innate immune cell types.

    PubMed

    Kippner, Linda E; Kim, Jinhee; Gibson, Greg; Kemp, Melissa L

    2014-01-01

    Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR) for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription profiling provides

  1. The raspberry Gene Is Involved in the Regulation of the Cellular Immune Response in Drosophila melanogaster

    PubMed Central

    Kari, Beáta; Csordás, Gábor; Honti, Viktor; Cinege, Gyöngyi; Williams, Michael J.; Andó, István; Kurucz, Éva

    2016-01-01

    Drosophila is an extremely useful model organism for understanding how innate immune mechanisms defend against microbes and parasitoids. Large foreign objects trigger a potent cellular immune response in Drosophila larva. In the case of endoparasitoid wasp eggs, this response includes hemocyte proliferation, lamellocyte differentiation and eventual encapsulation of the egg. The encapsulation reaction involves the attachment and spreading of hemocytes around the egg, which requires cytoskeletal rearrangements, changes in adhesion properties and cell shape, as well as melanization of the capsule. Guanine nucleotide metabolism has an essential role in the regulation of pathways necessary for this encapsulation response. Here, we show that the Drosophila inosine 5'-monophosphate dehydrogenase (IMPDH), encoded by raspberry (ras), is centrally important for a proper cellular immune response against eggs from the parasitoid wasp Leptopilina boulardi. Notably, hemocyte attachment to the egg and subsequent melanization of the capsule are deficient in hypomorphic ras mutant larvae, which results in a compromised cellular immune response and increased survival of the parasitoid. PMID:26942456

  2. Roles of regulatory T cells in cancer immunity.

    PubMed

    Takeuchi, Yoshiko; Nishikawa, Hiroyoshi

    2016-08-01

    CD4(+) regulatory T cells (Tregs) expressing the transcription factor FoxP3 are highly immune suppressive and play central roles in the maintenance of self-tolerance and immune homeostasis, yet in malignant tumors they promote tumor progression by suppressing effective antitumor immunity. Indeed, higher infiltration by Tregs is observed in tumor tissues, and their depletion augments antitumor immune responses in animal models. Additionally, increased numbers of Tregs and, in particular, decreased ratios of CD8(+) T cells to Tregs among tumor-infiltrating lymphocytes are correlated with poor prognosis in various types of human cancers. The recent success of cancer immunotherapy represented by immune checkpoint blockade has provided a new insight in cancer treatment, yet more than half of the treated patients did not experience clinical benefits. Identifying biomarkers that predict clinical responses and developing novel immunotherapies are therefore urgently required. Cancer patients whose tumors contain a large number of neoantigens stemming from gene mutations, which have not been previously recognized by the immune system, provoke strong antitumor T-cell responses associated with clinical responses following immune checkpoint blockade, depending on the resistance to Treg-mediated suppression. Thus, integration of a strategy restricting Treg-mediated immune suppression may expand the therapeutic spectrum of cancer immunotherapy towards patients with a lower number of neoantigens. In this review, we address the current understanding of Treg-mediated immune suppressive mechanisms in cancer, the involvement of Tregs in cancer immunotherapy, and strategies for effective and tolerable Treg-targeted therapy. PMID:27160722

  3. The Role of Necrotic cell death in the pathogenesis of immune mediated nephropathies

    PubMed Central

    Jog, Neelakshi R.; Caricchio, Roberto

    2014-01-01

    Necrosis, an inflammatory form of cell death, has been considered to be an accidental death and/or cell death due to injury. However, the literature in the last decade has established that necrosis is a regulated form of cell death, and that inhibition of specific molecular pathways leading to necrosis can block it and reduce inflammation. Since necrotic lesions are observed in several immune mediated human pathologies, in this review we will discuss the impact that this form of programmed cellular demise has in the pathology of immune mediated nephropathies. PMID:24845790

  4. Cell fate decision: T-helper 1 and 2 subsets in immune responses

    PubMed Central

    Dong, Chen; Flavell, Richard A

    2000-01-01

    After activation CD4+ helper T cells differentiate into T-helper (Th) 1 or Th2 effector cells. These two subsets are characterized by their distinct cytokine expression pattern and the immune function they mediate. Over the past years, a number of factors have been identified to affect helper T cell lineage determination, including antigen receptor, coreceptors and, most importantly, cytokine environment. In this review, we also summarize recent advancement in understanding of transcriptional and signaling regulation of the differentiation process. This knowledge will become important in the future to develop means in treating immune disorders. PMID:11094427

  5. The JAK inhibitor AZD1480 regulates proliferation and immunity in Hodgkin lymphoma.

    PubMed

    Derenzini, E; Lemoine, M; Buglio, D; Katayama, H; Ji, Y; Davis, R E; Sen, S; Younes, A

    2011-12-01

    Aberrant activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway has been reported to promote proliferation and survival of Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma (HL). We investigated the activity of the JAK inhibitor AZD1480 in HL-derived cell lines and determined its mechanisms of action. AZD1480 at low doses (0.1-1 μ) potently inhibited STATs phosphorylation, but did not predictably result in antiproliferative effects, as it activated a negative-feedback loop causing phosphorylation of JAK2 and extracellular signal-regulated kinases 1 and 2 (ERK1/2), and increased IP-10, RANTES and interleukin (IL)-8 concentrations in the supernatants. Inhibition of the ERK activity by mitogen-activated extracellular signal regulated kinase (MEK) inhibitors (UO126 and PD98059) enhanced the cytotoxic activity of AZD1480. Interestingly, submicromolar concentrations of AZD1480 demonstrated significant immunoregulatory effects by downregulating T-helper 2 cytokines and chemokines, including IL-13 and thymus- and activation-regulated chemokine, and the surface expression of the immunosuppressive programmed death ligands 1 and 2. Higher concentrations of AZD1480 (5 μ) induced G2/M arrest and cell death by inhibiting Aurora kinases. Our study demonstrates that AZD1480 regulates proliferation and immunity in HL cell lines and provides mechanistic rationale for evaluating AZD1480 alone or in combination with MEK inhibitors in HL. PMID:22829094

  6. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria.

    PubMed

    Hepworth, Matthew R; Monticelli, Laurel A; Fung, Thomas C; Ziegler, Carly G K; Grunberg, Stephanie; Sinha, Rohini; Mantegazza, Adriana R; Ma, Hak-Ling; Crawford, Alison; Angelosanto, Jill M; Wherry, E John; Koni, Pandelakis A; Bushman, Frederic D; Elson, Charles O; Eberl, Gérard; Artis, David; Sonnenberg, Gregory F

    2013-06-01

    Innate lymphoid cells (ILCs) are a recently characterized family of immune cells that have critical roles in cytokine-mediated regulation of intestinal epithelial cell barrier integrity. Alterations in ILC responses are associated with multiple chronic human diseases, including inflammatory bowel disease, implicating a role for ILCs in disease pathogenesis. Owing to an inability to target ILCs selectively, experimental studies assessing ILC function have predominantly used mice lacking adaptive immune cells. However, in lymphocyte-sufficient hosts ILCs are vastly outnumbered by CD4(+) T cells, which express similar profiles of effector cytokines. Therefore, the function of ILCs in the presence of adaptive immunity and their potential to influence adaptive immune cell responses remain unknown. To test this, we used genetic or antibody-mediated depletion strategies to target murine ILCs in the presence of an adaptive immune system. We show that loss of retinoic-acid-receptor-related orphan receptor-γt-positive (RORγt(+)) ILCs was associated with dysregulated adaptive immune cell responses against commensal bacteria and low-grade systemic inflammation. Remarkably, ILC-mediated regulation of adaptive immune cells occurred independently of interleukin (IL)-17A, IL-22 or IL-23. Genome-wide transcriptional profiling and functional analyses revealed that RORγt(+) ILCs express major histocompatibility complex class II (MHCII) and can process and present antigen. However, rather than inducing T-cell proliferation, ILCs acted to limit commensal bacteria-specific CD4(+) T-cell responses. Consistent with this, selective deletion of MHCII in murine RORγt(+) ILCs resulted in dysregulated commensal bacteria-dependent CD4(+) T-cell responses that promoted spontaneous intestinal inflammation. These data identify that ILCs maintain intestinal homeostasis through MHCII-dependent interactions with CD4(+) T cells that limit pathological adaptive immune cell responses to commensal

  7. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation

    PubMed Central

    Wong, Carmen P.; Rinaldi, Nicole A.; Ho, Emily

    2015-01-01

    Scope Zinc deficiency results in immune dysfunction and promotes systemic inflammation. The objective of this study was to examine the effects of zinc deficiency on cellular immune activation and epigenetic mechanisms that promote inflammation. This work is potentially relevant to the aging population given that age-related immune defects, including chronic inflammation, coincide with declining zinc status. Methods and results An in vitro cell culture system and the aged mouse model were used to characterize immune activation and DNA methylation profiles that may contribute to the enhanced proinflammatory response mediated by zinc deficiency. Zinc deficiency up-regulated cell activation markers ICAM1, MHC class II, and CD86 in THP1 cells, that coincided with increased IL1β and IL6 responses following LPS stimulation. A decreased zinc status in aged mice was similarly associated with increased ICAM1 and IL6 gene expression. Reduced IL6 promoter methylation was observed in zinc deficient THP1 cells, as well as in aged mice and human lymphoblastoid cell lines derived from aged individuals. Conclusion Zinc deficiency induced inflammatory response in part by eliciting aberrant immune cell activation and altered promoter methylation. Our results suggested potential interactions between zinc status, epigenetics, and immune function, and how their dysregulation could contribute to chronic inflammation. PMID:25656040

  8. Fatty acid metabolism in the regulation of T cell function.

    PubMed

    Lochner, Matthias; Berod, Luciana; Sparwasser, Tim

    2015-02-01

    The specific regulation of cellular metabolic processes is of major importance for directing immune cell differentiation and function. We review recent evidence indicating that changes in basic cellular lipid metabolism have critical effects on T cell proliferation and cell fate decisions. While induction of de novo fatty acid (FA) synthesis is essential for activation-induced proliferation and differentiation of effector T cells, FA catabolism via β-oxidation is important for the development of CD8(+) T cell memory as well as for the differentiation of CD4(+) regulatory T cells. We consider the influence of lipid metabolism and metabolic intermediates on the regulation of signaling and transcriptional pathways via post-translational modifications, and discuss how an improved understanding of FA metabolism may reveal strategies for manipulating immune responses towards therapeutic outcomes. PMID:25592731

  9. Metabolic Regulation of Regulatory T Cell Development and Function

    PubMed Central

    Coe, David John; Kishore, Madhav; Marelli-Berg, Federica

    2014-01-01

    It is now well established that the effector T cell (Teff) response is regulated by a series of metabolic switches. Quiescent T cells predominantly require adenosine triphosphate-generating processes, whereas proliferating Teff require high metabolic flux through growth-promoting pathways, such as glycolysis. Pathways that control metabolism and immune cell function are intimately linked, and changes in cell metabolism at both the cell and system levels have been shown to enhance or suppress specific T cell effector functions. Furthermore, functionally distinct T cell subsets require distinct energetic and biosynthetic pathways to support their specific functional needs. In particular, naturally occurring regulatory T cells (Treg) are characterized by a unique metabolic signature distinct to that of conventional Teff cells. We here briefly review the signaling pathways that control Treg metabolism and how this metabolic phenotype integrates their differentiation and function. Ultimately, these metabolic features may provide new opportunities for the therapeutic modulation of unwanted immune responses. PMID:25477880

  10. Role of autophagy in the regulation of epithelial cell junctions.

    PubMed

    Nighot, Prashant; Ma, Thomas

    2016-01-01

    Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions. PMID:27583189

  11. Detection of cell mediated immune response to avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In birds, lymphomyeloid tissues develop from epithelial (Bursa of Fabricus or thymus) or mesenchymal tissue which are populated by heamatopoietic stem cells. These stem cells develop directly into immunologically competent B (bursa) and T (thymus) cells. Cell-mediated immunity (CMI) is a part of the...

  12. The where, when, how, and why of hyaluronan binding by immune cells.

    PubMed

    Lee-Sayer, Sally S M; Dong, Yifei; Arif, Arif A; Olsson, Mia; Brown, Kelly L; Johnson, Pauline

    2015-01-01

    Hyaluronan is made and extruded from cells to form a pericellular or extracellular matrix (ECM) and is present in virtually all tissues in the body. The size and form of hyaluronan present in tissues are indicative of a healthy or inflamed tissue, and the interactions of hyaluronan with immune cells can influence their response. Thus, in order to understand how inflammation is regulated, it is necessary to understand these interactions and their consequences. Although there is a large turnover of hyaluronan in our bodies, the large molecular mass form of hyaluronan predominates in healthy tissues. Upon tissue damage and/or infection, the ECM and hyaluronan are broken down and an inflammatory response ensues. As inflammation is resolved, the ECM is restored, and high molecular mass hyaluronan predominates again. Immune cells encounter hyaluronan in the tissues and lymphoid organs and respond differently to high and low molecular mass forms. Immune cells differ in their ability to bind hyaluronan and this can vary with the cell type and their activation state. For example, peritoneal macrophages do not bind soluble hyaluronan but can be induced to bind after exposure to inflammatory stimuli. Likewise, naïve T cells, which typically express low levels of the hyaluronan receptor, CD44, do not bind hyaluronan until they undergo antigen-stimulated T cell proliferation and upregulate CD44. Despite substantial knowledge of where and when immune cells bind hyaluronan, why immune cells bind hyaluronan remains a major outstanding question. Here, we review what is currently known about the interactions of hyaluronan with immune cells in both healthy and inflamed tissues and discuss how hyaluronan binding by immune cells influences the inflammatory response. PMID:25926830

  13. EFFECTS OF ENVIRONMENTAL CONTAMINANTS ON CELL MEDIATED IMMUNITY

    EPA Science Inventory

    The effect of lead and cadmium on cell-mediated immunity was studied in peritoneal macrophages, B-, and T-lymphocytes of mice. Lead and cadmium were administered in drinking water for 10 weeks in short-term experiments and up to 18 months to deal with immune responses in aged mic...

  14. [Multipotent mesenchymal stromal and immune cells interaction: reciprocal effects].

    PubMed

    Andreeva, E R; Buravkova, L B

    2012-12-01

    Adult multipotent mesenchymal stromal cells (MMSCs) are considered now as one of the key players in physiological and pathological tissue remodeling. Clarification of the mechanisms that mediate MMSC functions, is one of the most intriguing issues in modern cell physiology. Present Review summarizes current understanding of the MMSC effects on different types of immune cells. The realization of MMSC immunomodulatory capacity is considered as a contribution of direct cell-to-cell contacts, soluble mediators and of local microenvironmental factors, the most important of which is the partial pressure of oxygen. MMSCs and immune cells interaction is discussed in the terms of reciprocal effects, modifying properties of all "partner cells". Special attention is paid to the influence of immune cells on the MMSCs. "Immunosuppressive" phenomenon of MMSCs is considered as the integral part of the "response to injury" mechanism. PMID:23461191

  15. Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity

    PubMed Central

    Do, Jeongsu; Min, Booki

    2014-01-01

    The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity. PMID:25126585

  16. Immunity to cancer

    SciTech Connect

    Reif, A.E.; Mitchell, M.S.

    1985-01-01

    This book contains five sections, each containing several papers. The section titles are: Identification and Characterization of Tumor Antigens; Immune Responses to Tumor Antigens; Regulation of the Immune Response to Tumor Cells, Immunotherapy and Biomodulators, and Immunotherapy and Immunoprophylaxis.

  17. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) a