Science.gov

Sample records for cells restricts adenovirus

  1. Establishment and characterization of hamster cell lines transformed by restriction endonuclease fragments of adenovirus 5.

    PubMed Central

    Rowe, D T; Branton, P E; Yee, S P; Bacchetti, S; Graham, F L

    1984-01-01

    We have established a library of hamster cells transformed by adenovirus 5 DNA fragments comprising all (XhoI-C, 0 to 16 map units) or only a part (HindIII-G, 0 to 7.8 map units) of early region 1 (E1: 0 to 11.2 map units). These lines have been analyzed in terms of content of viral DNA, expression of E1 antigens, and capacity to induce tumors in hamsters. All cells tested were found to express up to eight proteins encoded within E1A (0 to 4.5 map units) with apparent molecular weights between 52,000 (52K) and 25K. Both G and C fragment-transformed lines expressed a 19K antigen encoded within E1B (4.5 to 11.2 map units), whereas an E1B 58K protein was detected in C fragment-transformed, but not G-fragment-transformed, lines. No clear distinction could be drawn between cells transformed by HindIII-G and by XhoI-C in terms of morphology or tumorigenicity, suggesting that the E1B 58K antigen plays no major role in the maintenance of oncogenic transformation, although possible involvement of truncated forms of 58K cannot be ruled out. Sera were collected from tumor-bearing animals and examined for ability to immunoprecipitate proteins from infected cells. The relative avidity of sera for different proteins was characteristic of the cell line used for tumor induction, and the specificity generally reflected the array of viral proteins expressed by the corresponding transformed cells. However, one notable observation was that even though all transformed lines examined expressed antigens encoded by both the 1.1- and 0.9-kilobase mRNAs transcribed from E1A, tumor sera made against these lines only precipitated products of the 1.1-kilobase message. Thus, two families of E1A proteins, highly related in terms of primary amino acid sequence, appear to be immunologically quite distinct. Images PMID:6690708

  2. Subgenomic viral DNA species synthesized in simian cells by human and simian adenoviruses.

    PubMed Central

    Daniell, E

    1981-01-01

    DNA synthesized after infection of simian tissue culture cells (BSC-1 or CV-1) with human adenovirus type 2 or 5 or with simian adenovirus 7 was characterized. It was demonstrated that as much as 40% of the virus-specific DNA in nuclei of infected monkey cells consists of subgenomic pieces. No subgenomic viral DNA species were detected in the nuclei of human (HeLa) cells infected with these adenovirus types. Restriction analysis showed that these short viral DNA molecules contain normal amounts of the sequences from the ends of the viral genome, whereas internal regions are underrepresented. The production of subgenomic DNAs is not correlated with semipermissive infection. Although adenovirus types 2 and 5 are restricted in monkey cells, these cells are fully permissive for simian adenovirus 7. HR404, an adenovirus type 5 mutant which is not restricted in monkey cells, produced the same percentage of subgenomic DNAs as did its wild type (restricted) parent, and coinfection of monkey cells with adenovirus type 5 DNAs. The array of predominant size classes among the heterogeneously sized short DNAs is serotype specific. Extensive plaque purification and comparison of wild-type adenovirus type 5 with several viral mutants indicated that the distribution of aberrant sizes of DNA is characteristic of the virus and not a result of random replicative errors and then enrichment of particular species. Images PMID:6261009

  3. Identification of FAM111A as an SV40 Host Range Restriction and Adenovirus Helper Factor

    PubMed Central

    Padi, Megha; Korkhin, Anna; James, Robert L.; Adelmant, Guillaume; Yoon, Rosa; Guo, Luxuan; Berrios, Christian; Zhang, Ying; Calderwood, Michael A.; Velmurgan, Soundarapandian; Cheng, Jingwei; Marto, Jarrod A.; Hill, David E.; Cusick, Michael E.; Vidal, Marc; Florens, Laurence; Washburn, Michael P.; Litovchick, Larisa; DeCaprio, James A.

    2012-01-01

    The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains including the LXCXE or RB-binding motif, the DNA binding and helicase domains that contribute to the viral life cycle. In addition, the LT C-terminal region contains the host range and adenovirus helper functions required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells, identified interacting host proteins and carried out expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes. Affinity purification of LT followed by mass spectrometry revealed a specific interaction between the LT C-terminal region and FAM111A, a previously uncharacterized protein. Depletion of FAM111A recapitulated the effects of heterologous expression of the LT C-terminal region, including increased viral gene expression and lytic infection of SV40 host range mutants and adenovirus replication in restrictive cells. FAM111A functions as a host range restriction factor that is specifically targeted by SV40 LT. PMID:23093934

  4. Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor.

    PubMed

    Fine, Debrah A; Rozenblatt-Rosen, Orit; Padi, Megha; Korkhin, Anna; James, Robert L; Adelmant, Guillaume; Yoon, Rosa; Guo, Luxuan; Berrios, Christian; Zhang, Ying; Calderwood, Michael A; Velmurgan, Soundarapandian; Cheng, Jingwei; Marto, Jarrod A; Hill, David E; Cusick, Michael E; Vidal, Marc; Florens, Laurence; Washburn, Michael P; Litovchick, Larisa; DeCaprio, James A

    2012-01-01

    The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains including the LXCXE or RB-binding motif, the DNA binding and helicase domains that contribute to the viral life cycle. In addition, the LT C-terminal region contains the host range and adenovirus helper functions required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells, identified interacting host proteins and carried out expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes. Affinity purification of LT followed by mass spectrometry revealed a specific interaction between the LT C-terminal region and FAM111A, a previously uncharacterized protein. Depletion of FAM111A recapitulated the effects of heterologous expression of the LT C-terminal region, including increased viral gene expression and lytic infection of SV40 host range mutants and adenovirus replication in restrictive cells. FAM111A functions as a host range restriction factor that is specifically targeted by SV40 LT. PMID:23093934

  5. [Inhibition of adenovirus reproduction in cell culture by specific antibodies].

    PubMed

    Povnytsia, O Iu; Nosach, L M; Zhovnovata, V L; Zahorodnia, S D; Vantsak, N P; Tokarchuk, L V; Polishchuk, O M; Diachenko, N S

    2009-01-01

    The capacity of specific antibodies to inhibit the reproduction of homo- and heterologous adenoviruses in Hela cell added to culture medium after virus adsorption was studied. The inhibiting effect of polyclonal antivirus and monospecific antihexone antibodies to homo- and heterologous adenoviruses was shown. The effect was more expressed when using antibodies to homologous antibodies. The intensity of inhibition depended on antibodies concentration in the medium and infecting dose of the virus. Essential reduction of the quantity of infected cells and a decrease of the titer of adenovirus synthesized in the presence of homo- and heterologous antibodies was shown but adenovirus reproduction was not inhibited completely. PMID:19663330

  6. Neural stem cell-mediated delivery of oncolytic adenovirus.

    PubMed

    Kim, Julius W; Kane, J Robert; Young, Jacob S; Chang, Alan L; Kanojia, Deepak; Qian, Shuo; Spencer, Drew A; Ahmed, Atique U; Lesniak, Maciej S

    2015-01-01

    The use of stem cells (SCs) as carriers for therapeutic agents has now progressed to early clinical trials. These clinical trials exploring SC-mediated delivery of oncolytic adenoviruses will commence in the near future, hopefully yielding meritorious results that can provoke further scientific inquiry. Preclinical animal studies have demonstrated that SCs can be successfully loaded with conditionally-replicative adenoviruses and delivered to the tumor, whereupon they may evoke pronounced therapeutic efficacy. In this protocol, we describe the maintenance of SCs, provide an analysis of optimal adenoviral titers for SC loading, and evaluate the optimized viral loading on SCs. PMID:25827347

  7. Rejection of adenovirus infection is independent of coxsackie and adenovirus receptor expression in cisplatin-resistant human lung cancer cells.

    PubMed

    Zhang, Nian-Hua; Peng, Rui-Qing; Ding, Ya; Zhang, Xiao-Shi

    2016-08-01

    The adenovirus vector-based cancer gene therapy is controversial. Low transduction efficacy is believed to be one of the main barriers for the decreased expression of coxsackie and adenovirus receptor (CAR) on tumor cells. However, the expression of CAR on primary tumor tissue and tumor tissue survived from treatment has still been not extensively studied. The present study analyzed the adenovirus infection rates and CAR expression in human lung adenocarcinoma cell line A549 and its cisplatin-resistant subline A549/DDP. The results showed that although the CAR expression in A549 and A549/DDP was not different, compared with the A549, A549/DDP appeared obviously to reject adenovirus infection. Moreover, we modified CAR expression in the two cell lines with proteasome inhibitor MG-132 and histone deacetylase inhibitor trichostatin A (TSA), and analyzed the adenovirus infection rates after modifying agent treatments. Both TSA and MG-132 pretreatments could increase the CAR expression in the two cell lines, but the drug pretreatments could only make A549 cells more susceptible to adenovirus infectivity. PMID:27373420

  8. Innate Immunity to Adenovirus

    PubMed Central

    Hendrickx, Rodinde; Stichling, Nicole; Koelen, Jorien; Kuryk, Lukasz; Lipiec, Agnieszka

    2014-01-01

    Abstract Human adenoviruses are the most widely used vectors in gene medicine, with applications ranging from oncolytic therapies to vaccinations, but adenovirus vectors are not without side effects. In addition, natural adenoviruses pose severe risks for immunocompromised people, yet infections are usually mild and self-limiting in immunocompetent individuals. Here we describe how adenoviruses are recognized by the host innate defense system during entry and replication in immune and nonimmune cells. Innate defense protects the host and represents a major barrier to using adenoviruses as therapeutic interventions in humans. Innate response against adenoviruses involves intrinsic factors present at constant levels, and innate factors mounted by the host cell upon viral challenge. These factors exert antiviral effects by directly binding to viruses or viral components, or shield the virus, for example, soluble factors, such as blood clotting components, the complement system, preexisting immunoglobulins, or defensins. In addition, Toll-like receptors and lectins in the plasma membrane and endosomes are intrinsic factors against adenoviruses. Important innate factors restricting adenovirus in the cytosol are tripartite motif-containing proteins, nucleotide-binding oligomerization domain-like inflammatory receptors, and DNA sensors triggering interferon, such as DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 and cyclic guanosine monophosphate–adenosine monophosphate synthase. Adenovirus tunes the function of antiviral autophagy, and counters innate defense by virtue of its early proteins E1A, E1B, E3, and E4 and two virus-associated noncoding RNAs VA-I and VA-II. We conclude by discussing strategies to engineer adenovirus vectors with attenuated innate responses and enhanced delivery features. PMID:24512150

  9. Human Adenovirus 52 Uses Sialic Acid-containing Glycoproteins and the Coxsackie and Adenovirus Receptor for Binding to Target Cells

    PubMed Central

    Lenman, Annasara; Liaci, A. Manuel; Liu, Yan; Årdahl, Carin; Rajan, Anandi; Nilsson, Emma; Bradford, Will; Kaeshammer, Lisa; Jones, Morris S.; Frängsmyr, Lars; Feizi, Ten; Stehle, Thilo; Arnberg, Niklas

    2015-01-01

    Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to host cells via the coxsackievirus and adenovirus receptor (CAR) protein. Human adenovirus type 52 (HAdV-52) is one of only three gastroenteritis-causing HAdVs that are equipped with two different fiber proteins, one long and one short. Here we show, by means of virion-cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR, but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytometry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain of the long fiber (52LFK) binds to CAR, and the knob domain of the short fiber (52SFK) binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with 2-O-methylated sialic acid combined with functional studies of knob mutants revealed a new sialic acid binding site compared to other, known adenovirus:glycan interactions. Our findings shed light on adenovirus biology and may help to improve targeting of adenovirus-based vectors for gene therapy. PMID:25674795

  10. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    PubMed Central

    Krömmelbein, Natascha; Wiebusch, Lüder; Schiedner, Gudrun; Büscher, Nicole; Sauer, Caroline; Florin, Luise; Sehn, Elisabeth; Wolfrum, Uwe; Plachter, Bodo

    2016-01-01

    The human cytomegalovirus (HCMV) replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP) is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production. PMID:26848680

  11. Modeling adenovirus latency in human lymphocyte cell lines.

    PubMed

    Zhang, Yange; Huang, Wen; Ornelles, David A; Gooding, Linda R

    2010-09-01

    Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then declined in BJAB cells below one genome per cell at 130 to 150 days postinfection. Ramos and KE37 cells maintained the virus genome at over 100 copies per cell over a comparable period of time. BJAB cells maintained the viral DNA as a monomeric episome. All three persistently infected cells lost expression of the cell surface coxsackie and adenovirus receptor (CAR) within 24 h postinfection, and CAR expression remained low for at least 340 days postinfection. CAR loss proceeded via a two-stage process. First, an initial loss of cell surface staining for CAR required virus late gene expression and a CAR-binding fiber protein even while CAR protein and mRNA levels remained high. Second, CAR mRNA disappeared at around 30 days postinfection and remained low even after virus DNA was lost from the cells. At late times postinfection (day 180), BJAB cells could not be reinfected with adenovirus, even when CAR was reintroduced to the cells via retroviral transduction, suggesting that the expression of multiple genes had been stably altered in these cells following infection. PMID:20573817

  12. KAP1 Is a Host Restriction Factor That Promotes Human Adenovirus E1B-55K SUMO Modification

    PubMed Central

    Bürck, Carolin; Mund, Andreas; Berscheminski, Julia; Kieweg, Lisa; Müncheberg, Sarah

    2015-01-01

    ABSTRACT Once transported to the replication sites, human adenoviruses (HAdVs) need to ensure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly characterized but represent a decisive moment in the establishment of a productive infection. Here, we identify a novel host viral restriction factor, KAP1. This heterochromatin-associated transcription factor regulates the dynamic organization of the host chromatin structure via its ability to influence epigenetic marks and chromatin compaction. In response to DNA damage, KAP1 is phosphorylated and functionally inactive, resulting in chromatin relaxation. We discovered that KAP1 posttranslational modification is dramatically altered during HAdV infection to limit the antiviral capacity of this host restriction factor, which represents an essential step required for efficient viral replication. Conversely, we also observed during infection an HAdV-mediated decrease of KAP1 SUMO moieties, known to promote chromatin decondensation events. Based on our findings, we provide evidence that HAdV induces KAP1 deSUMOylation to minimize epigenetic gene silencing and to promote SUMO modification of E1B-55K by a so far unknown mechanism. IMPORTANCE Here we describe a novel cellular restriction factor for human adenovirus (HAdV) that sheds light on very early modulation processes in viral infection. We reported that chromatin formation and cellular SWI/SNF chromatin remodeling play key roles in HAdV transcriptional regulation. We observed that the cellular chromatin-associated factor and epigenetic reader SPOC1 represses HAdV infection and gene expression. Here, we illustrate the role of the SPOC1-interacting factor KAP1 during productive HAdV growth. KAP1 binds to the viral E1B-55K protein, promoting its SUMO modification, therefore illustrating a crucial step for

  13. HUMAN ADENOVIRUS TYPE 37 AND THE BALB/C MOUSE: PROGRESS TOWARD A RESTRICTED ADENOVIRUS KERATITIS MODEL (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

    PubMed Central

    Chodosh, James

    2006-01-01

    Purpose To establish a mouse model of adenovirus keratitis in order to study innate immune mechanisms in the adenovirus-infected cornea. Methods Balb/c 3T3 fibroblasts were inoculated with human adenovirus (HAdV) serotypes 8, 19, or 37 and observed for cytopathic effect. Viral growth titers were performed, and apoptosis was measured by TUNEL assay. Viral and host cytokine gene expression was assessed by RT-PCR in cultured Balb/c 3T3 fibroblasts and in the corneas of virus-injected Balb/c mice. Western blot analysis was performed to detect cell signaling in the virus-infected cornea. Results Only HAdV37 induced cytopathic effect in mouse cells. Viral gene expression was limited, and viral replication was not detected. Apoptotic cell death in HAdV37-infected Balb/c cells was evident 48 and 72 hours postinfection (P < .01). MCP-1, IL-6, KC, and IP-10 mRNA levels were increased maximally by 8.4, 9.6, 10.5, and 20.0-fold, respectively, at 30 to 90 minutes after HAdV37 infection. Similar cytokine elevations were observed in the corneas of Balb/c mice 4 hours after stromal injection of HAdV37, when viral gene expression for the viral capsid protein IIIa was not detected. Western blot showed increased phosphorylation of ERK1/2 at 4 and 24 hours after corneal infection. Conclusions Despite limited viral gene expression, HAdV37 infection of Balb/c 3T3 fibroblasts results in increased proinflammatory gene expression. A similar pattern of cytokine expression in the corneas of HAdV37-infected Balb/c mice suggests the mouse adenoviral keratitis model may be useful for the study of early innate immune responses in the adenovirus-infected corneal stroma. PMID:17471351

  14. Group D Adenoviruses Infect Primary Central Nervous System Cells More Efficiently than Those from Group C

    PubMed Central

    Chillon, Miguel; Bosch, Assumpció; Zabner, Joseph; Law, Lane; Armentano, Donna; Welsh, Michael J.; Davidson, Beverly L.

    1999-01-01

    Group C adenovirus-mediated gene transfer to central nervous system cells is inefficient. We found that wild-type group D viruses, or recombinant adenovirus type 2 (Ad2) (group C) modified to contain Ad17 (group D) fiber, were more efficient in infecting primary cultures of neurons. Together with studies on primary vascular endothelial cells and tissue culture cell lines, our results indicate that there is not a universally applicable adenovirus serotype for use as a gene transfer vector. PMID:9971839

  15. Neural stem cell-mediated delivery of oncolytic adenovirus

    PubMed Central

    Kim, Julius W.; Kane, J. Robert; Young, Jacob S.; Chang, Alan L.; Kanojia, Deepak; Qian, Shuo; Spencer, Drew A.; Ahmed, Atique U.; Lesniak, Maciej S.

    2015-01-01

    The use of stem cells (SCs) as carriers for therapeutic agents has by now progressed to early clinical trials. These clinical trials exploring SC-mediated delivery of oncolytic adenoviruses will commence in the near future, hopefully yielding meritorious results that could provoke further scientific inquiry. Preclinical animal studies have demonstrated that SCs can be successfully loaded with conditionally-replicative adenoviruses and, then, delivered to the tumor, upon which they may evoke pronounced therapeutic efficacy in the animal (Ahmed et al., 2011; Ahmed et al., 2012; Thaci et al., 2012; Tobias et al., 2013). Here in this protocol, we describe the maintenance of SCs, provide an analysis of optimal adenoviral titers for SC loading, and evaluate the optimized viral loading on SCs. PMID:25827347

  16. Identification of Adenoviruses in Specimens from High-Risk Pediatric Stem Cell Transplant Recipients and Controls▿

    PubMed Central

    Zheng, Xiaotian; Lu, Xiaoyan; Erdman, Dean D.; Anderson, Evan J.; Guzman-Cottrill, Judith A.; Kletzel, Morris; Katz, Ben Z.

    2008-01-01

    Adenovirus infection is an important cause of morbidity and mortality in stem cell transplant recipients. We report species and type-specific analysis from a prospective study of high-risk adenovirus infections following hematopoietic progenitor cell transplantation prior to, during, and after treatment with cidofovir, as well as species analysis of contemporaneously collected samples from control patients. Nine different adenovirus types representing all six recognized species were identified, and mixed infections were commonly found in this group of patients. PMID:17989198

  17. Human Adenovirus Type 2 but Not Adenovirus Type 12 Is Mutagenic at the Hypoxanthine Phosphoribosyltransferase Locus of Cloned Rat Liver Epithelial Cells

    PubMed Central

    Paraskeva, Christos; Roberts, Carl; Biggs, Paul; Gallimore, Phillip H.

    1983-01-01

    Using resistance to the base analog 8-azaguanine as a genetic marker, we showed that adenovirus type 2, but not adenovirus type 12, is mutagenic at the hypoxanthine phosphoribosyltransferase locus of cloned diploid rat liver epithelial cells. Adenovirus type 2 increased the frequency of 8-azaguanine-resistant colonies by up to ninefold over the spontaneous frequency, depending on expression time and virus dose. PMID:6572280

  18. Host cell autophagy modulates early stages of adenovirus infections in airway epithelial cells.

    PubMed

    Zeng, Xuehuo; Carlin, Cathleen R

    2013-02-01

    Human adenoviruses typically cause mild infections in the upper or lower respiratory tract, gastrointestinal tract, or ocular epithelium. However, adenoviruses may be life-threatening in patients with impaired immunity and some serotypes cause epidemic outbreaks. Attachment to host cell receptors activates cell signaling and virus uptake by endocytosis. At present, it is unclear how vital cellular homeostatic mechanisms affect these early steps in the adenovirus life cycle. Autophagy is a lysosomal degradation pathway for recycling intracellular components that is upregulated during periods of cell stress. Autophagic cargo is sequestered in double-membrane structures called autophagosomes that fuse with endosomes to form amphisomes which then deliver their content to lysosomes. Autophagy is an important adaptive response in airway epithelial cells targeted by many common adenovirus serotypes. Using two established tissue culture models, we demonstrate here that adaptive autophagy enhances expression of the early region 1 adenovirus protein, induction of mitogen-activated protein kinase signaling, and production of new viral progeny in airway epithelial cells infected with adenovirus type 2. We have also discovered that adenovirus infections are tightly regulated by endosome maturation, a process characterized by abrupt exchange of Rab5 and Rab7 GTPases, associated with early and late endosomes, respectively. Moreover, endosome maturation appears to control a pool of early endosomes capable of fusing with autophagosomes which enhance adenovirus infection. Many viruses have evolved mechanisms to induce autophagy in order to aid their own replication. Our studies reveal a novel role for host cell autophagy that could have a significant impact on the outcome of respiratory infections. PMID:23236070

  19. Adenovirus type 2 expresses fiber in monkey-human hybrids and reconstructed cells

    SciTech Connect

    Zorn, G.A.; Anderson, C.W.

    1981-02-01

    Adenovirus type 2 protein expression was measured by indirect immunofluorescence in monkey-human hybrids and in cells reconstructed from monkey and human cell karyoplasts and cytoplasts. Monkey-human hybrid clones infected with adenovirus type 2 expressed fiber protein, whereas infected monkey cells alone did not. Hybrids constructed after the parental monkey cells were infected with adenovirus type 2 demonstrated that fiber synthesis in these cells could be rescued by fusion to uninfected human cells. Thus, human cells contain a dominant factor that acts in trans and overcomes the inability of monkey cells to synthesize fiber. These results are consistent with the hypothesis that the block to adenovirus replication in monkey cells involves a nuclear event that prevents the formation of functional mRNA for some late viral proteins including fiber polypeptide.

  20. Inhibition of proteolytic processing of adenoviral proteins by epsilon-aminocaproic acid and ambenum in adenovirus-infected cells.

    PubMed

    Nosach, Lidiya; Dyachenko, Nataliya; Zhovnovataya, Valentina; Lozinskiy, Miron; Lozitsky, Victor

    2002-01-01

    Maturation of adenovirus particles is markedly affected by proteolytic processing. The possibility for blocking the conversion of precursor structural core protein (preVII) into mature structure protein VII by officinal drugs epsilon-aminocaproic acid and ambenum has been demonstrated in Hep-2 cells infected with adenovirus. Proteolytic processing may be regarded as one of the targets for inhibiting adenovirus reproduction. PMID:12545207

  1. Adenovirus vectors targeting distinct cell types in the retina.

    PubMed

    Sweigard, J Harry; Cashman, Siobhan M; Kumar-Singh, Rajendra

    2010-04-01

    Purpose. Gene therapy for a number of retinal diseases necessitates efficient transduction of photoreceptor cells. Whereas adenovirus (Ad) serotype 5 (Ad5) does not transduce photoreceptors efficiently, previous studies have demonstrated improved photoreceptor transduction by Ad5 pseudotyped with Ad35 (Ad5/F35) or Ad37 (Ad5/F37) fiber or by the deletion of the RGD domain in the Ad5 penton base (Ad5DeltaRGD). However, each of these constructs contained a different transgene cassette, preventing the evaluation of the relative performance of these vectors, an important consideration before the use of these vectors in the clinic. The aim of this study was to evaluate these vectors in the retina and to attempt photoreceptor-specific transgene expression. Methods. Three Ad5-based vectors containing the same expression cassette were generated and injected into the subretinal space of adult mice. Eyes were analyzed for green fluorescence protein expression in flat-mounts, cross-sections, quantitative RT-PCR, and a modified stereological technique. A 257-bp fragment derived from the mouse opsin promoter was analyzed in the context of photoreceptor-specific transgene expression. Results. Each virus tested efficiently transduced the retinal pigment epithelium. The authors found no evidence that Ad5/F35 or Ad5/F37 transduced photoreceptors. Instead, they found that Ad5/F37 transduced Müller cells. Robust photoreceptor transduction by Ad5DeltaRGD was detected. Photoreceptor-specific transgene expression from the 257-bp mouse opsin promoter in the context of Ad5DeltaRGD vectors was found. Conclusions. Adenovirus vectors may be designed with tropism to distinct cell populations. Robust photoreceptor-specific transgene expression can be achieved in the context of Ad5DeltaRGD vectors. PMID:19892875

  2. Adenovirus type 5 interactions with human blood cells may compromise systemic delivery.

    PubMed

    Lyons, Mark; Onion, David; Green, Nicky K; Aslan, Kriss; Rajaratnam, Ratna; Bazan-Peregrino, Miriam; Phipps, Sue; Hale, Sarah; Mautner, Vivien; Seymour, Leonard W; Fisher, Kerry D

    2006-07-01

    Intravenous delivery of adenovirus vectors requires that the virus is not inactivated in the bloodstream. Serum neutralizing activity is well documented, but we show here that type 5 adenovirus also interacts with human blood cells. Over 90% of a typical virus dose binds to human (but not murine) erythrocytes ex vivo, and samples from a patient administered adenovirus in a clinical trial showed that over 98% of viral DNA in the blood was cell associated. In contrast, nearly all viral genomes in the murine bloodstream are free in the plasma. Adenovirus bound to human blood cells fails to infect A549 lung carcinoma cells, although dilution to below 1.7 x 10(7) blood cells/ml relieves this inhibition. Addition of blood cells can prevent infection by adenovirus that has been prebound to A549 cells. Adenovirus also associates with human neutrophils and monocytes ex vivo, particularly in the presence of autologous plasma, giving dose-dependent transgene expression in CD14-positive monocytes. Finally, although plasma with a high neutralizing titer (defined on A549 cells) inhibits monocyte infection, weakly neutralizing plasma can actually enhance monocyte transduction. This may increase antigen presentation following intravenous injection, while blood cell binding may both decrease access of the virus to extravascular targets and inhibit infection of cells to which the virus does gain access. PMID:16580883

  3. Adenovirus-mediated gene transfer to tumor cells.

    PubMed

    Cascalló, Manel; Alemany, Ramon

    2004-01-01

    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting. PMID:14970588

  4. Translation of adenovirus 2 late mRNAs microinjected into cultured African green monkey kidney cells

    SciTech Connect

    Richardson, W.D.; Anderson, C.W.

    1984-08-01

    Adenovirus 2-infected monkey cells fail to synthesize fiber, a 62,000 M/sub r/ virion polypeptide expressed at late times in productively infected cells. Yet these cells contain fiber mRNA that, after isolation, can be translated in vitro. The reason for the failure of monkey cells to translate fiber mRNA has been approached by microinjecting adenovirus mRNA into the cytoplasm of cultured monkey cells. Late adenovirus 2 mRNA, isolated from infected HeLa cells, was efficiently expressed when microinjected into the African green monkey kidney cell line CV-C. Expressed viral proteins identified by immunoprecipitation included the adenovirus fiber polypeptide. This result demonstrates that the monkey cell translational apparatus is capable of recognizing and expressing functional adenovirus mRNA. Microinjection of late virus mRNA into cells previously infected with wild-type adenovirus 2 failed to increase significantly the yield of infectious virus. 26 references, 2 figures, 1 table.

  5. Studies of the transcription of viral genome in adenovirus 5 transformed cells.

    PubMed Central

    Frolova, E I; Zalmanzon, E S; Lukanidin, E M; Georgiev, G P

    1978-01-01

    Transcription of the human adenovirus 5 genome in transformed rat embryo cells (DFK3) was investigated using two different approaches. Preferential digestion of transcribed viral sequences by DNase I was analysed using kinetics of renaturation of 32P-labeled Ad5 HpaI restriction fragments in the presence of material which was stable after nuclease treatment. The second approach was the hybridization of 32P-labeled nuclear RNA from transformed cells with Ad5 restriction fragments which were attached to a nitrocellulose filter. These two methods gave similar results. It was found that not all integrated regions of the Ad5 genome are active in transformed cells. 2,5 copies of the HpaI-E fragment of Ad5 DNA were found in transformed DFK3 cell line. Nuclear RNA from these cells hybridized to HpaI-E fragment of Ad5 DNA, but only about half of sequences of the integrated HpaI-E fragment was sensitive to DNase I digestion. Images PMID:643600

  6. Lovastatin enhances adenovirus-mediated TRAIL induced apoptosis by depleting cholesterol of lipid rafts and affecting CAR and death receptor expression of prostate cancer cells.

    PubMed

    Liu, Youhong; Chen, Lin; Gong, Zhicheng; Shen, Liangfang; Kao, Chinghai; Hock, Janet M; Sun, Lunquan; Li, Xiong

    2015-02-20

    Oncolytic adenovirus and apoptosis inducer TRAIL are promising cancer therapies. Their antitumor efficacy, when used as single agents, is limited. Oncolytic adenoviruses have low infection activity, and cancer cells develop resistance to TRAIL-induced apoptosis. Here, we explored combining prostate-restricted replication competent adenovirus-mediated TRAIL (PRRA-TRAIL) with lovastatin, a commonly used cholesterol-lowering drug, as a potential therapy for advanced prostate cancer (PCa). Lovastatin significantly enhanced the efficacy of PRRA-TRAIL by promoting the in vivo tumor suppression, and the in vitro cell killing and apoptosis induction, via integration of multiple molecular mechanisms. Lovastatin enhanced PRRA replication and virus-delivered transgene expression by increasing the expression levels of CAR and integrins, which are critical for adenovirus 5 binding and internalization. Lovastatin enhanced TRAIL-induced apoptosis by increasing death receptor DR4 expression. These multiple effects of lovastatin on CAR, integrins and DR4 expression were closely associated with cholesterol-depletion in lipid rafts. These studies, for the first time, show correlations between cholesterol/lipid rafts, oncolytic adenovirus infection efficiency and the antitumor efficacy of TRAIL at the cellular level. This work enhances our understanding of the molecular mechanisms that support use of lovastatin, in combination with PRRA-TRAIL, as a candidate strategy to treat human refractory prostate cancer in the future. PMID:25605010

  7. Efficient Gene Transfer into Human CD34+ Cells by a Retargeted Adenovirus Vector

    PubMed Central

    Shayakhmetov, Dmitry M.; Papayannopoulou, Thalia; Stamatoyannopoulos, George; Lieber, André

    2000-01-01

    Efficient infection with adenovirus (Ad) vectors based on serotype 5 (Ad5) requires the presence of coxsackievirus-adenovirus receptors (CAR) and αv integrins on cells. The paucity of these cellular receptors is thought to be a limiting factor for Ad gene transfer into hematopoietic stem cells. In a systematic approach, we screened different Ad serotypes for interaction with noncycling human CD34+ cells and K562 cells on the level of virus attachment, internalization, and replication. From these studies, serotype 35 emerged as the variant with the highest tropism for CD34+ cells. A chimeric vector (Ad5GFP/F35) was generated which contained the short-shafted Ad35 fiber incorporated into an Ad5 capsid. This substitution was sufficient to transplant all infection properties from Ad35 to the chimeric vector. The retargeted, chimeric vector attached to a receptor different from CAR and entered cells by an αv integrin-independent pathway. In transduction studies, Ad5GFP/F35 expressed green fluorescent protein (GFP) in 54% of CD34+ cells. In comparison, the standard Ad5GFP vector conferred GFP expression to only 25% of CD34+ cells. Importantly, Ad5GFP transduction, but not Ad5GFP/F35, was restricted to a specific subset of CD34+ cells expressing αv integrins. The actual transduction efficiency was even higher than 50% because Ad5GFP/F35 viral genomes were found in GFP-negative CD34+ cell fractions, indicating that the cytomegalovirus promoter used for transgene expression was not active in all transduced cells. The chimeric vector allowed for gene transfer into a broader spectrum of CD34+ cells, including subsets with potential stem cell capacity. Fifty-five percent of CD34+ c-Kit+ cells expressed GFP after infection with Ad5GFP/F35, whereas only 13% of CD34+ c-Kit+ cells were GFP positive after infection with Ad5GFP. These findings represent the basis for studies aimed toward stable gene transfer into hematopoietic stem cells. PMID:10684271

  8. Recombinant adenovirus of human p66Shc inhibits MCF-7 cell proliferation.

    PubMed

    Yang, Xiaoshan; Xu, Rong; Lin, Yajun; Zhen, Yongzhan; Wei, Jie; Hu, Gang; Sun, Hongfan

    2016-01-01

    The aim of this work was to construct a human recombinant p66Shc adenovirus and to investigate the inhibition of recombinant p66Shc adenovirus on MCF-7 cells. The recombinant adenovirus expression vector was constructed using the Adeno-X Adenoviral System 3. Inhibition of MCF-7 cell proliferation was determined by MTT. Intracellular ROS was measured by DCFH-DA fluorescent probes, and 8-OHdG was detected by ELISA. Cell apoptosis and the cell cycle were assayed by flow cytometry. Western blot were used to observe protein expression. p66Shc expression was upregulated in 4 cell lines after infection. The inhibitory effect of p66Shc recombinant adenovirus on MCF-7 cells was accompanied by enhanced ROS and 8-OHdG. However, no significant differences were observed in the cell apoptosis rate. The ratio of the cell cycle G2/M phase showed a significant increase. Follow-up experiments demonstrated that the expressions of p53, p-p53, cyclin B1 and CDK1 were upregulated with the overexpression of p66Shc. The Adeno-X Adenoviral System 3 can be used to efficiently construct recombinant adenovirus containing p66Shc gene, and the Adeno-X can inhibit the proliferation of MCF-7 cells by inducing cell cycle arrest at the G2/M phase. These results suggested that p66Shc may be a key target for clinical cancer therapy. PMID:27530145

  9. Recombinant adenovirus of human p66Shc inhibits MCF-7 cell proliferation

    PubMed Central

    Yang, Xiaoshan; Xu, Rong; Lin, Yajun; Zhen, Yongzhan; Wei, Jie; Hu, Gang; Sun, Hongfan

    2016-01-01

    The aim of this work was to construct a human recombinant p66Shc adenovirus and to investigate the inhibition of recombinant p66Shc adenovirus on MCF-7 cells. The recombinant adenovirus expression vector was constructed using the Adeno-X Adenoviral System 3. Inhibition of MCF-7 cell proliferation was determined by MTT. Intracellular ROS was measured by DCFH-DA fluorescent probes, and 8-OHdG was detected by ELISA. Cell apoptosis and the cell cycle were assayed by flow cytometry. Western blot were used to observe protein expression. p66Shc expression was upregulated in 4 cell lines after infection. The inhibitory effect of p66Shc recombinant adenovirus on MCF-7 cells was accompanied by enhanced ROS and 8-OHdG. However, no significant differences were observed in the cell apoptosis rate. The ratio of the cell cycle G2/M phase showed a significant increase. Follow-up experiments demonstrated that the expressions of p53, p-p53, cyclin B1 and CDK1 were upregulated with the overexpression of p66Shc. The Adeno-X Adenoviral System 3 can be used to efficiently construct recombinant adenovirus containing p66Shc gene, and the Adeno-X can inhibit the proliferation of MCF-7 cells by inducing cell cycle arrest at the G2/M phase. These results suggested that p66Shc may be a key target for clinical cancer therapy. PMID:27530145

  10. Delivery of oncolytic adenovirus into the nucleus of tumorigenic cells by tumor microparticles for virotherapy.

    PubMed

    Ran, Li; Tan, Xiaohua; Li, Yanchun; Zhang, Huafeng; Ma, Ruihua; Ji, Tiantian; Dong, Wenqian; Tong, Tong; Liu, Yuying; Chen, Degao; Yin, Xiaonan; Liang, Xiaoyu; Tang, Ke; Ma, Jingwei; Zhang, Yi; Cao, Xuetao; Hu, Zhuowei; Qin, Xiaofeng; Huang, Bo

    2016-05-01

    Oncolytic viruses have been utilized for the treatment of various cancers. However, delivery of the viral particles to tumor cells remains a major challenge. Microparticles (MP) are vesicle forms of plasma membrane fragments of 0.1-1 μm in size that are shed by cells. We have previously shown the delivery of chemotherapeutic drugs using tumor cell-derived MPs (T-MP). Here we report that T-MPs can be utilized as a unique carrier system to deliver oncolytic adenoviruses to human tumors, leading to highly efficient cytolysis of tumor cells needed for in vivo treatment efficacy. This T-MP-mediated oncolytic virotherapy approach holds multiple advantages, including: 1) delivery of oncolytic adenovirus by T-MPs is able to avoid the antiviral effect of host antibodies; 2) delivery of oncolytic adenovirus by T-MPs is not limited by virus-specific receptor that mediates the entry of virus into tumor cells; 3) T-MPs are apt at delivering oncolytic adenoviruses to the nucleus of tumor cells as well as to stem-like tumor-repopulating cells for the desired purpose of killing them. These findings highlight a novel oncolytic adenovirus delivery system with highly promising clinical applications. PMID:26950165

  11. [Mutagenic effect of human adenovirus type I on the somatic and sex cells of male mice].

    PubMed

    Podol'skaia, S V

    1986-01-01

    Human adenovirus 1 was studied for its effect on the chromosomal apparatus both in bone marrow cells and male sex cells of mice. Chromosome aberrations were most early detected in spermatocytes of the 1st order mice infected with human adenovirus 1. In bone marrow cells of mice the highest level of chromosome aberrations was observed 30, 60, 90 days after the inoculation, which corresponds to a more frequent detection of the adenoviral antigen. The UV-irradiated-virus caused chromosome aberrations in the later periods after the inoculation which might be induced by the virus reactivation in a cell. PMID:3705168

  12. [Anti-adenovirus activity of a substance and medical form of ribamydil in cell culture].

    PubMed

    Nosach, L N; Diachenko, N S; Zhovnovataia, V L

    2009-01-01

    The inhibiting effect of ribamydil on adenovirus reproduction was studied under the determination of the number of cells with virus- induced DNA-containing intranucleus inclusion bodies and hexone antigen, the synthesis of adenovirus proteins and the infection virus by t he investigation. EC50 of ribamydil substance is 4-8 microg/ml, but complete suppression of adenovirus genome expression was found when adding ribamydil after the virus adsorption, in concentrations of 125-500 microg/ml. The original effect of ribamydil on the expression of adenovirus genome was found under its effect in concentration of 31 microg/ml. Intranucleus virus-induced inclusion bodies of the early type only were found under these conditions. Synthesis of the structural virus polypeptides, including hexone polypeptide (II) and non-structural polypeptide 100K, taking part in hexone trimerization, proceed intensively but without formation of immunologically active hexone. The inhibiting effect of officinal form of ribamydil was less expressed as compared with the substance (EC50: 62 microg/ml). The work results prove that the therapeutic effect of ribamydil (ribavirin) under treatment of adenovirus infections may be achieved in case when it is used in a dose excluding the expression of the adenovirus genome. PMID:20458939

  13. Caveolin-1 Associated Adenovirus Entry into Human Corneal Cells

    PubMed Central

    Mukherjee, Santanu; Chintakuntlawar, Ashish V.; Lee, Jeong Yoon; Ramke, Mirja; Chodosh, James; Rajaiya, Jaya

    2013-01-01

    The cellular entry of viruses represents a critical area of study, not only for viral tropism, but also because viral entry dictates the nature of the immune response elicited upon infection. Epidemic keratoconjunctivitis (EKC), caused by viruses within human adenovirus species D (HAdV-D), is a severe, ocular surface infection associated with corneal inflammation. Clathrin-mediated endocytosis has previously been shown to play a critical role in entry of other HAdV species into many host cell types. However, HAdV-D endocytosis into corneal cells has not been extensively studied. Herein, we show an essential role for cholesterol rich, lipid raft microdomains and caveolin-1, in the entry of HAdV-D37 into primary human corneal fibroblasts. Cholesterol depletion using methyl-β-cyclodextrin (MβCD) profoundly reduced viral infection. When replenished with soluble cholesterol, the effect of MβCD was reversed, allowing productive viral infection. HAdV-D37 DNA was identified in caveolin-1 rich endosomal fractions after infection. Src kinase activity was also increased in caveolin-1 rich endosomal fractions after infection, and Src phosphorylation and CXCL1 induction were both decreased in caveolin-1-/- mice corneas compared to wild type mice. siRNA knock down of caveolin-1 in corneal cells reduced chemokine induction upon viral infection, and caveolin-1-/- mouse corneas showed reduced cellular entry of HAdV-D37. As a control, HAdV-C2, a non-corneal pathogen, appeared to utilize the caveolar pathway for entry into A549 cells, but failed to infect corneal cells entirely, indicating virus and cell specific tropism. Immuno-electron microscopy confirmed the presence of caveolin-1 in HAdV-D37-containing vesicles during the earliest stages of viral entry. Collectively, these experiments indicate for the first time that HAdV-D37 uses a lipid raft mediated caveolin-1 associated pathway for entry into corneal cells, and connects the processes of viral entry with downstream

  14. CCL21/IL21-armed oncolytic adenovirus enhances antitumor activity against TERT-positive tumor cells.

    PubMed

    Li, Yang; Li, Yi-Fei; Si, Chong-Zhan; Zhu, Yu-Hui; Jin, Yan; Zhu, Tong-Tong; Liu, Ming-Yuan; Liu, Guang-Yao

    2016-07-15

    Multigene-armed oncolytic adenoviruses are capable of efficiently generating a productive antitumor immune response. The chemokine (C-C motif) ligand 21 (CCL21) binds to CCR7 on naïve T cells and dendritic cells (DCs) to promote their chemoattraction to the tumor and resultant antitumor activity. Interleukin 21 (IL21) promotes survival of naïve T cells while maintaining their CCR7 surface expression, which increases their capacity to transmigrate in response to CCL21 chemoattraction. IL21 is also involved in NK cell differentiation and B cell activation and proliferation. The generation of effective antitumor immune responses is a complex process dependent upon coordinated interactions of various subsets of effector cells. Using the AdEasy system, we aimed to construct an oncolytic adenovirus co-expressing CCL21 and IL21 that could selectively replicate in TERTp-positive tumor cells (Ad-CCL21-IL21 virus). The E1A promoter of these oncolytic adenoviruses was replaced by telomerase reverse transcriptase promoter (TERTp). Ad-CCL21-IL21 was constructed from three plasmids, pGTE-IL21, pShuttle-CMV-CCL21 and AdEasy-1 and was homologously recombined and propagated in the Escherichia coli strain BJ5183 and the packaging cell line HEK-293, respectively. Our results showed that our targeted and armed oncolytic adenoviruses Ad-CCL21-IL21 can induce apoptosis in TERTp-positive tumor cells to give rise to viral propagation, in a dose-dependent manner. Importantly, we confirm that these modified oncolytic adenoviruses do not replicate efficiently in normal cells even under high viral loads. Additionally, we investigate the role of Ad-CCL21-IL21 in inducing antitumor activity and tumor specific cytotoxicity of CTLs in vitro. This study suggests that Ad-CCL21-IL21 is a promising targeted tumor-specific oncolytic adenovirus. PMID:27157859

  15. Transformation of Hamster Embryo Cells and Tumor Induction in Newborn Hamsters by Simian Adenovirus SV11

    PubMed Central

    Casto, Bruce C.

    1969-01-01

    Simian adenovirus, SV11, readily transformed hamster embryo cell cultures in vitro and produced tumors in vivo when inoculated into newborn hamsters. Foci consisting of small, loosely attached, rounded cells could be seen as early as 7 days postinoculation. Many of these cells contained several nuclei or the nucleus was multilobed. The cells grew without extensive cell to cell contact or formed small chains or clusters when passaged in vitro. This pattern of cell morphology and growth has not been reported with other simian or human adenovirus-transformed cells. Linearity of foci formation with virus dilution was observed when the virus multiplicity was less than 3 plaque-forming units (PFU)/cell. The PFU to focus-forming units ratio for SV11 was found to be 2 × 104 to 4 × 104, which is approximately 5- to 10-fold and 50- to 100-fold lower than those reported for simian adenovirus, SA7, and human adenovirus type 12, respectively. Cells transformed by SV11: (i) produced tumors when inoculated into young hamsters, (ii) contained tumor antigen which reacts with serum obtained from hamsters bearing SV11 passaged tumors, and (iii) could be propagated in vitro through an indefinite number of generations. Images PMID:5786181

  16. Replication-competent human adenovirus 11p vectors can propagate in Vero cells.

    PubMed

    Gokumakulapalle, Madhuri; Mei, Ya-Fang

    2016-08-01

    The use of continuous cell lines derived from the African green monkey kidney (AGMK) has led to major advances in virus vaccine development. However, to date, these cells have not been used to facilitate the creation of human adenoviruses because most human adenoviruses undergo abortive infections in them. Here, we report the susceptibility of AGMK-derived cells to adenovirus 11p (Ad11p) infection. First, we showed that CD46 molecules, which act as receptors for Ad11p, are expressed in AGMK cells. We then monitored Ad11p replication by measuring GFP expression as an indicator of viral transcription. We found that AGMK-derived cells were as capable as carcinoma cells at propagating full-length replication-competent Ad11p (RCAd11p) DNA. Of the AGMK cell lines tested, Vero cells had the greatest capacity for adenovirus production. Thus, AGMK cells can be used to evaluate RCAd11p-mediated gene delivery, and Vero cells can be used for the production of RCAd11pGFP vectors at relatively high yields. PMID:27176913

  17. Human adenovirus-host cell interactions: comparative study with members of subgroups B and C.

    PubMed Central

    Defer, C; Belin, M T; Caillet-Boudin, M L; Boulanger, P

    1990-01-01

    Host cell interactions of human adenovirus serotypes belonging to subgroups B (adenovirus type 3 [Ad3] and Ad7) and C (Ad2 and Ad5) were comparatively analyzed at three levels: (i) binding of virus particles with host cell receptors; (ii) cointernalization of macromolecules with adenovirions; and (iii) adenovirus-induced cytoskeletal alterations. The association constants with human cell receptors were found to be similar for Ad2 and Ad3 (8 x 10(9) to 9 x 10(9) M-1), and the number of receptor sites per cell ranged from 5,000 (Ad2) to 7,000 (Ad3). Affinity blottings, competition experiments, and immunofluorescence stainings suggested that the receptor sites for adenovirus were distinct for members of subgroups B and C. Adenovirions increased the permeability of cells to macromolecules. We showed that this global effect could be divided into two distinct events: (i) cointernalization of macromolecules and virions into endocytotic vesicles, a phenomenon that occurred in a serotype-independent way, and (ii) release of macromolecules into the cytoplasm upon adenovirus-induced lysis of endosomal membranes. The latter process was found to be type specific and to require unaltered and infectious virus particles of serotype 2 or 5. Perinuclear condensation of the vimentin filament network was observed at early stages of infection with Ad2 or Ad5 but not with Ad3, Ad7, and noninfectious particles of Ad2 or Ad5, obtained by heat inactivation of wild-type virions or with the H2 ts1 mutant. This phenomenon appeared to be a cytological marker for cytoplasmic transit of infectious virions within adenovirus-infected cells. It could be experimentally dissociated from vimentin proteolysis, which was found to be serotype dependent, occurring only with members of subgroup C, regardless of the infectivity of the input virus. Images PMID:2196380

  18. Permissive growth of human adenovirus type 4 vaccine strain-based vector in porcine cell lines.

    PubMed

    Gao, Dong-Sheng; Li, Xiao-Jing; Wan, Wen-Yan; Li, Hong-Jie; Wang, Xiao-Xue; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-02-01

    In recent years, there has been considerable interest in using adenoviruses as live vectors to develop recombinant vaccines. Previous studies have demonstrated the safety and effectiveness of HIV/SIV and influenza vaccine candidates based on human adenovirus type 4 (Ad4) replication-competent vectors in rhesus macaque and human model. To explore the possibility of human Ad4 vaccine strain used as a vector in developing porcine vaccines, the growth properties of replication-competent human Ad4 vaccine strain recombinant encoding EGFP in different porcine cell lines were investigated. All tested cell lines are permissive for Ad4 vaccine strain vector with varied replication efficiency. Thus, human Ad4 based vectors would be promising supplement to adenovirus vectors as a delivery vehicle for recombinant vaccines in swine industry. PMID:26850542

  19. Design of a predicted MHC restricted short peptide immunodiagnostic and vaccine candidate for Fowl adenovirus C in chicken infection

    PubMed Central

    Valdivia-Olarte, Hugo; Requena, David; Ramirez, Manuel; Saravia, Luis E; Izquierdo, Ray; Falconi-Agapito, Francesca; Zavaleta, Milagros; Best, Iván; Fernández-Díaz, Manolo; Zimic, Mirko

    2015-01-01

    Fowl adenoviruses (FAdVs) are the ethiologic agents of multiple pathologies in chicken. There are five different species of FAdVs grouped as FAdV-A, FAdV-B, FAdV-C, FAdV-D, and FAdV-E. It is of interest to develop immunodiagnostics and vaccine candidate for Peruvian FAdV-C in chicken infection using MHC restricted short peptide candidates. We sequenced the complete genome of one FAdV strain isolated from a chicken of a local farm. A total of 44 protein coding genes were identified in each genome. We sequenced twelve Cobb chicken MHC alleles from animals of different farms in the central coast of Peru, and subsequently determined three optimal human MHC-I and four optimal human MHC-II substitute alleles for MHC-peptide prediction. The potential MHC restricted short peptide epitope-like candidates were predicted using human specific (with determined suitable chicken substitutes) NetMHC MHC-peptide prediction model with web server features from all the FAdV genomes available. FAdV specific peptides with calculated binding values to known substituted chicken MHC-I and MHC-II were further filtered for diagnostics and potential vaccine epitopes. Promiscuity to the 3/4 optimal human MHC-I/II alleles and conservation among the available FAdV genomes was considered in this analysis. The localization on the surface of the protein was considered for class II predicted peptides. Thus, a set of class I and class II specific peptides from FAdV were reported in this study. Hence, a multiepitopic protein was built with these peptides, and subsequently tested to confirm the production of specific antibodies in chicken. PMID:26664030

  20. Neural Stem Cell-based Cell Carriers Enhance Therapeutic Efficacy of an Oncolytic Adenovirus in an Orthotopic Mouse Model of Human Glioblastoma

    PubMed Central

    Ahmed, Atique U; Thaci, Bart; Alexiades, Nikita G; Han, Yu; Qian, Shuo; Liu, Feifei; Balyasnikova, Irina V; Ulasov, Ilya Y; Aboody, Karen S; Lesniak, Maciej S

    2011-01-01

    The potential utility of oncolytic adenoviruses as anticancer agents is significantly hampered by the inability of the currently available viral vectors to effectively target micrometastatic tumor burden. Neural stem cells (NSCs) have the ability to function as cell carriers for targeted delivery of an oncolytic adenovirus because of their inherent tumor-tropic migratory ability. We have previously reported that in vivo delivery of CRAd-S-pk7, a glioma-restricted oncolytic adenovirus, can enhance the survival of animals with experimental glioma. In this study, we show that intratumoral delivery of NSCs loaded with the CRAD-S-pk7 in an orthotopic xenograft model of human glioma is able to not only inhibit tumor growth but more importantly to increase median survival by ~50% versus animals treated with CRAd-S-pk7 alone (P = 0.0007). We also report that oncolytic virus infection upregulates different chemoattractant receptors and significantly enhances migratory capacity of NSCs both in vitro and in vivo. Our data further suggest that NSC-based carriers have the potential to improve the clinical efficacy of antiglioma virotherapy by not only protecting therapeutic virus from the host immune system, but also amplifying the therapeutic payload selectively at tumor sites. PMID:21629227

  1. Neural stem cell-based cell carriers enhance therapeutic efficacy of an oncolytic adenovirus in an orthotopic mouse model of human glioblastoma.

    PubMed

    Ahmed, Atique U; Thaci, Bart; Alexiades, Nikita G; Han, Yu; Qian, Shuo; Liu, Feifei; Balyasnikova, Irina V; Ulasov, Ilya Y; Aboody, Karen S; Lesniak, Maciej S

    2011-09-01

    The potential utility of oncolytic adenoviruses as anticancer agents is significantly hampered by the inability of the currently available viral vectors to effectively target micrometastatic tumor burden. Neural stem cells (NSCs) have the ability to function as cell carriers for targeted delivery of an oncolytic adenovirus because of their inherent tumor-tropic migratory ability. We have previously reported that in vivo delivery of CRAd-S-pk7, a glioma-restricted oncolytic adenovirus, can enhance the survival of animals with experimental glioma. In this study, we show that intratumoral delivery of NSCs loaded with the CRAD-S-pk7 in an orthotopic xenograft model of human glioma is able to not only inhibit tumor growth but more importantly to increase median survival by ~50% versus animals treated with CRAd-S-pk7 alone (P = 0.0007). We also report that oncolytic virus infection upregulates different chemoattractant receptors and significantly enhances migratory capacity of NSCs both in vitro and in vivo. Our data further suggest that NSC-based carriers have the potential to improve the clinical efficacy of antiglioma virotherapy by not only protecting therapeutic virus from the host immune system, but also amplifying the therapeutic payload selectively at tumor sites. PMID:21629227

  2. Survival and differentiation of adenovirus-generated induced pluripotent stem cells transplanted into the rat striatum.

    PubMed

    Fink, Kyle D; Rossignol, Julien; Lu, Ming; Lévêque, Xavier; Hulse, Travis D; Crane, Andrew T; Nerriere-Daguin, Veronique; Wyse, Robert D; Starski, Phillip A; Schloop, Matthew T; Dues, Dylan J; Witte, Steve J; Song, Cheng; Vallier, Ludovic; Nguyen, Tuan H; Naveilhan, Philippe; Anegon, Ignacio; Lescaudron, Laurent; Dunbar, Gary L

    2014-01-01

    Induced pluripotent stem cells (iPSCs) offer certain advantages over embryonic stem cells in cell replacement therapy for a variety of neurological disorders. However, reliable procedures, whereby transplanted iPSCs can survive and differentiate into functional neurons, without forming tumors, have yet to be devised. Currently, retroviral or lentiviral reprogramming methods are often used to reprogram somatic cells. Although the use of these viruses has proven to be effective, formation of tumors often results following in vivo transplantation, possibly due to the integration of the reprogramming genes. The goal of the current study was to develop a new approach, using an adenovirus for reprogramming cells, characterize the iPSCs in vitro, and test their safety, survivability, and ability to differentiate into region-appropriate neurons following transplantation into the rat brain. To this end, iPSCs were derived from bone marrow-derived mesenchymal stem cells and tail-tip fibroblasts using a single cassette lentivirus or a combination of adenoviruses. The reprogramming efficiency and levels of pluripotency were compared using immunocytochemistry, flow cytometry, and real-time polymerase chain reaction. Our data indicate that adenovirus-generated iPSCs from tail-tip fibroblasts are as efficient as the method we used for lentiviral reprogramming. All generated iPSCs were also capable of differentiating into neuronal-like cells in vitro. To test the in vivo survivability and the ability to differentiate into region-specific neurons in the absence of tumor formation, 400,000 of the iPSCs derived from tail-tip fibroblasts that were transfected with the adenovirus pair were transplanted into the striatum of adult, immune-competent rats. We observed that these iPSCs produced region-specific neuronal phenotypes, in the absence of tumor formation, at 90 days posttransplantation. These results suggest that adenovirus-generated iPSCs may provide a safe and viable means for

  3. [An analysis of the DNA synthesized in adenovirus-infected cells under exposure to nucleoside analogs].

    PubMed

    Nosach, L N; Butenko, S I; Timofeeva, M Ia; Diachenko, N S; Tikhomirova, T P

    1989-01-01

    The method of dot DNA-DNA hybridization was used to reveal the inhibition of the synthesis of the adenoviral DNA by 6-azacytidine, cyclocytidine and ribamidyl in the adenovirus-infected cells Hep-2, a degree of which depended on the preparation concentration. PMID:2482929

  4. [The anti-adenovirus activity of larifan in a cell culture].

    PubMed

    Nosach, L N; Diachenko, N S; Zhovnovataia, V L; Butenko, S I

    1998-01-01

    Larifan, belonging to the number of highly active interferon inducers with a broad antivirus spectrum of action, did not manifest any antivirus effect in vitro in respect to human adenovirus of serotype 2 when it was used to treat the cells before and after the infection. PMID:9785803

  5. Spontaneous mutants of the adenovirus-simian virus 40 hybrid, Ad2/sup +/ND3, that grow efficiently in monkey cells

    SciTech Connect

    Anderson, C.W.

    1981-05-01

    An attempt was made to isolate spontaneous mutants of adenovirus type 2 and of the adenovirus-SV40 hybrids, Ad2/sup +/ND3 and Ad2/sup +/ND5, that would grow efficiently on monkey cells. Virus stocks were serially passaged through the semipermissive established monkey line CV-1. After five serial passages in the absence of intentional mutagenesis, only stocks of Ad2/sup +/ND3 yielded significant numbers of variants that plaqued with similar efficiency on human and on monkey cell monolayers. Four independent Ad2/sup +/ND3 variants, designated hr600, hr601, hr602, and hr603, have been isolated and partially characterized. No difference was found between the genomes of these variants and the genome of parental Ad2/sup +/ND3 by restriction enzyme analysis or by the analysis of heteroduplexes between Ad2/sup +/ND3 (or variant) DNA and DNA of the hybrid Ad2/sup +/ND1.

  6. Establishment of an agamid cell line and isolation of adenoviruses from central bearded dragons (Pogona vitticeps).

    PubMed

    Ball, Inna; Hoferer, Marc; Marschang, Rachel E

    2014-03-01

    A cell line was established from whole 6-8-week-old central bearded dragon (Pogona vitticeps) embryos. Cells were mid-sized and showed an elongated and polymorphic form. The cell line grew in a monolayer and has been serially passaged for 17 passages at time of publication. This cell line has been used with samples from adenovirus polymerase chain reaction (PCR)-positive bearded dragons, and 2 virus isolates have been obtained so far. The isolates show a clear cytopathic effect in inoculated cells. Both virus isolates have been serially passaged on this cell line, and have been identified by PCR amplification and sequencing of a portion of the DNA-dependent DNA polymerase gene and show 100% nucleotide identity to the corresponding region of an agamid adenovirus. Electron microscopic examination of supernatant from infected cells demonstrated the presence of nonenveloped particles, with a diameter of approximately 80 nm in both virus isolates. PMID:24569225

  7. Targeting lung cancer stem-like cells with TRAIL gene armed oncolytic adenovirus

    PubMed Central

    Yang, Yu; Xu, Haineng; Huang, Weidan; Ding, Miao; Xiao, Jing; Yang, Dongmei; Li, Huaguang; Liu, Xin-Yuan; Chu, Liang

    2015-01-01

    Lung cancer stem cell (LCSC) is critical in cancer initiation, progression, drug resistance and relapse. Disadvantages showed in conventional lung cancer therapy probably because of its existence. In this study, lung cancer cell line A549 cells propagated as spheroid bodies (named as A549 sphere cells) in growth factors-defined serum-free medium. A549 sphere cells displayed CSC properties, including chemo-resistance, increased proportion of G0/G1 cells, slower proliferation rate, ability of differentiation and enhanced tumour formation ability in vivo. Oncolytic adenovirus ZD55 carrying EGFP gene, ZD55-EGFP, infected A549 sphere cells and inhibited cell growth. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) armed oncolytic adenovirus, ZD55-TRAIL, exhibited enhanced cytotoxicity and induced A549 sphere cells apoptosis through mitochondrial pathway. Moreover, small molecules embelin, LY294002 and resveratrol improved the cytotoxicity of ZD55-TRAIL. In the A549 sphere cells xenograft models, ZD55-TRAIL significantly inhibited tumour growth and improved survival status of mice. These results suggested that gene armed oncolytic adenovirus is a potential approach for lung cancer therapy through targeting LCSCs. PMID:25683371

  8. Enhanced Transduction and Replication of RGD-Fiber Modified Adenovirus in Primary T Cells

    PubMed Central

    Sengupta, Sadhak; Ulasov, Ilya V.; Thaci, Bart; Ahmed, Atique U.; Lesniak, Maciej S.

    2011-01-01

    Background Adenoviruses are often used as vehicles to mediate gene delivery for therapeutic purposes, but their research scope in hematological cells remains limited due to a narrow choice of host cells that express the adenoviral receptor (CAR). T cells, which are attractive targets for gene therapy of numerous diseases, remain resistant to adenoviral infection because of the absence of CAR expression. Here, we demonstrate that this resistance can be overcome when murine or human T cells are transduced with an adenovirus incorporating the RGD-fiber modification (Ad-RGD). Methodology/Principal Finding A luciferase-expressing replication-deficient Ad-RGD infected 3-fold higher number of activated primary T cells than an adenovirus lacking the RGD-fiber modification in vitro. Infection with replication-competent Ad-RGD virus also caused increased cell cycling, higher E1A copy number and enriched hexon antigen expression in both human and murine T cells. Transduction with oncolytic Ad-RGD also resulted in higher titers of progeny virus and enhanced the killing of T cells. In vivo, 35–45% of splenic T cells were transduced by Ad-RGD. Conclusions Collectively, our results prove that a fiber modified Ad-RGD successfully transduces and replicates in primary T cells of both murine and human origin. PMID:21464908

  9. Nucleic acid hybridization for detection of cell culture-amplified adenovirus.

    PubMed Central

    Huang, C; Deibel, R

    1988-01-01

    A number of recombinant plasmids containing genomic segments of adenovirus were constructed. Seven cloned probes, as well as total adenovirus type 2 (Ad2) and Ad16 genomic DNA, were tested by a nucleic acid hybridization technique for sensitivity and specificity in detecting adenoviruses in infected cells. Adenovirus DNA was spotted onto a nitrocellulose filter and hybridized with 32P-labeled DNA probes. The probes, total Ad2 genomic DNA, and plasmid pAd2-H (containing the hexon gene from Ad2 DNA) all detected 10 reference serotypes of five genomic subgroups (A through E) with similar sensitivities. However, plasmid pAd2-H required less preparation time than did total Ad2 DNA. Probes pAd2-F (containing the fiber gene from Ad2) and pAd16-BD (containing the BamHI D fragment from Ad16) hybridized only with reference serotypes from the homologous subgroups (C and B, respectively). Of 101 patient isolates amplified in cells, pAd2-H detected 100% of all isolates from both the homologous and the heterologous subgroups. The detection rates for pAd2-F were 100% (subgroup C) and 3.6% (subgroups A, B, and D), and those for pAd16-BD were 100% (subgroup B) and 9.4% (subgroups A, C, and D). A commercial biotinylated product (Pathogene II) was also included in this study for comparison. Images PMID:3230138

  10. A Novel Strain of Porcine Adenovirus Detected in Urinary Bladder Urothelial Cell Culture

    PubMed Central

    Jerman, Urška Dragin; Kolenc, Marko; Steyer, Andrej; Veranič, Peter; Prijatelj, Mateja Poljšak; Kreft, Mateja Erdani

    2014-01-01

    Contamination of cell cultures is the most common problem encountered in cell culture laboratories. Besides the secondary cell contaminations often occurring in the cell laboratories, the contaminations originating from donor animal or human tissue are equally as common, but usually harder to recognize and as such require special attention. The present study describes the detection of porcine adenovirus (PAdV), strain PAdV-SVN1 in cultures of normal porcine urothelial (NPU) cells isolated from urinary bladders of domestic pigs. NPU cell cultures were evaluated by light microscopy (LM), polymerase chain reaction (PCR), and additionally assessed by transmission electron microscopy (TEM). Characteristic ultrastructure of virions revealed the infection with adenovirus. The adenoviral contamination was further identified by the sequence analysis, which showed the highest similarity to recently described PAdV strain PAdV-WI. Additionally, the cell ultrastructural analysis confirmed the life-cycle characteristic for adenoviruses. To closely mimic the in vivo situation, the majority of research on in vitro models uses cell cultures isolated from human or animal tissue and their subsequent passages. Since the donor tissue could be a potential source of contamination, the microbiological screening of the excised tissue and harvested cell cultures is highly recommended. PMID:24960273

  11. Uteroplacental Adenovirus Vascular Endothelial Growth Factor Gene Therapy Increases Fetal Growth Velocity in Growth-Restricted Sheep Pregnancies

    PubMed Central

    Wallace, Jacqueline M.; Aitken, Raymond P.; Milne, John S.; Mehta, Vedanta; Martin, John F.; Zachary, Ian C.; Peebles, Donald M.; David, Anna L.

    2014-01-01

    Abstract Fetal growth restriction (FGR) occurs in ∼8% of pregnancies and is a major cause of perinatal mortality and morbidity. There is no effective treatment. FGR is characterized by reduced uterine blood flow (UBF). In normal sheep pregnancies, local uterine artery (UtA) adenovirus (Ad)-mediated overexpression of vascular endothelial growth factor (VEGF) increases UBF. Herein we evaluated Ad.VEGF therapy in the overnourished adolescent ewe, an experimental paradigm in which reduced UBF from midgestation correlates with reduced lamb birthweight near term. Singleton pregnancies were established using embryo transfer in adolescent ewes subsequently offered a high intake (n=45) or control intake (n=12) of a complete diet to generate FGR or normal fetoplacental growth, respectively. High-intake ewes were randomized midgestation to receive bilateral UtA injections of 5×1011 particles Ad.VEGF-A165 (n=18), control vector Ad.LacZ (n=14), or control saline (n=13). Fetal growth/well-being were evaluated using serial ultrasound. UBF was monitored using indwelling flowprobes until necropsy at 0.9 gestation. Vasorelaxation, neovascularization within the perivascular adventitia, and placental mRNA expression of angiogenic factors/receptors were examined using organ bath analysis, anti-vWF immunohistochemistry, and qRT-PCR, respectively. Ad.VEGF significantly increased ultrasonographic fetal growth velocity at 3–4 weeks postinjection (p=0.016–0.047). At 0.9 gestation fewer fetuses were markedly growth-restricted (birthweight >2SD below contemporaneous control-intake mean) after Ad.VEGF therapy. There was also evidence of mitigated fetal brain sparing (lower biparietal diameter-to-abdominal circumference and brain-to-liver weight ratios). No effects were observed on UBF or neovascularization; however, Ad.VEGF-transduced vessels demonstrated strikingly enhanced vasorelaxation. Placental efficiency (fetal-to-placental weight ratio) and FLT1/KDR mRNA expression were

  12. Comparison of human and monkey cells for the ability to attenuate transcripts that begin at the adenovirus major late promoter

    SciTech Connect

    Seiberg, M.; Aloni, Y. ); Levine, A.J. )

    1989-09-01

    Late transcription from the adenovirus major late promoter can terminate prematurely at a site 182 to 188 nucleotides downstream. Experiments have been designed, with run-on transcription in nuclei in vitro or riboprobe protection of RNA obtained both in vivo and in vitro, that demonstrate that the ratio of attenuator RNA to readthrough RNA is greater in monkey cells (CV-1) than in human cells (HeLa). This may explain, in part, why the human adenoviruses replicate more poorly in CV-1 cells than in HeLa cells. A mutant adenovirus that replicates better than wild-type virus in monkey cells produces less of the attenuator RNA than wild-type adenovirus does in monkey cells. Monkey cell extracts have been shown to contain a factor that, when added to human cell extracts transcribing adenovirus DNA in vitro, increases the production of attenuator RNA in these reactions. These observations help to explain a portion of the block to the production of infectious adenoviruses in monkey cells.

  13. Impact of Adenovirus infection in host cell metabolism evaluated by (1)H-NMR spectroscopy.

    PubMed

    Silva, Ana Carina; P Teixeira, Ana; M Alves, Paula

    2016-08-10

    Adenovirus-based vectors are powerful vehicles for gene transfer applications in vaccination and gene therapy. Although highly exploited in the clinical setting, key aspects of the adenovirus biology are still not well understood, in particular the subversion of host cell metabolism during viral infection and replication. The aim of this work was to gain insights on the metabolism of two human cell lines (HEK293 and an amniocyte-derived cell line, 1G3) after infection with an adenovirus serotype 5 vector (AdV5). In order to profile metabolic alterations, we used (1)H-NMR spectroscopy, which allowed the quantification of 35 metabolites in cell culture supernatants with low sample preparation and in a relatively short time. Significant differences between both cell lines in non-infected cultures were identified, namely in glutamine and acetate metabolism, as well as by-product secretion. The main response to AdV5 infection was an increase in glucose consumption and lactate production rates. Moreover, cultures performed with or without glutamine supplementation confirmed the exhaustion of this amino acid as one of the main causes of lower AdV5 production at high cell densities (10- and 1.5-fold less specific yields in HEK293 and 1G3 cells, respectively), and highlighted different degrees of glutamine dependency of adenovirus replication in each cell line. The observed metabolic alterations associated with AdV5 infection and specificity of the host cell line can be useful for targeted bioprocess optimization. PMID:27215342

  14. Adenovirus type 35, but not type 5, stimulates NK cell activation via plasmacytoid dendritic cells and TLR9 signaling.

    PubMed

    Pahl, Jens H W; Verhoeven, Dirk H J; Kwappenberg, Kitty M C; Vellinga, Jort; Lankester, Arjan C; van Tol, Maarten J D; Schilham, Marco W

    2012-05-01

    In hematopoietic stem cell transplant (HSCT) recipients, disseminated adenoviral infections during the first two months after HSCT can lead to severe complications and fatal outcome. Since NK cells are usually the first lymphocytes to reconstitute after HSCT and have been implicated in the clearance of adenovirus-infected cells, it was investigated whether NK cells are activated by adenovirus in vitro. Exposure of PBMC to human adenovirus type 5 (HAdV5) or HAdV35 resulted in the up-regulation of the activation marker CD69 on NK cells and enhanced the cytolytic activity of NK cells. HAdV5-induced NK cell activation relied on the contribution of T cells as the depletion of T cells from PBMC abolished NK cell activation. In contrast, NK cell activation in response to HAdV35 occurred in the absence of T cells. Plasmacytoid dendritic cells (pDC) were necessary and sufficient to mediate NK cell activation. HAdV35 induced significantly more interferon-α (IFN-α) production by pDC than HAdV5. The increased IFN-α production and NK cell activation correlated with a higher infection efficiency of viruses with the type 35 fiber. The IFN-α response of pDC was enhanced by the presence of NK cells, suggesting a reciprocal interaction between pDC and NK cells. Incubation with a TLR9 antagonist impaired the IFN-α production by pDC as well as NK cell activation, implying that TLR9 signaling is critically involved in the IFN-α response of pDC and NK cell activation after HAdV35 exposure. In conclusion, two human adenovirus serotypes from two different species differ considerably in their capacity to stimulate pDC and NK cells. PMID:22424784

  15. Redirecting adenoviruses to tumour cells using therapeutic antibodies: Generation of a versatile human bispecific adaptor.

    PubMed

    Vasiljevic, Snezana; Beale, Emma V; Bonomelli, Camille; Easthope, Iona S; Pritchard, Laura K; Seabright, Gemma E; Caputo, Alessandro T; Scanlan, Christopher N; Dalziel, Martin; Crispin, Max

    2015-12-01

    Effective use of adenovirus-5 (Ad5) in cancer therapy is heavily dependent on the degree to which the virus's natural tropism can be subverted to one that favours tumour cells. This is normally achieved through either engineering of the viral fiber knob or the use of bispecific adaptors that display both adenovirus and tumour antigen receptors. One of the main limitations of these strategies is the need to tailor each engineering event to any given tumour antigen. Here, we explore bispecific adaptors that can utilise established anti-cancer therapeutic antibodies. Conjugates containing bacterially derived antibody binding motifs are efficient at retargeting virus to antibody targets. Here, we develop a humanized strategy whereby we synthesise a re-targeting adaptor based on a chimeric Ad5 ligand/antibody receptor construct. This adaptor acts as a molecular bridge analogous to therapeutic antibody mediated cross-linking of cytotoxic effector and tumour cells during immunotherapy. As a proof or principle, we demonstrate how this adaptor allows efficient viral recognition and entry into carcinoma cells through the therapeutic monoclonal antibodies Herceptin/trastuzumab and bavituximab. We show that targeting can be augmented by use of contemporary antibody enhancement strategies such as the selective elimination of competing serum IgG using "receptor refocusing" enzymes and we envisage that further improvements are achievable by enhancing the affinities between the adaptor and its ligands. Humanized bispecific adaptors offer the promise of a versatile retargeting technology that can exploit both clinically approved adenovirus and therapeutic antibodies. PMID:26391350

  16. Immortalisation of human oesophageal epithelial cells by a recombinant SV40 adenovirus vector.

    PubMed Central

    Inokuchi, S.; Handa, H.; Imai, T.; Makuuchi, H.; Kidokoro, M.; Tohya, H.; Aizawa, S.; Shimamura, K.; Ueyama, Y.; Mitomi, T.

    1995-01-01

    We introduced the origin-defective SV40 early gene into cultured human oesophageal epithelial cells by infection of a recombinant SV40 adenovirus vector. The virus-infected cells formed colonies 3-4 weeks after infection in medium containing fetal calf serum. When the cells derived from 'serum-resistant' colonies were then maintained in the serum-free medium with a low calcium ion concentration, some of them passed the cell crisis and kept growing for over 12 months. These cells, regarded as immortalised cells, resembled the primarily cultured oesophageal epithelial cells in morphology and had some of their original characteristics. Treatment of the cells with a high calcium concentration induced phenotypic changes. These cells still responded to transforming growth factor beta. When the immortalised cells were injected into severe combined immunodeficient mice, they transiently formed epithelial cysts, although the typical differentiation pattern of the oesophageal epithelium was not observed. These cysts regressed within 2 months without development into tumours. The results indicated that human oesophageal epithelial cells were reproducibly immortalised by infection with a recombinant SV40 adenovirus vector at relatively high efficiency. The immortalised cells should be useful in studies on oesophageal carcinogenesis and in assessing the cooperative effects with other oncogene products or carcinogens. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7536023

  17. Synthesis of human adenovirus early RNA species is similar in productive and abortive infections of monkey and human cells.

    PubMed Central

    Anderson, K P; Klessig, D F

    1982-01-01

    Northern (RNA) blot analysis has been used to show that synthesis of early mRNA species is similar in monkey cells productively or abortively infected with human adenovirus. mRNA species from all five major early regions (1A, 1B, 2, 3, 4) are identical in size and comparable in abundance whether isolated from monkey cells infected with adenovirus type 2 or with the host range mutant Ad2hr400 or coinfected with adenovirus type 2 plus simian virus 40. The mRNA species isolated from monkey cells are identical in size to those isolated from human cells. Production of virus-associated RNA is also identical in productive and abortive infections of monkey cells. Synthesis of virus-associated RNA is, however, significantly greater in HeLa cells than in CV1 cells at late times after infection regardless of which virus is used in the infection. Images PMID:6283181

  18. Adenovirus with p16 gene exerts antitumor effect on laryngeal carcinoma Hep2 cells.

    PubMed

    Yang, Zhengang; Hu, Jingxia; Li, Dajun; Pan, Xinliang

    2016-08-01

    Laryngeal cancer is an uncommon form of cancer. The tumor suppressor P16, known to be mutated or deleted in various types of human tumor, including laryngeal carcinoma, is involved in the formation and development of laryngeal carcinoma. It has been previously reported that the inactivation or loss of P16 is associated with the acquisition of malignant characteristics. The current study hypothesized that restoring wild‑type P16 activity into P16‑null malignant Hep2 cells may exert an antitumor effect. A recombinant adenovirus carrying the P16 gene (Ad‑P16) was used to infect and express high levels of P16 protein in P16‑null Hep2 cells. Cell proliferation and invasion assays and polymerase chain reaction were performed to evaluate the effects of the P16 gene on cell proliferation and the antitumor effect on Hep2 cells. The results demonstrated that the Hep2 cells infected with Ad‑P16 exhibited significantly reduced cell proliferation, invasion and tumor volume compared with untreated or control adenovirus cells. Furthermore, the expression of laryngeal carcinoma‑associated genes, EGFR, survivin and cyclin D1, were measured in Ad‑P16‑infected cells and were significantly reduced compared with control groups. The results of the current study demonstrate that restoring wild‑type P16 activity into P16-null Hep2 cells exerts an antitumor effect. PMID:27277704

  19. T-cell Subsets in Peripheral Blood and Tumors of Patients Treated With Oncolytic Adenoviruses

    PubMed Central

    Kristian, Taipale; Ilkka, Liikanen; Juuso, Juhila; Aila, Karioja-Kallio; Minna, Oksanen; Riku, Turkki; Nina, Linder; Johan, Lundin; Ari, Ristimäki; Anna, Kanerva; Anniina, Koski; Timo, Joensuu; Markus, Vähä-Koskela; Akseli, Hemminki

    2015-01-01

    The quality of the antitumor immune response is decisive when developing new immunotherapies for cancer. Oncolytic adenoviruses cause a potent immunogenic stimulus and arming them with costimulatory molecules reshapes the immune response further. We evaluated peripheral blood T-cell subsets of 50 patients with refractory solid tumors undergoing treatment with oncolytic adenovirus. These data were compared to changes in antiviral and antitumor T cells, treatment efficacy, overall survival, and T-cell subsets in pre- and post-treatment tumor biopsies. Treatment caused a significant (P < 0.0001) shift in T-cell subsets in blood, characterized by a proportional increase of CD8+ cells, and decrease of CD4+ cells. Concomitant treatment with cyclophosphamide and temozolomide resulted in less CD4+ decrease (P = 0.041) than cyclophosphamide only. Interestingly, we saw a correlation between T-cell changes in peripheral blood and the tumor site. This correlation was positive for CD8+ and inverse for CD4+ cells. These findings give insight to the interconnections between peripheral blood and tumor-infiltrating lymphocyte (TIL) populations regarding oncolytic virotherapy. In particular, our data suggest that induction of T-cell response is not sufficient for clinical response in the context of immunosuppressive tumors, and that peripheral blood T cells have a complicated and potentially misleading relationship with TILs. PMID:25655312

  20. The adenovirus e3 promoter is sensitive to activation signals in human T cells.

    PubMed

    Mahr, Jeffrey A; Boss, Jeremy M; Gooding, Linda R

    2003-01-01

    The group C adenoviruses typically cause acute respiratory disease in young children. In addition, a persistent phase of infection has been observed in which virus may be shed for years without producing overt pathology. Our laboratory recently reported that group C adenovirus DNA can be found in tonsil and adenoid T lymphocytes from the majority of pediatric donors (C. T. Garnett, D. Erdman, W. Xu, and L. R. Gooding, J. Virol. 76:10608-10616, 2002). This finding suggests that immune evasion strategies of human adenoviruses may be directed, in part, toward protection of persistently or latently infected T lymphocytes. Many of the adenoviral gene products implicated in prevention of immune destruction of virus-infected cells are encoded within the E3 transcription unit. In this study, the E3 promoter was evaluated for sensitivity to T-cell activation signals by using a promoter reporter plasmid. Indeed, this promoter is extremely sensitive to T-cell activation, with phorbol myristate acetate (PMA) plus ionomycin increasing E3-directed transcription 100-fold. By comparison, in the same cells E1A expression leads to a 5.5-fold increase in transcription from the E3 promoter. In contrast to induction by E1A, activation by PMA plus ionomycin requires the two E3 NF-kappaB binding sites. Interestingly, expression of E1A inhibits induction of the E3 promoter in response to T-cell activation while increasing E3 promoter activity in unactivated cells. Collectively, these data suggest that the E3 promoter may have evolved the capacity to respond to T-cell activation in the absence of E1A expression and may act to upregulate antiapoptotic gene expression in order to promote survival of persistently infected T lymphocytes. PMID:12502827

  1. Analysis of T cell responses to chimpanzee adenovirus vectors encoding HIV gag–pol–nef antigen

    PubMed Central

    Herath, S.; Le Heron, A.; Colloca, S.; Bergin, P.; Patterson, S.; Weber, J.; Tatoud, R.; Dickson, G.

    2015-01-01

    Adenoviruses have been shown to be both immunogenic and efficient at presenting HIV proteins but recent trials have suggested that they may play a role in increasing the risk of HIV acquisition. This risk may be associated with the presence of pre-existing immunity to the viral vectors. Chimpanzee adenoviruses (chAd) have low seroprevalence in human populations and so reduce this risk. ChAd3 and chAd63 were used to deliver an HIV gag, pol and nef transgene. ELISpot analysis of T cell responses in mice showed that both chAd vectors were able to induce an immune response to Gag and Pol peptides but that only the chAd3 vector induced responses to Nef peptides. Although the route of injection did not influence the magnitude of immune responses to either chAd vector, the dose of vector did. Taken together these results demonstrate that chimpanzee adenoviruses are suitable vector candidates for the delivery of HIV proteins and could be used for an HIV vaccine and furthermore the chAd3 vector produces a broader response to the HIV transgene. PMID:26546736

  2. Analysis of T cell responses to chimpanzee adenovirus vectors encoding HIV gag-pol-nef antigen.

    PubMed

    Herath, S; Le Heron, A; Colloca, S; Bergin, P; Patterson, S; Weber, J; Tatoud, R; Dickson, G

    2015-12-16

    Adenoviruses have been shown to be both immunogenic and efficient at presenting HIV proteins but recent trials have suggested that they may play a role in increasing the risk of HIV acquisition. This risk may be associated with the presence of pre-existing immunity to the viral vectors. Chimpanzee adenoviruses (chAd) have low seroprevalence in human populations and so reduce this risk. ChAd3 and chAd63 were used to deliver an HIV gag, pol and nef transgene. ELISpot analysis of T cell responses in mice showed that both chAd vectors were able to induce an immune response to Gag and Pol peptides but that only the chAd3 vector induced responses to Nef peptides. Although the route of injection did not influence the magnitude of immune responses to either chAd vector, the dose of vector did. Taken together these results demonstrate that chimpanzee adenoviruses are suitable vector candidates for the delivery of HIV proteins and could be used for an HIV vaccine and furthermore the chAd3 vector produces a broader response to the HIV transgene. PMID:26546736

  3. Oncolytic adenoviruses kill breast cancer initiating CD44+CD24-/low cells.

    PubMed

    Eriksson, Minna; Guse, Kilian; Bauerschmitz, Gerd; Virkkunen, Pekka; Tarkkanen, Maija; Tanner, Minna; Hakkarainen, Tanja; Kanerva, Anna; Desmond, Renee A; Pesonen, Sari; Hemminki, Akseli

    2007-12-01

    Cancer stem cells have been indicated in the initiation of tumors and are even found to be responsible for relapses after apparently curative therapies have been undertaken. In breast cancer, they may reside in the CD44(+)CD24(-/low) population. The use of oncolytic adenoviruses presents an attractive anti-tumor approach for eradication of these cells because their entry occurs through infection and they are, therefore, not susceptible to those mechanisms that commonly render stem cells resistant to many drugs. We isolated CD44(+)CD24(-/low) cells from patient pleural effusions and confirmed stem cell-like features including oct4 and sox2 expression and Hoechst 33342 exclusion. CD44(+)CD24(-/low) cells, including the Hoechst excluding subpopulation, could be effectively killed by oncolytic adenoviruses Ad5/3-Delta24 and Ad5.pk7-Delta24. In mice, CD44(+)CD24(-/low) cells formed orthotopic breast tumors but virus infection prevented tumor formation. Ad5/3-Delta24 and Ad5.pk7-Delta24 were effective against advanced orthotopic CD44(+)CD24(-/low)-derived tumors. In summary, Ad5/3-Delta24 and Ad5.pk7-Delta24 can kill CD44(+)CD24(-/low), and also committed breast cancer cells, making them promising agents for treatment of breast cancer. PMID:17848962

  4. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy

    PubMed Central

    Ulasov, Ilya V.; Shah, Nameeta; Kaverina, Natalya V.; Lee, Hwahyang; Lin, Biaoyang; Lieber, Andre; Kadagidze, Zaira G.; Yoon, Jae-Guen; Schroeder, Brett; Hothi, Parvinder; Ghosh, Dhimankrishna; Baryshnikov, Anatoly Y.; Cobbs, Charles S.

    2015-01-01

    Oncolytic gene therapy using viral vectors may provide an attractive therapeutic option for malignant gliomas. These viral vectors are designed in a way to selectively target tumor cells and spare healthy cells. To determine the translational impact, it is imperative to assess the factors that interfere with the anti-glioma effects of the oncolytic adenoviral vectors. In the current study, we evaluated the efficacy of survivin-driven oncolytic adenoviruses pseudotyping with adenoviral fiber knob belonging to the adenoviral serotype 3, 11 and 35 in their ability to kill glioblastoma (GBM) cells selectively without affecting normal cells. Our results indicate that all recombinant vectors used in the study can effectively target GBM in vitro with high specificity, especially the 3 knob-modified vector. Using intracranial U87 and U251 GBM xenograft models we have also demonstrated that treatment with Conditionally Replicative Adenovirus (CRAd-S-5/3) vectors can effectively regress tumor. However, in several patient-derived GBM cell lines, cells exhibited resistance to the CRAd infection as evident from the diminishing effects of autophagy. To improve therapeutic response, tumor cells were pretreated with tamoxifen. Our preliminary data suggest that tamoxifen sensitizes glioblastoma cells towards oncolytic treatment with CRAd-S-5/3, which may prove useful for GBM in future experimental therapy. PMID:25738357

  5. A Comparative Study of Neural and Mesenchymal Stem Cell-Based Carriers for Oncolytic Adenovirus in a Model of Malignant Glioma

    PubMed Central

    Ahmed, Atique U.; Tyler, Matthew A.; Thaci, Bart; Alexiades, Nikita G.; Han, Yu; Ulasov, Ilya V.; Lesniak, Maciej S.

    2011-01-01

    Glioblastoma multiforme is a primary malignancy of the central nervous system that is universally fatal due to its disseminated nature. Recent investigations have focused on the unique tumor-tropic properties of stem cells as a novel platform for targeted delivery of anticancer agents to the brain. Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) both have the potential to function as cell carriers for targeted delivery of a glioma restricted oncolytic virus to disseminated tumor due to their reported tumor tropism. In this study, we evaluated NSCs and MSCs as cellular delivery vehicles for an oncolytic adenovirus in the context of human glioma. We report the first preclinical comparison of the two cell lines and show that, while both stem cell lines are able to support therapeutic adenoviral replication intracellularly, the amount of virus released from NSCs was a log higher than the MSC (p < 0.001). Moreover, only virus loaded NSCs that were administered intracranially in an orthotopic glioma model significantly prolonged the survival of tumor bearing animals (median survival for NSCs 68.5 days vs 44 days for MSCs, p < 0.002). Loading oncolytic adenovirus into NSCs and MSCs also led to expression of both pro- and anti-inflammatory genes and decreased vector-mediated neuroinflammation. Our results indicate that, despite possessing a comparable migratory capacity, NSCs display superior therapeutic efficacy in the context of intracranial tumors. Taken together, these findings argue in favor of NSCs as an effective cell carrier for antiglioma oncolytic virotherapy. PMID:21718006

  6. A comparative study of neural and mesenchymal stem cell-based carriers for oncolytic adenovirus in a model of malignant glioma.

    PubMed

    Ahmed, Atique U; Tyler, Matthew A; Thaci, Bart; Alexiades, Nikita G; Han, Yu; Ulasov, Ilya V; Lesniak, Maciej S

    2011-10-01

    Glioblastoma multiforme is a primary malignancy of the central nervous system that is universally fatal due to its disseminated nature. Recent investigations have focused on the unique tumor-tropic properties of stem cells as a novel platform for targeted delivery of anticancer agents to the brain. Neural stem cells (NSCs) and mesenchymal stem cells (MSCs) both have the potential to function as cell carriers for targeted delivery of a glioma restricted oncolytic virus to disseminated tumor due to their reported tumor tropism. In this study, we evaluated NSCs and MSCs as cellular delivery vehicles for an oncolytic adenovirus in the context of human glioma. We report the first preclinical comparison of the two cell lines and show that, while both stem cell lines are able to support therapeutic adenoviral replication intracellularly, the amount of virus released from NSCs was a log higher than the MSC (p < 0.001). Moreover, only virus loaded NSCs that were administered intracranially in an orthotopic glioma model significantly prolonged the survival of tumor bearing animals (median survival for NSCs 68.5 days vs 44 days for MSCs, p < 0.002). Loading oncolytic adenovirus into NSCs and MSCs also led to expression of both pro- and anti-inflammatory genes and decreased vector-mediated neuroinflammation. Our results indicate that, despite possessing a comparable migratory capacity, NSCs display superior therapeutic efficacy in the context of intracranial tumors. Taken together, these findings argue in favor of NSCs as an effective cell carrier for antiglioma oncolytic virotherapy. PMID:21718006

  7. Delivery of improved oncolytic adenoviruses by mesenchymal stromal cells for elimination of tumorigenic pancreatic cancer cells

    PubMed Central

    Kaczorowski, Adam; Hammer, Katharina; Liu, Li; Villhauer, Sabine; Nwaeburu, Clifford; Fan, Pei; Zhao, Zhefu; Gladkich, Jury; Groß, Wolfgang; Nettelbeck, Dirk M.; Herr, Ingrid

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies and has poor therapeutic options. We evaluated improved oncolytic adenoviruses (OAds), in which the adenoviral gene E1B19K was deleted or a TRAIL transgene was inserted. Bone marrow mesenchymal stromal cells (MSCs) served as carriers for protected and tumor-specific virus transfers. The infection competence, tumor migration, and oncolysis were measured in cancer stem cell (CSC) models of primary and established tumor cells and in tumor xenografts. All OAds infected and lysed CSCs and prevented colony formation. MSCs migrated into PDA spheroids without impaired homing capacity. Xenotransplantation of non-infected PDA cells mixed with infected tumor cells strongly reduced the tumor volume and the expression of the proliferation marker Ki67 along with a necrotic morphology. Adenoviral capsid protein was detected in tumor xenograft tissue after intravenous injection of infected MSCs, but not in normal tissue, implying tumor-specific migration. Likewise, direct in vivo treatment correlated with a strongly reduced tumor volume, lower expression of Ki67 and CD24, and enhanced activity of caspase 3. These data demonstrate that the improved OAds induced efficient oncolysis with the OAd-TRAIL as most promising candidate for future clinical application. PMID:26824985

  8. Construction and characterization of a recombinant human adenovirus vector expressing bone morphogenetic protein 2.

    PubMed

    Zhang, Zheng; Wang, Guoxian; Li, Chen; Liu, Danping

    2013-08-01

    The aim of this study was to construct and characterize a novel recombinant human adenovirus vector expressing bone morphogenetic protein 2 (BMP2) and green fluorescent protein (GFP). The BMP2 gene in the plasmid pcDNA3-BMP2 was sequenced and the restriction enzyme recognition sites were analyzed. Following mutagenesis using polymerase chain reaction (PCR), the gene sequence after the translation termination codon was removed and new restriction sites were added. The mutated BMP2 gene (BMP2(+) gene) was cloned into an adenovirus shuttle vector to obtain pShuttle cytomegalovirus (CMV)-BMP2(+)-internal ribosome entry site (IRES)-hrGFP-1. The adenovirus plasmid pAd CMV-BMP2(+)-IRES-hrGFP-1 was constructed by homologous recombination and was transfected into HEK293A cells, followed by adenovirus packaging. pAd CMV-BMP2 was used as the control. The two types of adenovirus were transfected into marrow stromal cells (MSCs). The expression of BMP2 and GFP, as well as the alkaline phosphatase (ALP) activity of expressed BMP2 were detected. Following mutagenesis, the BMP2 gene sequence and recombinant adenovirus vector were as predicted. The novel adenovirus vector expressed both BMP2 and GFP, indicating that a novel recombinant human adenovirus vector expressing BMP2 had been successfully constructed. PMID:24137184

  9. Arg-Gly-Asp (RGD)-Modified E1A/E1B Double Mutant Adenovirus Enhances Antitumor Activity in Prostate Cancer Cells In Vitro and in Mice

    PubMed Central

    Wang, Hua; Cai, Zhi-Jian; Xu, Yi-Peng; Zhao, An; Su, Ying; Zhang, Gu; Zhu, Shao-Xing

    2016-01-01

    CAR is a transmembrane protein that is expressed in various epithelial and endothelial cells. CAR mediates adenoviral infection, as well as adenovirus-mediated oncolysis of AxdAdB-3, an E1A/E1B double-restricted oncolytic adenovirus, in prostate cancer cells. This study further assessed the therapeutic efficacy of AxdAdB-3 with Arg-Gly-Asp (RGD)-fiber modification (AxdAdB3-F/RGD), which enables integrin-dependent infection, in prostate cancer. Susceptibility of prostate cancer cells LNCaP, PC3, and DU145 to adenovirus infection was associated with CAR expression. All of the prostate cancer cell lines expressed integrin αvβ3 and αvβ5. AxdAdB-3 was more cytopathic in CAR-positive prostate cancer cells than in CAR-negative cells, whereas AxdAdB3-F/RGD caused potent oncolysis in both CAR-positive and CAR-negative prostate cancer cells. In contrast, AxdAdB3-F/RGD was not cytopathic against normal prostate epithelial cells, RWPE-1. Intratumoral injection of AxdAdB3-F/RGD into CAR-negative prostate cancer cell xenografts in nude mice inhibited tumor growth. The current study demonstrates that E1A/E1B double-restricted oncolytic adenovirus with an RGD-fiber modification enhances infection efficiency and anti-tumor activity in CAR-deficient prostate cancer cells, while sparing normal cells. Future studies will evaluate the therapeutic potential of AxdAdB3-F/RGD in prostate cancer. PMID:26799485

  10. Limited but durable changes to cellular gene expression in a model of latent adenovirus infection are reflected in childhood leukemic cell lines.

    PubMed

    Ornelles, D A; Gooding, L R; Dickherber, M L; Policard, M; Garnett-Benson, C

    2016-07-01

    Mucosal lymphocytes support latent infections of species C adenoviruses. Because infected lymphocytes resist re-infection with adenovirus, we sought to identify changes in cellular gene expression that could inhibit the infectious process. The expression of over 30,000 genes was evaluated by microarray in persistently infected B-and T-lymphocytic cells. BBS9, BNIP3, BTG3, CXADR, SLFN11 and SPARCL1 were the only genes differentially expressed between mock and infected B cells. Most of these genes are associated with oncogenesis or cancer progression. Histone deacetylase and DNA methyltransferase inhibitors released the repression of some of these genes. Cellular and viral gene expression was compared among leukemic cell lines following adenovirus infection. Childhood leukemic B-cell lines resist adenovirus infection and also show reduced expression of CXADR and SPARCL. Thus adenovirus induces limited changes to infected B-cell lines that are similar to changes observed in childhood leukemic cell lines. PMID:27085068

  11. Limited but durable changes to cellular gene expression in a model of latent adenovirus infection are reflected in childhood leukemic cell lines

    PubMed Central

    Ornelles, D.A.; Gooding, L.R.; Dickherber, M.L.; Policard, M.; Garnett-Benson, C.

    2016-01-01

    Mucosal lymphocytes support latent infections of species C adenoviruses. Because infected lymphocytes resist re-infection with adenovirus, we sought to identify changes in cellular gene expression that could inhibit the infectious process. The expression of over 30,000 genes was evaluated by microarray in persistently infected B-and T-lymphocytic cells. BBS9, BNIP3, BTG3, CXADR, SLFN11 and SPARCL1 were the only genes differentially expressed between mock and infected B cells. Most of these genes are associated with oncogenesis or cancer progression. Histone deacetylase and DNA methyltransferase inhibitors released the repression of some of these genes. Cellular and viral gene expression was compared among leukemic cell lines following adenovirus infection. Childhood leukemic B-cell lines resist adenovirus infection and also show reduced expression of CXADR and SPARCL. Thus adenovirus induces limited changes to infected B-cell lines that are similar to changes observed in childhood leukemic cell lines. PMID:27085068

  12. Neural stem cells target intracranial glioma to deliver an oncolytic adenovirus in vivo

    PubMed Central

    Tyler, MA; Ulasov, IV; Sonabend, AM; Nandi, S; Han, Y; Marler, S; Roth, J; Lesniak, MS

    2008-01-01

    Adenoviral oncolytic virotherapy represents an attractive treatment modality for central nervous system (CNS) neoplasms. However, successful application of virotherapy in clinical trials has been hampered by inadequate distribution of oncolytic vectors. Neural stem cells (NSCs) have been shown as suitable vehicles for gene delivery because they track tumor foci. In this study, we evaluated the capability of NSCs to deliver a conditionally replicating adenovirus (CRAd) to glioma. We examined NSC specificity with respect to viral transduction, migration and capacity to deliver a CRAd to tumor cells. Fluorescence-activated cell sorter (FACS) analysis of NSC shows that these cells express a variety of surface receptors that make them amenable to entry by recombinant adenoviruses. Luciferase assays with replication-deficient vectors possessing a variety of transductional modifications targeted to these receptors confirm these results. Real-time PCR analysis of the replication profiles of different CRAds in NSCs and a representative glioma cell line, U87MG, identified the CRAd-Survivin (S)-pk7 virus as optimal vector for further delivery studies. Using in vitro and in vivo migration studies, we show that NSCs infected with CRAd-S-pk7 virus migrate and preferentially deliver CRAd to U87MG glioma. These results suggest that NSCs mediate an enhanced intratumoral distribution of an oncolytic vector in malignant glioma when compared with virus injection alone. PMID:19078993

  13. Adenovirus-mediated expression of BmK CT suppresses growth and invasion of rat C6 glioma cells.

    PubMed

    Du, Jun; Fu, Yuejun; Wang, Jianing; Liang, Aihua

    2013-06-01

    BmK CT, one of the key toxins in the venom of the scorpion, Buthus martensii Karsch, can interact specifically with glioma cells as a chloride channel blocker and inhibit the invasion and migration of those cells via MMP-2. A recombinant adenovirus, Ad-BmK CT, was constructed and characterized by in vitro and in vivo studies, using MTT cytotoxicity assay and the glioma C6/RFP (red fluorescence protein)/BALB/c allogeneic athymic nude mice model, respectively. The adenovirus-mediated expression of BmK CT displayed a high activity in suppressing rat C6 glioma cells growth and invasion thereby suggesting that this recombinant adenovirus may be a powerful method for treating glioblastoma. PMID:23443213

  14. Mouse Adenovirus Type 1 Infection of Natural Killer Cell-Deficient Mice

    PubMed Central

    Welton, Amanda R.; Gralinski, Lisa E.; Spindler, Katherine R.

    2008-01-01

    Natural killer (NK) cells contribute to the initial nonspecific response to viral infection, and viruses exhibit a range of sensitivities to NK cells in vivo. We investigated the role of NK cells in infection of mice by mouse adenovirus type 1 (MAV-1) using antibody-mediated depletion and knockout mice. MAV-1 causes encephalomyelitis and replicates to highest levels in brains. NK cell-depleted mice infected with MAV-1 showed brain viral loads 8-20 days p.i. that were similar to wild-type control non-depleted mice. Mice genetically deficient for NK cells behaved similarly to wild-type control mice with respect to brain viral loads and survival. We conclude that NK cells are not required to control virus replication in the brains of MAV-1-infected mice. PMID:18155121

  15. [Functional activity of lymphoblastoid cells infected by human adenovirus type 2 and Epstein-Barr virus].

    PubMed

    Povnitsa, O Iu; Diachenko, N S; Nosach, L N; Olevinskaia, Z M; Zhovnovataia, V L; Polishchuk, V N; Spivak, N Ia

    2005-01-01

    The paper deals with the influence of the adenovirus (Ad) and Epstein-Barr virus (EBV) on functional activity of lymphocytes, in particular, the production of alpha- and gamma-interferons, tumor necrosis factor (TNF) in conditions of mono- or double infection of B- and T-phenotype (CEM) lymphoblastoid cells. It is shown, that Ad, EBV or both viruses induce high enough levels of interferon on both lines of cells and in control epithelial cells. The lymphoblastoid cells infected by viruses deep ability to synthesize alpha- and gamma-interferons under the influence of the corresponding inducers (Newcastle disease virus and hemagglutinine). Nevertheless, the levels of their formation are not high. Rather high parameters of activity of the tumor necrosis factor (TNF) were revealed during a day in the initial B95-8 cells and superinfected Ad after the effect of LPS of E. coli. Their activity in CEM cells also did not depend on the infection type. PMID:16018208

  16. RGD-modifided oncolytic adenovirus exhibited potent cytotoxic effect on CAR-negative bladder cancer-initiating cells

    PubMed Central

    Yang, Y; Xu, H; Shen, J; Yang, Y; Wu, S; Xiao, J; Xu, Y; Liu, X-Y; Chu, L

    2015-01-01

    Cancer-initiating cell (CIC) is critical in cancer development, maintenance and recurrence. The reverse expression pattern of coxsackie and adenovirus receptor (CAR) and αν integrin in bladder cancer decreases the infection efficiency of adenovirus. We constructed Arg-Gly-Asp (RGD)-modified oncolytic adenovirus, carrying EGFP or TNF-related apoptosis-inducing ligand (TRAIL) gene (OncoAd.RGD-hTERT-EGFP/TRAIL), and applied them to CAR-negative bladder cancer T24 cells and cancer-initiating T24 sphere cells. OncoAd.RGD-hTERT-EGFP had enhanced infection ability and cytotoxic effect on T24 cells and T24 sphere cells, but little cytoxicity on normal urothelial SV-HUC-1 cells compared with the unmodified virus OncoAd.hTERT-EGFP. Notably, OncoAd.RGD-hTERT-TRAIL induced apoptosis in T24 cells and T24 sphere cells. Furthermore, it completely inhibited xenograft initiation established by the oncolytic adenovirus-pretreated T24 sphere cells, and significantly suppressed tumor growth by intratumoral injection. These results provided a promising therapeutic strategy for CAR-negative bladder cancer through targeting CICs. PMID:25973680

  17. An Adenovirus Vector with Genetically Modified Fibers Demonstrates Expanded Tropism via Utilization of a Coxsackievirus and Adenovirus Receptor-Independent Cell Entry Mechanism

    PubMed Central

    Dmitriev, Igor; Krasnykh, Victor; Miller, C. Ryan; Wang, Minghui; Kashentseva, Elena; Mikheeva, Galina; Belousova, Natalya; Curiel, David T.

    1998-01-01

    Recombinant adenoviruses (Ad) have become the vector system of choice for a variety of gene therapy applications. However, the utility of Ad vectors is limited due to the low efficiency of Ad-mediated gene transfer to cells expressing marginal levels of the coxsackievirus and adenovirus receptor (CAR). In order to achieve CAR-independent gene transfer by Ad vectors in clinically important contexts, we proposed modification of viral tropism via genetic alterations to the viral fiber protein. We have shown that incorporation of an Arg-Gly-Asp (RGD)-containing peptide in the HI loop of the fiber knob domain results in the ability of the virus to utilize an alternative receptor during the cell entry process. We have also demonstrated that due to its expanded tissue tropism, this novel vector is capable of efficient transduction of primary tumor cells. An increase in gene transfer to ovarian cancer cells of 2 to 3 orders of magnitude was demonstrated by the vector, suggesting that recombinant Ad containing fibers with an incorporated RGD peptide may be of great utility for treatment of neoplasms characterized by deficiency of the primary Ad type 5 receptor. PMID:9811704

  18. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production

    PubMed Central

    Carinhas, Nuno; Pais, Daniel A. M.; Koshkin, Alexey; Fernandes, Paulo; Coroadinha, Ana S.; Carrondo, Manuel J. T.; Alves, Paula M.; Teixeira, Ana P.

    2016-01-01

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-13C]glucose and [U-13C]glutamine, we apply for the first time 13C-Metabolic flux analysis (13C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and 13C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. 13C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production. PMID:27004747

  19. Umbilical cord blood-derived dendritic cells infected by adenovirus for SP17 expression induce antigen-specific cytotoxic T cells against NSCLC cells.

    PubMed

    Liu, Yang; Tian, Xin; Jiang, Shenyi; Ren, Xuemei; Liu, Fengjie; Yang, Jichun; Chen, Yanling; Jiang, Youhong

    2015-01-01

    Sperm protein 17 (SP17), a cancer/testis antigen, is expressed by non-small cell lung cancer (NSCLC). This study examined whether dendritic cells (DC) from human umbilical cord blood (UCB) could be induced for SP17 expression and induce antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) against NSCLC in vitro. We generated recombinant adenovirus of Ad-SP17 and control Ad-null. Infection with Ad-SP17, but not control, induced higher levels of SP17 expression in UCB-derived DC-Ad-SP17. Infection with Ad-SP17 significantly increased the frequency of CD80(+), CD83(+), CD86(+), and HLA-DR(+) DC that produced higher levels of IL-12, but lower IL-10. Co-culture of DC-Ad-SP17 with autologous UCB lymphocytes induced high frequency of IFNγ(+) CD8(+) CTLs, which had selective cytotoxicity against SP17(+) lung cancer CRL-5922 cells in a HLA-I restrictive manner. Thus, UCB-derived DC modulated for SP17 expression induced antigen-specific anti-tumor immunity against SP17(+) NSCLC, and SP17 may be a valuable target for development of immunotherapy against SP17(+) NSCLC. PMID:26300426

  20. Primary Bovine Intervertebral Disc Cells Transduced with Adenovirus Overexpressing 12 BMPs and Sox9 Maintain Appropriate Phenotype

    PubMed Central

    Zhang, Yejia; Markova, Dessislava; Im, Hee-Jeong; Hu, Wenyang; Thonar, Eugene J.-M.A.; He, Tong-Chuan; An, Howard S.; Phillips, Frank M.; Anderson, D. Greg

    2010-01-01

    Objective To confirm that primary intervertebral disc cells cultured in monolayer transduced with adenovirus maintained their phenotype, hence is an appropriate system to test gene therapy agents. Design Adult bovine nucleus pulposus and anulus fibrosus cells cultured in monolayer were transduced with adenoviruses expressing human bone morphogenetic proteins (AdBMPs) or Sox9 (AdSox9), or green fluorescence protein (AdGFP, as control). Chondrocyte phenotypic markers (e.g., type II collagen and aggrecan) and the chondrocyte hypertrophy marker (type X collagen) were measured 6 days after viral transduction by reverse-transcription polymerase chain reaction. Results Primary nucleus pulposus and anulus fibrosus cells transduced with AdBMPs, AdSox9, or adenovirus-expressing green fluorescence protein only (AdGFP, as control) continue to express healthy chondrocyte phenotypic markers and showed no evidence of the expression of the chondrocyte hypertrophy marker (type X collagen gene). Thus, we have shown that bovine nucleus pulposus and anulus fibrosus cells transduced with adenovirus overexpressing 12 different bone morphogenetic proteins or Sox9 maintain their phenotype in short-term culture. Conclusions In this study, primary bovine intervertebral disc cells transduced with adenovirus overexpressing 12 bone morphogenetic proteins or Sox9 preserved their phenotype in short-term culture. These cells did not express the type X collagen gene, an undesirable chondrocyte hypertrophic gene that could lead to ossification. Therefore, low-passage intervertebral disc cells cultured in monolayer is an appropriate culture system to test therapeutic genes. We further suggest that these cells may also be appropriate for engineering tissues or for cell therapy for degenerative disc diseases. PMID:19454853

  1. Partition of E1A proteins between soluble and structural fractions of adenovirus-infected and -transformed cells.

    PubMed Central

    Chatterjee, P K; Flint, S J

    1986-01-01

    The partition of E1A proteins between soluble and structural framework fractions of human cells infected or transformed by subgroup C adenoviruses was investigated by using gentle cell fractionation conditions. A polyclonal antibody raised against a trpE-E1A fusion protein (K.R. Spindler, D.S.E. Rosser, and A. J. Berk, J. Virol. 132-141, 1984) synthesized in Escherichia coli was used to measure the steady-state levels of E1A proteins recovered in the various fractions by immunoblotting. The relative concentration of E1A proteins recovered in the soluble fraction of adenovirus type 2-infected cells was at least fivefold greater than the relative concentration in the corresponding fraction of transformed 293 cells. The observed distribution of E1A proteins was not altered by the sulfhydryl-blocking reagent N-ethylmaleimide. E1A proteins were recovered in nuclear matrix, chromatin, and cytoskeleton fractions after further fractionation of the structural framework fraction. However, the E1A protein species that could be identified by one-dimensional gel electrophoresis were not uniformly distributed among the subcellular fractions examined. The results obtained when fractionation was performed in the presence of the oxidation catalysts Cu2+ or (ortho-phenanthroline)2 Cu2+ indicate that E1A proteins can be efficiently cross-linked, via disulfide bonds, to the structural framework of both adenovirus-infected and adenovirus-transformed cells. Images PMID:3023654

  2. Adenovirus-induced alterations in host cell gene expression prior to the onset of viral gene expression.

    PubMed

    Granberg, Fredrik; Svensson, Catharina; Pettersson, Ulf; Zhao, Hongxing

    2006-09-15

    In this report, we have studied gene expression profiles in human primary lung fibroblasts (IMR-90) during the very early phase of an adenovirus infection. Eight out of twelve genes with known functions encoded transcription factors linked to two major cellular processes; inhibition of cell growth (ATF3, ATF4, KLF4, KLF6 and ELK3) and immune response (NR4A1 and CEBPB), indicating that the earliest consequences of an adenovirus infection are growth arrest and induction of an immune response. A time course analysis showed that the induction of these immediate-early response genes was transient and suppressed after the onset of the adenovirus early gene expression. PMID:16860366

  3. Adenovirus type 12-specific RNA sequences during productive infection of KB cells.

    PubMed Central

    Smiley, J R; Mak, S

    1976-01-01

    The complementary strands of adenovirus type 12 DNA were separated, and virus-specific RNA was analyzed by saturation hybridization in solution. Late during infection whole cell RNA hybridized to 75% of the light (1) strand and 15% of the heavy (H) strand, whereas cytoplasmic RNA hybridized to 65% of the 1 strand and 15% of the h strand. Late nuclear RNA hybridized to about 90% of the 1 strand and at least 36% of the h strand. Double-stranded RNA was isolated from infected cells late after infection, which annealed to greater than 30% of each of the two complementary DNA strands. Early whole cell RNA hybridized to 45 to 50% of the 1 strand and 15% of the h strand, whereas early cytoplasmic RNA hybridized to about 15% of each of the complementary strands. All early cytoplasmic sequences were present in the cytoplasm at late times. PMID:950688

  4. Unabated Adenovirus Replication following Activation of the cGAS/STING-Dependent Antiviral Response in Human Cells

    PubMed Central

    Lam, Eric

    2014-01-01

    ABSTRACT The cGAS/STING DNA sensing complex has recently been established as a predominant pathogen recognition receptor (PRR) for DNA-directed type I interferon (IFN) innate immune activation. Using replication-defective adenovirus vectors and replication-competent wild-type adenovirus, we have modeled the influence of the cGAS/STING cascade in permissive human cell lines (A549, HeLa, ARPE19, and THP1). Wild-type adenovirus induced efficient early activation of the cGAS/STING cascade in a cell-specific manner. In all responsive cell lines, cGAS/STING short hairpin RNA (shRNA) knockdown resulted in a loss of TBK1 and interferon response factor 3 (IRF3) activation, a lack of beta interferon transcript induction, loss of interferon-dependent STAT1 activation, and diminished induction of interferon-stimulated genes (ISGs). Adenoviruses that infect through the coxsackievirus-adenovirus receptor (CAR) (Ad2 and Ad5) and the CD46 (Ad35) and desmoglein-2 (Ad7) viral receptors all induce the cGAS/STING/TBK1/IRF3 cascade. The magnitude of the IRF3/IFN/ISG antiviral response was strongly influenced by serotype, with Ad35>Ad7>Ad2. For each serotype, no enhancement of viral DNA replication or virus production occurred in cGAS or STING shRNA-targeted cell line pools. We found no replication advantage in permissive cell lines that do not trigger the cGAS/STING cascade following infection. The cGAS/STING/TBK1/IRF3 cascade was not a direct target of viral antihost strategies, and we found no evidence that Ad stimulation of the cGAS/STING DNA response had an impact on viral replication efficiency. IMPORTANCE This study shows for the first time that the cGAS DNA sensor directs a dominant IRF3/IFN/ISG antiviral response to adenovirus in human cell lines. Activation of cGAS occurs with viruses that infect through different high-affinity receptors (CAR, CD46, and desmoglein-2), and the magnitude of the cGAS/STING DNA response cascade is influenced by serotype-specific functions

  5. Adenovirus-Mediated Gene Transfer in Mesenchymal Stem Cells Can Be Significantly Enhanced by the Cationic Polymer Polybrene

    PubMed Central

    Zhao, Chen; Wu, Ningning; Deng, Fang; Zhang, Hongmei; Wang, Ning; Zhang, Wenwen; Chen, Xian; Wen, Sheng; Zhang, Junhui; Yin, Liangjun; Liao, Zhan; Zhang, Zhonglin; Zhang, Qian; Yan, Zhengjian; Liu, Wei; Wu, Di; Ye, Jixing; Deng, Youlin; Zhou, Guolin; Luu, Hue H.; Haydon, Rex C.; Si, Weike; He, Tong-Chuan

    2014-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitors, which can undergo self-renewal and give rise to multi-lineages. A great deal of attentions have been paid to their potential use in regenerative medicine as potential therapeutic genes can be introduced into MSCs. Genetic manipulations in MSCs requires effective gene deliveries. Recombinant adenoviruses are widely used gene transfer vectors. We have found that although MSCs can be infected in vitro by adenoviruses, high virus titers are needed to achieve high efficiency. Here, we investigate if the commonly-used cationic polymer Polybrene can potentiate adenovirus-mediated transgene delivery into MSCs, such as C2C12 cells and iMEFs. Using the AdRFP adenovirus, we find that AdRFP transduction efficiency is significantly increased by Polybrene in a dose-dependent fashion peaking at 8 μg/ml in C2C12 and iMEFs cells. Quantitative luciferase assay reveals that Polybrene significantly enhances AdFLuc-mediated luciferase activity in C2C12 and iMEFs at as low as 4 μg/ml and 2 μg/ml, respectively. FACS analysis indicates that Polybrene (at 4 μg/ml) increases the percentage of RFP-positive cells by approximately 430 folds in AdRFP-transduced iMEFs, suggesting Polybrene may increase adenovirus infection efficiency. Furthermore, Polybrene can enhance AdBMP9-induced osteogenic differentiation of MSCs as early osteogenic marker alkaline phosphatase activity can be increased more than 73 folds by Polybrene (4 μg/ml) in AdBMP9-transduced iMEFs. No cytotoxicity was observed in C2C12 and iMEFs at Polybrene up to 40 μg/ml, which is about 10-fold higher than the effective concentration required to enhance adenovirus transduction in MSCs. Taken together, our results demonstrate that Polybrene should be routinely used as a safe, effective and inexpensive augmenting agent for adenovirus-mediated gene transfer in MSCs, as well as other types of mammalian cells. PMID:24658746

  6. Efficiency of Membrane Protein Expression Following Infection with Recombinant Adenovirus of Polarized Non-Transformed Human Retinal Pigment Epithelial Cells.

    PubMed

    Müller, Claudia; Blenkinsop, Timothy A; Stern, Jeffrey H; Finnemann, Silvia C

    2016-01-01

    Transient expression of exogenous proteins facilitates studies of molecular mechanisms and utility for transplantation of retinal pigment epithelial (RPE) cells in culture. Here, we compared expression of the membrane protein β5 integrin-GFP (β5-GFP) in two recently established models of differentiated human RPE, adult RPE stem cell-derived RPE and primary fetal RPE, upon infection with recombinant adenovirus or transfection with DNA in liposomes. We varied viral titer and duration of virus incubation and examined β5-GFP and the tight junction marker ZO-1 in manipulated cells by confocal microscopy. Fewer than 5 % of cells expressed β5-GFP after liposome-mediated transfection. The percentage of cells with detectable β5-GFP exceeded 90 % after adenovirus infection for as little as 1 h. Decreasing virus titer two-fold did not alter the fraction of cells expressing β5-GFP but increased variability of β5-GFP level among cells. In cells with low expression levels, β5-GFP localized mostly to the apical plasma membrane like endogenous αvβ5 integrin. In cells with high expression levels, β5-GFP localized to the cytoplasm in addition to the apical surface suggesting accumulation in trafficking compartments. Altogether, adenovirus delivery yields efficient exogenous membrane protein expression of correct polarity in differentiated human RPE cells in culture. PMID:26427482

  7. The "occlusis" model of cell fate restriction.

    PubMed

    Lahn, Bruce T

    2011-01-01

    A simple model, termed "occlusis", is presented here to account for both cell fate restriction during somatic development and reestablishment of pluripotency during reproduction. The model makes three assertions: (1) A gene's transcriptional potential can assume one of two states: the "competent" state, wherein the gene is responsive to, and can be activated by, trans-acting factors in the cellular milieu, and the "occluded" state, wherein the gene is blocked by cis-acting, chromatin-based mechanisms from responding to trans-acting factors such that it remains silent irrespective of whether transcriptional activators are present in the milieu. (2) As differentiation proceeds in somatic lineages, lineage-inappropriate genes shift progressively and irreversibly from competent to occluded state, thereby leading to the restriction of cell fate. (3) During reproduction, global deocclusion takes place in the germline and/or early zygotic cells to reset the genome to the competent state in order to facilitate a new round of organismal development. PMID:20954221

  8. [The viral genome status studied under the conditions of a mixed infection in lymphoblastoid cells by adenovirus and the Epstein-Barr virus].

    PubMed

    Nosach, L N; Diachenko, N S; Povnitsa, O Iu; Smirnova, I A; Kishinskaia, E G; Butenko, Z A; Panasenko, G V

    1998-01-01

    Some indices have been studied which characterized the state of Epstein-Barr virus genome and adenovirus in the implanted lines of lymphoblastoid cells of B and T phenotype under the mixed or monoinfection. It has been shown that super infection by type 2 adenovirus rather sharply affects the state of Epstein-Barr virus genome in the Raji cells containing integrated Epstein-Barr virus genome. The state of adenovirus genome in the studied cells is less subject to changes. Its early area is revealed by hybridization using DNA-DNA method in a form of two fragments of different intensity which is maximum in the Raji and Jurkat cells, which evidences for the more expressivity of adenovirus genome in these cells. PMID:9813890

  9. Immunization with adenovirus LIGHT-engineered dendritic cells induces potent T cell responses and therapeutic immunity in HBV transgenic mice.

    PubMed

    Jiang, Wenzheng; Chen, Ran; Kong, Xiaobo; Long, Fengying; Shi, Yaru

    2014-07-31

    LIGHT, a TNF superfamily member (TNFSF14), is a type II transmembrane protein expressed on activated T cells and immature dendritic cells (DCs). However, the expression of LIGHT on mature DCs is down-regulated. Recent studies demonstrated that LIGHT provides potent costimulatory activity for T cells, enhancing proliferation and the production of Th1 cytokines independently of the B7-CD28 pathway. Here, we evaluated the effectiveness of peptide-pulsed DC-mediated antiviral immunity in HBV transgenic mice and the immunoadjuvant effect of LIGHT. The bone marrow-derived DCs were modified in vitro with an adenovirus (Ad) vector expressing mouse LIGHT (Ad-LIGHT), the expression of costimulatory molecules was up-regulated and the secretion of cytokines IL-12 and IFN-γ increased. LIGHT-modified DCs enhanced allostimulation for T cells in mixed lymphocyte reaction (MLR). HBV peptide-pulsed DCs elicited HBV specific CD8+ T cell response and reduced the level of HBsAg and HBV DNA in sera of HBV transgenic mice. Importantly, LIGHT-modified DCs could induce stronger antiviral immunity. These results support the concept that genetic modification of DCs with a recombinant LIGHT adenovirus vector may be a useful strategy for antiviral immunotherapy. PMID:24951859

  10. Interaction of CtBP with adenovirus E1A suppresses immortalization of primary epithelial cells and enhances virus replication during productive infection

    SciTech Connect

    Subramanian, T.; Zhao, Ling-jun; Chinnadurai, G.

    2013-09-01

    Adenovirus E1A induces cell proliferation, oncogenic transformation and promotes viral replication through interaction with p300/CBP, TRRAP/p400 multi-protein complex and the retinoblastoma (pRb) family proteins through distinct domains in the E1A N-terminal region. The C-terminal region of E1A suppresses E1A/Ras co-transformation and interacts with FOXK1/K2, DYRK1A/1B/HAN11 and CtBP1/2 (CtBP) protein complexes. To specifically dissect the role of CtBP interaction with E1A, we engineered a mutation (DL→AS) within the CtBP-binding motif, PLDLS, and investigated the effect of the mutation on immortalization and Ras cooperative transformation of primary cells and viral replication. Our results suggest that CtBP–E1A interaction suppresses immortalization and Ras co-operative transformation of primary rodent epithelial cells without significantly influencing the tumorigenic activities of transformed cells in immunodeficient and immunocompetent animals. During productive infection, CtBP–E1A interaction enhances viral replication in human cells. Between the two CtBP family proteins, CtBP2 appears to restrict viral replication more than CtBP1 in human cells. - Highlights: • Adenovirus E1A C-terminal region suppresses E1A/Ras co-transformation. • This E1A region binds with FOXK, DYRK1/HAN11 and CtBP cellular protein complexes. • We found that E1A–CtBP interaction suppresses immortalization and transformation. • The interaction enhances viral replication in human cells.

  11. Physical organization of subgroup B human adenovirus genomes.

    PubMed Central

    Tibbetts, C

    1977-01-01

    Cleavage sites of nine bacterial restriction endonucleases were mapped in the DNA of adenovirus type 3 (Ad3) and Ad7, representative serotypes of the "weakly oncogenic" subgroup B human adenoviruses. Of 94 sites mapped, 82 were common to both serotypes, in accord with the high overall sequence homology of DNA among members of the same subgroups. Of the sites in Ad3 and Ad7 DNA, fewer than 20% corresponded to mapped restriction sites in the DNA of Ad2 or Ad5. The latter serotypes represent the "nononcogenic" subgroup C, having only 10 to 20% overall sequence homology with the DNA of subgroup B adenoviruses. Hybridization mapping of viral mRNA from Ad7-infected cells resulted in a complex physical map that was nearly identical to the map of early and late gene clusters in Ad2 DNA. Thus the DNA sequences of human adenoviruses of subgroups B and C have significantly diverged in the course of viral evolution, but the complex organization of the adenovirus genome has been rigidly conserved. Images PMID:916027

  12. [Morphogenetic study of human adenovirus type 41 in 293TE cells].

    PubMed

    Song, Jing-Dong; Wang, Min; Zou, Xiao-Hui; Qu, Jian-Guo; Lu, Zhuo-Zhuang; Hong, Tao

    2014-03-01

    To investigate the morphogenetic process of human adenovirus type 41 (HAdV-41), 293TE cells were infected with purified wild-type HAdV-41, and ultrathin sections of infected cells were prepared and observed under a transmission electron microscope. Results showed that HAdV-41 entered host cells mainly through three ways: non-clathrin-coated pit, clathrin-coated pit, and direct penetration of plasma membrane. In addition, cell microvilli might help HAdV-41 enter cells. After entering into cells, HAdV-41 virus particles could be found in vacuoles or lysosomes or be in a free state in cytoplasm. Only free virus particles could be found near nuclear pores (NP), suggesting that the virus needed to escape from lysosomes for effective infection and viral nucleoprotein entered the nucleus through NP. Progeny viruses were as-sembled in the nucleus. Three types of inclusion bodies, which were termed as fibrillous inclusion body, condense inclusion body, and stripped condense inclusion body, were involved in HAdV-41 morphogenesis. In the late phase of viral replication, the membrane integrity of the infected cells was lost and viral particles were released extracellularly. This study reveals the partial process of HAdV-41 morphogenesis and provides more biological information on HAdV-41. PMID:24923169

  13. Stepwise Loss of Fluorescent Core Protein V from Human Adenovirus during Entry into Cells ▿ †

    PubMed Central

    Puntener, Daniel; Engelke, Martin F.; Ruzsics, Zsolt; Strunze, Sten; Wilhelm, Corinne; Greber, Urs F.

    2011-01-01

    Human adenoviruses (Ads) replicate and assemble particles in the nucleus. They organize a linear double-strand DNA genome into a condensed core with about 180 nucleosomes, by the viral proteins VII (pVII), pX, and pV attaching the DNA to the capsid. Using reverse genetics, we generated a novel, nonconditionally replicating Ad reporter by inserting green fluorescent protein (GFP) at the amino terminus of pV. Purified Ad2-GFP-pV virions had an oversized complete genome and incorporated about 38 GFP-pV molecules per virion, which is about 25% of the pV levels in Ad2. GFP-pV cofractionated with the DNA core, like pV, and newly synthesized GFP-pV had a subcellular localization indistinguishable from that of pV, indicating that GFP-pV is a valid reporter for pV. Ad2-GFP-pV completed the replication cycle, although at lower yields than Ad2. Incoming GFP-pV (or pV) was not imported into the nucleus. Virions lost GFP-pV at two points during the infection process: at entry into the cytosol and at the nuclear pore complex, where capsids disassemble. Disassembled capsids, positive for the conformation-specific antihexon antibody R70, were devoid of GFP-pV. The loss of GFP-pV was reduced by the macrolide antibiotic leptomycin B (LMB), which blocks nuclear export and adenovirus attachment to the nuclear pore complex. LMB inhibited the appearance of R70 epitopes on Ad2 and Ad2-GFP-pV, indicating that the loss of GFP-pV from Ad2-GFP-pV is an authentic step in the adenovirus uncoating program. Ad2-GFP-pV is genetically complete and hence enables detailed analyses of infection and spreading dynamics in cells and model organisms or assessment of oncolytic adenoviral potential. PMID:21047958

  14. Debating restrictions on embryonic stem cell research.

    PubMed

    McClain, Colleen

    2009-09-01

    This study investigates the emotional and behavioral effects of interpersonal online communication, focusing on the controversy surrounding the loosening of restrictions on human embryonic stem cell research. The issue, central to national and statewide elections in 2008, generated heated debate among candidates and voters and evoked strong emotional sentiments among partisans. Using the theory of affective intelligence, this study proposes a predictive model connecting levels of enthusiasm and anxiety with behavioral and information-seeking outcomes. Cognitive appraisal theory is also employed to provide a role for political emotion in accounting for interactive media effects. To investigate the ways that online deliberation may influence discussions surrounding stem cell research, a between-subjects experimental study was conducted that systematically varied the tone of feedback received (reinforcing or challenging) and type of interaction (synchronous or asynchronous) experienced by users. Results indicate that emotional responses play a significant role in predicting behavioral intentions arising from the user-to-user interactive experience. PMID:20205522

  15. Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies.

    PubMed Central

    Wickham, T J; Segal, D M; Roelvink, P W; Carrion, M E; Lizonova, A; Lee, G M; Kovesdi, I

    1996-01-01

    A major hurdle to adenovirus (Ad)-mediated gene transfer is that the target issue lacks sufficient levels of receptors to mediate vector attachment via its fiber coat protein. Endothelial and smooth muscle cells are primary targets in gene therapy approaches to prevent restenosis following angioplasty or to promote or inhibit angiogenesis. However, Ad poorly binds and transduces these cells because of their low or undetectable levels of functional Ad fiber receptor. The Ad-binding deficiency of these cells was overcome by targeting Ad binding to alpha v integrin receptors that are sufficiently expressed by these cells. In order to target alpha v integrins, a bispecific antibody (bsAb) that comprised a monoclonal Ab to the FLAG peptide epitope, DYKDDDDK, and a monoclonal Ab to alpha v integrins was constructed. In conjunction with the bsAb, a new vector, AdFLAG, which incorporated the FLAG peptide epitope into its penton base protein was constructed. Complexing AdFLAG with the bsAb increased the beta-glucuronidase transduction of human venule endothelial cells and human intestinal smooth muscle cells by seven- to ninefold compared with transduction by AdFLAG alone. The increased transduction efficiency was shown to occur through the specific interaction of the complex with alpha v integrins. These results demonstrate that bsAbs can be successfully used to target Ad to a specific cellular receptor and thereby increase the efficiency of gene transfer. PMID:8794324

  16. Adenovirus type 5 E1A sensitizes hepatocellular carcinoma cells to gemcitabine.

    PubMed

    Lee, Wei-Ping; Tai, Dar-In; Tsai, Sun-Lung; Yeh, Chau-Ting; Chao, Yee; Lee, Shou-Dong; Hung, Mien-Chie

    2003-10-01

    Hepatocellular carcinoma (HCC) is resistant to conventional chemotherapy. A few clinical trials have shown that the cytidine analogue gemcitabine appears to have antitumor activity for HCC, but the overall survival times remain to be improved. In this study, we examined the synergistic effect of adenovirus type 5 E1A (E1A) and gemcitabine on HCC and found that E1A sensitized J5, J7, Huh7, and HepG2 HCC cells to gemcitabine. To further study the E1A-mediated chemosensitization, we established stable cell lines that expressed the E1A gene and then examined whether E1A could have proapoptotic activity while expressed in HCC cells. Our results clearly showed that E1A sensitized HCC cells to gemcitabine through induction of apoptosis. To study the underlying mechanism, we tested nuclear factor (NF)-kappaB activity and found that NF-kappaB was activated in HCC cells treated with gemcitabine but not in HCC cells that expressed E1A. Occurrence of apoptosis entails cleavage of poly (ADP-ribose) polymerase (PARP), a nuclear protein involved in DNA repair, genome stability, and maintenance of telomere length. Our study showed that gemcitabine enhanced PARP expression. However, E1A did not induce PARP cleavage but rather suppressed PARP expression at the transcriptional level. Further study showed that both NF-kappaB and PARP played protective roles in the prevention of E1A+gemcitabine-induced apoptosis. PMID:14559808

  17. Selective induction of toxicity to human cells expressing human immunodeficiency virus type 1 Tat by a conditionally cytotoxic adenovirus vector.

    PubMed Central

    Venkatesh, L K; Arens, M Q; Subramanian, T; Chinnadurai, G

    1990-01-01

    The human immunodeficiency viruses (HIVs) primarily infect CD4+ T lymphocytes, leading eventually to the development of a systemic immune dysfunction termed acquired immunodeficiency syndrome (AIDS). An attractive strategy to combat HIV-mediated pathogenesis would be to eliminate the initial pool of infected cells and thus prevent disease progression. We have engineered a replication-defective, conditionally cytotoxic adenovirus vector, Ad-tk, whose action is dependent on the targeted expression of the herpes simplex virus type 1 thymidine kinase gene (tk), cloned downstream of the HIV-1 long terminal repeat, in human cells expressing the HIV-1 transcriptional activator Tat. Infection of Tat-expressing human HeLa or Jurkat cells with Ad-tk resulted in high-level tk expression, which was not deleterious to the viability of these cells. However, in the presence of the antiherpetic nucleoside analog ganciclovir, Ad-tk infection resulted in a massive reduction in the viability of these Tat-expressing cell lines. As adenoviruses are natural passengers of the human lymphoid system, our results suggest adenovirus vector-based strategies for the targeted expression, under the control of cis-responsive HIV regulatory elements, of cytotoxic agents in HIV-infected cells for the therapy of HIV-mediated pathogenesis. Images PMID:2247444

  18. Transcription of the genome of adenovirus type 12. I. Viral mRNA in abortively infected and transformed cells.

    PubMed Central

    Ortin, J; Doerfler, W

    1975-01-01

    In baby hamster kidney (BKH-21) cells abortively infected with adenovirus type 12, polysome-associated, virus-specific RNA could be detected starting 5 to 7 h after infection. The amount of this RNA reached a maximum between 10 to 12 h after infection and continued to be synthesized at a reduced level until late in infection (48 to 50 h.). In BHK-21 cells transformed by adenovirus type 12 (HB cells), 0.26% of the polysome-associated mRNA was virus specific. The size of the virus-specific mRNA isolated from polysomes of BHK-21 cells abortively infected with, or transformed by adenovirus type 12 was determined by electrophoresis in polyacrylamide gels in 98% formamide, i.e., under conditions which eliminated secondary structure or aggregation of RNA. In abortively infected hamster cells viral mRNA size classes of molecular weights 0.9 times 10-6 and 0.65 times 10-6 to 0.67 times 10-6 were predominant. A minor fraction of 1.5 times 10-6 daltons was consistently found and increased with time after infection. Late after infection (24 to 26 h), viral mRNA of 1.9 times 10-6 daltons was also observed. The size distribution of adenovirus type 12-specific mRNA from transformed hamster cells (HB line) was very similar to that in abortively infected cells, except that the relative amount of the viral mRNA fraction of 1.5 times 10-6 daltons was much higher. It is uncertain whether the viral mRNA of high-molecular-weight represents mixed transcripts derived from integrated viral genomes and adjacent host genes. PMID:1167602

  19. Epidemic Keratoconjunctivitis-Causing Adenoviruses Induce MUC16 Ectodomain Release To Infect Ocular Surface Epithelial Cells.

    PubMed

    Menon, Balaraj B; Zhou, Xiaohong; Spurr-Michaud, Sandra; Rajaiya, Jaya; Chodosh, James; Gipson, Ilene K

    2016-01-01

    Human adenoviruses (HAdV), species D in particular (HAdV-D), are frequently associated with epidemic keratoconjunctivitis (EKC). Although the infection originates at the ocular surface epithelium, the mechanisms by which HAdV-Ds bypass the membrane-associated mucin (MAM)-rich glycocalyx of the ocular surface epithelium to trigger infection and inflammation remain unknown. Here, we report that an EKC-causing adenovirus (HAdV-D37), but not a non-EKC-causing one (HAdV-D19p), induces ectodomain release of MUC16-a MAM with barrier functions at the ocular surface-from cultured human corneal and conjunctival epithelial cells. HAdV-D37, but not HAdV-D19p, is also found to decrease the glycocalyx barrier function of corneal epithelial cells, as determined by rose bengal dye penetrance assays. Furthermore, results from quantitative PCR (qPCR) amplification of viral genomic DNA using primers specific to a conserved region of the E1B gene show that, in comparison to infection by HAdV-D19p, infection by HAdV-D37 is significantly increased in corneal epithelial cells. Collectively, these results point to a MUC16 ectodomain release-dependent mechanism utilized by the EKC-causing HAdV-D37 to initiate infection at the ocular surface. These findings are important in terms of understanding the pathogenesis of adenoviral keratoconjunctivitis. Similar MAM ectodomain release mechanisms may be prevalent across other mucosal epithelia in the body (e.g., the airway epithelium) that are prone to adenoviral infection. IMPORTANCE Human adenoviruses (HAdVs) are double-stranded DNA viruses that cause infections across all mucosal tissues in the body. At the ocular surface, HAdVs cause keratoconjunctivitis (E. Ford, K. E. Nelson, and D. Warren, Epidemiol Rev 9:244-261, 1987, and C. M. Robinson, D. Seto, M. S. Jones, D. W. Dyer, and J. Chodosh, Infect Genet Evol 11:1208-1217, 2011, doi:10.1016/j.meegid.2011.04.031)-a highly contagious infection that accounts for nearly 60% of conjunctivitis cases

  20. Epidemic Keratoconjunctivitis-Causing Adenoviruses Induce MUC16 Ectodomain Release To Infect Ocular Surface Epithelial Cells

    PubMed Central

    Zhou, Xiaohong; Spurr-Michaud, Sandra; Rajaiya, Jaya; Chodosh, James; Gipson, Ilene K.

    2016-01-01

    ABSTRACT Human adenoviruses (HAdV), species D in particular (HAdV-D), are frequently associated with epidemic keratoconjunctivitis (EKC). Although the infection originates at the ocular surface epithelium, the mechanisms by which HAdV-Ds bypass the membrane-associated mucin (MAM)-rich glycocalyx of the ocular surface epithelium to trigger infection and inflammation remain unknown. Here, we report that an EKC-causing adenovirus (HAdV-D37), but not a non-EKC-causing one (HAdV-D19p), induces ectodomain release of MUC16—a MAM with barrier functions at the ocular surface—from cultured human corneal and conjunctival epithelial cells. HAdV-D37, but not HAdV-D19p, is also found to decrease the glycocalyx barrier function of corneal epithelial cells, as determined by rose bengal dye penetrance assays. Furthermore, results from quantitative PCR (qPCR) amplification of viral genomic DNA using primers specific to a conserved region of the E1B gene show that, in comparison to infection by HAdV-D19p, infection by HAdV-D37 is significantly increased in corneal epithelial cells. Collectively, these results point to a MUC16 ectodomain release-dependent mechanism utilized by the EKC-causing HAdV-D37 to initiate infection at the ocular surface. These findings are important in terms of understanding the pathogenesis of adenoviral keratoconjunctivitis. Similar MAM ectodomain release mechanisms may be prevalent across other mucosal epithelia in the body (e.g., the airway epithelium) that are prone to adenoviral infection. IMPORTANCE Human adenoviruses (HAdVs) are double-stranded DNA viruses that cause infections across all mucosal tissues in the body. At the ocular surface, HAdVs cause keratoconjunctivitis (E. Ford, K. E. Nelson, and D. Warren, Epidemiol Rev 9:244–261, 1987, and C. M. Robinson, D. Seto, M. S. Jones, D. W. Dyer, and J. Chodosh, Infect Genet Evol 11:1208–1217, 2011, doi:10.1016/j.meegid.2011.04.031)—a highly contagious infection that accounts for nearly 60% of

  1. Adenovirus type 12-induced rat tumor cells of neuroepithelial origin: persistence and expression of the viral genome.

    PubMed Central

    Ibelgaufts, H; Doerfler, W; Scheidtmann, K H; Wechsler, W

    1980-01-01

    Four cell lines derived from adenovirus type 12-induced rat brain tumors were studied. The polyploid cells displayed neuroepithelial characteristics and were transplantable into syngeneic rats and nude mice. In tissue culture the cells grew in monolayers and multilayers. A very high saturation density was reached, and the cells plated in agar and were easily agglutinated with low concentrations of concanavalin A. Between 2 and 11 copies of the viral genome per diploid cellular genome were detected by reassociation kinetics analysis in the different lines. The patterns of distribution of viral DNA sequences in these lines, as revealed by blot analysis, suggest colinear integration of the intact viral genome into the cellular DNA. The patterns of integration were stable after more than 15 months of prolonged tissue culture and after animal reimplantation. Integration patterns were identical in three of the tumor lines and different in another line. Viral sequences were transcribed. The extent of homology found toward adenovirus type 12 DNA in polyadenylated polysome-associated mRNA isolated from the tumor lines suggests that the early and some of the late genes of adenovirus type 12 DNA are transcribed in these tumor cells. Infectious virus was not rescuable from these lines. Images PMID:7365869

  2. Cutting edge: recombinant adenoviruses induce CD8 T cell responses to an inserted protein whose expression is limited to nonimmune cells.

    PubMed

    Prasad, S A; Norbury, C C; Chen, W; Bennink, J R; Yewdell, J W

    2001-04-15

    CD8 T cells (T(CD8+)) play a crucial role in immunity to viruses. Current understanding of activation of naive T cells entails Ag presentation by professional APCs (pAPCs). What happens, however, when viruses evolve to avoid infecting pAPCs? We have studied the consequences of this strategy by generating recombinant adenoviruses that express influenza A virus nucleoprotein under the control of tissue-specific promoters. We show that the immunogenicity of such viruses requires their delivery to organs capable of expressing nucleoprotein. This indicates that infection of pAPCs is not required for adenoviruses to elicit a T(CD8+) response, probably due to a cross-priming via pAPCs. While this bodes well for recombinant adenoviruses as vaccines, it dims their prospects as gene therapy vectors. PMID:11290753

  3. Production of canine adenovirus type 2 in serum-free suspension cultures of MDCK cells.

    PubMed

    Castro, R; Fernandes, P; Laske, T; Sousa, M F Q; Genzel, Y; Scharfenberg, K; Alves, P M; Coroadinha, A S

    2015-09-01

    The potential of adherent Madin Darby Canine Kidney (MDCK) cells for the production of influenza viruses and canine adenovirus type 2 (CAV-2) for vaccines or gene therapy approaches has been shown. Recently, a new MDCK cell line (MDCK.SUS2) that was able to grow in suspension in a fully defined system was established. In this work, we investigated whether the new MDCK.SUS2 suspension cell line is suitable for the amplification of CAV-2 under serum-free culture conditions. Cell growth performance and CAV-2 production were evaluated in three serum-free media: AEM, SMIF8, and EXCELL MDCK. CAV-2 production in shake flasks was maximal when AEM medium was used, resulting in an amplification ratio of infectious particles (IP) of 142 IP out/IP in and volumetric and cell-specific productivities of 2.1 × 10(8) IP/mL and 482 IP/cell, respectively. CAV-2 production was further improved when cells were cultivated in a 0.5-L stirred tank bioreactor. To monitor infection and virus production, cells were analyzed by flow cytometry. A correlation between the side scatter measurement and CAV-2 productivity was found, which represents a key feature to determine the best harvesting time during process development of gene therapy vectors that do not express reporter genes. This work demonstrates that MDCK.SUS2 is a suitable cell substrate for CAV-2 production, constituting a step forward in developing a production process transferable to industrial scales. This could allow for the production of high CAV-2 titers either for vaccination or for gene therapy purposes. PMID:25994255

  4. Mechanism of adenovirus-mediated endosome lysis: role of the intact adenovirus capsid structure.

    PubMed

    Seth, P

    1994-12-15

    Adenoviruses have been previously shown to enhance the delivery of many ligands including proteins and plasmid DNAs to the cells. The key biochemical step during this process is the ability of adenovirus to disrupt (lyse) the endosome membrane releasing the co-internalized virus and the other ligands into the cytosol (Seth et al, 1986, In: Adenovirus attachment and entry into cells, pp 191-195, American Society for Microbiology, Washington, D.C.). To understand the role of the adenovirus proteins involved in the endosome lysis, it is further shown here that empty capsids of adenovirus also possess this membrane vesicle lytic activity; though the activity is about 5-times lower than the adenovirus. Incubation of adenovirus with low concentration of ionic detergent or brief exposure to 45 degrees C destroyed this lytic activity without affecting the adenovirus binding to cell surface receptor, suggesting the lytic activity of adenovirus to be of enzymatic nature. However, exposing adenovirus to conditions that can disrupt adenovirus capsid structure such as heating at 65 degrees C, treating with 0.5% SDS, treating with different proteases, dialyzing against no glycerol buffer, treating with 6 M urea or with 10% pyridine, and sonication destroyed the adenovirus-associated lytic activity. Results suggest the requirement of an intact capsid structure for adenovirus-mediated lysis of the endosome. PMID:7802664

  5. Coagulation Factor IX Mediates Serotype-Specific Binding of Species A Adenoviruses to Host Cells ▿ †

    PubMed Central

    Lenman, Annasara; Müller, Steffen; Nygren, Mari I.; Frängsmyr, Lars; Stehle, Thilo; Arnberg, Niklas

    2011-01-01

    Human species A adenoviruses (HAdVs) comprise three serotypes: HAdV-12, -18, and -31. These viruses are common pathogens and cause systemic infections that usually involve the airways and/or intestine. In immunocompromised individuals, species A adenoviruses in general, and HAdV-31 in particular, cause life-threatening infections. By combining binding and infection experiments, we demonstrate that coagulation factor IX (FIX) efficiently enhances binding and infection by HAdV-18 and HAdV-31, but not by HAdV-12, in epithelial cells originating from the airways or intestine. This is markedly different from the mechanism for HAdV-5 and other human adenoviruses, which utilize coagulation factor X (FX) for infection of host cells. Surface plasmon resonance experiments revealed that the affinity of the HAdV-31 hexon-FIX interaction is higher than that of the HAdV-5 hexon-FX interaction and that the half-lives of these interactions are profoundly different. Moreover, both HAdV-31–FIX and HAdV-5–FX complexes bind to heparan sulfate-containing glycosaminoglycans (GAGs) on target cells, but binding studies utilizing cells expressing specific GAGs and GAG-cleaving enzymes revealed differences in GAG dependence and specificity between these two complexes. These findings add to our understanding of the intricate infection pathways used by human adenoviruses, and they may contribute to better design of HAdV-based vectors for gene and cancer therapy. Furthermore, the interaction between the HAdV-31 hexon and FIX may also serve as a target for antiviral treatment. PMID:21976659

  6. Comparison between Sendai virus and adenovirus vectors to transduce HIV-1 genes into human dendritic cells.

    PubMed

    Hosoya, Noriaki; Miura, Toshiyuki; Kawana-Tachikawa, Ai; Koibuchi, Tomohiko; Shioda, Tatsuo; Odawara, Takashi; Nakamura, Tetsuya; Kitamura, Yoshihiro; Kano, Munehide; Kato, Atsushi; Hasegawa, Mamoru; Nagai, Yoshiyuki; Iwamoto, Aikichi

    2008-03-01

    Immuno-genetherapy using dendritic cells (DCs) can be applied to human immunodeficiency virus type 1 (HIV-1) infection. Sendai virus (SeV) has unique features such as cytoplasmic replication and high protein expression as a vector for genetic manipulation. In this study, we compared the efficiency of inducing green fluorescent protein (GFP) and HIV-1 gene expression in human monocyte-derived DCs between SeV and adenovirus (AdV). Human monocyte-derived DCs infected with SeV showed the maximum gene expression 24 hr after infection at a multiplicity of infection (MOI) of 2. Although SeV vector showed higher cytopathic effect on DCs than AdV, SeV vector induced maximum gene expression earlier and at much lower MOI. In terms of cell surface phenotype, both SeV and AdV vectors induced DC maturation. DCs infected with SeV as well as AdV elicited HIV-1 specific T-cell responses detected by interferon gamma (IFN-gamma) enzyme-linked immunospot (Elispot). Our data suggest that SeV could be one of the reliable vectors for immuno-genetherapy for HIV-1 infected patients. PMID:18205221

  7. The Use of Adenovirus Dodecahedron in the Delivery of an Enzymatic Activity in the Cell

    PubMed Central

    Sumarheni; Gallet, Benoit; Fender, Pascal

    2016-01-01

    Penton-dodecahedron (Pt-Dd) derived from adenovirus type 3 is a symmetric complex of pentameric penton base plus fiber which can be produced in the baculovirus system at a high concentration. The size of Pt-Dd is smaller than the virus, but this virus-like particle (VLP) has the major proteins recognized by specific receptors on the surface of almost all types of cell. In this study, by direct observation with fluorescence microscopy on a fixed and living cell, the intracellular trafficking and localization of Pt-Dd labeled with fluorescence dyes in the cytoplasm of HeLa Tub-GFP showed a rapid internalization characteristic. Subsequently, the linkage of horseradish peroxidase (HRP) with Pt-Dd as the vector demonstrated an efficient system to deliver this enzyme into the cell without interfering its enzymatic activity as shown by biochemical and cellular experiments. These results were supported by additional studies using Bs-Dd or free form of the HRP used as the control. Overall, this study strengthens the potential role of Pt-Dd as an alternative vector for delivering therapeutic agents. PMID:27242929

  8. Adenovirus-mediated gene delivery to cells of the magnocellular hypothalamo-neurohypophyseal system

    NASA Technical Reports Server (NTRS)

    Vasquez, E. C.; Beltz, T. G.; Haskell, R. E.; Johnson, R. F.; Meyrelles, S. S.; Davidson, B. L.; Johnson, A. K.

    2001-01-01

    The objective of the present study was to define the optimum conditions for using replication-defective adenovirus (Ad) to transfer the gene for the green fluorescent protein (GFP) to the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei and cells of the neurohypophysis (NH). As indicated by characterizing cell survival over 15 days in culture and in electrophysiological whole cell patch-clamp studies, viral concentrations up to 2 x 10(7) pfu/coverslip did not affect viability of transfected PVN and NH cultured cells from preweanling rats. At 2 x 10(7) pfu, GFP gene expression was higher (40% of GFP-positive cells) and more sustained (up to 15 days). Using a stereotaxic approach in adult rats, we were able to directly transduce the PVN, SON, and NH and visualize gene expression in coronal brain slices and in the pituitary 4 days after injection of Ad. In animals receiving NH injections of Ad, the virus was retrogradely transported to PVN and SON neurons as indicated by the appearance of GFP-positive neurons in cultures of dissociated cells from those brain nuclei and by polymerase chain reaction and Western blot analyses of PVN and SON tissues. Adenoviral concentrations of up to 8 x 10(6) pfu injected into the NH did not affect cell viability and did not cause inflammatory responses. Adenoviral injection into the pituitary enabled the selective delivery of genes to the soma of magnocellular neurons. The experimental approaches described here provide potentially useful strategies for the treatment of disordered expression of the hormones vasopressin or oxytocin. Copyright 2000 Academic Press.

  9. An oncolytic adenovirus enhances antiangiogenic and antitumoral effects of a replication-deficient adenovirus encoding endostatin by rescuing its selective replication in nasopharyngeal carcinoma cells

    SciTech Connect

    Liu, Ran-yi; Zhou, Ling; Zhang, Yan-ling; Huang, Bi-jun; Ke, Miao-la; Chen, Jie-min; Li, Li-xia; Fu, Xiang; Wu, Jiang-xue; Huang, Wenlin

    2013-12-13

    Highlights: •H101 promotes endostatin expression by Ad-Endo via rescuing Ad-Endo replication. •H101 rescued Ad-Endo replication by supplying E1A and E1B19k proteins. •Ad-Endo enhanced the cytotoxicity of H101 in NPC cells. •Ad-Endo and oncolytic Ad H101 have synergistic antitumor effects on NPC. -- Abstract: A replication-deficient adenovirus (Ad) encoding secreted human endostatin (Ad-Endo) has been demonstrated to have promising antiangiogenic and antitumoral effects. The E1B55k-deleted Ad H101 can selectively lyse cancer cells. In this study, we explored the antitumor effects and cross-interactions of Ad-Endo and H101 on nasopharyngeal carcinoma (NPC). The results showed that H101 dramatically promoted endostatin expression by Ad-Endo via rescuing Ad-Endo replication in NPC cells, and the expressed endostatin proteins significantly inhibited the proliferation of human umbilical vein endothelial cells. E1A and E1B19k products are required for the rescuing of H101 to Ad-Endo replication in CNE-1 and CNE-2 cells, but not in C666-1 cells. On the other hand, Ad-Endo enhanced the cytotoxicity of H101 by enhancing Ad replication in NPC cells. The combination of H101 and Ad-Endo significantly inhibited CNE-2 xenografts growth through the increased endostatin expression and Ad replication. These findings indicate that the combination of Ad-Endo gene therapy and oncolytic Ad therapeutics could be promising in comprehensive treatment of NPC.

  10. Localization of the adenovirus E1Aa protein, a positive-acting transcriptional factor, in infected cells infected cells.

    PubMed Central

    Feldman, L T; Nevins, J R

    1983-01-01

    The function of the adenovirus E1Aa protein (the product of the 13S E1A mRNA) during a productive viral infection is to activate transcription of the six early viral transcription units. To study the mechanism of action of this protein, a peptide which was 13 amino acids long and had a sequence unique to the protein product of the adenovirus 13S E1A mRNA (pE1Aa) was coupled to keyhole limpet hemocyanin and used to raise an antibody in rabbits. The resulting antiserum was specific to this protein and did not react with the protein product of the 12S E1A mRNA, which shares considerable sequence with the E1Aa protein. This antiserum was used to probe for the E1Aa protein in situ by indirect immunofluorescence and in extracts of infected HeLa cells. We found that the protein was associated with large cellular structures both in the nucleus and in the cytoplasm. The nuclear form of the protein was analyzed further and was found to purify with the nuclear matrix. Images PMID:6346057

  11. Cell-Free Transmission of Human Adenovirus by Passive Mass Transfer in Cell Culture Simulated in a Computer Model

    PubMed Central

    Yakimovich, Artur; Gumpert, Heidi; Burckhardt, Christoph J.; Lütschg, Verena A.; Jurgeit, Andreas; Sbalzarini, Ivo F.

    2012-01-01

    Viruses spread between cells, tissues, and organisms by cell-free and cell-cell transmissions. Both mechanisms enhance disease development, but it is difficult to distinguish between them. Here, we analyzed the transmission mode of human adenovirus (HAdV) in monolayers of epithelial cells by wet laboratory experimentation and a computer simulation. Using live-cell fluorescence microscopy and replication-competent HAdV2 expressing green fluorescent protein, we found that the spread of infection invariably occurred after cell lysis. It was affected by convection and blocked by neutralizing antibodies but was independent of second-round infections. If cells were overlaid with agarose, convection was blocked and round plaques developed around lytic infected cells. Infected cells that did not lyse did not give rise to plaques, highlighting the importance of cell-free transmission. Key parameters for cell-free virus transmission were the time from infection to lysis, the dose of free viruses determining infection probability, and the diffusion of single HAdV particles in aqueous medium. With these parameters, we developed an in silico model using multiscale hybrid dynamics, cellular automata, and particle strength exchange. This so-called white box model is based on experimentally determined parameters and reproduces viral infection spreading as a function of the local concentration of free viruses. These analyses imply that the extent of lytic infections can be determined by either direct plaque assays or can be predicted by calculations of virus diffusion constants and modeling. PMID:22787215

  12. Longitudinal Requirement for CD4+ T Cell Help for Adenovirus Vector–Elicited CD8+ T Cell Responses

    PubMed Central

    Provine, Nicholas M.; Larocca, Rafael A.; Penaloza-MacMaster, Pablo; Borducchi, Erica N.; McNally, Anna; Parenteau, Lily R.; Kaufman, David R.

    2014-01-01

    Despite the widespread use of replication-incompetent recombinant adenovirus (Ad) vectors as candidate vaccine platforms, the mechanism by which these vectors elicit CD8+ T cell responses remains poorly understood. Our data demonstrate that induction and maintenance of CD8+ T cell responses by Ad vector immunization is longitudinally dependent on CD4+ T cell help for a prolonged period. Depletion of CD4+ T cells in wild type mice within the first 8 d following Ad immunization resulted in dramatically reduced induction of Ag-specific CD8+ T cells, decreased T-bet and eomesodermin expression, impaired KLRG1+ effector differentiation, and atypical expression of the memory markers CD127, CD27, and CD62L. Moreover, these CD8+ T cells failed to protect against a lethal recombinant Listeria monocytogenes challenge. Depletion of CD4+ T cells between weeks 1 and 4 following immunization resulted in increased contraction of memory CD8+ T cells. These data demonstrate a prolonged temporal requirement for CD4+ T cell help for vaccine-elicited CD8+ T cell responses in mice. These findings have important implications in the design of vaccines aimed at eliciting CD8+ T cell responses and may provide insight into the impaired immunogenicity of vaccines in the context of AIDS and other CD4+ T cell immune deficiencies. PMID:24778441

  13. Potent antitumor activity of oncolytic adenovirus expressing Beclin-1 via induction of autophagic cell death in leukemia

    PubMed Central

    Liu, Hui; Li, Lu; Meng, Haitao; Qian, Qijun

    2013-01-01

    An attractive strategy among adenovirus-based oncolytic systems is to design adenoviral vectors to express pro-apoptotic genes, in which this gene-virotherapy approach significantly enhances tumor cell death by activating apoptotic pathways. However, the existence of cancer cells with apoptotic defects is one of the major obstacles in gene-virotherapy. Here, we investigated whether a strategy that combines the oncolytic effects of an adenoviral vector with simultaneous expression of Beclin-1, an autophagy gene, offers a therapeutic advantage for leukemia. A Beclin-1 cDNA was cloned in an oncolytic adenovirus with chimeric Ad5/11 fiber (SG511-BECN). SG511-BECN treatment induced significant autophagic cell death, and resulted in enhanced cell killing in a variety of leukemic cell lines and primary leukemic blasts. SG511-BECN effects were seen in chronic myeloid leukemia and acute myeloid leukemia with resistance to imatinib or chemotherapy, but exhibited much less cytotoxicity on normal cells. The SG511-BECN-induced autophagic cell death could be partially reversed by RNA interference knockdown of UVRAG, ATG5, and ATG7. We also showed that SG511-BECN strongly inhibited the growth of leukemic progenitors in vitro. In murine leukemia models, SG511-BECN prolonged the survival and decreased the xenograft tumor size by inducing autophagic cell death. Our results suggest that infection of leukemia cells with an oncolytic adenovirus overexpressing Beclin-1 can induce significant autophagic cell death and provide a new strategy for the elimination of leukemic cells via a unique mechanism of action distinct from apoptosis. PMID:23765161

  14. Delivery of bacterial artificial chromosomes into mammalian cells with psoralen-inactivated adenovirus carrier.

    PubMed Central

    Baker, A; Cotten, M

    1997-01-01

    Molecular biology has many applications where the introduction of large (>100 kb) DNA molecules is required. The current methods of large DNA transfection are very inefficient. We reasoned that two limits to improving transfection methods with these large DNA molecules were the difficulty of preparing workable quantities of clean DNA and the lack of rapid assays to determine transfection success. We have used bacterial artificial chromosomes (BACs) based on the Escherichia coli F factor plasmid system, which are simple to manipulate and purify in microgram quantities. Because BAC plasmids are kept at one to two copies per cell, the problems of rearrangement observed with YACs are eliminated. We have generated two series of BAC vectors bearing marker genes for luciferase and green fluorescent protein (GFP). Using these reagents, we have developed methods of delivering BACs of up to 170 kb into mammalian cells with transfection efficiency comparable to 5-10 kb DNA. Psoralen-inactivated adenovirus is used as the carrier, thus eliminating the problems associated with viral gene expression. The delivered DNA is linked to the carrier virus with a condensing polycation. Further improvements in gene delivery were obtained by replacing polylysine with low molecular weight polyethylenimine (PEI) as the DNA condensing agent. PMID:9115362

  15. Adenovirus Improves the Efficacy of Adoptive T-cell Therapy by Recruiting Immune Cells to and Promoting Their Activity at the Tumor.

    PubMed

    Tähtinen, Siri; Grönberg-Vähä-Koskela, Susanna; Lumen, Dave; Merisalo-Soikkeli, Maiju; Siurala, Mikko; Airaksinen, Anu J; Vähä-Koskela, Markus; Hemminki, Akseli

    2015-08-01

    Despite the rapid progress in the development of novel adoptive T-cell therapies, the clinical benefits in treatment of established tumors have remained modest. Several immune evasion mechanisms hinder T-cell entry into tumors and their activity within the tumor. Of note, oncolytic adenoviruses are intrinsically immunogenic due to inherent pathogen-associated molecular patterns. Here, we studied the capacity of adenovirus to overcome resistance of chicken ovalbumin-expressing B16.OVA murine melanoma tumors to adoptive ovalbumin-specific CD8(+) T-cell (OT-I) therapy. Following intraperitoneal transfer of polyclonally activated OT-I lymphocytes, control of tumor growth was superior in mice given intratumoral adenovirus compared with control mice, even in the absence of oncolytic virus replication. Preexisting antiviral immunity against serotype 5 did not hinder the therapeutic efficacy of the combination treatment. Intratumoral adenovirus injection was associated with an increase in proinflammatory cytokines, CD45(+) leukocytes, CD8(+) lymphocytes, and F4/80(+) macrophages, suggesting enhanced tumor immunogenicity. The proinflammatory effects of adenovirus on the tumor microenvironment led to expression of costimulatory signals on CD11c(+) antigen-presenting cells and subsequent activation of T cells, thus breaking the tumor-induced peripheral tolerance. An increased number of CD8(+) T cells specific for endogenous tumor antigens TRP-2 and gp100 was detected in combination-treated mice, indicating epitope spreading. Moreover, the majority of virus/T-cell-treated mice rejected the challenge of parental B16.F10 tumors, suggesting that systemic antitumor immunity was induced. In summary, we provide proof-of-mechanism data on combining adoptive T-cell therapy and adenovirotherapy for the treatment of cancer. PMID:25977260

  16. Adenovirus E1A gene induction of susceptibility to lysis by natural killer cells and activated macrophages in infected rodent cells.

    PubMed Central

    Cook, J L; May, D L; Lewis, A M; Walker, T A

    1987-01-01

    Rodent cells immortalized by the E1A gene of nononcogenic adenoviruses are susceptible to lysis by natural killer (NK) cells and activated macrophages. This cytolysis-susceptible phenotype may contribute to the rejection of adenovirus-transformed cells by immunocompetent animals. Such increased cytolytic susceptibility has also been observed with infected rodent cells. This infection model provided a means to study the role of E1A gene products in induction of cytolytic susceptibility without cell selection during transformation. Deletion mutations outside of the E1A gene had no effect on adenovirus type 2 (Ad2) or Ad5 induction of cytolytic susceptibility in infected hamster cells, while E1A-minus mutant viruses could not induce this phenotype. E1A mutant viruses that induced expression of either E1A 12S or 13S mRNA in infected cells were competent to induce cytolytic susceptibility. Furthermore, there was a correlation between the accumulation of E1A gene products in Ad5-infected cells and the level of susceptibility of such target cells to lysis by NK cells. The results of coinfection studies indicated that the E1A gene products of highly oncogenic Ad12 could not complement the lack of induction of cytolytic susceptibility by E1A-minus Ad5 virus in infected cells and also could not block induction of this infected-cell phenotype by Ad5. These data suggest that expression of the E1A gene of nononcogenic adenoviruses may cause the elimination of infected cells by the immunologically nonspecific host inflammatory cell response prior to cellular transformation. The lack of induction of this cytolysis-susceptible phenotype by Ad12 E1A may result in an increased persistence of Ad12-infected cells in vivo and may lead to an increased Ad12-transformed cell burden for the host. Images PMID:2959793

  17. Structure of human adenovirus

    SciTech Connect

    Nemerow, Glen R.; Stewart, Phoebe L.; Reddy, Vijay S.

    2012-07-11

    A detailed structural analysis of the entire human adenovirus capsid has been stymied by the complexity and size of this 150 MDa macromolecular complex. Over the past 10 years, the steady improvements in viral genome manipulation concomitant with advances in crystallographic techniques and data processing software has allowed structure determination of this virus by X-ray diffraction at 3.5 {angstrom} resolution. The virus structure revealed the location, folds, and interactions of major and minor (cement proteins) on the inner and outer capsid surface. This new structural information sheds further light on the process of adenovirus capsid assembly and virus-host cell interactions.

  18. Temperature-sensitive initiation and elongation of adenovirus DNA replication in vitro with nuclear extracts from H5ts36-, H5ts149-, and H5ts125-infected HeLa cells.

    PubMed Central

    van Bergen, B G; van der Vliet, P C

    1983-01-01

    Adenovirus DNA replication was studied in vitro in nuclear extracts prepared from HeLa cells infected at the permissive temperature with H5ts125, H5ts36, or H5ts149, three DNA-negative mutants belonging to two different complementation groups. At the restrictive temperature, H5ts125 extracts, containing a thermolabile 72-kilodalton DNA-binding protein, enable the formation of an initiation complex between the 82-kilodalton terminal protein precursor (pTP) and dCTP, but further elongation of this complex is inhibited. Wild-type DNA-binding protein or a 47-kilodalton chymotryptic DNA-binding fragment can complement the mutant protein in the elongation reaction. No difference in heat inactivation was observed between wild-type extracts and H5ts36 or H5ts149 extracts when the replication of terminal XbaI fragments of adenovirus type 5 DNA-terminal protein complex was studied. In contrast, the formation of a pTP-dCMP initiation complex, as well as the partial elongation reaction up to nucleotide 26, were consistently more temperature sensitive in mutant extracts. The results suggest that the H5ts36/H5ts149 gene product is required for initiation of adenovirus type 5 DNA replication and that the 72-kilodalton DNA-binding protein functions early in elongation. Images PMID:6302326

  19. The expression of heat shock protein hsp27 and a complexed 22-kilodalton protein is inversely correlated with oncogenicity of adenovirus-transformed cells.

    PubMed Central

    Zantema, A; de Jong, E; Lardenoije, R; van der Eb, A J

    1989-01-01

    We isolated a monoclonal antibody that immunoprecipitated two proteins of 22 and 27 kilodaltons (kDa) from nononcogenic adenovirus type 5 early region 1 (E1)-transformed rat cells but not from oncogenic adenovirus type 12 E1-transformed rat cells. In a variety of adenovirus-transformed cells including cells transformed by E1A and the c-H-ras oncogene, we found a perfect, inverse correlation between the presence of these two proteins and the oncogenicity of these cells in syngeneic immunocompetent rats. Characterization of the two proteins revealed that they occur in a large (700-kDa) complex and that the 27-kDa protein is identical to the already known 27-kDa (28-kDa) heat shock protein hsp27. The suppression of the hsp27 protein in oncogenic cells is further demonstrated by the fact that its mRNA is absent even after heat-shock induction. Images PMID:2746733

  20. Cryopreservation of adenovirus-transfected dendritic cells (DCs) for clinical use.

    PubMed

    Gülen, D; Maas, S; Julius, H; Warkentin, P; Britton, H; Younos, I; Senesac, J; Pirruccello, Samuel M; Talmadge, J E

    2012-05-01

    In this study, we examined the effects of cryoprotectant, freezing and thawing, and adenovirus (Adv) transduction on the viability, transgene expression, phenotype, and function of human dendritic cells (DCs). DCs were differentiated from cultured peripheral blood (PB) monocytes following Elutra isolation using granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 6 days and then transduced using an Adv vector with an IL-12 transgene. Fresh, cryopreserved, and thawed transduced immature DCs were examined for their: 1) cellular concentration and viability; 2) antigenicity using an allogeneic mixed lymphocyte reaction (MLR); 3) phenotype (HLA-DR and CD11c) and activation (CD83); and 4) transgene expression based on IL-12 secretion. Stability studies revealed that transduced DCs could be held in cryoprotectant for as long as 75 min at 2-8°C prior to freezing with little effect on their viability and cellularity. Further, cryopreservation, storage, and thawing reduced the viability of the transduced DCs by an average of 7.7%; and had no significant impact on DC phenotype and activation. In summary, cryopreservation, storage, and thawing had no significant effect on DC viability, function, and transgene expression by Adv-transduced DCs. PMID:22465385

  1. The structure of adenovirus type 12 DNA integration sites in the hamster cell genome.

    PubMed Central

    Knoblauch, M; Schröer, J; Schmitz, B; Doerfler, W

    1996-01-01

    Foreign DNA can integrate into the genomes of mammalian cells, and this process plays major roles in viral oncogenesis and in the generation of transgenic organisms and will be important in evolving regimens for human somatic gene therapy. In the present study, the insertion sites of adenovirus type 12 (Ad12) DNA genomes have been analyzed in detail in the Ad12-transformed hamster cell line T637, its revertants, which have lost most of the >20 Ad12 genome equivalents integrated chromosomally in cell line T637, and in the Ad12-induced tumor T191. Some of these junction sites have been molecularly cloned, and the nucleotide sequences at the sites of transition between viral and cellular DNAs have been determined. The sites of linkage between the hamster cellular and the foreign (viral) DNA are characterized by the frequent occurrence of patch homologies between the recombination partners. The cellular junction sites investigated here are not transcriptionally active. One of the cellular DNA sequences abutting the right Ad12 DNA terminus in cell line T637 (os2) is represented only once in the hamster genome and has a strikingly low abundance of 5'-CG-3' dinucleotide sequences. One 5'-GCGC-3' sequence close to the Ad12 DNA integration site is heavily methylated in normal cells, Ad12-transformed cells, and Ad12-induced tumor cells. The second such sequence is more remote from the junction site, is partly methylated in BHK21 hamster cells, and shows differences in methylation in different Ad12-transformed cell lines. This site is unmethylated in liver DNA. The cellular DNA sequence at the site of Ad12 linkage in the tumor T191 exhibits homologies to highly repetitive sequences of the Alu family and to an origin of hamster DNA replication containing an Alu element. A number of junction sites between Ad12 DNA and hamster or mouse DNA in Ad12-transformed cell lines or Ad12-induced tumor cell lines, investigated here and previously, are characterized by stem-loop structures

  2. Restricted Replication of Vesicular Stomatitis Virus in Human Lymphoblastoid Cells

    PubMed Central

    Nowakowski, Maja; Bloom, Barry R.; Ehrenfeld, Ellie; Summers, Donald F.

    1973-01-01

    Replication of vesicular stomatitis virus (VSV) is restricted in one human lymphoblastoid cell line (Raji), but not in another similar cell line (Wil-2), compared with growth in HeLa cells. This restriction is characterized by a low proportion of cells yielding infectious virus and is associated with limited production of 42S virion RNA. Primary transcription of 13S and 26S VSV-specific RNA is not restricted in Raji cells, and the 13S RNA produced contains adenylate-rich sequences. This suggests that the block in Raji cells involves some step required for the replication of virion RNA. PMID:4357508

  3. Detection of Infectious Adenovirus in Cell Culture by mRNA Reverse Transcription-PCR

    PubMed Central

    Ko, Gwangpyo; Cromeans, Theresa L.; Sobsey, Mark D.

    2003-01-01

    We have developed and evaluated the reverse transcription (RT)-PCR detection of mRNA in cell culture to assay infectious adenoviruses (Ads) by using Ad type 2 (Ad2) and Ad41 as models. Only infectious Ads are detected because they are the only ones able to produce mRNA during replication in cell culture. Three primer sets for RT-PCR amplification of mRNA were evaluated for their sensitivity and specificity: a conserved region of late mRNA transcript encoding a virion structural hexon protein and detecting a wide range of human Ads and two primer sets targeting a region of an early mRNA transcript that specifically detects either Ad2 and Ad5 or Ad40 and Ad41. The mRNAs of infected A549 and Graham 293 cells were recovered from cell lysates with oligo(dT) at different time periods after infection and treated with RNase-free DNase to remove residual contaminating DNA, and then Ad mRNA was detected by RT-PCR assay. The mRNA of Ad2 was detected as early as 6 h after infection at 106 infectious units (IU) per cell culture and after longer incubation times at levels as low as 1 to 2 IU per cell culture. The mRNA of Ad41 was detected as soon as 24 h after infection at 106 IU per cell culture and at levels as low as 5 IU per cell culture after longer incubation times. To confirm the detection of only infectious viruses, it was shown that no mRNA was detected from Ad2 and Ad41 inactivated by free chlorine or high doses of collimated, monochromatic (254-nm) UV radiation. Detection of Ad2 mRNA exactly coincided with the presence of virus infectivity detected by cytopathogenic effects in cell cultures, but mRNA detection occurred sooner. These results suggest that mRNA detection by RT-PCR assay in inoculated cell cultures is a very sensitive, specific, and rapid method by which to detect infectious Ads in water and other environmental samples. PMID:14660388

  4. Wavelength dependent UV inactivation and DNA damage of adenovirus as measured by cell culture infectivity and long range quantitative PCR.

    PubMed

    Beck, Sara E; Rodriguez, Roberto A; Linden, Karl G; Hargy, Thomas M; Larason, Thomas C; Wright, Harold B

    2014-01-01

    Adenovirus is regarded as the most resistant pathogen to ultraviolet (UV) disinfection due to its demonstrated resistance to monochromatic, low-pressure (LP) UV irradiation at 254 nm. This resistance has resulted in high UV dose requirements for all viruses in regulations set by the United States Environmental Protection Agency. Polychromatic, medium-pressure (MP) UV irradiation has been shown to be much more effective than 254 nm, although the mechanisms of polychromatic UV inactivation are not completely understood. This research analyzes the wavelength-specific effects of UV light on adenovirus type 2 by analyzing in parallel the reduction in viral infectivity and damage to the viral genome. A tunable laser from the National Institute of Standards and Technology was used to isolate single UV wavelengths. Cell culture infectivity and PCR were employed to quantify the adenoviral inactivation rates using narrow bands of irradiation (<1 nm) at 10 nm intervals between 210 and 290 nm. The inactivation rate corresponding to adenoviral genome damage matched the inactivation rate of adenovirus infectivity at 253.7 nm, 270 nm, 280 nm, and 290 nm, suggesting that damage to the viral DNA was primarily responsible for loss of infectivity at those wavelengths. At 260 nm, more damage to the nucleic acid was observed than reduction in viral infectivity. At 240 nm and below, the reduction of viral infectivity was significantly greater than the reduction of DNA amplification, suggesting that UV damage to a viral component other than DNA contributed to the loss of infectivity at those wavelengths. Inactivation rates were used to develop a detailed spectral sensitivity or action spectrum of adenovirus 2. This research has significant implications for the water treatment industry with regard to polychromatic inactivation of viruses and the development of novel wavelength-specific UV disinfection technologies. PMID:24266597

  5. Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells

    PubMed Central

    FENG, GANG; WAN, YUQING; BALIAN, GARY; LAURENCIN, CATO T.; LI, XUDONG

    2010-01-01

    The repair of articular cartilage injuries is impeded by the avascular and non-innervated nature of cartilage. Transplantation of autologous chondrocytes has a limited ability to augment the repair process due to the highly differentiated state of chondrocytes and the risks of donor-site morbidity. Mesenchymal stem cells can undergo chondrogenesis in the presence of growth factors for cartilage defect repair. Growth and differentiation factor-5 (GDF5) plays an important role in chondrogenesis. In this study, we examined the effects of GDF5 on chondrogenesis of adipose-derived stem cells (ADSCs) and evaluate the chondrogenic potentials of GDF5 genetically engineered ADSCs using an in vitro pellet culture model. Rat ADSCs were grown as pellet cultures and treated with chondrogenic media (CM). Induction of GDF5 by an adenovirus (Ad-GDF5) was compared with exogenous supplementation of GDF5 (100 ng/ml) and transforming growth factor-β (TGF-β1; 10 ng/ml). The ADSCs underwent chondrogenic differentiation in response to GDF5 exposure as demonstrated by production of proteoglycan, and up-regulation of collagen II and aggrecan at the protein and mRNA level. The chondrogenic potential of a one-time infection with Ad-GDF5 was weaker than exogenous GDF5, but equal to that of TGF-β1. Stimulation with growth factors or CM alone induced transient expression of the mRNA for collagen X, indicating a need for optimization of the CM. Our findings indicate that GDF5 is a potent inducer of chondrogenesis in ADSCs, and that ADSCs genetically engineered to express prochondrogenic growth factors, such as GDF5, may be a promising therapeutic cell source for cartilage tissue engineering. PMID:18569021

  6. Radiosensitization of head/neck sqaumous cell carcinoma by adenovirus-mediated expression of the Nbs1 protein

    SciTech Connect

    Rhee, Juong G.; Li, Daqing; Suntharalingam, Mohan; Guo Chuanfa; O'Malley, Bert W.; Carney, James P. . E-mail: jcarney@som.umaryland.edu

    2007-01-01

    Purpose: Local failure and toxicity to adjacent critical structures is a significant problem in radiation therapy of cancers of the head and neck. We are developing a gene therapy based method of sensitizing head/neck squamous cell carcinoma (HNSCC) to radiation treatment. As patients with the rare hereditary disorder, Nijmegen breakage syndrome, show radiation sensitivity we hypothesized that tumor-specific disruption of the function of the Nbs1 protein would lead to enhanced cellular sensitivity to ionizing radiation. Experimental Procedures: We constructed two recombinant adenoviruses by cloning the full-length Nbs1 cDNA as well as the C-terminal 300 amino acids of Nbs1 into an adenovirus backbone under the control of a CMV promoter. The resulting adenoviruses were used to infect HNSCC cell line JHU011. These cells were evaluated for expression of the viral based constructs and assayed for clonogenic survival following radiation exposure. Results: Exposure of cells expressing Nbs1-300 to ionizing radiation resulted in a small reduction in survival relative to cells infected with control virus. Surprisingly, expression of full-length Nbs1 protein resulted in markedly enhanced sensitivity to ionizing radiation. Furthermore, the use of a fractionated radiation scheme following virus infection demonstrates that expression of full-length Nbs1 protein results in significant reduction in cell survival. Conclusions: These results provide a proof of principle that disruption of Nbs1 function may provide a means of enhancing the radiosensitivity of head and neck tumors. Additionally, this work highlights the Mre11 complex as an attractive target for development of radiation sensitizers.

  7. Biosafety studies of carrier cells infected with a replication-competent adenovirus introduced by IAI.3B promoter

    PubMed Central

    Hamada, Katsuyuki; Shirakawa, Toshiro; Terao, Shuji; Gotoh, Akinobu; Tani, Kenzaburo; Huang, Wenlin

    2014-01-01

    The use of carrier cells infected with oncolytic viruses in cancer gene therapy is an attractive method because it can overcome viral immunogenicity and induce tumor immunity and significant antitumor activity. To enable human clinical trials of this treatment, acute and chronic toxicity tests must first be performed to ensure safety. IAI.3B promoter, oncolytic adenovirus AdE3-IAI.3B introduced by IAI.3B promoter, and A549 carrier cells infected with AdE3-IAI.3B were highly active in cancer cells but not in normal cells. Freeze-thawing increased the antitumor effect of A549 carrier cells by promoting the translocation of oncolytic adenovirus particles from the nucleus to the cytoplasm following the rupture of the nuclear membranes. No deaths or abnormal blood test data resulted from acute toxicity tests conducted in nude mice after a single dose. In chronic toxicity tests in rabbits, there were no serious side effects after eight doses of 1.25 × 107 cells/kg or less for 4 weeks; a significant immune response is known to elicit increased numbers of antiadenovirus antibodies and enlarge the spleen. From these results, it could be concluded that cancer gene therapy of recurrent solid tumors using carrier cells can be safely trialed in humans. PMID:26015963

  8. Macropinocytotic Uptake and Infection of Human Epithelial Cells with Species B2 Adenovirus Type 35▿ †

    PubMed Central

    Kälin, Stefan; Amstutz, Beat; Gastaldelli, Michele; Wolfrum, Nina; Boucke, Karin; Havenga, Menzo; DiGennaro, Fabienne; Liska, Nicole; Hemmi, Silvio; Greber, Urs F.

    2010-01-01

    Human adenovirus serotype 35 (HAdV-35; here referred to as Ad35) causes kidney and urinary tract infections and infects respiratory organs of immunocompromised individuals. Unlike other adenoviruses, Ad35 has a low seroprevalence, which makes Ad35-based vectors promising candidates for gene therapy. Ad35 utilizes CD46 and integrins as receptors for infection of epithelial and hematopoietic cells. Here we show that infectious entry of Ad35 into HeLa cells, human kidney HK-2 cells, and normal human lung fibroblasts strongly depended on CD46 and integrins but not heparan sulfate and variably required the large GTPase dynamin. Ad35 infections were independent of expression of the carboxy-terminal domain of AP180, which effectively blocks clathrin-mediated uptake. Ad35 infections were inhibited by small chemicals against serine/threonine kinase Pak1 (p21-activated kinase), protein kinase C (PKC), sodium-proton exchangers, actin, and acidic organelles. Remarkably, the F-actin inhibitor jasplakinolide, the Pak1 inhibitor IPA-3, or the sodium-proton exchange inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA) blocked endocytic uptake of Ad35. Dominant-negative proteins or small interfering RNAs against factors driving macropinocytosis, including the small GTPase Rac1, Pak1, or the Pak1 effector C-terminal binding protein 1 (CtBP1), potently inhibited Ad35 infection. Confocal laser scanning microscopy, electron microscopy, and live cell imaging showed that Ad35 colocalized with fluid-phase markers in large endocytic structures that were positive for CD46, αν integrins, and also CtBP1. Our results extend earlier observations with HAdV-3 (Ad3) and establish macropinocytosis as an infectious pathway for species B human adenoviruses in epithelial and hematopoietic cells. PMID:20237079

  9. Ex vivo detection of adenovirus specific CD4{sup +} T-cell responses to HLA-DR-epitopes of the Hexon protein show a contracted specificity of T{sub HELPER} cells following stem cell transplantation

    SciTech Connect

    Serangeli, Celine; Bicanic, Oliver; Scheible, Michael H.; Lang, Peter; Handgretinger, Rupert

    2010-02-20

    Human adenovirus (HAdV) is a cause of significant morbidity and mortality in immunocompromised patients, especially after stem cell transplantation (SCT). Viral clearance has been attributed to CD4{sup +} T-cell responses against the Hexon-protein, but the frequency of specific T{sub HELPER} cells is extremely low or not detectable ex vivo and preference for different CD4{sup +} T-cell epitopes is variable among individuals. We therefore analyzed 44 healthy donors and 6 SCT-recipients for Hexon-specific CD4{sup +}-responses ex vivo, to identify epitopes which would be broadly applicable. We selected 19 candidate epitopes with predicted restriction to HLA-DR1/DR3/DR4/DR7; 16 were located within the highly conserved regions, indicating cross-reactivity of T cells among HAdV-subspecies. Ten epitopes induced CD4{sup +}-proliferation in >50% of individuals, confirmed by intracellular IFN-gamma detection. Three SCT recipients who recovered from an infection with HAdV displayed reactivity towards only a single hexon epitope, whereas healthy individuals were responsive to two to eight epitopes (median 3). The ex vivo detection of Hexon-specific CD4{sup +} T-cells, without any long-term culture in vitro, enables the detection and generation of HAdV-specific CD4{sup +} T cells for adoptive T-cell transfer against HAdV-infection post SCT.

  10. Infection with Trypanosoma cruzi restricts the repertoire of parasite-specific CD8+ T cells leading to immunodominance.

    PubMed

    Tzelepis, Fanny; de Alencar, Bruna C G; Penido, Marcus L O; Claser, Carla; Machado, Alexandre V; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; Rodrigues, Mauricio M

    2008-02-01

    Interference or competition between CD8(+) T cells restricted by distinct MHC-I molecules can be a powerful means to establish an immunodominant response. However, its importance during infections is still questionable. In this study, we describe that following infection of mice with the human pathogen Trypanosoma cruzi, an immunodominant CD8(+) T cell immune response is developed directed to an H-2K(b)-restricted epitope expressed by members of the trans-sialidase family of surface proteins. To determine whether this immunodominance was exerted over other non-H-2K(b)-restricted epitopes, we measured during infection of heterozygote mice, immune responses to three distinct epitopes, all expressed by members of the trans-sialidase family, recognized by H-2K(b)-, H-2K(k)-, or H-2K(d)-restricted CD8(+) T cells. Infected heterozygote or homozygote mice displayed comparably strong immune responses to the H-2K(b)-restricted immunodominant epitope. In contrast, H-2K(k)- or H-2K(d)-restricted immune responses were significantly impaired in heterozygote infected mice when compared with homozygote ones. This interference was not dependent on the dose of parasite or the timing of infection. Also, it was not seen in heterozygote mice immunized with recombinant adenoviruses expressing T. cruzi Ags. Finally, we observed that the immunodominance was circumvented by concomitant infection with two T. cruzi strains containing distinct immunodominant epitopes, suggesting that the operating mechanism most likely involves competition of T cells for limiting APCs. This type of interference never described during infection with a human parasite may represent a sophisticated strategy to restrict priming of CD8(+) T cells of distinct specificities, avoiding complete pathogen elimination by host effector cells, and thus favoring host parasitism. PMID:18209071

  11. Antitumor efficacy of a recombinant adenovirus encoding endostatin combined with an E1B55KD-deficient adenovirus in gastric cancer cells

    PubMed Central

    2013-01-01

    Background Gene therapy using a recombinant adenovirus (Ad) encoding secretory human endostatin (Ad-Endo) has been demonstrated to be a promising antiangiogenesis and antitumor strategy of in animal models and clinical trials. The E1B55KD-deficient Ad dl1520 was also found to replicate selectively in and destroy cancer cells. In this study, we aimed to investigate the antitumor effects of antiangiogenic agent Ad-Endo combined with the oncolytic Ad dl1520 on gastric cancer (GC) in vitro and in vivo and determine the mechanisms of these effects. Methods The Ad DNA copy number was determined by real-time PCR, and gene expression was assessed by ELISA, Western blotting or immunohistochemistry. The anti-proliferation effect (cytotoxicity) of Ad was assessed using the colorimetry-based MTT cell viability assay. The antitumor effects were evaluated in BALB/c nude mice carrying SGC-7901 GC xenografts. The microvessel density and Ad replication in tumor tissue were evaluated by checking the expression of CD34 and hexon proteins, respectively. Results dl1520 replicated selectively in GC cells harboring an abnormal p53 pathway, including p53 mutation and the loss of p14ARF expression, but did not in normal epithelial cells. In cultured GC cells, dl1520 rescued Ad-Endo replication, and dramatically promoted endostatin expression by Ad-Endo in a dose- and time-dependent manner. In turn, the addition of Ad-Endo enhanced the inhibitory effect of dl1520 on the proliferation of GC cells. The transgenic expression of Ad5 E1A and E1B19K simulated the rescue effect of dl1520 supporting Ad-Endo replication in GC cells. In the nude mouse xenograft model, the combined treatment with dl1520 and Ad-Endo significantly inhibited tumor angiogenesis and the growth of GC xenografts through the increased endostatin expression and oncolytic effects. Conclusions Ad-Endo combined with dl1520 has more antitumor efficacy against GC than Ad-Endo or dl1520 alone. These findings indicate that the

  12. Identification of minimal human MHC-restricted CD8+ T-cell epitopes within the Plasmodium falciparum circumsporozoite protein (CSP)

    PubMed Central

    2013-01-01

    Background Plasmodium falciparum circumsporozoite protein (CSP) is a leading malaria vaccine candidate antigen, known to elicit protective antibody responses in humans (RTS,S vaccine). Recently, a DNA prime / adenovirus (Ad) vector boost vaccine encoding CSP and a second P. falciparum antigen, apical membrane antigen-1, also elicited sterile protection, but in this case associated with interferon gamma ELISpot and CD8+ T cell but not antibody responses. The finding that CSP delivered by an appropriate vaccine platform likely elicits protective cell-mediated immunity provided a rationale for identifying class I-restricted epitopes within this leading vaccine candidate antigen. Methods Limited samples of peripheral blood mononuclear cells from clinical trials of the Ad vaccine were used to identify CD8+ T cell epitopes within pools of overlapping 15mer peptides spanning portions of CSP that stimulated recall responses. Computerized algorithms (NetMHC) predicted 17 minimal class I-restricted 9-10mer epitopes within fifteen 15mers positive in ELISpot assay using PBMC from 10 HLA-matched study subjects. Four additional epitopes were subsequently predicted using NetMHC, matched to other study subjects without initial 15mer ELISpot screening. Nine of the putative epitopes were synthesized and tested by ELISpot assay, and six of these nine were further tested for CD8+ T cell responses by ELISpot CD4+ and CD8+ T cell-depletion and flow cytometry assays for evidence of CD8+ T cell dependence. Results Each of the nine putative epitopes, all sequence-conserved, recalled responses from HLA-matched CSP-immunized research subjects. Four shorter sequences contained within these sequences were identified using NetMHC predictions and may have contributed to recall responses. Five (9-10mer) epitopes were confirmed to be targets of CD8+ T cell responses using ELISpot depletion and ICS assays. Two 9mers among these nine epitopes were each restricted by two HLA supertypes (A01/B07; A01A

  13. Immunotherapeutic effects of cytokine-induced killer cells combined with CCL21/IL15 armed oncolytic adenovirus in TERT-positive tumor cells.

    PubMed

    Ye, Jun-Feng; Lin, Yuan-Qiang; Yu, Xiu-Hua; Liu, Ming-Yuan; Li, Yang

    2016-09-01

    The effective antitumor immune responses are dependent on coordinate interaction of various effector cells. Thus, the combination of adoptive immunotherapy and target gene therapy is capable of efficiently generating a productive antitumor immune response. We investigated whether combination of cytokine-induced killer (CIK) cells adoptive immunotherapy and CCL21/IL15 armed oncolytic adenovirus could induce the enhanced antitumor activity. The CCL21/IL15 co-expression oncolytic adenoviruses were constructed by using the AdEasy system, which uses homologous recombination with shuttle plasmids and full length Ad backbones. This conditionally replicating adenoviruses CRAd-CCL21-IL15 could induce apoptosis in TERTp-positive tumor cells for viral propagation, but do not replicate efficiently in normal cells, because the E1A promoter was replaced by telomerase reverse transcriptase promoter (TERTp). Our results showed that the combination of CIK cells and CRAd-CCL21-IL15 could induce higher antitumor activity than either CIK cells or CRAd-CCL21-IL15 alone. This combined treatment could induce the tumor specific cytotoxicity of CTLs (cytotoxic T lymphocytes) in vitro. Moreover, the treatment of established tumors with the combined therapy of CIK cells and CRAd-CCL21-IL15 resulted in tumor regression. This study suggests that the combined treatment by adoptive immunotherapy and gene therapy is a promising strategy for the therapy of tumor. PMID:27380620

  14. Simian adenovirus type 7 (SA-7) induces tumours of nerve-supporting or paraneural cell origin in newborn hamsters.

    PubMed Central

    Ohtaki, S.; Kato, K.

    1989-01-01

    Simian adenovirus type 7 (SA-7) was found to induce tumours originating from nerve-supporting or paraneural cells in newborn hamsters, regardless of injection site or tissues. SA-7 induces glioblastomas characterized by definite localization (subependymal regions) and its main cell type, bipolar spongioblast-like cells, in the brain of hamsters inoculated as newborns. When the eyes of newborn hamsters were directly inoculated, SA-7 failed to induce retinoblastoma (0/27), but retro or peri-bulbar SA-7 tumours frequently occurred in tissues closely related to the peripheral nerve apparatus, including the oculomotor nerve or ciliary ganglion. These tumour cells were situated like stromal cells in these nerve tissues. The histological features of the orbital tumours were similar to those of SA-7-induced subcutaneous tumours but not to brain tumours. In contrast with other hamster brain tumours induced by human adenovirus type 12 or human papova JC virus, medulloepithelioma or medulloblastoma, SA-7 induced tumours exhibit distinctive histological and localization characteristics. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6a Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12a PMID:2765394

  15. Improving gene transfer in human renal carcinoma cells: Utilization of adenovirus vectors containing chimeric type 5 and type 35 fiber proteins

    PubMed Central

    ACHARYA, BISHNU; TERAO, SHUJI; SUZUKI, TORU; NAOE, MICHIO; HAMADA, KATSUYUKI; MIZUGUCHI, HIROYUKI; GOTOH, AKINOBU

    2010-01-01

    The transduction efficacy of adenovirus serotype 5 (Ad5) vector in human renal carcinoma cells is generally low due to the down-regulated expression of Coxsackie and adenovirus receptor (CAR) in target cells. By contrast, the infectivity of adenovirus serotype 35 vectors depends on the binding rate to CD46 receptor, independent of CAR. In this study, we examined whether an adenovirus vector containing chimeric type 5 and type 35 fiber proteins (Ad5/F35) increases transduction efficiency compared to Ad5 vector in human renal carcinoma cells in vitro. The expression of CAR was much lower in the human renal carcinoma cells than in control HEK293 cells. By contrast, the expression of CD46 was similar and perhaps at a higher level in the human renal carcinoma cells than in the HEK293 cells. The transduction efficacy of Ad5/F35 vector was dramatically higher compared to that of Ad5 in human renal carcinoma cells, and was correlated to the expression of CD46. Thus, Ad5/35 vector may be useful for the development of novel gene therapy approaches to renal cell carcinoma. PMID:22993573

  16. Mesenchymal Stromal Cells for Linked Delivery of Oncolytic and Apoptotic Adenoviruses to Non-small-cell Lung Cancers.

    PubMed

    Hoyos, Valentina; Del Bufalo, Francesca; Yagyu, Shigeki; Ando, Miki; Dotti, Gianpietro; Suzuki, Masataka; Bouchier-Hayes, Lisa; Alemany, Ramon; Brenner, Malcolm K

    2015-09-01

    Oncolytic adenoviruses (OAdV) represent a promising strategy for cancer therapy. Despite their activity in preclinical models, to date the clinical efficacy remains confined to minor responses after intratumor injection. To overcome these limitations, we developed an alternative approach using the combination of the OAdv ICOVIR15 with a replication incompetent adenoviral vector carrying the suicide gene of inducible Caspase 9 (Ad.iC9), both of which are delivered by mesenchymal stromal cells (MSCs). We hypothesized that coinfection with ICOVIR15 and Ad.iC9 would allow MSCs to replicate both vectors and deliver two distinct types of antitumor therapy to the tumor, amplifying the cytotoxic effects of the two viruses, in a non-small-cell lung cancer (NSCLC) model. We showed that MSCs can replicate and release both vectors, enabling significant transduction of the iC9 gene in tumor cells. In the in vivo model using human NSCLC xenografts, MSCs homed to lung tumors where they released both viruses. The activation of iC9 by the chemical inducer of dimerization (CID) significantly enhanced the antitumor activity of the ICOVIR15, increasing the tumor control and translating into improved overall survival of tumor-bearing mice. These data support the use of this innovative approach for the treatment of NSCLC. PMID:26084970

  17. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  18. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  19. Alternative Serotype Adenovirus Vaccine Vectors Elicit Memory T Cells with Enhanced Anamnestic Capacity Compared to Ad5 Vectors

    PubMed Central

    Penaloza-MacMaster, Pablo; Provine, Nicholas M.; Ra, Joshua; Borducchi, Erica N.; McNally, Anna; Simmons, Nathaniel L.; Iampietro, Mark J.

    2013-01-01

    The failure of the adenovirus serotype 5 (Ad5) vector-based human immunodeficiency virus type 1 (HIV-1) vaccine in the STEP study has led to the development of adenovirus vectors derived from alternative serotypes, such as Ad26, Ad35, and Ad48. We have recently demonstrated that vaccines using alternative-serotype Ad vectors confer partial protection against stringent simian immunodeficiency virus (SIV) challenges in rhesus monkeys. However, phenotypic differences between the T cell responses elicited by Ad5 and those of alternative-serotype Ad vectors remain unexplored. Here, we report the magnitude, phenotype, functionality, and recall capacity of memory T cell responses elicited in mice by Ad5, Ad26, Ad35, and Ad48 vectors expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP). Our data demonstrate that memory T cells elicited by Ad5 vectors were high in magnitude but exhibited functional exhaustion and decreased anamnestic potential following secondary antigen challenge compared to Ad26, Ad35, and Ad48 vectors. These data suggest that vaccination with alternative-serotype Ad vectors offers substantial immunological advantages over Ad5 vectors, in addition to circumventing high baseline Ad5-specific neutralizing antibody titers. PMID:23152535

  20. Induction of antigen-specific cytotoxic T-cell response by dendritic cells generated from ecto-mesenchymal stem cells infected with an adenovirus containing the MAGE-D4a gene

    PubMed Central

    HU, SHIJIE; LI, BING; SHEN, XUEFENG; ZHANG, RUI; GAO, DAKUAN; GUO, QINGDONG; JIN, YAN; FEI, ZHOU

    2016-01-01

    The present study aimed to investigate the feasibility of using ecto-mesenchymal stem cell (EMSC)-derived dendritic cells (DCs) for glioma immunotherapy following infection by a recombinant adenovirus containing the melanoma-associated antigen D4a (MAGE-D4a) gene. The ex vivo cultured EMSCs were infected by the adenoviral plasmid containing MAGE-D4a (pAd/MAGE-D4a). Efficiency of transfection was evaluated through the detection of green fluorescent protein-marked MAGE-D4a. The MAGE-EMSCs were induced to differentiate into DCs, termed as MAGE-EMSCs-DCs. The morphology was subsequently analyzed under a microscope, and methyl thiazolyl tetrazolium (MTT) and interferon-γ (IFN-γ) assays were performed to analyze the cytotoxicity of the MAGE-EMSC-DCs on the human glioma U251 cell line. Following purification by magnetic-activated cell sorting, the EMSCs grew into swirls, with a long spindle shape and were fibroblast-like. The gene transfected with recombinant adenovirus vectors maintained high and stable expression levels of MAGE-D4a, and its efficiency was increased in a multiplicity of infection-dependent manner. The results of the MTT assay indicated that the T cells, primed by the recombinant MAGE-D4a-infected EMSC-DCs in vitro, recognized MAGE-D4a-expressing tumor cell lines in a human leukocyte antigen class I-restricted manner, and evoked a higher cytotoxic T cell (CTL) response. The CTL response induced by the MAGE-EMSC-DCs, co-cultured with the U251 cells for 24 h, produced 765.0 pg/ml IFN-γ, which was significantly greater when compared to the control wells. T lymphocytes stimulated by MAGE-EMSC-DCs evoke a higher CTL response to human glioma cell lines, and may serve as a promising therapeutic modality for the treatment of MAGE-D4a-expressing glioma. PMID:27073570

  1. Detection of human adenoviruses in organic fresh produce using molecular and cell culture-based methods.

    PubMed

    Marti, Elisabet; Barardi, Célia Regina Monte

    2016-08-01

    The consumption of organic fresh produce has increased in recent years due to consumer demand for healthy foods without chemical additives. However, the number of foodborne outbreaks associated with fresh produce has also increased. Contamination of food with enteric viruses is a major concern because the viruses have a low infectious dose and high persistence in the environment. Human adenovirus (HAdV) has been proposed as a good marker of faecal contamination. Therefore, the aim of this study was to evaluate the efficiency of the plaque assay (PA), real time PCR (qPCR) and integrated cell culture-RT-qPCR (ICC-RT-qPCR) for the recovery of HAdV from artificially and naturally contaminated fresh produce. Organic lettuce, strawberries and green onions were selected because these fresh products are frequently associated with foodborne outbreaks. The virus extraction efficiencies from artificially contaminated samples varied from 2.8% to 32.8% depending on the food matrix and the quantification method used. Although the HAdV recoveries determined by qPCR were higher than those determined by PA and ICC-RT-qPCR, PA was defined as the most reproducible method. The qPCR assays were more sensitive than the PA and ICC-RT-qPCR assays; however, this technique alone did not provide information about the viability of the pathogen. ICC-RT-qPCR was more sensitive than PA for detecting infectious particles in fresh produce samples. HAdV genome copies were detected in 93.3% of the analysed naturally contaminated samples, attesting to the common faecal contamination of the fresh produce tested. However, only 33.3% of the total samples were positive for infectious HAdV particles based on ICC-RT-qPCR. In conclusion, this study reported that HAdV can be an efficient viral marker for fresh produce contamination. Good detection of infectious HAdV was obtained with the ICC-RT-qPCR and PA assays. Thus, we suggest that the ICC-RT-qPCR and PA assays should be considered when quantitative

  2. Protective Efficacy in Sheep of Adenovirus-Vectored Vaccines against Bluetongue Virus Is Associated with Specific T Cell Responses

    PubMed Central

    Martín, Verónica; Pascual, Elena; Avia, Miguel; Peña, Lourdes; Valcárcel, Félix; Sevilla, Noemí

    2015-01-01

    Bluetongue virus (BTV) is an economically important Orbivirus of the Reoviridae family that causes a hemorrhagic disease in ruminants. Its control has been achieved by inactivated-vaccines that have proven to protect against homologous BTV challenge although unable to induce long-term immunity. Therefore, a more efficient control strategy needs to be developed. Recombinant adenovirus vectors are lead vaccine candidates for protection of several diseases, mainly because of their potency to induce potent T cell immunity. Here we report the induction of humoral and T-cell mediated responses able to protect animals against BTV challenge by recombinant replication-defective human adenovirus serotype 5 (Ad5) expressing either VP7, VP2 or NS3 BTV proteins. First we used the IFNAR(-/-) mouse model system to establish a proof of principle, and afterwards we assayed the protective efficacy in sheep, the natural host of BTV. Mice were completely protected against BTV challenge, developing humoral and BTV-specific CD8+- and CD4+-T cell responses by vaccination with the different rAd5. Sheep vaccinated with Ad5-BTV-VP2 and Ad5-BTV-VP7 or only with Ad5-BTV-VP7 and challenged with BTV showed mild disease symptoms and reduced viremia. This partial protection was achieved in the absence of neutralizing antibodies but strong BTV-specific CD8+ T cell responses in those sheep vaccinated with Ad5-BTV-VP7. These data indicate that rAd5 is a suitable vaccine vector to induce T cell immunity during BTV vaccination and provide new data regarding the relevance of T cell responses in protection during BTV infection. PMID:26619062

  3. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies

    EPA Science Inventory

    Human adenovirus is relatively resistant to UV radiation and has been used as a conservative testing microbe for evaluations of UV disinfection systems as components of water treatment processes. In this study, we attempted to validate the applicability of integrated cell culture...

  4. Distinct temporal changes in host cell lncRNA expression during the course of an adenovirus infection.

    PubMed

    Zhao, Hongxing; Chen, Maoshan; Lind, Sara Bergström; Pettersson, Ulf

    2016-05-01

    The deregulation of cellular long non-coding RNA (lncRNA) expression during a human adenovirus infection was studied by deep sequencing. Expression of lncRNAs increased substantially following the progression of the infection. Among 645 significantly expressed lncRNAs, the expression of 398 was changed more than 2-fold. More than 80% of them were up-regulated and 80% of them were detected during the late phase. Based on the genomic locations of the deregulated lncRNAs in relation to known mRNAs and miRNAs, they were predicted to be involved in growth, structure, apoptosis and wound healing in the early phase, cell proliferation in the intermediate phase and protein synthesis, modification and transport in the late phase. The most significant functions of cellular RNA-binding proteins, previously shown to interact with the deregulated lncRNAs identified here, are involved in RNA splicing, nuclear export and translation events. We hypothesize that adenoviruses exploit the lncRNA network to optimize their reproduction. PMID:27003248

  5. Dendritic cells serve as a “Trojan horse” for oncolytic adenovirus delivery in the treatment of mouse prostate cancer

    PubMed Central

    Li, Zhao-lun; Liang, Xuan; Li, He-cheng; Wang, Zi-ming; Chong, Tie

    2016-01-01

    Aim: Adenovirus-mediated gene therapy is a novel therapeutic approach for the treatment of cancer, in which replication of the virus itself is the anticancer method. However, the success of this novel therapy is limited due to inefficient delivery of the virus to the target sites. In this study, we used dendritic cells (DCs) as carriers for conditionally replicating adenoviruses (CRAds) in targeting prostate carcinoma (PCa). Methods: Four types of CRAds, including Ad-PC (without PCa-specific promoter and a recombinant human tumor necrosis factor, rmhTNF, sequence), Ad-PC-rmhTNF (without PCa-specific promoter), Ad-PPC-NCS (without an rmhTNF sequence) and Ad-PPC-rmhTNF, were constructed. The androgen-insensitive mouse PCa RM-1 cells were co-cultured with CRAd-loading DCs, and the viability of RM-1 cells was examined using MTT assay. The in vivo effects of CRAd-loading DCs on PCa were evaluated in RM-1 xenograft mouse model. Results: Two PCa-specific CRAds (Ad-PPC-NCS, Ad-PPC-rmhTNF) exhibited more potent suppression on the viability of RM-1 cells in vitro than the PCa-non-specific CRAds (Ad-PC, Ad-PC-rmhTNF). In PCa-bearing mice, intravenous injection of the PCa-specific CRAd-loading DCs significantly inhibited the growth of xenografted tumors, extended the survival time, and induced T-cell activation. Additionally, the rmhTNF-containing CRAds exhibited greater tumor killing ability than CRAds without rmhTNF. Conclusion: DCs may be an effective vector for the delivery of CRAds in the treatment of PCa. PMID:27345628

  6. Potent antitumor efficacy of ST13 for colorectal cancer mediated by oncolytic adenovirus via mitochondrial apoptotic cell death.

    PubMed

    Yang, Min; Cao, Xin; Yu, Ming Can; Gu, Jin Fa; Shen, Zong Hou; Ding, Miao; Yu, De Bing; Zheng, Shu; Liu, Xin yuan

    2008-04-01

    ST13 is a cofactor of heat shock protein 70 (Hsp70). To date, all data since the discovery of ST13 in 1993 until more recent studies in 2007 have proved that ST13 is downregulated in tumors and it was proposed to be a tumor suppressor gene, but no work reported its antitumor effect and apoptotic mechanism. In the work described in this paper, ST13 was inserted into ZD55, an oncolytic adenovirus with the E1B 55-kDa gene deleted, to form ZD55-ST13, which exerts an excellent antitumor effect in vitro and in an animal model of colorectal carcinoma SW620 xenograft. ZD55-ST13 inhibited tumor cells 100-fold more than Ad-ST13 and ZD55-EGFP in vitro. However, ZD55-ST13 showed no damage of normal fibroblast MRC5 cells. In exploring the mechanism of ZD55-ST13 in tumor cell killing, we found that ZD55-ST13-infected SW620 cells formed apoptotic bodies and presented obvious apoptosis phenomena. ZD55-ST13 induced the upregulation of Hsp70, the downregulation of antiapoptotic gene Bcl-2, and the release of cytochrome c. Cytochrome c triggered apoptosis by activating caspase-9 and caspase-3, which cleave the enzyme poly(ADP-ribose) polymerase in ZD55-ST13-infected SW620 cells. In summary, overexpressed ST13 as mediated by oncolytic adenovirus could exert potent antitumor activity via the intrinsic apoptotic pathway and has the potential to become a novel therapeutic for colorectal cancer gene therapy. PMID:18355116

  7. Interactions between cell growth-regulating domains in the products of the adenovirus E1A oncogene

    SciTech Connect

    Moran, B.; Zerler, B.

    1988-04-01

    Among the various biological activities expressed by the products of the adenovirus E1A gene are the abilities to induce cellular DNA synthesis and proliferation in quiescent primary baby rat kidney cells. The functional sites for these activities lie principally within two regions of the E1A proteins: an N-terminal region and a small second region of approximately 20 amino acids further downstream. To study the biological functions of the first domain, the authors constructed an in-frame deletion of amino acid positions 23 through 107 of the E1A products. This deletion did not impede the ability of the E1A products to transactivate the adenovirus early region 3 promoter in a transient-expression assay in HeLa cells. The ability to induce DNA synthesis in quiescent baby rat kidney cells was, however, lost in the absence of these sequences. Deletion of the small second region induced a form of S phase in which DNA synthesis occurred in the apparent absence of controls required for the cessation of DNA synthesis and progression through the remainder of the cell cycle. These cells did not appear to accumulate in or before G2, and many appeared to have a DNA content greater than that in G2. The functions of both domains are required for production of transformed foci in a ras cooperation assay. Focus formation occurred, however, even when the two domains were introduced on two separate plasmids. This complementation effect appeared to require expression of both of the mutant proteins and did not appear to result merely from recombination at the DNA level.

  8. The amino-terminal portion of CD1 of the adenovirus E1A proteins is required to induce susceptibility to tumor necrosis factor cytolysis in adenovirus-infected mouse cells.

    PubMed

    Duerksen-Hughes, P J; Hermiston, T W; Wold, W S; Gooding, L R

    1991-03-01

    Previous work by our laboratory and others has shown that mouse cells normally resistant to tumor necrosis factor can be made sensitive to the cytokine by the expression of adenovirus E1A. The E1A gene can be introduced by either infection or transfection, and either of the two major E1A proteins, 289R or 243R, can induce this sensitivity. The E1A proteins are multifunctional and modular, with specific domains associated with specific functions. Here, we report that the CD1 domain of E1A is required to induce susceptibility to tumor necrosis factor cytolysis in adenovirus-infected mouse C3HA fibroblasts. Amino acids C terminal to residue 60 and N terminal to residue 36 are not necessary for this function. This conclusion is based on 51Cr-release assays for cytolysis in cells infected with adenovirus mutants with deletions in various portions of E1A. These E1A mutants are all in an H5dl309 background and therefore they lack the tumor necrosis factor protection function provided by the 14.7-kilodalton (14.7K) protein encoded by region E3. Western blot (immunoblot) analysis indicated that most of the mutant E1A proteins were stable in infected C3HA cells, although with certain large deletions the E1A proteins were unstable. The region between residues 36 and 60 is included within but does not precisely correlate with domains in E1A that have been implicated in nuclear localization, enhancer repression, cellular immortalization, cell transformation in cooperation with ras, induction of cellular DNA synthesis and proliferation, induction of DNA degradation, and binding to the 300K protein and the 105K retinoblastoma protein. PMID:1825340

  9. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  10. A novel combination of promoter and enhancers increases transgene expression in vascular smooth muscle cells in vitro and coronary arteries in vivo after adenovirus-mediated gene transfer

    PubMed Central

    Appleby, CE; Kingston, PA; David, A; Gerdes, CA; Umaña, P; Castro, MG; Lowenstein, PR; Heagerty, AM

    2010-01-01

    Recombinant adenoviruses are employed widely for vascular gene transfer. Vascular smooth muscle cells (SMCs) are a relatively poor target for transgene expression after adenovirus-mediated gene delivery, however, even when expression is regulated by powerful, constitutive viral promoters. The major immediate-early murine cytomegalovirus enhancer/promoter (MIEmCMV) elicits substantially greater transgene expression than the human cytomegalovirus promoter (MIEhCMV) in all cell types in which they have been compared. The Woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) increases transgene expression in numerous cell lines, and fragments of the smooth muscle myosin heavy chain (SMMHC) promoter increase expression within SMC from heterologous promoters. We therefore, compared the expression of β-galactosidase after adenovirus-mediated gene transfer of lacZ under the transcriptional regulation of a variety of combinations of the promoters and enhancers described, in vitro and in porcine coronary arteries. We demonstrate that inclusion of WPRE and a fragment of the rabbit SMMHC promoter along with MIEmCMV increases β-galactosidase expression 90-fold in SMC in vitro and ≈40-fold in coronary arteries, compared with vectors in which expression is regulated by MIEhCMV alone. Expression cassette modification represents a simple method of improving adenovirus-mediated vascular gene transfer efficiency and has important implications for the development of efficient cardiovascular gene therapy strategies. PMID:12907954

  11. Influence of cell physiological state on gene delivery to T lymphocytes by chimeric adenovirus Ad5F35

    PubMed Central

    Zhang, Wen-feng; Shao, Hong-wei; Wu, Feng-lin; Xie, Xin; Li, Zhu-Ming; Bo, Hua-Ben; Shen, Han; Wang, Teng; Huang, Shu-lin

    2016-01-01

    Adoptive transfer of genetically-modified T cells is a promising approach for treatment of both human malignancies and viral infections. Due to its ability to efficiently infect lymphocytes, the chimeric adenovirus Ad5F35 is potentially useful as an immunotherapeutic for the genetic modification of T cells. In previous studies, it was found that the infection efficiency of Ad5F35 was significantly increased without enhanced expression of the viral receptor after T cell stimulation; however, little is known about the underlying mechanism. Nonetheless, cell physiology has long been thought to affect viral infection. Therefore, we aimed to uncover the physiologic changes responsible for the increased infection efficiency of Ad5F35 following T cell stimulation. Given the complexity of intracellular transport we analyzed viral binding, entry, and escape using a Jurkat T cell model and found that both cell membrane fluidity and endosomal escape of Ad5F35 were altered under different physiological states. This, in turn, resulted in differences in the amount of virus entering cells and reaching the cytoplasm. These results provide additional insight into the molecular mechanisms underlying Ad5F35 infection of T cells and consequently, will help further the clinical application of genetically-modified T cells for immunotherapy. PMID:26972139

  12. Adenovirus-specific T-cell Subsets in Human Peripheral Blood and After IFN-γ Immunomagnetic Selection.

    PubMed

    Qian, Chongsheng; Wang, Yingying; Cai, Huili; Laroye, Caroline; De Carvalho Bittencourt, Marcelo; Clement, Laurence; Stoltz, Jean-François; Decot, Véronique; Reppel, Loïc; Bensoussan, Danièle

    2016-01-01

    Adoptive antiviral cellular immunotherapy by infusion of virus-specific T cells (VSTs) is becoming an alternative treatment for viral infection after hematopoietic stem cell transplantation. The T memory stem cell (TSCM) subset was recently described as exhibiting self-renewal and multipotency properties which are required for sustained efficacy in vivo. We wondered if such a crucial subset for immunotherapy was present in VSTs. We identified, by flow cytometry, TSCM in adenovirus (ADV)-specific interferon (IFN)-γ+ T cells before and after IFN-γ-based immunomagnetic selection, and analyzed the distribution of the main T-cell subsets in VSTs: naive T cells (TN), TSCM, T central memory cells (TCM), T effector memory cell (TEM), and effector T cells (TEFF). In this study all of the different T-cell subsets were observed in the blood sample from healthy donor ADV-VSTs, both before and after IFN-γ-based immunomagnetic selection. As the IFN-γ-based immunomagnetic selection system sorts mainly the most differentiated T-cell subsets, we observed that TEM was always the major T-cell subset of ADV-specific T cells after immunomagnetic isolation and especially after expansion in vitro. Comparing T-cell subpopulation profiles before and after in vitro expansion, we observed that in vitro cell culture with interleukin-2 resulted in a significant expansion of TN-like, TCM, TEM, and TEFF subsets in CD4IFN-γ T cells and of TCM and TEM subsets only in CD8IFN-γ T cells. We demonstrated the presence of all T-cell subsets in IFN-γ VSTs including the TSCM subpopulation, although this was weakly selected by the IFN-γ-based immunomagnetic selection system. PMID:26641259

  13. Prostaglandin E2 Production and T Cell Function in Mouse Adenovirus Type 1 Infection following Allogeneic Bone Marrow Transplantation

    PubMed Central

    McCarthy, Mary K.; Procario, Megan C.; Wilke, Carol A.; Moore, Bethany B.; Weinberg, Jason B.

    2015-01-01

    Adenovirus infections are important complications of bone marrow transplantation (BMT). We demonstrate delayed clearance of mouse adenovirus type 1 (MAV-1) from lungs of mice following allogeneic BMT. Virus-induced prostaglandin E2 (PGE2) production was greater in BMT mice than in untransplanted controls, but BMT using PGE2-deficient donors or recipients failed to improve viral clearance, and treatment of untransplanted mice with the PGE2 analog misoprostol did not affect virus clearance. Lymphocyte recruitment to the lungs was not significantly affected by BMT. Intracellular cytokine staining of lung lymphocytes demonstrated impaired production of INF-γ and granzyme B by cells from BMT mice, and production of IFN-γ, IL-2, IL-4, and IL-17 following ex vivo stimulation was impaired in lymphocytes obtained from lungs of BMT mice. Viral clearance was not delayed in untransplanted INF-γ-deficient mice, suggesting that delayed viral clearance in BMT mice was not a direct consequence of impaired IFN-γ production. However, lung viral loads were higher in untransplanted CD8-deficient mice than in controls, suggesting that delayed MAV-1 clearance in BMT mice is due to defective CD8 T cell function. We did not detect significant induction of IFN-β expression in lungs of BMT mice or untransplanted controls, and viral clearance was not delayed in untransplanted type I IFN-unresponsive mice. We conclude that PGE2 overproduction in BMT mice is not directly responsible for delayed viral clearance. PGE2-independent effects on CD8 T cell function likely contribute to the inability of BMT mice to clear MAV-1 from the lungs. PMID:26407316

  14. The Effect of Adenovirus-Mediated Gene Expression of FHIT in Small Cell Lung Cancer Cells

    PubMed Central

    Zandi, Roza; Xu, Kai; Poulsen, Hans S.; Roth, Jack A.; Ji, Lin

    2012-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone or in combination with the mutant p53-reactivating molecule, PRIMA-1Met/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1Met/APR-246, a synergistic cell growth inhibition was achieved. PMID:22085272

  15. Protective CD8+ T-cell immunity to human malaria induced by chimpanzee adenovirus-MVA immunisation

    PubMed Central

    Ewer, Katie J.; O’Hara, Geraldine A.; Duncan, Christopher J. A.; Collins, Katharine A.; Sheehy, Susanne H.; Reyes-Sandoval, Arturo; Goodman, Anna L.; Edwards, Nick J.; Elias, Sean C.; Halstead, Fenella D.; Longley, Rhea J.; Rowland, Rosalind; Poulton, Ian D.; Draper, Simon J.; Blagborough, Andrew M.; Berrie, Eleanor; Moyle, Sarah; Williams, Nicola; Siani, Loredana; Folgori, Antonella; Colloca, Stefano; Sinden, Robert E.; Lawrie, Alison M.; Cortese, Riccardo; Gilbert, Sarah C.; Nicosia, Alfredo; Hill, Adrian V. S.

    2013-01-01

    Induction of antigen-specific CD8+ T cells offers the prospect of immunization against many infectious diseases, but no subunit vaccine has induced CD8+ T cells that correlate with efficacy in humans. Here we demonstrate that a replication-deficient chimpanzee adenovirus vector followed by a modified vaccinia virus Ankara booster induces exceptionally high frequency T-cell responses (median >2400 SFC/106 peripheral blood mononuclear cells) to the liver-stage Plasmodium falciparum malaria antigen ME-TRAP. It induces sterile protective efficacy against heterologous strain sporozoites in three vaccinees (3/14, 21%), and delays time to patency through substantial reduction of liver-stage parasite burden in five more (5/14, 36%), P=0.008 compared with controls. The frequency of monofunctional interferon-γ-producing CD8+ T cells, but not antibodies, correlates with sterile protection and delay in time to patency (Pcorrected=0.005). Vaccine-induced CD8+ T cells provide protection against human malaria, suggesting that a major limitation of previous vaccination approaches has been the insufficient magnitude of induced T cells. PMID:24284865

  16. Human herpesvirus 7 infection of lymphoid and myeloid cell lines transduced with an adenovirus vector containing the CD4 gene.

    PubMed Central

    Yasukawa, M; Inoue, Y; Ohminami, H; Sada, E; Miyake, K; Tohyama, T; Shimada, T; Fujita, S

    1997-01-01

    It has been reported recently that CD4 is a major component of the receptor for human herpesvirus 7 (HHV-7), which has been newly identified as a T-lymphotropic virus. To investigate further the role of CD4 in HHV-7 infection, we examined the susceptibility to HHV-7 infection of various CD4-negative or weakly positive cell lines into which the cDNA for CD4 was transferred using an adenovirus vector (Adex1CACD4). Of 13 cell lines transduced with Adex1CACD4, including T-lymphoid, B-lymphoid, monocytoid, and myeloid cell lines, one T-lymphoid cell line, one monocytoid cell line, and two cell lines established from the blast crisis of chronic myelogenous leukemia showed high susceptibility to HHV-7 infection. Taken together with the results of previous studies, these data suggest strongly that CD4 is a major component of the binding receptor for HHV-7. This study also shows that HHV-7 may be able to infect CD4-positive hematopoietic precursor cells as well as T lymphocytes. PMID:8995705

  17. [The reproductive characteristics of human adenovirus type 2 in cultures of lymphoblastoid cells with B and T phenotypes].

    PubMed

    Povnitsa, O Iu; Diachenko, N S; Chernomaz, A A; Nosach, L N; Rybalko, S L; Gritsak, T F; Beregovenko, V N; Diadiun, S T

    1997-01-01

    A comparative characteristic of the reproduction process of type 2 human adenovirus in several lines of lymphoblastoid cells of B- and T-phenotype is presented. Formation of hexone and infectious virus in the cells of Jurkat, MT4, Raji lines was rather intensive and approached to that in the culture of the permissive epithelium cells Hep-2. These indices were much lower in the cultures of cells B 95-8 and MT4/BIII LBK which were chronically infected by VEB and HIV, accordingly and produced them that can evidence for the interference of Ad and VEB or Ad and HIV under superinfection of cells. Cells of SEM line possessing T-phenotype, were apparently semi-permissive for Ad h2, though the low almost unchanged content of hexone and infectious virus remains in them for a rather long time: about 15 days. Thus, obtained data within analyzed series of experiments expand the present ideas about lymphotropicity of Ad as their important property realized at the level of cell and infected macroorganism. PMID:9511371

  18. Adenovirus-mediated Cre deletion of floxed sequences in primary mouse cells is an efficient alternative for studies of gene deletion

    PubMed Central

    Prost, Sandrine; Sheahan, Sharon; Rannie, Dominic; Harrison, David J.

    2001-01-01

    This study evaluates the utility of Cre-expressing adenovirus for deletion of floxed genes in primary cells using primary murine hepatocytes. Adenovirus infection was very efficient, even at very low MOI (>95% infection at a MOI of 6) and did not reduce viability. High level LacZ expression was cytotoxic to hepatocytes but Cre expression had no effect on viability. Cre-mediated recombination was completed within a timespan that permits experimentation during primary culture (>95% recombination after 24 h), independently of the number of floxed alleles per cell. Recombination did not induce p53 or produce cytological nuclear abnormalities (even in polyploid cells). Contrary to expectation, deletion of DNA ligase 1 did not alter cell cycle progression, although Cre expression hastens entry to S phase from G1, independently of the presence of floxed sequences. We conclude that adenovirus-mediated deletion of floxed alleles in primary cells is a straightforward and highly efficient tool for conducting preliminary studies of conditional gene targeting. Primary cells have advantages of differentiation, relative purity and ease of experimentation within controlled conditions, while avoiding confounding problems encountered in vivo (i.e. target cell specificity, kinetics and level of recombination, and elicitation of inflammatory and immune responses). This system could help identify important phenotypic effects and design and interpret in vivo studies. PMID:11504888

  19. Combination of E2F-1 promoter-regulated oncolytic adenovirus and cytokine-induced killer cells enhances the antitumor effects in an orthotopic rectal cancer model.

    PubMed

    Yan, Yang; Xu, Yingxin; Zhao, Yunshan; Li, Li; Sun, Peiming; Liu, Hailiang; Fan, Qinghao; Liang, Kai; Liang, Wentao; Sun, Huiwei; Du, Xiaohui; Li, Rong

    2014-02-01

    Due to the anatomical structure of the rectum, the treatment of rectal cancer remains challenging. Ad-E2F, an oncolytic adenovirus containing the E2F-1 promoter, can selectively replicate within and kill cancer cells derived from solid tumors. Thus, this virus provides a novel approach for the treatment of rectal cancer. Given the poor efficacy and possible adverse reactions that arise from the use of oncolytic virus alone and the results of our analysis of the efficacy of Ad-E2F in the treatment of rectal cancer, we investigated the use of oncolytic adenovirus in combination with adoptive immunotherapy using cytokine-induced killer (CIK) cells as a therapeutic treatment for rectal cancer. Our results illustrated that E2F-1 gene expression is higher in rectal cancer tissue than in normal tissue. Furthermore, the designed oncolytic adenovirus Ad-E2F is capable of selectively killing colorectal cell lines but has no significant effect on CIK cells. The results of in vitro and in vivo experiments demonstrated that combined therapy with Ad-E2F and CIK cells produce stronger antitumor effects than the administration of Ad-E2F or CIK cells alone. For low rectal cancers that are suitable for intratumoral injection, local injections of oncolytic viruses in combination with CIK cell-based adoptive immunotherapy may be suitable as a novel comprehensive therapeutic approach. PMID:24037896

  20. Replication of ONYX-015, a Potential Anticancer Adenovirus, Is Independent of p53 Status in Tumor Cells

    PubMed Central

    Rothmann, Thomas; Hengstermann, Arnd; Whitaker, Noel J.; Scheffner, Martin; zur Hausen, Harald

    1998-01-01

    The 55-kDa E1B protein of adenovirus, which binds to and inactivates the tumor suppressor protein p53, is not expressed in the adenoviral mutant termed ONYX-015 (i.e., dl1520). It was reported that the mutant virus due to a deletion in E1B is able to replicate only in cells deficient for wild-type p53. Accordingly, dl1520 is currently being evaluated as a potential tool in the therapy of p53 deficient cancers. In contrast, we report here that dl1520 replicates independently of the p53 status in various tumor cell lines (U87, RKO, A549, H1299, and U373). In addition, the inhibition of p53-mediated transcriptional activation in wild-type p53 containing U2OS cells, by overexpression of a transdominant negative p53 mutant, did not render the cells permissive for dl1520 replication. Finally, we show that, depending on the multiplicity of infection, the deleted virus is able to replicate in and to kill primary human cells. Thus, the molecular basis for the growth differences of dl1520 within different cell types remains to be determined. PMID:9811680

  1. Data on the expression of cellular lncRNAs in human adenovirus infected cells.

    PubMed

    Chen, Maoshan; Zhao, Hongxing; Lind, Sara Bergström; Pettersson, Ulf

    2016-09-01

    Expression of cellular long non-coding RNAs (lncRNAs) in human primary lung fibroblasts (IMR-90) during the course of adenovirus type 2 (Ad2) infection was studied by strand-specific whole transcriptome sequencing. In total, 645 cellular lncRNAs were expressed at a significant level and 398 of them were changed more than 2-fold. The changes in expression followed a distinct temporal pattern. Significantly, 80% of the changes occurred at the late phase and 80% of the de-regulated lncRNAs were up-regulated. The three largest groups of deregulated lncRNAs were 125 antisense RNAs, 111 pseudogenes and 85 long intergenic non-coding RNAs (lincRNAs). Lastly, more than 36% of lncRNAs have been shown to interact with RNA binding proteins. PMID:27547808

  2. Synergistic antitumor activity of triple-regulated oncolytic adenovirus with VSTM1 and daunorubicin in leukemic cells.

    PubMed

    Zhou, Jiao; Yao, Qiu-Mei; Li, Jin-Lan; Chang, Yan; Li, Ting; Han, Wen-Ling; Wu, Hong-Ping; Li, Lin-Fang; Qian, Qi-Jun; Ruan, Guo-Rui

    2016-10-01

    V-set and transmembrane domain-containing 1 (VSTM1), which is downregulated in bone marrow cells from leukemia patients, may provide a diagnostic and treatment target. Here, a triple-regulated oncolytic adenovirus was constructed to carry a VSTM1 gene expression cassette, SG611-VSTM1, and contained the E1a gene with a 24-nucleotide deletion within the CR2 region under control of the human telomerase reverse transcriptase promoter, E1b gene directed by the hypoxia response element, and VSTM1 gene controlled by the cytomegalovirus promoter. Real-time quantitative PCR and Western blot analyses showed that SG611-VSTM1 expressed VSTM1 highly efficiently in the human leukemic cell line K562 compared with SG611. In Cell Counting Kit-8 and flow cytometric assays, SG611-VSTM1 exhibited more potent anti-proliferative and pro-apoptotic effects in leukemic cells compared with SG611 and exerted synergistic cytotoxicity with low-dose daunorubicin (DNR) in vitro. In xenograft models, SG611-VSTM1 intratumorally injected at a dose of 1 × 10(9) plaque forming units combined with intraperitoneally injected low-dose DNR displayed significantly stronger antitumor effects than either treatment alone. Histopathologic examination revealed that SG611-VSTM1 induced apoptosis of leukemic cells. These results implicate an important role for VSTM1 in the pathogenesis of leukemia, and SG611-VSTM1 may be a promising agent for enhancing chemosensitivity in leukemia therapy. PMID:27472927

  3. Adenovirus hexon modifications influence in vitro properties of pseudotyped human adenovirus type 5 vectors.

    PubMed

    Solanki, Manish; Zhang, Wenli; Jing, Liu; Ehrhardt, Anja

    2016-01-01

    Commonly used human adenovirus (HAdV)-5-based vectors are restricted by their tropism and pre-existing immunity. Here, we characterized novel HAdV-5 vectors pseudotyped with hypervariable regions (HVRs) and surface domains (SDs) of other HAdV types. Hexon-modified HAdV-5 vectors (HV-HVR5, HV-HVR12, HV-SD12 and HV-SD4) could be reconstituted and amplified in human embryonic kidney cells. After infection of various cell lines, we measured transgene expression levels by performing luciferase reporter assays or coagulation factor IX (FIX) ELISA. Dose-dependent studies revealed that luciferase expression levels were comparable for HV-HVR5, HV-SD12 and HV-SD4, whereas HV-HVR12 expression levels were significantly lower. Vector genome copy numbers (VCNs) from genomic DNA and nuclear extracts were then determined by quantitative real-time PCR. Surprisingly, determination of cell- and nuclear fraction-associated VCNs revealed increased VCNs for HV-HVR12 compared with HV-SD12 and HV-HVR5. Increased nuclear fraction-associated HV-HVR12 DNA molecules and decreased transgene expression levels were independent of the cell line used, and we observed the same effect for a hexon-modified high-capacity adenoviral vector encoding canine FIX. In conclusion, studying hexon-modified adenoviruses in vitro demonstrated that HVRs but also flanking hexon regions influence uptake and transgene expression of adenoviral vectors. PMID:26519158

  4. Canine adenovirus based rabies vaccines.

    PubMed

    Tordo, N; Foumier, A; Jallet, C; Szelechowski, M; Klonjkowski, B; Eloit, M

    2008-01-01

    Adenovirus based vectors are very attractive candidates for vaccination purposes as they induce in mammalian hosts potent humoral, mucosal and cellular immune responses to antigens encoded by the inserted genes. We have generated E1-deleted and replication-competent recombinant canine type-2 adenoviruses expressing the rabies virus glycoprotein (G). The effectiveness of both vectors to express a native G protein has been characterized in vitro in permissive cell lines. We compared the humoral and cellular immune responses induced in mice by intramuscular injection of the recombinant canine adenovirus vectors with those induced by a human (Ad5) E1-deleted virus expressing the same rabies G protein. Humoral responses specific to the adenoviruses or the rabies glycoprotein antigens were studied. The influence of the mouse strain was observed using replication-competent canine adenovirus. A high level of rabies neutralizing antibody was observed upon i.m. inoculation, and 100% of mice survived lethal challenge. These results are very promising in the perspective of oral vaccine for dog rabies control. PMID:18634509

  5. Adenovirus type 7 associated with severe and fatal acute lower respiratory infections in Argentine children

    PubMed Central

    Carballal, Guadalupe; Videla, Cristina; Misirlian, Alicia; Requeijo, Paula V; Aguilar, María del Carmen

    2002-01-01

    Background Adenoviruses are the second most prevalent cause of acute lower respiratory infection of viral origin in children under four years of age in Buenos Aires, Argentina. The purpose of this study was to analyze the clinical features and outcome of acute lower respiratory infection associated with different adenovirus genotypes in children. Methods Twenty-four cases of acute lower respiratory infection and adenovirus diagnosis reported in a pediatric unit during a two-year period were retrospectively reviewed. Adenovirus was detected by antigen detection and isolation in HEp-2 cells. Adenovirus DNA from 17 isolates was studied by restriction enzyme analysis with Bam HI and Sma I. Results Subgenus b was found in 82.3% of the cases, and subgenus c in 17.7%. Within subgenus b, only genotype 7 was detected, with genomic variant 7h in 85.7% (12/14) and genomic variant 7i in 14.3% (2/14). Mean age was 8.8 ±; 6 months, and male to female ratio was 3.8: 1. At admission, pneumonia was observed in 71% of the cases and bronchiolitis in 29%. Malnutrition occurred in 37% of the cases; tachypnea in 79%; chest indrawing in 66%; wheezing in 58%; apneas in 16%; and conjunctivitis in 29%. Blood cultures for bacteria and antigen detection of other respiratory viruses were negative. During hospitalization, fatality rate was 16.7% (4 /24). Of the patients who died, three had Ad 7h and one Ad 7i. Thus, fatality rate for adenovirus type 7 reached 28.6% (4/14). Conclusions These results show the predominance of adenovirus 7 and high lethality associated with the genomic variants 7h and 7i in children hospitalized with acute lower respiratory infection. PMID:12184818

  6. Woodchuck dendritic cells generated from peripheral blood mononuclear cells and transduced with recombinant human adenovirus serotype 5 induce antigen-specific cellular immune responses.

    PubMed

    Ochoa-Callejero, Laura; Berraondo, Pedro; Crettaz, Julien; Olagüe, Cristina; Vales, Africa; Ruiz, Juan; Prieto, Jesús; Tennant, Bud C; Menne, Stephan; González-Aseguinolaza, Gloria

    2007-05-01

    Woodchucks infected with the woodchuck hepatitis virus (WHV) is the best available animal model for testing the immunotherapeutic effects of dendritic cells (DCs) in the setting of a chronic infection, as woodchucks develop a persistent infection resembling that seen in humans infected with the hepatitis B virus. In the present study, DCs were generated from woodchuck peripheral blood mononuclear cells (wDCs) in the presence of human granulocyte macrophage colony-stimulating factor (hGM-CSF) and human interleukin 4 (hIL-4). After 7 days of culture, cells with morphology similar to DCs were stained positively with a cross-reactive anti-human CD86 antibody. Functional analysis showed that uptake of FITC-dextran by wDCs was very efficient and was partially inhibited after LPS-induced maturation. Furthermore, wDCs stimulated allogenic lymphocytes and induced proliferation. Moreover, wDCs were transduced efficiently with a human adenovirus serotype 5 for the expression of beta-galactosidase. Following transduction and in vivo administration of such DCs into woodchucks, an antigen-specific cellular immune response was induced. These results demonstrate that wDCs can be generated from the peripheral blood. Following transfection with a recombinant adenovirus wDCs can be used as a feasible and effective tool for eliciting WHV-specific T-cell responses indicating their potential to serve as prophylactic and therapeutic vaccines. PMID:17385694

  7. TRAIL Recombinant Adenovirus Triggers Robust Apoptosis in Multidrug-Resistant HL-60/Vinc Cells Preferentially Through Death Receptor DR5

    PubMed Central

    Wu, Ching-Huang; Kao, Ching-Hai

    2008-01-01

    Abstract Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic because of its highly selective apoptosis-inducing action on neoplastic versus normal cells. However, some cancer cells express resistance to recombinant soluble TRAIL. To overcome this problem, we used a TRAIL adenovirus (Ad5/35-TRAIL) to induce apoptosis in a drug-sensitive and multidrug-resistant variant of HL-60 leukemia cells and determined the molecular mechanisms of Ad5/35-TRAIL-induced apoptosis. Ad5/35-TRAIL did not induce apoptosis in normal human lymphocytes, but caused massive apoptosis in acute myelocytic leukemia cells. It triggered more efficient apoptosis in drug-resistant HL-60/Vinc cells than in HL-60 cells. Treating the cells with anti-DR4 and anti-DR5 neutralizing antibodies (particularly anti-DR5) reduced, whereas anti-DcR1 antibody enhanced, the apoptosis triggered by Ad5/35-TRAIL. Whereas Ad5/35-TRAIL induced apoptosis in both cell lines through activation of caspase-3 and caspase-10, known to link the cell death receptor pathway to the mitochondrial pathway, it triggered increased mitochondrial membrane potential change (Δψm) only in HL-60/Vinc cells. Ad5/35-TRAIL also increased the production of reactive oxygen species, which play an important role in apoptosis. Therefore, using Ad5/35-TRAIL may be an effective therapeutic strategy for eliminating TRAIL-resistant malignant cells and these studies may provide clues to treat and eradicate acute myelocytic leukemias. PMID:18476767

  8. Hyperplastic stomatitis and esophagitis in a tortoise (Testudo graeca) associated with an adenovirus infection.

    PubMed

    Garcia-Morante, Beatriz; Pénzes, Judit J; Costa, Taiana; Martorell, Jaime; Martínez, Jorge

    2016-09-01

    A 2-year-old female, spur-thighed tortoise (Testudo graeca) was presented with poor body condition (1/5) and weakness. Fecal analysis revealed large numbers of oxyurid-like eggs, and radiographs were compatible with gastrointestinal obstruction. Despite supportive medical treatment, the animal died. At gross examination, an intestinal obstruction was confirmed. Histopathology revealed severe hyperplastic esophagitis and stomatitis with marked epithelial cytomegaly and enormous basophilic intranuclear inclusion bodies. Electron microscopy examination revealed a large number of 60-80 nm, nonenveloped, icosahedral virions arranged in crystalline arrays within nuclear inclusions of esophageal epithelial cells, morphologically compatible with adenovirus-like particles. PCR for virus identification was performed with DNA extracted from formalin-fixed, paraffin-embedded tissues. A nested, consensus pan-adenovirus PCR and sequencing analysis showed a novel adenovirus. According to phylogenetic calculations, it clustered to genus Atadenovirus in contrast with all other chelonian adenoviruses described to date. The present report details the pathologic findings associated with an adenovirus infection restricted to the upper digestive tract. PMID:27486139

  9. Locally-Delivered T-Cell-Derived Cellular Vehicles Efficiently Track and Deliver Adenovirus Delta24-RGD to Infiltrating Glioma

    PubMed Central

    Balvers, Rutger K.; Belcaid, Zineb; van den Hengel, Sanne K.; Kloezeman, Jenneke; de Vrij, Jeroen; Wakimoto, Hiroaki; Hoeben, Rob C.; Debets, Reno; Leenstra, Sieger; Dirven, Clemens; Lamfers, Martine L.M.

    2014-01-01

    Oncolytic adenoviral vectors are a promising alternative for the treatment of glioblastoma. Recent publications have demonstrated the advantages of shielding viral particles within cellular vehicles (CVs), which can be targeted towards the tumor microenvironment. Here, we studied T-cells, often having a natural capacity to target tumors, for their feasibility as a CV to deliver the oncolytic adenovirus, Delta24-RGD, to glioblastoma. The Jurkat T-cell line was assessed in co-culture with the glioblastoma stem cell (GSC) line, MGG8, for the optimal transfer conditions of Delta24-RGD in vitro. The effect of intraparenchymal and tail vein injections on intratumoral virus distribution and overall survival was addressed in an orthotopic glioma stem cell (GSC)-based xenograft model. Jurkat T-cells were demonstrated to facilitate the amplification and transfer of Delta24-RGD onto GSCs. Delta24-RGD dosing and incubation time were found to influence the migratory ability of T-cells towards GSCs. Injection of Delta24-RGD-loaded T-cells into the brains of GSC-bearing mice led to migration towards the tumor and dispersion of the virus within the tumor core and infiltrative zones. This occurred after injection into the ipsilateral hemisphere, as well as into the non-tumor-bearing hemisphere. We found that T-cell-mediated delivery of Delta24-RGD led to the inhibition of tumor growth compared to non-treated controls, resulting in prolonged survival (p = 0.007). Systemic administration of virus-loaded T-cells resulted in intratumoral viral delivery, albeit at low levels. Based on these findings, we conclude that T-cell-based CVs are a feasible approach to local Delta24-RGD delivery in glioblastoma, although efficient systemic targeting requires further improvement. PMID:25118638

  10. Suppression effect of recombinant adenovirus vector containing hIL-24 on Hep-2 laryngeal carcinoma cells

    PubMed Central

    CHEN, XUEMEI; LIU, DI; WANG, JUNFU; SU, QINGHONG; ZHOU, PENG; LIU, JINSHENG; LUAN, MENG; XU, XIAOQUN

    2014-01-01

    The melanoma differentiation-associated gene-7 [MDA-7; renamed interleukin (IL)-24] was isolated from human melanoma cells induced to terminally differentiate by treatment with interferon and mezerein. MDA-7/IL-24 functions as a multimodality anticancer agent, possessing proapoptotic, antiangiogenic and immunostimulatory properties. All these attributes make MDA-7/IL-24 an ideal candidate for cancer gene therapy. In the present study, the human MDA-7/IL-24 gene was transfected into the human laryngeal cancer Hep-2 cell line and human umbilical vein endothelial cells (HUVECs) with a replication-incompetent adenovirus vector. Reverse transcription polymerase chain reaction and western blot analysis confirmed that the Ad-hIL-24 was expressed in the two cells. The expression of the antiapoptotic gene, Bcl-2, was significantly decreased and the IL-24 receptor was markedly expressed in Hep-2 cells following infection with Ad-hIL-24, but not in HUVECs. In addition, the expression of the proapoptotic gene, Bax, was induced and the expression of caspase-3 was increased in the Hep-2 cells and HUVECs. Methyl thiazolyl tetrazolium assay indicated that Ad-hIL-24 may induce growth suppression in Hep-2 cells but not in HUVECs. In conclusion, Ad-hIL-24 selectively inhibits proliferation and induces apoptosis in Hep-2 cells. No visible damage was found in HUVECs. Therefore, the results of the current study indicated that Ad-hIL-24 may have a potent suppressive effect on human laryngeal carcinoma cell lines, but is safe for healthy cells. PMID:24527085

  11. Comparison of adenovirus fiber, protein IX, and hexon capsomeres as scaffolds for vector purification and cell targeting

    SciTech Connect

    Campos, Samuel K.; Barry, Michael A. . E-mail: mab@bcm.edu

    2006-06-05

    The direct genetic modification of adenoviral capsid proteins with new ligands is an attractive means to confer targeted tropism to adenoviral vectors. Although several capsid proteins have been reported to tolerate the genetic fusion of foreign peptides and proteins, direct comparison of cell targeting efficiencies through the different capsomeres has been lacking. Likewise, direct comparison of with one or multiple ligands has not been performed due to a lack of capsid-compatible ligands available for retargeting. Here we utilize a panel of metabolically biotinylated Ad vectors to directly compare targeted transduction through the fiber, protein IX, and hexon capsomeres using a variety of biotinylated ligands including antibodies, transferrin, EGF, and cholera toxin B. These results clearly demonstrate that cell targeting with a variety of high affinity receptor-binding ligands is only effective when transduction is redirected through the fiber protein. In contrast, protein IX and hexon-mediated targeting by the same set of ligands failed to mediate robust vector targeting, perhaps due to aberrant trafficking at the cell surface or inside targeted cells. These data suggest that vector targeting by genetic incorporation of high affinity ligands will likely be most efficient through modification of the adenovirus fiber rather than the protein IX and hexon capsomeres. In contrast, single-step monomeric avidin affinity purification of Ad vectors using the metabolic biotinylation system is most effective through capsomeres like protein IX and hexon.

  12. Triazole linker-based trivalent sialic acid inhibitors of adenovirus type 37 infection of human corneal epithelial cells.

    PubMed

    Caraballo, Rémi; Saleeb, Michael; Bauer, Johannes; Liaci, A Manuel; Chandra, Naresh; Storm, Rickard J; Frängsmyr, Lars; Qian, Weixing; Stehle, Thilo; Arnberg, Niklas; Elofsson, Mikael

    2015-09-21

    Adenovirus type 37 (Ad37) is one of the principal agents responsible for epidemic keratoconjunctivitis (EKC), a severe ocular infection that remains without any available treatment. Recently, a trivalent sialic acid derivative (ME0322, Angew. Chem. Int. Ed., 2011, 50, 6519) was shown to function as a highly potent inhibitor of Ad37, efficiently preventing the attachment of the virion to the host cells and subsequent infection. Here, new trivalent sialic acid derivatives were designed, synthesized and their inhibitory properties against Ad37 infection of the human corneal epithelial cells were investigated. In comparison to ME0322, the best compound (17a) was found to be over three orders of magnitude more potent in a cell-attachment assay (IC50 = 1.4 nM) and about 140 times more potent in a cell-infection assay (IC50 = 2.9 nM). X-ray crystallographic analysis demonstrated a trivalent binding mode of all compounds to the Ad37 fiber knob. For the most potent compound ophthalmic toxicity in rabbits was investigated and it was concluded that repeated eye administration did not cause any adverse effects. PMID:26177934

  13. Construction of recombinant adenovirus Ad-rat PLCg2-shRNA and successful suppression of PLCg2 expression in BRL-3A cells.

    PubMed

    Chen, X G; Lv, Q X; Zhou, X Q

    2016-01-01

    Phospholipase Cg2 (PLCg2) induces apoptosis of immune and tumor cells; however, it remains unclear whether PLCg2 promotes hepatocyte apoptosis during liver regeneration (LR). Therefore, to establish a framework for further exploring the function of PLCg2, we generated recombinant adenoviruses carrying a template encoding short hairpin (sh)-RNA targeting PLCg2 (Ad-PLCg2-shRNA), which were used to silence the expression of PLCg2 in BRL-3A cells. First, three pairs of PLCg2-shRNAs were designed, synthesized, and cloned into a shuttle vector, pHBAd-U6-GFP, after annealing. The recombinant shuttle plasmids were co-transfected with the backbone vector pHBAd-BHG into HK293 cells to package the recombinant Ad-PLCg2-shRNAs used to infect BRL-3A cells. Infection efficiency was monitored by observing the number of GFP-positive cells under a fluorescent microscope. To determine the recombinant adenoviruses with the highest silencing efficiency, levels of PLCg2 mRNA were evaluated by qRT-PCR. DNA sequencing confirmed that the correct shRNA coding sequences were inserted into the shuttle vectors and adenoviral plasmids. The titers of three recombinant adenoviruses were at least 1 x 10(10) PFU/mL. The most effective adenoviral construct, with interference efficiency of 77%, was determined by qRT-PCR. These results show that a recombinant adenovirus, Ad-PLCg2-shRNA, was developed and was effective at silencing the rat PLCg2 gene. This construct may contribute to the study of PLCg2 in hepatocyte apoptosis during LR. PMID:27323081

  14. Efficient detection of human circulating tumor cells without significant production of false-positive cells by a novel conditionally replicating adenovirus.

    PubMed

    Sakurai, Fuminori; Narii, Nobuhiro; Tomita, Kyoko; Togo, Shinsaku; Takahashi, Kazuhisa; Machitani, Mitsuhiro; Tachibana, Masashi; Ouchi, Masaaki; Katagiri, Nobuyoshi; Urata, Yasuo; Fujiwara, Toshiyoshi; Mizuguchi, Hiroyuki

    2016-01-01

    Circulating tumor cells (CTCs) are promising biomarkers in several cancers, and thus methods and apparatuses for their detection and quantification in the blood have been actively pursued. A novel CTC detection system using a green fluorescence protein (GFP)-expressing conditionally replicating adenovirus (Ad) (rAd-GFP) was recently developed; however, there is concern about the production of false-positive cells (GFP-positive normal blood cells) when using rAd-GFP, particularly at high titers. In addition, CTCs lacking or expressing low levels of coxsackievirus-adenovirus receptor (CAR) cannot be detected by rAd-GFP, because rAd-GFP is constructed based on Ad serotype 5, which recognizes CAR. In order to suppress the production of false-positive cells, sequences perfectly complementary to blood cell-specific microRNA, miR-142-3p, were incorporated into the 3'-untranslated region of the E1B and GFP genes. In addition, the fiber protein was replaced with that of Ad serotype 35, which recognizes human CD46, creating rAdF35-142T-GFP. rAdF35-142T-GFP efficiently labeled not only CAR-positive tumor cells but also CAR-negative tumor cells with GFP. The numbers of false-positive cells were dramatically lower for rAdF35-142T-GFP than for rAd-GFP. CTCs in the blood of cancer patients were detected by rAdF35-142T-GFP with a large reduction in false-positive cells. PMID:26966699

  15. A fiber-modified adenovirus co-expressing HSV-TK and Coli.NTR enhances antitumor activities in breast cancer cells

    PubMed Central

    Zhan, Yang; Yu, Bin; Wang, Zhen; Zhang, Yu; Zhang, Hai-Hong; Wu, Hao; Feng, Xiao; Geng, Ran-Shen; Kong, Wei; Yu, Xiang-Hui

    2014-01-01

    Breast cancers especially in late and metastatic stages remain refractory to treatment despite advances in surgical techniques and chemotherapy. Suicide gene therapy based on adenoviral technology will be promising strategies for such advanced diseases. We previously showed that co-expression of herpes simplex virus thymidine kinase (HSV-TK) and Escherichia coli nitroreductase (Coli.NTR) by an hTERT-driven adenovirus vector resulted in additive anti-tumor effects in breast cancer cells in vitro and in vivo. As many tumor tissue and cancer cells express low level of coxsackie-adenovirus receptor (CAR), which is the functional receptor for the fiber protein of human adenovirus serotype 5 (Ad5), novel Ad5 vectors containing genetically modifi ed fiber are attractive vehicles for achieving targeted gene transfer and improving suicide gene expression in these cancer cells. In the present study, we first built a simplified Ad5 vector platform for fiber modification and quick detection for gene transfer. Then a fiber-modified adenovirus vector containing an RGD motif in the HI loop of the fiber knob was constructed. After recombined with HSV-TK and Coli.NTR gene, this fiber-modified Ad5 vector (Ad-RGD-hT-TK/NTR) was compared with that of our previously constructed Ad5 vector (Ad-hT-TK/NTR) for its therapeutic effects in human breast cancer cell lines. The anti-tumor activity of Ad-RGD-hT-TK/NTR was significantly enhanced compared with Ad-hT-TK/NTR both in vitro and in vivo. This new vector platform provided a robust and simplified approach for capsid modification, and the fiber-modified Ad5 with double suicide genes under the control of hTERT promoter would be a useful gene therapy strategy for breast cancer. PMID:25031704

  16. Efficient detection of human circulating tumor cells without significant production of false-positive cells by a novel conditionally replicating adenovirus

    PubMed Central

    Sakurai, Fuminori; Narii, Nobuhiro; Tomita, Kyoko; Togo, Shinsaku; Takahashi, Kazuhisa; Machitani, Mitsuhiro; Tachibana, Masashi; Ouchi, Masaaki; Katagiri, Nobuyoshi; Urata, Yasuo; Fujiwara, Toshiyoshi; Mizuguchi, Hiroyuki

    2016-01-01

    Circulating tumor cells (CTCs) are promising biomarkers in several cancers, and thus methods and apparatuses for their detection and quantification in the blood have been actively pursued. A novel CTC detection system using a green fluorescence protein (GFP)–expressing conditionally replicating adenovirus (Ad) (rAd-GFP) was recently developed; however, there is concern about the production of false-positive cells (GFP-positive normal blood cells) when using rAd-GFP, particularly at high titers. In addition, CTCs lacking or expressing low levels of coxsackievirus–adenovirus receptor (CAR) cannot be detected by rAd-GFP, because rAd-GFP is constructed based on Ad serotype 5, which recognizes CAR. In order to suppress the production of false-positive cells, sequences perfectly complementary to blood cell–specific microRNA, miR-142-3p, were incorporated into the 3′-untranslated region of the E1B and GFP genes. In addition, the fiber protein was replaced with that of Ad serotype 35, which recognizes human CD46, creating rAdF35-142T-GFP. rAdF35-142T-GFP efficiently labeled not only CAR-positive tumor cells but also CAR-negative tumor cells with GFP. The numbers of false-positive cells were dramatically lower for rAdF35-142T-GFP than for rAd-GFP. CTCs in the blood of cancer patients were detected by rAdF35-142T-GFP with a large reduction in false-positive cells. PMID:26966699

  17. Use of replication restricted recombinant vesicular stomatitis virus vectors for detection of antigen-specific T cells.

    PubMed

    Moseley, Nelson B; Laur, Oskar; Ibegbu, Chris C; Loria, Gilbert D; Ikwuenzunma, Gini; Jayakar, Himangi R; Whitt, Michael A; Altman, John D

    2012-01-31

    Detection of antigen-specific T cells at the single-cell level by ELISpot or flow cytometry techniques employing intracellular cytokine staining (ICS) is now an indispensable tool in many areas of immunology. When precisely mapped, optimal MHC-binding peptide epitopes are unknown, these assays use antigen in a variety of forms, including recombinant proteins, overlapping peptide sets representing one or more target protein sequences, microbial lysates, lysates of microbially-infected cells, or gene delivery vectors such as DNA expression plasmids or recombinant vaccinia or adenoviruses expressing a target protein of interest. Here we introduce replication-restricted, recombinant vesicular stomatitis virus (VSV) vectors as a safe, easy to produce, simple to use, and highly effective vector for genetic antigen delivery for the detection of human antigen-specific helper and cytotoxic T cells. To demonstrate the broad applicability of this approach, we have used these vectors to detect human T cell responses to the immunodominant pp65 antigen of human cytomegalovirus, individual segments of the yellow fever virus polyprotein, and to various influenza proteins. PMID:22004852

  18. Single immunizing dose of recombinant adenovirus efficiently induces CD8+ T cell-mediated protective immunity against malaria.

    PubMed

    Rodrigues, E G; Zavala, F; Eichinger, D; Wilson, J M; Tsuji, M

    1997-02-01

    The immunogenicity of a recombinant replication defective adenovirus expressing a major malaria Ag, the circumsporozoite (CS) protein (AdPyCS), was determined using a rodent malaria model. A single immunizing dose of this construct induced a large number of CS-specific CD8+ and CD4+ T cells in the spleens of these animals, particularly when given by the s.c. or i.m. route. A single dose of AdPyCS also induced high titers of Abs to Plasmodium yoelii sporozoites in mice. No other form of presentation of the CS protein given as a single immunizing dose, i.e., irradiated sporozoites, recombinant vaccinia, or influenza virus, etc., elicits comparably high numbers of CS-specific CD8+ T cells. The high concentration of CS-specific CD8+ T cells in the spleen was relatively short-lived, decreasing to half of its original value by 4 wk and to one-third at 8 wk after AdPyCS inoculation. The decrease in splenic CS-specific CD4+ T cells was even more rapid. Most importantly, a single dose of inoculation of AdPyCS into mice rendered them highly resistant to sporozoite challenge, resulting in a 93% inhibition of liver stage development of the parasites. This protective effect was primarily mediated by CD8+ T cells, as shown by depletion of this T cell population, while depletion of the CD4+ T cell population had only a minor effect on anti-plasmodial activity. Moreover, the inoculation of mice with AdPyCS induces sterile immunity in a significant proportion of mice, preventing the occurrence of parasitemia. PMID:9013969

  19. The role of the adenovirus protease on virus entry into cells.

    PubMed Central

    Greber, U F; Webster, P; Weber, J; Helenius, A

    1996-01-01

    Adenovirus uncoating is a stepwise process which culminates in the release of the viral DNA into the nucleus through the nuclear pore complexes and dissociation of the capsid. Using quantitative biochemical, immunochemical and morphological methods, we demonstrate that inhibitors of the cystine protease, L3/p23, located inside the capsid block the degradation of the capsid-stabilizing protein VI, and prevent virus uncoating at the nuclear membrane. There was no effect on virus internalization, fiber shedding and virus binding to the nuclear envelope. The viral enzyme (dormant in the extracellular virus) was activated by two separate signals, neither of which was sufficient alone; virus interaction with the integrin receptor (inhibited with RGD peptides) and re-entry of the virus particle into a reducing environment in the endosome or the cytosol. Incorrectly assembled mutant viruses that lack the functional protease (ts1) failed at releasing fibers and penetrating into the cytosol. The results indicated that L3/p23 is needed not only to assemble an entry-competent virus but also to disassemble the incoming virus. Images PMID:8617221

  20. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies.

    PubMed

    Ryu, Hodon; Cashdollar, Jennifer L; Fout, G Shay; Schrantz, Karen A; Hayes, Samuel

    2015-01-01

    Practical difficulties of the traditional adenovirus infectivity assay such as intensive labor requirements and longer turnaround period limit the direct use of adenovirus as a testing microorganism for systematic, comprehensive disinfection studies. In this study, we attempted to validate the applicability of integrated cell culture quantitative PCR (ICC-qPCR) as an alternative to the traditional cell culture method with human adenovirus type 2 (HAdV2) in a low-pressure UV disinfection study and to further optimize the procedures of ICC-qPCR for 24-well plate format. The relatively high stability of the hexon gene of HAdV2 was observed after exposure to UV radiation, resulting in a maximum gene copy reduction of 0.5 log10 at 280 mJ cm(-2). Two-day post-inoculation incubation period and a maximum spiking level of 10(5) MPN mL(-1) were selected as optimum conditions of ICC-qPCR with the tested HAdV2. An approximate 1:1 correlation of virus quantities by the traditional and ICC-qPCR cell culture based methods suggested that ICC-qPCR is a satisfactory alternative for practical application in HAdV2 disinfection studies. ICC-qPCR results, coupled with a first-order kinetic model (i.e., the inactivation rate constant of 0.0232 cm(2) mJ(-1)), showed that an UV dose of 172 mJ cm(-2) achieved a 4-log inactivation credit for HAdV2. This estimate is comparable to other studies with HAdV2 and other adenovirus respiratory types. The newly optimized ICC-qPCR shows much promise for further study on its applicability of other slow replicating viruses in disinfection studies. PMID:26030683

  1. Synthesis of herpes simplex virus, vaccinia virus, and adenovirus DNA in isolated HeLa cell nuclei. I. Effect of viral-specific antisera and phosphonoacetic acid.

    PubMed Central

    Bolden, A; Aucker, J; Weissbach, A

    1975-01-01

    Purified nuclei, isolated from appropriately infected HeLa cells, are shown to synthesize large amounts of either herpes simplex virus (HSV) or vaccinia virus DNA in vitro. The rate of synthesis of DNA by nuclei from infected cells is up to 30 times higher than the synthesis of host DNA in vitro by nuclei isolated from uninfected HeLa cells. Thus HSV nuclei obtained from HSV-infected cells make DNA in vitro at a rate comparable to that seen in the intact, infected cell. Molecular hybridization studies showed that 80% of the DNA sequences synthesized in vitro by nuclei from herpesvirus-infected cells are herpesvirus specific. Vaccinia virus nuclei from vaccinia virus-infected cells, also produce comparable percentages of vaccinia virus-specific DNA sequences. Adenovirus nuclei from adenovirus 2-infected HeLa cells, which also synthesize viral DNA in vitro, have been included in this study. Synthesis of DNA by HSV or vaccinia virus nuclei is markedly inhibited by the corresponding viral-specific antisera. These antisera inhibit in a similar fashion the purified herpesvirus-induced or vaccinia virus-induced DNA polymerase isolated from infected cells. Phosphonoacetic acid, reported to be a specific inhibitor of herpesvirus formation and the herpesvirus-induced DNA polymerase, is equally effective as an inhibitor of HSV DNA synthesis in isolated nuclei in vitro. However, we also find phosphonoacetic acid to be an effective inhibitor of vaccinia virus nuclear DNA synthesis and the purified vaccinia virus-induced DNA polymerase. In addition, this compound shows significant inhibition of DNA synthesis in isolated nuclei obtained from adenovirus-infected or uninfected cells and is a potent inhibitor of HeLa cell DNA polymerase alpha. PMID:172658

  2. Neogenesis and proliferation of {beta}-cells induced by human betacellulin gene transduction via retrograde pancreatic duct injection of an adenovirus vector

    SciTech Connect

    Tokui, Yae . E-mail: ytokui@imed2.med.osaka-u.ac.jp; Kozawa, Junji; Yamagata, Kazuya; Zhang, Jun; Ohmoto, Hiroshi; Tochino, Yoshihiro; Okita, Kohei; Iwahashi, Hiromi; Namba, Mitsuyoshi; Shimomura, Iichiro; Miyagawa, Jun-ichiro |

    2006-12-01

    Betacellulin (BTC) has been shown to have a role in the differentiation and proliferation of {beta}-cells both in vitro and in vivo. We administered a human betacellulin (hBTC) adenovirus vector to male ICR mice via retrograde pancreatic duct injection. As a control, we administered a {beta}-galactosidase adenovirus vector. In the mice, hBTC protein was mainly overexpressed by pancreatic duct cells. On immunohistochemical analysis, we observed features of {beta}-cell neogenesis as newly formed insulin-positive cells in the duct cell lining or islet-like cell clusters (ICCs) closely associated with the ducts. The BrdU labeling index of {beta}-cells was also increased by the betacellulin vector compared with that of control mice. These results indicate that hBTC gene transduction into adult pancreatic duct cells promoted {beta}-cell differentiation (mainly from duct cells) and proliferation of pre-existing {beta}-cells, resulting in an increase of the {beta}-cell mass that improved glucose tolerance in diabetic mice.

  3. Verapamil Enhances the Antitumoral Efficacy of Oncolytic Adenoviruses

    PubMed Central

    Gros, Alena; Puig, Cristina; Guedan, Sonia; Rojas, Juan José; Alemany, Ramon; Cascallo, Manel

    2010-01-01

    The therapeutic potential of oncolytic adenoviruses is limited by the rate of adenovirus release. Based on the observation that several viruses induce cell death and progeny release by disrupting intracellular calcium homeostasis, we hypothesized that the alteration in intracellular calcium concentration induced by verapamil could improve the rate of virus release and spread, eventually enhancing the antitumoral activity of oncolytic adenoviruses. Our results indicate that verapamil substantially enhanced the release of adenovirus from a variety of cell types resulting in an improved cell-to-cell spread and cytotoxicity. Furthermore, the combination of the systemic administration of an oncolytic adenovirus (ICOVIR-5) with verapamil in vivo greatly improved its antitumoral activity in two different tumor xenograft models without affecting the selectivity of this virus. Overall, our findings indicate that verapamil provides a new, safe, and versatile way to improve the antitumoral potency of oncolytic adenoviruses in the clinical setting. PMID:20179683

  4. Adenovirus E1A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells.

    PubMed Central

    Zerler, B; Moran, B; Maruyama, K; Moomaw, J; Grodzicker, T; Ruley, H E

    1986-01-01

    Plasmids expressing partial adenovirus early region 1A (E1A) coding sequences were tested for activities which facilitate in vitro establishment (immortalization) of primary baby rat kidney cells and which enable the T24 Harvey ras-related oncogene and the polyomavirus middle T antigen (pmt) gene to transform primary baby rat kidney cells. E1A cDNAs expressing the 289- and 243-amino acid proteins expressed both E1A transforming functions. Mutant hrA, which encodes a 140-amino acid protein derived from the amino-terminal domain shared by the 289- and 243-amino acid proteins, enabled ras (but not pmt) to transform and facilitated in vitro establishment to a low, but detectable, extent. These studies suggest that E1A functions which collaborate with ras oncogenes and those which facilitate establishment are linked. Furthermore, E1A transforming functions are not associated with activities of the 289-amino acid E1A proteins required for efficient transcriptional activation of viral early region promoters. Images PMID:3022137

  5. Activation of adenovirus 5 E1A transcription by region E1B in transformed primary rat cells.

    PubMed Central

    Jochemsen, A G; Peltenburg, L T; te Pas, M F; de Wit, C M; Bos, J L; van der Eb, A J

    1987-01-01

    The human adenovirus 5 E1A region can immortalize primary cultures of baby rat kidney cells, but requires the presence of the E1B region for complete oncogenic transformation. One of the effects of the E1B region in the transformation process is the activation of E1A expression. We have investigated the mechanism of this stimulation of E1A expression using nuclear run-on assays with nuclei from Ad5 E1A- and Ad5 E1-transformed cells. It was found that E1B enhances E1A at the level of transcription-initiation. This activation is mainly observed when the E1A and E1B regions are integrated simultaneously into the cellular genome and only minimally when these genes are integrated separately, strongly suggesting that a close physical linkage of these regions is essential for the observed effect. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:2962857

  6. Adenovirus-Mediated Over-Expression of Nrf2 Within Mesenchymal Stem Cells (MSCs) Protected Rats Against Acute Kidney Injury

    PubMed Central

    Mohammadzadeh-Vardin, Mohammad; Habibi Roudkenar, Mehryar; Jahanian-Najafabadi, Ali

    2015-01-01

    Purpose: Recent developments in the field of cell therapy have led to a renewed interest in treatment of acute kidney injury (AKI). However, the early death of transplanted mesenchymal stem cells (MSCs) in stressful microenvironment of a recipient tissue is a major problem with this kind of treatment. The objective of this study was to determine whether overexpression of a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2), in MSCs could protect rats against AKI. Methods: The Nrf2 was overexpressed in MSCs by recombinant adenoviruses, and the MSCs were implanted to rats suffering from cisplatin-induced AKI. Results: The obtained results showed that transplantation with the engineered MSCs ameliorates cisplatin-induced AKI. Morphologic features of the investigated kidneys showed that transplantation with the MSCs in which Nrf2 had been overexpressed significantly improved the complications of AKI. Conclusion: These findings suggested that the engineered MSCs might be a good candidate to be further evaluated in clinical trials. However, detailed studies must be performed to investigate the possible carcinogenic effect of Nrf2 overexpression. PMID:26236658

  7. Adenovirus-mediated ING4 expression reduces multidrug resistance of human gastric carcinoma cells in vitro and in vivo.

    PubMed

    Mao, Zong-Lei; He, Song-Bing; Sheng, Wei-Hua; Dong, Xiao-Qiang; Yang, Ji-Cheng

    2013-11-01

    Chemotherapy is the primary treatment for both resectable and advanced gastric carcinoma, yet multiple drug resistance (MDR) of gastric carcinoma remains a significant therapeutic obstacle. The development of novel strategies to reduce MDR in gastric carcinoma would yield a better outcome following chemotherapy. ING4, a member of the inhibitor of growth (ING) tumor-suppressor family, possesses antitumor and radiosensitization or chemosensitization effects in a variety of human cancers. The present study investigated the effects and possible mechanisms of action of adenovirus-mediated ING4 (AdVING4) on the reversion of human gastric carcinoma cell MDR in vitro and in vivo in nude mouse xenografts. The data showed that the expression of ING4 mRNA and protein was dramatically downregulated (or lost) in gastric carcinoma SGC7901/CDDP cells after CDDP-induced MDR phenotype and in the parental SGC7901 cells. AdVING4‑induced ING4 expression reversed MDR and induced apoptosis of SGC7901/CDDP cells in vitro and in vivo in the SGC7901/CDDP xenograft tumors. Furthermore, AdVING4 substantially downregulated the expression of MDR-related proteins P-gp and MRP1 and apoptosis‑related proteins Bcl-2 and survivin, but upregulated the expression of apoptosis-related protein Bax in the SGC7901/CDDP xenograft tissues. The reversion effects elicited by AdVING4 on gastric cancer cell MDR were closely associated with the downregulation of ATP-binding cassette transporters and activation of apoptotic pathways. Thus, these findings suggest that AdVING4 may be a feasible modulator for the MDR phenotype of gastric carcinoma cells. PMID:23969950

  8. Use of macrophages to target therapeutic adenovirus to human prostate tumors.

    PubMed

    Muthana, Munitta; Giannoudis, Athina; Scott, Simon D; Fang, Hsin-Yu; Coffelt, Seth B; Morrow, Fiona J; Murdoch, Craig; Burton, Julian; Cross, Neil; Burke, Bernard; Mistry, Roshna; Hamdy, Freddie; Brown, Nicola J; Georgopoulos, Lindsay; Hoskin, Peter; Essand, Magnus; Lewis, Claire E; Maitland, Norman J

    2011-03-01

    New therapies are required to target hypoxic areas of tumors as these sites are highly resistant to conventional cancer therapies. Monocytes continuously extravasate from the bloodstream into tumors where they differentiate into macrophages and accumulate in hypoxic areas, thereby opening up the possibility of using these cells as vehicles to deliver gene therapy to these otherwise inaccessible sites. We describe a new cell-based method that selectively targets an oncolytic adenovirus to hypoxic areas of prostate tumors. In this approach, macrophages were cotransduced with a hypoxia-regulated E1A/B construct and an E1A-dependent oncolytic adenovirus, whose proliferation is restricted to prostate tumor cells using prostate-specific promoter elements from the TARP, PSA, and PMSA genes. When such cotransduced cells reach an area of extreme hypoxia, the E1A/B proteins are expressed, thereby activating replication of the adenovirus. The virus is subsequently released by the host macrophage and infects neighboring tumor cells. Following systemic injection into mice bearing subcutaneous or orthotopic prostate tumors, cotransduced macrophages migrated into hypoxic tumor areas, upregulated E1A protein, and released multiple copies of adenovirus. The virus then infected neighboring cells but only proliferated and was cytotoxic in prostate tumor cells, resulting in the marked inhibition of tumor growth and reduction of pulmonary metastases. This novel delivery system employs 3 levels of tumor specificity: the natural "homing" of macrophages to hypoxic tumor areas, hypoxia-induced proliferation of the therapeutic adenovirus in host macrophages, and targeted replication of oncolytic virus in prostate tumor cells. PMID:21233334

  9. Adenovirus type 12 E1A protein expressed in Escherichia coli is functional upon transfer by microinjection or protoplast fusion into mammalian cells.

    PubMed Central

    Krippl, B; Andrisani, O; Jones, N; Westphal, H; Rosenberg, M; Ferguson, B

    1986-01-01

    We efficiently expressed, in Escherichia coli, and purified the protein product encoded by the human adenovirus type 12 (Ad12) 13S mRNA. The functional properties of the E1A protein were analyzed by introducing the protein by microinjection or protoplast fusion into living mammalian cells. We showed that the E. coli-expressed E1A protein induces gene expression of the adenovirus type 5 (Ad5) E1A deletion mutant Ad5dl312. The purified E1A protein rapidly and quantitatively localized to the cell nucleus after microinjection into the cytoplasm. In addition, we raised high-titered monospecific antibodies to the purified Ad12 E1A protein. Using deleted forms of an adenovirus type 2 and Ad5 hybrid (Ad2/5) E1A protein, we showed that all of the epitopes conserved between Ad2/5 E1A and Ad12 E1A protein that are recognized by the Ad12 E1A-specific antiserum map to within the first exon-encoded amino-terminal half of the protein. Images PMID:2942704

  10. Transforming Potential of the Adenovirus Type 5 E4orf3 Protein

    PubMed Central

    Nevels, Michael; Täuber, Birgitt; Kremmer, Elisabeth; Spruss, Thilo; Wolf, Hans; Dobner, Thomas

    1999-01-01

    Previous observations that the adenovirus type 5 (Ad5) E4orf6 and E4orf3 gene products have redundant effects in viral lytic infection together with the recent findings that E4orf6 possesses transforming potential prompted us to investigate the effect of E4orf3 expression on the transformation of primary rat cells in combination with adenovirus E1 oncogene products. Our results demonstrate for the first time that E4orf3 can cooperate with adenovirus E1A and E1A plus E1B proteins to transform primary baby rat kidney cells, acting synergistically with E4orf6 in the presence of E1B gene products. Transformed rat cells expressing E4orf3 exhibit morphological alterations, higher growth rates and saturation densities, and increased tumorigenicity compared with transformants expressing E1 proteins only. Consistent with previous results for adenovirus-infected cells, the E4orf3 protein is immunologically restricted to discrete nuclear structures known as PML oncogenic domains (PODs) in transformed rat cells. As opposed to E4orf6, the ability of E4orf3 to promote oncogenic cell growth is probably not linked to a modulation of p53 functions and stability. Instead, our results indicate that the transforming activities of E4orf3 are due to combinatorial effects that involve the binding to the adenovirus 55-kDa E1B protein and the colocalization with PODs independent from interactions with the PML gene product. These data fit well with a model in which the reorganization of PODs may trigger a cascade of processes that cause uncontrolled cell proliferation and neoplastic growth. In sum, our results provide strong evidence for the idea that interactions with PODs by viral proteins are linked to oncogenic transformation. PMID:9882365

  11. Adenovirus serotype 5 hexon mediates liver gene transfer.

    PubMed

    Waddington, Simon N; McVey, John H; Bhella, David; Parker, Alan L; Barker, Kristeen; Atoda, Hideko; Pink, Rebecca; Buckley, Suzanne M K; Greig, Jenny A; Denby, Laura; Custers, Jerome; Morita, Takashi; Francischetti, Ivo M B; Monteiro, Robson Q; Barouch, Dan H; van Rooijen, Nico; Napoli, Claudio; Havenga, Menzo J E; Nicklin, Stuart A; Baker, Andrew H

    2008-02-01

    Adenoviruses are used extensively as gene transfer agents, both experimentally and clinically. However, targeting of liver cells by adenoviruses compromises their potential efficacy. In cell culture, the adenovirus serotype 5 fiber protein engages the coxsackievirus and adenovirus receptor (CAR) to bind cells. Paradoxically, following intravascular delivery, CAR is not used for liver transduction, implicating alternate pathways. Recently, we demonstrated that coagulation factor (F)X directly binds adenovirus leading to liver infection. Here, we show that FX binds to the Ad5 hexon, not fiber, via an interaction between the FX Gla domain and hypervariable regions of the hexon surface. Binding occurs in multiple human adenovirus serotypes. Liver infection by the FX-Ad5 complex is mediated through a heparin-binding exosite in the FX serine protease domain. This study reveals an unanticipated function for hexon in mediating liver gene transfer in vivo. PMID:18267072

  12. [Quality control of recombinant oncolytic adenovirus/p53].

    PubMed

    Gao, Kai; Bi, Hua; Ding, You-Xue; Li, Yong-Hong; Han, Chun-Mei; Guo, Ying; Rao, Chun-Ming

    2011-12-01

    To establish a detection method of oncolytic adenovirus/p53 and standard of quality control, human telomerase reverse transcriptase (hTERT) promoter, CMV fusion promoter containing hypoxia reaction element (HRE) and p53 gene were identified by vector DNA restriction enzyme digestion and PCR analysis. The result conformed that all modified regions were in consistent with theoretical ones. Particle number was 2.0 x 10(11) mL(-1) determined by UV (A260). Infectious titer was 5.0 x 10(10) IU mL(-1) analyzed by TCID50. In vitro p53 gene expression in human lung cancer cell H1299 was determined by ELISA, and A450 ratio of nucleoprotein in virus infection group to control group was 5.2. Antitumor potency was evaluated by cytotoxicity assay using human lung cancer cell A549, and the MOI(IC50) of this gene therapy preparation was 1.0. The tumor cells targeted replication ability of recombinant virus was determined by TCID50 titer ratio of filial generation virus between human lung cancer cell A549 and human diploid epidermal fibrolast BJ cells after infected by virus with same MOI. TCID50 titer ratio of tumor cell infection group to normal cell infection control group was 398. The IE-HPLC purity of virus was 99.5%. There was less than 1 copy of wild type adenovirus within 1 x 10(7) VP recombinant virus. Other quality control items were complied with corresponding requirements in the guidance for human somatic cell therapy and gene therapy and Chinese pharmacopeia volume III. The detection method of oncolytic adenovirus/p53 was successfully established for quality control standard. The study also provided reference for quality control of other oncolytic viral vector products. PMID:22375422

  13. Nuclear actin is partially associated with Cajal bodies in human cells in culture and relocates to the nuclear periphery after infection of cells by adenovirus 5

    SciTech Connect

    Gedge, L.J.E.; Morrison, E.E.; Blair, G.E.; Walker, J.H. . E-mail: J.H.Walker@leeds.ac.uk

    2005-02-15

    Cajal bodies are intra-nuclear structures enriched in proteins involved in transcription and mRNA processing. In this study, immunofluorescence microscopy experiments using a highly specific antibody to actin revealed nuclear actin spots that colocalized in part with p80 coilin-positive Cajal bodies. Actin remained associated with Cajal bodies in cells extracted to reveal the nuclear matrix. Adenovirus infection, which is known to disassemble Cajal bodies, resulted in loss of actin from these structures late in infection. In infected cells, nuclear actin was observed to relocate to structures at the periphery of the nucleus, inside the nuclear envelope. Based on these findings, it is suggested that actin may play an important role in the organization or function of the Cajal body.

  14. In vitro transcription of adenovirus.

    PubMed Central

    Fire, A; Baker, C C; Manley, J L; Ziff, E B; Sharp, P A

    1981-01-01

    A series of recombinants of adenovirus DNA fragments and pBR322 was used to test the transcriptional activity of the nine known adenovirus promoters in a cell-free extract. Specific initiation was seen at all five early promoters as well as at the major late promotor and at the intermediate promoter for polypeptide IX. The system failed to recognize the two other adenovirus promoters, which were prominent in vivo only at intermediate and late stages in infection. Microheterogeneity of 5' termini at several adenovirus promoters, previously shown in vivo, was reproduced in the in vitro reaction and indeed appeared to result from heterogeneous initiation rather than 5' processing. To test for the presence of soluble factors involved in regulation of nRNA synthesis, the activity of extracts prepared from early and late stages of infection was compared on an assortment of viral promoter sites. Although mock and early extracts showed identical transcription patterns, extracts prepared from late stages gave 5- to 10-fold relative enhancement of the late and polypeptide IX promoters as compared with early promoters. Images PMID:7321101

  15. Dynamic change in natural killer cell type in the human ocular mucosa in situ as means of immune evasion by adenovirus infection.

    PubMed

    Yawata, N; Selva, K J; Liu, Y-C; Tan, K P; Lee, A W L; Siak, J; Lan, W; Vania, M; Arundhati, A; Tong, L; Li, J; Mehta, J S; Yawata, M

    2016-01-01

    The most severe form of virus-induced inflammation at the ocular surface is epidemic keratoconjunctivitis (EKC), often caused by group D human adenoviruses (HAdVs). We investigated the dynamics and mechanisms of changes in natural killer (NK) cell types in the human ocular mucosal surface in situ over the course of infection. In the acute phase of infection, the mature CD56(dim)NK cells that comprise a major subpopulation in the normal human conjunctiva are replaced by CD56(bright)NK cells recruited to the ocular surface by chemokines produced by the infected epithelium, and NKG2A-expressing CD56(dim) and CD56(bright) NK cells become the major subpopulations in severe inflammation. These NK cells attracted to the mucosal surface are however incapable of mounting a strong antiviral response because of upregulation of the inhibitory ligand human leukocyte antigen-E (HLA-E) on infected epithelium. Furthermore, group D HAdVs downregulate ligands for activating NK cell receptors, thus rendering even the mature NKG2A(-)NK cells unresponsive, an immune-escape mechanism distinct from other adenoviruses. Our findings imply that the EKC-causing group D HAdVs utilize these multiple pathways to inhibit antiviral NK cell responses in the initial stages of the infection. PMID:26080707

  16. Cross-sectional study of the relationship of peripheral blood cell profiles with severity of infection by adenovirus type 55

    PubMed Central

    2014-01-01

    Background The immunologic profiles of patients with human adenovirus serotype 55 (HAdV-55) infections were characterized in subjects diagnosed with silent infections (n = 30), minor infections (n = 27), severe infections (n = 34), and healthy controls (n = 30) during a recent outbreak among Chinese military trainees. Methods Blood was sampled at the disease peak and four weeks later, and samples were analyzed to measure changes in leukocyte and platelet profiles in patients with different severities of disease. Differential lymphocyte subsets and cytokine profiles were measured by flow cytometry and Luminex xMAP®, and serum antibodies were analyzed by ELISA and immunofluorescence staining. Results Patients with severe HAdV infections had higher proportions of neutrophils and reduced levels of lymphocytes (p < 0.005 for both). Patients with minor and severe infections had significantly lower platelet counts (p < 0.005 for both) than those with silent infections. The silent and minor infection groups had higher levels of dendritic cells than the severe infection group. Relative to patients with silent infections, patients with severe infections had significantly higher levels of IL-17+CD4+ cells, decreased levels of IL-17+CD8+ cells, and higher levels of IFN-γ, IL-4, IL-10, and IFN-α2 (p < 0.001 for all comparisons). Conclusions Patients with different severities of disease due to HAdV-55 infection had significantly different immune responses. These data provide an initial step toward the identification of patients at risk for more severe disease and the development of treatments against HAdV-55 infection. PMID:24646014

  17. Syngeneic syrian hamster tumors feature tumor-infiltrating lymphocytes allowing adoptive cell therapy enhanced by oncolytic adenovirus in a replication permissive setting.

    PubMed

    Siurala, Mikko; Vähä-Koskela, Markus; Havunen, Riikka; Tähtinen, Siri; Bramante, Simona; Parviainen, Suvi; Mathis, J Michael; Kanerva, Anna; Hemminki, Akseli

    2016-05-01

    Adoptive transfer of tumor-infiltrating lymphocytes (TIL) has shown promising yet sometimes suboptimal results in clinical trials for advanced cancer, underscoring the need for approaches improving efficacy and safety. Six implantable syngeneic tumor cell lines of the Syrian hamster were used to initiate TIL cultures. TIL generated from tumor fragments cultured in human interleukin-2 (IL-2) for 10 d were adoptively transferred into tumor-bearing hamsters with concomitant intratumoral injections of oncolytic adenovirus (Ad5-D24) for the assessment of antitumor efficacy. Pancreatic cancer (HapT1) and melanoma (RPMI 1846) TIL exhibited potent and tumor-specific cytotoxicity in effector-to-target (E/T) assays. MHC Class I blocking abrogated the cell killing of RPMI 1846 TIL, indicating cytotoxic CD8(+) T-cell activity. When TIL were combined with Ad5-D24 in vitro, HapT1 tumor cell killing was significantly enhanced over single agents. In vivo, the intratumoral administration of HapT1 TIL and Ad5-D24 resulted in improved tumor growth control compared with either treatment alone. Additionally, splenocytes derived from animals treated with the combination of Ad5-D24 and TIL killed autologous tumor cells more efficiently than monotherapy-derived splenocytes, suggesting that systemic antitumor immunity was induced. For the first time, TIL of the Syrian hamster have been cultured, characterized and used therapeutically together with oncolytic adenovirus for enhancing the efficacy of TIL therapy. Our results support human translation of oncolytic adenovirus as an enabling technology for adoptive T-cell therapy of solid tumors. PMID:27467954

  18. Targeted delivery of CYP2E1 recombinant adenovirus to malignant melanoma by bone marrow-derived mesenchymal stem cells as vehicles.

    PubMed

    Wang, Jishi; Ma, Dan; Li, Yan; Yang, Yuan; Hu, Xiaoyan; Zhang, Wei; Fang, Qin

    2014-03-01

    The aim of this study was to explore the effects of bone marrow-derived mesenchymal stem cells (BMSCs) as intermediate carriers on targeting of P450 gene recombinant adenovirus to malignant melanoma in vitro and in vivo. BMSCs were transduced with pAd5-CMV-CYP2E1 recombinant adenovirus. BMSC migration was detected by Transwell plates in vitro and by superparamagnetic iron oxide particles in vivo. Growth-inhibitory effect and apoptosis were determined by MTT and immunity fluorescence staining. Anticancer effects were examined by a human melanoma nude mouse model in vivo. BMSCs moved toward A375 cells in Transwell plates. Numerous superparamagnetic MSCs labeled with iron oxide were identified in the peripheral areas of the tumor, but were detected in primary organs by Prussian blue staining. BMSC-CYP2E1 cells mediated a bystander killing effect on CYP2E1-negative A375 cells during coculture (IC50 values for A375 cells cocultured with BMSC-EGFP and BMSC-CYP2E1 were 4.08 and 2.68 mmol/l, respectively). Intravenously injecting CYP2E1 recombinant adenovirus-loaded BMSCs in mice with established human melanoma managed to target the tumor site, and BMSCs with forced expression of CYP2E1 inhibited the growth of malignant cells in vivo by activating 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide. BMSCs may serve as a platform of P450 gene-directed enzyme prodrug therapy for the delivery of chemotherapeutic prodrugs to tumors. PMID:24413391

  19. Efficient construction of recombinant adenovirus expression vector of the Qinchuan cattle LYRM1 gene.

    PubMed

    Li, Y K; Fu, C Z; Zhang, Y R; Zan, L S

    2015-01-01

    In this study, we cloned the coding DNA sequence (CDS) region of Qinchuan cattle LYR motif-containing 1 (LYRM1) and constructed a recombinant adenovirus expression vector to examine the function of LYRM1 on the cellular level. Total RNA was extracted from the adipose tissue of Qinchuan cattle, cDNA was obtained by reverse transcription, and polymerase chain reaction was used to amplify the CDS region of the LYRM1 gene. The CDS-containing fragment was inserted into the shuttle vector pAdTrack-CMV to construct pAdTrack-CMV-LYRM1 vector. After linearization of pAdTrack-CMV-LYRM1 and the negative control vector pAdTrack-CMV by restriction endonuclease PmeI, the vectors were transformed into Escherichia coli BJ5183 containing pAdEasy-1 to obtain the recombinant adenovirus vector pAd-LYRM1 and pAd-CMV through homologous recombination. pAd-LYRM1 and pAd-CMV were then digested by PacI and transfected into the 293A cell line. The recombinant adenovirus Ad-LYRM1 and Ad-CMV was obtained at a concentration of 7 x 108 and 1.3 x 109 green fluorescent units/mL, respectively. Preadipocytes derived from Qinchuan cattle were separately infected with Ad-LYRM1 and Ad- CMV. Quantitative real-time polymerase chain reaction demonstrated that the expression of LYRM1 was increased by approximate 28,000-folds after the infection with recombinant adenovirus for 48 h. In conclusion, we successfully cloned the CDS region of the Qinchuan cattle LYRM1 gene, constructed the recombinant adenovirus expression vector, and obtained the adenovirus with high titer, providing valuable materials for studying the function of LYRM1 at the cellular level. PMID:26345880

  20. Adenovirus preterminal protein synthesized in COS cells from cloned DNA is active in DNA replication in vitro.

    PubMed Central

    Pettit, S C; Horwitz, M S; Engler, J A

    1988-01-01

    Replication of the DNA genome of human adenovirus serotype 2 requires three virus-encoded proteins. Two of these proteins, the preterminal protein (pTP) and the adenovirus DNA polymerase, are transcribed from a single promoter at early times after virus infection. The mRNAs for these proteins share several exons, including one encoded near adenovirus genome coordinate 39. By using plasmids containing DNA fragments postulated to encode the various exons of pTP mRNA, the contributions of each exon to the synthesis of an active pTP have been measured. Only plasmids that contain both the open reading frame for pTP (genome coordinates 29.4 to 23.9) and the HindIII J fragment that contains the exon at genome coordinate 39 can express functional pTP. Images PMID:3336069

  1. [Research of modulation of CD95-mediated apoptosis in lymphoblastic MP-1 and BJAB cells infected by adenovirus and Epstein-Barr virus].

    PubMed

    Nesterova, N V; Diachenko, N S; Zahorodnia, S D; Nosach, L M; Povnytsia, O Iu; Baranova, H V; Zhovnovata, V L

    2006-01-01

    Model systems of infecting limphoblastic MP-1 and BJAB cells by Epstein-Barr virus, 5 serotype adenovirus and double infection are developed. A rather high level of accumulation of DNA of these viruses in the cells in dynamics at monoinfection and inhibition interference at multi-infection was shown by PCR method. The influence of virus infection on proliferative activity was studied. The stimulation of cells growth in the system BJAB + EBV was detected, and double infecting inhibited the process by 50%. The 25% difference in development of apoptosis process between cells infected by adenovirus and EBV was established when defining CD95-mediated apoptosis in infected MP-1 cells. The infecting of BJAB cells by viruses had a scarce effect on the processes of spontaneous apoptosis, but the data on CD95-mediated apoptosis at EBV infection testify to inhibition of this process both at a monoinfection, and at a double infection. The work was performed in the framework of the fundamental agreement of Ministry of Education and Science of Ukraine F7/366-2001, and grant INTAS N011-2382. PMID:16786631

  2. Temporal dynamics of methyltransferase and restriction endonuclease accumulation in individual cells after introducing a restriction-modification system

    PubMed Central

    Morozova, Natalia; Sabantsev, Anton; Bogdanova, Ekaterina; Fedorova, Yana; Maikova, Anna; Vedyaykin, Alexey; Rodic, Andjela; Djordjevic, Marko; Khodorkovskii, Mikhail; Severinov, Konstantin

    2016-01-01

    Type II restriction-modification (R-M) systems encode a restriction endonuclease that cleaves DNA at specific sites, and a methyltransferase that modifies same sites protecting them from restriction endonuclease cleavage. Type II R-M systems benefit bacteria by protecting them from bacteriophages. Many type II R-M systems are plasmid-based and thus capable of horizontal transfer. Upon the entry of such plasmids into a naïve host with unmodified genomic recognition sites, methyltransferase should be synthesized first and given sufficient time to methylate recognition sites in the bacterial genome before the toxic restriction endonuclease activity appears. Here, we directly demonstrate a delay in restriction endonuclease synthesis after transformation of Escherichia coli cells with a plasmid carrying the Esp1396I type II R-M system, using single-cell microscopy. We further demonstrate that before the appearance of the Esp1396I restriction endonuclease the intracellular concentration of Esp1396I methyltransferase undergoes a sharp peak, which should allow rapid methylation of host genome recognition sites. A mathematical model that satisfactorily describes the observed dynamics of both Esp1396I enzymes is presented. The results reported here were obtained using a functional Esp1396I type II R-M system encoding both enzymes fused to fluorescent proteins. Similar approaches should be applicable to the studies of other R-M systems at single-cell level. PMID:26687717

  3. A vesicular stomatitis virus glycoprotein epitope-incorporated oncolytic adenovirus overcomes CAR-dependency and shows markedly enhanced cancer cell killing and suppression of tumor growth

    PubMed Central

    Yoon, A-Rum; Hong, Jinwoo; Yun, Chae-Ok

    2015-01-01

    Utility of traditional oncolytic adenovirus (Ad) has been limited due to low expression of coxsackie and adenovirus receptor (CAR) in cancer cells which results in poor infectivity of Ads. Here with an aim of improving the efficiency of Ad's entry to the cell, we generated a novel tropism-expanded oncolytic Ad which contains the epitope of vesicular stomatitis virus glycoprotein (VSVG) at the HI-loop of Ad fiber. We generated 9 variants of oncolytic Ads with varying linkers and partial deletion to the fiber. Only one VSVG epitope-incorporated variant, RdB-1L-VSVG, which contains 1 linker and no deletion to fiber, was produced efficiently. Production of 3-dimensionaly stable fiber in RdB-1L-VSVG was confirmed by immunoblot analysis. RdB-1L-VSVG shows a remarkable improvement in cytotoxicity and total viral yield in cancer cells. RdB-1L-VSVG demonstrates enhanced cytotoxicity in cancer cells with subdued CAR-expression as it can be internalized by an alternate pathway. Competition assays with a CAR-specific antibody (Ab) or VSVG receptor, phosphatidyl serine (PS), reveals that cell internalization of RdB-1L-VSVG is mediated by both CAR and PS. Furthermore, treatment with RdB-1L-VSVG significantly enhanced anti-tumor effect in vivo. These studies demonstrate that the strategy to expand oncolytic Ad tropism may significantly improve therapeutic profile for cancer treatment. PMID:26430798

  4. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays

    PubMed Central

    Bachy, Veronique; Hervouet, Catherine; Becker, Pablo D.; Chorro, Laurent; Carlin, Leo M.; Herath, Shanthi; Papagatsias, Timos; Barbaroux, Jean-Baptiste; Oh, Sea-Jin; Benlahrech, Adel; Athanasopoulos, Takis; Dickson, George; Patterson, Steven; Kwon, Sung-Yun; Geissmann, Frederic; Klavinskis, Linda S.

    2013-01-01

    Stabilization of virus protein structure and nucleic acid integrity is challenging yet essential to preserve the transcriptional competence of live recombinant viral vaccine vectors in the absence of a cold chain. When coupled with needle-free skin delivery, such a platform would address an unmet need in global vaccine coverage against HIV and other global pathogens. Herein, we show that a simple dissolvable microneedle array (MA) delivery system preserves the immunogenicity of vaccines encoded by live recombinant human adenovirus type 5 (rAdHu5). Specifically, dried rAdHu5 MA immunization induced CD8+ T-cell expansion and multifunctional cytokine responses equipotent with conventional injectable routes of immunization. Intravital imaging demonstrated MA cargo distributed both in the epidermis and dermis, with acquisition by CD11c+ dendritic cells (DCs) in the dermis. The MA immunizing properties were attributable to CD11c+ MHCIIhi CD8αneg epithelial cell adhesion molecule (EpCAMneg) CD11b+ langerin (Lang; CD207)neg DCs, but neither Langerhans cells nor Lang+ DCs were required for CD8+ T-cell priming. This study demonstrates an important technical advance for viral vaccine vectors progressing to the clinic and provides insights into the mechanism of CD8+ T-cell priming by live rAdHu5 MAs. PMID:23386724

  5. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells.

    PubMed

    Kumar, Nathan; Richter, Jenna; Cutts, Josh; Bush, Kevin T; Trujillo, Cleber; Nigam, Sanjay K; Gaasterland, Terry; Brafman, David; Willert, Karl

    2015-01-01

    The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate. PMID:26554899

  6. The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs.

    PubMed Central

    Pilder, S; Moore, M; Logan, J; Shenk, T

    1986-01-01

    The adenovirus type 5 mutant H5dl338 lacks 524 base pairs within early region 1B. The mutation removed a portion of the region encoding the related E1B-55K and -17K polypeptides but did not disturb the E1B-21K coding region. The virus can be propagated in 293 cells which contain and express the adenovirus type 5 E1A and E1B regions, but it is defective for growth in HeLa cells, in which its final yield is reduced about 100-fold compared with the wild-type virus. The mutant also fails to transform rat cells at normal efficiency. The site of the dl338 defect was studied in HeLa cells. Early gene expression and DNA replication appeared normal. Late after infection, mRNAs coded by the major late transcription unit accumulated to reduced levels. At a time when transcription rates and steady-state nuclear RNA species were normal, the rate at which late mRNA accumulated in the cytoplasm was markedly reduced. Furthermore, in contrast to the case with the wild type, transport and accumulation of cellular mRNAs continued late after infection with dl338. Thus, the E1B product appears to facilitate transport and accumulation of viral mRNAs late after infection while blocking the same processes for cellular mRNAs. Images PMID:2946932

  7. Deletion of the gene encoding the adenovirus 5 early region 1b 21,000-molecular-weight polypeptide leads to degradation of viral and host cell DNA.

    PubMed Central

    Pilder, S; Logan, J; Shenk, T

    1984-01-01

    The adenovirus 5 mutant H5dl337 lacks 146 base pairs within early region 1B. The deletion removes a portion of the region encoding the E1B 21,000-molecular-weight (21K) polypeptide, but does not disturb the E1B-55K/17K coding region. The virus is slightly defective for growth in cultured HeLa cells, in which its final yield is reduced ca. 10-fold compared with wild-type virus. The mutant displays a striking phenotype in HeLa cells. The onset of cytopathic effect is dramatically accelerated, and both host cell and viral DNAs are extensively degraded late after infection. This defect has been described previously for a variety of adenovirus mutants and has been termed a cytocidal (cyt) phenotype. H5dl337 serves to map this defect to the loss of E1B-21K polypeptide function. In addition to its defect in the productive growth cycle, H5dl337 is unable to transform rat cells at normal efficiency. Images PMID:6492257

  8. The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor alpha.

    PubMed Central

    White, E; Sabbatini, P; Debbas, M; Wold, W S; Kusher, D I; Gooding, L R

    1992-01-01

    The adenovirus E1A and E1B proteins are required for transformation of primary rodent cells. When expressed in the absence of the 19,000-dalton (19K) E1B protein, however, the E1A proteins are acutely cytotoxic and induce host cell chromosomal DNA fragmentation and cytolysis, analogous to cells undergoing programmed cell death (apoptosis). E1A alone can efficiently initiate the formation of foci which subsequently undergo abortive transformation whereby stimulation of cell growth is counteracted by continual cell death. Cell lines with an immortalized growth potential eventually arise with low frequency. Coexpression of the E1B 19K protein with E1A is sufficient to overcome abortive transformation to produce high-frequency transformation. Like E1A, the tumoricidal cytokine tumor necrosis factor alpha (TNF-alpha) evokes a programmed cell death response in many tumor cell lines by inducing DNA fragmentation and cytolysis. Expression of the E1B 19K protein by viral infection, by transient expression, or in transformed cells completely and specifically blocks this TNF-alpha-induced DNA fragmentation and cell death. Cosegregation of 19K protein transforming activity with protection from TNF-alpha-mediated cytolysis demonstrates that both activities are likely the consequence of the same function of the protein. Therefore, we propose that by suppressing an intrinsic cell death mechanism activated by TNF-alpha or E1A, the E1B 19K protein enhances the transforming activity of E1A and enables adenovirus to evade TNF-alpha-dependent immune surveillance. Images PMID:1317006

  9. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein.

    PubMed

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-08-01

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. PMID:27286705

  10. Nuclear actin and myosins in adenovirus infection.

    PubMed

    Fuchsova, Beata; Serebryannyy, Leonid A; de Lanerolle, Primal

    2015-11-01

    Adenovirus serotypes have been shown to cause drastic changes in nuclear organization, including the transcription machinery, during infection. This ability of adenovirus to subvert transcription in the host cell facilitates viral replication. Because nuclear actin and nuclear myosin I, myosin V and myosin VI have been implicated as direct regulators of transcription and important factors in the replication of other viruses, we sought to determine how nuclear actin and myosins are involved in adenovirus infection. We first confirmed reorganization of the host's transcription machinery to viral replication centers. We found that nuclear actin also reorganizes to sites of transcription through the intermediate but not the advanced late phase of viral infection. Furthermore, nuclear myosin I localized with nuclear actin and sites of transcription in viral replication centers. Intriguingly, nuclear myosins V and VI, which also reorganized to viral replication centers, exhibited different localization patterns, suggesting specialized roles for these nuclear myosins. Finally, we assessed the role of actin in adenovirus infection and found both cytoplasmic and nuclear actin likely play roles in adenovirus infection and replication. Together our data suggest the involvement of actin and multiple myosins in the nuclear replication and late viral gene expression of adenovirus. PMID:26226218

  11. Core labeling of adenovirus with EGFP

    SciTech Connect

    Le, Long P.; Le, Helen N.; Nelson, Amy R.; Matthews, David A.; Yamamoto, Masato; Curiel, David T. . E-mail: curiel@uab.edu

    2006-08-01

    The study of adenovirus could greatly benefit from diverse methods of virus detection. Recently, it has been demonstrated that carboxy-terminal EGFP fusions of adenovirus core proteins Mu, V, and VII properly localize to the nucleus and display novel function in the cell. Based on these observations, we hypothesized that the core proteins may serve as targets for labeling the adenovirus core with fluorescent proteins. To this end, we constructed various chimeric expression vectors with fusion core genes (Mu-EGFP, V-EGFP, preVII-EGFP, and matVII-EGFP) while maintaining expression of the native proteins. Expression of the fusion core proteins was suboptimal using E1 expression vectors with both conventional CMV and modified (with adenovirus tripartite leader sequence) CMV5 promoters, resulting in non-labeled viral particles. However, robust expression equivalent to the native protein was observed when the fusion genes were placed in the deleted E3 region. The efficient Ad-wt-E3-V-EGFP and Ad-wt-E3-preVII-EGFP expression vectors were labeled allowing visualization of purified virus and tracking of the viral core during early infection. The vectors maintained their viral function, including viral DNA replication, viral DNA encapsidation, cytopathic effect, and thermostability. Core labeling offers a means to track the adenovirus core in vector targeting studies as well as basic adenovirus virology.

  12. Immunogenicity of adenovirus-derived porcine parvovirus-like particles displaying B and T cell epitopes of foot-and-mouth disease.

    PubMed

    Pan, Qunxing; Wang, Hui; Ouyang, Wei; Wang, Xiaoli; Bi, Zhenwei; Xia, Xingxia; Wang, Yongshan; He, Kongwang

    2016-01-20

    Virus-like particles (VLPs) vaccines combine many of the advantages of whole-virus vaccines and recombinant subunit vaccines, integrating key features that underlay their immunogenicity, safety and protective potential. We have hypothesized here the effective insertion of the VP1 epitopes (three amino acid residues 21-40, 141-160 and 200-213 in VP1, designated VPe) of foot-and-mouth disease (FMDV) within the external loops of PPV VP2 could be carried out without altering assembly based on structural and antigenic data. To investigate the possibility, development of two recombinant adenovirus rAd-PPV:VP2-FMDV:VPe a or rAd-PPV:VP2-FMDV:VPe b were expressed in HEK-293 cells. Out of the two insertion strategies tested, one of them tolerated an insert of 57 amino acids in one of the four external loops without disrupting the VLPs assembly. Mice were inoculated with the two recombinant adenoviruses, and an immunogenicity study showed that the highest levels of FMDV-specific humoral responses and T cell proliferation could be induced by rAd-PPV:VP2-FMDV:VPe b expressing hybrid PPV:VLPs (FMDV) in the absence of an adjuvant. Then, the protective efficacy of inoculating swine with rAd-PPV:VP2-FMDV:VPe b was tested. All pigs inoculated with rAd-PPV:VP2-FMDV:VPe b were protected from viral challenge, meanwhile the neutralizing antibody titers were significantly higher than those in the group inoculated with swine FMD type O synthetic peptide vaccine. Our results clearly demonstrate the potential usefulness of adenovirus-derived PPV VLPs as a vaccine strategy in prevention of FMDV. PMID:26685093

  13. Identification and localization of minimal MHC-restricted CD8+ T cell epitopes within the Plasmodium falciparum AMA1 protein

    PubMed Central

    2010-01-01

    Background Plasmodium falciparum apical membrane antigen-1 (AMA1) is a leading malaria vaccine candidate antigen that is expressed by sporozoite, liver and blood stage parasites. Since CD8+ T cell responses have been implicated in protection against pre-erythrocytic stage malaria, this study was designed to identify MHC class I-restricted epitopes within AMA1. Methods A recombinant adenovirus serotype 5 vector expressing P. falciparum AMA1 was highly immunogenic when administered to healthy, malaria-naive adult volunteers as determined by IFN-γ ELISpot responses to peptide pools containing overlapping 15-mer peptides spanning full-length AMA1. Computerized algorithms (NetMHC software) were used to predict minimal MHC-restricted 8-10-mer epitope sequences within AMA1 15-mer peptides active in ELISpot. A subset of epitopes was synthesized and tested for induction of CD8+ T cell IFN-γ responses by ELISpot depletion and ICS assays. A 3-dimensional model combining Domains I + II of P. falciparum AMA1 and Domain III of P. vivax AMA1 was used to map these epitopes. Results Fourteen 8-10-mer epitopes were predicted to bind to HLA supertypes A01 (3 epitopes), A02 (4 epitopes), B08 (2 epitopes) and B44 (5 epitopes). Nine of the 14 predicted epitopes were recognized in ELISpot or ELISpot and ICS assays by one or more volunteers. Depletion of T cell subsets confirmed that these epitopes were CD8+ T cell-dependent. A mixture of the 14 minimal epitopes was capable of recalling CD8+ T cell IFN-γ responses from PBMC of immunized volunteers. Thirteen of the 14 predicted epitopes were polymorphic and the majority localized to the more conserved front surface of the AMA1 model structure. Conclusions This study predicted 14 and confirmed nine MHC class I-restricted CD8+ T cell epitopes on AMA1 recognized in the context of seven HLA alleles. These HLA alleles belong to four HLA supertypes that have a phenotypic frequency between 23% - 100% in different human populations. PMID

  14. Characteristics of Noncultivable Adenoviruses Associated with Diarrhea in Infants: A New Subgroup of Human Adenoviruses

    PubMed Central

    Gary, G. William; Hierholzer, John C.; Black, Robert E.

    1979-01-01

    Virus particles morphologically resembling adenovirus were found in fecal specimens from infants and were examined for cultivability with standard cell culture techniques and for characteristics of human adenoviruses. Specimens from 13 of 15 infants could not be cultivated in cell cultures. The two adenoviruses that were cultivated, types 1 and 31, reacted in the expected manner in all tests. Counterimmunoelectrophoresis with group-specific anti-hexon serum confirmed that the observed particles in the 15 specimens were human adenoviruses. The buoyant density in sucrose of five of the noncultivable adenoviruses in original stool suspensions averaged 1.335 g/cm3 and that of the two cultivable ones averaged 1.332 g/cm3; both groups had typical adenovirus morphology by electron microscopy. Treatment of the specimens and of a variety of tissue culture cells with proteolytic and other enzymes did not improve cultivability. Examination of partially purified virus by immunoelectron microscopy did not reveal evidence of immunoglobulin A, G, or M coating on the particles, an indication that coproantibody inhibition was not the cause of noncultivability. Fluorescent-antibody studies with an antihexon conjugate and counterimmunoelectrophoresis studies of serially passaged noncultivable viruses indicated that the viruses are infecting cells but are not undergoing effective replication. Antisera to three of the noncultivable viruses demonstrated homologous reactions in counterimmunoelectrophoresis with the respective immunizing antigens but showed only low levels of hemagglutination-inhibiting and neutralizing activity to a few of the known human adenoviruses. We concluded that the noncultivable viruses in these infant diarrhea cases were indeed human adenoviruses, were not defective particles, were not bound to coproantibody, were infectious but incapable of effective relication in conventional cell cultures, were serologically related to types 11, 17, 32, and 33, and should be

  15. Comparative Analysis of Simian Immunodeficiency Virus Gag-Specific Effector and Memory CD8+ T Cells Induced by Different Adenovirus Vectors

    PubMed Central

    Tan, Wendy G.; Jin, Hyun-Tak; West, Erin E.; Penaloza-MacMaster, Pablo; Wieland, Andreas; Zilliox, Michael J.; McElrath, M. Juliana

    2013-01-01

    Adenovirus (Ad) vectors are widely used as experimental vaccines against several infectious diseases, but the magnitude, phenotype, and functionality of CD8+ T cell responses induced by different adenovirus serotypes have not been compared. To address this question, we have analyzed simian immunodeficiency virus Gag-specific CD8+ T cell responses in mice following vaccination with Ad5, Ad26, and Ad35. Our results show that although Ad5 is more immunogenic than Ad26 and Ad35, the phenotype, function, and recall potential of memory CD8+ T cells elicited by these vectors are substantially different. Ad26 and Ad35 vectors generated CD8+ T cells that display the phenotype and function of long-lived memory T cells, whereas Ad5 vector-elicited CD8+ T cells are of a more terminally differentiated phenotype. In addition, hepatic memory CD8+ T cells elicited by Ad26 and Ad35 mounted more robust recall proliferation following secondary challenge than those induced by Ad5. Furthermore, the boosting potential was higher following priming with alternative-serotype Ad vectors than with Ad5 vectors in heterologous prime-boost regimens. Anamnestic CD8+ T cell responses were further enhanced when the duration between priming and boosting was extended from 30 to 60 days. Our results demonstrate that heterologous prime-boost vaccine regimens with alternative-serotype Ad vectors elicited more functional memory CD8+ T cells than any of the regimens containing Ad5. In summary, these results suggest that alternative-serotype Ad vectors will prove useful as candidates for vaccine development against human immunodeficiency virus type 1 and other pathogens and also emphasize the importance of a longer rest period between prime and boost for generating optimal CD8+ T cell immunity. PMID:23175355

  16. Response to Multiple Radiation Doses of Human Colorectal Carcinoma Cells Infected With Recombinant Adenovirus Containing Dominant-Negative Ku70 Fragment

    SciTech Connect

    Urano, Muneyasu; He Fuqiu; Minami, Akiko; Ling, C. Clifton; Li, Gloria C.

    2010-07-01

    Purpose: To investigate the effect of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment on the response of tumor cells to multiple small radiation doses. Our ultimate goal is to demonstrate the feasibility of using this virus in gene-radiotherapy to enhance the radiation response of tumor cells. Methods and Materials: Human colorectal HCT8 and HT29 carcinoma cells were plated in glass tubes, infected with virus (25 multiplicity of infection), and irradiated with a single dose or zero to five doses of 3 Gy each at 6-h intervals. Hypoxia was induced by flushing with 100% nitrogen gas. The cells were trypsinized 0 or 6 h after the final irradiation, and cell survival was determined by colony formation. The survival data were fitted to linear-quadratic model or exponential line. Results: Virus infection enhanced the radiation response of the HCT8 and HT29 cells. The virus enhancement ratio for single-dose irradiation at a surviving fraction of 0.1 was {approx}1.3 for oxic and hypoxic HCT8 and 1.4 and 1.1 for oxic and hypoxic HT29, respectively. A similar virus enhancement ratio of 1.2-1.3 was observed for both oxic and hypoxic cells irradiated with multiple doses; however, these values were smaller than the values found for dominant-negative Ku70-transfected Rat-1 cells. This difference has been discussed. The oxygen enhancement ratio for HCT8 and HT29 receiving fractionated doses was 1.2 and 2.0, respectively, and virus infection altered them slightly. Conclusion: Infection of recombinant replication-defective adenovirus containing dominant-negative Ku70 fragment enhanced the response of human colorectal cancer cells to single and multiple radiation doses.

  17. Direct exposure of mouse ovaries and oocytes to high doses of an adenovirus gene therapy vector fails to lead to germ cell transduction.

    PubMed

    Gordon, J W

    2001-04-01

    The risk of insertion of adenovirus gene therapy DNA into female germ cells during the course of somatic gene therapy was stringently tested in the mouse by injecting up to 10(10) infectious particles directly into the ovary and by incubating naked oocytes in a solution of 2 x 10(8) particles/ml for 1 h prior to in vitro fertilization (IVF). The vector used was a recombinant adenovirus carrying the bacterial lacZ gene driven by the cytomegalovirus promoter (Adbeta-gal). Ovaries were stained for LacZ activity, or immunochemically for LacZ, 5-7 days after injection. Although very large amounts of LacZ activity and protein were detected, all positive staining was in the thecal portion of the ovary, with no staining seen in oocytes. In another series of experiments, mice with injected ovaries were mated, and preimplantation embryos or fetuses were analyzed either for LacZ expression or by PCR for lacZ DNA. None of 202 preimplantation embryos stained positively for LacZ and none of 58 fetuses were positive for DNA by PCR analysis. Finally, more than 1400 eggs were fertilized after exposure to the vector prior to IVF and stained as morulae for LacZ activity. Fewer than 2% of the embryos stained positively for LacZ, and experiments indicated that the staining was due to incomplete washing of the eggs prior to IVF. These data provide strong evidence that adenoviruses cannot infect oocytes and that the risk of female germ-line transduction with such vectors is very low. PMID:11319918

  18. Influence of carrier cells on the clinical outcome of children with neuroblastoma treated with high dose of oncolytic adenovirus delivered in mesenchymal stem cells.

    PubMed

    Melen, Gustavo J; Franco-Luzón, Lidia; Ruano, David; González-Murillo, África; Alfranca, Arantzazu; Casco, Fernando; Lassaletta, Álvaro; Alonso, Mercedes; Madero, Luís; Alemany, Ramón; García-Castro, Javier; Ramírez, Manuel

    2016-02-28

    We report here our clinical experience of a program of compassionate use of Celyvir--autologous marrow-derived mesenchymal stem cells (MSCs) carrying an oncolytic adenovirus--for treating children with advanced metastatic neuroblastoma. Children received weekly doses of Celyvir with no concomitant treatments. The tolerance was excellent, with very mild and self-limited viral-related symptoms. Patients could be distinguished based on their response to therapy: those who had a clinical response (either complete, partial or stabilization) and those who did not respond. We found differences between patients who responded versus those who did not when analyzing their respective MSCs, at the expression levels of adhesion molecules (CCR1, CXCR1 and CXCR4) and in migration capacities in transwell assays, and in immune-related molecules (IFNγ, HLA-DR). These results suggest interpatient differences in the homing and immune modulation capacities of the therapy administered. In addition, the pretherapy immune T cell status and the T effector response were markedly different between responders and non-responders. We conclude that multidoses of Celyvir have an excellent safety profile in children with metastatic neuroblastoma. Intrinsic patients' and MSCs' factors appear to be related to clinical outcome. PMID:26655276

  19. Premature termination by human RNA polymerase II occurs temporally in the adenovirus major late transcriptional unit.

    PubMed Central

    Mok, M; Maderious, A; Chen-Kiang, S

    1984-01-01

    We have recently demonstrated pausing and premature termination of transcription by eucaryotic RNA polymerase II at specific sites in the major late transcriptional unit of adenovirus type 2 in vivo and in vitro. In further developing this as a system for studying eucaryotic termination control, we found that prematurely terminated transcripts of 175 and 120 nucleotides also occur in adenovirus type 5-infected cells. In both cases, premature termination occurs temporally, being found only during late times of infection, not at early times before DNA replication or immediately after the onset of DNA replication when late gene expression has begun (intermediate times). To examine the phenomenon of premature termination further, a temperature-sensitive mutant virus, adenovirus type 5 ts107, was used to uncouple DNA replication and transcription. DNA replication is defective in this mutant at restrictive temperatures. We found that premature termination is inducible at intermediate times by shifting from a permissive temperature to a restrictive temperature, allowing continuous transcription in the absence of continuous DNA replication. No premature termination occurs when the temperature is shifted up at early times before DNA replication. Our data suggest that premature termination of transcription is dependent on both prior synthesis of new templates and cumulative late gene transcription but does not require continuous DNA replication. Images PMID:6209554

  20. Binding sites of HeLa cell nuclear proteins on the upstream region of adenovirus type 5 E1A gene.

    PubMed Central

    Yoshida, K; Narita, M; Fujinaga, K

    1989-01-01

    Twenty one binding sites of HeLa cell nuclear proteins were identified on the upstream region of adenovirus type 5 E1A gene using DNase I footprint assay. The proximal promoter region contained five binding sites that overlapped the cap site, TATA box, TATA-like sequence, CCAAT box, and -100 region relative to the E1A cap site(+1). The -190 region was a potential site for octamer-motif binding proteins, such as NFIII and OBP100. An upstream copy of the E1A enhancer element 1 was the site for a factor (E1A-F) with the binding specificity of XGGAYGT (X = A, C; Y = A, T). E1A-F factor also bound to three other sites, one of which coincided with the distal E1A enhancer element. The distal element also contained a potential site for ATF factor. The adenovirus minimal origin of DNA replication competed for DNA-protein complex formation on the CCAAT and TATA box region and the -190 region, suggesting that these regions interacted with a common or related factor. Images PMID:2532319

  1. Capturing and concentrating adenovirus using magnetic anionic nanobeads.

    PubMed

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  2. Capturing and concentrating adenovirus using magnetic anionic nanobeads

    PubMed Central

    Sakudo, Akikazu; Baba, Koichi; Ikuta, Kazuyoshi

    2016-01-01

    We recently demonstrated how various enveloped viruses can be efficiently concentrated using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). However, the exact mechanism of interaction between the virus particles and anionic beads remains unclear. To further investigate whether these magnetic anionic beads specifically bind to the viral envelope, we examined their potential interaction with a nonenveloped virus (adenovirus). The beads were incubated with either adenovirus-infected cell culture medium or nasal aspirates from adenovirus-infected individuals and then separated from the supernatant by applying a magnetic field. After thoroughly washing the beads, adsorption of adenovirus was confirmed by a variety of techniques, including immunochromatography, polymerase chain reaction, Western blotting, and cell culture infection assays. These detection methods positively identified the hexon and penton capsid proteins of adenovirus along with the viral genome on the magnetic beads. Furthermore, various types of adenovirus including Types 5, 6, 11, 19, and 41 were captured using the magnetic bead procedure. Our bead capture method was also found to increase the sensitivity of viral detection. Adenovirus below the detectable limit for immunochromatography was efficiently concentrated using the magnetic bead procedure, allowing the virus to be successfully detected using this methodology. Moreover, these findings clearly demonstrate that a viral envelope is not required for binding to the anionic magnetic beads. Taken together, our results show that this capture procedure increases the sensitivity of detection of adenovirus and would, therefore, be a valuable tool for analyzing both clinical and experimental samples. PMID:27274228

  3. Adenovirus E2F1 Overexpression Sensitizes LNCaP and PC3 Prostate Tumor Cells to Radiation In Vivo

    SciTech Connect

    Udayakumar, Thirupandiyur S.; Stoyanova, Radka; Hachem, Paul; Ahmed, Mansoor M.; Pollack, Alan

    2011-02-01

    Purpose: We previously showed that E2F1 overexpression radiosensitizes prostate cancer cells in vitro. Here, we demonstrate the radiosensitization efficacy of adenovirus (Ad)-E2F1 infection in growing (orthotopic) LNCaP and (subcutaneous) PC3 nude mice xenograft tumors. Methods and Materials: Ad-E2F1 was injected intratumorally in LNCaP (3 x 10{sup 8} plaque-forming units [PFU]) and PC3 (5 x 10{sup 8} PFU) tumors treated with or without radiation. LNCaP tumor volumes (TV) were measured by magnetic resonance imaging, caliper were used to measure PC3 tumors, and serum prostate-specific antigen (PSA) levels were determined by enzyme-linked immunosorbent assay. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, and key proteins involved in cell death signaling were analyzed by Western blotting. Results: Intracellular overexpression of Ad-E2F1 had a significant effect on the regression of TV and reduction of PSA levels relative to that of adenoviral luciferase (Ad-Luc)-infected control. The in vivo regressing effect of Ad-E2F1 on LNCaP tumor growth was significant (PSA, 34 ng/ml; TV, 142 mm{sup 3}) compared to that of Ad-Luc control (PSA, 59 ng/ml; TV, 218 mm{sup 3}; p <0.05). This effect was significantly enhanced by radiation therapy (compare: Ad-E2F1+RT/PSA, 16 ng/ml, and TV, 55 mm{sup 3} to Ad-Luc+RT/PSA, 42 ng/ml, and TV, 174 mm{sup 3}, respectively; p <0.05). For PC3 tumors, the greatest effect was observed with Ad-E2F1 infection alone; there was little or no effect when radiotherapy (RT) was combined. However, addition of RT enhanced the level of in situ apoptosis in PC3 tumors. Molecularly, addition of Ad-E2F1 in a combination treatment abrogated radiation-induced BCL-2 protein expression and was associated with an increase in activated BAX, and together they caused a potent radiosensitizing effect, irrespective of p53 and androgen receptor functional status. Conclusions: We show here for the first time that

  4. Different Patterns of Expansion, Contraction and Memory Differentiation of HIV-1 Gag-Specific CD8 T Cells Elicited by Adenovirus Type 5 and Modified Vaccinia Ankara Vaccines

    PubMed Central

    Pillai, Vinod Kumar Bhaskara; Kannanganat, Sunil; Penaloza-MacMaster, Pablo; Chennareddi, Lakshmi; Robinson, Harriet L.; Blackwell, Jerry; Amara, Rama Rao

    2011-01-01

    The magnitude and functional quality of antiviral CD8 T cell responses are critical for the efficacy of T cell based vaccines. Here, we investigate the influence of two popular viral vectors, adenovirus type 5 (Ad5) and modified vaccinia Ankara (MVA), on expansion, contraction and memory differentiation of HIV-1 Gag insert-specific CD8 T cell responses following immunization and show different patterns for the two recombinant viral vectors. The Ad5 vector primed 6-fold higher levels of insert-specific CD8 effector T cells than the MVA vector. The Ad5-primed effector cells also underwent less contraction (< 2-fold) than the MVA-primed cells (>5-fold). The Ad5-primed memory cells were predominantly CD62L negative (effector memory) whereas the MVA-primed memory cells were predominantly CD62L positive (central memory). Consistent with their memory phenotype, MVA-primed CD8 T cells underwent higher fold expansion than Ad5-primed CD8 T cells following a homologous or heterologous boost. Impressively, the Ad5 boost changed the quality of MVA-primed memory response such that they undergo less contraction with effector memory phenotype. However, the MVA boost did not influence the contraction and memory phenotype of Ad5-primed response. In conclusion, our results demonstrate that vaccine vector strongly influences the expansion, contraction and the functional quality of insert-specific CD8 T cell responses and have implications for vaccine development against infectious diseases. PMID:21651938

  5. Adenovirus-mediated overexpression of liver carnitine palmitoyltransferase I in INS1E cells: effects on cell metabolism and insulin secretion.

    PubMed Central

    Rubí, Blanca; Antinozzi, Peter A; Herrero, Laura; Ishihara, Hisamitsu; Asins, Guillermina; Serra, Dolors; Wollheim, Claes B; Maechler, Pierre; Hegardt, Fausto G

    2002-01-01

    Lipid metabolism in the beta-cell is critical for the regulation of insulin secretion. Pancreatic beta-cells chronically exposed to fatty acids show higher carnitine palmitoyltransferase I (CPT I) protein levels, higher palmitate oxidation rates and an altered insulin response to glucose. We examined the effect of increasing CPT I levels on insulin secretion in cultured beta-cells. We prepared a recombinant adenovirus containing the cDNA for the rat liver isoform of CPT I. The overexpression of CPT I in INS1E cells caused a more than a 5-fold increase in the levels of CPT I protein (detected by Western blotting), a 6-fold increase in the CPT activity, and an increase in fatty acid oxidation at 2.5 mM glucose (1.7-fold) and 15 mM glucose (3.1-fold). Insulin secretion was stimulated in control cells by 15 mM glucose or 30 mM KCl. INS1E cells overexpressing CPT I showed lower insulin secretion on stimulation with 15 mM glucose (-40%; P<0.05). This decrease depended on CPT I activity, since the presence of etomoxir, a specific inhibitor of CPT I, in the preincubation medium normalized the CPT I activity, the fatty-acid oxidation rate and the insulin secretion in response to glucose. Exogenous palmitate (0.25 mM) rescued glucose-stimulated insulin secretion (GSIS) in CPT I-overexpressing cells, indicating that the mechanism of impaired GSIS was through the depletion of a critical lipid. Depolarizing the cells with KCl or intermediary glucose concentrations (7.5 mM) elicited similar insulin secretion in control cells and cells overexpressing CPT I. Glucose-induced ATP increase, glucose metabolism and the triacylglycerol content remained unchanged. These results provide further evidence that CPT I activity regulates insulin secretion in the beta-cell. They also indicate that up-regulation of CPT I contributes to the loss of response to high glucose in beta-cells exposed to fatty acids. PMID:11988095

  6. Adenovirus expressing β2-microglobulin recovers HLA class I expression and antitumor immunity by increasing T-cell recognition.

    PubMed

    Del Campo, A B; Carretero, J; Muñoz, J A; Zinchenko, S; Ruiz-Cabello, F; González-Aseguinolaza, G; Garrido, F; Aptsiauri, N

    2014-08-01

    Optimal tumor cell surface expression of human leukocyte antigen (HLA) class I molecules is essential for the presentation of tumor-associated peptides to T-lymphocytes. However, a hallmark of many types of tumor is the loss or downregulation of HLA class I expression associated with ineffective tumor antigen presentation to T cells. Frequently, HLA loss can be caused by structural alterations in genes coding for HLA class I complex, including the light chain of the complex, β2-microglobulin (β2m). Its best-characterized function is to interact with HLA heavy chain and stabilize the complex leading to a formation of antigen-binding cleft recognized by T-cell receptor on CD8+ T cells. Our previous study demonstrated that alterations in the β2m gene are frequently associated with cancer immune escape leading to metastatic progression and resistance to immunotherapy. These types of defects require genetic transfer strategies to recover normal expression of HLA genes. Here we characterize a replication-deficient adenoviral vector carrying human β2m gene, which is efficient in recovering proper tumor cell surface HLA class I expression in β2m-negative tumor cells without compromising the antigen presentation machinery. Tumor cells transduced with β2m induced strong activation of T cells in a peptide-specific HLA-restricted manner. Gene therapy using recombinant adenoviral vectors encoding HLA genes increases tumor antigen presentation and represents a powerful tool for modulation of tumor cell immunogenicity by restoration of missing or altered HLA genes. It should be considered as part of cancer treatment in combination with immunotherapy. PMID:24971583

  7. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells

    PubMed Central

    Kumar, Nathan; Richter, Jenna; Cutts, Josh; Bush, Kevin T; Trujillo, Cleber; Nigam, Sanjay K; Gaasterland, Terry; Brafman, David; Willert, Karl

    2015-01-01

    The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate. DOI: http://dx.doi.org/10.7554/eLife.08413.001 PMID:26554899

  8. Intrastriatal Transplantation of Adenovirus-Generated Induced Pluripotent Stem Cells for Treating Neuropathological and Functional Deficits in a Rodent Model of Huntington’s Disease

    PubMed Central

    Fink, Kyle D.; Crane, Andrew T.; Lévêque, Xavier; Dues, Dylan J.; Huffman, Lucas D.; Moore, Allison C.; Story, Darren T.; DeJonge, Rachel E.; Antcliff, Aaron; Starski, Phillip A.; Lu, Ming; Lescaudron, Laurent; Rossignol, Julien

    2014-01-01

    Induced pluripotent stem cells (iPSCs) show considerable promise for cell replacement therapies for Huntington’s disease (HD). Our laboratory has demonstrated that tail-tip fibroblasts, reprogrammed into iPSCs via two adenoviruses, can survive and differentiate into neuronal lineages following transplantation into healthy adult rats. However, the ability of these cells to survive, differentiate, and restore function in a damaged brain is unknown. To this end, adult rats received a regimen of 3-nitropropionic acid (3-NP) to induce behavioral and neuropathological deficits that resemble HD. At 7, 21, and 42 days after the initiation of 3-NP or vehicle, the rats received intrastriatal bilateral transplantation of iPSCs. All rats that received 3-NP and vehicle treatment displayed significant motor impairment, whereas those that received iPSC transplantation after 3-NP treatment had preserved motor function. Histological analysis of the brains of these rats revealed significant decreases in optical densitometric measures in the striatum, lateral ventricle enlargement, as well as an increase in striosome size in all rats receiving 3-NP when compared with sham rats. The 3-NP-treated rats given transplants of iPSCs in the 7- or 21-day groups did not exhibit these deficits. Transplantation of iPSCs at the late-stage (42-day) time point did not protect against the 3-NP-induced neuropathology, despite preserving motor function. Transplanted iPSCs were found to survive and differentiate into region-specific neurons in the striatum of 3-NP rats, at all transplantation time points. Taken together, these results suggest that transplantation of adenovirus-generated iPSCs may provide a potential avenue for therapeutic treatment of HD. PMID:24657963

  9. CD73 Is Dispensable for the Regulation of Inflationary CD8+ T-Cells after Murine Cytomegalovirus Infection and Adenovirus Immunisation

    PubMed Central

    Sims, Stuart; Colston, Julia; Emery, Vince; Klenerman, Paul

    2014-01-01

    The ecto-5'-nucleotidase (CD73) is expressed by T-cell subsets, myeloid derived suppressive cells and endothelial cells. It works in conjunction with CD39 to regulate the formation and degradation of adenosine in vivo. Adenosine has previously been shown to suppress the proliferation and cytokine secretion of T-cells and recent evidence suggests that inhibition of CD73 has the potential to enhance T-cell directed therapies. Here we utilised a CD73 knockout mouse model to assess the suppressive ability of CD73 on CD8+ T-cell classical memory and memory “inflation”, induced by murine cytomegalovirus (MCMV) infection and adenovirus immunisation. We show that CD73 is dispensable for normal CD8+ T-cell differentiation and function in both models. Thus CD73 as a suppressor of CD8+ T-cells is unlikely to play a deterministic role in the generation and functional characteristics of antiviral memory in these settings. PMID:25490556

  10. The Cell Adhesion Molecule “CAR” and Sialic Acid on Human Erythrocytes Influence Adenovirus In Vivo Biodistribution

    PubMed Central

    Wodrich, Harald; Billet, Olivier; Perreau, Matthieu; Hippert, Claire; Mennechet, Franck; Schoehn, Guy; Lortat-Jacob, Hugues; Dreja, Hanna; Ibanes, Sandy; Kalatzis, Vasiliki; Wang, Jennifer P.; Finberg, Robert W.; Cusack, Stephen; Kremer, Eric J.

    2009-01-01

    Although it has been known for 50 years that adenoviruses (Ads) interact with erythrocytes ex vivo, the molecular and structural basis for this interaction, which has been serendipitously exploited for diagnostic tests, is unknown. In this study, we characterized the interaction between erythrocytes and unrelated Ad serotypes, human 5 (HAd5) and 37 (HAd37), and canine 2 (CAV-2). While these serotypes agglutinate human erythrocytes, they use different receptors, have different tropisms and/or infect different species. Using molecular, biochemical, structural and transgenic animal-based analyses, we found that the primary erythrocyte interaction domain for HAd37 is its sialic acid binding site, while CAV-2 binding depends on at least three factors: electrostatic interactions, sialic acid binding and, unexpectedly, binding to the coxsackievirus and adenovirus receptor (CAR) on human erythrocytes. We show that the presence of CAR on erythrocytes leads to prolonged in vivo blood half-life and significantly reduced liver infection when a CAR-tropic Ad is injected intravenously. This study provides i) a molecular and structural rationale for Ad–erythrocyte interactions, ii) a basis to improve vector-mediated gene transfer and iii) a mechanism that may explain the biodistribution and pathogenic inconsistencies found between human and animal models. PMID:19119424

  11. Adenovirus cyt+ locus, which controls cell transformation and tumorigenicity, is an allele of lp+ locus, which codes for a 19-kilodalton tumor antigen.

    PubMed Central

    Subramanian, T; Kuppuswamy, M; Mak, S; Chinnadurai, G

    1984-01-01

    The early region E1b of adenovirus type 2 (Ad2) codes for two major tumor antigens of 53 and 19 kilodaltons (kd). The adenovirus lp+ locus maps within the 19-kd tumor antigen-coding region (G. Chinnadurai, Cell 33:759-766, 1983). We have now constructed a large-plaque deletion mutant (dl250) of Ad2 that has a specific lesion in the 19-kd tumor antigen-coding region. In contrast to most other Ad2 lp mutants (G. Chinnadurai, Cell 33:759-766, 1983), mutant dl250 is cytocidal (cyt) on infected KB cells, causing extensive cellular destruction. Cells infected with Ad2 wt or most of these other Ad2 lp mutants are rounded and aggregated without cell lysis (cyt+). The cyt phenotype of dl250 resembles the cyt mutants of highly oncogenic Ad12, isolated by Takemori et al. (Virology 36:575-586, 1968). By intertypic complementation analysis, we showed that the Ad12 cyt mutants indeed map within the 19-kd tumor antigen-coding region. The transforming potential of dl250 was assayed on an established rat embryo fibroblast cell line, CREF, and on primary rat embryo fibroblasts and baby rat kidney cells. On all these cells, dl250 induced transformation at greatly reduced frequency compared with wt. The cells transformed by this mutant are defective in anchorage-independent growth on soft agar. Our results suggest that the 19-kd tumor antigen (in conjunction with E1a tumor antigens) may play an important role in the maintenance of cell transformation. Since we have mapped the low-oncogenic or nononcogenic Ad12 cyt mutants within the 19-kd tumor antigen-coding region, our results further indicate that the 19-kd tumor antigen also directly or indirectly plays an important role in tumorigenesis of Ad12. Our results show that the cyt+ locus is an allele of the lp+ locus and that the cyt phenotype may be the result of mutations in specific domains of the 19-kd tumor antigen. Images PMID:6492253

  12. Nuclear Import of Moloney Murine Leukemia Virus DNA Mediated by Adenovirus Preterminal Protein Is Not Sufficient for Efficient Retroviral Transduction in Nondividing Cells

    PubMed Central

    Lieber, André; Kay, Mark A.; Li, Zong-Yi

    2000-01-01

    Moloney murine leukemia virus (MoMLV)-derived vectors require cell division for efficient transduction, which may be related to an inability of the viral DNA-protein complex to cross the nuclear membrane. In contrast, adenoviruses (Ad) can efficiently infect nondividing cells. This property may be due to the presence of multiple nuclear translocation signals in a number of Ad proteins, which are associated with the incoming viral genomes. Of particular interest is the Ad preterminal protein (pTP), which binds alone or in complex with the Ad polymerase to specific sequences in the Ad inverted terminal repeat. The goal of this study was to test whether coexpression of pTP with retroviral DNA carrying pTP-binding sites would facilitate nuclear import of the viral preintegration complex and transduction of quiescent cells. In preliminary experiments, we demonstrated that the karyophylic pTP can coimport plasmid DNA into the nuclei of growth-arrested cells. Retroviral transduction studies were performed with G1/S-arrested LTA cells or stationary-phase human primary fibroblasts. These studies demonstrated that pTP or pTP-Ad polymerase conferred nuclear import of retroviral DNA upon arrested cells when the retrovirus vector contained the corresponding binding motifs. However, pTP-mediated nuclear translocation of MoMLV DNA in nondividing cells was not sufficient for stable transduction. Additional cellular factors activated during S phase or DNA repair synthesis were required for efficient retroviral integration. PMID:10623734

  13. HoxD10 gene delivery using adenovirus/adeno-associate hybrid virus inhibits the proliferation and tumorigenicity of GH4 pituitary lactotrope tumor cells

    SciTech Connect

    Cho, Mi Ae; Yashar, Parham; Kim, Suk Kyoung; Noh, Taewoong; Gillam, Mary P.; Lee, Eun Jig Jameson, J. Larry

    2008-07-04

    Prolactinoma is one of the most common types of pituitary adenoma. It has been reported that a variety of growth factors and cytokines regulating cell growth and angiogenesis play an important role in the growth of prolactinoma. HoxD10 has been shown to impair endothelial cell migration, block angiogenesis, and maintain a differentiated phenotype of cells. We investigated whether HoxD10 gene delivery could inhibit the growth of prolactinoma. Rat GH4 lactotrope tumor cells were infected with adenovirus/adeno-associated virus (Ad/AAV) hybrid vectors carrying the mouse HoxD10 gene (Hyb-HoxD10) or the {beta}-galactosidase gene (Hyb-Gal). Hyb-HoxD10 expression inhibited GH4 cell proliferation in vitro. The expression of FGF-2 and cyclin D2 was inhibited in GH4 cells infected with Hyb-HoxD10. GH4 cells transduced with Hyb-HoxD10 did not form tumors in nude mice. These results indicate that the delivery of HoxD10 could potentially inhibit the growth of PRL-secreting tumors. This approach may be a useful tool for targeted therapy of prolactinoma and other neoplasms.

  14. Integrated adenovirus type 12 DNA in the transformed hamster cell line T637: sequence arrangements at the termini of viral DNA and mode of amplification.

    PubMed Central

    Eick, D; Doerfler, W

    1982-01-01

    Approximately 20 to 22 copies of adenovirus type 12 (Ad12) DNA per cell were integrated into the genome of the cell line T637. Only a few of these copies seemed to remain intact and colinear with virion DNA. All other persisting viral genomes exhibited deletions or inversions or both in the right-hand part of Ad12 DNA. Spontaneously arising morphological revertants of T637 cells has lost viral DNA. In most of the revertant cell lines only the intact or a part of the intact viral genome was preserved; other revertant cell lines has lost all viral DNA. In three other Ad12-transformed hamster cell lines, HA12/7, A2497-3, and CLAC3 (Stabel et al., J. Virol. 36:22-40, 1980), major rearrangements at the right end of the integrated Ad12 DNA were not found. These studies were performed to investigate the phenomena of amplification, rearrangements, and deletions of Ad12 DNA in hamster cells. Images PMID:6283150

  15. Functional Heterogeneity of Virions in Human Adenovirus Types 2 and 12

    PubMed Central

    Rainbow, Andrew J.; Mak, Stanley

    1970-01-01

    Purified preparations of adenovirus types 2 and 12 were used to infect KB cells at different input multiplicities. The resulting infected cultures were scored for inclusion body formation, production of infectious centers, and cloning efficiency. Both preparations were found to contain some defective particles capable of preventing a cell from cloning but unable to induce inclusion bodies or form plaques. The proportion of such defective particles in adenovirus 12 was about 10 times that in adenovirus 2. At high input multiplicities, the percentage of cells displaying an inclusion body was less than that predicted by the Poisson distribution and reached a maximum of 40 to 60% for adenovirus 2 and 12 to 15% for adenovirus 12. This reduction may be due to interference by large numbers of non-plaque-producing particles infecting each cell. The per cent of cells forming infectious centers was substantially greater for adenovirus 2 than for adenovirus 12 when compared at the same input plaque-forming units, reaching a maximum of 35 to 73% for adenovirus 2 and 5 to 10% for adenovirus 12. The low value for adenovirus 12 may be a result of the same interference phenomenon. Images PMID:4194167

  16. The E1B19K-deleted oncolytic adenovirus mutant AdΔ19K sensitizes pancreatic cancer cells to drug-induced DNA-damage by down-regulating Claspin and Mre11

    PubMed Central

    Pantelidou, Constantia; Cherubini, Gioia; Lemoine, Nick R.; Halldén, Gunnel

    2016-01-01

    Adenovirus-mediated sensitization of cancer cells to cytotoxic drugs depends on simultaneous interactions of early viral genes with cell death and survival pathways. It is unclear what cellular factors mediate these interactions in the presence of DNA-damaging drugs. We found that adenovirus prevents Chk1-mediated checkpoint activation through inactivation of Mre11 and downregulation of the pChk1 adaptor-protein, Claspin, in cells with high levels of DNA-damage induced by the cytotoxic drugs gemcitabine and irinotecan. The mechanisms for Claspin downregulation involve decreased transcription and increased degradation, further attenuating pChk1-mediated signalling. Live cell imaging demonstrated that low doses of gemcitabine caused multiple mitotic aberrations including multipolar spindles, micro- and multi-nucleation and cytokinesis failure. A mutant virus with the anti-apoptotic E1B19K-gene deleted (AdΔ19K) further enhanced cell killing, Claspin downregulation, and potentiated drug-induced DNA damage and mitotic aberrations. Decreased Claspin expression and inactivation of Mre11 contributed to the enhanced cell killing in combination with DNA-damaging drugs. These results reveal novel mechanisms that are utilised by adenovirus to ensure completion of its life cycle in the presence of cellular DNA damage. Taken together, our findings reveal novel cellular targets that may be exploited when developing improved anti-cancer therapeutics. PMID:26872382

  17. The E1B19K-deleted oncolytic adenovirus mutant AdΔ19K sensitizes pancreatic cancer cells to drug-induced DNA-damage by down-regulating Claspin and Mre11.

    PubMed

    Pantelidou, Constantia; Cherubini, Gioia; Lemoine, Nick R; Halldén, Gunnel

    2016-03-29

    Adenovirus-mediated sensitization of cancer cells to cytotoxic drugs depends on simultaneous interactions of early viral genes with cell death and survival pathways. It is unclear what cellular factors mediate these interactions in the presence of DNA-damaging drugs. We found that adenovirus prevents Chk1-mediated checkpoint activation through inactivation of Mre11 and downregulation of the pChk1 adaptor-protein, Claspin, in cells with high levels of DNA-damage induced by the cytotoxic drugs gemcitabine and irinotecan. The mechanisms for Claspin downregulation involve decreased transcription and increased degradation, further attenuating pChk1-mediated signalling. Live cell imaging demonstrated that low doses of gemcitabine caused multiple mitotic aberrations including multipolar spindles, micro- and multi-nucleation and cytokinesis failure. A mutant virus with the anti-apoptotic E1B19K-gene deleted (AdΔ19K) further enhanced cell killing, Claspin downregulation, and potentiated drug-induced DNA damage and mitotic aberrations. Decreased Claspin expression and inactivation of Mre11 contributed to the enhanced cell killing in combination with DNA-damaging drugs. These results reveal novel mechanisms that are utilised by adenovirus to ensure completion of its life cycle in the presence of cellular DNA damage. Taken together, our findings reveal novel cellular targets that may be exploited when developing improved anti-cancer therapeutics. PMID:26872382

  18. Factors Influencing Adeno-Associated Virus-Mediated Gene Transfer to Human Cystic Fibrosis Airway Epithelial Cells: Comparison with Adenovirus Vectors

    PubMed Central

    Teramoto, S.; Bartlett, J. S.; McCarty, D.; Xiao, X.; Samulski, R. J.; Boucher, R. C.

    1998-01-01

    Adeno-associated virus (AAV) vectors appear promising for use in gene therapy in cystic fibrosis (CF) patients, yet many features of AAV-mediated gene transfer to airway epithelial cells are not well understood. We compared the transduction efficiencies of AAV vectors and adenovirus (Ad) vectors in immortalized cell lines from CF patients and in nasal epithelial primary cultures from normal humans and CF patients. Similar dose-dependent relationships between the vector multiplicities of infection and the efficiencies of lacZ gene transfer were observed. However, levels of transduction for both Ad and recombinant AAV (rAAV) were significantly lower in the airway epithelial cell than in the control cell lines HeLa and HEK 293. Transduction efficiencies differed among cultured epithelial cell types, with poorly differentiated cells transducing more efficiently than well-differentiated cells. A time-dependent increase in gene expression was observed after infection for both vectors. For Ad, but not for AAV, this increase was dependent on prolonged incubation of cells with the vector. Furthermore, for rAAV (but not for rAd), the delay in maximal transduction could be abrogated by wild-type Ad helper infection. Thus, although helper virus is not required for maximal transduction, it increases the kinetics by which this is achieved. Expression of Ad E4 open reading frame 6 or addition of either hydroxyurea or camptothecin resulted in increased AAV transduction, as previously demonstrated for nonairway cells (albeit to lower final levels), suggesting that second-strand synthesis may not be the sole cause of inefficient transduction. Finally, the efficiency of AAV-mediated ex vivo gene transfer to lung cells was similar to that previously described for Ad vectors in that transduction was limited to regions of epithelial injury and preferentially targeted basal-like cells. These studies address the primary factors influencing rAAV infection of human airway cells and should

  19. Factors influencing adeno-associated virus-mediated gene transfer to human cystic fibrosis airway epithelial cells: comparison with adenovirus vectors.

    PubMed

    Teramoto, S; Bartlett, J S; McCarty, D; Xiao, X; Samulski, R J; Boucher, R C

    1998-11-01

    Adeno-associated virus (AAV) vectors appear promising for use in gene therapy in cystic fibrosis (CF) patients, yet many features of AAV-mediated gene transfer to airway epithelial cells are not well understood. We compared the transduction efficiencies of AAV vectors and adenovirus (Ad) vectors in immortalized cell lines from CF patients and in nasal epithelial primary cultures from normal humans and CF patients. Similar dose-dependent relationships between the vector multiplicities of infection and the efficiencies of lacZ gene transfer were observed. However, levels of transduction for both Ad and recombinant AAV (rAAV) were significantly lower in the airway epithelial cell than in the control cell lines HeLa and HEK 293. Transduction efficiencies differed among cultured epithelial cell types, with poorly differentiated cells transducing more efficiently than well-differentiated cells. A time-dependent increase in gene expression was observed after infection for both vectors. For Ad, but not for AAV, this increase was dependent on prolonged incubation of cells with the vector. Furthermore, for rAAV (but not for rAd), the delay in maximal transduction could be abrogated by wild-type Ad helper infection. Thus, although helper virus is not required for maximal transduction, it increases the kinetics by which this is achieved. Expression of Ad E4 open reading frame 6 or addition of either hydroxyurea or camptothecin resulted in increased AAV transduction, as previously demonstrated for nonairway cells (albeit to lower final levels), suggesting that second-strand synthesis may not be the sole cause of inefficient transduction. Finally, the efficiency of AAV-mediated ex vivo gene transfer to lung cells was similar to that previously described for Ad vectors in that transduction was limited to regions of epithelial injury and preferentially targeted basal-like cells. These studies address the primary factors influencing rAAV infection of human airway cells and should

  20. Coxsackie- and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro

    SciTech Connect

    Vigl, Benjamin; Zgraggen, Claudia; Rehman, Nadia; Banziger-Tobler, Nadia E.; Detmar, Michael; Halin, Cornelia

    2009-01-15

    Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity.

  1. A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells.

    PubMed Central

    Shafren, D R; Williams, D T; Barry, R D

    1997-01-01

    The composition of the cellular receptor complex for coxsackievirus B3 (CVB3) has been an area of much contention for the last 30 years. Recently, two individual components of a putative CVB3 cellular receptor complex have been identified as (i) decay-accelerating factor (DAF) and (ii) the coxsackievirus-adenovirus receptor protein (CAR). The present study elucidates the individual roles of DAF and CAR in cell entry of CVB3 Nancy. First, we confirm that the DAF-binding phenotype of CVB3 correlates to the presence of key amino acids located in the viral capsid protein, VP2. Second, using antibody blockade, we show that complete protection of permissive cells from infection by high input multiplicities of CVB3 requires a combination of both anti-DAF and anti-CAR antibodies. Finally, it is shown that expression of the CAR protein on the surface of nonpermissive DAF-expressing RD cells renders them highly susceptible to CVB3-mediated lytic infection. Therefore, although the majority of CVB3 Nancy attaches to the cell via DAF, only virus directly interacting with the CAR protein mediates lytic infection. The role of DAF in CVB3 cell infection may be analogous to that recently described for coxsackievirus A21 (D. R. Shafren, D. J. Dorahy, R. A. Ingham, G. F. Burns, and R. D. Barry, J. Virol. 71:4736-4743, 1997), in that DAF may act as a CVB3 sequestration site, enhancing viral presentation to the functional CAR protein. PMID:9371658

  2. Transfer of experimental allergic encephalomyelitis to bone marrow chimeras. Endothelial cells are not a restricting element

    SciTech Connect

    Hinrichs, D.J.; Wegmann, K.W.; Dietsch, G.N.

    1987-12-01

    The adoptive transfer of clinical and histopathologic signs of experimental allergic encephalomyelitis (EAE) requires MHC compatibility between cell donor and cell recipient. The results of adoptive transfer studies using F1 to parent bone marrow chimeras as recipients of parental-derived BP-sensitive spleen cells indicate that this restriction is not expressed at the level of the endothelial cell but is confined to the cells of bone marrow derivation. Furthermore, these results indicate that the development of EAE is not dependent on the activity of MHC-restricted cytotoxic cells.

  3. CALORIE RESTRICTION ENHANCES T CELL MEDIATED IMMUNE RESPONSE IN OVERWEIGHT MEN AND WOMEN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is well known that dietary energy restriction prolongs lifespan and enhances immune responsiveness in a wide range of laboratory animals. However, information on the applicability of these results to humans is limited. In this study we examined the effects of calorie restriction on T cell mediate...

  4. Effective Apical Infection of Differentiated Human Bronchial Epithelial Cells and Induction of Proinflammatory Chemokines by the Highly Pneumotropic Human Adenovirus Type 14p1

    PubMed Central

    Lam, Elena; Ramke, Mirja; Warnecke, Gregor; Schrepfer, Sonja; Kopfnagel, Verena; Dobner, Thomas; Heim, Albert

    2015-01-01

    Background Only a few pneumotropic types of the human adenoviruses (e.g. type B14p1) cause severe lower respiratory tract infections like pneumonia and acute respiratory distress syndrome (ARDS) even in immunocompetent patients. By contrast, many other human adenovirus (HAdV) types (e.g. HAdV-C5) are associated mainly with upper respiratory tract infections. This is in accordance with a highly physiological cell culture system consisting of differentiated primary human bronchial epithelial cells which are little susceptible for apical HAdV-C5 infections. Objective and Methods We hypothesized that a pneumotropic and highly pathogenic HAdV type infects differentiated human bronchial epithelial cells efficiently from the apical surface and also induces proinflammatory cytokines in order to establish ARDS and pneumonia. Therefore, the apical infection of differentiated primary human bronchial epithelial cells with the pneumotropic and virulent type HAdV-B14p1 was investigated in comparison to the less pneumotropic HAdV-C5 as a control. Results Binding of HAdV-B14p1 to the apical surface of differentiated human bronchial epithelial cells and subsequent internalization of HAdV DNA was 10 fold higher (p<0.01) compared to the less-pneumotropic HAdV-C5 one hour after infection. Overall, the replication cycle of HAdV-B14p1 following apical infection and including apical release of infectious virus progeny was about 1000-fold more effective compared to the non-pneumotropic HAdV-C5 (p<0.001). HAdV-B14p1 infected cells expressed desmoglein 2 (DSG2), which has been described as potential receptor for HAdV-B14p1. Moreover, HAdV-B14p1 induced proinflammatory chemokines IP-10 and I-Tac as potential virulence factors. Interestingly, IP-10 has already been described as a marker for severe respiratory infections e.g. by influenza virus A H5N1. Conclusions The efficient "apical to apical" replication cycle of HAdV-B14p1 can promote endobronchial dissemination of the infection from the

  5. Adenovirus Vector-Induced CD8+ T Effector Memory Cell Differentiation and Recirculation, But Not Proliferation, Are Important for Protective Immunity Against Experimental Trypanosoma cruzi Infection

    PubMed Central

    Vasconcelos, José Ronnie; Dominguez, Mariana R.; Neves, Ramon L.; Ersching, Jonatan; Araújo, Adriano; Santos, Luara I.; Virgilio, Fernando S.; Machado, Alexandre V.; Bruna-Romero, Oscar; Gazzinelli, Ricardo T.

    2014-01-01

    Abstract Heterologous prime-boost vaccination using plasmid DNA followed by replication-defective adenovirus vector generates a large number of specific CD8+ T effector memory (TEM) cells that provide long-term immunity against a variety of pathogens. In the present study, we initially characterized the frequency, phenotype, and function of these T cells in vaccinated mice that were subjected to infectious challenge with the human protozoan parasite Trypanosoma cruzi. We observed that the frequency of the specific CD8+ T cells in the spleens of the vaccinated mice increased after challenge. Specific TEM cells differentiated into cells with a KLRG1High CD27Low CD43Low CD183LowT-betHigh EomesLow phenotype and capable to produce simultaneously the antiparasitic mediators IFNγ and TNF. Using the gzmBCreERT2/ROSA26EYFP transgenic mouse line, in which the cells that express Granzyme B after immunization, are indelibly labeled with enhanced yellow fluorescent protein, we confirmed that CD8+ T cells present after challenge were indeed TEM cells that had been induced by vaccination. Subsequently, we observed that the in vivo increase in the frequency of the specific CD8+ T cells was not because of an anamnestic immune response. Most importantly, after challenge, the increase in the frequency of specific cells and the protective immunity they mediate were insensitive to treatment with the cytostatic toxic agent hydroxyurea. We have previously described that the administration of the drug FTY720, which reduces lymphocyte recirculation, severely impairs protective immunity, and our evidence supports the model that when large amounts of antigen-experienced CD8+ TEM cells are present after heterologous prime-boost vaccination, differentiation, and recirculation, rather than proliferation, are key for the resultant protective immunity. PMID:24568548

  6. Mesenchymal stromal cell therapy is associated with increased adenovirus-associated but not cytomegalovirus-associated mortality in children with severe acute graft-versus-host disease.

    PubMed

    Calkoen, Friso G J; Vervat, Carly; van Halteren, Astrid G S; Welters, Marij J P; Veltrop-Duits, Louise A; Lankester, Arjan C; Egeler, R Maarten; Ball, Lynne M; van Tol, Maarten J D

    2014-08-01

    Beneficial effects of mesenchymal stromal cells (MSCs) in patients with severe steroid-refractory acute graft-versus-host disease (aGvHD) have been reported. However, controversy exists about the effect of MSCs on virus-specific T cells. We evaluated 56 patients with grade II-IV aGvHD who responded to steroids (n = 21) or were steroid refractory receiving either MSCs (n = 22) or other second-line therapy (n = 13). Although the overall incidence of cytomegalovirus (CMV), Epstein-Barr virus, and human adenovirus (HAdV) infections was not significantly increased, HAdV infection was associated with decreased survival in children treated with MSCs. Thus, we investigated in vitro the effects of MSCs on virus-specific T cells. Both CMV-specific and, to a lesser extent, HAdV-specific T-cell activation and proliferation were negatively affected by MSCs either after induction of a response in peripheral blood mononuclear cells (PBMCs) or after restimulation of virus-specific T-cell lines. In patient-derived PBMCs, CMV-specific proliferative responses were greatly decreased on first-line treatment of aGvHD with systemic steroids and slowly recovered after MSC administration and tapering of steroids. HAdV-specific T-cell proliferation could not be detected. In contrast, the proportion of CMV- and HAdV-specific effector T cells, measured as interferon-γ-secreting cells, remained stable or increased after treatment with MSCs. In conclusion, although in vitro experimental conditions indicated a negative impact of MSCs on CMV- and HAdV-specific T-cell responses, no solid evidence was obtained to support such an effect of MSCs on T-cell responses in vivo. Still, the susceptibility of steroid-refractory severe aGvHD patients to viral reactivation warrants critical viral monitoring during randomized controlled trials on second-line treatment including MSCs. PMID:24904175

  7. DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated Immunity

    PubMed Central

    Chuang, Ilin; Sedegah, Martha; Cicatelli, Susan; Spring, Michele; Polhemus, Mark; Tamminga, Cindy; Patterson, Noelle; Guerrero, Melanie; Bennett, Jason W.; McGrath, Shannon; Ganeshan, Harini; Belmonte, Maria; Farooq, Fouzia; Abot, Esteban; Banania, Jo Glenna; Huang, Jun; Newcomer, Rhonda; Rein, Lisa; Litilit, Dianne; Richie, Nancy O.; Wood, Chloe; Murphy, Jittawadee; Sauerwein, Robert; Hermsen, Cornelus C.; McCoy, Andrea J.; Kamau, Edwin; Cummings, James; Komisar, Jack; Sutamihardja, Awalludin; Shi, Meng; Epstein, Judith E.; Maiolatesi, Santina; Tosh, Donna; Limbach, Keith; Angov, Evelina; Bergmann-Leitner, Elke; Bruder, Joseph T.; Doolan, Denise L.; King, C. Richter; Carucci, Daniel; Dutta, Sheetij; Soisson, Lorraine; Diggs, Carter; Hollingdale, Michael R.; Ockenhouse, Christian F.; Richie, Thomas L.

    2013-01-01

    Background Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. Methodology/Principal Findings The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. Significance The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was

  8. Adenovirus-mediated FIR demonstrated TP53-independent cell-killing effect and enhanced antitumor activity of carbon-ion beams.

    PubMed

    Kano, M; Matsushita, K; Rahmutulla, B; Yamada, S; Shimada, H; Kubo, S; Hiwasa, T; Matsubara, H; Nomura, F

    2016-01-01

    Combination therapy of carbon-ion beam with the far upstream element-binding protein (FBP)-interacting repressor, FIR, which interferes with DNA damage repair proteins, was proposed as an approach for esophageal cancer treatment with low side effects regardless of TP53 status. In vivo therapeutic antitumor efficacy of replication-defective adenovirus (E1 and E3 deleted adenovirus serotype 5) encoding human FIR cDNA (Ad-FIR) was demonstrated in the tumor xenograft model of human esophageal squamous cancer cells, TE-2. Bleomycin (BLM) is an anticancer agent that introduces DNA breaks. The authors reported that Ad-FIR involved in the BLM-induced DNA damage repair response and thus applicable for other DNA damaging agents. To examine the effect of Ad-FIR on DNA damage repair, BLM, X-ray and carbon-ion irradiation were used as DNA damaging agents. The biological effects of high linear energy transfer (LET) radiotherapy used with carbon-ion irradiation are more expansive than low-LET conventional radiotherapy, such as X-rays or γ rays. High LET radiotherapy is suitable for the local control of tumors because of its high relative biological effectiveness. Ad-FIR enhanced BLM-induced DNA damage indicated by γH2AX in vitro. BLM treatment increased endogenous nuclear FIR expression in TE-2 cells, and P27Kip1 expression was suppressed by TP53 siRNA and BLM treatment. Further, Ad-FIRΔexon2, a dominant-negative form of FIR that lacks exon2 transcriptional repression domain, decreased Ku86 expression. The combination of Ad-FIR and BLM in TP53 siRNA increased DNA damage. Additionally, Ad-FIR showed synergistic cell toxicity with X-ray in vitro and significantly increased the antitumor efficacy of carbon-ion irradiation in the xenograft mouse model of TE-2 cells (P=0.03, Mann-Whitney's U-test) and was synergistic with the sensitization enhancement ratio (SER) value of 1.15. Therefore, Ad-FIR increased the cell-killing activity of the carbon-ion beam that avoids late

  9. Immortalization and Characterization of Lineage-restricted Neuronal Progenitor Cells Derived From the Procine Olfactory Bulb

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crucial aspects in the development of in vitro neuropathogenic disease model systems are the identification, characterization, and continuous mitotic expansion of cultured neuronal cells. To facilitate long-term cultivation, we immortalized cultured porcine olfactory neuronally restricted progenitor...

  10. ADENOVIRUS INTERACTION WITH ITS CELLULAR RECEPTOR CAR.

    SciTech Connect

    HOWITT,J.; ANDERSON,C.W.; FREIMUTH,P.

    2001-08-01

    The mechanism of adenovirus attachment to the host cell plasma membrane has been revealed in detail by research over the past 10 years. It has long been known that receptor binding activity is associated with the viral fibers, trimeric spike proteins that protrude radially from the vertices of the icosahedral capsid (Philipson et al. 1968). In some adenovirus serotypes, fiber and other virus structural proteins are synthesized in excess and accumulate in the cell nucleus during late stages of infection. Fiber protein can be readily purified from lysates of cells infected with subgroup C viruses, for example Ad2 and Ad5 (Boulanger and Puvion 1973). Addition of purified fiber protein to virus suspensions during adsorption strongly inhibits infection, indicating that fiber and intact virus particles compete for binding sites on host cells (Philipson et al. 1968; Hautala et al. 1998). Cell binding studies using purified radiolabeled fiber demonstrated that fiber binds specifically and with high affinity to the cell plasma membrane, and that cell lines typically used for laboratory propagation of adenovirus have approximately 10{sup 4} high-affinity receptor sites per cell (Persson et al. 1985; Freimuth 1996). Similar numbers of high-affinity binding sites for radiolabeled intact virus particles also were observed (Seth et al. 1994).

  11. Identification of adenovirus 12-encoded E1A tumor antigens synthesized in infected and transformed mammalian cells and in Escherichia coli.

    PubMed Central

    Lucher, L A; Kimelman, D; Symington, J S; Brackmann, K H; Cartas, M A; Thornton, H; Green, M

    1984-01-01

    A 16-amino acid peptide, H2N-Arg-Glu-Gln-Thr-Val-Pro-Val-Asp-Leu-Ser-Val-Lys-Arg-Pro-Arg-Cys-COOH (peptide 204), targeted to the common C-terminus of human adenovirus 12 (Ad12) tumor antigens encoded by the E1A 13S mRNA and 12S mRNA, has been synthesized. Antibody prepared in rabbits against peptide 204 immunoprecipitated two proteins of apparent Mr 47,000 and 45,000 from extracts of [35S]methionine-labeled Ad12-early infected KB cells and a 47,000 protein from extracts of the Ad12-transformed hamster cell line, HE C19. Immunoprecipitation analysis of infected and transformed cells labeled with 32Pi showed that both major Ad12 E1A T antigens are phosphoproteins. Immunofluorescence microscopy of Ad12-early infected KB cells with antipeptide antibody showed the site of E1A protein concentration to be predominantly nuclear. E1A proteins were detected by immunofluorescence at 4 to 6 h postinfection and continued to increase until at least 18 h postinfection. Antipeptide 204 antibody was used to analyze the proteins synthesized in Escherichia coli cells transformed by plasmids containing cDNA copies of the Ad12 E1A 13S mRNA or 12S mRNA under the control of the tac promoter (D. Kimelman, L. A. Lucher, M. Green, K. H. Brackmann, J. S. Symington, and M. Ptashne, Proc. Natl. Acad. Sci. U.S.A., in press). A major protein of ca. 47,000 was immunoprecipitated from extracts of each transformed E. coli cell clone. Two-dimensional gel electrophoretic analysis of immunoprecipitates revealed that the T antigens synthesized in infected KB cells, transformed hamster cells, and transformed E. coli cells possess very similar molecular weights and acidic isoelectric points of 5.2 to 5.4. Images PMID:6384554

  12. Identification of adenovirus 12-encoded E1A tumor antigens synthesized in infected and transformed mammalian cells and in Escherichia coli.

    PubMed

    Lucher, L A; Kimelman, D; Symington, J S; Brackmann, K H; Cartas, M A; Thornton, H; Green, M

    1984-10-01

    A 16-amino acid peptide, H2N-Arg-Glu-Gln-Thr-Val-Pro-Val-Asp-Leu-Ser-Val-Lys-Arg-Pro-Arg-Cys-COOH (peptide 204), targeted to the common C-terminus of human adenovirus 12 (Ad12) tumor antigens encoded by the E1A 13S mRNA and 12S mRNA, has been synthesized. Antibody prepared in rabbits against peptide 204 immunoprecipitated two proteins of apparent Mr 47,000 and 45,000 from extracts of [35S]methionine-labeled Ad12-early infected KB cells and a 47,000 protein from extracts of the Ad12-transformed hamster cell line, HE C19. Immunoprecipitation analysis of infected and transformed cells labeled with 32Pi showed that both major Ad12 E1A T antigens are phosphoproteins. Immunofluorescence microscopy of Ad12-early infected KB cells with antipeptide antibody showed the site of E1A protein concentration to be predominantly nuclear. E1A proteins were detected by immunofluorescence at 4 to 6 h postinfection and continued to increase until at least 18 h postinfection. Antipeptide 204 antibody was used to analyze the proteins synthesized in Escherichia coli cells transformed by plasmids containing cDNA copies of the Ad12 E1A 13S mRNA or 12S mRNA under the control of the tac promoter (D. Kimelman, L. A. Lucher, M. Green, K. H. Brackmann, J. S. Symington, and M. Ptashne, Proc. Natl. Acad. Sci. U.S.A., in press). A major protein of ca. 47,000 was immunoprecipitated from extracts of each transformed E. coli cell clone. Two-dimensional gel electrophoretic analysis of immunoprecipitates revealed that the T antigens synthesized in infected KB cells, transformed hamster cells, and transformed E. coli cells possess very similar molecular weights and acidic isoelectric points of 5.2 to 5.4. PMID:6384554

  13. Delay of vaccinia virus-induced apoptosis in nonpermissive Chinese hamster ovary cells by the cowpox virus CHOhr and adenovirus E1B 19K genes.

    PubMed Central

    Ink, B S; Gilbert, C S; Evan, G I

    1995-01-01

    The infection of vaccinia virus in Chinese hamster ovary (CHO) cells produces a rapid shutdown in protein synthesis, and the infection is abortive (R.R. Drillien, D. Spehner, and A. Kirn, Virology 111:488-499, 1978; D.E. Hruby, D.L. Lynn, R. Condit, and J.R. Kates, J. Gen. Virol. 47:485-488, 1980). Cowpox virus, which can productively infect CHO cells, had previously been shown to contain a host range gene, CHOhr, which confers on vaccinia virus the ability to replicate in CHO cells (D. Spehner, S. Gillard, R. Drillien, and A. Kirn, J. Virol. 62:1297-1304, 1988). We found that CHO cells underwent apoptosis when infected with vaccinia virus. The expression of the CHOhr gene in vaccinia virus allowed for the expression of late virus genes. CHOhr also delayed or prevented vaccinia virus-induced apoptosis in CHO cells such that there was sufficient time for replication of the virus before the cell died. The E1B 19K gene from adenovirus also delayed vaccinia virus-induced apoptosis; however, there was no detectable expression of late virus genes. Furthermore, E1B 19K also delayed cell death in CHO cells which had been productively infected with vaccinia virus. This study identifies a new antiapoptotic gene from cowpox virus, CHOhr, for which the protein contains an ankyrin-like repeat and shows no significant homology to other proteins. This work also indicates that an antiapoptotic gene from one virus family can delay cell death in an infection of a virus from a different family. PMID:7815529

  14. Permissive and restricted virus infection of murine embryonic stem cells.

    PubMed

    Wash, Rachael; Calabressi, Sabrina; Franz, Stephanie; Griffiths, Samantha J; Goulding, David; Tan, E-Pien; Wise, Helen; Digard, Paul; Haas, Jürgen; Efstathiou, Stacey; Kellam, Paul

    2012-10-01

    Recent RNA interference (RNAi) studies have identified many host proteins that modulate virus infection, but small interfering RNA 'off-target' effects and the use of transformed cell lines limit their conclusiveness. As murine embryonic stem (mES) cells can be genetically modified and resources exist where many and eventually all known mouse genes are insertionally inactivated, it was reasoned that mES cells would provide a useful alternative to RNAi screens. Beyond allowing investigation of host-pathogen interactions in vitro, mES cells have the potential to differentiate into other primary cell types, as well as being used to generate knockout mice for in vivo studies. However, mES cells are poorly characterized for virus infection. To investigate whether ES cells can be used to explore host-virus interactions, this study characterized the responses of mES cells following infection by herpes simplex virus type 1 (HSV-1) and influenza A virus. HSV-1 replicated lytically in mES cells, although mES cells were less permissive than most other cell types tested. Influenza virus was able to enter mES cells and express some viral proteins, but the replication cycle was incomplete and no infectious virus was produced. Knockdown of the host protein AHCYL1 in mES cells reduced HSV-1 replication, showing the potential for using mES cells to study host-virus interactions. Transcriptional profiling, however, indicated the lack of an efficient innate immune response in these cells. mES cells may thus be useful to identify host proteins that play a role in virus replication, but they are not suitable to determine factors that are involved in innate host defence. PMID:22815272

  15. Permissive and restricted virus infection of murine embryonic stem cells

    PubMed Central

    Wash, Rachael; Calabressi, Sabrina; Franz, Stephanie; Griffiths, Samantha J.; Goulding, David; Tan, E-Pien; Wise, Helen; Digard, Paul; Haas, Jürgen; Efstathiou, Stacey

    2012-01-01

    Recent RNA interference (RNAi) studies have identified many host proteins that modulate virus infection, but small interfering RNA ‘off-target’ effects and the use of transformed cell lines limit their conclusiveness. As murine embryonic stem (mES) cells can be genetically modified and resources exist where many and eventually all known mouse genes are insertionally inactivated, it was reasoned that mES cells would provide a useful alternative to RNAi screens. Beyond allowing investigation of host–pathogen interactions in vitro, mES cells have the potential to differentiate into other primary cell types, as well as being used to generate knockout mice for in vivo studies. However, mES cells are poorly characterized for virus infection. To investigate whether ES cells can be used to explore host–virus interactions, this study characterized the responses of mES cells following infection by herpes simplex virus type 1 (HSV-1) and influenza A virus. HSV-1 replicated lytically in mES cells, although mES cells were less permissive than most other cell types tested. Influenza virus was able to enter mES cells and express some viral proteins, but the replication cycle was incomplete and no infectious virus was produced. Knockdown of the host protein AHCYL1 in mES cells reduced HSV-1 replication, showing the potential for using mES cells to study host–virus interactions. Transcriptional profiling, however, indicated the lack of an efficient innate immune response in these cells. mES cells may thus be useful to identify host proteins that play a role in virus replication, but they are not suitable to determine factors that are involved in innate host defence. PMID:22815272

  16. Bone Marrow Mesenchymal Stem Cells Loaded With an Oncolytic Adenovirus Suppress the Anti-adenoviral Immune Response in the Cotton Rat Model

    PubMed Central

    Ahmed, Atique U; Rolle, Cleo E; Tyler, Matthew A; Han, Yu; Sengupta, Sadhak; Wainwright, Derek A; Balyasnikova, Irina V; Ulasov, Ilya V; Lesniak, Maciej S

    2010-01-01

    Oncolytic adenoviral virotherapy is an attractive treatment modality for cancer. However, following intratumoral injections, oncolytic viruses fail to efficiently migrate away from the injection site and are rapidly cleared by the immune system. We have previously demonstrated enhanced viral delivery and replicative persistence in vivo using human bone marrow–derived mesenchymal stem cells (MSCs) as delivery vehicles. In this study, we evaluated the immune response to adenovirus (Ad)-loaded MSCs using the semipermissive cotton rat (CR) model. First, we isolated MSCs from CR bone marrow aspirates. Real-time quantitative PCR analysis revealed that CR MSCs supported the replication of Ads in vitro. Moreover, we observed similar levels of suppression of T-cell proliferation in response to mitogenic stimulation, by MSCs alone and virus-loaded MSCs. Additionally, we found that MSCs suppressed the production of interferon-γ (IFN-γ) by activated T cells. In our in vivo model, CR MSCs enhanced the dissemination and persistence of Ad, compared to virus injection alone. Collectively, our data suggest that the use of MSCs as a delivery strategy for oncolytic Ad potentially offers a myriad of benefits, including improved delivery, enhanced dissemination, and increased persistence of viruses via suppression of the antiviral immune response. PMID:20588259

  17. Bone marrow mesenchymal stem cells loaded with an oncolytic adenovirus suppress the anti-adenoviral immune response in the cotton rat model.

    PubMed

    Ahmed, Atique U; Rolle, Cleo E; Tyler, Matthew A; Han, Yu; Sengupta, Sadhak; Wainwright, Derek A; Balyasnikova, Irina V; Ulasov, Ilya V; Lesniak, Maciej S

    2010-10-01

    Oncolytic adenoviral virotherapy is an attractive treatment modality for cancer. However, following intratumoral injections, oncolytic viruses fail to efficiently migrate away from the injection site and are rapidly cleared by the immune system. We have previously demonstrated enhanced viral delivery and replicative persistence in vivo using human bone marrow-derived mesenchymal stem cells (MSCs) as delivery vehicles. In this study, we evaluated the immune response to adenovirus (Ad)-loaded MSCs using the semipermissive cotton rat (CR) model. First, we isolated MSCs from CR bone marrow aspirates. Real-time quantitative PCR analysis revealed that CR MSCs supported the replication of Ads in vitro. Moreover, we observed similar levels of suppression of T-cell proliferation in response to mitogenic stimulation, by MSCs alone and virus-loaded MSCs. Additionally, we found that MSCs suppressed the production of interferon-γ (IFN-γ) by activated T cells. In our in vivo model, CR MSCs enhanced the dissemination and persistence of Ad, compared to virus injection alone. Collectively, our data suggest that the use of MSCs as a delivery strategy for oncolytic Ad potentially offers a myriad of benefits, including improved delivery, enhanced dissemination, and increased persistence of viruses via suppression of the antiviral immune response. PMID:20588259

  18. Rapid generation of fowl adenovirus 9 vectors.

    PubMed

    Pei, Yanlong; Griffin, Bryan; de Jong, Jondavid; Krell, Peter J; Nagy, Éva

    2015-10-01

    Fowl adenoviruses (FAdV) have the largest genomes of any fully sequenced adenovirus genome, and are widely considered as excellent platforms for vaccine development and gene therapy. As such, there is a strong need for stream-lined protocols/strategies for the generation of recombinant adenovirus genomes. Current genome engineering strategies rely upon plasmid based homologous recombination in Escherichia coli BJ5183. This process is time-consuming, involves multiple cloning steps, and low efficiency recombination. This report describes a novel system for the more rapid generation of recombinant fowl adenovirus genomes using the lambda Red recombinase system in E. coli DH10B. In this strategy, PCR based amplicons with around 50 nt long homologous arms, a unique SwaI site and a chloramphenicol resistance gene fragment (CAT cassette), are introduced into the FAdV-9 genome in a highly efficient and site-specific manner. To demonstrate the efficacy of this system we generated FAdV-9 ORF2, and FAdV-9 ORF11 deleted, CAT marked and unmarked FAdV-9 infectious clones (FAdmids), and replaced either ORF2 or ORF11, with an EGFP expression cassette or replaced ORF2 with an EGFP coding sequence via the unique SwaI sites, in approximately one month. All recombinant FAdmids expressed EGFP and were fully infectious in CH-SAH cells. PMID:26238923

  19. Labeling of Adenovirus Particles with PARACEST Agents

    PubMed Central

    Vasalatiy, Olga; Gerard, Robert D; Zhao, Piyu; Sun, Xiankai; Sherry, A. Dean

    2009-01-01

    Recombinant adenovirus type 5 particles (AdCMVLuc) were labeled with two different bifunctional ligands capable of forming stable complexes with paramagnetic lanthanide ions. The number of covalently attached ligands varied between 630 and 1960 per adenovirus particle depending upon the chemical reactivity of the bifunctional ligand (NHS ester versus isothiocyanide), the amount of excess ligand added, and the reaction time. The bioactivity of each labeled adenovirus derivative, as measured by the ability of the virus to infect cells and express luciferase, was shown to be highly dependent upon the number of covalently attached ligands. This indicates that certain amino groups, likely on the surface of the adenovirus fiber protein where cell binding is known to occur, are critical for viral attachment and infection. Addition of 177Lu3+ to chemically modified versus control viruses demonstrated a significant amount of nonspecific binding of 177Lu3+ to the virus particles that could not be sequestered by addition of excess DTPA. Thus, it became necessary to implement a prelabeling strategy for conjugation of preformed lanthanide ligand chelates to adenovirus particles. Using preformed Tm3+-L2, a large number of chelates having chemical exchange saturation transfer (CEST) properties were attached to the surface residues of AdCMVLuc without nonspecific binding of metal ions elsewhere on the virus particle. The potential of such conjugates to act as PARACEST imaging agents was tested using an on-resonance WALTZ sequence for CEST activation. A 12% decrease in bulk water signal intensity was observed relative to controls. This demonstrates that viral particles labeled with PARACEST-type imaging agents can potentially serve as targeted agents for molecular imaging. PMID:18254605

  20. Manipulating Adenovirus Hexon Hypervariable Loops Dictates Immune Neutralisation and Coagulation Factor X-dependent Cell Interaction In Vitro and In Vivo

    PubMed Central

    Ma, Jiangtao; Duffy, Margaret R.; Deng, Lin; Dakin, Rachel S.; Uil, Taco; Custers, Jerome; Kelly, Sharon M.; McVey, John H.; Nicklin, Stuart A.; Baker, Andrew H.

    2015-01-01

    Adenoviruses are common pathogens, mostly targeting ocular, gastrointestinal and respiratory cells, but in some cases infection disseminates, presenting in severe clinical outcomes. Upon dissemination and contact with blood, coagulation factor X (FX) interacts directly with the adenovirus type 5 (Ad5) hexon. FX can act as a bridge to bind heparan sulphate proteoglycans, leading to substantial Ad5 hepatocyte uptake. FX “coating” also protects the virus from host IgM and complement-mediated neutralisation. However, the contribution of FX in determining Ad liver transduction whilst simultaneously shielding the virus from immune attack remains unclear. In this study, we demonstrate that the FX protection mechanism is not conserved amongst Ad types, and identify the hexon hypervariable regions (HVR) of Ad5 as the capsid proteins targeted by this host defense pathway. Using genetic and pharmacological approaches, we manipulate Ad5 HVR interactions to interrogate the interplay between viral cell transduction and immune neutralisation. We show that FX and inhibitory serum components can co-compete and virus neutralisation is influenced by both the location and extent of modifications to the Ad5 HVRs. We engineered Ad5-derived HVRs into the rare, native non FX-binding Ad26 to create Ad26.HVR5C. This enabled the virus to interact with FX at high affinity, as quantified by surface plasmon resonance, FX-mediated cell binding and transduction assays. Concomitantly, Ad26.HVR5C was also sensitised to immune attack in the absence of FX, a direct consequence of the engineered HVRs from Ad5. In both immune competent and deficient animals, Ad26.HVR5C hepatic gene transfer was mediated by FX following intravenous delivery. This study gives mechanistic insight into the pivotal role of the Ad5 HVRs in conferring sensitivity to virus neutralisation by IgM and classical complement-mediated attack. Furthermore, through this gain-of-function approach we demonstrate the dual

  1. Lsd1 Restricts the Number of Germline Stem Cells by Regulating Multiple Targets in Escort Cells

    PubMed Central

    Eliazer, Susan; Palacios, Victor; Wang, Zhaohui; Kollipara, Rahul K.; Kittler, Ralf; Buszczak, Michael

    2014-01-01

    Specialized microenvironments called niches regulate tissue homeostasis by controlling the balance between stem cell self-renewal and the differentiation of stem cell daughters. However the mechanisms that govern the formation, size and signaling of in vivo niches remain poorly understood. Loss of the highly conserved histone demethylase Lsd1 in Drosophila escort cells results in increased BMP signaling outside the cap cell niche and an expanded germline stem cell (GSC) phenotype. Here we present evidence that loss of Lsd1 also results in gradual changes in escort cell morphology and their eventual death. To better characterize the function of Lsd1 in different cell populations within the ovary, we performed Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq). This analysis shows that Lsd1 associates with a surprisingly limited number of sites in escort cells and fewer, and often, different sites in cap cells. These findings indicate that Lsd1 exhibits highly selective binding that depends greatly on specific cellular contexts. Lsd1 does not directly target the dpp locus in escort cells. Instead, Lsd1 regulates engrailed expression and disruption of engrailed and its putative downstream target hedgehog suppress the Lsd1 mutant phenotype. Interestingly, over-expression of engrailed, but not hedgehog, results in an expansion of GSC cells, marked by the expansion of BMP signaling. Knockdown of other potential direct Lsd1 target genes, not obviously linked to BMP signaling, also partially suppresses the Lsd1 mutant phenotype. These results suggest that Lsd1 restricts the number of GSC-like cells by regulating a diverse group of genes and provide further evidence that escort cell function must be carefully controlled during development and adulthood to ensure proper germline differentiation. PMID:24625679

  2. Lsd1 restricts the number of germline stem cells by regulating multiple targets in escort cells.

    PubMed

    Eliazer, Susan; Palacios, Victor; Wang, Zhaohui; Kollipara, Rahul K; Kittler, Ralf; Buszczak, Michael

    2014-03-01

    Specialized microenvironments called niches regulate tissue homeostasis by controlling the balance between stem cell self-renewal and the differentiation of stem cell daughters. However the mechanisms that govern the formation, size and signaling of in vivo niches remain poorly understood. Loss of the highly conserved histone demethylase Lsd1 in Drosophila escort cells results in increased BMP signaling outside the cap cell niche and an expanded germline stem cell (GSC) phenotype. Here we present evidence that loss of Lsd1 also results in gradual changes in escort cell morphology and their eventual death. To better characterize the function of Lsd1 in different cell populations within the ovary, we performed Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq). This analysis shows that Lsd1 associates with a surprisingly limited number of sites in escort cells and fewer, and often, different sites in cap cells. These findings indicate that Lsd1 exhibits highly selective binding that depends greatly on specific cellular contexts. Lsd1 does not directly target the dpp locus in escort cells. Instead, Lsd1 regulates engrailed expression and disruption of engrailed and its putative downstream target hedgehog suppress the Lsd1 mutant phenotype. Interestingly, over-expression of engrailed, but not hedgehog, results in an expansion of GSC cells, marked by the expansion of BMP signaling. Knockdown of other potential direct Lsd1 target genes, not obviously linked to BMP signaling, also partially suppresses the Lsd1 mutant phenotype. These results suggest that Lsd1 restricts the number of GSC-like cells by regulating a diverse group of genes and provide further evidence that escort cell function must be carefully controlled during development and adulthood to ensure proper germline differentiation. PMID:24625679

  3. CD1-Restricted T Cell Recognition of Microbial Lipoglycan Antigens

    NASA Astrophysics Data System (ADS)

    Sieling, P. A.; Chatterjee, D.; Porcelli, S. A.; Prigozy, T. I.; Mazzaccaro, R. J.; Soriano, T.; Bloom, B. R.; Brenner, M. B.; Kronenberg, M.; Brennan, P. J.; Modlin, R. L.

    1995-07-01

    It has long been the paradigm that T cells recognize peptide antigens presented by major histocompatibility complex (MHC) molecules. However, nonpeptide antigens can be presented to T cells by human CD1b molecules, which are not encoded by the MHC. A major class of microbial antigens associated with pathogenicity are lipoglycans. It is shown here that human CD1b presents the defined mycobacterial lipoglycan lipoarabinomannan (LAM) to αβ T cell receptor-bearing lymphocytes. Presentation of these lipoglycan antigens required internalization and endosomal acidification. The T cell recognition required mannosides with α(1-->2) linkages and a phosphatidylinositol unit. T cells activated by LAM produced interferon γ and were cytolytic. Thus, an important class of microbial molecules, the lipoglycans, is a part of the universe of foreign antigens recognized by human T cells.

  4. Low-Dose Adenovirus Vaccine Encoding Chimeric Hepatitis B Virus Surface Antigen-Human Papillomavirus Type 16 E7 Proteins Induces Enhanced E7-Specific Antibody and Cytotoxic T-Cell Responses

    PubMed Central

    Báez-Astúa, Andrés; Herráez-Hernández, Elsa; Garbi, Natalio; Pasolli, Hilda A.; Juárez, Victoria; zur Hausen, Harald; Cid-Arregui, Angel

    2005-01-01

    Induction of effective immune responses may help prevent cancer progression. Tumor-specific antigens, such as those of human papillomaviruses involved in cervical cancer, are targets with limited intrinsic immunogenicity. Here we show that immunization with low doses (106 infectious units/dose) of a recombinant human adenovirus type 5 encoding a fusion of the E7 oncoprotein of human papillomavirus type 16 to the carboxyl terminus of the surface antigen of hepatitis B virus (HBsAg) induces remarkable E7-specific humoral and cellular immune responses. The HBsAg/E7 fusion protein assembled efficiently into virus-like particles, which stimulated antibody responses against both carrier and foreign antigens, and evoked antigen-specific kill of an indicator cell population in vivo. Antibody and T-cell responses were significantly higher than those induced by a control adenovirus vector expressing wild-type E7. Such responses were not affected by preexisting immunity against either HBsAg or adenovirus. These data demonstrate that the presence of E7 on HBsAg particles does not interfere with particle secretion, as it occurs with bigger proteins fused to the C terminus of HBsAg, and results in enhancement of CD8+-mediated T-cell responses to E7. Thus, fusion to HBsAg is a convenient strategy for developing cervical cancer therapeutic vaccines, since it enhances the immunogenicity of E7 while turning it into an innocuous secreted fusion protein. PMID:16188983

  5. Reactivation of a methylation-silenced gene in adenovirus-transformed cells by 5-azacytidine or by E1A trans activation.

    PubMed Central

    Knust, B; Brüggemann, U; Doerfler, W

    1989-01-01

    In the adenovirus type 2 (Ad2)-transformed hamster cell line HE3, the integrated late E2A promoter of Ad2 DNA is inactive, is methylated at all three 5'-CCGG-3' sequences, and can be reactivated by growing the cells in the presence of 50 microM 5-azacytidine (5-azaC). The three 5'-CCGG-3' sequences then become demethylated. Demethylation and reactivation are stable over 30 passages even after the removal of 5-azaC. The dormant late E2A promoter in cell line HE3 can also be reactivated by transfecting the cells with recombinant plasmids that carry the left terminal E1A and part of the E1B region of Ad2 DNA or the E1A 13S cDNA, but not with plasmids containing the E1A 12S cDNA. The E1A 13S cDNA encodes the 289-amino-acid trans-activating protein of Ad2. The E1A-mediated reactivation of the late E2A promoter is not accompanied by its demethylation in both DNA complements. Cell line HE3 produces constitutively E1A-encoded mRNAs and reactivates the methylated late E2A promoter-chloramphenicol acetyltransferase gene construct after transfection into HE3 cells. Constitutive levels of the endogenous E1A gene products in HE3 cells are detectable but, paradoxically, appear insufficient to reactivate the endogenous, chromosomally integrated E2A gene. Images PMID:2473219

  6. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  7. Co-factor activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1996-08-06

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying the peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  8. DNA prime-adenovirus boost immunization induces a vigorous and multifunctional T-cell response against hepadnaviral proteins in the mouse and woodchuck model.

    PubMed

    Kosinska, Anna D; Johrden, Lena; Zhang, Ejuan; Fiedler, Melanie; Mayer, Anja; Wildner, Oliver; Lu, Mengji; Roggendorf, Michael

    2012-09-01

    Induction of hepatitis B virus (HBV)-specific cytotoxic T cells by therapeutic immunization may be a strategy to treat chronic hepatitis B. In the HBV animal model, woodchucks, the application of DNA vaccine expressing woodchuck hepatitis virus (WHV) core antigen (WHcAg) in combination with antivirals led to the prolonged control of viral replication. However, it became clear that the use of more potent vaccines is required to overcome WHV persistence. Therefore, we asked whether stronger and more functional T-cell responses could be achieved using the modified vaccines and an optimized prime-boost vaccination regimen. We developed a new DNA plasmid (pCGWHc) and recombinant adenoviruses (AdVs) showing high expression levels of WHcAg. Mice vaccinated with the improved plasmid pCGWHc elicited a stronger WHcAg-specific CD8(+) T-cell response than with the previously used vaccines. Using multicolor flow cytometry and an in vivo cytotoxicity assay, we showed that immunization in a DNA prime-AdV boost regimen resulted in an even more vigorous and functional T-cell response than immunization with the new plasmid alone. Immunization of naïve woodchucks with pCGWHc plasmid or AdVs induced a significant WHcAg-specific degranulation response prior to the challenge, this response had not been previously detected. Consistently, this response led to a rapid control of infection after the challenge. Our results demonstrate that high antigen expression levels and the DNA prime-AdV boost immunization improved the T-cell response in mice and induced significant T-cell responses in woodchucks. Therefore, this new vaccination strategy may be a candidate for a therapeutic vaccine against chronic HBV infection. PMID:22718818

  9. Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells

    PubMed Central

    Posch, Wilfried; Steger, Marion; Knackmuss, Ulla; Blatzer, Michael; Baldauf, Hanna-Mari; Doppler, Wolfgang; White, Tommy E.; Hörtnagl, Paul; Diaz-Griffero, Felipe; Lass-Flörl, Cornelia; Hackl, Hubert; Moris, Arnaud; Keppler, Oliver T.; Wilflingseder, Doris

    2015-01-01

    DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection. PMID:26121641

  10. Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells.

    PubMed

    Posch, Wilfried; Steger, Marion; Knackmuss, Ulla; Blatzer, Michael; Baldauf, Hanna-Mari; Doppler, Wolfgang; White, Tommy E; Hörtnagl, Paul; Diaz-Griffero, Felipe; Lass-Flörl, Cornelia; Hackl, Hubert; Moris, Arnaud; Keppler, Oliver T; Wilflingseder, Doris

    2015-06-01

    DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection. PMID:26121641

  11. Single Cell Analysis to locate the Restriction Point with respect to E2F Expression

    NASA Astrophysics Data System (ADS)

    Pimienta, R.; Johnson, A.

    2011-12-01

    The restriction point is a G1-phase checkpoint that regulates passage through the cell cycle and is misregulated in all known types of cancer. The Rb-E2F switch is thought to be one of the most relevant molecular mechanisms which regulate the restriction point in mammalian cells. However, recent experiments have brought the timing of the restriction point into question. In previous studies, cells were analyzed as populations and this prevented an accurate determination of the restriction point. By creating and analyzing an E2F-GFP reporter in single cells, we can pinpoint the timing of E2F activation and determine whether it coincides with the restriction point. Using calcium phosphate and Fugene,we transfected human embryonic kidney (293T) cells with a CMV-GFP plasmid and an E2F-GFP reporter. Based on our results, it appears that calcium phosphate is more effective than Fugene at transfecting mammalian cells. The calcium phosphate transfection had 9.59% more fluorescent cells than Fugene. However, this result only occurred with the CMV-GFP plasmid and not the E2F-GFP reporter, which was not properly expressed in human embryonic kidney (293T) cells. We will continue troubleshooting to fix this reporter as we proceed with our research. Once the reporter is properly cloned, we will transfect it into retinal pigmented epithelial (RPE1-hTERT) cells using the calcium phosphate method. RPE1-hTERT cells are an immortalized with telomerase and are more close to normal cells than tumor-derived cell lines. Through this research we will better comprehend commitment to the mammalian cell cycle.

  12. High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells

    PubMed Central

    Sharma, Prabhat K; Wong, Emily B; Napier, Ruth J; Bishai, William R; Ndung'u, Thumbi; Kasprowicz, Victoria O; Lewinsohn, Deborah A; Lewinsohn, David M; Gold, Marielle C

    2015-01-01

    Mucosa-associated invariant T (MAIT) cells express the semi-invariant T-cell receptor TRAV1–2 and detect a range of bacteria and fungi through the MHC-like molecule MR1. However, knowledge of the function and phenotype of bacteria-reactive MR1-restricted TRAV1–2+ MAIT cells from human blood is limited. We broadly characterized the function of MR1-restricted MAIT cells in response to bacteria-infected targets and defined a phenotypic panel to identify these cells in the circulation. We demonstrated that bacteria-reactive MR1-restricted T cells shared effector functions of cytolytic effector CD8+ T cells. By analysing an extensive panel of phenotypic markers, we determined that CD26 and CD161 were most strongly associated with these T cells. Using FACS to sort phenotypically defined CD8+ subsets we demonstrated that high expression of CD26 on CD8+ TRAV1–2+ cells identified with high specificity and sensitivity, bacteria-reactive MR1-restricted T cells from human blood. CD161hi was also specific for but lacked sensitivity in identifying all bacteria-reactive MR1-restricted T cells, some of which were CD161dim. Using cell surface expression of CD8, TRAV1–2, and CD26hi in the absence of stimulation we confirm that bacteria-reactive T cells are lacking in the blood of individuals with active tuberculosis and are restored in the blood of individuals undergoing treatment for tuberculosis. PMID:25752900

  13. Activation of the E2F transcription factor in adenovirus-infected cells involves E1A-dependent stimulation of DNA-binding activity and induction of cooperative binding mediated by an E4 gene product.

    PubMed Central

    Raychaudhuri, P; Bagchi, S; Neill, S D; Nevins, J R

    1990-01-01

    Previous experiments have demonstrated that the DNA-binding activity of the E2F transcription factor is increased upon adenovirus infection and that both the E1A and E4 genes are required for activation. In this study, we demonstrated that this enhanced binding of E2F to the E2 promoter is the result of two events. (i) There is stimulation of the DNA-binding activity of the E2F factor; this stimulation is E1A dependent but independent of E4. (ii) There is also induction of a stabilized interaction between E2F molecules bound to adjacent promoter sites; induction of stable E2F binding requires E4 gene function. This two-step activation process was also demonstrated in vitro. A heat-stable fraction from extracts of adenovirus-infected cells, which contains the 19-kilodalton E4 protein, was capable of stimulating stable E2F binding in an ATP-independent manner and appeared to involve direct interaction of the E4 protein with E2F. An extract from virus-infected cells devoid of the E4 19-kilodalton protein stimulated E2F DNA binding without forming the stable complex. This reaction required ATP. We conclude that activation of E2F during adenovirus infection is a two-step process involving a change in both the DNA-binding activity of the factor and the capacity to stabilize the interaction through protein-protein contacts. Images PMID:2139893

  14. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    PubMed

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell. PMID:25633578

  15. APOBEC3 enzymes restrict marginal zone B cells

    PubMed Central

    Beck-Engeser, Gabriele B.; Winkelmann, Rebecca; Wheeler, Matthew L.; Shansab, Maryam; Yu, Philipp; Wünsche, Sarah; Walchhütter, Anja; Metzner, Mirjam; Vettermann, Christian; Eilat, Dan; DeFranco, Anthony; Jäck, Hans-Martin; Wabl, Matthias

    2016-01-01

    In general, a long-lasting immune response to viruses is achieved when they are infectious and replication-competent. In the mouse, the neutralizing antibody response to Friend murine leukemia virus is contributed by an allelic form of the enzyme Apobec3 (abbreviated A3). This is counterintuitive, because A3 directly controls viremia before the onset of adaptive anti-viral immune responses. It suggests that A3 also affects the antibody response directly. Here we studied the relative size of cell populations of the adaptive immune system as a function of A3 activity. We created a transgenic mouse that expresses all seven human A3 enzymes (hA3) and compared it to wild-type and mouse A3 (mA3)-deficient mice. A3 enzymes decreased the number of marginal zone (MZ) B cells, but not the number of follicular B or T cells. When mA3 was knocked out, the retroelement hitchhiker-1 and sialyl transferases encoded by genes close to it were overexpressed three and two orders of magnitude, respectively. We suggest that A3 shifts the balance, from the fast antibody response mediated by MZ B cells with little affinity maturation, to a more sustained germinal center B-cell response, which drives affinity maturation and, thereby, a better neutralizing response. PMID:25501566

  16. Extrachromosomal recombination substrates recapitulate beyond 12/23 restricted VDJ recombination in nonlymphoid cells.

    PubMed

    Jung, David; Bassing, Craig H; Fugmann, Sebastian D; Cheng, Hwei-Ling; Schatz, David G; Alt, Frederick W

    2003-01-01

    V(D)J recombination occurs efficiently only between gene segments flanked by recombination signals (RSs) containing 12 and 23 base pair spacers (the 12/23 rule). A further limitation "beyond the 12/23 rule" (B12/23) exists at the TCRbeta locus and ensures Dbeta usage. Herein, we show that extrachromosomal V(D)J recombination substrates recapitulate B12/23 restriction in nonlymphoid cells. We further demonstrate that the Vbeta coding flank, the 12-RS heptamer/nonamer, and the 23-RS spacer each can significantly influence B12/23 restriction. Finally, purified core RAG1 and RAG2 proteins (together with HMG2) also reproduce B12/23 restriction in a cell-free system. Our findings indicate that B12/23 restriction of V(D)J recombination is cemented at the level of interactions between the RAG proteins and TCRbeta RS sequences. PMID:12530976

  17. Functional Recovery in Traumatic Spinal Cord Injury after Transplantation of Multineurotrophin-Expressing Glial-Restricted Precursor Cells

    PubMed Central

    Cao, Qilin; Xu, Xiao-Ming; DeVries, William H.; Enzmann, Gaby U.; Ping, Peipei; Tsoulfas, Pantelis; Wood, Patrick M.; Bunge, Mary Bartlett; Whittemore, Scott R.

    2010-01-01

    Demyelination contributes to the physiological and behavioral deficits after contusive spinal cord injury (SCI). Therefore, remyelination may be an important strategy to facilitate repair after SCI. We show here that rat embryonic day 14 spinal cord-derived glial-restricted precursor cells (GRPs), which differentiate into both oligodendrocytes and astrocytes, formed normal-appearing central myelin around axons of cultured DRG neurons and had enhanced proliferation and survival in the presence of neurotrophin 3 (NT3) and brain-derived neurotrophin factor (BDNF). We infected GRPs with retroviruses expressing the multineurotrophin D15A (with both BDNF and NT3 activities) and then transplanted them into the contused adult thoracic spinal cord at 9 d after injury. Expression of D15A in the injured spinal cord is five times higher in animals receiving D15A–GRP grafts than ones receiving enhanced green fluorescent protein (EGFP)–GRP or DMEM grafts. Six weeks after transplantation, the grafted GRPs differentiated into mature oligodendrocytes expressing both myelin basic protein (MBP) and adenomatus polyposis coli (APC). Ultrastructural analysis showed that the grafted GRPs formed morphologically normal-appearing myelin sheaths around the axons in the ventrolateral funiculus (VLF) of spinal cord. Expression of D15A significantly increased the percentage of APC+ oligodendrocytes of grafted GRPs (15–30%). Most importantly, 8 of 12 rats receiving grafts of D15A–GRPs recovered transcranial magnetic motor-evoked potential responses, indicating that conduction through the demyelinated VLF axons was restored. Such electrophysiological recovery was not observed in rats receiving grafts of EGFP–GRPs, D15A–NIH3T3 cells, or an injection of an adenovirus expressing D15A. Recovery of hindlimb locomotor function was also significantly enhanced only in the D15A–GRP-grafted animals at 4 and 5 weeks after transplantation. Therefore, combined treatment with neurotrophins and

  18. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.

    PubMed

    Cao, Qilin; Xu, Xiao-Ming; Devries, William H; Enzmann, Gaby U; Ping, Peipei; Tsoulfas, Pantelis; Wood, Patrick M; Bunge, Mary Bartlett; Whittemore, Scott R

    2005-07-27

    Demyelination contributes to the physiological and behavioral deficits after contusive spinal cord injury (SCI). Therefore, remyelination may be an important strategy to facilitate repair after SCI. We show here that rat embryonic day 14 spinal cord-derived glial-restricted precursor cells (GRPs), which differentiate into both oligodendrocytes and astrocytes, formed normal-appearing central myelin around axons of cultured DRG neurons and had enhanced proliferation and survival in the presence of neurotrophin 3 (NT3) and brain-derived neurotrophin factor (BDNF). We infected GRPs with retroviruses expressing the multineurotrophin D15A (with both BDNF and NT3 activities) and then transplanted them into the contused adult thoracic spinal cord at 9 d after injury. Expression of D15A in the injured spinal cord is five times higher in animals receiving D15A-GRP grafts than ones receiving enhanced green fluorescent protein (EGFP)-GRP or DMEM grafts. Six weeks after transplantation, the grafted GRPs differentiated into mature oligodendrocytes expressing both myelin basic protein (MBP) and adenomatus polyposis coli (APC). Ultrastructural analysis showed that the grafted GRPs formed morphologically normal-appearing myelin sheaths around the axons in the ventrolateral funiculus (VLF) of spinal cord. Expression of D15A significantly increased the percentage of APC+ oligodendrocytes of grafted GRPs (15-30%). Most importantly, 8 of 12 rats receiving grafts of D15A-GRPs recovered transcranial magnetic motor-evoked potential responses, indicating that conduction through the demyelinated VLF axons was restored. Such electrophysiological recovery was not observed in rats receiving grafts of EGFP-GRPs, D15A-NIH3T3 cells, or an injection of an adenovirus expressing D15A. Recovery of hindlimb locomotor function was also significantly enhanced only in the D15A-GRP-grafted animals at 4 and 5 weeks after transplantation. Therefore, combined treatment with neurotrophins and GRP grafts can

  19. Calorie restriction (CR) enhances T cell mediated immune response in overweight men and women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calorie restriction (CR) enhances immunity and prolongs life-spans in animals. However, information on applying these results to humans is limited. A hallmark of aging is declining T-cell function. We examined the effects of CR on human T-cell function. Forty-six subjects aged 20-42 were randomly as...

  20. Features of target cell lysis by class I and class II MHC restricted cytolytic T lymphocytes

    SciTech Connect

    Maimone, M.M.; Morrison, L.A.; Braciale, V.L.; Braciale, T.J.

    1986-12-01

    The lytic activity of influenza virus-specific muvine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional /sup 51/Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), the authors found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism.

  1. Importance of the Ser-132 phosphorylation site in cell transformation and apoptosis induced by the adenovirus type 5 E1A protein.

    PubMed Central

    Whalen, S G; Marcellus, R C; Barbeau, D; Branton, P E

    1996-01-01

    The 289-residue (289R) and 243R early region 1A (E1A) proteins of human adenovirus type 5 induce cell transformation in cooperation with either E1B or activated ras. Here we report that Ser-132 in both E1A products is a site of phosphorylation in vivo and is the only site phosphorylated in vitro by purified casein kinase II. Ser-132 is located in conserved region 2 near the primary binding site for the pRB tumor suppressor and, in 289R, just upstream of the conserved region 3 transactivation domain involved in regulation of early viral gene expression. Mutants containing alanine or glycine in place of Ser-132 interacted with pRB-related proteins at somewhat reduced efficiency; however, all Ser-132 mutants transformed primary rat cells in cooperation with E1B as well as or better than the wild type when both major E1A proteins were expressed. Such was not the case with mutants expressing only 289R. In cooperation with E1B, the Asp-132 and Gly-132 mutants yielded reduced numbers of smaller transformed foci. With activated ras, all Ser-132 mutants were significantly defective for transformation and the rare foci produced were small and contained extensive areas populated by low densities of flat cells. In the absence of E1B, all Ser-132 mutants induced p53-independent cell death more readily than virus expressing wild-type 289R. These results suggested that phosphorylation at Ser-132 may enhance the binding of pRB and related proteins and also reduce the toxicity of E1A 289R, thus increasing transforming activity. PMID:8764048

  2. Induction of CD8(+) T cell responses and protective efficacy following microneedle-mediated delivery of a live adenovirus-vectored malaria vaccine.

    PubMed

    Pearson, Frances E; O'Mahony, Conor; Moore, Anne C; Hill, Adrian V S

    2015-06-22

    There is an urgent need for improvements in vaccine delivery technologies. This is particularly pertinent for vaccination programmes within regions of limited resources, such as those required for adequate provision for disposal of used needles. Microneedles are micron-sized structures that penetrate the stratum corneum of the skin, creating temporary conduits for the needle-free delivery of drugs or vaccines. Here, we aimed to investigate immunity induced by the recombinant simian adenovirus-vectored vaccine ChAd63.ME-TRAP; currently undergoing clinical assessment as a candidate malaria vaccine, when delivered percutaneously by silicon microneedle arrays. In mice, we demonstrate that microneedle-mediated delivery of ChAd63.ME-TRAP induced similar numbers of transgene-specific CD8(+) T cells compared to intradermal (ID) administration with needle-and-syringe, following a single immunisation and after a ChAd63/MVA heterologous prime-boost schedule. When mice immunised with ChAd63/MVA were challenged with live Plasmodium berghei sporozoites, microneedle-mediated ChAd63.ME-TRAP priming demonstrated equivalent protective efficacy as did ID immunisation. Furthermore, responses following ChAd63/MVA immunisation correlated with a specific design parameter of the array used ('total array volume'). The level of transgene expression at the immunisation site and skin-draining lymph node (dLN) was also linked to total array volume. These findings have implications for defining silicon microneedle array design for use with live, vectored vaccines. PMID:25839104

  3. Chemokine gene expression in lung CD8 T cells correlates with protective immunity in mice immunized intra-nasally with Adenovirus-85A

    PubMed Central

    2010-01-01

    Background Immunization of BALB/c mice with a recombinant adenovirus expressing Mycobacterium tuberculosis (M. tuberculosis) antigen 85A (Ad85A) protects against aerosol challenge with M. tuberculosis only when it is administered intra-nasally (i.n.). Immunization with Ad85A induces a lung-resident population of activated CD8 T cells that is antigen dependent, highly activated and mediates protection by early inhibition of M. tuberculosis growth. In order to determine why the i.n. route is so effective compared to parenteral immunization, we used microarray analysis to compare gene expression profiles of pulmonary and splenic CD8 T cells after i.n. or intra-dermal (i.d.) immunization. Method Total RNA from CD8 T cells was isolated from lungs or spleens of mice immunized with Ad85A by the i.n. or i.d. route. The gene profiles generated from each condition were compared. Statistically significant (p ≤ 0.05) differentially expressed genes were analyzed to determine if they mapped to particular molecular functions, biological processes or pathways using Gene Ontology and Panther DB mapping tools. Results CD8 T cells from lungs of i.n. immunized mice expressed a large number of chemokines chemotactic for resting and activated T cells as well as activation and survival genes. Lung lymphocytes from i.n. immunized mice also express the chemokine receptor gene Cxcr6, which is thought to aid long-term retention of antigen-responding T cells in the lungs. Expression of CXCR6 on CD8 T cells was confirmed by flow cytometry. Conclusions Our microarray analysis represents the first ex vivo study comparing gene expression profiles of CD8 T cells isolated from distinct sites after immunization with an adenoviral vector by different routes. It confirms earlier phenotypic data indicating that lung i.n. cells are more activated than lung i.d. CD8 T cells. The sustained expression of chemokines and activation genes enables CD8 T cells to remain in the lungs for extended periods after

  4. Vasodilator-stimulated phosphoprotein restricts cell-to-cell spread of Shigella flexneri at the cell periphery.

    PubMed

    Lee, Soo Young; Gertler, Frank B; Goldberg, Marcia B

    2015-11-01

    Shigella spp. are intracellular bacterial pathogens that cause diarrhoeal disease in humans. Shigella utilize the host actin cytoskeleton to enter cells, move through the cytoplasm of cells and pass into adjacent cells. Ena/VASP family proteins are highly conserved proteins that participate in actin-dependent dynamic cellular processes. We tested whether Ena/VASP family members VASP (vasodilator-stimulated phosphoprotein), Mena (mammalian-enabled) or EVL (Ena-VASP-like) contribute to Shigella flexneri spread through cell monolayers. VASP and EVL restricted cell-to-cell spread without significantly altering actin-based motility, whereas Mena had no effect on these processes. Phosphorylation of VASP on Ser153, Ser235 and Thr274 regulated its subcellular distribution and function. VASP derivatives that lack the Ena/VASP homology 1 (EVH1) domain or contain a phosphoablative mutation of Ser153 were defective in restricting S. flexneri spread, indicating that the EVH1 domain and phosphorylation on Ser153 are required for this process. The EVH1 domain and Ser153 of VASP were required for VASP localization to focal adhesions, and localization of VASP to focal adhesions and/or the leading edge was required for restriction of spread. The contribution of the EVH1 domain was from both the donor and the recipient cell, whereas the contribution of Ser153 phosphorylation was only from the donor cell. Thus, unlike host proteins characterized in Shigella pathogenesis that promote bacterial spread, VASP and EVL function to limit it. The ability of VASP and EVL to limit spread highlights the critical role of focal adhesion complexes and/or the leading edge in bacterial passage between cells. PMID:26358985

  5. Notch Signaling Regulates the Homeostasis of Tissue-Restricted Innate-like T Cells.

    PubMed

    Chennupati, Vijaykumar; Koch, Ute; Coutaz, Manuel; Scarpellino, Leonardo; Tacchini-Cottier, Fabienne; Luther, Sanjiv A; Radtke, Freddy; Zehn, Dietmar; MacDonald, H Robson

    2016-08-01

    Although Notch signaling plays important roles in lineage commitment and differentiation of multiple cell types including conventional T cells, nothing is currently known concerning Notch function in innate-like T cells. We have found that the homeostasis of several well-characterized populations of innate-like T cells including invariant NKT cells (iNKT), CD8ααTCRαβ small intestinal intraepithelial lymphocytes, and innate memory phenotype CD8 T cells is controlled by Notch. Notch selectively regulates hepatic iNKT cell survival via tissue-restricted control of B cell lymphoma 2 and IL-7Rα expression. More generally, Notch regulation of innate-like T cell homeostasis involves both cell-intrinsic and -extrinsic mechanisms and relies upon context-dependent interactions with Notch ligand-expressing fibroblastic stromal cells. Collectively, using conditional ablation of Notch receptors on peripheral T cells or Notch ligands on putative fibroblastic stromal cells, we show that Notch signaling is indispensable for the homeostasis of three tissue-restricted populations of innate-like T cells: hepatic iNKT, CD8ααTCRαβ small intestinal intraepithelial lymphocytes, and innate memory phenotype CD8 T cells, thus supporting a generalized role for Notch in innate T cell homeostasis. PMID:27324132

  6. Deletion of the E4 region of the genome produces adenovirus DNA concatemers.

    PubMed Central

    Weiden, M D; Ginsberg, H S

    1994-01-01

    Two mutants containing large deletions in the E4 region of the adenovirus genome H5dl366 (91.9-98.3 map units) and H2dl808 (93.0-97.1 map units) were used to investigate the role of E4 genes in adenovirus DNA synthesis. Infection of KB human epidermoid carcinoma cells with either mutant resulted in production of large concatemers of viral DNA. Only monomer viral genome forms were produced, however, when mutants infected W162 cells, a monkey kidney cell line transformed with and expressing the E4 genes. Diffusible E4 gene products, therefore, complement the E4 mutant phenotype. The viral DNA concatemers produced in dl366- and dl808-infected KB cells did not have any specific orientation of monomer joining: the junctions consisted of head-to-head, head-to-tail, and tail-to-tail joints. The junctions were covalently linked molecules, but molecules were not precisely joined, and restriction enzyme maps revealed a heterogeneous size distribution of junction fragments. A series of mutants that disrupted single E4 open reading frames (ORFs) was also studied: none showed phenotypes similar to that of dl366 or dl808. Mutants containing defects in both ORF3 and ORF6, however, manifested the concatemer phenotype, indicating redundancy in genes preventing concatemer formation. These data suggest that the E4 ORFs 3 and 6 express functions critical for regulation of viral DNA replication and that concatemer intermediates may exist during adenovirus DNA synthesis. Images Fig. 2 Fig. 3 Fig. 4 PMID:8278357

  7. CD1d- and MR1-Restricted T Cells in Sepsis

    PubMed Central

    Szabo, Peter A.; Anantha, Ram V.; Shaler, Christopher R.; McCormick, John K.; Haeryfar, S.M. Mansour

    2015-01-01

    Dysregulated immune responses to infection, such as those encountered in sepsis, can be catastrophic. Sepsis is typically triggered by an overwhelming systemic response to an infectious agent(s) and is associated with high morbidity and mortality even under optimal critical care. Recent studies have implicated unconventional, innate-like T lymphocytes, including CD1d- and MR1-restricted T cells as effectors and/or regulators of inflammatory responses during sepsis. These cell types are typified by invariant natural killer T (iNKT) cells, variant NKT (vNKT) cells, and mucosa-associated invariant T (MAIT) cells. iNKT and vNKT cells are CD1d-restricted, lipid-reactive cells with remarkable immunoregulatory properties. MAIT cells participate in antimicrobial defense, and are restricted by major histocompatibility complex-related protein 1 (MR1), which displays microbe-derived vitamin B metabolites. Importantly, NKT and MAIT cells are rapid and potent producers of immunomodulatory cytokines. Therefore, they may be considered attractive targets during the early hyperinflammatory phase of sepsis when immediate interventions are urgently needed, and also in later phases when adjuvant immunotherapies could potentially reverse the dangerous state of immunosuppression. We will highlight recent findings that point to the significance or the therapeutic potentials of NKT and MAIT cells in sepsis and will also discuss what lies ahead in research in this area. PMID:26322041

  8. Adenovirus infection of the large bowel in HIV positive patients.

    PubMed Central

    Maddox, A.; Francis, N.; Moss, J.; Blanshard, C.; Gazzard, B.

    1992-01-01

    AIMS: To describe the microscopic appearance of adenovirus infection in the large bowel of human immunodeficiency virus (HIV) positive patients with diarrhoea. METHODS: Large bowel biopsy specimens from 10 HIV positive patients, eight of whom were also infected with other gastrointestinal pathogens, with diarrhoea were examined, together with six small bowel biopsy specimens from the same group of patients. Eight of the patients had AIDS. The biopsy specimens were examined by light microscopy performed on haematoxylin and eosin stained and immunoperoxidase preparations, the latter using a commercially available antibody (Serotec MCA 489). Confirmation was obtained with electron microscopy. RESULTS: The morphological appearance of cells infected with adenovirus showed characteristic nuclear and cellular changes, although the inflammatory reaction was non-specific. Immunoperoxidase staining for adenovirus was sensitive and specific, and the presence of viral inclusions consistent with adenovirus was confirmed by electron microscopy. CONCLUSIONS: The light microscopic features of adenovirus infection are distinctive and immunocytochemistry with a commercially available antibody is a sensitive and specific means of confirming the diagnosis. Further studies of the role of adenovirus in causing diarrhoea in these patients are indicated. Images PMID:1401177

  9. Fusion of the BCL9 HD2 domain to E1A increases the cytopathic effect of an oncolytic adenovirus that targets colon cancer cells

    PubMed Central

    Fuerer, Christophe; Homicsko, Krisztian; Lukashev, Alexander N; Pittet, Anne-Laure; Iggo, Richard D

    2006-01-01

    Background The Wnt signaling pathway is activated by mutations in the APC and β-catenin genes in many types of human cancer. β-catenin is stabilized by these mutations and activates transcription in part by acting as a bridge between Tcf/LEF proteins and the HD2 domain of the BCL9 coactivator. We have previously described oncolytic adenoviruses with binding sites for Tcf/LEF transcription factors inserted into the early viral promoters. These viruses replicate selectively in cells with activation of the Wnt pathway. To increase the activity of these viruses we have fused the viral transactivator E1A to the BCL9 HD2 domain. Methods Luciferase assays, co-immunoprecipitation and Western blotting, immunofluorescent cell staining and cytopathic effect assays were used to characterize the E1A-HD2 fusion protein and virus in vitro. Growth curves of subcutaneous SW620 colon cancer xenografts were used to characterize the virus in vivo. Results The E1A-HD2 fusion protein binds to β-catenin in vivo and activates a Tcf-regulated luciferase reporter better than wild-type E1A in cells with activated Wnt signaling. Expression of the E1A-HD2 protein promotes nuclear import of β-catenin, mediated by the strong nuclear localization signal in E1A. Tcf-regulated viruses expressing the fusion protein show increased expression of viral proteins and a five-fold increase in cytopathic effect (CPE) in colorectal cancer cell lines. There was no change in viral protein expression or CPE in HeLa cells, indicating that E1A-HD2 viruses retain selectivity for cells with activation of the Wnt signaling pathway. Despite increasing the cytopathic effect of the virus in vitro, fusion of the HD2 domain to E1A did not increase the burst size of the virus in vitro or the anti-tumor effect of the virus in an SW620 xenograft model in vivo. Conclusion Despite an increase in the nuclear pool of β-catenin, the effects on viral activity in colon cancer cells were small, suggesting that factors acting

  10. Aerosol stability of bovine adenovirus type 3.

    PubMed Central

    Elazhary, M A; Derbyshire, J B

    1979-01-01

    The WBR-1 strain of bovine adenovirus type 3 was suspended in Eagle's medium or bovine nasal secretion and atomized into a rotating drum at temperatures of 6 degrees C or 32 degrees C and relative humidities of 30% or 90%. Impinger samples of the aerosols were collected seven minutes, one, two and three hours postgeneration, and titrated for infectivity in embryonic bovine kidney cell cultures. Under certain conditions of temperature and relative humidity, the virus was more stable in aerosols of Eagle's medium than in nasal secretion. The bovine adenovirus was usually inactivated more rapidly at 30% relative humidity than at 90% relative humidity and during aging of the aerosols the virus was inactivated more rapidly at 32 degrees C than at 6 degrees C. PMID:226247

  11. [Adenovirus-delivered BMI-1 shRNA].

    PubMed

    Chen, Zhen-Ping; Chen, Xiao-Li; Zhen, Jie

    2009-10-01

    Recently, some plasmid vectors that direct transcription of small hairpin RNAs have been developed, which are processed into functional siRNAs by cellular enzymes. Although these vectors possess certain advantages over synthesized siRNA, many disadvantages exist, including low and variable transfection efficiency. This study was aimed to establish an adenoviral siRNA delivery system without above-mentioned disadvantages on the basis of commercially available vectors. A vector was designed to target the human polycomb gene BMI-1. The pAd-BMI-1shRNA-CMV-GFP vector was produced by cloning a 300 bp U6-BMI-1 cassette from the pGE1BMI-1shRNA plasmid and a CMV-GFP cassette from pAdTrack CMV in pShutter vector. The adenovirus was produced from the 293A packaging cell line and then infected K562 cells. The mRNA and protein levels of Bmi-1 were detected by real time-PCR and Western blot respectively. The results showed that the adenovirus carrying the BMI-1shRNA was successfully produced. After being transfected with the adenovirus, the K562 cells dramatically down-regulated BMI-1 expression, whereas the adenoviruses carrying control shRNA had no effect on BMI-1 expression. It is concluded that the adenoviruses are efficient vectors for delivery of siRNA into mammalian cells and may become a candidate vector carrying siRNA drugs for gene therapy. PMID:19840467

  12. Calorie Restriction Alleviates Age-Related Decrease in Neural Progenitor Cell Division in the Aging Brain

    PubMed Central

    Park, June-Hee; Glass, Zachary; Sayed, Kasim; Michurina, Tatyana V.; Lazutkin, Alexander; Mineyeva, Olga; Velmeshev, Dmitry; Ward, Walter F.; Richardson, Arlan; Enikolopov, Grigori

    2013-01-01

    Production of new neurons from stem cells is important for cognitive function, and the reduction of neurogenesis in the aging brain may contribute to the accumulation of age-related cognitive deficits. Restriction of calorie intake and prolonged treatment with rapamycin have been shown to extend the lifespan of animals and delay the onset of age-related decline in tissue and organ function. Using a reporter line in which neural stem and progenitor cells are marked by the expression of GFP, we examined the effect of prolonged exposure to calorie restriction (CR) or rapamycin on hippocampal neural stem and progenitor cell proliferation in aging mice. We show that CR increases the number of dividing cells in the dentate gyrus (DG) of female mice. The majority of these cells corresponded to Nestin-GFP-expressing neural stem or progenitor cells; however, this increased proliferative activity of stem and progenitor cells did not result in a significant increase in the number of doublecortin-positive newborn neurons. Our results suggest that restricted calorie intake may increase the number of divisions that neural stem and progenitor cells undergo in the aging brain of females. PMID:23773068

  13. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus

    SciTech Connect

    Steel, Jason C.; Morrison, Brian J.; Mannan, Poonam; Abu-Asab, Mones S.; Wildner, Oliver; Miles, Brian K.; Yim, Kevin C.; Ramanan, Vijay; Prince, Gregory A.; Morris, John C.

    2007-12-05

    Oncolytic adenoviruses as a treatment for cancer have demonstrated limited clinical activity. Contributing to this may be the relevance of preclinical animal models used to study these agents. Syngeneic mouse tumor models are generally non-permissive for adenoviral replication, whereas human tumor xenograft models exhibit attenuated immune responses to the vector. The cotton rat (Sigmodon hispidus) is susceptible to human adenovirus infection, permissive for viral replication and exhibits similar inflammatory pathology to humans with adenovirus replicating in the lungs, respiratory passages and cornea. We evaluated three transplantable tumorigenic cotton rat cell lines, CCRT, LCRT and VCRT as models for the study of oncolytic adenoviruses. All three cells lines were readily infected with adenovirus type-5-based vectors and exhibited high levels of transgene expression. The cell lines supported viral replication demonstrated by the induction of cytopathogenic effect (CPE) in tissue culture, increase in virus particle numbers and assembly of virions seen on transmission electron microscopy. In vivo, LCRT and VCRT tumors demonstrated delayed growth after injection with replicating adenovirus. No in vivo antitumor activity was seen in CCRT tumors despite in vitro oncolysis. Adenovirus was also rapidly cleared from the CCRT tumors compared to LCRT and VCRT tumors. The effect observed with the different cotton rat tumor cell lines mimics the variable results of human clinical trials highlighting the potential relevance of this model for assessing the activity and toxicity of oncolytic adenoviruses.

  14. PREPARATION AND CHARACTERIZATION OF MONOCLONAL ANTIBODIES TO ENTERIC ADENOVIRUS TYPES 40 AND 41

    EPA Science Inventory

    The authors have prepared monoclonal antibodies to each of the enteric adenoviruses types 40 and 41. Three different hybridoma cell lines were selected which produced antibody found to react by radioimmunoprecipitation with adenovirus (Ad) hexon antigens. One was specific for Ad4...

  15. Lineage-restricted expression of homeobox-containing genes in human hematopoietic cell lines.

    PubMed Central

    Shen, W F; Largman, C; Lowney, P; Corral, J C; Detmer, K; Hauser, C A; Simonitch, T A; Hack, F M; Lawrence, H J

    1989-01-01

    We investigated the role of homeobox-containing genes in human hematopoiesis because homeobox genes (i) control cell fate in the Drosophila embryo, (ii) are expressed in specific patterns in human embryos, and (iii) appear to function as transcription factors that control cell phenotype in other mammalian organs. Using four homeobox probes from the HOX2 locus and a previously undescribed homeobox cDNA (PL1), we screened mRNAs from 18 human leukemic cell lines representing erythroid, myeloid, and T- and B-cell lineages. Complex patterns of lineage-restricted expression are observed: some are restricted to a single lineage, while others are expressed in multiple lineages. No single homeobox gene is expressed in all types of hematopoietic cells, but each cell type exhibits homeobox gene expression. HOX2.2 and -2.3 homeobox-containing cDNAs were cloned from an erythroleukemia cell (HEL) cDNA library, while the homeobox cDNA PL1 was isolated from a monocytic cell (U-937) library. Differentiation of HEL and K-562 cells with various inducers results in modulation of specific homeobox transcripts. In addition, HOX2.2 is expressed in normal bone marrow cells. We have demonstrated (i) lineage-restricted expression of five homeobox genes in erythroid and monocytic cell lines; (ii) expression of additional homeobox genes in other cell lineages (HL-60 and lymphoid cells); (iii) expression of one homeobox gene in normal marrow cells; and (iv) modulation of expression during differentiation. These data suggest that these genes play a role in human hematopoietic development and lineage commitment. Images PMID:2573064

  16. Cell entry and trafficking of human adenovirus bound to blood factor X is determined by the fiber serotype and not hexon:heparan sulfate interaction.

    PubMed

    Corjon, Stéphanie; Gonzalez, Gaëlle; Henning, Petra; Grichine, Alexei; Lindholm, Leif; Boulanger, Pierre; Fender, Pascal; Hong, Saw-See

    2011-01-01

    Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon:FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors. PMID

  17. Cell Entry and Trafficking of Human Adenovirus Bound to Blood Factor X Is Determined by the Fiber Serotype and Not Hexon:Heparan Sulfate Interaction

    PubMed Central

    Henning, Petra; Grichine, Alexei; Lindholm, Leif; Boulanger, Pierre; Fender, Pascal; Hong, Saw-See

    2011-01-01

    Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon∶FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors

  18. The Intracellular Domain of the Coxsackievirus and Adenovirus Receptor Differentially Influences Adenovirus Entry

    PubMed Central

    Loustalot, Fabien

    2015-01-01

    ABSTRACT The coxsackievirus and adenovirus receptor (CAR) is a cell adhesion molecule used as a docking molecule by some adenoviruses (AdVs) and group B coxsackieviruses. We previously proposed that the preferential transduction of neurons by canine adenovirus type 2 (CAV-2) is due to CAR-mediated internalization. Our proposed pathway of CAV-2 entry is in contrast to that of human AdV type 5 (HAdV-C5) in nonneuronal cells, where internalization is mediated by auxiliary receptors such as integrins. We therefore asked if in fibroblast-like cells the intracellular domain (ICD) of CAR plays a role in the internalization of the CAV-2 fiber knob (FKCAV), CAV-2, or HAdV-C5 when the capsid cannot engage integrins. Here, we show that in fibroblast-like cells, the CAR ICD is needed for FKCAV entry and efficient CAV-2 transduction but dispensable for HAdV-C5 and an HAdV-C5 capsid lacking the RGD sequence (an integrin-interacting motif) in the penton. Moreover, the deletion of the CAR ICD further impacts CAV-2 intracellular trafficking, highlighting the crucial role of CAR in CAV-2 intracellular dynamics. These data demonstrate that the CAR ICD contains sequences important for the recruitment of the endocytic machinery that differentially influences AdV cell entry. IMPORTANCE Understanding how viruses interact with the host cell surface and reach the intracellular space is of crucial importance for applied and fundamental virology. Here, we compare the role of a cell adhesion molecule (CAR) in the internalization of adenoviruses that naturally infect humans and Canidae. We show that the intracellular domain of CAR differentially regulates AdV entry and trafficking. Our study highlights the mechanistic differences that a receptor can have for two viruses from the same family. PMID:26136571

  19. Interplay of Notch and FGF signaling restricts cell fate and MAPK activation in the Drosophila trachea.

    PubMed

    Ikeya, T; Hayashi, S

    1999-10-01

    The patterned branching in the Drosophila tracheal system is triggered by the FGF-like ligand Branchless that activates a receptor tyrosine kinase Breathless and the MAP kinase pathway. A single fusion cell at the tip of each fusion branch expresses the zinc-finger gene escargot, leads branch migration in a stereotypical pattern and contacts with another fusion cell to mediate fusion of the branches. A high level of MAP kinase activation is also limited to the tip of the branches. Restriction of such cell specialization events to the tip is essential for tracheal tubulogenesis. Here we show that Notch signaling plays crucial roles in the singling out process of the fusion cell. We found that Notch is activated in tracheal cells by Branchless signaling through stimulation of &Dgr; expression at the tip of tracheal branches and that activated Notch represses the fate of the fusion cell. In addition, Notch is required to restrict activation of MAP kinase to the tip of the branches, in part through the negative regulation of Branchless expression. Notch-mediated lateral inhibition in sending and receiving cells is thus essential to restrict the inductive influence of Branchless on the tracheal tubulogenesis. PMID:10498681

  20. Type II pneumocyte-restricted green fluorescent protein expression after lentiviral transduction of lung epithelial cells.

    PubMed

    Wunderlich, Stephanie; Gruh, Ina; Winkler, Monica E; Beier, Jennifer; Radtke, Kerstin; Schmiedl, Andreas; Groos, Stephanie; Haverich, Axel; Martin, Ulrich

    2008-01-01

    Type II alveolar epithelial (AT2) cell-specific reporter expression has been highly useful in the study of embryology and alveolar regeneration in transgenic mice. Technologies enabling efficient gene transfer and cell type-restricted transgene expression in AT2 cells would allow for correction of AT2 cell-based diseases such as genetic surfactant deficiencies. Moreover, such approaches are urgently required to investigate differentiation of AT2 cells from adult and embryonic stem cells of other species than mouse. Using a human surfactant protein C (SP-C) promoter fragment, we have constructed lentiviral vectors enabling AT2-restricted transgene expression and identification of stem cell-derived AT2 cells. Lung epithelial cell lines M3E3/C3, H441, RLE-6TN, A549, MLE-12, and MLE-15 were characterized at the molecular and ultrastructural levels to identify cell lines useful to assess the cell type specificity of our vector constructs. After transduction, no green fluorescent protein (GFP) expression was observed in nontarget cells including bronchial H441 cells, pulmonary A549 cells, fibroblasts, smooth muscle cells, and endothelial cells. In contrast, and in correlation with endogenous SP-C expression, lentiviral transduction resulted in stable GFP expression in MLE-12 and MLE-15 AT2 cells. In conclusion, we have constructed a lentiviral vector mediating SP-C promoter-dependent GFP expression. Transgene expression strictly corresponds with an AT2 phenotype of the transduced cells. In particular, the generated vector should facilitate local alveolar gene therapy and investigation of alveolar regeneration and stem cell differentiation. PMID:18052721

  1. Effects of melatonin or maternal nutrient restriction on vascularity and cell proliferation in the ovine placenta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously we reported increased umbilical artery blood flow in ewes supplemented with melatonin from mid- to late-pregnancy, while maternal nutrient restriction decreased uterine artery blood flow. To further unravel these responses, this study was designed to assess placental cell proliferation an...

  2. Protective role of adenovirus vector-mediated interleukin-10 gene therapy on endogenous islet β-cells in recent-onset type 1 diabetes in NOD mice

    PubMed Central

    LI, CHENG; ZHANG, LIJUAN; CHEN, YANYAN; LIN, XIAOJIE; LI, TANG

    2016-01-01

    The aim of the present study was to provide an animal experimental basis for the protective effect of the adenoviral vector-mediated interleukin-10 (Ad-mIL-10) gene on islet β-cells during the early stages of type 1 diabetes (T1D) in non-obese diabetic (NOD) mice. A total of 24 female NOD mice at the onset of diabetes were allocated at random into three groups (n=8 per group): Group 1, intraperitoneally injected with 0.1 ml Ad-mIL-10; group 2, intraperitoneally injected with 0.1 ml adenovirus vector; and group 3, was a diabetic control. In addition to groups 1, 2 and 3, 8 age- and gender-matched NOD mice were intraperitoneally injected with 0.1 ml PBS and assigned to group 4 as a normal control. All mice were examined weekly for body weight, urine glucose and blood glucose values prior to onset of diabetes, and at 1, 2 and 3 weeks after that, and all mice were sacrificed 3 weeks after injection. Serum levels of interleukin (IL)-10, interferon (IFN)-γ, IL-4, insulin and C-peptide were evaluated, and in addition the degree of insulitis and the local expression of IL-10 gene in the pancreas were detected. The apoptosis rate of pancreatic β-cells was determined using a TUNEL assay. Compared with groups 2 and 3, IL-10 levels in the serum and pancreas were elevated in group 1. Serum IFN-γ levels were decreased while serum IL-4 levels and IFN-γ/IL-4 ratio were significantly increased in group 1 (P<0.01). C-peptide and insulin levels were higher in group 1 compared with groups 2 and 3, (P<0.01). Furthermore, compared with groups 2 and 3, the degree of insulitis, islet β-cell apoptosis rate and blood glucose values did not change significantly (P>0.05). The administration of the Ad-mIL-10 gene induced limited immune regulatory and protective effects on islet β-cell function in NOD mice with early T1D, while no significant reduction in insulitis, islet β-cell apoptosis rate and blood glucose was observed. PMID:27168782

  3. Optimization and scale-up of cell culture and purification processes for production of an adenovirus-vectored tuberculosis vaccine candidate.

    PubMed

    Shen, Chun Fang; Jacob, Danielle; Zhu, Tao; Bernier, Alice; Shao, Zhongqi; Yu, Xuefeng; Patel, Mehul; Lanthier, Stephane; Kamen, Amine

    2016-06-17

    Tuberculosis (TB) is the second leading cause of death by infectious disease worldwide. The only available TB vaccine is the Bacille Calmette-Guerin (BCG). However, parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. AdAg85A, an adenoviral vector expressing the mycobacterial protein Ag85A, is a new tuberculosis vaccine candidate, and has shown promising results in pre-clinical studies and phase I trial. This adenovirus vectored vaccine is produced using HEK 293 cell culture. Here we report on the optimization of cell culture conditions, scale-up of production and purification of the AdAg85A at different scales. Four commercial serum-free media were evaluated under various conditions for supporting the growth of HEK293 cell and production of AdAg85A. A culturing strategy was employed to take advantages of two culture media with respective strengths in supporting the cell growth and virus production, which enabled to maintain virus productivity at higher cell densities and resulted in more than two folds of increases in culture titer. The production of AdAg85A was successfully scaled up and validated at 60L bioreactor under the optimal conditions. The AdAg85A generated from the 3L and 60L bioreactor runs was purified through several purification steps. More than 98% of total cellular proteins was removed, over 60% of viral particles was recovered after the purification process, and purity of AdAg85A was similar to that of the ATCC VR-1516 Ad5 standard. Vaccination of mice with the purified AdAg85A demonstrated a very good level of Ag85A-specific antibody responses. The optimized production and purification conditions were transferred to a GMP facility for manufacturing of AdAg85A for generation of clinical grade material to support clinical trials. PMID:27154390

  4. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5.

    PubMed Central

    Teodoro, J G; Branton, P E

    1997-01-01

    The adenovirus type 5 55-kDa E1B protein (E1B-55kDa) cooperates with E1A gene products to induce cell transformation. E1A proteins stimulate DNA synthesis and cell proliferation; however, they also cause rapid cell death by p53-dependent and p53-independent apoptosis. It is believed that the role of the E1B-55kDa protein in transformation is to protect against p53-dependent apoptosis by binding to and inactivating p53. It has been shown previously that the 55-kDa polypeptide abrogates p53-mediated transactivation and that mutants defective in p53 binding are unable to cooperate with E1A in transformation. We have previously mapped phosphorylation sites near the carboxy terminus of the E1B-55kDa protein at Ser-490 and Ser-491, which lie within casein kinase II consensus sequences. Conversion of these sites to alanine residues greatly reduced transforming activity, and although the mutant 55-kDa protein was found to interact with p53 at normal levels, it was somewhat defective for suppression of p53 transactivation activity. We now report that a nearby residue, Thr-495, also appears to be phosphorylated. We demonstrate directly that the wild-type 55-kDa protein is able to block E1A-induced p53-dependent apoptosis, whereas cells infected by mutant pm490/1/5A, which contains alanine residues at all three phosphorylation sites, exhibited extensive DNA fragmentation and classic apoptotic cell death. The E1B-55kDa product has been shown to exhibit intrinsic transcriptional repression activity when localized to promoters, such as by fusion with the GAL4 DNA-binding domain, even in the absence of p53. Such repression activity was totally absent with mutant pm490/1/5A. These data suggested that inhibition of p53-dependent apoptosis may depend on the transcriptional repression function of the 55-kDa protein, which appears to be regulated be phosphorylation at the carboxy terminus. PMID:9094635

  5. Risk Factors and Utility of a Risk-Based Algorithm for Monitoring Cytomegalovirus, Epstein-Barr Virus, and Adenovirus Infections in Pediatric Recipients after Allogeneic Hematopoietic Cell Transplantation.

    PubMed

    Rustia, Evelyn; Violago, Leah; Jin, Zhezhen; Foca, Marc D; Kahn, Justine M; Arnold, Staci; Sosna, Jean; Bhatia, Monica; Kung, Andrew L; George, Diane; Garvin, James H; Satwani, Prakash

    2016-09-01

    Infectious complications, particularly viral infections, remain a significant cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (alloHCT). Only a handful of studies in children have analyzed the risks for and impact of viremia on alloHCT-related outcomes. We conducted a retrospective study of 140 pediatric patients undergoing alloHCT to investigate the incidence of and risk factors for cytomegalovirus (CMV), adenovirus (ADV), and Epstein-Barr virus (EBV) viremia and viral disease after alloHCT. Furthermore, we assessed the impact of viremia on days of hospitalization and develop an algorithm for routine monitoring of viremia. Patients were monitored before alloHCT and then weekly for 180 days after alloHCT. Patients were considered to have viremia if CMV were > 600 copies/mL, EBV were > 1000 copies/mL, or ADV were > 1000 copies/mL on 2 consecutive PCRs. The overall incidences of viremia and viral disease in all patients from day 0 to +180 after alloHCT were 41.4% (n = 58) and 17% (n = 24), respectively. The overall survival for patients with viremia and viral disease was significantly lower compared with those without viremia (58% versus 74.2%, P = .03) and viral disease (48.2% versus 71.2%, P = .024). We identified that pretransplantation CMV risk status, pre-alloHCT viremia, and use of alemtuzumab were associated with the risk of post-alloHCT viremia. The average hospitalization days in patients with CMV risk (P = .011), viremia (P = .024), and viral disease (P = .002) were significantly higher. The algorithm developed from our data can potentially reduce viral PCR testing by 50% and is being studied prospectively at our center. Improved preventative treatment strategies for children at risk of viremia after alloHCT are needed. PMID:27252110

  6. SAMHD1 Restricts HIV-1 Cell-to-Cell Transmission and Limits Immune Detection in Monocyte-Derived Dendritic Cells

    PubMed Central

    Puigdomènech, Isabel; Casartelli, Nicoletta; Porrot, Françoise

    2013-01-01

    SAMHD1 is a viral restriction factor expressed in dendritic cells and other cells, inhibiting infection by cell-free human immunodeficiency virus type 1 (HIV-1) particles. SAMHD1 depletes the intracellular pool of deoxynucleoside triphosphates, thus impairing HIV-1 reverse transcription and productive infection in noncycling cells. The Vpx protein from HIV-2 or simian immunodeficiency virus (SIVsm/SIVmac) antagonizes the effect of SAMHD1 by triggering its degradation. A large part of HIV-1 spread occurs through direct contacts between infected cells and bystander target cells. Here, we asked whether SAMHD1 impairs direct HIV-1 transmission from infected T lymphocytes to monocyte-derived dendritic cells (MDDCs). HIV-1-infected lymphocytes were cocultivated with MDDCs that have been pretreated or not with Vpx or with small interfering RNA against SAMHD1. We show that in the cocultures, SAMHD1 significantly inhibits productive cell-to-cell transmission to target MDDCs and prevents the type I interferon response and expression of the interferon-stimulated gene MxA. Therefore, SAMHD1, by controlling the sensitivity of MDDCs to HIV-1 infection during intercellular contacts, impacts their ability to sense the virus and to trigger an innate immune response. PMID:23269793

  7. The Immunology of CD1- and MR1-Restricted T Cells.

    PubMed

    Mori, Lucia; Lepore, Marco; De Libero, Gennaro

    2016-05-20

    CD1- and MHC-related molecule-1 (MR1)-restricted T lymphocytes recognize nonpeptidic antigens, such as lipids and small metabolites, and account for a major fraction of circulating and tissue-resident T cells. They represent a readily activated, long-lasting population of effector cells and contribute to the early phases of immune response, orchestrating the function of other cells. This review addresses the main aspects of their immunological functions, including antigen and T cell receptor repertoires, mechanisms of nonpeptidic antigen presentation, and the current evidence for their participation in human and experimental diseases. PMID:26927205

  8. Increased efficacy of an adenovirus-vectored foot-and-mouth disease capsid subunit vaccine expressing nonstructural protein 2B is associated with a specific T cell response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously demonstrated that an adenovirus-based FMDV serotype A24 subunit vaccine, Ad5-A24, expressed under the control of a cytomegalovirus promoter (CMV) can protect swine and bovines against homologous challenge, but swine vaccinated with an Ad5-vectored FMDV O1 Campos vaccine, Ad5-O1Campos (...

  9. Early detection and visualization of human adenovirus serotype 5-viral vectors carrying foot-and-mouth disease virus or luciferase transgenes in cell lines and bovine tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant replication-defective human adenovirus type 5 (Ad5) vaccines containing capsid-coding regions from foot-and-mouth disease virus (FMDV) have been demonstrated to induce effective immune responses and provide homologous protective immunity against FMDV in cattle. However, basic mechanisms ...

  10. APOBEC3G restricts early HIV-1 replication in the cytoplasm of target cells

    SciTech Connect

    Anderson, Jenny L.; Hope, Thomas J.

    2008-05-25

    Cellular APOBEC3G (A3G) protein is packaged into human immunodeficiency virus type 1 (HIV-1) virions in producer cells yet restricts viral replication in target cells. To characterize this restriction in target cells, the effect of A3G on generating various HIV-1 cDNA products was measured by quantitative real-time PCR. A3G decreased cDNA products from Vif-deficient HIV-1, with minor effects on early reverse transcripts and larger declines in late reverse transcripts. However, the greatest decline was typically observed in nuclear 2-LTR circles. Moreover, the magnitude of these declines varied with A3G dose. Adding integration inhibitor did not stop the A3G-mediated loss in 2-LTR circles. Moreover, obstructing HIV-1 nuclear entry using vesicular stomatitis virus matrix protein did not stop the A3G-mediated decline in late reverse transcripts. Collectively, these data suggest that A3G has important restriction activity in the cytoplasm and progressively diminishes viral cytoplasmic and nuclear cDNA forms with increasing magnitude during restriction.

  11. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow

    PubMed Central

    Lee, Jaeyop; Breton, Gaëlle; Oliveira, Thiago Yukio Kikuchi; Zhou, Yu Jerry; Aljoufi, Arafat; Puhr, Sarah; Cameron, Mark J.; Sékaly, Rafick-Pierre

    2015-01-01

    In mice, two restricted dendritic cell (DC) progenitors, macrophage/dendritic progenitors (MDPs) and common dendritic progenitors (CDPs), demonstrate increasing commitment to the DC lineage, as they sequentially lose granulocyte and monocyte potential, respectively. Identifying these progenitors has enabled us to understand the role of DCs and monocytes in immunity and tolerance in mice. In humans, however, restricted monocyte and DC progenitors remain unknown. Progress in studying human DC development has been hampered by lack of an in vitro culture system that recapitulates in vivo DC hematopoiesis. Here we report a culture system that supports development of CD34+ hematopoietic stem cell progenitors into the three major human DC subsets, monocytes, granulocytes, and NK and B cells. Using this culture system, we defined the pathway for human DC development and revealed the sequential origin of human DCs from increasingly restricted progenitors: a human granulocyte-monocyte-DC progenitor (hGMDP) that develops into a human monocyte-dendritic progenitor (hMDP), which in turn develops into monocytes, and a human CDP (hCDP) that is restricted to produce the three major DC subsets. The phenotype of the DC progenitors partially overlaps with granulocyte-macrophage progenitors (GMPs). These progenitors reside in human cord blood and bone marrow but not in the blood or lymphoid tissues. PMID:25687283

  12. Adenovirus-Based Vaccines against Rhesus Lymphocryptovirus EBNA-1 Induce Expansion of Specific CD8+ and CD4+ T Cells in Persistently Infected Rhesus Macaques

    PubMed Central

    Leskowitz, R.; Fogg, M. H.; Zhou, X. Y.; Kaur, A.; Silveira, E. L. V.; Villinger, F.; Lieberman, P. M.; Wang, F.

    2014-01-01

    ABSTRACT The impact of Epstein-Barr virus (EBV) on human health is substantial, but vaccines that prevent primary EBV infections or treat EBV-associated diseases are not yet available. The Epstein-Barr nuclear antigen 1 (EBNA-1) is an important target for vaccination because it is the only protein expressed in all EBV-associated malignancies. We have designed and tested two therapeutic EBV vaccines that target the rhesus (rh) lymphocryptovirus (LCV) EBNA-1 to determine if ongoing T cell responses during persistent rhLCV infection in rhesus macaques can be expanded upon vaccination. Vaccines were based on two serotypes of E1-deleted simian adenovirus and were administered in a prime-boost regimen. To further modulate the response, rhEBNA-1 was fused to herpes simplex virus glycoprotein D (HSV-gD), which acts to block an inhibitory signaling pathway during T cell activation. We found that vaccines expressing rhEBNA-1 with or without functional HSV-gD led to expansion of rhEBNA-1-specific CD8+ and CD4+ T cells in 33% and 83% of the vaccinated animals, respectively. Additional animals developed significant changes within T cell subsets without changes in total numbers. Vaccination did not increase T cell responses to rhBZLF-1, an immediate early lytic phase antigen of rhLCV, thus indicating that increases of rhEBNA-1-specific responses were a direct result of vaccination. Vaccine-induced rhEBNA-1-specific T cells were highly functional and produced various combinations of cytokines as well as the cytolytic molecule granzyme B. These results serve as an important proof of principle that functional EBNA-1-specific T cells can be expanded by vaccination. IMPORTANCE EBV is a common human pathogen that establishes a persistent infection through latency in B cells, where it occasionally reactivates. EBV infection is typically benign and is well controlled by the host adaptive immune system; however, it is considered carcinogenic due to its strong association with lymphoid

  13. Suppression of cancer cell growth by adenovirus expressing p21(WAF1/CIP1) deficient in PCNA interaction.

    PubMed

    Prabhu, N S; Blagosklonny, M V; Zeng, Y X; Wu, G S; Waldman, T; El-Deiry, W S

    1996-07-01

    p53 tumor suppression is deficient in the majority of human cancers. Efforts to understand this pathway have identified cyclin-dependent kinase (CDK) inhibitors and suggested a potential for their replacement in human cancer. In the present studies, expression of a C-terminal deletion mutant of the human p21(WAF1/CIP1) CDK inhibitor completely suppressed the growth of colon cancer cells, whereas full-length p21 only partially suppressed growth. We prepared a replication-deficient adenoviral recombinant which expresses the p21 C-terminal mutant (Ad-WAF1-341) and compared its tumor suppressive abilities with Ad-p53 and Ad-LacZ. Ad-WAF1-341- and Ad-p53-infected cancer cells, but not Ad-LacZ-infected cancer cells, expressed a nuclear protein recognized by anti-p21 antibody and were deficient in cell cycle progression. The exogenous p21 mutant interacted with CDK2 but not proliferating cell nuclear antigen following infection of p21-/- cancer cells. Ad-WAF1-341 was more potent than Ad-p53 in inhibiting DNA synthesis in human papillomavirus 16 E6-expressing cancer cells. Most importantly, the Ad-WAF1-341-infected E6-expressing cells died, whereas most of the Ad-p53-infected cells continued to proliferate. Endonucleolytic cleavage of DNA was observed in Ad-WAF1-341-infected cancer cells. These observations suggest that Ad-WAF1-341 should be evaluated in the treatment of human papillomavirus-associated neoplasia and other neoplasias resistant to p53. PMID:9816291

  14. CD1d-restricted peripheral T cell lymphoma in mice and humans.

    PubMed

    Bachy, Emmanuel; Urb, Mirjam; Chandra, Shilpi; Robinot, Rémy; Bricard, Gabriel; de Bernard, Simon; Traverse-Glehen, Alexandra; Gazzo, Sophie; Blond, Olivier; Khurana, Archana; Baseggio, Lucile; Heavican, Tayla; Ffrench, Martine; Crispatzu, Giuliano; Mondière, Paul; Schrader, Alexandra; Taillardet, Morgan; Thaunat, Olivier; Martin, Nadine; Dalle, Stéphane; Le Garff-Tavernier, Magali; Salles, Gilles; Lachuer, Joel; Hermine, Olivier; Asnafi, Vahid; Roussel, Mikael; Lamy, Thierry; Herling, Marco; Iqbal, Javeed; Buffat, Laurent; Marche, Patrice N; Gaulard, Philippe; Kronenberg, Mitchell; Defrance, Thierry; Genestier, Laurent

    2016-05-01

    Peripheral T cell lymphomas (PTCLs) are a heterogeneous entity of neoplasms with poor prognosis, lack of effective therapies, and a largely unknown pathophysiology. Identifying the mechanism of lymphomagenesis and cell-of-origin from which PTCLs arise is crucial for the development of efficient treatment strategies. In addition to the well-described thymic lymphomas, we found that p53-deficient mice also developed mature PTCLs that did not originate from conventional T cells but from CD1d-restricted NKT cells. PTCLs showed phenotypic features of activated NKT cells, such as PD-1 up-regulation and loss of NK1.1 expression. Injections of heat-killed Streptococcus pneumonia, known to express glycolipid antigens activating NKT cells, increased the incidence of these PTCLs, whereas Escherichia coli injection did not. Gene expression profile analyses indicated a significant down-regulation of genes in the TCR signaling pathway in PTCL, a common feature of chronically activated T cells. Targeting TCR signaling pathway in lymphoma cells, either with cyclosporine A or anti-CD1d blocking antibody, prolonged mice survival. Importantly, we identified human CD1d-restricted lymphoma cells within Vδ1 TCR-expressing PTCL. These results define a new subtype of PTCL and pave the way for the development of blocking anti-CD1d antibody for therapeutic purposes in humans. PMID:27069116

  15. Micro-environmentally restricted hybridoma cell growth within polysaccharide hydrogel microbeads.

    PubMed

    Pajic-Lijakovic, Ivana

    2013-01-01

    The mechanism of micro-environmentally restricted hybridoma cell growth caused by action of local mechanical compression stress generated within various polysaccharide hydrogel matrixes is estimated by comparing the growth of hybridoma cells within (1) 1.5% Ca-alginate microbeads from Bugarski et al. [in: Fundamentals of Animal Cells Immobilization and Microencapsulation, M.F.A. Goosen, ed., CRC Press, Boca Raton, FL, 1993, p. 267] and (2) 1.3% alginate-agarose microbeads from Shen et al. [Animal Cell Technology: Basic & Applied Aspects, H. Murakami ed., Kluwer Academic Publishers, The Netherlands, 1992, p. 173].Consideration of restricted cell growth dynamics based on developed kinetic model and kinetic 3D Monte Carlo simulation include: (1) changes the fraction of active proliferating cells in the exponential phase and (2) changes of non-proliferating cell concentration in the plateau phase.Higher value of the specific decrease of active fraction of proliferating cells κ is obtained for 1.3% alginate-agarose compared to 1.5% alginate microbeads. It corresponds to higher compression stress generated within hydrogel matrix during cell growth obtained for 1.3% alginate-agarose microbeads. PMID:23988708

  16. Restricted differentiation potential of progenitor cell populations obtained from the equine superficial digital flexor tendon (SDFT)

    PubMed Central

    Humphreys, William James Edward; Comerford, Eithne Josephine Veronica; Clegg, Peter David; Canty‐Laird, Elizabeth Gail

    2015-01-01

    ABSTRACT The aim of this study was to characterize stem and progenitor cell populations from the equine superficial digital flexor tendon, an energy‐storing tendon with similarities to the human Achilles tendon, which is frequently injured. Using published methods for the isolation of tendon‐derived stem/progenitor cells by low‐density plating we found that isolated cells possessed clonogenicity but were unable to fully differentiate towards mesenchymal lineages using trilineage differentiation assays. In particular, adipogenic differentiation appeared to be restricted, as assessed by Oil Red O staining of stem/progenitor cells cultured in adipogenic medium. We then assessed whether differential adhesion to fibronectin substrates could be used to isolate a population of cells with broader differentiation potential. However we found little difference in the stem and tenogenic gene expression profile of these cells as compared to tenocytes, although the expression of thrombospondin‐4 was significantly reduced in hypoxic conditions. Tendon‐derived stem/progenitor cells isolated by differential adhesion to fibronectin had a similar differentiation potential to cells isolated by low density plating, and when grown in either normoxic or hypoxic conditions. In summary, we have found a restricted differentiation potential of cells isolated from the equine superficial digital flexor tendon despite evidence for stem/progenitor‐like characteristics. © 2015 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 33:849–858, 2015. PMID:25877997

  17. Adenovirus Vectors for Gene Therapy, Vaccination and Cancer Gene Therapy

    PubMed Central

    Wold, William S.M.; Toth, Karoly

    2015-01-01

    Adenovirus vectors are the most commonly employed vector for cancer gene therapy. They are also used for gene therapy and as vaccines to express foreign antigens. Adenovirus vectors can be replication-defective; certain essential viral genes are deleted and replaced by a cassette that expresses a foreign therapeutic gene. Such vectors are used for gene therapy, as vaccines, and for cancer therapy. Replication-competent (oncolytic) vectors are employed for cancer gene therapy. Oncolytic vectors are engineered to replicate preferentially in cancer cells and to destroy cancer cells through the natural process of lytic virus replication. Many clinical trials indicate that replication-defective and replication-competent adenovirus vectors are safe and have therapeutic activity. PMID:24279313

  18. Hexon Modification to Improve the Activity of Oncolytic Adenovirus Vectors against Neoplastic and Stromal Cells in Pancreatic Cancer

    PubMed Central

    Lucas, Tanja; Benihoud, Karim; Vigant, Frédéric; Schmidt, Christoph Q. Andreas; Simmet, Thomas; Kochanek, Stefan

    2015-01-01

    Primary pancreatic carcinoma has an unfavourable prognosis and standard treatment strategies mostly fail in advanced cases. Virotherapy might overcome this resistance to current treatment modalities. However, data from clinical studies with oncolytic viruses, including replicating adenoviral (Ad) vectors, have shown only limited activity against pancreatic cancer and other carcinomas. Since pancreatic carcinomas have a complex tumor architecture and frequently a strong stromal compartment consisting of non-neoplastic cell types (mainly pancreatic stellate cells = hPSCs) and extracellular matrix, it is not surprising that Ad vectors replicating in neoplastic cells will likely fail to eradicate this aggressive tumor type. Because the TGFβ receptor (TGFBR) is expressed on both neoplastic cells and hPSCs we inserted the TGFBR targeting peptide CKS17 into the hypervariable region 5 (HVR5) of the capsid protein hexon with the aim to generate a replicating Ad vector with improved activity in complex tumors. We demonstrated increased transduction of both pancreatic cancer cell lines and of hPSCs and enhanced cytotoxicity in co-cultures of both cell types. Surface plasmon resonance analysis demonstrated decreased binding of coagulation factor X to CKS17-modified Ad particles and in vivo biodistribution studies performed in mice indicated decreased transduction of hepatocytes. Thus, to increase activity of replicating Ad vectors we propose to relax tumor cell selectivity by genetic hexon-mediated targeting to the TGFBR (or other receptors present on both neoplastic and non-neoplastic cells within the tumor) to enable replication also in the stromal cell compartment of tumors, while abolishing hepatocyte transduction, and thereby increasing safety. PMID:25692292

  19. In vitro antitumor cytotoxic T lymphocyte response induced by dendritic cells transduced with DeltaNp73alpha recombinant adenovirus.

    PubMed

    Hu, Yijie; He, Yong; Srivenugopal, Kalkunte S; Fan, Shizhi; Jiang, Yaoguang

    2007-11-01

    DeltaNp73alpha, the N-terminal truncated form of p73alpha is a candidate tumor antigen because of its selective expression in many human cancers and lack of expression in normal tissues. Therefore, we investigated the effects of dendritic cells infected with adenoviral DeltaNp73alpha (DNp73alpha) on breaking immune tolerance and induction of immunity against DNp73alpha-expressing (A549 lung cancer, K-562 leukemia) and non-expressing (MCF-7 breast cancer) cell lines. Immature dendritic cells generated in the presence of interleukin-4 and granulocyte/macrophage colony-stimulating factor from a human umbilical cord blood were transduced with a recombinant adenoviral (Ad) vector encoding full-length human DNp73alpha cDNA (Ad-DNp73alpha) or a control vector Ad-EGFP, using the centrifugal force method. Induction of DNp73alpha-specific CTL response was evaluated by a cytotoxic assay against the three human tumor cell lines with different DNp73alpha expression levels. The viability and activation status of transduced dendritic cells were assessed by flow cytometry. The dendrocyte/Ad-DNp73alpha-activated cytotoxic T lymphocytes showed significantly higher cytotoxicity against the cell lines A549/DNp73alpha, K-562 that expressed DNp73alpha than the DNp73alpha-null MCF-7 cells. The DCs/Ad-DNp73alpha showed higher survival rates than the DCs/Ad-EGFP or untransduced DCs, presumably due to the inhibition of cell death. These findings, with potential applications for immunotherapy, demonstrate that dendrocytes transduced with Ad-DNp73alpha can induce specific and sustained T cell responses against tumors expressing this variant p53-related gene. PMID:17914557

  20. The Arg279Glu Substitution in the Adenovirus Type 11p (Ad11p) Fiber Knob Abolishes EDTA-Resistant Binding to A549 and CHO-CD46 Cells, Converting the Phenotype to That of Ad7p

    PubMed Central

    Gustafsson, Dan J.; Segerman, Anna; Lindman, Kristina; Mei, Ya-Fang; Wadell, Göran

    2006-01-01

    The major determinant of adenovirus (Ad) attachment to host cells is the C-terminal knob domain of the trimeric fiber protein. Ad type 11p (Ad11p; species B2) in contrast to Ad7p (species B1) utilizes at least two different cellular attachment receptors, designated sBAR (species B adenovirus receptor) and sB2AR (species B2 adenovirus receptor). CD46 has recently been identified as one of the Ad11p attachment receptors. However, CD46 did not seem to constitute a functional receptor for Ad7p. Although Ad7p shares high knob amino acid identity with Ad11p, Ad7p is deficient in binding to both sB2AR and CD46. To determine what regions of the Ad11p fiber knob are necessary for sB2AR-CD46 interaction, we constructed recombinant fiber knobs (rFK) with Ad11p/Ad7p chimeras and Ad11p sequences having a single amino acid substitution from Ad7p. Binding of the constructs to A549 and CHO-CD46 BC1 isoform-expressing cells was analyzed by flow cytometry. Our results indicate that an Arg279Glu substitution is sufficient to convert the Ad11p receptor-interaction phenotype to that of Ad7p and abolish sB2AR and CD46 interaction. Also a Glu279Arg substitution in Ad7p rFKs increases CD46 binding. Thus, the lateral HI loop of the Ad11p fiber knob seems to be the key determinant for Ad11p sB2AR-CD46 interaction. This result is comparable to another non-coxsackie-adenovirus receptor binding Ad (Ad37p), where substitution of one amino acid abolishes virus-cell interaction. In conjunction with previous results, our findings also strongly suggest that sB2AR is equivalent to CD46. PMID:16439545

  1. [Two recombinant adenovirus vaccine candidates containing neuraminidase Gene of H5N1 influenza virus (A/Anhui/1/2005) elicited effective cell-mediated immunity in mice].

    PubMed

    Ma, Jing; Zhang, Xiao-Guang; Chen, Hong; Li, Kui-Biao; Zhang, Xiao-Mei; Zhang, Ke; Yang, Liang; Xu, Hong; Shu, Yue-Long; Tan, Wen-Jie; Zeng, Yi

    2009-09-01

    The aim of this study is to develop the recombinant adenovirus vaccine (rAdV) candidates containing neuraminidase (NA) gene of H5N1 influenza virus and test in BALB/c mice the effect of cell-mediated immunity. In this study, two kind of NA gene (WtNA gene, the wild type; Mod. NA gene, the codon-modified type) derived from H5N1 influenza virus (A/Anhui/1/2005) were cloned and inserted respectively into plasmid of adenovirus vector, then the rAdV vaccines candidates (rAdV-WtNA and rAdV-Mod. NA) were developed and purified, followed by immunization intramuscularly (10(9) TCID50 per dose, double injection at 0 and 4th week) in BALB/c mice, the effect of cell-mediated immunity were analysed at 5th week. Results indicated that: (i) NA protein expression was detected in two rAdV vaccines candidates by Western blotting; (ii) the rAdV-Mod. NA vaccine could elicit more robust NA specific cell-mediated immunity in mice than that of rAdV-WtNA vaccine (P = 0. 016) by IFN-gamma ELIspot assay. These findings suggested rAdV-Mod. NA vaccine was a potential vaccine candidate against H5N1 influenza and worthy of further investigation. PMID:19954107

  2. SAMHD1 restricts HIV-1 infection in resting CD4+ T cells

    PubMed Central

    Baldauf, Hanna-Mari; Pan, Xiaoyu; Erikson, Elina; Schmidt, Sarah; Daddacha, Waaqo; Burggraf, Manja; Schenkova, Kristina; Ambiel, Ina; Wabnitz, Guido; Gramberg, Thomas; Panitz, Sylvia; Flory, Egbert; Landau, Nathaniel R; Sertel, Serkan; Rutsch, Frank; Lasitschka, Felix; Kim, Baek; König, Renate; Fackler, Oliver T; Keppler, Oliver T

    2013-01-01

    Unlike activated CD4+ T cells, resting CD4+ T cells are highly resistant to productive HIV-1 infection1–8. Early after HIV-1 entry, a major block limits reverse transcription of incoming viral genomes. Here we show that the deoxynucleoside triphosphate triphosphohydrolase SAMHD1 prevents reverse transcription of HIV-1 RNA in resting CD4+ T cells. SAMHD1 is abundantly expressed in resting CD4+ T cells circulating in peripheral blood and residing in lymphoid organs. The early restriction to infection in unstimulated CD4+ T cells is overcome by HIV-1 or HIV-2 virions into which viral Vpx is artificially or naturally packaged, respectively, or by addition of exogenous deoxynucleosides. Vpx-mediated proteasomal degradation of SAMHD1 and elevation of intracellular deoxynucleotide pools precede successful infection by Vpx-carrying HIV. Resting CD4+ T cells from healthy donors following SAMHD1 silencing or from a patient with Aicardi-Goutières syndrome homozygous for a nonsense mutation in SAMHD1 were permissive for HIV-1 infection. Thus, SAMHD1 imposes an effective restriction to HIV-1 infection in the large pool of noncycling CD4+ T cells in vivo. Bypassing SAMHD1 was insufficient for the release of viral progeny, implicating other barriers at later stages of HIV replication. Together, these findings may unveil new ways to interfere with the immune evasion and T cell immunopathology of pandemic HIV-1. PMID:22972397

  3. CD1d-restricted antigen presentation by Vγ9Vδ2-T cells requires trogocytosis.

    PubMed

    Schneiders, Famke L; Prodöhl, Jan; Ruben, Jurjen M; O'Toole, Tom; Scheper, Rik J; Bonneville, Marc; Scotet, Emmanuel; Verheul, Henk M W; de Gruijl, Tanja D; van der Vliet, Hans J

    2014-08-01

    CD1d-restricted invariant natural killer T cells (iNKT) constitute an important immunoregulatory T-cell subset that can be activated by the synthetic glycolipid α-galactosylceramide (α-GalCer) and play a dominant role in antitumor immunity. Clinical trials with α-GalCer-pulsed monocyte-derived dendritic cells (moDC) have shown anecdotal antitumor activity in advanced cancer. It was reported that phosphoantigen (pAg)-activated Vγ9Vδ2-T cells can acquire characteristics of professional antigen-presenting cells (APC). Considering the clinical immunotherapeutic applications, Vγ9Vδ2-T APC can offer important advantages over moDC, potentially constituting an attractive novel APC platform. Here, we demonstrate that Vγ9Vδ2-T APC can present antigens to iNKT. However, this does not result from de novo synthesis of CD1d by Vγ9Vδ2-T, but critically depends on trogocytosis of CD1d-containing membrane fragments from pAg-expressing cells. CD1d-expressing Vγ9Vδ2-T cells were able to activate iNKT in a CD1d-restricted and α-GalCer-dependent fashion. Although α-GalCer-loaded moDC outperformed Vγ9Vδ2-T APC on a per cell basis, Vγ9Vδ2-T APC possess unique features with respect to clinical immunotherapeutic application that make them an interesting platform for consideration in future clinical trials. PMID:24934445

  4. EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene

    PubMed Central

    Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine

    2013-01-01

    We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032

  5. Rejection of cardiac allografts by T cells expressing a restricted repertoire of T-cell receptor V beta genes.

    PubMed Central

    Shirwan, H; Barwari, L; Cramer, D V

    1997-01-01

    We have recently shown that T cells infiltrating cardiac allografts early in graft rejection use a limited T-cell receptor (TCR) V beta repertoire. In this study we tested whether this limited repertoire of V beta genes is important for graft rejection. A cell line, AL2-L3, was established from LEW lymphocytes infiltrating ACI heart allografts 2 days after transplantation. This cell line is composed of CD4+ T cells that primarily recognize the class II RTI.B major histocompatibility complex (MHC) molecule expressed by the donor graft. This cell line precipitated acute rejection of donor hearts with a median survival time (MST) of 10.5 days following adoptive transfer to sublethally irradiated LEW recipients. This rate of graft rejection was significantly (P < 0.0007) accelerated when compared with a MST of 60 days for allografts in irradiated control recipients. The AL2-L3-mediated acceleration of graft rejection was donor specific as WF third-party heart allografts were rejected with a delayed tempo (MST = 28.5 days). The V beta repertoire of this cell line was primarily restricted to the expression of V beta 4, 15 and 19 genes. The nucleotide sequence analysis of the beta-chain cDNAs from this cell line demonstrated that the restricted use of the V gene repertoire was not shared with the N, D and J regions. A wide variety of CDR3 loops and J beta genes were used in association with selected V beta genes. These data provide evidence for the role a restricted repertoire of V beta genes plays in cardiac allograft rejection in this model. The restricted usage of the V beta repertoire in an early T-cell response to allografts may provide the opportunity to therapeutically disrupt the rejection reaction by targeting selected T-cell populations for elimination at the time of organ transplantation. Images Figure 2 PMID:9176111

  6. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    PubMed

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species. PMID:24166446

  7. A20 restricts wnt signaling in intestinal epithelial cells and suppresses colon carcinogenesis.

    PubMed

    Shao, Ling; Oshima, Shigeru; Duong, Bao; Advincula, Rommel; Barrera, Julio; Malynn, Barbara A; Ma, Averil

    2013-01-01

    Colon carcinogenesis consists of a multistep process during which a series of genetic and epigenetic adaptations occur that lead to malignant transformation. Here, we have studied the role of A20 (also known as TNFAIP3), a ubiquitin-editing enzyme that restricts NFκB and cell death signaling, in intestinal homeostasis and tumorigenesis. We have found that A20 expression is consistently reduced in human colonic adenomas than in normal colonic tissues. To further investigate A20's potential roles in regulating colon carcinogenesis, we have generated mice lacking A20 specifically in intestinal epithelial cells and interbred these with mice harboring a mutation in the adenomatous polyposis coli gene (APC(min)). While A20(FL/FL) villin-Cre mice exhibit uninflamed intestines without polyps, A20(FL/FL) villin-Cre APC(min/+) mice contain far greater numbers and larger colonic polyps than control APC(min) mice. We find that A20 binds to the β-catenin destruction complex and restricts canonical wnt signaling by supporting ubiquitination and degradation of β-catenin in intestinal epithelial cells. Moreover, acute deletion of A20 from intestinal epithelial cells in vivo leads to enhanced expression of the β-catenin dependent genes cyclinD1 and c-myc, known promoters of colon cancer. Taken together, these findings demonstrate new roles for A20 in restricting β-catenin signaling and preventing colon tumorigenesis. PMID:23671587

  8. Melanoma-specific CD4+ T cells recognize nonmutated HLA-DR-restricted tyrosinase epitopes.

    PubMed

    Topalian, S L; Gonzales, M I; Parkhurst, M; Li, Y F; Southwood, S; Sette, A; Rosenberg, S A; Robbins, P F

    1996-05-01

    Tyrosinase was the first melanoma-associated antigen shown to be recognized by CD4+ T cells. In this study, we have identified two HLA-DRB1*0401-restricted peptides recognized by these T cells: Ty 56-70 and Ty 448-462. As with many of the MHC class I-restricted melanoma epitopes, both are nonmutated self peptides that have intermediate and weak MHC binding affinities, respectively. Mutated and truncated versions of these peptides were used to define their MHC binding anchor residues. Anchor residues were then modified to derive peptides with increased MHC binding affinities and T cell stimulatory properties. Ty 56-70 and Ty 448-462 enhance the list of immunogenic HLA-A2-, A24-, and B44-restricted tyrosinase peptides already described. Thus, tyrosinase provides a model for anti-melanoma vaccines in which a single molecule can generate multivalent immunization incorporating both CD4+ and CD8+ T cell responses. PMID:8642306

  9. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses.

    PubMed Central

    Yang, Y; Li, Q; Ertl, H C; Wilson, J M

    1995-01-01

    Recombinant adenoviruses are an attractive vehicle for gene therapy to the lung in the treatment of cystic fibrosis (CF). First-generation viruses deleted of E1a and E1b transduce genes into airway epithelial cells in vivo; however, expression of the transgene is transient and associated with substantial inflammatory responses, and gene transfer is significantly reduced following a second administration of the virus. In this study, we have used mice deficient in immunological effector functions in combination with adoptive and passive transfer techniques to define antigen-specific cellular and humoral immune responses that underlie these important limitations. Our studies indicate that major histocompatibility complex class I-restricted CD8+ cytotoxic T lymphocytes are activated in response to newly synthesized antigens, leading to destruction of virus infected cells and loss of transgene expression. Major histocompatibility complex class II-associated presentation of exogenous viral antigens activates CD4+ T-helper (TH) cells of the TH1 subset and, to a lesser extent, of the TH2 subset. CD4+ cell-mediated responses are insufficient in the absence of cytotoxic T cells to completely eliminate transgene containing cells; however, they contribute to the formation of neutralizing antibodies in the airway which block subsequent adenovirus-mediated gene transfer. Definition of immunological barriers to gene therapy of cystic fibrosis should facilitate the design of rational strategies to overcome them. PMID:7884845

  10. Partial protection against H5N1 influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein.

    PubMed

    Roy, Soumitra; Kobinger, Gary P; Lin, Jianping; Figueredo, Joanita; Calcedo, Roberto; Kobasa, Darwyn; Wilson, James M

    2007-09-28

    The development of adenoviral vectors based on non-human serotypes such as the chimpanzee adenovirus simian adenovirus 24 (AdC7) may allow for their utilization in populations harboring neutralizing antibodies to common human serotypes. Because adenoviral vectors can be used to generate potent T cell responses, they may be useful as vaccines against pandemic influenza such as may be caused by the H5N1 strains that are currently endemic in avian populations. The influenza nucleoprotein (NP) is known to provide MHC Class I restricted epitopes that are effective in evoking a cytolytic response. Because there is only low sequence variation in NP sequences between different influenza strains, a T cell vaccine may provide heterosubtypic protection against a spectrum of influenza A strains. An AdC7 vector expressing the influenza A/Puerto Rico/8/34 NP was tested for its efficacy in protecting BALB/c mice against two H5N1 strains and compared to a conventional human adenovirus serotype 5 vaccine. The AdC7 NP vaccine elicited a strong anti-NP T cell response. When tested in a mouse challenge model, there was improved survival following challenge with two strains of H5N1 that have caused human outbreaks, Vietnam/1203/04 and Hong Kong/483/97, although the improved survival reached statistical significance only with the strain from Vietnam. PMID:17728024

  11. MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis

    PubMed Central

    Gold, Marielle C.; Napier, Ruth J.; Lewinsohn, David M.

    2014-01-01

    Summary The intracellular pathogen Mycobacterium tuberculosis (Mtb) and its human host have long co-evolved. Although the host cellular immune response is critical to the control of the bacterium information on the specific contribution of different immune cell subsets in humans is incomplete. Mucosal associated invariant T (MAIT) cells are a prevalent and unique T-cell population in humans with the capacity to detect intracellular infection with bacteria including Mtb. MAIT cells detect bacterially derived metabolites presented by the evolutionarily conserved major histocompatibility complex-like molecule MR1. Here we review recent advances in our understanding of this T-cell subset and address the potential roles for MR1-restricted T cells in the control, diagnosis, and therapy of tuberculosis. PMID:25703558

  12. In vitro anti-tumor immune response induced by dendritic cells transfected with EBV-LMP2 recombinant adenovirus

    SciTech Connect

    Pan Ying; Zhang Jinkun . E-mail: jkzhang126@126.com; Zhou Ling; Zuo Jianmin; Zeng Yi

    2006-09-01

    Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) is a high-incidence tumor in southern China. Latent membrane proteins 2 (LMP2) is a subdominant antigen of EBV. The present study was to develop a dendritic cells (DCs)-based cancer vaccine (rAd-LMP2-DC) and to study its biological characteristics and its immune functions. Our results showed that LMP2 gene transfer did not alter the typical morphology of mature DC, and the representative phenotypes of mature DC (CD80, CD83, and CD86) were highly expressed in rAd-LMP2-DCs. The expression of LMP2 in rAd-LPM2-DCs was about 84.54%, which suggested efficient gene transfer. Transfected DCs markedly increased antigen-specific T-cell proliferation. The specific cytotoxicity against NPC cell was significantly higher than that in controls (p < 0.05), and enhanced with increased stimulations by transfected DCs. In addition, phenotypic analysis demonstrated that the LMP2-specific CTLs consisted of both CD4{sup +} and CD8{sup +} T cells. These results showed that development of DC-based vaccine by transfection with malignancy-associated virus antigens could elicit potent CTL response and provide a potential strategy of immunotherapy for EBV-associated NPC.

  13. TRIM19/PML Restricts HIV Infection in a Cell Type-Dependent Manner

    PubMed Central

    Kahle, Tanja; Volkmann, Bianca; Eissmann, Kristin; Herrmann, Alexandra; Schmitt, Sven; Wittmann, Sabine; Merkel, Laura; Reuter, Nina; Stamminger, Thomas; Gramberg, Thomas

    2015-01-01

    The promyelocytic leukemia protein (PML) is the main structural component of the nuclear matrix structures termed nuclear domain 10 (ND10) or PML nuclear bodies (PML-NBs). PML and ND10 structures have been shown to mediate an intrinsic immune response against a variety of different viruses. Their role during retroviral replication, however, is still controversially discussed. In this study, we analyzed the role of PML and the ND10 components Daxx and Sp100 during retroviral replication in different cell types. Using cell lines exhibiting a shRNA-mediated knockdown, we found that PML, but not Daxx or Sp100, inhibits HIV and other retroviruses in a cell type-dependent manner. The PML-mediated block to retroviral infection was active in primary human fibroblasts and murine embryonic fibroblasts but absent from T cells and myeloid cell lines. Quantitative PCR analysis of HIV cDNA in infected cells revealed that PML restricts infection at the level of reverse transcription. Our findings shed light on the controversial role of PML during retroviral infection and show that PML contributes to the intrinsic restriction of retroviral infections in a cell type-dependent manner. PMID:26703718

  14. SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells

    PubMed Central

    2012-01-01

    Background Quiescent CD4+ T lymphocytes are highly refractory to HIV-1 infection due to a block at reverse transcription. Results Examination of SAMHD1 expression in peripheral blood lymphocytes shows that SAMHD1 is expressed in both CD4+ and CD8+ T cells at levels comparable to those found in myeloid cells. Treatment of CD4+ T cells with Virus-Like Particles (VLP) containing Vpx results in the loss of SAMHD1 expression that correlates with an increased permissiveness to HIV-1 infection and accumulation of reverse transcribed viral DNA without promoting transcription from the viral LTR. Importantly, CD4+ T-cells from patients with Aicardi-Goutières Syndrome harboring mutation in the SAMHD1 gene display an increased susceptibility to HIV-1 infection that is not further enhanced by VLP-Vpx-treatment. Conclusion Here, we identified SAMHD1 as the restriction factor preventing efficient viral DNA synthesis in non-cycling resting CD4+ T-cells. These results highlight the crucial role of SAMHD1 in mediating restriction of HIV-1 infection in quiescent CD4+ T-cells and could impact our understanding of HIV-1 mediated CD4+ T-cell depletion and establishment of the viral reservoir, two of the HIV/AIDS hallmarks. PMID:23092122

  15. Attachment Protein G of an African Bat Henipavirus Is Differentially Restricted in Chiropteran and Nonchiropteran Cells

    PubMed Central

    Krüger, Nadine; Hoffmann, Markus; Drexler, Jan Felix; Müller, Marcel Alexander; Corman, Victor Max; Drosten, Christian

    2014-01-01

    ABSTRACT Henipaviruses are associated with pteropodid reservoir hosts. The glycoproteins G and F of an African henipavirus (strain M74) have been reported to induce syncytium formation in kidney cells derived from a Hypsignathus monstrosus bat (HypNi/1.1) but not in nonchiropteran BHK-21 and Vero76 cells. Here, we show that syncytia are also induced in two other pteropodid cell lines from Hypsignathus monstrosus and Eidolon helvum bats upon coexpression of the M74 glycoproteins. The G protein was transported to the surface of transfected chiropteran cells, whereas surface expression in the nonchiropteran cells was detectable only in a fraction of cells. In contrast, the G protein of Nipah virus is transported efficiently to the surface of both chiropteran and nonchiropteran cells. Even in chiropteran cells, M74-G was predominantly expressed in the endoplasmic reticulum (ER), as indicated by colocalization with marker proteins. This result is consistent with the finding that all N-glycans of the M74-G proteins are of the mannose-rich type, as indicated by sensitivity to endo H treatment. These data indicate that the surface transport of M74-G is impaired in available cell culture systems, with larger amounts of viral glycoprotein present on chiropteran cells than on nonchiropteran cells. The restricted surface expression of M74-G explains the reduced fusion activity of the glycoproteins of the African henipavirus. Our results suggest strategies for the isolation of infectious viruses, which is necessary to assess the risk of zoonotic virus transmission. IMPORTANCE Henipaviruses are highly pathogenic zoonotic viruses associated with pteropodid bat hosts. Whether the recently described African bat henipaviruses have a zoonotic potential as high as that of their Asian and Australian relatives is unknown. We show that surface expression of the attachment protein G of an African henipavirus, M74, is restricted in comparison to the G protein expression of the highly

  16. Bovine adenovirus-3 as a vaccine delivery vehicle.

    PubMed

    Ayalew, Lisanework E; Kumar, Pankaj; Gaba, Amit; Makadiya, Niraj; Tikoo, Suresh K

    2015-01-15

    The use of vaccines is an effective and relatively inexpensive means of controlling infectious diseases, which cause heavy economic losses to the livestock industry through animal loss, decreased productivity, treatment expenses and decreased carcass quality. However, some vaccines produced by conventional means are imperfect in many respects including virulence, safety and efficacy. Moreover, there are no vaccines for some animal diseases. Although genetic engineering has provided new ways of producing effective vaccines, the cost of production for veterinary use is a critical criterion for selecting the method of production and delivery of vaccines. The cost effective production and intrinsic ability to enter cells has made adenovirus vectors a highly efficient tool for delivery of vaccine antigens. Moreover, adenoviruses induce both humoral and cellular immune responses to expressed vaccine antigens. Since nonhuman adenoviruses are species specific, the development of animal specific adenoviruses as vaccine delivery vectors is being evaluated. This review summarizes the work related to the development of bovine adenovirus-3 as a vaccine delivery vehicle in animals, particularly cattle. PMID:25498212

  17. Comparison of DNA methylation patterns among mouse cell lines by restriction landmark genomic scanning.

    PubMed Central

    Kawai, J; Hirose, K; Fushiki, S; Hirotsune, S; Ozawa, N; Hara, A; Hayashizaki, Y; Watanabe, S

    1994-01-01

    Restriction landmark genomic scanning (RLGS) is a novel method which enables us to simultaneously visualize a large number of loci as two-dimensional gel spots. By this method, the status of DNA methylation can efficiently be determined by monitoring the appearance or disappearance of spots by using a methylation-sensitive restriction enzyme. In the present study, using RLGS with NotI, we examined, in comparison with a brain RLGS profile, the status of DNA methylation of more than 900 loci among three types of mouse cell lines: the embryonal carcinoma cell line P19, the stable mesenchymal cell line 10T1/2, and our established neuroepithelial (EM) cell lines. We found that the relative numbers of RLGS spots which appeared were less than 3.3% of those surveyed in all cell lines examined. However, 5 to 14% of spots disappeared, the numbers increasing with an increase in the length of the culture period, and many spots were commonly lost in 10T1/2 and in three EM cell lines. Thus, for these cell lines, many more spots disappeared than appeared. However, the numbers of spots disappearing and appearing were well balanced, and the ratio in P19 cells was almost equal to that in liver cells in vivo. These RLGS experimental observations suggested that permanent cell lines such as 10T1/2 are hypermethylated and that our newly established EM cell lines are also becoming heavily methylated at common loci. On the other hand, methylation and demethylation seem to be balanced in P19 cells in a manner similar to that in in vivo liver tissue. Images PMID:7935456

  18. On the logic of restrictive recognition of peptide by the T-cell antigen receptor

    PubMed Central

    2011-01-01

    This essay provides an analysis of the inadequacy of the current view of restrictive recognition of peptide by the T-cell antigen receptor. A competing model is developed, and the experimental evidence for the prevailing model is reinterpreted in the new framework. The goal is to contrast the two models with respect to their consistency, coverage of the data, explanatory power, and predictability. PMID:20931295

  19. Perforin and Gamma Interferon Expression Are Required for CD4+ and CD8+ T-Cell-Dependent Protective Immunity against a Human Parasite, Trypanosoma cruzi, Elicited by Heterologous Plasmid DNA Prime-Recombinant Adenovirus 5 Boost Vaccination▿

    PubMed Central

    de Alencar, Bruna C. G.; Persechini, Pedro M.; Haolla, Filipe A.; de Oliveira, Gabriel; Silverio, Jaline C.; Lannes-Vieira, Joseli; Machado, Alexandre V.; Gazzinelli, Ricardo T.; Bruna-Romero, Oscar; Rodrigues, Mauricio M.

    2009-01-01

    A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4+ and CD8+ T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4+ and CD8+ T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-γ) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8+ T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-γ or IFN-γ/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-γ in the presence of highly cytotoxic T cells. Vaccinated IFN-γ-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-γ in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy. PMID:19651871

  20. Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi, elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination.

    PubMed

    de Alencar, Bruna C G; Persechini, Pedro M; Haolla, Filipe A; de Oliveira, Gabriel; Silverio, Jaline C; Lannes-Vieira, Joseli; Machado, Alexandre V; Gazzinelli, Ricardo T; Bruna-Romero, Oscar; Rodrigues, Mauricio M

    2009-10-01

    A heterologous prime-boost strategy using plasmid DNA, followed by replication-defective recombinant adenovirus 5, is being proposed as a powerful way to elicit CD4(+) and CD8(+) T-cell-mediated protective immunity against intracellular pathogens. We confirmed this concept and furthered existing research by providing evidence that the heterologous prime-boost regimen using the gene encoding amastigote surface protein 2 elicited CD4(+) and CD8(+) T-cell-mediated protective immunity (reduction of acute parasitemia and prolonged survival) against experimental infection with Trypanosoma cruzi. Protective immunity correlated with the presence of in vivo antigen-specific cytotoxic activity prior to challenge. Based on this, our second goal was to determine the outcome of infection after heterologous prime-boost immunization of perforin-deficient mice. These mice were highly susceptible to infection. A detailed analysis of the cell-mediated immune responses in immunized perforin-deficient mice showed an impaired gamma interferon (IFN-gamma) secretion by immune spleen cells upon restimulation in vitro with soluble recombinant antigen. In spite of a normal numeric expansion, specific CD8(+) T cells presented several functional defects detected in vivo (cytotoxicity) and in vitro (simultaneous expression of CD107a/IFN-gamma or IFN-gamma/tumor necrosis factor alpha) paralleled by a decreased expression of CD44 and KLRG-1. Our final goal was to determine the importance of IFN-gamma in the presence of highly cytotoxic T cells. Vaccinated IFN-gamma-deficient mice developed highly cytotoxic cells but failed to develop any protective immunity. Our study thus demonstrated a role for perforin and IFN-gamma in a number of T-cell-mediated effector functions and in the antiparasitic immunity generated by a heterologous plasmid DNA prime-adenovirus boost vaccination strategy. PMID:19651871

  1. Bioinformatic identification and characterization of human endothelial cell-restricted genes

    PubMed Central

    2010-01-01

    Background In this study, we used a systematic bioinformatics analysis approach to elucidate genes that exhibit an endothelial cell (EC) restricted expression pattern, and began to define their regulation, tissue distribution, and potential biological role. Results Using a high throughput microarray platform, a primary set of 1,191 transcripts that are enriched in different primary ECs compared to non-ECs was identified (LCB >3, FDR <2%). Further refinement of this initial subset of transcripts, using published data, yielded 152 transcripts (representing 109 genes) with different degrees of EC-specificity. Several interesting patterns emerged among these genes: some were expressed in all ECs and several were restricted to microvascular ECs. Pathway analysis and gene ontology demonstrated that several of the identified genes are known to be involved in vasculature development, angiogenesis, and endothelial function (P < 0.01). These genes are enriched in cardiovascular diseases, hemorrhage and ischemia gene sets (P < 0.001). Most of the identified genes are ubiquitously expressed in many different tissues. Analysis of the proximal promoter revealed the enrichment of conserved binding sites for 26 different transcription factors and analysis of the untranslated regions suggests that a subset of the EC-restricted genes are targets of 15 microRNAs. While many of the identified genes are known for their regulatory role in ECs, we have also identified several novel EC-restricted genes, the function of which have yet to be fully defined. Conclusion The study provides an initial catalogue of EC-restricted genes most of which are ubiquitously expressed in different endothelial cells. PMID:20509943

  2. Mechanism by which calcium phosphate coprecipitation enhances adenovirus-mediated gene transfer.

    PubMed

    Walters, R; Welsh, M

    1999-11-01

    Delivery of a normal copy of CFTR cDNA to airway epithelia may provide a novel treatment for cystic fibrosis lung disease. Unfortunately, current vectors are inefficient because of limited binding to the apical surface of airway epithelia. We recently reported that incorporation of adenovirus in a calcium phosphate coprecipitate (Ad:CaPi) improves adenovirus-mediated gene transfer to airway epithelia in vitro and in vivo. To understand better how coprecipitation improves gene transfer, we tested the hypothesis that incorporation in a CaPi coprecipitate increases the binding of adenovirus to the apical surface of differentiated human airway epithelia. When a Cy3-labelled adenovirus was delivered in a coprecipitate, binding increased 54-fold as compared with adenovirus alone. Moreover, infection by Ad:CaPi was independent of fiber knob-CAR and penton base-integrin interactions. After binding to the cell surface, the virus must enter the cell in order to infect. We hypothesized that Ad:CaPi may stimulate fluid phase endocytosis, thereby facilitating entry. However, we found that neither adenovirus nor Ad:CaPi coprecipitates altered fluid phase endocytosis. Nevertheless, Ad:CaPi preferentially infected cells showing endocytosis. Thus, CaPi coprecipitation improves adenovirus-mediated gene transfer by coating the epithelial surface with a layer of virus which enters cells during the normal process of endocytosis. PMID:10602380

  3. Capsid-like Arrays in Crystals of Chimpanzee Adenovirus Hexon

    SciTech Connect

    Xue,F.; Burnett, R.

    2006-01-01

    The major coat protein, hexon, from a chimpanzee adenovirus (AdC68) is of interest as a target for vaccine vector modification. AdC68 hexon has been crystallized in the orthorhombic space group C222 with unit cell dimensions of a = 90.8 Angstroms, b = 433.0 Angstroms, c = 159.3 Angstroms, and one trimer (3 x 104,942 Da) in the asymmetric unit. The crystals diffract to 2.1 Angstroms resolution. Initial studies reveal that the molecular arrangement is quite unlike that in hexon crystals for human adenovirus. In the AdC68 crystals, hexon trimers are parallel and pack closely in two-dimensional continuous arrays similar to those formed on electron microscope grids. The AdC68 crystals are the first in which adenovirus hexon has molecular interactions that mimic those used in constructing the viral capsid.

  4. Characterization of a novel adenovirus isolated from a skunk.

    PubMed

    Kozak, Robert A; Ackford, James G; Slaine, Patrick; Li, Aimin; Carman, Susy; Campbell, Doug; Welch, M Katherine; Kropinski, Andrew M; Nagy, Éva

    2015-11-01

    Adenoviruses are a ubiquitous group of viruses that have been found in a wide range of hosts. A novel adenovirus from a skunk suffering from acute hepatitis was isolated and its DNA genome sequenced. The analysis revealed this virus to be a new member of the genus Mastadenovirus, with a genome of 31,848 bp in length containing 30 genes predicted to encode proteins, and with a G+C content of 49.0%. Global genomic organization indicated SkAdV-1 was similar in organization to bat and canine adenoviruses, and phylogenetic comparison suggested these viruses shared a common ancestor. SkAdV-1 demonstrated an ability to replicate in several mammalian liver cell lines suggesting a potential tropism for this virus. PMID:26189043

  5. Why drivers use cell phones and support legislation to restrict this practice.

    PubMed

    Sanbonmatsu, David M; Strayer, David L; Behrends, Arwen A; Ward, Nathan; Watson, Jason M

    2016-07-01

    The use of cell phones while driving is ubiquitous, particularly in countries where the practice is legal. However, surveys indicate that most drivers favor legislation to limit the use of mobile devices during the operation of a vehicle. A study was conducted to understand this inconsistency between what drivers do and what they advocate for others. Participants completed a survey about their driving attitudes, abilities, and behaviors. Following previous research, drivers reported using cell phones for benefits such as getting work done. The hypocrisy of using cell phones while advocating restrictions appears to stem from differences in the perceived safety risks of self vs. others' use of cell phones. Many if not most drivers believe they can drive safely while using mobile devices. However, they lack confidence in others' ability to drive safely while distracted and believe that others' use of cell phones is dangerous. The threat to public safety of others' usage of mobile devices was one of the strongest independent predictors of support for legislation to restrict cell phone use. PMID:27035396

  6. Morphological restriction of human coronary artery endothelial cells substantially impacts global gene expression patterns

    PubMed Central

    Stiles, Jessica M; Pham, Robert; Rowntree, Rebecca K; Amaya, Clarissa; Battiste, James; Boucheron, Laura E; Mitchell, Dianne C; Bryan, Brad A

    2013-01-01

    Alterations in cell shape have been shown to modulate chromatin condensation and cell lineage specification; however, the mechanisms controlling these processes are largely unknown. Because endothelial cells experience cyclic mechanical changes from blood flow during normal physiological processes and disrupted mechanical changes as a result of abnormal blood flow, cell shape deformation and loss of polarization during coronary artery disease, we aimed to determine how morphological restriction affects global gene expression patterns. Human coronary artery endothelial cells (HCAECs) were cultured on spatially defined adhesive micropatterns, forcing them to conform to unique cellular morphologies differing in cellular polarization and angularity. We utilized pattern recognition algorithms and statistical analysis to validate the cytoskeletal pattern reproducibility and uniqueness of each micropattern, and performed microarray analysis on normal-shaped and micropatterned HCAECs to determine how constrained cellular morphology affects gene expression patterns. Analysis of the data revealed that forcing HCAECs to conform to geometrically-defined shapes significantly affects their global transcription patterns compared to nonrestricted shapes. Interestingly, gene expression patterns were altered in response to morphological restriction in general, although they were consistent regardless of the particular shape the cells conformed to. These data suggest that the ability of HCAECs to spread, although not necessarily their particular morphology, dictates their genomics patterns. PMID:23802622

  7. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.

    PubMed

    Sousa, Marcos F Q; Silva, Marta M; Giroux, Daniel; Hashimura, Yas; Wesselschmidt, Robin; Lee, Brian; Roldão, António; Carrondo, Manuel J T; Alves, Paula M; Serra, Margarida

    2015-01-01

    Anchorage-dependent cell cultures are used for the production of viruses, viral vectors, and vaccines, as well as for various cell therapies and tissue engineering applications. Most of these applications currently rely on planar technologies for the generation of biological products. However, as new cell therapy product candidates move from clinical trials towards potential commercialization, planar platforms have proven to be inadequate to meet large-scale manufacturing demand. Therefore, a new scalable platform for culturing anchorage-dependent cells at high cell volumetric concentrations is urgently needed. One promising solution is to grow cells on microcarriers suspended in single-use bioreactors. Toward this goal, a novel bioreactor system utilizing an innovative Vertical-Wheel™ technology was evaluated for its potential to support scalable cell culture process development. Two anchorage-dependent human cell types were used: human lung carcinoma cells (A549 cell line) and human bone marrow-derived mesenchymal stem cells (hMSC). Key hydrodynamic parameters such as power input, mixing time, Kolmogorov length scale, and shear stress were estimated. The performance of Vertical-Wheel bioreactors (PBS-VW) was then evaluated for A549 cell growth and oncolytic adenovirus type 5 production as well as for hMSC expansion. Regarding the first cell model, higher cell growth and number of infectious viruses per cell were achieved when compared with stirred tank (ST) bioreactors. For the hMSC model, although higher percentages of proliferative cells could be reached in the PBS-VW compared with ST bioreactors, no significant differences in the cell volumetric concentration and expansion factor were observed. Noteworthy, the hMSC population generated in the PBS-VW showed a significantly lower percentage of apoptotic cells as well as reduced levels of HLA-DR positive cells. Overall, these results showed that process transfer from ST bioreactor to PBS-VW, and scale-up was

  8. Lipid and glycolipid antigens of CD1d-restricted natural killer T cells

    PubMed Central

    Venkataswamy, Manjunatha M.; Porcelli, Steven A.

    2009-01-01

    In spite of their relatively limited antigen receptor repertoire, CD1d-restricted NKT cells recognize a surprisingly diverse range of lipid and glycolipid antigens. Recent studies of natural and synthetic CD1d presented antigens provide an increasingly detailed picture of how the specific structural features of these lipids and glycolipids influence their ability to be presented to NKT cells and stimulate their diverse immunologic functions. Particularly for synthetic analogues of α-galactosylceramides which have been the focus of intense recent investigation, it is becoming clear that the design of glycolipid antigens with the ability to precisely control the specific immunologic activities of NKT cells is likely to be feasible. The emerging details of the mechanisms underlying the structure-activity relationship of NKT cell antigens will assist greatly in the design and production of immunomodulatory agents for the precise manipulation of NKT cells and the many other components of the immune system that they influence. PMID:19945296

  9. The Arabidopsis EIN2 restricts organ growth by retarding cell expansion

    PubMed Central

    Feng, Guanping; Liu, Gang; Xiao, Jianhua

    2015-01-01

    The growth of plant organ to its characteristic size is a fundamental developmental process, but the mechanism is still poorly understood. Plant hormones play a great role in organ size control by modulating cell division and/or cell expansion. ETHYLENE INSENSITVE 2 (EIN2) was first identified by a genetic screen for ethylene insensitivity and is regarded as a central component of ethylene signaling, but its role in cell growth has not been reported. Here we demonstrate that changed expression of EIN2 led to abnormity of cell expansion by morphological and cytological analyses of EIN2 loss-of-function mutants and the overexpressing transgenic plant. Our findings suggest that EIN2 controls final organ size by restricting cell expansion. PMID:26039475

  10. Interactions of minute virus of mice and adenovirus with host nucleoli.

    PubMed Central

    Walton, T H; Moen, P T; Fox, E; Bodnar, J W

    1989-01-01

    Biochemical evidence is presented that both minute virus of mice (MVM) and adenovirus interact with the nucleolus during lytic growth and that MVM can also target specific changes involving nucleolar components in adenovirus-infected cells. These virus-nucleolus interactions were studied by analysis of intranuclear compartmentalization of both viral DNAs and host nucleolar proteins: (i) MVM in mouse cells (its normal host) replicates its DNA in the host nucleoli; (ii) specific nucleolar proteins as well as small nuclear ribonucleoprotein antigens are recompartmentalized to multiple intranuclear foci in adenovirus-infected HeLa cells; and (iii) when adenovirus helps MVM DNA replication in a nonpermissive human cell (HeLa), the MVM DNA is also recompartmentalized for synthesis. The data suggest mechanisms for disruption of nucleolar function common to oncogenic or oncolytic virus lytic growth and cell transformation. Images PMID:2760977

  11. Effect of melatonin or maternal nutrient restriction on vascularity and cell proliferation in the ovine placenta.

    PubMed

    Eifert, Adam W; Wilson, Matthew E; Vonnahme, Kimberly A; Camacho, Leticia E; Borowicz, Pawel P; Redmer, Dale A; Romero, Sinibaldo; Dorsam, Sheri; Haring, Jodie; Lemley, Caleb O

    2015-02-01

    Previously we reported increased umbilical artery blood flow in ewes supplemented with melatonin from mid- to late-pregnancy, while maternal nutrient restriction decreased uterine artery blood flow. To further unravel these responses, this study was designed to assess placental cell proliferation and vascularity following supplementation with melatonin or maternal nutrient restriction. For the first experiment, 31 primiparous ewes were supplemented with 5mg of melatonin per day (MEL) or no melatonin (CON) and allocated to receive 100% (adequate fed; ADQ) or 60% (restricted; RES) of their nutrient requirements from day 50 to 130 of gestation. To examine melatonin receptor dependent effects, a second experiment was designed utilizing 14 primiparous ewes infused with vehicle, melatonin, or luzindole (melatonin receptor 1 and 2 antagonist) from day 62 to 90 of gestation. For experiment 1, caruncle concentrations of RNA were increased in MEL-RES compared to CON-RES. Caruncle capillary area density and average capillary cross-sectional area were decreased in MEL-RES compared to CON-RES. Cotyledon vascularity was not different across dietary treatments. For experiment 2, placental cellular proliferation and vascularity were not affected by infusion treatment. In summary, melatonin interacted with nutrient restriction to alter caruncle vascularity and RNA concentrations during late pregnancy. Although melatonin receptor antagonism alters feto-placental blood flow, these receptor dependent responses were not observed in placental vascularity. Moreover, placental vascularity measures do not fully explain the alterations in uteroplacental blood flow. PMID:25578503

  12. Restriction of intestinal stem cell expansion and the regenerative response by YAP.

    PubMed

    Barry, Evan R; Morikawa, Teppei; Butler, Brian L; Shrestha, Kriti; de la Rosa, Rosemarie; Yan, Kelley S; Fuchs, Charles S; Magness, Scott T; Smits, Ron; Ogino, Shuji; Kuo, Calvin J; Camargo, Fernando D

    2013-01-01

    A remarkable feature of regenerative processes is their ability to halt proliferation once an organ's structure has been restored. The Wnt signalling pathway is the major driving force for homeostatic self-renewal and regeneration in the mammalian intestine. However, the mechanisms that counterbalance Wnt-driven proliferation are poorly understood. Here we demonstrate in mice and humans that yes-associated protein 1 (YAP; also known as YAP1)--a protein known for its powerful growth-inducing and oncogenic properties--has an unexpected growth-suppressive function, restricting Wnt signals during intestinal regeneration. Transgenic expression of YAP reduces Wnt target gene expression and results in the rapid loss of intestinal crypts. In addition, loss of YAP results in Wnt hypersensitivity during regeneration, leading to hyperplasia, expansion of intestinal stem cells and niche cells, and formation of ectopic crypts and microadenomas. We find that cytoplasmic YAP restricts elevated Wnt signalling independently of the AXIN-APC-GSK-3β complex partly by limiting the activity of dishevelled (DVL). DVL signals in the nucleus of intestinal stem cells, and its forced expression leads to enhanced Wnt signalling in crypts. YAP dampens Wnt signals by restricting DVL nuclear translocation during regenerative growth. Finally, we provide evidence that YAP is silenced in a subset of highly aggressive and undifferentiated human colorectal carcinomas, and that its expression can restrict the growth of colorectal carcinoma xenografts. Collectively, our work describes a novel mechanistic paradigm for how proliferative signals are counterbalanced in regenerating tissues. Additionally, our findings have important implications for the targeting of YAP in human malignancies. PMID:23178811

  13. Polymeric oncolytic adenovirus for cancer gene therapy

    PubMed Central

    Choi, Joung-Woo; Lee, Young Sook; Yun, Chae-Ok; Kim, Sung Wan

    2015-01-01

    Oncolytic adenovirus (Ad) vectors present a promising modality to treat cancer. Many clinical trials have been done with either naked oncolytic Ad or combination with chemotherapies. However, the systemic injection of oncolytic Ad in clinical applications is restricted due to significant liver toxicity and immunogenicity. To overcome these issues, Ad has been engineered physically or chemically with numerous polymers for shielding the Ad surface, accomplishing extended blood circulation time and reduced immunogenicity as well as hepatotoxicity. In this review, we describe and classify the characteristics of polymer modified oncolytic Ad following each strategy for cancer treatment. Furthermore, this review concludes with the highlights of various polymer-coated Ads and their prospects, and directions for future research. PMID:26453806

  14. A Dual-Modality Herpes Simplex Virus 2 Vaccine for Preventing Genital Herpes by Using Glycoprotein C and D Subunit Antigens To Induce Potent Antibody Responses and Adenovirus Vectors Containing Capsid and Tegument Proteins as T Cell Immunogens

    PubMed Central

    Mahairas, Gregory G.; Shaw, Carolyn E.; Huang, Meei-Li; Koelle, David M.; Posavad, Christine; Corey, Lawrence; Friedman, Harvey M.

    2015-01-01

    ABSTRACT We evaluated a genital herpes prophylactic vaccine containing herpes simplex virus 2 (HSV-2) glycoproteins C (gC2) and D (gD2) to stimulate humoral immunity and UL19 (capsid protein VP5) and UL47 (tegument protein VP13/14) as T cell immunogens. The HSV-2 gC2 and gD2 proteins were expressed in baculovirus, while the UL19 and UL47 genes were expressed from replication-defective adenovirus vectors. Adenovirus vectors containing UL19 and UL47 stimulated human and murine CD4+ and CD8+ T cell responses. Guinea pigs were either (i) mock immunized; (ii) immunized with gC2/gD2, with CpG and alum as adjuvants; (iii) immunized with the UL19/UL47 adenovirus vectors; or (iv) immunized with the combination of gC2/gD2-CpG/alum and the UL19/UL47 adenovirus vectors. Immunization with gC2/gD2 produced potent neutralizing antibodies, while UL19 and UL47 also stimulated antibody responses. After intravaginal HSV-2 challenge, the mock and UL19/UL47 adenovirus groups developed severe acute disease, while 2/8 animals in the gC2/gD2-only group and none in the combined group developed acute disease. No animals in the gC2/gD2 or combined group developed recurrent disease; however, 5/8 animals in each group had subclinical shedding of HSV-2 DNA, on 15/168 days for the gC2/gD2 group and 13/168 days for the combined group. Lumbosacral dorsal root ganglia were positive for HSV-2 DNA and latency-associated transcripts for 5/8 animals in the gC2/gD2 group and 2/8 animals in the combined group. None of the differences comparing the gC2/gD2-only group and the combined group were statistically significant. Therefore, adding the T cell immunogens UL19 and UL47 to the gC2/gD2 vaccine did not significantly reduce genital disease and vaginal HSV-2 DNA shedding compared with the excellent protection provided by gC2/gD2 in the guinea pig model. IMPORTANCE HSV-2 infection is a common cause of genital ulcer disease and a significant public health concern. Genital herpes increases the risk of

  15. CD252 regulates mast cell mediated, CD1d-restricted NKT-cell activation in mice.

    PubMed

    Gonzalez Roldan, Nestor; Orinska, Zane; Ewers, Hanno; Bulfone-Paus, Silvia

    2016-02-01

    The interaction between tissue-resident mast cells (MCs) and recruited immune cells contributes to tissue immunosurveillance. However, the cells, mechanisms, and receptors involved in this crosstalk remain ill defined. Invariant natural killer T (iNKT) cells are CD1d-restricted innate lymphocytes that recognize glycolipid antigens and have emerged as critical players in immunity. Here, we show that primary mouse peritoneal MCs express surface CD1d, which is upregulated in vivo following administration of alpha-galactosylceramide. In contrast, in BM-derived MCs CD1d was found to be stored intracellularly and to relocate at the cell surface upon IgE-mediated degranulation. Activated BM-derived MCs expressing surface CD1d and loaded with alpha-galactosylceramide were found to induce iNKT-cell proliferation and the release of IFN-γ, IL-13, and IL-4 in a CD1d-restricted manner. Moreover, the costimulatory molecules CD48, CD137L, CD252, CD274, and CD275 affected MC-induced IFN-γ release and iNKT-cell proliferation. Interestingly, among the costimulatory molecules, CD48 and CD252 exhibited a distinctly regulatory activity on iNKT-cell release of both IFN-γ and IL-13. In conclusion, we demonstrate that the crosstalk between MCs and iNKT cells may regulate inflammatory immune responses. PMID:26564814

  16. Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex E

    DOE PAGESBeta

    Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.; Hughes, Colette M.; Hammond, Katherine B.; Ventura, Abigail B.; Reed, Jason S.; Gilbride, Roxanne M.; Ainslie, Emily; Morrow, David W.; et al

    2016-02-12

    Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β+ T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides with fewmore » restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8+ T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less

  17. Broadly targeted CD8⁺ T cell responses restricted by major histocompatibility complex E.

    PubMed

    Hansen, Scott G; Wu, Helen L; Burwitz, Benjamin J; Hughes, Colette M; Hammond, Katherine B; Ventura, Abigail B; Reed, Jason S; Gilbride, Roxanne M; Ainslie, Emily; Morrow, David W; Ford, Julia C; Selseth, Andrea N; Pathak, Reesab; Malouli, Daniel; Legasse, Alfred W; Axthelm, Michael K; Nelson, Jay A; Gillespie, Geraldine M; Walters, Lucy C; Brackenridge, Simon; Sharpe, Hannah R; López, César A; Früh, Klaus; Korber, Bette T; McMichael, Andrew J; Gnanakaran, S; Sacha, Jonah B; Picker, Louis J

    2016-02-12

    Major histocompatibility complex E (MHC-E) is a highly conserved, ubiquitously expressed, nonclassical MHC class Ib molecule with limited polymorphism that is primarily involved in the regulation of natural killer (NK) cells. We found that vaccinating rhesus macaques with rhesus cytomegalovirus vectors in which genes Rh157.5 and Rh157.4 are deleted results in MHC-E-restricted presentation of highly varied peptide epitopes to CD8αβ(+) T cells, at ~4 distinct epitopes per 100 amino acids in all tested antigens. Computational structural analysis revealed that MHC-E provides heterogeneous chemical environments for diverse side-chain interactions within a stable, open binding groove. Because MHC-E is up-regulated to evade NK cell activity in cells infected with HIV, simian immunodeficiency virus, and other persistent viruses, MHC-E-restricted CD8(+) T cell responses have the potential to exploit pathogen immune-evasion adaptations, a capability that might endow these unconventional responses with superior efficacy. PMID:26797147

  18. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells

    PubMed Central

    Fischer, Karsten; Scotet, Emmanuel; Niemeyer, Marcus; Koebernick, Heidrun; Zerrahn, Jens; Maillet, Sophie; Hurwitz, Robert; Kursar, Mischo; Bonneville, Marc; Kaufmann, Stefan H. E.; Schaible, Ulrich E.

    2004-01-01

    A group of T cells recognizes glycolipids presented by molecules of the CD1 family. The CD1d-restricted natural killer T cells (NKT cells) are primarily considered to be self-reactive. By employing CD1d-binding and T cell assays, the following structural parameters for presentation by CD1d were defined for a number of mycobacterial and mammalian lipids: two acyl chains facilitated binding, and a polar head group was essential for T cell recognition. Of the mycobacterial lipids tested, only a phosphatidylinositol mannoside (PIM) fulfilled the requirements for CD1d binding and NKT cell stimulation. This PIM activated human and murine NKT cells via CD1d, thereby triggering antigen-specific IFN-γ production and cell-mediated cytotoxicity, and PIM-loaded CD1d tetramers identified a subpopulation of murine and human NKT cells. This phospholipid, therefore, represents a mycobacterial antigen recognized by T cells in the context of CD1d. PMID:15243159

  19. SUPPRESSION OF VIRAL REPLICATION BY GUANIDINE: A COMPARISON OF HUMAN ADENOVIRUSES AND ENTEROVIRUSES (JOURNAL VERSION)

    EPA Science Inventory

    A comparison was made of the relative sensitivities of laboratory strain human adenoviruses and enteroviruses, and recently isolated human enteroviruses, to the presence of guanidine hydrochloride in cell culture media. The concentration of guanidine hydrochloride used was 100 mi...

  20. Characterization of HLA-DR-restricted T-cell epitopes derived from human proteinase 3.

    PubMed

    Piesche, Matthias; Hildebrandt, York; Chapuy, Björn; Wulf, Gerald G; Trümper, Lorenz; Schroers, Roland

    2009-07-23

    Human proteinase 3 (PRTN3) is a leukemia-associated antigen specifically recognized by CD8+ cytotoxic T-lymphocytes (CTL). PRTN3 also has been shown to elicit both antibody responses and T-cell proliferation in patients with Wegener's granulomatosis. In order to improve current vaccines that aim to stimulate CTL without inducing harmful autoimmune disease, it is necessary to study the role of PRTN3-specific CD4+ T-helper (TH) and CD4+ T-regulatory (Treg) cells. Since both TH and Treg cells recognize antigens in the context of HLA-class-II-molecules, identification of HLA-class-II-associated peptide-epitopes from self-antigens such as PRTN3 is required. Here, we analyzed T-cell responses against proteinase 3 using synthetic peptides predicted to serve as HLA-DR-restricted epitopes. We first screened a panel of ten epitope peptide candidates selected with the TEPITOPE program and found that nine out of ten peptides induced PRTN3 peptide-specific proliferation of T-cells with precursor frequencies of 0-1.1 x 10(-6). For one peptide-epitope, PRTN3(235), T-cell-clones were demonstrated to be capable of recognizing naturally processed protein antigen in a HLA-DR-restricted fashion. PRTN3(235)-specific T-cells could be stimulated from the blood of healthy individuals with multiple HLA-DR-genotypes. In summary, the identified PRTN3(235)-epitope can be used to study the role of CD4+ TH- and Treg-cells in immune responses against PRTN3 in leukemia patients and patients with Wegener's disease. PMID:19446593

  1. Ribosome association contributes to restricting mRNAs to the cell body of hippocampal neurons.

    PubMed

    Lu, Z; McLaren, R S; Winters, C A; Ralston, E

    1998-12-01

    In neurons, mRNAs are differentially sorted to axons, dendrites, and the cell body. Recently, regions of certain mRNAs have been identified that target those mRNAs for translocation to the processes. However, the mechanism by which many, if not most mRNAs are retained in the cell body is not understood. Total inhibition of translation, by puromycin or cycloheximide, results in the mislocalization of cell body mRNAs to dendrites. We have examined the effect of translational inhibitors on the localization of ferritin mRNA, the translation of which can also be inhibited specifically by reducing iron levels. Using nonisotopic in situ hybridization, ferritin mRNA is found restricted to the cell body of cultured rat hippocampal neurons. Following treatment with either puromycin or cycloheximide, it migrates into dendrites. Control experiments reveal that the drugs affect neither the viability of the neuronal cultures, nor the steady-state level of ferritin mRNA. When transcription and protein synthesis are inhibited simultaneously, ferritin mRNA is found in the dendrites of puromycin, but not of cycloheximide-treated neurons. However, the localization of ferritin mRNA is unaffected by changes in iron concentration that regulate its translation rate specifically. We propose a model whereby cell body-restricted mRNAs are maintained in that location by association with ribosomes and with another cell component, which traps mRNAs when they are freed of ribosome association. The release of all mRNA species, as happens after total protein synthesis inhibition, floods the system and allows cell body mRNAs to diffuse into dendrites. In contrast, the partial release of the single ferritin mRNA species does not saturate the trapping system and the mRNA is retained in the cell body. PMID:9888989

  2. S6K1 controls pancreatic β cell size independently of intrauterine growth restriction.

    PubMed

    Um, Sung Hee; Sticker-Jantscheff, Melanie; Chau, Gia Cac; Vintersten, Kristina; Mueller, Matthias; Gangloff, Yann-Gael; Adams, Ralf H; Spetz, Jean-Francois; Elghazi, Lynda; Pfluger, Paul T; Pende, Mario; Bernal-Mizrachi, Ernesto; Tauler, Albert; Tschöp, Matthias H; Thomas, George; Kozma, Sara C

    2015-07-01

    Type 2 diabetes mellitus (T2DM) is a worldwide heath problem that is characterized by insulin resistance and the eventual loss of β cell function. As recent studies have shown that loss of ribosomal protein (RP) S6 kinase 1 (S6K1) increases systemic insulin sensitivity, S6K1 inhibitors are being pursued as potential agents for improving insulin resistance. Here we found that S6K1 deficiency in mice also leads to decreased β cell growth, intrauterine growth restriction (IUGR), and impaired placental development. IUGR is a common complication of human pregnancy that limits the supply of oxygen and nutrients to the developing fetus, leading to diminished embryonic β cell growth and the onset of T2DM later in life. However, restoration of placental development and the rescue of IUGR by tetraploid embryo complementation did not restore β cell size or insulin levels in S6K1-/- embryos, suggesting that loss of S6K1 leads to an intrinsic β cell lesion. Consistent with this hypothesis, reexpression of S6K1 in β cells of S6K1-/- mice restored embryonic β cell size, insulin levels, glucose tolerance, and RPS6 phosphorylation, without rescuing IUGR. Together, these data suggest that a nutrient-mediated reduction in intrinsic β cell S6K1 signaling, rather than IUGR, during fetal development may underlie reduced β cell growth and eventual development of T2DM later in life. PMID:26075820

  3. S6K1 controls pancreatic β cell size independently of intrauterine growth restriction

    PubMed Central

    Um, Sung Hee; Sticker-Jantscheff, Melanie; Chau, Gia Cac; Vintersten, Kristina; Mueller, Matthias; Gangloff, Yann-Gael; Adams, Ralf H.; Spetz, Jean-Francois; Elghazi, Lynda; Pfluger, Paul T.; Pende, Mario; Bernal-Mizrachi, Ernesto; Tauler, Albert; Tschöp, Matthias H.; Thomas, George; Kozma, Sara C.

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is a worldwide heath problem that is characterized by insulin resistance and the eventual loss of β cell function. As recent studies have shown that loss of ribosomal protein (RP) S6 kinase 1 (S6K1) increases systemic insulin sensitivity, S6K1 inhibitors are being pursued as potential agents for improving insulin resistance. Here we found that S6K1 deficiency in mice also leads to decreased β cell growth, intrauterine growth restriction (IUGR), and impaired placental development. IUGR is a common complication of human pregnancy that limits the supply of oxygen and nutrients to the developing fetus, leading to diminished embryonic β cell growth and the onset of T2DM later in life. However, restoration of placental development and the rescue of IUGR by tetraploid embryo complementation did not restore β cell size or insulin levels in S6K1–/– embryos, suggesting that loss of S6K1 leads to an intrinsic β cell lesion. Consistent with this hypothesis, reexpression of S6K1 in β cells of S6K1–/– mice restored embryonic β cell size, insulin levels, glucose tolerance, and RPS6 phosphorylation, without rescuing IUGR. Together, these data suggest that a nutrient-mediated reduction in intrinsic β cell S6K1 signaling, rather than IUGR, during fetal development may underlie reduced β cell growth and eventual development of T2DM later in life. PMID:26075820

  4. Restriction of mast cell proliferation through hyaluronan synthesis by co-cultured fibroblasts.

    PubMed

    Takano, Hirotsugu; Furuta, Kazuyuki; Yamashita, Kazuhito; Sakanaka, Mariko; Itano, Naoki; Gohda, Eiichi; Nakayama, Kazuhisa; Kimata, Koji; Sugimoto, Yukihiko; Ichikawa, Atsushi; Tanaka, Satoshi

    2012-01-01

    Appropriate culture models for tissue mast cells are required to determine how they are involved in regulation of local immune responses. We previously established a culture model for cutaneous mast cells, in which bone marrow-derived immature mast cells were co-cultured with Swiss 3T3 fibroblasts in the presence of stem cell factor. In this study, we focused on the roles of hyaluronan, which is produced by the feeder fibroblasts and forms the extracellular matrix during the co-culture period. Hyaluronan synthesis was found to be mediated by hyaluronan synthase 2 (HAS2) expressed in Swiss 3T3 cells. A decreases in the amount of hyaluronan, which was achieved by retroviral expression of short hairpin RNA for Has2 or by addition of hyaluronidase, significantly enhanced the proliferation of the cultured mast cells without any obvious effects on their maturation. Although we previously demonstrated that CD44 is required for proliferation of cutaneous mast cells, the deficiency of hyaluronan did not affect the proliferation of the cultured mast cells that lack CD44. These findings suggest that the extracellular matrix containing hyaluronan may have a potential to restrict proliferation of cutaneous mast cells in a CD44-independent manner. PMID:22382329

  5. Expression of hermes gene is restricted to the ganglion cells in the retina.

    PubMed

    Piri, Natik; Kwong, Jacky M K; Song, Min; Caprioli, Joseph

    2006-09-11

    The RNA binding protein with multiple splicing 2, or hermes, is a member of the RRM (RNA recognition motif) family of RNA-binding proteins. In this study, we show that the hermes gene is expressed in the rat retina, and its expression is restricted to the ganglion cell layer. Double in situ hybridization with riboprobes corresponding to the hermes gene and Thy-1, the RGC marker in the retina, showed that the majority of the Thy-1 positive cells in the ganglion cell layer were also hermes positive. This was also shown by co-localization of the hermes in situ hybridization signals with the retrogradely labeled RGCs. Our observations suggest that hermes is expressed in the majority, if not all, of RGCs and is not restricted to only certain RGC types. Hermes in situ hybridization signals were not detected in the retinal sections of optic nerve transected animals, which are characterized by rapid and specific RGC degeneration. The dramatic reduction of the hermes mRNA level in axotomized retinas was also observed by semi-quantitative RT-PCR. The specific expression of hermes in retinal ganglion cells qualifies this gene as a potential RGC marker in the retina. Outside the retina, hermes is expressed in the heart, liver, and kidney, and to a lesser degree in the cerebellum, cortex, lung, and small intestine. PMID:16870336

  6. Restricted maternal nutrition alters myogenic regulatory factor expression in satellite cells of ovine offspring.

    PubMed

    Raja, J S; Hoffman, M L; Govoni, K E; Zinn, S A; Reed, S A

    2016-07-01

    Poor maternal nutrition inhibits muscle development and postnatal muscle growth. Satellite cells are myogenic precursor cells that contribute to postnatal muscle growth, and their activity can be evaluated by the expression of several transcription factors. Paired-box (Pax)7 is expressed in quiescent and active satellite cells. MyoD is expressed in activated and proliferating satellite cells and myogenin is expressed in terminally differentiating cells. Disruption in the expression pattern or timing of expression of myogenic regulatory factors negatively affects muscle development and growth. We hypothesized that poor maternal nutrition during gestation would alter the in vitro temporal expression of MyoD and myogenin in satellite cells from offspring at birth and 3 months of age. Ewes were fed 100% or 60% of NRC requirements from day 31±1.3 of gestation. Lambs from control-fed (CON) or restricted-fed (RES) ewes were euthanized within 24 h of birth (birth; n=5) or were fed a control diet until 3 months of age (n=5). Satellite cells isolated from the semitendinosus muscle were used for gene expression analysis or cultured for 24, 48 or 72 h and immunostained for Pax7, MyoD or myogenin. Fusion index was calculated from a subset of cells allowed to differentiate. Compared with CON, temporal expression of MyoD and myogenin was altered in cultured satellite cells isolated from RES lambs at birth. The percent of cells expressing MyoD was greater in RES than CON (P=0.03) after 24 h in culture. After 48 h of culture, there was a greater percent of cells expressing myogenin in RES compared with CON (P0.05). In satellite cells from RES lambs at 3 months of age, the percent of cells expressing MyoD and myogenin were greater than CON after 72 h in culture (P<0.05). Fusion index was reduced in RES lambs at 3 months of age compared with CON (P<0.001). Restricted nutrition during gestation alters the temporal expression of myogenic regulatory factors in satellite cells of the

  7. The effects of physiological adaptations to calorie restriction on global cell proliferation rates.

    PubMed

    Bruss, Matthew D; Thompson, Airlia C S; Aggarwal, Ishita; Khambatta, Cyrus F; Hellerstein, Marc K

    2011-04-01

    Calorie restriction (CR) reduces the rate of cell proliferation in mitotic tissues. It has been suggested that this reduction in cell proliferation may mediate CR-induced increases in longevity. However, the mechanisms that lead to CR-induced reductions in cell proliferation rates remain unclear. To evaluate the CR-induced physiological adaptations that may mediate reductions in cell proliferation rates, we altered housing temperature and access to voluntary running wheels to determine the effects of food intake, energy expenditure, percent body fat, and body weight on proliferation rates of keratinocytes, liver cells, mammary epithelial cells, and splenic T-cells in C57BL/6 mice. We found that ∼20% CR led to a reduction in cell proliferation rates in all cell types. However, lower cell proliferation rates were not observed with reductions in 1) food intake and energy expenditure in female mice housed at 27°C, 2) percent body fat in female mice provided running wheels, or 3) body weight in male mice provided running wheels compared with ad libitum-fed controls. In contrast, reductions in insulin-like growth factor I were associated with decreased cell proliferation rates. Taken together, these data suggest that CR-induced reductions in food intake, energy expenditure, percent body fat, and body weight do not account for the reductions in global cell proliferation rates observed in CR. In addition, these data are consistent with the hypothesis that reduced cell proliferation rates could be useful as a biomarker of interventions that increase longevity. PMID:21285400

  8. Neonatal Infection with Species C Adenoviruses Confirmed in Viable Cord Blood Lymphocytes

    PubMed Central

    Ornelles, David A.; Gooding, Linda R.; Garnett-Benson, C.

    2015-01-01

    Credible but conflicting reports address the frequency of prenatal infection by species C adenovirus. This question is important because these viruses persist in lymphoid cells and suppress double-stranded DNA-break repair. Consequently, prenatal adenovirus infections may generate the aberrant clones of lymphocytes that precede development of childhood acute lymphoblastic leukemia (ALL). The present study was designed to overcome technical limitations of prior work by processing cord blood lymphocytes within a day of collection, and by analyzing sufficient numbers of lymphocytes to detect adenovirus-containing cells at the lower limits determined by our previous studies of tonsil lymphocytes. By this approach, adenoviral DNA was identified in 19 of 517 (3.7%) samples, providing definitive evidence for the occurrence of prenatal infection with species C adenoviruses in a significant fraction of neonates predominantly of African American and Hispanic ancestry. Cord blood samples were also tested for the presence of the ETV6-RUNX1 translocation, the most common genetic abnormality in childhood ALL. Using a nested PCR assay, the ETV6-RUNX1 transcript was detected in four of 196 adenovirus-negative samples and one of 14 adenovirus-positive cord blood samples. These findings indicate that this method will be suitable for determining concordance between adenovirus infection and the leukemia-associated translocations in newborns. PMID:25764068

  9. Neonatal infection with species C adenoviruses confirmed in viable cord blood lymphocytes.

    PubMed

    Ornelles, David A; Gooding, Linda R; Garnett-Benson, C

    2015-01-01

    Credible but conflicting reports address the frequency of prenatal infection by species C adenovirus. This question is important because these viruses persist in lymphoid cells and suppress double-stranded DNA-break repair. Consequently, prenatal adenovirus infections may generate the aberrant clones of lymphocytes that precede development of childhood acute lymphoblastic leukemia (ALL). The present study was designed to overcome technical limitations of prior work by processing cord blood lymphocytes within a day of collection, and by analyzing sufficient numbers of lymphocytes to detect adenovirus-containing cells at the lower limits determined by our previous studies of tonsil lymphocytes. By this approach, adenoviral DNA was identified in 19 of 517 (3.7%) samples, providing definitive evidence for the occurrence of prenatal infection with species C adenoviruses in a significant fraction of neonates predominantly of African American and Hispanic ancestry. Cord blood samples were also tested for the presence of the ETV6-RUNX1 translocation, the most common genetic abnormality in childhood ALL. Using a nested PCR assay, the ETV6-RUNX1 transcript was detected in four of 196 adenovirus-negative samples and one of 14 adenovirus-positive cord blood samples. These findings indicate that this method will be suitable for determining concordance between adenovirus infection and the leukemia-associated translocations in newborns. PMID:25764068

  10. Vaccine Design: Replication-Defective Adenovirus Vectors.

    PubMed

    Zhou, Xiangyang; Xiang, Zhiquan; Ertl, Hildegund C J

    2016-01-01

    Replication-defective adenovirus (Ad) vectors were initially developed for gene transfer for correction of genetic diseases. Although Ad vectors achieved high levels of transgene product expression in a variety of target cells, expression of therapeutic proteins was found to be transient as vigorous T cell responses directed to components of the vector as well as the transgene product rapidly eliminate Ad vector-transduced cells. This opened the use of Ad vectors as vaccine carriers and by now a multitude of preclinical as well as clinical studies has shown that Ad vectors induce very potent and sustained transgene product-specific T and B cell responses. This chapter provides guidance on developing E1-deleted Ad vectors based on available viral molecular clones. Specifically, it describes methods for cloning, viral rescue and purification as well as quality control studies. PMID:27076309

  11. Construction and characterization of recombinant adenovirus carrying a mouse TIGIT-GFP gene.

    PubMed

    Zheng, J M; Cui, J L; He, W T; Yu, D W; Gao, Y; Wang, L; Chen, Z K; Zhou, H M

    2015-01-01

    Recombinant adenovirus vector systems have been used extensively in protein research and gene therapy. However, the construction and characterization of recombinant adenovirus is a tedious and time-consuming process. TIGIT is a recently discovered immunosuppressive molecule that plays an important role in maintaining immunological balance. The construction of recombinant adenovirus mediating TIGIT expression must be simplified to facilitate its use in the study of TIGIT. In this study, the TIGIT gene was combined with green fluorescent protein (GFP); the TIGIT-GFP gene was inserted into a gateway plasmid to construct a TIGIT-GFP adenovirus. HEK 293A cells were infected with the adenovirus, which was then purified and subjected to virus titering. TIGIT-GFP adenovirus was characterized by flow cytometry and immunofluorescence, and its expression in mouse liver was detected by infection through caudal vein injection. The results showed the successful construction of the TIGIT-GFP adenovirus (5 x 10(10) PFU/mL). Co-expression of TIGIT and GFP was identified in 293A and liver cells; synthesis and positioning of TIGIT-GFP was viewed under a fluorescence microscope. TIGIT-GFP was highly expressed on liver cells 1 day (25.53%) after infection and faded 3 days (11.36%) after injection. In conclusion, the fusion of TIGIT with GFP allows easy, rapid, and uncomplicated detection of TIGIT translation. The construction of a TIGIT-GFP adenovirus, mediating TIGIT expression in vitro and in vivo, lays the foundation for further research into TIGIT function and gene therapy. Moreover, the TIGIT-GFP adenovirus is a helpful tool for studying other proteins (which could replace the TIGIT gene). PMID:26782515

  12. Colorectal cancer desmoplastic reaction up-regulates collagen synthesis and restricts cancer cell invasion.

    PubMed

    Coulson-Thomas, Vivien J; Coulson-Thomas, Yvette M; Gesteira, Tarsis F; de Paula, Cláudia A A; Mader, Ana M; Waisberg, Jaques; Pinhal, Maria A; Friedl, Andreas; Toma, Leny; Nader, Helena B

    2011-11-01

    During cancer cell growth many tumors exhibit various grades of desmoplasia, unorganized production of fibrous or connective tissue, composed mainly of collagen fibers and myofibroblasts. The accumulation of an extracellular matrix (ECM) surrounding tumors directly affects cancer cell proliferation, migration and spread; therefore the study of desmoplasia is of vital importance. Stromal fibroblasts surrounding tumors are activated to myofibroblasts and become the primary producers of ECM during desmoplasia. The composition, density and organization of this ECM accumulation play a major role on the influence desmoplasia has upon tumor cells. In this study, we analyzed desmoplasia in vivo in human colorectal carcinoma tissue, detecting an up-regulation of collagen I, collagen IV and collagen V in human colorectal cancer desmoplastic reaction. These components were then analyzed in vitro co-cultivating colorectal cancer cells (Caco-2 and HCT116) and fibroblasts utilizing various co-culture techniques. Our findings demonstrate that direct cell-cell contact between fibroblasts and colorectal cancer cells evokes an increase in ECM density, composed of unorganized collagens (I, III, IV and V) and proteoglycans (biglycan, fibromodulin, perlecan and versican). The desmoplastic collagen fibers were thick, with an altered orientation, as well as deposited as bundles. This increased ECM density inhibited the migration and invasion of the colorectal tumor cells in both 2D and 3D co-culture systems. Therefore this study sheds light on a possible restricting role desmoplasia could play in colorectal cancer invasion. PMID:21987222

  13. DSCAM Promotes Refinement in the Mouse Retina through Cell Death and Restriction of Exploring Dendrites

    PubMed Central

    Li, Shuai; Sukeena, Joshua M.; Simmons, Aaron B.; Hansen, Ethan J.; Nuhn, Renee E.; Samuels, Ivy S.

    2015-01-01

    In this study we develop and use a gain-of-function mouse allele of the Down syndrome cell adhesion molecule (Dscam) to complement loss-of-function models. We assay the role of Dscam in promoting cell death, spacing, and laminar targeting of neurons in the developing mouse retina. We find that ectopic or overexpression of Dscam is sufficient to drive cell death. Gain-of-function studies indicate that Dscam is not sufficient to increase spatial organization, prevent cell-to-cell pairing, or promote active avoidance in the mouse retina, despite the similarity of the Dscam loss-of-function phenotype in the mouse retina to phenotypes observed in Drosophila Dscam1 mutants. Both gain- and loss-of-function studies support a role for Dscam in targeting neurites; DSCAM is necessary for precise dendrite lamination, and is sufficient to retarget neurites of outer retinal cells after ectopic expression. We further demonstrate that DSCAM guides dendrite targeting in type 2 dopaminergic amacrine cells, by restricting the stratum in which exploring retinal dendrites stabilize, in a Dscam dosage-dependent manner. Based on these results we propose a single model to account for the numerous Dscam gain- and loss-of-function phenotypes reported in the mouse retina whereby DSCAM eliminates inappropriately placed cells and connections. PMID:25855178

  14. Adenoviruses in the immunocompromised host.

    PubMed Central

    Hierholzer, J C

    1992-01-01

    Adenoviruses are among the many pathogens and opportunistic agents that cause serious infection in the congenitally immunocompromised, in patients undergoing immunosuppressive treatment for organ and tissue transplants and for cancers, and in human immunodeficiency virus-infected patients. Adenovirus infections in these patients tend to become disseminated and severe, and the serotypes involved are clustered according to the age of the patient and the nature of the immunosuppression. Over 300 adenovirus infections in immunocompromised patients, with an overall case fatality rate of 48%, are reviewed in this paper. Children with severe combined immunodeficiency syndrome and other primary immunodeficiencies are exposed to the serotypes of subgroups B and C that commonly infect young children, and thus their infections are due to types 1 to 7 and 31 of subgenus A. Children with bone marrow and liver transplants often have lung and liver adenovirus infections that are due to an expanded set of subgenus A, B, C, and E serotypes. Adults with kidney transplants have viruses of subgenus B, mostly types 11, 34, and 35, which cause cystitis. This review indicates that 11% of transplant recipients become infected with adenoviruses, with case fatality rates from 60% for bone marrow transplant patients to 18% for renal transplant patients. Patients with AIDS become infected with a diversity of serotypes of all subgenera because their adult age and life-style expose them to many adenoviruses, possibly resulting in antigenically intermediate strains that are not found elsewhere. Interestingly, isolates from the urine of AIDS patients are generally of subgenus B and comprise types 11, 21, 34, 35, and intermediate strains of these types, whereas isolates from stool are of subgenus D and comprise many rare, new, and intermediate strains that are untypeable for practical purposes. It has been estimated that adenoviruses cause active infection in 12% of AIDS patients and that 45% of

  15. Adenovirus type 3 pneumonia causing lung damage in childhood.

    PubMed Central

    Herbert, F. A.; Wilkinson, D.; Burchak, E.; Morgante, O.

    1977-01-01

    An outbreak of adenovirus type 3 infection occurred in a hospital in 19 North American Indian infants and young children who were being treated for unrelated problems. Pneumonia occurred in 14 and was usually severe, with persistent signs of airway obstruction. Eleven of the 14 were followed periodically and complete medical reviews were conducted 8 to 10 years later. Ten had abnormal chest radiographs, and bronchography revealed bronchiectasis and minor airways changes in seven. In three cases there was clear evidence that these changes were directly related to the adenovirus type 3 infection. Pulmonary function studies showed a combination of restrictive and obstructive changes with minimal hypoxemia in most. Despite the presence of a persistent productive cough all were able to carry on a relatively normal life. Images FIG. 1 FIG. 2 FIG. 3 PMID:189889

  16. Dendritic Cell-Lymphocyte Cross Talk Downregulates Host Restriction Factor SAMHD1 and Stimulates HIV-1 Replication in Dendritic Cells

    PubMed Central

    Biedma, Marina Elizabeth; Lederle, Alexandre; Peressin, Maryse; Lambotin, Mélanie; Proust, Alizé; Decoville, Thomas; Schmidt, Sylvie; Laumond, Géraldine

    2014-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) replication in dendritic cells (DCs) is restricted by SAMHD1. This factor is counteracted by the viral protein Vpx; Vpx is found in HIV-2 and simian immunodeficiency virus (SIV) from sooty mangabeys (SIVsm) or from macaques (SIVmac) but is absent from HIV-1. We previously observed that HIV-1 replication in immature DCs is stimulated by cocultivation with primary T and B lymphocytes, suggesting that HIV-1 restriction in DCs may be overcome under coculture conditions. Here, we aimed to decipher the mechanism of SAMHD1-mediated restriction in DC-lymphocyte coculture. We found that coculture with lymphocytes downregulated SAMHD1 expression and was associated with increased HIV-1 replication in DCs. Moreover, in infected DC-T lymphocyte cocultures, DCs acquired maturation status and secreted type 1 interferon (alpha interferon [IFN-α]). The blockade of DC-lymphocyte cross talk by anti-ICAM-1 antibody markedly inhibited the stimulation of HIV-1 replication and prevented the downregulation of SAMHD1 expression in cocultured DCs. These results demonstrate that, in contrast to purified DCs, cross talk with lymphocytes downregulates SAMHD1 expression in DCs, triggering HIV-1 replication and an antiviral immune response. Therefore, HIV-1 replication and immune sensing by DCs should be investigated in more physiologically relevant models of DC/lymphocyte coculture. IMPORTANCE SAMHD1 restricts HIV-1 replication in dendritic cells (DCs). Here, we demonstrate that, in a coculture model of DCs and lymphocytes mimicking early mucosal HIV-1 infection, stimulation of HIV-1 replication in DCs is associated with downregulation of SAMHD1 expression and activation of innate immune sensing by DCs. We propose that DC-lymphocyte cross talk occurring in vivo modulates host restriction factor SAMHD1, promoting HIV-1 replication in cellular reservoirs and stimulating immune sensing. PMID:24574390

  17. Structural Requirements for Recognition of the Human Immunodeficiency Virus Type 1 Core during Host Restriction in Owl Monkey Cells

    PubMed Central

    Forshey, Brett M.; Shi, Jiong; Aiken, Christopher

    2005-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection of simian cells is restricted at an early postentry step by host factors whose mechanism of action is unclear. These factors target the viral capsid protein (CA) and attenuate reverse transcription, suggesting that they bind to the HIV-1 core and interfere with its uncoating. To identify the relevant binding determinants in the capsid, we tested the capacity of viruses containing Gag cleavage site mutations and amino acid substitutions in CA to inhibit restriction of a wild type HIV-1 reporter virus in owl monkey cells. The results demonstrated that a stable, polymeric capsid and a correctly folded amino-terminal CA subunit interface are essential for saturation of host restriction in target cells by HIV-1 cores. We conclude that the owl monkey cellular restriction machinery recognizes a polymeric array of CA molecules, most likely via direct engagement of the HIV-1 capsid in target cells prior to uncoating. PMID:15613315

  18. Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology.

    PubMed

    Bakeer, Nihal; James, Jeanne; Roy, Swarnava; Wansapura, Janaka; Shanmukhappa, Shiva Kumar; Lorenz, John N; Osinska, Hanna; Backer, Kurt; Huby, Anne-Cecile; Shrestha, Archana; Niss, Omar; Fleck, Robert; Quinn, Charles T; Taylor, Michael D; Purevjav, Enkhsaikhan; Aronow, Bruce J; Towbin, Jeffrey A; Malik, Punam

    2016-08-30

    Cardiopulmonary complications are the leading cause of mortality in sickle cell anemia (SCA). Elevated tricuspid regurgitant jet velocity, pulmonary hypertension, diastolic, and autonomic dysfunction have all been described, but a unifying pathophysiology and mechanism explaining the poor prognosis and propensity to sudden death has been elusive. Herein, SCA mice underwent a longitudinal comprehensive cardiac analysis, combining state-of-the-art cardiac imaging with electrocardiography, histopathology, and molecular analysis to determine the basis of cardiac dysfunction. We show that in SCA mice, anemia-induced hyperdynamic physiology was gradually superimposed with restrictive physiology, characterized by progressive left atrial enlargement and diastolic dysfunction with preserved systolic function. This phenomenon was absent in WT mice with experimentally induced chronic anemia of similar degree and duration. Restrictive physiology was associated with microscopic cardiomyocyte loss and secondary fibrosis detectable as increased extracellular volume by cardiac-MRI. Ultrastructural mitochondrial changes were consistent with severe chronic hypoxia/ischemia and sarcomere diastolic-length was shortened. Transcriptome analysis revealed up-regulation of genes involving angiogenesis, extracellular-matrix, circadian-rhythm, oxidative stress, and hypoxia, whereas ion-channel transport and cardiac conduction were down-regulated. Indeed, progressive corrected QT prolongation, arrhythmias, and ischemic changes were noted in SCA mice before sudden death. Sudden cardiac death is common in humans with restrictive cardiomyopathies and long QT syndromes. Our findings may thus provide a unifying cardiac pathophysiology that explains the reported cardiac abnormalities and sudden death seen in humans with SCA. PMID:27503873

  19. Adenovirus-mediated efficient gene transfer into cultured three-dimensional organoids.

    PubMed

    Wang, Ning; Zhang, Hongyu; Zhang, Bing-Qiang; Liu, Wei; Zhang, Zhonglin; Qiao, Min; Zhang, Hongmei; Deng, Fang; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Liao, Zhan; Zhang, Qian; Yan, Zhengjian; Yin, Liangjun; Ye, Jixing; Deng, Youlin; Luu, Hue H; Haydon, Rex C; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell-based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured "mini-gut" organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D "mini-gut" organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids. PMID:24695466

  20. Dietary α-linolenic acid diminishes experimental atherogenesis and restricts T cell-driven inflammation

    PubMed Central

    Winnik, Stephan; Lohmann, Christine; Richter, Eva K.; Schäfer, Nicola; Song, Wen-Liang; Leiber, Florian; Mocharla, Pavani; Hofmann, Janin; Klingenberg, Roland; Borén, Jan; Becher, Burkhard; FitzGerald, Garret A.; Lüscher, Thomas F.; Matter, Christian M.; Beer, Jürg H.

    2011-01-01

    Aims Epidemiological studies report an inverse association between plant-derived dietary α-linolenic acid (ALA) and cardiovascular events. However, little is known about the mechanism of this protection. We assessed the cellular and molecular mechanisms of dietary ALA (flaxseed) on atherosclerosis in a mouse model. Methods and results Eight-week-old male apolipoprotein E knockout (ApoE−/−) mice were fed a 0.21 % (w/w) cholesterol diet for 16 weeks containing either a high ALA [7.3 % (w/w); n = 10] or low ALA content [0.03 % (w/w); n = 10]. Bioavailability, chain elongation, and fatty acid metabolism were measured by gas chromatography of tissue lysates and urine. Plaques were assessed using immunohistochemistry. T cell proliferation was investigated in primary murine CD3-positive lymphocytes. T cell differentiation and activation was assessed by expression analyses of interferon-γ, interleukin-4, and tumour necrosis factor α (TNFα) using quantitative PCR and ELISA. Dietary ALA increased aortic tissue levels of ALA as well as of the n−3 long chain fatty acids (LC n−3 FA) eicosapentaenoic acid, docosapentaenoic acid, and docosahexaenoic acid. The high ALA diet reduced plaque area by 50% and decreased plaque T cell content as well as expression of vascular cell adhesion molecule-1 and TNFα. Both dietary ALA and direct ALA exposure restricted T cell proliferation, differentiation, and inflammatory activity. Dietary ALA shifted prostaglandin and isoprostane formation towards 3-series compounds, potentially contributing to the atheroprotective effects of ALA. Conclusion Dietary ALA diminishes experimental atherogenesis and restricts T cell-driven inflammation, thus providing the proof-of-principle that plant-derived ALA may provide a valuable alternative to marine LC n−3 FA. PMID:21285075

  1. Molecular detection of two adenoviruses associated with disease in Australian lizards.

    PubMed

    Hyndman, T; Shilton, C M

    2011-06-01

    We give the first published description of the pathology and molecular findings associated with adenovirus infection in lizards in Australia. A central netted dragon (Ctenophorus nuchalis) exhibited severe necrotising hepatitis with abundant intranuclear inclusion bodies within hepatocytes and rarely within intestinal epithelial cells. Polymerase chain reaction (PCR) using pooled tissues yielded an amplicon that shared strong nucleotide identity with an agamid adenovirus (EU914203). PCR on the liver of a bearded dragon (Pogona minor minor) with illthrift, coccidiosis, nematodiasis and hepatic lipidosis yielded an amplicon with strong nucleotide identity to a helodermatid adenovirus (EU914207). PMID:21595645

  2. Cancer induction by restriction of oncogene expression to the stem cell compartment

    PubMed Central

    Pérez-Caro, María; Cobaleda, César; González-Herrero, Inés; Vicente-Dueñas, Carolina; Bermejo-Rodríguez, Camino; Sánchez-Beato, Margarita; Orfao, Alberto; Pintado, Belén; Flores, Teresa; Sánchez-Martín, Manuel; Jiménez, Rafael; Piris, Miguel A; Sánchez-García, Isidro

    2009-01-01

    In human cancers, all cancerous cells carry the oncogenic genetic lesions. However, to elucidate whether cancer is a stem cell-driven tissue, we have developed a strategy to limit oncogene expression to the stem cell compartment in a transgenic mouse setting. Here, we focus on the effects of the BCR-ABLp210 oncogene, associated with chronic myeloid leukaemia (CML) in humans. We show that CML phenotype and biology can be established in mice by restricting BCR-ABLp210 expression to stem cell antigen 1 (Sca1)+ cells. The course of the disease in Sca1-BCR-ABLp210 mice was not modified on STI571 treatment. However, BCR-ABLp210-induced CML is reversible through the unique elimination of the cancer stem cells (CSCs). Overall, our data show that oncogene expression in Sca1+ cells is all that is required to fully reprogramme it, giving rise to a full-blown, oncogene-specified tumour with all its mature cellular diversity, and that elimination of the CSCs is enough to eradicate the whole tumour. PMID:19037256

  3. Ebola virus mediated infectivity is restricted in canine and feline cells.

    PubMed

    Han, Ziying; Bart, Stephen M; Ruthel, Gordon; Vande Burgt, Nathan H; Haines, Kathleen M; Volk, Susan W; Vite, Charles H; Freedman, Bruce D; Bates, Paul; Harty, Ronald N

    2016-01-15

    Ebolaviruses and marburgviruses belong to the Filoviridae family and often cause severe, fatal hemorrhagic fever in humans and non-human primates. The magnitude of the 2014 outbreak in West Africa and the unprecedented emergence of Ebola virus disease (EVD) in the United States underscore the urgency to better understand the dynamics of Ebola virus infection, transmission and spread. To date, the susceptibility and possible role of domestic animals and pets in the transmission cycle and spread of EVD remains unclear. We utilized infectious VSV recombinants and lentivirus pseudotypes expressing the EBOV surface glycoprotein (GP) to assess the permissiveness of canine and feline cells to EBOV GP-mediated entry. We observed a general restriction in EBOV-mediated infection of primary canine and feline cells. To address the entry mechanism, we used cells deficient in NPC1, a host protein implicated in EBOV entry, and a pharmacological blockade of cholesterol transport, to show that an NPC1-dependent mechanism of EBOV entry is conserved in canine and feline cells. These data demonstrate that cells of canine and feline origin are susceptible to EBOV GP mediated infection; however, infectivity of these cells is reduced significantly compared to controls. Moreover, these data provide new insights into the mechanism of EBOV GP mediated entry into cells of canine and feline origin. PMID:26711035

  4. Mechanical Restrictions on Biological Responses by Adherent Cells within Collagen Gels

    PubMed Central

    Simon, D.D.; Horgan, C.O.; Humphrey, J.D.

    2012-01-01

    Cell-seeded collagen and fibrin gels represent excellent assays for studying interactions between adherent interstitial cells and the three-dimensional extracellular matrix in which they reside. Over one hundred papers have employed the free-floating collagen gel assay alone since its introduction in 1979 and much has been learned about mechanobiological responses of diverse types of cells. Yet, given that mechanobiology is the study of biological responses by cells to mechanical stimuli that must respect the basic laws of mechanics, we must quantify better the mechanical conditions that are imposed on or arise in cell-seeded gels. In this paper, we suggest that cell responses and associated changes in matrix organization within the classical free-floating gel assay are highly restricted by the mechanics. In particular, many salient but heretofore unexplained or misinterpreted observations in free-floating gels can be understood in terms of apparent cell-mediated residual stress fields that satisfy quasi-static equilibria and continuity of tractions. There is a continuing need, therefore, to bring together the allied fields of mechanobiology and biomechanics as we continue to elucidate cellular function within both native connective tissues and tissue equivalents that are used in basic scientific investigations or regenerative medicine. PMID:23022259

  5. Decreased non-MHC-restricted (CD56+) killer cell cytotoxicity after spaceflight

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Kaur, I.; Grimm, E. A.; Smid, C.; Feeback, D. L.; Pierson, D. L.

    2001-01-01

    Cytotoxic activity of non-major histocompatibility complex-restricted (CD56+) (NMHC) killer cells and cell surface marker expression of peripheral blood mononuclear cells were determined before and after spaceflight. Ten astronauts (9 men, 1 woman) from two space shuttle missions (9- and 10-day duration) participated in the study. Blood samples were collected 10 days before launch, within 3 h after landing, and 3 days after landing. All peripheral blood mononuclear cell preparations were cryopreserved and analyzed simultaneously in a 4-h cytotoxicity (51)Cr release assay using K562 target cells. NMHC killer cell lytic activity was normalized per 1,000 CD56+ cells. When all 10 subjects were considered as one study group, NMHC killer cell numbers did not change significantly during the three sampling periods, but at landing lytic activity had decreased by approximately 40% (P < 0.05) from preflight values. Nine of ten astronauts had decreased lytic activity immediately after flight. NMHC killer cell cytotoxicity of only three astronauts returned toward preflight values by 3 days after landing. Consistent with decreased NMHC killer cell cytotoxicity, urinary cortisol significantly increased after landing compared with preflight levels. Plasma cortisol and ACTH levels at landing were not significantly different from preflight values. No correlation of changes in NMHC killer cell function or hormone levels with factors such as age, gender, mission, or spaceflight experience was found. After landing, expression of the major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), as determined by flow cytometric analysis, did not show any consistent changes from measurements made before flight.

  6. Adenovirus-Mediated Efficient Gene Transfer into Cultured Three-Dimensional Organoids

    PubMed Central

    Wang, Ning; Zhang, Hongyu; Zhang, Bing-Qiang; Liu, Wei; Zhang, Zhonglin; Qiao, Min; Zhang, Hongmei; Deng, Fang; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Liao, Zhan; Zhang, Qian; Yan, Zhengjian; Yin, Liangjun; Ye, Jixing; Deng, Youlin; Luu, Hue H.; Haydon, Rex C.; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell–based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured “mini-gut” organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D “mini-gut” organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids. PMID:24695466

  7. Infection by retroviral vectors outside of their host range in the presence of replication-defective adenovirus.

    PubMed Central

    Adams, R M; Wang, M; Steffen, D; Ledley, F D

    1995-01-01

    Retrovirus infection is normally limited to cells within a specific host range which express a cognate receptor that is recognized by the product of the env gene. We describe retrovirus infection of cells outside of their normal host range when the infection is performed in the presence of a replication-defective adenovirus (dl312). In the presence of adenovirus, several different ecotropic vectors are shown to infect human cell lines (HeLa and PLC/PRF), and a xenotropic vector is shown to infect murine cells (NIH 3T3). Infectivity is demonstrated by 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) staining, selection with G418 for neomycin resistance, and PCR identification of the provirus in infected cells. Infectivity is quantitatively dependent upon both the concentration of adenovirus (10(6) to 10(8) PFU/ml) and the concentration of retrovirus. Infection requires the simultaneous presence of adenovirus in the retrovirus infection medium and is not stimulated by preincubation and removal of adenovirus from the cells before retrovirus infection. The presence of adenovirus is shown to enhance the uptake of fluorescently labeled retrovirus particles into cells outside of their normal host range, demonstrating that the adenovirus enhances viral entry into cells in the absence of the recognized cognate receptor. This observation suggests new opportunities for developing safe retroviral vectors for gene therapy and new mechanisms for the pathogenesis of retroviral disease. PMID:7853530

  8. Mouse digit tip regeneration is mediated by fate-restricted progenitor cells

    PubMed Central

    Lehoczky, Jessica A.; Robert, Benoît; Tabin, Clifford J.

    2011-01-01

    Regeneration of appendages is frequent among invertebrates as well as some vertebrates. However, in mammals this has been largely relegated to digit tip regeneration, as found in mice and humans. The regenerated structures are formed from a mound of undifferentiated cells called a blastema, found just below the site of amputation. The blastema ultimately gives rise to all of the tissues in the regenerate, excluding the epidermis, and has classically been thought of as a homogenous pool of pluripotent stem cells derived by dedifferentiation of stump tissue, although this has never been directly tested in the context of mammalian digit tip regeneration. Successful digit tip regeneration requires that the level of amputation be within the nail bed and depends on expression of Msx1. Because Msx1 is strongly expressed in the nail bed mesenchyme, it has been proposed that the Msx1-expressing cells represent a pluripotent cell population for the regenerating digit. In this report, we show that Msx1 is dynamically expressed during digit tip regeneration, and it does not mark a pluripotent stem cell population. Moreover, we show that both the ectoderm and mesoderm contain fate-restricted progenitor populations that work in concert to regenerate their own lineages within the digit tip, supporting the hypothesis that the blastema is a heterogeneous pool of progenitor cells. PMID:22143790

  9. Characterization of the human CD4(+) T-cell repertoire specific for major histocompatibility class I-restricted antigens.

    PubMed

    Legoux, François; Gautreau, Laetitia; Hesnard, Leslie; Leger, Alexandra; Moyon, Melinda; Devilder, Marie-Claire; Bonneville, Marc; Saulquin, Xavier

    2013-12-01

    While CD4(+) T lymphocytes usually recognize antigens in the context of major histocompatibility (MHC) class II alleles, occurrence of MHC class-I restricted CD4(+) T cells has been reported sporadically. Taking advantage of a highly sensitive MHC tetramer-based enrichment approach allowing detection and isolation of scarce Ag-specific T cells, we performed a systematic comparative analysis of HLA-A*0201-restricted CD4(+) and CD8(+) T-cell lines directed against several immunodominant viral or tumoral antigens. CD4(+) T cells directed against every peptide-MHC class I complexes tested were detected in all donors. These cells yielded strong cytotoxic and T helper 1 cytokine responses when incubated with HLA-A2(+) target cells carrying the relevant epitopes. HLA-A2-restricted CD4(+) T cells were seldom expanded in immune HLA-A2(+) donors, suggesting that they are not usually engaged in in vivo immune responses against the corresponding peptide-MHC class I complexes. However, these T cells expressed TCR of very high affinity and were expanded following ex vivo stimulation by relevant tumor cells. Therefore, we describe a versatile and efficient strategy for generation of MHC class-I restricted T helper cells and high affinity TCR that could be used for adoptive T-cell transfer- or TCR gene transfer-based immunotherapies. PMID:23963968

  10. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    DOE PAGESBeta

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-03-02

    Here, the most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigatemore » the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. In conclusion, from these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells.« less

  11. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    PubMed Central

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells. PMID:26932808

  12. Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake

    PubMed Central

    Flavahan, William A.; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E.; Weil, Robert J.; Nakano, Ichiro; Sarkaria, Jann N.; Stringer, Brett W.; Day, Bryan W.; Li, Meizhang; Lathia, Justin D.; Rich, Jeremy N.; Hjelmeland, Anita B.

    2013-01-01

    Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) due to preferential BTIC survival and adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3 and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, TICs may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may instruct the tumor hierarchy and portend poor prognosis. PMID:23995067

  13. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells

    NASA Astrophysics Data System (ADS)

    Martins, Murillo L.; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F.; Daemen, Luke; Saeki, Margarida J.; Bordallo, Heloisa N.

    2016-03-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells.

  14. Restricted mobility of specific functional groups reduces anti-cancer drug activity in healthy cells.

    PubMed

    Martins, Murillo L; Ignazzi, Rosanna; Eckert, Juergen; Watts, Benjamin; Kaneno, Ramon; Zambuzzi, Willian F; Daemen, Luke; Saeki, Margarida J; Bordallo, Heloisa N

    2016-01-01

    The most common cancer treatments currently available are radio- and chemo-therapy. These therapies have, however, drawbacks, such as, the reduction in quality of life and the low efficiency of radiotherapy in cases of multiple metastases. To lessen these effects, we have encapsulated an anti-cancer drug into a biocompatible matrix. In-vitro assays indicate that this bio-nanocomposite is able to interact and cause morphological changes in cancer cells. Meanwhile, no alterations were observed in monocytes and fibroblasts, indicating that this system might carry the drug in living organisms with reduced clearance rate and toxicity. X-rays and neutrons were used to investigate the carrier structure, as well as to assess the drug mobility within the bio-nanocomposite. From these unique data we show that partial mobility restriction of active groups of the drug molecule suggests why this carrier design is potentially safer to healthy cells. PMID:26932808

  15. Identification of HLA-A*11:01-restricted Mycobacterium tuberculosis CD8(+) T cell epitopes.

    PubMed

    Liu, Su-Dong; Su, Jin; Zhang, Shi-Meng; Dong, Hai-Ping; Wang, Hui; Luo, Wei; Wen, Qian; He, Jian-Chun; Yang, Xiao-Fan; Ma, Li

    2016-09-01

    New vaccines are needed to combat Mycobacterium tuberculosis (MTB) infections. The currently employed Bacillus Calmette-Guérin vaccine is becoming ineffective, due in part to the emergence of multidrug-resistant tuberculosis (MDR-TB) strains and the reduced immune capacity in cases of HIV coinfection. CD8(+) T cells play an important role in the protective immunity against MTB infections, and the identification of immunogenic CD8(+) T cell epitopes specific for MTB is essential for the design of peptide-based vaccines. To identify CD8(+) T cell epitopes of MTB proteins, we screened a set of 94 MTB antigens for HLA class I A*11:01-binding motifs. HLA-A*11:01 is one of the most prevalent HLA molecules in Southeast Asians, and definition of T cell epitopes it can restrict would provide significant coverage for the Asian population. Peptides that bound with high affinity to purified HLA molecules were subsequently evaluated in functional assays to detect interferon-γ release and CD8(+) T cell proliferation in active pulmonary TB patients. We identified six novel epitopes, each derived from a unique MTB antigen, which were recognized by CD8(+) T cells from active pulmonary TB patients. In addition, a significant level of epitope-specific T cells could be detected ex vivo in peripheral blood mononuclear cells from active TB patients by an HLA-A*11:01 dextramer carrying the peptide Rv3130c194-204 (from the MTB triacylglycerol synthase Tgs1), which was the most frequently recognized epitope in our peptide library. In conclusion, this study identified six dominant CD8(+) T cell epitopes that may be considered potential targets for subunit vaccines or diagnostic strategies against TB. PMID:27072810

  16. Adenovirus Type 7 Genomic-Type Variant, New York City, 1999

    PubMed Central

    Erdman, Dean D.; Ackelsberg, Joel; Cato, Stephen William; Deutsch, Vicki-Jo; Lechich, Anthony John; Schofield, Barbara Susan

    2004-01-01

    An outbreak of respiratory illness occurred in a long-term care facility in New York City. Investigation of the outbreak identified confirmed or suspected adenoviral infection in 84% of the residents from October 19 to December 18, 1999. Further identification by type-specific neutralization and restriction analysis identified a new genomic variant of adenovirus type 7. PMID:15078614

  17. A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells.

    PubMed

    Greenwood-Goodwin, Midori; Yang, Jiwei; Hassanipour, Mohammad; Larocca, David

    2016-01-01

    Pericytes (PCs) are endothelium-associated cells that play an important role in normal vascular function and maintenance. We developed a method comparable to GMP quality protocols for deriving self-renewing perivascular progenitors from the human embryonic stem cell (hESC), line ESI-017. We identified a highly scalable, perivascular progenitor cell line that we termed PC-A, which expressed surface markers common to mesenchymal stromal cells. PC-A cells were not osteogenic or adipogenic under standard differentiation conditions and showed minimal angiogenic support function in vitro. PC-A cells were capable of further differentiation to perivascular progenitors with limited differentiation capacity, having osteogenic potential (PC-O) or angiogenic support function (PC-M), while lacking adipogenic potential. Importantly, PC-M cells expressed surface markers associated with pericytes. Moreover, PC-M cells had pericyte-like functionality being capable of co-localizing with human umbilical vein endothelial cells (HUVECs) and enhancing tube stability up to 6 days in vitro. We have thus identified a self-renewing perivascular progenitor cell line that lacks osteogenic, adipogenic and angiogenic potential but is capable of differentiation toward progenitor cell lines with either osteogenic potential or pericyte-like angiogenic function. The hESC-derived perivascular progenitors described here have potential applications in vascular research, drug development and cell therapy. PMID:27109637

  18. A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells

    PubMed Central

    Greenwood-Goodwin, Midori; Yang, Jiwei; Hassanipour, Mohammad; Larocca, David

    2016-01-01

    Pericytes (PCs) are endothelium-associated cells that play an important role in normal vascular function and maintenance. We developed a method comparable to GMP quality protocols for deriving self-renewing perivascular progenitors from the human embryonic stem cell (hESC), line ESI-017. We identified a highly scalable, perivascular progenitor cell line that we termed PC-A, which expressed surface markers common to mesenchymal stromal cells. PC-A cells were not osteogenic or adipogenic under standard differentiation conditions and showed minimal angiogenic support function in vitro. PC-A cells were capable of further differentiation to perivascular progenitors with limited differentiation capacity, having osteogenic potential (PC-O) or angiogenic support function (PC-M), while lacking adipogenic potential. Importantly, PC-M cells expressed surface markers associated with pericytes. Moreover, PC-M cells had pericyte-like functionality being capable of co-localizing with human umbilical vein endothelial cells (HUVECs) and enhancing tube stability up to 6 days in vitro. We have thus identified a self-renewing perivascular progenitor cell line that lacks osteogenic, adipogenic and angiogenic potential but is capable of differentiation toward progenitor cell lines with either osteogenic potential or pericyte-like angiogenic function. The hESC-derived perivascular progenitors described here have potential applications in vascular research, drug development and cell therapy. PMID:27109637

  19. Escargot restricts niche cell to stem cell conversion in the Drosophila testis

    PubMed Central

    Voog, Justin; Sandall, Sharsti L.; Hime, Gary R.; Resende, Luís Pedro F.; Loza-Coll, Mariano; Aslanian, Aaron; Yates, John R.; Hunter, Tony; Fuller, Margaret T.; Jones, D. Leanne

    2014-01-01

    Summary Stem cells reside within specialized microenvironments, or niches, that control many aspects of stem cell behaviour. Somatic hub cells in the Drosophila testis regulate the behaviour of cyst stem cells (CySCs) and germline stem cells (GSCs) and are a primary component of the testis stem cell niche. The shutoff (shof) mutation, characterized by premature loss of GSCs and CySCs, was mapped to a locus encoding the evolutionarily conserved transcription factor Escargot (Esg). Hub cells depleted of Esg acquire CySC characteristics and differentiate as cyst cells, resulting in complete loss of hub cells and eventually, CySCs and GSCs, similar to the shof mutant phenotype. We identified Esg-interacting proteins and demonstrate an interaction between Esg and the co-repressor C-terminal binding protein (CtBP), which was also required for maintenance of hub cell fate. Our results indicate that niche cells can acquire stem cell properties upon removal of a single transcription factor in vivo. PMID:24794442

  20. Escargot restricts niche cell to stem cell conversion in the Drosophila testis.

    PubMed

    Voog, Justin; Sandall, Sharsti L; Hime, Gary R; Resende, Luís Pedro F; Loza-Coll, Mariano; Aslanian, Aaron; Yates, John R; Hunter, Tony; Fuller, Margaret T; Jones, D Leanne

    2014-05-01

    Stem cells reside within specialized microenvironments, or niches, that control many aspects of stem cell behavior. Somatic hub cells in the Drosophila testis regulate the behavior of cyst stem cells (CySCs) and germline stem cells (GSCs) and are a primary component of the testis stem cell niche. The shutoff (shof) mutation, characterized by premature loss of GSCs and CySCs, was mapped to a locus encoding the evolutionarily conserved transcription factor Escargot (Esg). Hub cells depleted of Esg acquire CySC characteristics and differentiate as cyst cells, resulting in complete loss of hub cells and eventually CySCs and GSCs, similar to the shof mutant phenotype. We identified Esg-interacting proteins and demonstrate an interaction between Esg and the corepressor C-terminal binding protein (CtBP), which was also required for maintenance of hub cell fate. Our results indicate that niche cells can acquire stem cell properties upon removal of a single transcription factor in vivo. PMID:24794442

  1. A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma

    PubMed Central

    Wang, Yigang; Zhao, Hongfang; Zhang, Rong; Ma, Buyun; Chen, Kan; Huang, Fang; Zhou, Xiumei; Cui, Caixia; Liu, Xinyuan

    2015-01-01

    Golgi apparatus is the organelle mainly functioning as protein processing and secretion. GOLPH2 is a resident Golgi glycoprotein, usually called GP73. Recent data displayed that GOLPH2 is a superb hepatocellular carcinoma (HCC) marker candidate, and even its specificity is better than liver cancer marker AFP. Oncolytic adenoviruses are broadly used for targeting cancer therapy due to their selective tumor-killing effect. However, it was reported that traditionally oncolytic adenovirus lack the HCC specificity. In this study, a novel dual-regulated oncolytic adenovirus GD55 targeting HCC was first constructed based on our cancer targeted gene-viral therapeutic strategy. To verify the targeting and effectiveness of GOLPH2-regulated oncolytic adenovirus GD55 in HCC, the anticancer capacity was investigated in HCC cell lines and animal model. The results proved that the novel GOLPH2-regulated GD55 conferred higher adenovirus replication and infectivity for liver cancer cells than oncolytic adenovirus ZD55. The GOLPH2-regulated GD55 exerted a significant grow-suppressing effect on HCC cells in vitro but little damage to normal liver cells. In animal experiment, antitumor effect of GD55 was more effective in HCC xenograft of nude mice than that of ZD55. Thus GOLPH2-regulated GD55 may be a promising oncolytic virus agent for future liver cancer treatment. PMID:25980438

  2. Studies on the mechanism of the self restriction of T cell responses in radiation chimeras. [/sup 137/Cs; mice

    SciTech Connect

    Fink, P.J.; Bevan, M.J.

    1981-08-01

    Recent experiments with murine radiation chimeras have shown that F/sub 1/ T cells that mature in an H-2 homozygous thymus, as is the case in (F/sub 1/ ..-->.. Parent 1) chimeras, are restricted to recognizing foreign antigen in the context of Parent 1 H-2 antigens. Conflicting results on the stringency of self H-2 restriction of T cells from normal mice have suggested that the thymic restriction in chimeras may be due to active suppression of parent 2-restricted T cell clones. We have therefore conducted 3 sets of experiments to test for suppression of maturing T cells that could mediate thymic tutoring of H-2-restriction specificity in chimeras. In 2 sets of experiments, we found no evidence that suppressor cells could be exported from 1 thymus and act either intrathymically on thymocytes in a 2nd thymus or extrathymically on recent thymic emigrants. We believe current data support a role for the thymus in positive as well as negative selection of maturing thymocytes on the basis of self recognition, in the absence of any suppression. Our results do not support the concept that suppression is responsible for the difference in the degree of self preference in the T cells of chimeric mice relative to cell populations obtained from neonatally tolerant mice or from normal mice after acute negative selection.

  3. Generation of MHC class I-restricted cytotoxic T cell lines and clones against colonic epithelial cells from ulcerative colitis.

    PubMed

    Yonamine, Y; Watanabe, M; Kinjo, F; Hibi, T

    1999-01-01

    We established CTL lines and clones against colonic epithelial cells from PBLs of patients with ulcerative colitis by continuous stimulation with HLA-A locus-matched colonic epithelial cell lines. We developed a nonradioactive europium release cytotoxicity assay to detect CTLs. PBLs from 3 of 12 patients but not from any of 14 normal controls who shared at least one haplotype of HLA-A locus with two colonic epithelial cell lines, CW2 and ACM, showed increased cytotoxicity against these lines. Three CTL lines established from the PBLs of patients showed increased cytotoxicity against HLA-A locus-matched CW2 or ACM but not against matched lung or esophagus cell lines. The phenotypes of CTL lines were alpha beta-TCR+ CD3+ CD8+ CD16-. The CTL line MS showed increased cytotoxicity against freshly isolated colonic epithelial cells but not against cells with a different HLA-A locus. Two CTL clones were generated from MS and clone 3-2, expressing CD3+ CD8+ CD4- CD56-, showed high MHC class I-restricted cytotoxicity against the colonic epithelial cells. These results indicated that CTLs against colonic epithelial cells may contribute to epithelial cell damage in ulcerative colitis. PMID:10080107

  4. Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates

    PubMed Central

    Messaoudi, Ilhem; Warner, Jessica; Fischer, Miranda; Park, Buyng; Hill, Brenna; Mattison, Julie; Lane, Mark A.; Roth, George S.; Ingram, Donald K.; Picker, Louis J.; Douek, Daniel C.; Mori, Motomi; Nikolich-Žugich, Janko

    2006-01-01

    Caloric restriction (CR) has long been known to increase median and maximal lifespans and to decreases mortality and morbidity in short-lived animal models, likely by altering fundamental biological processes that regulate aging and longevity. In rodents, CR was reported to delay the aging of the immune system (immune senescence), which is believed to be largely responsible for a dramatic increase in age-related susceptibility to infectious diseases. However, it is unclear whether CR can exert similar effects in long-lived organisms. Previous studies involving 2- to 4-year CR treatment of long-lived primates failed to find a CR effect or reported effects on the immune system opposite to those seen in CR-treated rodents. Here we show that long-term CR delays the adverse effects of aging on nonhuman primate T cells. CR effected a marked improvement in the maintenance and/or production of naïve T cells and the consequent preservation of T cell receptor repertoire diversity. Furthermore, CR also improved T cell function and reduced production of inflammatory cytokines by memory T cells. Our results provide evidence that CR can delay immune senescence in nonhuman primates, potentially contributing to an extended lifespan by reducing susceptibility to infectious disease. PMID:17159149

  5. Setdb1 maintains hematopoietic stem and progenitor cells by restricting the ectopic activation of nonhematopoietic genes.

    PubMed

    Koide, Shuhei; Oshima, Motohiko; Takubo, Keiyo; Yamazaki, Satoshi; Nitta, Eriko; Saraya, Atsunori; Aoyama, Kazumasa; Kato, Yuko; Miyagi, Satoru; Nakajima-Takagi, Yaeko; Chiba, Tetsuhiro; Matsui, Hirotaka; Arai, Fumio; Suzuki, Yutaka; Kimura, Hiroshi; Nakauchi, Hiromitsu; Suda, Toshio; Shinkai, Yoichi; Iwama, Atsushi

    2016-08-01

    Setdb1, also known as Eset, is a methyltransferase that catalyzes trimethylation of H3K9 (H3K9me3) and plays an essential role in the silencing of endogenous retroviral elements (ERVs) in the developing embryo and embryonic stem cells (ESCs). Its role in somatic stem cells, however, remains unclear because of the early death of Setdb1-deficient embryos. We demonstrate here that Setdb1 is the first H3K9 methyltransferase shown to be essential for the maintenance of hematopoietic stem and progenitor cells (HSPCs) in mice. The deletion of Setdb1 caused the rapid depletion of hematopoietic stem and progenitor cells (HSPCs), as well as leukemic stem cells. In contrast to ESCs, ERVs were largely repressed in Setdb1-deficient HSPCs. A list of nonhematopoietic genes was instead ectopically activated in HSPCs after reductions in H3K9me3 levels, including key gluconeogenic enzyme genes fructose-1,6-bisphosphatase 1 (Fbp1) and Fbp2 The ectopic activation of gluconeogenic enzymes antagonized glycolysis and impaired ATP production, resulting in a compromised repopulating capacity of HSPCs. Our results demonstrate that Setdb1 maintains HSPCs by restricting the ectopic activation of nonhematopoietic genes detrimental to their function and uncover that the gluconeogenic pathway is one of the critical targets of Setdb1 in HSPCs. PMID:27301860

  6. [Preparation of Recombinant Human Adenoviruses Labeled with miniSOG].

    PubMed

    Zou, Xiaohui; Xiao, Rong; Guo, Xiaojuan; Qu, Jianguo; Lu, Zhuozhuang; Hong, Tao

    2016-01-01

    We wished to study the intracellular transport of adenoviruses. We constructed a novel recombinant adenovirus in which the structural protein IX was labeled with a mini-singlet oxygen generator (miniSOG). The miniSOG gene was synthesized by overlapping extension polymerase chain reaction (PCR), cloned to the pcDNA3 vector, and expressed in 293 cells. Activation of miniSOG generated sufficient numbers of singlet oxygen molecules to catalyze polymerization of diaminobenzidine into an osmiophilic reaction product resolvable by transmission electron microscopy (TEM). To construct miniSOG-labelled recombinant adenoviruses, the miniSOG gene was subcloned downstream of the IX gene in a pShuttle plasmid. Adenoviral plasmid pAd5-IXSOG was generated by homologous recombination of the modified shuttle plasmid (pShuttle-IXSOG) with the backbone plasmid (pAdeasy-1) in the BJ5183 strain of Eschericia coli. Adenovirus HAdV-5-IXSOG was rescued by transfection of 293 cells with the linearized pAd5-IXSOG. After propagation, virions were purified using the CsC1 ultracentrifugation method. Finally, HAdV-5-IXSOG in 2.0 mL with a particle titer of 6 x 1011 vp/mL was obtained. Morphology of HAdV-5-IXSOG was verified by TEM. Fusion of IX with the miniSOG gene was confirmed by PCR. In conclusion, miniSOG-labeled recombinant adenoviruses were constructed, which could be valuable tools for virus tracking by TEM. PMID:27295881

  7. Vaccinia Virus Tropism for Primary Hematolymphoid Cells Is Determined by Restricted Expression of a Unique Virus Receptor

    PubMed Central

    Chahroudi, Ann; Chavan, Rahul; Koyzr, Natalia; Waller, Edmund K.; Silvestri, Guido; Feinberg, Mark B.

    2005-01-01

    The presumed broad tropism of poxviruses has stymied attempts to identify both the cellular receptor(s) and the viral determinant(s) for binding. Detailed studies of poxvirus binding to and infection of primary human cells have not been conducted. In particular, the determinants of target cell infection and the consequences of infection for cells involved in the generation of antiviral immune responses are incompletely understood. In this report, we show that vaccinia virus (VV) exhibits a more restricted tropism for primary hematolymphoid human cells than has been previously recognized. We demonstrate that vaccinia virus preferentially infects antigen-presenting cells (dendritic cells, monocytes/macrophages, and B cells) and activated T cells, but not resting T cells. The infection of activated T cells is permissive, with active viral replication and production of infectious progeny. Susceptibility to infection is determined by restricted expression of a cellular receptor that is induced de novo upon T-cell activation and can be removed from the cell surface by either trypsin or pronase treatment. The VV receptor expressed on activated T cells displays unique characteristics that distinguish it from the receptor used to infect cell lines in culture. The observed restricted tropism of VV may have significant consequences for the understanding of natural poxvirus infection and immunity and for poxvirus-based vaccine development. PMID:16051832

  8. Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection.

    PubMed

    Shang, Shaobin; Siddiqui, Sarah; Bian, Yao; Zhao, Jie; Wang, Chyung-Ru

    2016-06-01

    MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules. PMID:27272249

  9. Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection

    PubMed Central

    Shang, Shaobin; Siddiqui, Sarah; Bian, Yao; Zhao, Jie; Wang, Chyung-Ru

    2016-01-01

    MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules. PMID:27272249

  10. Myeloid Cell-Restricted Insulin/IGF-1 Receptor Deficiency Protects against Skin Inflammation.

    PubMed

    Knuever, Jana; Willenborg, Sebastian; Ding, Xiaolei; Akyüz, Mehmet D; Partridge, Linda; Niessen, Carien M; Brüning, Jens C; Eming, Sabine A

    2015-12-01

    Myeloid cells are key regulators of tissue homeostasis and disease. Alterations in cell-autonomous insulin/IGF-1 signaling in myeloid cells have recently been implicated in the development of systemic inflammation and insulin-resistant diabetes mellitus type 2 (DM). Impaired wound healing and inflammatory skin diseases are frequent DM-associated skin pathologies, yet the underlying mechanisms are elusive. In this study, we investigated whether myeloid cell-restricted IR/IGF-1R signaling provides a pathophysiologic link between systemic insulin resistance and the development of cutaneous inflammation. Therefore, we generated mice lacking both the insulin and IGF-1 receptor in myeloid cells (IR/IGF-1R(MKO)). Whereas the kinetics of wound closure following acute skin injury was similar in control and IR/IGF-1R(MKO) mice, in two different conditions of dermatitis either induced by repetitive topical applications of the detergent SDS or by high-dose UV B radiation, IR/IGF-1R(MKO) mice were protected from inflammation, whereas controls developed severe skin dermatitis. Notably, whereas during the early phase in both inflammatory conditions the induction of epidermal proinflammatory cytokine expression was similar in control and IR/IGF-1R(MKO) mice, during the late stage, epidermal cytokine expression was sustained in controls but virtually abrogated in IR/IGF-1R(MKO) mice. This distinct kinetic of epidermal cytokine expression was paralleled by proinflammatory macrophage activation in controls and a noninflammatory phenotype in mutants. Collectively, our findings provide evidence for a proinflammatory IR/IGF-1R-dependent pathway in myeloid cells that plays a critical role in the dynamics of an epidermal-dermal cross-talk in cutaneous inflammatory responses, and may add to the mechanistic understanding of diseases associated with disturbances in myeloid cell IR/IGF-1R signaling, including DM. PMID:26519530

  11. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci

    PubMed Central

    Philippe, Claude; Vargas-Landin, Dulce B; Doucet, Aurélien J; van Essen, Dominic; Vera-Otarola, Jorge; Kuciak, Monika; Corbin, Antoine; Nigumann, Pilvi; Cristofari, Gaël

    2016-01-01

    LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. DOI: http://dx.doi.org/10.7554/eLife.13926.001 PMID:27016617

  12. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression

    PubMed Central

    Chan, Chia-Hsin; Morrow, John Kenneth; Li, Chien-Feng; Gao, Yuan; Jin, Guoxiang; Moten, Asad; Stagg, Loren J.; Ladbury, John E.; Cai, Zhen; Xu, Dazhi; Logothetis, Christopher J.; Hung, Mien-Chie; Zhang, Shuxing; Lin, Hui-Kuan

    2013-01-01

    Skp2 E3 ligase is overexpressed in numerous human cancers and plays a critical role in cell cycle progression, senescence, metabolism, cancer progression and metastasis. In the present study, we identified a specific Skp2 inhibitor using high-throughput in silico screening of large and diverse chemical libraries. This Skp2 inhibitor selectively suppresses Skp2 E3 ligase activity, but not activity of other SCF complexes. It also phenocopies the effects observed upon genetic Skp2 deficiency, such as suppressing survival, Akt-mediated glycolysis as well as triggering p53-independent cellular senescence. Strikingly, we discovered a critical function of Skp2 in positively regulating cancer stem cell populations and self-renewal ability through genetic and pharmacological approaches. Notably, Skp2 inhibitor exhibits potent anti-tumor activities in multiple animal models and cooperates with chemotherapeutic agents to reduce cancer cell survival. Our study thus provides pharmacological evidence that Skp2 is a promising target for restricting cancer stem cell and cancer progression. PMID:23911321

  13. Myeloid lineage cell-restricted insulin resistance protects apolipoproteinE-deficient mice against atherosclerosis

    PubMed Central

    Baumgartl, Julia; Baudler, Stephanie; Scherner, Maximilian; Babaev, Vladimir; Makowski, Liza; Suttles, Jill; McDuffie, Marcia; Fazio, Sergio; Kahn, C. Ronald; Hotamisligil, Gökhan S.; Krone, Wilhelm; Linton, MacRae; Brüning, Jens C.

    2014-01-01

    Summary Inflammatory processes play an important role in the pathogenesis of vascular diseases, and insulin-resistant diabetes mellitus type 2 represents an important risk factor for the development of atherosclerosis. To directly address the role of insulin resistance in myeloid lineage cells in the development of atherosclerosis, we have created mice with myeloid lineagespecific inactivation of the insulin receptor gene. On an ApoE-deficient background, MphIRKO mice developed smaller atherosclerotic lesions. There was a dramatic decrease in LPS-stimulated IL-6 and IL-1β expression in the presence of macrophage autonomous insulin resistance. Consistently, while insulin-resistant IRS-2-deficient mice on an ApoE-deficient background display aggravated atherosclerosis, fetal liver cell transplantation of IRS-2–/–ApoE–/– cells ameliorated atherosclerosis in Apo-E-deficient mice. Thus, systemic versus myeloid cell-restricted insulin resistance has opposing effects on the development of atherosclerosis, providing direct evidence that myeloid lineage autonomous insulin signaling provides proinflammatory signals predisposing to the development of atherosclerosis. PMID:16581002

  14. Self-recognition specificity expressed by T cells from nude mice. Absence of detectable Ia-restricted T cells in nude mice that do exhibit self-K/D-restricted T cell responses

    SciTech Connect

    Kruisbeek, A.M.; Davis, M.L.; Matis, L.A.; Longo, D.L.

    1984-09-01

    The presence in athymic nude mice of precursor T cells with self-recognition specificity for either H-2 K/D or H-2 I region determinants was investigated. Chimeras were constructed of lethally irradiated parental mice receiving a mixture of F1 nude mouse (6-8 wk old) spleen and bone marrow cells. The donor inoculum was deliberately not subjected to any T cell depletion procedure, so that any potential major histocompatibility complex-committed precursor T cells were allowed to differentiate and expand in the normal parental recipients. 3 mo after reconstitution, the chimeras were immunized with several protein antigens in complete Freund's adjuvant in the footpads and their purified draining lymph node T cells tested 10 d later for ability to recognize antigen on antigen-presenting cells of either parental haplotype. Also, their spleen and lymph node cells were tested for ability to generate a cytotoxic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified stimulator cells of either parental haplotype. It was demonstrated that T cell proliferative responses of these F1(nude)----parent chimeras were restricted solely to recognizing parental host I region determinants as self and expressed the Ir gene phenotype of the host. In contrast, CTL responses could be generated (in the presence of interleukin 2) to TNP-modified stimulator cells of either parental haplotype. Thus these results indicate that nude mice which do have CTL with self-specificity for K/D region determinants lack proliferating T cells with self-specificity for I region determinants. These results provide evidence for the concepts that development of the I region-restricted T cell repertoire is strictly an intrathymically determined event and that young nude mice lack the unique thymic elements responsible for edu

  15. [Disparity of apoptotic response in human breast cancer cell lines MCF-7 and MDA-MB-231 after infection with recombinant adenovirus encoding the VP2 gene of infectious bursail disease virus].

    PubMed

    Shin, Tan Seok; Allaudin, Zeenathul Nazariah; Lila, Mohd-Azmi Mohd; Rahman, Sheikh-Omar Abdul

    2014-01-01

    Recombinant adenovirus encoding the VP2 gene of infectious bursal disease virus (ADV-VP2) has shown potent anti-tumour effects due to its capability of apoptotic induction in cancer cells. In the present study, human breast cancer cells MCF-7 and MDA-MB-231 were infected with ADV-VP2. The expression of VP2 protein was registered 4 h post-infection, particularly in MCF-7 cells. Multiple time-point DNA ladder assay demonstrated that ADV-VP2 infected MDA-MB-231 and MCF-7 cells endured apoptosis as early as 8 and 12 h post-infection, respectively. Apoptosis induction in both MDA-MB-231 and MCF-7 cells, albeit different start points, lasted til 36 h post-infection. The induction of apoptosis by ADV-VP2 was further shown by the TUNEL assay, with dark brown discoloration of apoptotic cells. The present study also explored the different stages of apoptosis by Annexin V/PI double staining flow cytometry quantification. Treated MCF-7 and MDA-MB-231 cells, respectively detected 25.58 +/- 9.02 and 14.51 +/- 3.12% of early apoptotic cells, 6.09 +/- 4.06 and 77.12 +/- 5.09% of late apoptotic cells. Results revealed that there were significant differences in the number of cells of both types which underwent early and late apoptosis. Significant differences were also observed among viable and apoptotic cells which have been post treated with ADV-VP2. The apoptotic effects of ADV-VP2 on human breast cancer cell lines were consistently demonstrated by three apoptosis detection methods. Therefore, a cancer vaccine basing on gene therapy could be developed in the near future using the present construct. PMID:25842834

  16. Generation of Antiviral Major Histocompatibility Complex Class I-Restricted T Cells in the Absence of CD8 Coreceptors ▿

    PubMed Central

    Andrews, Nicolas P.; Pack, Christopher D.; Lukacher, Aron E.

    2008-01-01

    The CD8 coreceptor is important for positive selection of major histocompatibility complex I (MHC-I)-restricted thymocytes and in the generation of pathogen-specific T cells. However, the requirement for CD8 in these processes may not be essential. We previously showed that mice lacking β2-microglobulin are highly susceptible to tumors induced by mouse polyoma virus (PyV), but CD8-deficient mice are resistant to these tumors. In this study, we show that CD8-deficient mice also control persistent PyV infection as efficiently as wild-type mice and generate a substantial virus-specific, MHC-I-restricted, T-cell response. Infection with vesicular stomatitis virus (VSV), which is acutely cleared, also recruited antigen-specific, MHC-I-restricted T cells in CD8-deficient mice. Yet, unlike in VSV infection, the antiviral MHC-I-restricted T-cell response to PyV has a prolonged expansion phase, indicating a requirement for persistent infection in driving T-cell inflation in CD8-deficient mice. Finally, we show that the PyV-specific, MHC-I-restricted T cells in CD8-deficient mice, while maintained long term at near-wild-type levels, are short lived in vivo and have extremely narrow T-cell receptor repertoires. These findings provide a possible explanation for the resistance of CD8-deficient mice to PyV-induced tumors and have implications for the maintenance of virus-specific MHC-I-restricted T cells during persistent infection. PMID:18337581

  17. An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells

    SciTech Connect

    Cardoso, F.M.; Kato, Sayuri E.M.; Huang Wenying; Flint, S. Jane; Gonzalez, Ramon A.

    2008-09-01

    It is well established that the human subgroup C adenovirus type 5 (Ad5) E1B 55 kDa protein can regulate the activity and concentration of the cellular tumor suppressor, p53. However, the contribution(s) of these functions of the E1B protein to viral reproduction remains unclear. To investigate this issue, we examined properties of p53 in normal human cells infected by E1B mutant viruses that display defective entry into the late phase or viral late mRNA export. The steady-state concentrations of p53 were significantly higher in cells infected by the E1B 55 kDa null mutant Hr6 or three mutants carrying small insertions in the E1B 55 kDa protein coding sequence than in Ad5-infected cells. Nevertheless, none of the mutants induced apoptosis in infected cells. Rather, the localization of p53 to E1B containing nuclear sites observed during infection by Ad5 was prevented by mutations that impair interaction of the E1B protein with p53 and/or with the E4 Orf6 protein. These results indicate that the E1B protein fulfills an early function that correlates efficient entry into the late phase with the localization of E1B and p53 in the nucleus of Ad5-infected normal human cells.

  18. Cyclophilin A-Dependent Restriction of Human Immunodeficiency Virus Type 1 Capsid Mutants for Infection of Nondividing Cells

    PubMed Central

    Qi, Mingli; Yang, Ruifeng; Aiken, Christopher

    2008-01-01

    Among retroviruses, lentiviruses are unusual in their ability to efficiently infect both dividing and nondividing cells, such as activated T cells and macrophages, respectively. Recent studies implicate the viral capsid protein (CA) as a key determinant of cell-cycle-independent infection by human immunodeficiency virus type 1 (HIV-1). We investigated the effects of the host cell protein cyclophilin A (CypA), which binds to HIV-1 CA, on HIV-1 infection of nondividing cells. The HIV-1 CA mutants A92E, T54A, and R132K were impaired for infection of aphidicolin-arrested HeLa cells, but not HOS cells. The mutants synthesized normal quantities of two-long-terminal-repeat circles in arrested HeLa cells, indicating that the mutant preintegration complexes can enter the nuclei of both dividing and nondividing cells. The impaired infectivity of the CA mutants on both dividing and nondividing HeLa cells was relieved by either pharmacological or genetic disruption of the CypA-CA interaction or by RNA interference-mediated depletion of CypA expression in target cells. A second-site suppressor of the CypA-restricted phenotype also restored the ability of CypA-restricted HIV-1 mutants to infect growth-arrested HeLa cells. These results indicate that CypA-restricted mutants are specifically impaired at a step between nuclear import and integration in nondividing HeLa cells. This study reveals a novel target cell-specific restriction of HIV-1 CA mutants in nondividing cells that is dependent on CypA-CA interactions. PMID:18829762

  19. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  20. RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells.

    PubMed

    Höckendorf, Ulrike; Yabal, Monica; Herold, Tobias; Munkhbaatar, Enkhtsetseg; Rott, Stephanie; Jilg, Stefanie; Kauschinger, Johanna; Magnani, Giovanni; Reisinger, Florian; Heuser, Michael; Kreipe, Hans; Sotlar, Karl; Engleitner, Thomas; Rad, Roland; Weichert, Wilko; Peschel, Christian; Ruland, Jürgen; Heikenwalder, Mathias; Spiekermann, Karsten; Slotta-Huspenina, Julia; Groß, Olaf; Jost, Philipp J

    2016-07-11

    Since acute myeloid leukemia (AML) is characterized by the blockade of hematopoietic differentiation and cell death, we interrogated RIPK3 signaling in AML development. Genetic loss of Ripk3 converted murine FLT3-ITD-driven myeloproliferation into an overt AML by enhancing the accumulation of leukemia-initiating cells (LIC). Failed inflammasome activation and cell death mediated by tumor necrosis factor receptor caused this accumulation of LIC exemplified by accelerated leukemia onset in Il1r1(-/-), Pycard(-/-), and Tnfr1/2(-/-) mice. RIPK3 signaling was partly mediated by mixed lineage kinase domain-like. This link between suppression of RIPK3, failed interleukin-1β release, and blocked cell death was supported by significantly reduced RIPK3 in primary AML patient cohorts. Our data identify RIPK3 and the inflammasome as key tumor suppressors in AML. PMID:27411587

  1. Adenovirus E3/19K Promotes Evasion of NK Cell Recognition by Intracellular Sequestration of the NKG2D Ligands Major Histocompatibility Complex Class I Chain-Related Proteins A and B▿

    PubMed Central

    McSharry, Brian P.; Burgert, Hans-Gerhard; Owen, Douglas P.; Stanton, Richard J.; Prod'homme, Virginie; Sester, Martina; Koebernick, Katja; Groh, Veronika; Spies, Thomas; Cox, Steven; Little, Ann-Margaret; Wang, Eddie C. Y.; Tomasec, Peter; Wilkinson, Gavin W. G.

    2008-01-01

    The adenovirus (Ad) early transcription unit 3 (E3) encodes multiple immunosubversive functions that are presumed to facilitate the establishment and persistence of infection. Indeed, the capacity of E3/19K to inhibit transport of HLA class I (HLA-I) to the cell surface, thereby preventing peptide presentation to CD8+ T cells, has long been recognized as a paradigm for viral immune evasion. However, HLA-I downregulation has the potential to render Ad-infected cells vulnerable to natural killer (NK) cell recognition. Furthermore, expression of the immediate-early Ad gene E1A is associated with efficient induction of ligands for the key NK cell-activating receptor NKG2D. Here we show that while infection with wild-type Ad enhances synthesis of the NKG2D ligands, major histocompatibility complex class I chain-related proteins A and B (MICA and MICB), their expression on the cell surface is actively suppressed. Both MICA and MICB are retained within the endoplasmic reticulum as immature endoglycosidase H-sensitive forms. By analyzing a range of cell lines and viruses carrying mutated versions of the E3 gene region, E3/19K was identified as the gene responsible for this activity. The structural requirements within E3/19K necessary to sequester MICA/B and HLA-I are similar. In functional assays, deletion of E3/19K rendered Ad-infected cells more sensitive to NK cell recognition. We report the first NK evasion function in the Adenoviridae and describe a novel function for E3/19K. Thus, E3/19K has a dual function: inhibition of T-cell recognition and NK cell activation. PMID:18287244

  2. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  3. Serum from humans on long-term calorie restriction enhances stress resistance in cell culture.

    PubMed

    Omodei, Daniela; Licastro, Danilo; Salvatore, Francesco; Crosby, Seth D; Fontana, Luigi

    2013-08-01

    Calorie restriction (CR) without malnutrition is the most robust intervention to slow aging and extend healthy lifespan in experimental model organisms. Several metabolic and molecular adaptations have been hypothesized to play a role in mediating the anti-aging effects of CR, including enhanced stress resistance, reduced oxidative stress and several neuroendocrine modifications. However, little is known about the independent effect of circulating factors in modulating key molecular pathways. In this study, we used sera collected from individuals practicing long-term CR and from age- and sex-matched individuals on a typical US diet to culture human primary fibroblasts and assess the effects on gene expression and stress resistance. We show that treatment of cultured cells with CR sera caused increased expression of stress-response genes and enhanced tolerance to oxidants. Cells cultured in serum from CR individuals showed a 30% increase in resistance to H2O2 damage. Consistently, SOD2 and GPX1 mRNA, two key endogenous antioxidant enzymes, were increased by 2 and 2.5 folds respectively in cells cultured with CR sera. These cellular and molecular adaptations mirror some of the key effects of CR in animals, and further suggest that circulating factors contribute to the CR-mediated protection against oxidative stress and stress-response in humans as well. PMID:23912304

  4. Canine adenovirus downstream processing protocol.

    PubMed

    Puig, Meritxell; Piedra, Jose; Miravet, Susana; Segura, María Mercedes

    2014-01-01

    Adenovirus vectors are efficient gene delivery tools. A major caveat with vectors derived from common human adenovirus serotypes is that most adults are likely to have been exposed to the wild-type virus and exhibit active immunity against the vectors. This preexisting immunity limits their clinical success. Strategies to circumvent this problem include the use of nonhuman adenovirus vectors. Vectors derived from canine adenovirus type 2 (CAV-2) are among the best-studied representatives. CAV-2 vectors are particularly attractive for the treatment of neurodegenerative disorders. In addition, CAV-2 vectors have shown great promise as oncolytic agents in virotherapy approaches and as vectors for recombinant vaccines. The rising interest in CAV-2 vectors calls for the development of scalable GMP compliant production and purification strategies. A detailed protocol describing a complete scalable downstream processing strategy for CAV-2 vectors is reported here. Clarification of CAV-2 particles is achieved by microfiltration. CAV-2 particles are subsequently concentrated and partially purified by ultrafiltration-diafiltration. A Benzonase(®) digestion step is carried out between ultrafiltration and diafiltration operations to eliminate contaminating nucleic acids. Chromatography purification is accomplished in two consecutive steps. CAV-2 particles are first captured and concentrated on a propyl hydrophobic interaction chromatography column followed by a polishing step using DEAE anion exchange monoliths. Using this protocol, high-quality CAV-2 vector preparations containing low levels of contamination with empty viral capsids and other inactive vector forms are typically obtained. The complete process yield was estimated to be 38-45 %. PMID:24132487

  5. Use of Oligonucleotide Microarrays for Rapid Detection and Serotyping of Acute Respiratory Disease-Associated Adenoviruses

    PubMed Central

    Lin, Baochuan; Vora, Gary J.; Thach, Dzung; Walter, Elizabeth; Metzgar, David; Tibbetts, Clark; Stenger, David A.

    2004-01-01

    The cessation of the adenovirus vaccination program for military trainees has resulted in several recent acute respiratory disease (ARD) outbreaks. In the absence of vaccination, rapid detection methods are necessary for the timely implementation of measures to prevent adenovirus transmission within military training facilities. To this end, we have combined a fluorogenic real-time multiplex PCR assay with four sets of degenerate PCR primers that target the E1A, fiber, and hexon genes with a long oligonucleotide microarray capable of identifying the most common adenovirus serotypes associated with adult respiratory tract infections (serotypes 3, 4, 7, 16, and 21) and a representative member of adenovirus subgroup C (serotype 6) that is a common cause of childhood ARD and that often persists into adulthood. Analyses with prototype strains demonstrated unique hybridization patterns for representative members of adenovirus subgroups B1, B2, C, and E, thus allowing serotype determination. Microarray-based sensitivity assessments revealed lower detection limits (between 1 and 100 genomic copies) for adenovirus serotype 4 (Ad4) and Ad7 cell culture lysates, clinical nasal washes, and throat swabs and purified DNA from clinical samples. When adenovirus was detected from coded clinical samples, the results obtained by this approach demonstrated an excellent concordance with those obtained by the more established method of adenovirus identification as well as by cell culture with fluorescent-antibody staining. Finally, the utility of this method was further supported by its ability to detect adenoviral coinfections, contamination, and, potentially, recombination events. Taken together, the results demonstrate the usefulness of the simple and rapid diagnostic method developed for the unequivocal identification of ARD-associated adenoviral serotypes from laboratory or clinical samples that can be completed in 1.5 to 4.0 h. PMID:15243087

  6. Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer.

    PubMed

    Wong, Carmen M; Poulin, Kathy L; Tong, Grace; Christou, Carin; Kennedy, Michael A; Falls, Theresa; Bell, John C; Parks, Robin J

    2016-01-01

    Adenoviruses (Ads) are used in numerous preclinical and clinical studies for delivery of anti-cancer therapeutic genes. Unfortunately, Ad has a poor ability to distribute throughout a tumor mass after intratumoral injection, and infects cells primarily within the immediate area of the injection tract. Thus, Ad-encoded transgene expression is typically limited to only a small percentage of cells within the tumor. One method to increase the proportion of the tumor impacted by Ad is through expression of fusogenic proteins. Infection of a single cell with an Ad vector encoding a fusogenic protein should lead to syncytium formation with adjacent cells, effectively spreading the effect of Ad and Ad-encoded therapeutic transgenes to a greater percentage of the tumor mass. Moreover, syncytium formation can be cytotoxic, suggesting that such proteins may be effective sole therapeutics. We show that an early region 1 (E1)-deleted Ad expressing reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein caused extensive cell fusion in the replication-permissive 293 cell line and at high multiplicity of infection in non-permissive human lung adenocarcinoma A549 cells in vitro. FAST protein expression in the A549 cancer cell line led to a loss of cellular metabolic activity and membrane integrity, which correlated with induction of apoptosis. However, in an A549 xenograft CD-1 nude mouse cancer model, Ad-mediated FAST gene delivery did not induce detectable cell fusion, reduce tumor burden nor enhance mouse survival compared to controls. Taken together, our results show that, although AdFAST can enhance cancer cell killing in vitro, it is not effective as a sole therapeutic in the A549 tumor model in vivo. PMID:26986751

  7. Adenovirus-Mediated Expression of the p14 Fusion-Associated Small Transmembrane Protein Promotes Cancer Cell Fusion and Apoptosis In Vitro but Does Not Provide Therapeutic Efficacy in a Xenograft Mouse Model of Cancer

    PubMed Central

    Wong, Carmen M.; Poulin, Kathy L.; Tong, Grace; Christou, Carin; Kennedy, Michael A.; Falls, Theresa; Bell, John C.; Parks, Robin J.

    2016-01-01

    Adenoviruses (Ads) are used in numerous preclinical and clinical studies for delivery of anti-cancer therapeutic genes. Unfortunately, Ad has a poor ability to distribute throughout a tumor mass after intratumoral injection, and infects cells primarily within the immediate area of the injection tract. Thus, Ad-encoded transgene expression is typically limited to only a small percentage of cells within the tumor. One method to increase the proportion of the tumor impacted by Ad is through expression of fusogenic proteins. Infection of a single cell with an Ad vector encoding a fusogenic protein should lead to syncytium formation with adjacent cells, effectively spreading the effect of Ad and Ad-encoded therapeutic transgenes to a greater percentage of the tumor mass. Moreover, syncytium formation can be cytotoxic, suggesting that such proteins may be effective sole therapeutics. We show that an early region 1 (E1)-deleted Ad expressing reptilian reovirus p14 fusion-associated small transmembrane (FAST) protein caused extensive cell fusion in the replication-permissive 293 cell line and at high multiplicity of infection in non-permissive human lung adenocarcinoma A549 cells in vitro. FAST protein expression in the A549 cancer cell line led to a loss of cellular metabolic activity and membrane integrity, which correlated with induction of apoptosis. However, in an A549 xenograft CD-1 nude mouse cancer model, Ad-mediated FAST gene delivery did not induce detectable cell fusion, reduce tumor burden nor enhance mouse survival compared to controls. Taken together, our results show that, although AdFAST can enhance cancer cell killing in vitro, it is not effective as a sole therapeutic in the A549 tumor model in vivo. PMID:26986751

  8. The G1/S Specific Cyclin D2 Is a Regulator of HIV-1 Restriction in Non-proliferating Cells

    PubMed Central

    Badia, Roger; Pujantell, Maria; Riveira-Muñoz, Eva; Puig, Teresa; Torres-Torronteras, Javier; Martí, Ramón; Clotet, Bonaventura; Ampudia, Rosa M.; Ballana, Ester

    2016-01-01

    Macrophages are a heterogeneous cell population strongly influenced by differentiation stimuli that become susceptible to HIV-1 infection after inactivation of the restriction factor SAMHD1 by cyclin-dependent kinases (CDK). Here, we have used primary human monocyte-derived macrophages differentiated through different stimuli to evaluate macrophage heterogeneity on cell activation and proliferation and susceptibility to HIV-1 infection. Stimulation of monocytes with GM-CSF induces a non-proliferating macrophage population highly restrictive to HIV-1 infection, characterized by the upregulation of the G1/S-specific cyclin D2, known to control early steps of cell cycle progression. Knockdown of cyclin D2, enhances HIV-1 replication in GM-CSF macrophages through inactivation of SAMHD1 restriction factor by phosphorylation. Co-immunoprecipitation experiments show that cyclin D2 forms a complex with CDK4 and p21, a factor known to restrict HIV-1 replication by affecting the function of the downstream cascade that leads to SAMHD1 deactivation. Thus, we demonstrate that cyclin D2 acts as regulator of cell cycle proteins affecting SAMHD1-mediated HIV-1 restriction in non-proliferating macrophages. PMID:27541004

  9. The G1/S Specific Cyclin D2 Is a Regulator of HIV-1 Restriction in Non-proliferating Cells.

    PubMed

    Badia, Roger; Pujantell, Maria; Riveira-Muñoz, Eva; Puig, Teresa; Torres-Torronteras, Javier; Martí, Ramón; Clotet, Bonaventura; Ampudia, Rosa M; Vives-Pi, Marta; Esté, José A; Ballana, Ester

    2016-08-01

    Macrophages are a heterogeneous cell population strongly influenced by differentiation stimuli that become susceptible to HIV-1 infection after inactivation of the restriction factor SAMHD1 by cyclin-dependent kinases (CDK). Here, we have used primary human monocyte-derived macrophages differentiated through different stimuli to evaluate macrophage heterogeneity on cell activation and proliferation and susceptibility to HIV-1 infection. Stimulation of monocytes with GM-CSF induces a non-proliferating macrophage population highly restrictive to HIV-1 infection, characterized by the upregulation of the G1/S-specific cyclin D2, known to control early steps of cell cycle progression. Knockdown of cyclin D2, enhances HIV-1 replication in GM-CSF macrophages through inactivation of SAMHD1 restriction factor by phosphorylation. Co-immunoprecipitation experiments show that cyclin D2 forms a complex with CDK4 and p21, a factor known to restrict HIV-1 replication by affecting the function of the downstream cascade that leads to SAMHD1 deactivation. Thus, we demonstrate that cyclin D2 acts as regulator of cell cycle proteins affecting SAMHD1-mediated HIV-1 restriction in non-proliferating macrophages. PMID:27541004

  10. A CD46-binding chimpanzee adenovirus vector as a vaccine carrier.

    PubMed

    Tatsis, Nia; Blejer, Ariella; Lasaro, Marcio O; Hensley, Scott E; Cun, Ann; Tesema, Lello; Li, Yan; Gao, Guang-Ping; Xiang, Zhi Q; Zhou, Dongming; Wilson, James M; Ertl, Hildegund C J

    2007-03-01

    A replication-defective chimeric vector based on the chimpanzee adenovirus serotype C1 was developed and tested as a vaccine carrier in mice. The AdC1 virus is closely related to human adenoviruses of subgroup B2 and uses CD46 for cell attachment. To overcome poor growth of E1-deleted AdC1 vectors on cell lines that provide the E1 of adenovirus of the human serotype 5 (AdHu5) virus in trans, the inverted terminal repeats and some of the early genes of AdC1 were replaced with those from AdC5, a chimpanzee origin adenovirus of subfamily E. The chimeric AdC1/C5 vector efficiently transduces CD46-expressing mouse dendritic cells (DCs) in vitro and initiates their maturation. Transduction of DCs in vivo is inefficient in CD46 transgenic mice. The AdC1/C5 vector induces transgene product-specific B- and CD8(+) T-cell responses in mice. Responses are slightly higher in wild-type mice than in CD46 transgenic mice. Transgene product-specific T-cell responses elicited by the AdC1/C5 vector can be increased by priming or boosting with a heterologous adenovirus vector. Pre-existing immunity to adenovirus of the common human serotype 5 does not affect induction of cell-mediated immune responses by the AdC1/C5 vector. This vector provides an additional tool in a repertoire of adenovirus-based vaccine vectors. PMID:17228314

  11. Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression

    PubMed Central

    Li, Yuanyuan; Liu, Liang; Tollefsbol, Trygve O.

    2010-01-01

    Cancer cells metabolize glucose at elevated rates and have a higher sensitivity to glucose reduction. However, the precise molecular mechanisms leading to different responses to glucose restriction between normal and cancer cells are not fully understood. We analyzed normal WI-38 and immortalized WI-38/S fetal lung fibroblasts and found that glucose restriction resulted in growth inhibition and apoptosis in WI-38/S cells, whereas it induced lifespan extension in WI-38 cells. Moreover, in WI-38/S cells glucose restriction decreased expression of hTERT (human telomerase reverse transcriptase) and increased expression of p16INK4a. Opposite effects were found in the gene expression of hTERT and p16 in WI-38 cells in response to glucose restriction. The altered gene expression was partly due to glucose restriction-induced DNA methylation changes and chromatin remodeling of the hTERT and p16 promoters in normal and immortalized WI-38 cells. Furthermore, glucose restriction resulted in altered hTERT and p16 expression in response to epigenetic regulators in WI-38 rather than WI-38/S cells, suggesting that energy stress-induced differential epigenetic regulation may lead to different cellular fates in normal and precancerous cells. Collectively, these results provide new insights into the epigenetic mechanisms of a nutrient control strategy that may contribute to cancer therapy as well as antiaging approaches.—Li, Y., Liu, L., Tollefsbol, T. O. Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. PMID:20019239

  12. Novel bat adenoviruses with an extremely large E3 gene.

    PubMed

    Tan, Bing; Yang, Xing-Lou; Ge, Xing-Yi; Peng, Cheng; Zhang, Yun-Zhi; Zhang, Li-Biao; Shi, Zheng-Li

    2016-07-01

    Bats carry diverse RNA viruses, some of which are responsible for human diseases. Compared to bat-borne RNA viruses, relatively little information is known regarding bat-borne DNA viruses. In this study, we isolated and characterized three novel bat adenoviruses (BtAdV WIV9-11) from Rhinolophus sinicus. Their genomes, which are highly similar to each other but distinct from those of previously sequenced adenoviruses (AdVs), are 37 545, 37 566 and 38 073 bp in size, respectively. An unusually large E3 gene was identified in their genomes. Phylogenetic and taxonomic analyses suggested that these isolates represent a distinct species of the genus Mastadenovirus. Cell susceptibility assays revealed a broad cell tropism for these isolates, indicating that they have a potentially wide host range. Our results expand the understanding of genetic diversity of bat AdVs. PMID:27032099

  13. Fully functional HLA B27-restricted CD4+ as well as CD8+ T cell responses in TCR transgenic mice.

    PubMed

    Roddis, Matthew; Carter, Robert W; Sun, Mei-Yi; Weissensteiner, Thomas; McMichael, Andrew J; Bowness, Paul; Bodmer, Helen C

    2004-01-01

    The strong association of HLA B27 with spondyloarthropathies contrasts strikingly with most autoimmune diseases, which are HLA class II associated and thought to be mediated by CD4+ T lymphocytes. By introducing a human-derived HLA B27-restricted TCR into HLA B27 transgenic mice, we have obtained a functional TCR transgenic model, GRb, dependent on HLA B27 for response. Surprisingly, HLA B27 supported CD4+ as well as CD8+ T cell responses in vivo and in vitro. Further, HLA B27-restricted CD4+ T cells were capable of differentiation into a range of Th1 and Th2 T cell subsets with normal patterns of cytokine expression. The transgenic T cells were also able to enhance clearance of recombinant vaccinia virus containing influenza nucleoprotein in vivo. This is the first description of a human HLA class I-restricted TCR transgenic line. The existence of CD4+ MHC class I-restricted T cells has significant implications for immune regulation in autoimmunity and, in particular, in HLA B27-associated arthritis. We believe that this model provides a novel system for the study of unusual T cell behavior in vivo. PMID:14688321

  14. Is nectar reabsorption restricted by the stalk cells of floral and extrafloral nectary trichomes?

    PubMed

    Cardoso-Gustavson, P; Davis, A R

    2015-01-01

    Reabsorption is a phase of nectar dynamics that occurs concurrently with secretion; it has been described in floral nectaries that exude nectar through stomata or unicellular trichomes, but has not yet been recorded in extrafloral glands. Apparently, nectar reabsorption does not occur in multicellular secretory trichomes (MST) due to the presence of lipophilic impregnations - which resemble Casparian strips - in the anticlinal walls of the stalk cells. It has been assumed that these impregnations restrict solute movement within MST to occur unidirectionally and exclusively by the symplast, thereby preventing nectar reflux toward the underlying nectary tissues. We hypothesised that reabsorption is absent in nectaries possessing MST. The fluorochrome lucifer yellow (LYCH) was applied to standing nectar of two floral and extrafloral glands of distantly related species, and then emission spectra from nectary sections were systematically analysed using confocal microscopy. Passive uptake of LYCH via the stalk cells to the nectary tissues occurred in all MST examined. Moreover, we present evidence of nectar reabsorption in extrafloral nectaries, demonstrating that LYCH passed the stalk cells of MST, although it did not reach the deepest nectary tissues. Identical (control) experiments performed with neutral red (NR) demonstrated no uptake of this stain by actively secreting MST, whereas diffusion of NR did occur in plasmolysed MST of floral nectaries at the post-secretory phase, indicating that nectar reabsorption by MST is governed by stalk cell physiology. Interestingly, non-secretory trichomes failed to reabsorb nectar. The role of various nectary components is discussed in relation to the control of nectar reabsorption by secretory trichomes. PMID:24987788

  15. Dihydroartemisinin restricts hepatic stellate cell contraction via an FXR-S1PR2-dependent mechanism.

    PubMed

    Xu, Wenxuan; Lu, Chunfeng; Zhang, Feng; Shao, Jiangjuan; Zheng, Shizhong

    2016-05-01

    Hepatic stellate cells (HSCs) are universally acknowledged to play a stimulative role in the pathogenesis of hepatic fibrosis and portal hypertension. HSCs when activated in response to liver injury are characterized with many changes, with HSC contraction being the most common cause of portal hypertension. Previous studies have shown that dihydroartemisinine (DHA) is a potential antifibrotic natural product by inducing HSC apoptosis, whereas the role of DHA in regulating HSC contraction and the mechanisms involved remain a riddle. Recent studies have emphasized on the importance of farnesoid X receptor (FXR) and sphingosine-1-phosphate receptor 2 (S1PR2) in controlling cell contractility. This study showed that DHA strongly induced the mRNA and protein expression of FXR in LX-2 cells in a dose- and time-dependent manner and inhibited HSC activation, implying a conceivable impact of DHA on HSC contraction. The gel contraction assays and fluorescence staining of actin cytoskeleton verified that DHA dose-dependently limited contraction of collagen lattices and reorganization of actin stress fibers in LX-2 cells. DHA also decreased the phosphorylation of myosin light chain that is responsible for the contractile force of HSCs. Furthermore, gain- or loss-of-function analyses exhibited a FXR- and S1PR2-dependent mechanism of inhibiting HSC contraction by DHA, and DHA decreased S1PR2 expression by modulating FXR activation. Subsequent work revealed that inhibition of both Ca(2+) -dependent and Ca(2+) -sensitization signaling transductions contributed to DHA-induced HSC relaxation. In summary, these findings suggest that DHA could restrict HSC contraction through modulating FXR/S1PR2 pathway-mediated Ca(2+) -dependent and Ca(2+) -sensitization signaling. Our discoveries make DHA a potential candidate for portal hypertension. © 2016 IUBMB Life 68(5):376-387, 2016. PMID:27027402

  16. Tombusvirus-yeast interactions identify conserved cell-intrinsic viral restriction factors.

    PubMed

    Sasvari, Zsuzsanna; Alatriste Gonzalez, Paulina; Nagy, Peter D

    2014-01-01

    To combat viral infections, plants possess innate and adaptive immune pathways, such as RNA silencing, R gene and recessive gene-mediated resistance mechanisms. However, it is likely that additional cell-intrinsic restriction factors (CIRF) are also involved in limiting plant virus replication. This review discusses novel CIRFs with antiviral functions, many of them RNA-binding proteins or affecting the RNA binding activities of viral replication proteins. The CIRFs against tombusviruses have been identified in yeast (Saccharomyces cerevisiae), which is developed as an advanced model organism. Grouping of the identified CIRFs based on their known cellular functions and subcellular localization in yeast reveals that TBSV replication is limited by a wide variety of host gene functions. Yeast proteins with the highest connectivity in the network map include the well-characterized Xrn1p 5'-3' exoribonuclease, Act1p actin protein and Cse4p centromere protein. The protein network map also reveals an important interplay between the pro-viral Hsp70 cellular chaperone and the antiviral co-chaperones, and possibly key roles for the ribosomal or ribosome-associated factors. We discuss the antiviral functions of selected CIRFs, such as the RNA binding nucleolin, ribonucleases, WW-domain proteins, single- and multi-domain cyclophilins, TPR-domain co-chaperones and cellular ion pumps. These restriction factors frequently target the RNA-binding region in the viral replication proteins, thus interfering with the recruitment of the viral RNA for replication and the assembly of the membrane-bound viral replicase. Although many of the characterized CIRFs act directly against TBSV, we propose that the TPR-domain co-chaperones function as "guardians" of the cellular Hsp70 chaperone system, which is subverted efficiently by TBSV for viral replicase assembly in the absence of the TPR-domain co-chaperones. PMID:25157258

  17. Heterogeneous MHC II restriction pattern of autoreactive desmoglein 3 specific T cell responses in pemphigus vulgaris patients and normals.

    PubMed

    Hertl, M; Karr, R W; Amagai, M; Katz, S I

    1998-04-01

    Pemphigus vulgaris is a life threatening bullous autoimmune disease of the skin mediated by autoantibodies against desmoglein 3 (Dsg3) on epidermal keratinocytes. Pemphigus vulgaris patients exhibit T cell responses against Dsg3 that may serve as a target to modulate the production of pathogenic autoantibodies. Healthy carriers of major histocompatibility complex class II alleles identical or similar to those that are highly prevalent in pemphigus v