Science.gov

Sample records for cellular factors required

  1. Peptidyl-Prolyl Isomerase Pin1 Is a Cellular Factor Required for Hepatitis C Virus Propagation▿

    PubMed Central

    Lim, Yun-Sook; Tran, Huong T. L.; Park, Soo-Je; Yim, Seung-Ae; Hwang, Soon B.

    2011-01-01

    The life cycle of hepatitis C virus (HCV) is highly dependent on cellular factors. Using small interfering RNA (siRNA) library screening, we identified peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) as a host factor involved in HCV propagation. Here we demonstrated that silencing of Pin1 expression resulted in decreases in HCV replication in both HCV replicon cells and cell culture-grown HCV (HCVcc)-infected cells, whereas overexpression of Pin1 increased HCV replication. Pin1 interacted with both the NS5A and NS5B proteins. However, Pin1 expression was increased only by the NS5B protein. Both the protein binding and isomerase activities of Pin1 were required for HCV replication. Juglone, a natural inhibitor of Pin1, inhibited HCV propagation by inhibiting the interplay between the Pin1 and HCV NS5A/NS5B proteins. These data indicate that Pin1 modulates HCV propagation and may contribute to HCV-induced liver pathogenesis. PMID:21680504

  2. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis

    PubMed Central

    Smith, Gina A.; Fearnley, Gareth W.; Tomlinson, Darren C.; Harrison, Michael A.; Ponnambalam, Sreenivasan

    2015-01-01

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR–VEGF complexes with membrane trafficking along the endosome–lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR–VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. PMID:26285805

  3. trans activation of the simian virus 40 late promoter by large T antigen requires binding sites for the cellular transcription factor TEF-1.

    PubMed Central

    Casaz, P; Sundseth, R; Hansen, U

    1991-01-01

    Simian virus 40 (SV40) T antigen stimulates the level of transcription from several RNA polymerase II promoters, including the SV40 late promoter. The mechanism of trans activation appears to be indirect since binding of T antigen to specific DNA sequences is not required. However, specific promoter elements that respond to T antigen have not previously been defined. We identified DNA sequences from the SV40 late promoter whose ability to stimulate transcription is induced by the expression of T antigen. In particular, the Sph I + II motifs of the SV40 enhancer can confer T-antigen inducibility to the normally uninducible herpes simplex virus thymidine kinase gene promoter when multiple copies of the sequence are inserted 5' of the transcription initiation site and TATA sequence. Binding sites for the cellular transcription factor TEF-1 and octamer binding proteins are contained within the Sph I + II motifs, as well as at other positions in the SV40 promoter. To study the role of individual protein-binding sites in trans activation by T antigen, mutations were constructed in various TEF-1 and octamer protein-binding sites of the SV40 late promoter. These mutations did not significantly affect basal promoter activity. However, mutation of all three TEF-1 sites prevented detectable activation by T antigen. DNase I footprinting of the mutated promoters with purified proteins demonstrated that inducibility by T antigen correlated with binding affinity of TEF-1 for the DNA and not with binding affinity of an octamer binding protein. Images PMID:1658359

  4. Interactome Analysis of the Influenza A Virus Transcription/Replication Machinery Identifies Protein Phosphatase 6 as a Cellular Factor Required for Efficient Virus Replication

    PubMed Central

    York, Ashley; Hutchinson, Edward C.

    2014-01-01

    ABSTRACT The negative-sense RNA genome of influenza A virus is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRP). The viral RdRP is an important host range determinant, indicating that its function is affected by interactions with cellular factors. However, the identities and the roles of most of these factors remain unknown. Here, we employed affinity purification followed by mass spectrometry to identify cellular proteins that interact with the influenza A virus RdRP in infected human cells. We purified RdRPs using a recombinant influenza virus in which the PB2 subunit of the RdRP is fused to a Strep-tag. When this tagged subunit was purified from infected cells, copurifying proteins included the other RdRP subunits (PB1 and PA) and the viral nucleoprotein and neuraminidase, as well as 171 cellular proteins. Label-free quantitative mass spectrometry revealed that the most abundant of these host proteins were chaperones, cytoskeletal proteins, importins, proteins involved in ubiquitination, kinases and phosphatases, and mitochondrial and ribosomal proteins. Among the phosphatases, we identified three subunits of the cellular serine/threonine protein phosphatase 6 (PP6), including the catalytic subunit PPP6C and regulatory subunits PPP6R1 and PPP6R3. PP6 was found to interact directly with the PB1 and PB2 subunits of the viral RdRP, and small interfering RNA (siRNA)-mediated knockdown of the catalytic subunit of PP6 in infected cells resulted in the reduction of viral RNA accumulation and the attenuation of virus growth. These results suggest that PP6 interacts with and positively regulates the activity of the influenza virus RdRP. IMPORTANCE Influenza A viruses are serious clinical and veterinary pathogens, causing substantial health and economic impacts. In addition to annual seasonal epidemics, occasional global pandemics occur when viral strains adapt to humans from other species. To replicate efficiently and cause disease, influenza

  5. Cellular Restriction Factors of Feline Immunodeficiency Virus

    PubMed Central

    Zielonka, Jörg; Münk, Carsten

    2011-01-01

    Lentiviruses are known for their narrow cell- and species-tropisms, which are determined by cellular proteins whose absence or presence either support viral replication (dependency factors, cofactors) or inhibit viral replication (restriction factors). Similar to Human immunodeficiency virus type 1 (HIV-1), the cat lentivirus Feline immunodeficiency virus (FIV) is sensitive to recently discovered cellular restriction factors from non-host species that are able to stop viruses from replicating. Of particular importance are the cellular proteins APOBEC3, TRIM5α and tetherin/BST-2. In general, lentiviruses counteract or escape their species’ own variant of the restriction factor, but are targeted by the orthologous proteins of distantly related species. Most of the knowledge regarding lentiviral restriction factors has been obtained in the HIV-1 system; however, much less is known about their effects on other lentiviruses. We describe here the molecular mechanisms that explain how FIV maintains its replication in feline cells, but is largely prevented from cross-species infections by cellular restriction factors. PMID:22069525

  6. Material and mechanical factors: new strategy in cellular neurogenesis

    PubMed Central

    Stoll, Hillary; Kwon, Il Keun; Lim, Jung Yul

    2014-01-01

    Since damaged neural circuits are not generally self-recovered, developing methods to stimulate neurogenesis is critically required. Most studies have examined the effects of soluble pharmacological factors on the cellular neurogenesis. On the other hand, it is now recognized that the other extracellular factors, including material and mechanical cues, also have a strong potential to induce cellular neurogenesis. This article will review recent data on the material (chemical patterning, micro/nano-topography, carbon nanotube, graphene) and mechanical (static cue from substrate stiffness, dynamic cue from stretch and flow shear) stimulations of cellular neurogenesis. These approaches may provide new neural regenerative medicine protocols. Scaffolding material templates capable of triggering cellular neurogenesis can be explored in the presence of neurogenesis-stimulatory mechanical environments, and also with conventional soluble factors, to enhance axonal growth and neural network formation in neural tissue engineering. PMID:25422642

  7. 47 CFR 22.901 - Cellular service requirements and limitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Cellular service requirements and limitations. 22.901 Section 22.901 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.901 Cellular service requirements and limitations. The licensee of each...

  8. 47 CFR 22.901 - Cellular service requirements and limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the standard may be purchased from Global... SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.901 Cellular service requirements and... operates in compliance with this section. (a) Each cellular system must provide either mobile...

  9. Cellular factors implicated in filovirus entry.

    PubMed

    Bhattacharyya, Suchita; Hope, Thomas J

    2013-01-01

    Although filoviral infections are still occurring in different parts of the world, there are no effective preventive or treatment strategies currently available against them. Not only do filoviruses cause a deadly infection, but they also have the potential of being used as biological weapons. This makes it imperative to comprehensively study these viruses in order to devise effective strategies to prevent the occurrence of these infections. Entry is the foremost step in the filoviral replication cycle and different studies have reported the involvement of a myriad of cellular factors including plasma membrane components, cytoskeletal proteins, endosomal components, and cytosolic factors in this process. Signaling molecules such as the TAM family of receptor tyrosine kinases comprising of Tyro3, Axl, and Mer have also been implicated as putative entry factors. Additionally, filoviruses are suggested to bind to a common receptor and recent studies have proposed T-cell immunoglobulin and mucin domain 1 (TIM-1) and Niemann-Pick C1 (NPC1) as potential receptor candidates. This paper summarizes the existing literature on filoviral entry with a special focus on cellular factors involved in this process and also highlights some fundamental questions. Future research aimed at answering these questions could be very useful in designing novel antiviral therapeutics. PMID:23365575

  10. Identification of cellular factors binding to acetylated HIV-1 integrase.

    PubMed

    Allouch, Awatef; Cereseto, Anna

    2011-11-01

    The viral protein integrase (IN) catalyzes the integration of the HIV-1 cDNA into the host cellular genome. We have recently demonstrated that IN is acetylated by a cellular histone acetyltransferase, p300, which modifies three lysines located in the C-terminus of the viral factor (Cereseto et al. in EMBO J 24:3070-3081, 2005). This modification enhances IN catalytic activity, as demonstrated by in vitro assays. Consistently, mutations introduced in the targeted lysines greatly decrease the efficiency of HIV-1 integration. Acetylation was proven to regulate protein functions by modulating protein-protein interactions. HIV-1 to efficiently complete its replication steps, including the integration reaction, requires interacting with numerous cellular factors. Therefore, we sought to investigate whether acetylation might modulate the interaction between IN and the cellular factors. To this aim we performed a yeast two-hybrid screening that differs from the screenings so far performed (Rain et al. in Methods 47:291-297, 2009; Studamire and Goff in Retrovirology 5:48, 2008) for using as bait IN constitutively acetylated. From this analysis we have identified thirteen cellular factors involved in transcription, chromatin remodeling, nuclear transport, RNA binding, protein synthesis regulation and microtubule organization. To validate these interactions, binding assays were performed showing that acetylation increases the affinity of IN with specific factors. Nevertheless, few two-hybrid hits bind with the same affinity the acetylated and the unmodified IN. These results further underlie the relevance of IN post-translational modification by acetylation in HIV-1 replication cycle. PMID:20016921

  11. Drak Is Required for Actomyosin Organization During Drosophila Cellularization

    PubMed Central

    Chougule, Ashish B.; Hastert, Mary C.; Thomas, Jeffrey H.

    2016-01-01

    The generation of force by actomyosin contraction is critical for a variety of cellular and developmental processes. Nonmuscle myosin II is the motor that drives actomyosin contraction, and its activity is largely regulated by phosphorylation of the myosin regulatory light chain. During the formation of the Drosophila cellular blastoderm, actomyosin contraction drives constriction of microfilament rings, modified cytokinesis rings. Here, we find that Drak is necessary for most of the phosphorylation of the myosin regulatory light chain during cellularization. We show that Drak is required for organization of myosin II within the microfilament rings. Proper actomyosin contraction of the microfilament rings during cellularization also requires Drak activity. Constitutive activation of myosin regulatory light chain bypasses the requirement for Drak, suggesting that actomyosin organization and contraction are mediated through Drak’s regulation of myosin activity. Drak is also involved in the maintenance of furrow canal structure and lateral plasma membrane integrity during cellularization. Together, our observations suggest that Drak is the primary regulator of actomyosin dynamics during cellularization. PMID:26818071

  12. Translation Factors Specify Cellular Metabolic State.

    PubMed

    Mata, Juan

    2016-08-16

    In this issue of Cell Reports, Shah et al. present evidence that a subcomplex of the eIF3 translation initiation factor regulates translation of mRNAs encoding components of the mitochondrial electron transport chain and glycolytic enzymes, thus linking translational control with energy metabolism. PMID:27533178

  13. Cellular integrity is required for inhibition of initiation of cellular DNA synthesis by reovirus type 3.

    PubMed Central

    Roner, M R; Cox, D C

    1985-01-01

    Synchronized HeLa cells, primed for entry into the synthesis phase by amethopterin, were prevented from initiating DNA synthesis 9 h after infection with reovirus type 3. However, nuclei isolated from synchronized cells infected with reovirus for 9 or 16 h demonstrated a restored ability to synthesize DNA. The addition of enucleated cytoplasmic extracts from infected or uninfected cells did not affect this restored capacity for synthesis. The addition of ribonucleotide triphosphates to nuclei isolated from infected cells stimulated additional DNA synthesis, suggesting that these nuclei were competent to initiate new rounds of DNA replication. Permeabilization of infected cells did not restore the ability of these cells to synthesize DNA. Nucleoids isolated from intact or permeabilized cells, infected for 9 or 16 h displayed an increased rate of sedimentation when compared with nucleoids isolated from uninfected cells. Nucleoids isolated from the nuclei of infected cells demonstrated a rate of sedimentation similar to that of nucleoids isolated from the nuclei of uninfected cells. The inhibition of initiation of cellular DNA synthesis by reovirus type 3 appears not to have been due to a permanent alteration of the replication complex, but this inhibition could be reversed by the removal of that complex from factors unique to the structural or metabolic integrity of the infected cell. Images PMID:3968718

  14. Cellular monitoring systems for the assessment of space environmental factors

    NASA Astrophysics Data System (ADS)

    Hellweg, C. E.; Arenz, A.; Meier, M. M.; Baumstark-Khan, C.

    Harmful environmental factors - namely ionizing radiation - will continue to influence future manned space missions. The Cellular Biodiagnostic group at the German Aerospace Center (DLR) develops cellular monitoring systems, which include bacterial and mammalian cell systems capable of recognizing DNA damage as a consequence of the presence of genotoxic conditions. Such bioassay or biosensor systems will complement the physical detector systems used in space, insofar as they yield intrinsically biologically weighted measures of cellular responses. Furthermore, synergistic mutagenic and cancerogenic impacts of the radiation environment together with other potentially genotoxic constituents of the space habitat can be quantified using such systems, whose signals are especially relevant for the molecular damage to the DNA or the chromosomes. The experiment Cellular Responses to Radiation in Space (CERASP) has been selected by NASA to be performed on the International Space Station. It will supply basic information on the cellular response to radiation applied in microgravity. One of the biological end-points under investigation will be survival reflected by radiation-dependent reduction of constitutive expression of the enhanced variant of green fluorescent protein (EGFP), originally isolated from the bioluminescent jellyfish Aequorea victoria. A second end-point will be gene activation by space flight conditions in mammalian cells, based on fluorescent promoter reporter systems using the destabilized EGFP variant (d2EGFP). The promoter element to be investigated will reflect the activity of the NF-kB stress response pathway as an anti-apoptotic radiation response. DNA damage will be measured by fluorescent analysis of DNA unwinding (FADU). The systems have worked properly for terrestrial applications during the first experiments. Experiments using accelerated particles produced at the French heavy ion accelerator GANIL have given insights into cellular mechanisms

  15. Cellular Reprogramming Using Defined Factors and MicroRNAs

    PubMed Central

    Eguchi, Takanori; Kuboki, Takuo

    2016-01-01

    Development of human bodies, organs, and tissues contains numerous steps of cellular differentiation including an initial zygote, embryonic stem (ES) cells, three germ layers, and multiple expertized lineages of cells. Induced pluripotent stem (iPS) cells have been recently developed using defined reprogramming factors such as Nanog, Klf5, Oct3/4 (Pou5f1), Sox2, and Myc. This outstanding innovation is largely changing life science and medicine. Methods of direct reprogramming of cells into myocytes, neurons, chondrocytes, and osteoblasts have been further developed using modified combination of factors such as N-myc, L-myc, Sox9, and microRNAs in defined cell/tissue culture conditions. Mesenchymal stem cells (MSCs) and dental pulp stem cells (DPSCs) are also emerging multipotent stem cells with particular microRNA expression signatures. It was shown that miRNA-720 had a role in cellular reprogramming through targeting the pluripotency factor Nanog and induction of DNA methyltransferases (DNMTs). This review reports histories, topics, and idea of cellular reprogramming. PMID:27382371

  16. Cellular Factors Targeting APCs to Modulate Adaptive T Cell Immunity

    PubMed Central

    Do, Jeongsu; Min, Booki

    2014-01-01

    The fate of adaptive T cell immunity is determined by multiple cellular and molecular factors, among which the cytokine milieu plays the most important role in this process. Depending on the cytokines present during the initial T cell activation, T cells become effector cells that produce different effector molecules and execute adaptive immune functions. Studies thus far have primarily focused on defining how these factors control T cell differentiation by targeting T cells themselves. However, other non-T cells, particularly APCs, also express receptors for the factors and are capable of responding to them. In this review, we will discuss how APCs, by responding to those cytokines, influence T cell differentiation and adaptive immunity. PMID:25126585

  17. Cellular factors modulating the mechanism of tau protein aggregation.

    PubMed

    Fontaine, Sarah N; Sabbagh, Jonathan J; Baker, Jeremy; Martinez-Licha, Carlos R; Darling, April; Dickey, Chad A

    2015-05-01

    Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer's disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer's disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones. PMID:25666877

  18. Cellular factors modulating the mechanism of tau protein aggregation

    PubMed Central

    Fontaine, Sarah N.; Sabbagh, Jonathan J.; Baker, Jeremy; Martinez-Licha, Carlos R.; Darling, April

    2015-01-01

    Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer’s disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer’s disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones. PMID:25666877

  19. The Major Cellular Sterol Regulatory Pathway Is Required for Andes Virus Infection

    PubMed Central

    Riblett, Amber M.; Didigu, Chukwuka A.; Wilen, Craig B.; Malani, Nirav; Male, Frances; Lee, Fang-Hua; Bushman, Frederic D.; Cherry, Sara; Doms, Robert W.; Bates, Paul; Briley, Kenneth

    2014-01-01

    The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV). Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P) of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection. PMID:24516383

  20. Cellular monitoring systems for the assessment of space environmental factors

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine E.; Arenz, Andrea; Meier, Matthias M.; Baumstark-Khan, Christa

    Detrimental environmental factors - namely ionizing radiation - will continue to affect future manned space missions. The Cellular Biodiagnostics group at the German Aerospace Center (DLR) develops cellular monitoring systems, which include bacterial and mammalian cell systems capable of responding to DNA damage as a consequence of the presence of genotoxic conditions. Such bioassays will complement the physical detector systems used in space, insofar as they yield intrinsically biologically weighted measures of cellular responses. Furthermore, synergistic toxic impacts of the radiation environment together with other potentially genotoxic constituents of the space habitat can be quantified using such systems. The biological end-point under investigation in this work is the gene activation by radiation in mammalian cells, based on fluorescent promoter reporter systems using the destabilized enhanced green fluorescent protein variant (d2EGFP). The promoter element to be investigated reflects the activity of the nuclear factor κB (NF-κB) pathway. The NF-κB family of proteins plays a major role in the inflammatory and immune response, cell proliferation and differentiation, apoptosis and tumorigenesis. After exposure to X-rays, an increase in NF-κB activation was seen only with high doses. Experiments using accelerated argon ions (95 MeV/u, LET ˜230 keV/μm) produced at the French heavy ion accelerator GANIL have shown activation of the NF-κB pathway with doses greater than 1 × 10 6 particles cm -2 (P cm -2), reaching its maximal activation at 2 × 10 7 P cm -2. These results suggest that the exceptional radiation field in space may activate the NF-κB pathway in human cells.

  1. Cellular Actions of Insulin-Like Growth Factor Binding Proteins

    PubMed Central

    Ferry, R. J.; Katz, L. E. L.; Grimberg, Adda; Cohen, P.; Weinzimer, S. A.

    2014-01-01

    The insulin-like growth factors (IGFs), insulin-like growth factor binding proteins (IGFBPs), and the IGFBP proteases are involved in the regulation of somatic growth and cellular proliferation both in vivo and in vitro. IGFs are potent mitogenic agents whose actions are determined by the availability of free IGFs to interact with the IGF receptors. IGFBPs comprise a family of proteins that bind IGFs with high affinity and specificity and thereby regulate IGF-dependent actions. IGFBPs have recently emerged as IGF-independent regulators of cell growth. Various IGFBP association proteins as well as cleavage of IGFBPs by specific proteases modulate levels of free IGFs and IGFBPs. The ubiquity and complexity of the IGF axis promise exciting discoveries and applications for the future. PMID:10226802

  2. Viral and cellular requirements for the budding of Feline Endogenous Retrovirus RD-114

    PubMed Central

    2011-01-01

    Background RD-114 virus is a feline endogenous retrovirus and produced as infectious viruses in some feline cell lines. Recently, we reported the contamination of an infectious RD-114 virus in a proportion of live attenuated vaccines for dogs and cats. It is very difficult to completely knock out the RD-114 proviruses from cells, as endogenous retroviruses are usually integrated multiply into the host genome. However, it may be possible to reduce the risk of contamination of RD-114 virus by regulating the viral release from cells. Results In this study, to understand the molecular mechanism of RD-114 virus budding, we attempted to identify the viral and cellular requirements for RD-114 virus budding. Analyses of RD-114 L-domain mutants showed that the PPPY sequence in the pp15 region of Gag plays a critical role in RD-114 virus release as viral L-domain. Furthermore, we investigated the cellular factors required for RD-114 virus budding. We demonstrated that RD-114 virus release was inhibited by overexpression of dominant negative mutants of Vps4A, Vps4B, and WWP2. Conclusions These results strongly suggest that RD-114 budding utilizes the cellular multivesicular body sorting pathway similar to many other retroviruses. PMID:22168342

  3. Transcription Factors in the Cellular Response to Charged Particle Exposure

    PubMed Central

    Hellweg, Christine E.; Spitta, Luis F.; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor’s p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles’ LET, with a maximal activation in the LET range of 90–300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  4. Transcription Factors in the Cellular Response to Charged Particle Exposure.

    PubMed

    Hellweg, Christine E; Spitta, Luis F; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor's p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles' LET, with a maximal activation in the LET range of 90-300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  5. The adenovirus E1A protein overrides the requirement for cellular ras in initiating DNA synthesis.

    PubMed Central

    Stacey, D W; Dobrowolski, S F; Piotrkowski, A; Harter, M L

    1994-01-01

    The adenovirus E1A protein can induce cellular DNA synthesis in growth-arrested cells by interacting with the cellular protein p300 or pRb. In addition, serum- and growth factor-dependent cells require ras activity to initiate DNA synthesis and recently we have shown that Balb/c 3T3 cells can be blocked in either early or late G1 following microinjection of an anti-ras antibody. In this study, the E1A 243 amino acid protein is shown through microinjection not only to shorten the G0 to S phase interval but, what is more important, to override the inhibitory effects exerted by the anti-ras antibody in either early or late G1. Specifically, whether E1A is co-injected with anti-ras into quiescent cells or injected 18 h following a separate injection of anti-ras after serum stimulation, it efficiently induces cellular DNA synthesis in cells that would otherwise be blocked in G0/G1. Moreover, injection of a mutant form of E1A that can no longer associate with p300 is just as efficient as wild-type E1A in stimulating DNA synthesis in cells whose ras activity has been neutralized by anti-ras. The results presented here show that E1A is capable of overriding the requirement of cellular ras activity in promoting the entry of cells into S phase. Moreover, the results suggest the possibility that pRb and/or pRb-related proteins may function in a ras-dependent pathway that enables E1A to achieve this activity. Images PMID:7813447

  6. Serum factors in older individuals change cellular clock properties

    PubMed Central

    Pagani, Lucia; Schmitt, Karen; Meier, Fides; Izakovic, Jan; Roemer, Konstanze; Viola, Antoine; Cajochen, Christian; Wirz-Justice, Anna; Brown, Steven A.; Eckert, Anne

    2011-01-01

    Human aging is accompanied by dramatic changes in daily sleep–wake behavior: Activity shifts to an earlier phase, and the consolidation of sleep and wake is disturbed. Although this daily circadian rhythm is brain-controlled, its mechanism is encoded by cell-autonomous circadian clocks functioning in nearly every cell of the body. In fact, human clock properties measured in peripheral cells such as fibroblasts closely mimic those measured physiologically and behaviorally in the same subjects. To understand better the molecular mechanisms by which human aging affects circadian clocks, we characterized the clock properties of fibroblasts cultivated from dermal biopsies of young and older subjects. Fibroblast period length, amplitude, and phase were identical in the two groups even though behavior was not, thereby suggesting that basic clock properties of peripheral cells do not change during aging. Interestingly, measurement of the same cells in the presence of human serum from older donors shortened period length and advanced the phase of cellular circadian rhythms compared with treatment with serum from young subjects, indicating that a circulating factor might alter human chronotype. Further experiments demonstrated that this effect is caused by a thermolabile factor present in serum of older individuals. Thus, even though the molecular machinery of peripheral circadian clocks does not change with age, some age-related circadian dysfunction observed in vivo might be of hormonal origin and therefore might be pharmacologically remediable. PMID:21482780

  7. The GARP complex is required for cellular sphingolipid homeostasis

    PubMed Central

    Fröhlich, Florian; Petit, Constance; Kory, Nora; Christiano, Romain; Hannibal-Bach, Hans-Kristian; Graham, Morven; Liu, Xinran; Ejsing, Christer S; Farese, Robert V; Walther, Tobias C

    2015-01-01

    Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. In this study, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2. DOI: http://dx.doi.org/10.7554/eLife.08712.001 PMID:26357016

  8. 47 CFR 22.929 - Application requirements for the Cellular Radiotelephone Service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22.929 Application... 47 Telecommunication 2 2013-10-01 2013-10-01 false Application requirements for the Cellular... radiated power in each of the cardinal radial directions. (b) If the application involves a service...

  9. Feline Leukemia Virus Infection Requires a Post-Receptor Binding Envelope-Dependent Cellular Component▿

    PubMed Central

    Hussain, Naveen; Thickett, Kelly R.; Na, Hong; Leung, Cherry; Tailor, Chetankumar S.

    2011-01-01

    Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (101 to 102 CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (104 to 106 CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells. PMID:21917946

  10. Humoral and cellular factors of maternal immunity in swine.

    PubMed

    Salmon, Henri; Berri, Mustapha; Gerdts, Volker; Meurens, François

    2009-03-01

    Immunoglobulins cannot cross the placenta in pregnant sows. Neonatal pigs are therefore agammaglobulinemic at birth and, although immunocompetent, they cannot mount rapid immune responses at systemic and mucosal sites. Their survival depends directly on the acquisition of maternal immunity via colostrum and milk. Protection by maternal immunity is mediated by a number of factors, including specific systemic humoral immunity, involving mostly maternal IgG transferred from blood to colostrum and typically absorbed within the first 36 h of life. Passive mucosal immunity involves local humoral immunity, including the production of secretory IgA (sIgA), which is transferred principally via milk until weaning. The mammary gland (MG) produces sIgA, which is, then secreted into the milk via the poly-Ig receptor (pIgR) of epithelial cells. These antibodies are produced in response to intestinal and respiratory antigens, including pathogens and commensal organisms. Protection is also mediated by cellular immunity, which is transferred via maternal cells present in mammary secretions. The mechanisms underlying the various immunological links between MG and the mucosal surfaces involve hormonally regulated addressins and chemokines specific to these compartments. The enhancement of colostrogenic immunity depends on the stimulation of systemic immunity, whereas the enhancement of lactogenic immunity depends on appropriate stimulation at induction sites, an increase in cell trafficking from the gut and upper respiratory tract to the MG and, possibly, enhanced immunoglobulin production at the effector site and secretion in milk. In addition, mammary secretions provide factors other than immunoglobulins that protect the neonate and regulate the development of mucosal immunity--a key element of postnatal adaptation to environmental antigens. PMID:18761034

  11. E2F transcription factor 1 regulates cellular and organismal senescence by inhibiting Forkhead box O transcription factors.

    PubMed

    Xie, Qi; Peng, Shengyi; Tao, Li; Ruan, Haihe; Yang, Yanglu; Li, Tie-Mei; Adams, Ursula; Meng, Songshu; Bi, Xiaolin; Dong, Meng-Qiu; Yuan, Zengqiang

    2014-12-01

    E2F1 and FOXO3 are two transcription factors that have been shown to participate in cellular senescence. Previous report reveals that E2F1 enhanced cellular senescence in human fibroblast cells, while FOXO transcription factors play against senescence by regulation reactive oxygen species scavenging proteins. However, their functional interplay has been unclear. Here we use E2F1 knock-out murine Embryonic fibroblasts (MEFs), knockdown RNAi constructs, and ectopic expression of E2F1 to show that it functions by negatively regulating FOXO3. E2F1 attenuates FOXO3-mediated expression of MnSOD and Catalase without affecting FOXO3 protein stability, subcellular localization, or phosphorylation by Akt. We mapped the interaction between E2F1 and FOXO3 to a region including the DNA binding domain of E2F1 and the C-terminal transcription-activation domain of FOXO3. We propose that E2F1 inhibits FOXO3-dependent transcription by directly binding FOXO3 in the nucleus and preventing activation of its target genes. Moreover, knockdown of the Caenorhabditis elegans E2F1 ortholog efl-1 significantly extends lifespan in a manner that requires the activity of the C. elegans FOXO gene daf-16. We conclude that there is an evolutionarily conserved signaling connection between E2F1 and FOXO3, which regulates cellular senescence and aging by regulating the activity of FOXO3. We speculate that drugs and/or therapies that inhibit this physical interaction might be good candidates for reducing cellular senescence and increasing longevity. PMID:25344604

  12. Cellular Defense and Sensory Cell Survival Require Distinct Functions of ebi in Drosophila

    PubMed Central

    Lim, Young-Mi; Yagi, Yoshimasa; Tsuda, Leo

    2015-01-01

    The innate immune response and stress-induced apoptosis are well-established signaling pathways related to cellular defense. NF-κB and AP-1 are redox-sensitive transcription factors that play important roles in those pathways. Here we show that Ebi, a Drosophila homolog of the mammalian co-repressor molecule transducin β-like 1 (TBL1), variously regulates the expression of specific genes that are targets of redox-sensitive transcription factors. In response to different stimuli, Ebi activated gene expression to support the acute immune response in fat bodies, whereas Ebi repressed genes that are involved in apoptosis in photoreceptor cells. Thus, Ebi seems to act as a regulatory switch for genes that are activated or repressed in response to different external stimuli. Our results offer clear in vivo evidence that the Ebi-containing co-repressor complex acts in a distinct manner to regulate transcription that is required for modulating the output of various processes during Drosophila development. PMID:26524764

  13. Mechanically Induced Chromatin Condensation Requires Cellular Contractility in Mesenchymal Stem Cells.

    PubMed

    Heo, Su-Jin; Han, Woojin M; Szczesny, Spencer E; Cosgrove, Brian D; Elliott, Dawn M; Lee, David A; Duncan, Randall L; Mauck, Robert L

    2016-08-23

    Mechanical cues play important roles in directing the lineage commitment of mesenchymal stem cells (MSCs). In this study, we explored the molecular mechanisms by which dynamic tensile loading (DL) regulates chromatin organization in this cell type. Our previous findings indicated that the application of DL elicited a rapid increase in chromatin condensation through purinergic signaling mediated by ATP. Here, we show that the rate and degree of condensation depends on the frequency and duration of mechanical loading, and that ATP release requires actomyosin-based cellular contractility. Increases in baseline cellular contractility via the addition of an activator of G-protein coupled receptors (lysophosphatidic acid) induced rapid ATP release, resulting in chromatin condensation independent of loading. Conversely, inhibition of contractility through pretreatment with either a RhoA/Rock inhibitor (Y27632) or MLCK inhibitor (ML7) abrogated ATP release in response to DL, blocking load-induced chromatin condensation. With loading, ATP release occurred very rapidly (within the first 10-20 s), whereas changes in chromatin occurred at a later time point (∼10 min), suggesting a downstream biochemical pathway mediating this process. When cells were pretreated with blockers of the transforming growth factor (TGF) superfamily, purinergic signaling in response to DL was also eliminated. Further analysis showed that this pretreatment decreased contractility, implicating activity in the TGF pathway in the establishment of the baseline contractile state of MSCs (in the absence of exogenous ligands). These data indicate that chromatin condensation in response to DL is regulated through the interplay between purinergic and RhoA/Rock signaling, and that ligandless activity in the TGF/bone morphogenetic proteins signaling pathway contributes to the establishment of baseline contractility in MSCs. PMID:27558729

  14. 47 CFR 1.20007 - Additional assistance capability requirements for wireline, cellular, and PCS telecommunications...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Additional assistance capability requirements for wireline, cellular, and PCS telecommunications carriers. 1.20007 Section 1.20007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection...

  15. 47 CFR 1.20007 - Additional assistance capability requirements for wireline, cellular, and PCS telecommunications...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Additional assistance capability requirements for wireline, cellular, and PCS telecommunications carriers. 1.20007 Section 1.20007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Communications Assistance for...

  16. 47 CFR 1.20007 - Additional assistance capability requirements for wireline, cellular, and PCS telecommunications...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Additional assistance capability requirements for wireline, cellular, and PCS telecommunications carriers. 1.20007 Section 1.20007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Communications Assistance for Law Enforcement Act § 1.20007 Additional...

  17. 47 CFR 1.20007 - Additional assistance capability requirements for wireline, cellular, and PCS telecommunications...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Additional assistance capability requirements for wireline, cellular, and PCS telecommunications carriers. 1.20007 Section 1.20007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection...

  18. 47 CFR 1.20007 - Additional assistance capability requirements for wireline, cellular, and PCS telecommunications...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Additional assistance capability requirements for wireline, cellular, and PCS telecommunications carriers. 1.20007 Section 1.20007 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection...

  19. Cellular Factors Involved in HTLV-1 Entry and Pathogenicit

    PubMed Central

    Hoshino, Hiroo

    2012-01-01

    Human T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia (ATL) and HTLV-1 – associated myelopathy and tropical spastic paraparesis (HAM/TSP). HTLV-1 has a preferential tropism for CD4 T cells in healthy carriers and ATL patients, while both CD4 and CD8 T cells serve as viral reservoirs in HAM/TSP patients. HTLV-1 has also been detected other cell types, including monocytes, endothelial cells, and dendritic cells. In contrast to the limited cell tropism of HTLV-1 in vivo, the HTLV receptor appears to be expressed in almost all human or animal cell lines. It remains to be examined whether this cell tropism is determined by host factors or by HTLV-1 heterogeneity. Unlike most retroviruses, cell-free virions of HTLV-1 are very poorly infectious. The lack of completely HTLV-1-resistant cells and the low infectivity of HTLV-1 have hampered research on the HTLV entry receptor. Entry of HTLV-1 into target cells is thought to involve interactions between the env (Env) glycoproteins, a surface glycoprotein (surface unit), and a transmembrane glycoprotein. Recent studies have shown that glucose transporter GLUT1, heparan sulfate proteoglycans (HSPGs), and neuropilin-1 (NRP-1) are the three proteins important for the entry of HTLV-1. Studies using adherent cell lines have shown that GLUT1 can function as a receptor for HTLV. HSPGs are required for efficient entry of HTLV-1 into primary CD4 T cells. NRP-1 is expressed in most established cell lines. Further studies have shown that these three molecules work together to promote HTLV-1 binding to cells and fusion of viral and cell membranes. The virus could first contact with HSPGs and then form complexes with NRP-1, followed by association with GLUT1. It remains to be determined whether these three molecules can explain HTLV-1 cell tropism. It also remains to be more definitively proven that these molecules are sufficient to permit HTLV-1 entry into completely HTLV-1-resistant cells. PMID

  20. Organic growth factor requirements of some yeasts.

    PubMed

    Madan, M; Gulati, N

    1980-01-01

    Some sporogenous yeasts (Brettanomyces bruxellensis, Debaryomyces hansenii, Hansenula ciferrii, Hansenula polymorpha, Pichia polymorpha, Saccharomycopsis guttulata, and Saccharomyces chevalieri), isolated from various fruits have been examined for their organic growth factor requisites. H. ciferrii was completely deficient in thiamine, biotin, inositol, riboflavin, niacin, and partially deficient in pantothenic acid. It required an external supply of 0.1-1.0 ppm thiamine, 0.01-0.1 ppm biotin, 10.0 ppm inositol, 0.10 ppm niacin and riboflavin for its optimum growth. H. polymorpha showed partial deficiency only in xanthine. P. polymorpha gave indications of partial deficiencies in thiamine and biotin. S. guttulata was completely deficient in biotin, and partially deficient in adenine sulphate. It required 0.01 ppm biotin for optimum growth. S chevalieri was completely deficient in pyridoxine and partially deficient in thiamine. It required 0.1 ppm pyridoxine for maximum growth. D. hansenii and B bruxellensis were auxoautotrophic for the various growth factors studied. PMID:7242379

  1. Cellular Oxygen Sensing: Crystal Structure of Hypoxia-Inducible Factor Prolyl Hydroxylase (PHD2)

    SciTech Connect

    McDonough,M.; Li, V.; Flashman, E.; Chowdhury, R.; Mohr, C.; Lienard, B.; Zondlo, J.; Oldham, N.; Clifton, I.; et al.

    2006-01-01

    Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-{alpha} subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response. We describe crystal structures of the catalytic domain of human PHD2, an important prolyl-4-hydroxylase in the human hypoxic response in normal cells, in complex with Fe(II) and an inhibitor to 1.7 Angstroms resolution. PHD2 crystallizes as a homotrimer and contains a double-stranded {beta}-helix core fold common to the Fe(II) and 2-oxoglutarate-dependant dioxygenase family, the residues of which are well conserved in the three human PHD enzymes (PHD 1-3). The structure provides insights into the hypoxic response, helps to rationalize a clinically observed mutation leading to familial erythrocytosis, and will aid in the design of PHD selective inhibitors for the treatment of anemia and ischemic disease.

  2. Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model

    PubMed Central

    Limmer, Stefanie; Haller, Samantha; Drenkard, Eliana; Lee, Janice; Yu, Shen; Kocks, Christine; Ausubel, Frederick M.; Ferrandon, Dominique

    2011-01-01

    An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host–pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated. PMID:21987808

  3. Analysis of murine cellular receptors for tumor-killing factor

    SciTech Connect

    Ohsawa, F.; Natori, S.

    1987-01-01

    Receptors for tumor-killing factor (TKF) on the surface of murine cells were analyzed using radioiodinated TKF. Not only sensitive cells but also insensitive cells were found to have specific receptors. Among the sensitive cells, no clear relation was observed between the number of receptors on the cell surface and sensitivity to TKF. Compounds affecting microfilaments (cytochalasin B and D) and microtubules (colchicine and Colcemid) significantly inhibited cytolysis of sensitive cells induced by receptor-bound TKF. It is concluded that internalization of receptor-bound TKF is a prerequisite for triggering cytolysis.

  4. Selective transcription and cellular proliferation induced by PDGF require histone deacetylase activity

    SciTech Connect

    Catania, Annunziata; Iavarone, Carlo; Carlomagno, Stella M.; Chiariello, Mario . E-mail: chiariel@unina.it

    2006-05-05

    Histone deacetylases (HDACs) are key regulatory enzymes involved in the control of gene expression and their inhibition by specific drugs has been widely correlated to cell cycle arrest, terminal differentiation, and apoptosis. Here, we investigated whether HDAC activity was required for PDGF-dependent signal transduction and cellular proliferation. Exposure of PDGF-stimulated NIH3T3 fibroblasts to the HDAC inhibitor trichostatin A (TSA) potently repressed the expression of a group of genes correlated to PDGF-dependent cellular growth and pro-survival activity. Moreover, we show that TSA interfered with STAT3-dependent transcriptional activity induced by PDGF. Still, neither phosphorylation nor nuclear translocation and DNA-binding in vitro and in vivo of STAT3 were affected by using TSA to interfere with PDGF stimulation. Finally, TSA treatment resulted in the suppression of PDGF-dependent cellular proliferation without affecting cellular survival of NIH3T3 cells. Our data indicate that inhibition of HDAC activity antagonizes the mitogenic effect of PDGF, suggesting that these drugs may specifically act on the expression of STAT-dependent, PDGF-responsive genes.

  5. Cellular responses to implant materials: biological, physical and chemical factors.

    PubMed

    Kawahara, H

    1983-12-01

    excellent adhesion to tissue. Single crystal sapphire ceramics with high mechanical strength permit the delicate designs required for implants. Success with dental implants may depend upon combining the rigid retention of porous stable alloys or ceramics of suitable Young's modulus with a stress absorbing superstructure. A further development to be expected is the appearance of composite and polyphase materials which have tissue adhesiveness, stability in living tissues and various degrees of Young's modulus. PMID:6581129

  6. Resources required for topological quantum factoring

    SciTech Connect

    Baraban, M.; Bonesteel, N. E.; Simon, S. H.

    2010-06-15

    We consider a hypothetical topological quantum computer composed of either Ising or Fibonacci anyons. For each case, we calculate the time and number of qubits (space) necessary to execute the most computationally expensive step of Shor's algorithm, modular exponentiation. For Ising anyons, we apply Bravyi's distillation method [S. Bravyi, Phys. Rev. A 73, 042313 (2006)] which combines topological and nontopological operations to allow for universal quantum computation. With reasonable restrictions on the physical parameters we find that factoring a 128-bit number requires approximately 10{sup 3} Fibonacci anyons versus at least 3x10{sup 9} Ising anyons. Other distillation algorithms could reduce the resources for Ising anyons substantially.

  7. Repression of the human papillomavirus type 18 enhancer by the cellular transcription factor Oct-1.

    PubMed Central

    Hoppe-Seyler, F; Butz, K; zur Hausen, H

    1991-01-01

    The role of cellular factors involved in the transcriptional regulation of the cancer-associated human papillomavirus type 18 (HPV18) is yet poorly understood. The presence of an Oct-1-binding site within the HPV18 upstream regulatory region led us to investigate the influence of Oct-1 on viral transcription. Cotransfection of Oct-1 expression plasmids together with luciferase reporter constructs containing HPV18 regulatory sequences indicated that Oct-1 can transcriptionally repress the HPV18 upstream regulatory region. In contrast, heterologous control regions were not affected by Oct-1. HPV18 cis elements that can be repressed by Oct-1 mapped to a 135-bp subregion of the viral constitutive enhancer. Analysis of an Oct-1 mutant defective in DNA binding suggested that HPV18 down-modulation does not require direct binding of Oct-1 to DNA. These results make Oct-1 a candidate factor involved in the intracellular surveillance of HPV18 transcription and support the notion of a host cell mechanism that can specifically repress HPV E6-E7 transforming gene expression. Images PMID:1654457

  8. 47 CFR 22.939 - Site availability requirements for applications competing with cellular renewal applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22... application competing against a cellular renewal application must contain, when initially filed,...

  9. 47 CFR 22.939 - Site availability requirements for applications competing with cellular renewal applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22... application competing against a cellular renewal application must contain, when initially filed,...

  10. 47 CFR 22.939 - Site availability requirements for applications competing with cellular renewal applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22... application competing against a cellular renewal application must contain, when initially filed,...

  11. 47 CFR 22.939 - Site availability requirements for applications competing with cellular renewal applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22... application competing against a cellular renewal application must contain, when initially filed,...

  12. 47 CFR 22.939 - Site availability requirements for applications competing with cellular renewal applications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Cellular Radiotelephone Service § 22... application competing against a cellular renewal application must contain, when initially filed,...

  13. Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation

    PubMed Central

    Guida, Brandon Scott; Garcia-Pichel, Ferran

    2016-01-01

    Some cyanobacteria, known as euendoliths, excavate and grow into calcium carbonates, with their activity leading to significant marine and terrestrial carbonate erosion and to deleterious effects on coral reef and bivalve ecology. Despite their environmental relevance, the mechanisms by which they can bore have remained elusive and paradoxical, in that, as oxygenic phototrophs, cyanobacteria tend to alkalinize their surroundings, which will encourage carbonate precipitation, not dissolution. Therefore, cyanobacteria must rely on unique adaptations to bore. Studies with the filamentous euendolith, Mastigocoleus testarum, indicated that excavation requires both cellular energy and transcellular calcium transport, mediated by P-type ATPases, but the cellular basis for this phenomenon remains obscure. We present evidence that excavation in M. testarum involves two unique cellular adaptations. Long-range calcium transport is based on active pumping at multiple cells along boring filaments, orchestrated by the preferential localization of calcium ATPases at one cell pole, in a ring pattern, facing the cross-walls, and by repeating this placement and polarity, a pattern that breaks at branching and apical cells. In addition, M. testarum differentiates specialized cells we call calcicytes, that which accumulate calcium at concentrations more than 500-fold those found in other cyanobacteria, concomitantly and drastically lowering photosynthetic pigments and enduring severe cytoplasmatic alkalinization. Calcicytes occur commonly, but not exclusively, in apical parts of the filaments distal to the excavation front. We suggest that calcicytes allow for fast calcium flow at low, nontoxic concentrations through undifferentiated cells by providing buffering storage for excess calcium before final excretion to the outside medium. PMID:27140633

  14. Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation.

    PubMed

    Guida, Brandon Scott; Garcia-Pichel, Ferran

    2016-05-17

    Some cyanobacteria, known as euendoliths, excavate and grow into calcium carbonates, with their activity leading to significant marine and terrestrial carbonate erosion and to deleterious effects on coral reef and bivalve ecology. Despite their environmental relevance, the mechanisms by which they can bore have remained elusive and paradoxical, in that, as oxygenic phototrophs, cyanobacteria tend to alkalinize their surroundings, which will encourage carbonate precipitation, not dissolution. Therefore, cyanobacteria must rely on unique adaptations to bore. Studies with the filamentous euendolith, Mastigocoleus testarum, indicated that excavation requires both cellular energy and transcellular calcium transport, mediated by P-type ATPases, but the cellular basis for this phenomenon remains obscure. We present evidence that excavation in M. testarum involves two unique cellular adaptations. Long-range calcium transport is based on active pumping at multiple cells along boring filaments, orchestrated by the preferential localization of calcium ATPases at one cell pole, in a ring pattern, facing the cross-walls, and by repeating this placement and polarity, a pattern that breaks at branching and apical cells. In addition, M. testarum differentiates specialized cells we call calcicytes, that which accumulate calcium at concentrations more than 500-fold those found in other cyanobacteria, concomitantly and drastically lowering photosynthetic pigments and enduring severe cytoplasmatic alkalinization. Calcicytes occur commonly, but not exclusively, in apical parts of the filaments distal to the excavation front. We suggest that calcicytes allow for fast calcium flow at low, nontoxic concentrations through undifferentiated cells by providing buffering storage for excess calcium before final excretion to the outside medium. PMID:27140633

  15. Tumor Necrosis Factor Receptor 2: Its Contribution to Acute Cellular Rejection and Clear Cell Renal Carcinoma

    PubMed Central

    Wang, Jun; Al-Lamki, Rafia S.

    2013-01-01

    Tumor necrosis factor receptor 2 (TNFR2) is a type I transmembrane glycoprotein and one of the two receptors that orchestrate the complex biological functions of tumor necrosis factor (TNF, also designed TNF-α). Accumulating experimental evidence suggests that TNFR2 plays an important role in renal disorders associated with acute cellular rejection and clear cell renal carcinoma but its exact role in these settings is still not completely understood. This papers reviews the factors that may mediate TNFR2 induction in acute cellular rejection and clear cell renal carcinoma and its contribution to these conditions and discusses its therapeutic implications. A greater understanding of the function of TNFR2 may lead to the development of new anti-TNF drugs. PMID:24350291

  16. Coordinated Destruction of Cellular Messages in Translation Complexes by the Gammaherpesvirus Host Shutoff Factor and the Mammalian Exonuclease Xrn1

    PubMed Central

    Kumar, G. Renuka; Wong, Wesley; Jackson, Andrew O.; Glaunsinger, Britt A.

    2011-01-01

    Several viruses encode factors that promote host mRNA degradation to silence gene expression. It is unclear, however, whether cellular mRNA turnover pathways are engaged to assist in this process. In Kaposi's sarcoma-associated herpesvirus this phenotype is enacted by the host shutoff factor SOX. Here we show that SOX-induced mRNA turnover is a two-step process, in which mRNAs are first cleaved internally by SOX itself then degraded by the cellular exonuclease Xrn1. SOX therefore bypasses the regulatory steps of deadenylation and decapping normally required for Xrn1 activation. SOX is likely recruited to translating mRNAs, as it cosediments with translation initiation complexes and depletes polysomes. Cleaved mRNA intermediates accumulate in the 40S fraction, indicating that recognition occurs at an early stage of translation. This is the first example of a viral protein commandeering cellular mRNA turnover pathways to destroy host mRNAs, and suggests that Xrn1 is poised to deplete messages undergoing translation in mammalian cells. PMID:22046136

  17. Global analysis of bacterial transcription factors to predict cellular target processes.

    PubMed

    Doerks, Tobias; Andrade, Miguel A; Lathe, Warren; von Mering, Christian; Bork, Peer

    2004-03-01

    Whole-genome sequences are now available for >100 bacterial species, giving unprecedented power to comparative genomics approaches. We have applied genome-context methods to predict target processes that are regulated by transcription factors (TFs). Of 128 orthologous groups of proteins annotated as TFs, to date, 36 are functionally uncharacterized; in our analysis we predict a probable cellular target process or biochemical pathway for half of these functionally uncharacterized TFs. PMID:15049306

  18. Heat induction of heat shock protein 25 requires cellular glutamine in intestinal epithelial cells.

    PubMed

    Phanvijhitsiri, Kittiporn; Musch, Mark W; Ropeleski, Mark J; Chang, Eugene B

    2006-08-01

    Glutamine is considered a nonessential amino acid; however, it becomes conditionally essential during critical illness when consumption exceeds production. Glutamine may modulate the heat shock/stress response, an important adaptive cellular response for survival. Glutamine increases heat induction of heat shock protein (Hsp) 25 in both intestinal epithelial cells (IEC-18) and mesenchymal NIH/3T3 cells, an effect that is neither glucose nor serum dependent. Neither arginine, histidine, proline, leucine, asparagine, nor tyrosine acts as physiological substitutes for glutamine for heat induction of Hsp25. The lack of effect of these amino acids was not caused by deficient transport, although some amino acids, including glutamate (a major direct metabolite of glutamine), were transported poorly by IEC-18 cells. Glutamate uptake could be augmented in a concentration- and time-dependent manner by increasing either media concentration and/or duration of exposure. Under these conditions, glutamate promoted heat induction of Hsp25, albeit not as efficiently as glutamine. Further evidence for the role of glutamine conversion to glutamate was obtained with the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine (DON), which inhibited the effect of glutamine on heat-induced Hsp25. DON inhibited phosphate-dependent glutaminase by 75% after 3 h, decreasing cell glutamate. Increased glutamine/glutamate conversion to glutathione was not involved, since the glutathione synthesis inhibitor, buthionine sulfoximine, did not block glutamine's effect on heat induction of Hsp25. A large drop in ATP levels did not appear to account for the diminished Hsp25 induction during glutamine deficiency. In summary, glutamine is an important amino acid, and its requirement for heat-induced Hsp25 supports a role for glutamine supplementation to optimize cellular responses to pathophysiological stress. PMID:16554407

  19. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  20. Flow-dependent myosin recruitment during Drosophila cellularization requires zygotic dunk activity.

    PubMed

    He, Bing; Martin, Adam; Wieschaus, Eric

    2016-07-01

    Actomyosin contractility underlies force generation in morphogenesis ranging from cytokinesis to epithelial extension or invagination. In Drosophila, the cleavage of the syncytial blastoderm is initiated by an actomyosin network at the base of membrane furrows that invaginate from the surface of the embryo. It remains unclear how this network forms and how it affects tissue mechanics. Here, we show that during Drosophila cleavage, myosin recruitment to the cleavage furrows proceeds in temporally distinct phases of tension-driven cortical flow and direct recruitment, regulated by different zygotic genes. We identify the gene dunk, which we show is transiently transcribed when cellularization starts and functions to maintain cortical myosin during the flow phase. The subsequent direct myosin recruitment, however, is Dunk-independent but requires Slam. The Slam-dependent direct recruitment of myosin is sufficient to drive cleavage in the dunk mutant, and the subsequent development of the mutant is normal. In the dunk mutant, cortical myosin loss triggers misdirected flow and disrupts the hexagonal packing of the ingressing furrows. Computer simulation coupled with laser ablation suggests that Dunk-dependent maintenance of cortical myosin enables mechanical tension build-up, thereby providing a mechanism to guide myosin flow and define the hexagonal symmetry of the furrows. PMID:27226317

  1. Flow-dependent myosin recruitment during Drosophila cellularization requires zygotic dunk activity

    PubMed Central

    Martin, Adam; Wieschaus, Eric

    2016-01-01

    Actomyosin contractility underlies force generation in morphogenesis ranging from cytokinesis to epithelial extension or invagination. In Drosophila, the cleavage of the syncytial blastoderm is initiated by an actomyosin network at the base of membrane furrows that invaginate from the surface of the embryo. It remains unclear how this network forms and how it affects tissue mechanics. Here, we show that during Drosophila cleavage, myosin recruitment to the cleavage furrows proceeds in temporally distinct phases of tension-driven cortical flow and direct recruitment, regulated by different zygotic genes. We identify the gene dunk, which we show is transiently transcribed when cellularization starts and functions to maintain cortical myosin during the flow phase. The subsequent direct myosin recruitment, however, is Dunk-independent but requires Slam. The Slam-dependent direct recruitment of myosin is sufficient to drive cleavage in the dunk mutant, and the subsequent development of the mutant is normal. In the dunk mutant, cortical myosin loss triggers misdirected flow and disrupts the hexagonal packing of the ingressing furrows. Computer simulation coupled with laser ablation suggests that Dunk-dependent maintenance of cortical myosin enables mechanical tension build-up, thereby providing a mechanism to guide myosin flow and define the hexagonal symmetry of the furrows. PMID:27226317

  2. Post-Transcriptional Control of LINE-1 Retrotransposition by Cellular Host Factors in Somatic Cells

    PubMed Central

    Pizarro, Javier G.; Cristofari, Gaël

    2016-01-01

    Long INterspersed Element-1 (LINE-1 or L1) retrotransposons form the only autonomously active family of transposable elements in humans. They are expressed and mobile in the germline, in embryonic stem cells and in the early embryo, but are silenced in most somatic tissues. Consistently, they play an important role in individual genome variations through insertional mutagenesis and sequence transduction, which occasionally lead to novel genetic diseases. In addition, they are reactivated in nearly half of the human epithelial cancers, contributing to tumor genome dynamics. The L1 element codes for two proteins, ORF1p and ORF2p, which are essential for its mobility. ORF1p is an RNA-binding protein with nucleic acid chaperone activity and ORF2p possesses endonuclease and reverse transcriptase activities. These proteins and the L1 RNA assemble into a ribonucleoprotein particle (L1 RNP), considered as the core of the retrotransposition machinery. The L1 RNP mediates the synthesis of new L1 copies upon cleavage of the target DNA and reverse transcription of the L1 RNA at the target site. The L1 element takes benefit of cellular host factors to complete its life cycle, however several cellular pathways also limit the cellular accumulation of L1 RNPs and their deleterious activities. Here, we review the known cellular host factors and pathways that regulate positively or negatively L1 retrotransposition at post-transcriptional level, in particular by interacting with the L1 machinery or L1 replication intermediates; and how they contribute to control L1 activity in somatic cells. PMID:27014690

  3. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    SciTech Connect

    Tang, Zhaohua; Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse; Lin, Ren-Jang; Murray, Johanne; Carr, Antony

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  4. p19Arf is required for the cellular response to chronic DNA damage

    PubMed Central

    Bieging-Rolett, Kathryn T.; Johnson, Thomas M.; Brady, Colleen A.; Beaudry, Veronica G.; Pathak, Navneeta; Han, Shuo; Attardi, Laura D.

    2015-01-01

    The p53 tumor suppressor is a stress sensor, driving cell-cycle arrest or apoptosis in response to DNA damage or oncogenic signals. p53 activation by oncogenic signals relies on the p19Arf tumor suppressor, while p53 activation downstream of acute DNA damage is reported to be p19Arf-independent. Accordingly, p19Arf-deficient mouse embryo fibroblasts (MEFs) arrest in response to acute DNA damage. However, p19Arf is required for replicative senescence, a condition associated with an activated DNA damage response, as p19Arf−/− MEFs do not senesce after serial passage. A possible explanation for these seemingly disparate roles for p19Arf is that acute and chronic DNA damage responses are mechanistically distinct. Replicative senescence may result from chronic, low-dose DNA damage responses in which p19Arf has a specific role. We therefore examined the role of p19Arf in cellular responses to chronic, low-dose DNA damaging agent treatment by maintaining MEFs in low oxygen and administering 0.5 Gy γ-irradiation daily or 150μM hydroxyurea, a replication stress-inducer. In contrast to their response to acute DNA damage, p19Arf−/− MEFs exposed to chronic DNA damage do not senesce, revealing a selective role for p19Arf in senescence upon low-level, chronic DNA damage. We show further that p53 pathway activation in p19Arf−/− MEFs exposed to chronic DNA damage is attenuated relative to wild-type MEFs, suggesting a role for p19Arf in fine-tuning p53 activity. However, combined Nutlin3a and chronic DNA damaging agent treatment is insufficient to promote senescence in p19Arf−/− MEFs, suggesting that the role of p19Arf in the chronic DNA damage response may be partially p53-independent. These data suggest the importance of p19Arf for the cellular response to the low-level DNA damage incurred in culture or upon oncogene expression, providing new insight into how p19Arf serves as a tumor suppressor. Moreover, our study helps reconcile reports suggesting crucial

  5. p19(Arf) is required for the cellular response to chronic DNA damage.

    PubMed

    Bieging-Rolett, K T; Johnson, T M; Brady, C A; Beaudry, V G; Pathak, N; Han, S; Attardi, L D

    2016-08-18

    The p53 tumor suppressor is a stress sensor, driving cell cycle arrest or apoptosis in response to DNA damage or oncogenic signals. p53 activation by oncogenic signals relies on the p19(Arf) tumor suppressor, while p53 activation downstream of acute DNA damage is reported to be p19(Arf)-independent. Accordingly, p19(Arf)-deficient mouse embryo fibroblasts (MEFs) arrest in response to acute DNA damage. However, p19(Arf) is required for replicative senescence, a condition associated with an activated DNA damage response, as p19(Arf)-/- MEFs do not senesce after serial passage. A possible explanation for these seemingly disparate roles for p19(Arf) is that acute and chronic DNA damage responses are mechanistically distinct. Replicative senescence may result from chronic, low-dose DNA damage responses in which p19(Arf) has a specific role. We therefore examined the role of p19(Arf) in cellular responses to chronic, low-dose DNA-damaging agent treatment by maintaining MEFs in low oxygen and administering 0.5 G y γ-irradiation daily or 150 μM hydroxyurea, a replication stress inducer. In contrast to their response to acute DNA damage, p19(Arf)-/- MEFs exposed to chronic DNA damage do not senesce, revealing a selective role for p19(Arf) in senescence upon low-level, chronic DNA damage. We show further that p53 pathway activation in p19(Arf)-/- MEFs exposed to chronic DNA damage is attenuated relative to wild-type MEFs, suggesting a role for p19(Arf) in fine-tuning p53 activity. However, combined Nutlin3a and chronic DNA-damaging agent treatment is insufficient to promote senescence in p19(Arf)-/- MEFs, suggesting that the role of p19(Arf) in the chronic DNA damage response may be partially p53-independent. These data suggest the importance of p19(Arf) for the cellular response to the low-level DNA damage incurred in culture or upon oncogene expression, providing new insight into how p19(Arf) serves as a tumor suppressor. Moreover, our study helps reconcile reports

  6. Cellular Promyelocytic Leukemia Protein Is an Important Dengue Virus Restriction Factor

    PubMed Central

    Giovannoni, Federico; Damonte, Elsa B.; García, Cybele C.

    2015-01-01

    The intrinsic antiviral defense is based on cellular restriction factors that are constitutively expressed and, thus, active even before a pathogen enters the cell. The promyelocytic leukemia (PML) nuclear bodies (NBs) are discrete nuclear foci that contain several cellular proteins involved in intrinsic antiviral responses against a number of viruses. Accumulating reports have shown the importance of PML as a DNA virus restriction factor and how these pathogens evade this antiviral activity. However, very little information is available regarding the antiviral role of PML against RNA viruses. Dengue virus (DENV) is an RNA emerging mosquito-borne human pathogen affecting millions of individuals each year by causing severe and potentially fatal syndromes. Since no licensed antiviral drug against DENV infection is currently available, it is of great importance to understand the factors mediating intrinsic immunity that may lead to the development of new pharmacological agents that can boost their potency and thereby lead to treatments for this viral disease. In the present study, we investigated the in vitro antiviral role of PML in DENV-2 A549 infected cells. PMID:25962098

  7. N-Terminal signal sequence is required for cellular trafficking and hyaluronan-depolymerization of KIAA1199.

    PubMed

    Yoshida, Hiroyuki; Nagaoka, Aya; Nakamura, Sachiko; Tobiishi, Megumi; Sugiyama, Yoshinori; Inoue, Shintaro

    2014-01-01

    Recently, we disclosed that KIAA1199-mediated hyaluronan (HA) depolymerization requires an acidic cellular microenvironment (e.g. clathrin-coated vesicles or early endosomes), but no information about the structural basis underlying the cellular targeting and functional modification of KIAA1199 was available. Here, we show that the cleavage of N-terminal 30 amino acids occurs in functionally matured KIAA1199, and the deletion of the N-terminal portion results in altered intracellular trafficking of the molecule and loss of cellular HA depolymerization. These results suggest that the N-terminal portion of KIAA1199 functions as a cleavable signal sequence required for proper KIAA1199 translocation and KIAA1199-mediated HA depolymerization. PMID:24269685

  8. Cognitive effects of cellular phones: a possible role of non-radiofrequency radiation factors.

    PubMed

    Hareuveny, Ronen; Eliyahu, Ilan; Luria, Roy; Meiran, Nachshon; Margaliot, Menachem

    2011-10-01

    Some studies found that cognitive functions of human beings may be altered while exposed to radiofrequency radiation (RFR) emitted by cellular phones. In two recent studies, we have found that experiment duration and exposure side (i.e., phone's location--right or left) may have a major influence on the detection of such effects. In this brief follow-up experiment, 29 right-handed male subjects were divided into two groups. Each subject had two standard cellular phones attached to both sides of his head. The subjects performed a spatial working memory task that required either a left-hand or a right-hand response under one of the two exposure conditions: left side of the head or right side. Contrary to our previous studies, in this work external antennas located far away from the subjects were connected to the cellular phones. This setup prevents any emission of RFR from the internal antenna, thus drastically reducing RFR exposure. Despite that, the results remain similar to those obtained in our previous work. These results indicate that some of the effects previously attributed to RFR can be the result of some confounders. PMID:21488064

  9. 14 CFR 121.647 - Factors for computing fuel required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Factors for computing fuel required. 121.647 Section 121.647 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 121.647 Factors for computing fuel required. Each person computing fuel required for the purposes...

  10. 14 CFR 121.647 - Factors for computing fuel required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Factors for computing fuel required. 121.647 Section 121.647 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 121.647 Factors for computing fuel required. Each person computing fuel required for the purposes...

  11. 14 CFR 121.647 - Factors for computing fuel required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Factors for computing fuel required. 121.647 Section 121.647 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 121.647 Factors for computing fuel required. Each person computing fuel required for the purposes...

  12. 14 CFR 121.647 - Factors for computing fuel required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Factors for computing fuel required. 121.647 Section 121.647 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 121.647 Factors for computing fuel required. Each person computing fuel required for the purposes...

  13. 14 CFR 121.647 - Factors for computing fuel required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Factors for computing fuel required. 121.647 Section 121.647 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... § 121.647 Factors for computing fuel required. Each person computing fuel required for the purposes...

  14. Viral and Cellular Factors Involved in Phloem Transport of Plant Viruses

    PubMed Central

    Hipper, Clémence; Brault, Véronique; Ziegler-Graff, Véronique; Revers, Frédéric

    2013-01-01

    Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barriers: bundle sheath, vascular parenchyma, and companion cells for virus loading into sieve elements (SE). Viruses are then passively transported within the source-to-sink flow of photoassimilates and are unloaded from SE into sink tissues. However, the molecular mechanisms governing virus long-distance movement are far from being understood. While most viruses seem to move systemically as virus particles, some viruses are transported in SE as viral ribonucleoprotein complexes (RNP). The nature of the cellular and viral factors constituting these RNPs is still poorly known. The topic of this review will mainly focus on the host and viral factors that facilitate or restrict virus long-distance movement. PMID:23745125

  15. Embryonic MicroRNA-369 Controls Metabolic Splicing Factors and Urges Cellular Reprograming

    PubMed Central

    Konno, Masamitsu; Koseki, Jun; Kawamoto, Koichi; Nishida, Naohiro; Matsui, Hidetoshi; Dewi, Dyah Laksmi; Ozaki, Miyuki; Noguchi, Yuko; Mimori, Koshi; Gotoh, Noriko; Tanuma, Nobuhiro; Shima, Hiroshi; Doki, Yuichiro

    2015-01-01

    Noncoding microRNAs inhibit translation and lower the transcript stability of coding mRNA, however miR-369 s, in aberrant silencing genomic regions, stabilizes target proteins under cellular stress. We found that in vitro differentiation of embryonic stem cells led to chromatin methylation of histone H3K4 at the miR-369 region on chromosome 12qF in mice, which is expressed in embryonic cells and is critical for pluripotency. Proteomic analyses revealed that miR-369 stabilized translation of pyruvate kinase (Pkm2) splicing factors such as HNRNPA2B1. Overexpression of miR-369 stimulated Pkm2 splicing and enhanced induction of cellular reprogramming by induced pluripotent stem cell factors, whereas miR-369 knockdown resulted in suppression. Furthermore, immunoprecipitation analysis showed that the Argonaute complex contained the fragile X mental retardation-related protein 1 and HNRNPA2B1 in a miR-369-depedent manner. Our findings demonstrate a unique role of the embryonic miR-369-HNRNPA2B1 axis in controlling metabolic enzyme function, and suggest a novel pathway linking epigenetic, transcriptional, and metabolic control in cell reprogramming. PMID:26176628

  16. Krüppel-like factor 4 negatively regulates cellular antiviral immune response

    PubMed Central

    Luo, Wei-Wei; Lian, Huan; Zhong, Bo; Shu, Hong-Bing; Li, Shu

    2016-01-01

    Viral infection triggers activation of the transcription factors NF-κB and IRF3, which collaborate to induce the expression of type I interferons (IFNs) and elicit innate antiviral response. In this report, we identified Krüppel-like factor 4 (KLF4) as a negative regulator of virus-triggered signaling. Overexpression of KLF4 inhibited virus-induced activation of ISRE and IFN-β promoter in various types of cells, while knockdown of KLF4 potentiated viral infection-triggered induction of IFNB1 and downstream genes and attenuated viral replication. In addition, KLF4 was found to be localized in the cytosol and nucleus, and viral infection promoted the translocation of KLF4 from cytosol to nucleus. Upon virus infection, KLF4 was bound to the promoter of IFNB gene and inhibited the recruitment of IRF3 to the IFNB promoter. Our study thus suggests that KLF4 negatively regulates cellular antiviral response. PMID:25531393

  17. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis.

    PubMed

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J Pablo; Lopez, Bernard S

    2016-01-01

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [(3)H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [(3)H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses. PMID:27406380

  18. A threshold of endogenous stress is required to engage cellular response to protect against mutagenesis

    PubMed Central

    Saintigny, Yannick; Chevalier, François; Bravard, Anne; Dardillac, Elodie; Laurent, David; Hem, Sonia; Dépagne, Jordane; Radicella, J. Pablo; Lopez, Bernard S.

    2016-01-01

    Endogenous stress represents a major source of genome instability, but is in essence difficult to apprehend. Incorporation of labeled radionuclides into DNA constitutes a tractable model to analyze cellular responses to endogenous attacks. Here we show that incorporation of [3H]thymidine into CHO cells generates oxidative-induced mutagenesis, but, with a peak at low doses. Proteomic analysis showed that the cellular response differs between low and high levels of endogenous stress. In particular, these results confirmed the involvement of proteins implicated in redox homeostasis and DNA damage signaling pathways. Induced-mutagenesis was abolished by the anti-oxidant N-acetyl cysteine and plateaued, at high doses, upon exposure to L-buthionine sulfoximine, which represses cellular detoxification. The [3H]thymidine-induced mutation spectrum revealed mostly base substitutions, exhibiting a signature specific for low doses (GC > CG and AT > CG). Consistently, the enzymatic activity of the base excision repair protein APE-1 is induced at only medium or high doses. Collectively, the data reveal that a threshold of endogenous stress must be reached to trigger cellular detoxification and DNA repair programs; below this threshold, the consequences of endogenous stress escape cellular surveillance, leading to high levels of mutagenesis. Therefore, low doses of endogenous local stress can jeopardize genome integrity more efficiently than higher doses. PMID:27406380

  19. Aiolos transcription factor controls cell death in T cells by regulating Bcl-2 expression and its cellular localization.

    PubMed Central

    Romero, F; Martínez-A, C; Camonis, J; Rebollo, A

    1999-01-01

    We searched for proteins that interact with Ras in interleukin (IL)-2-stimulated or IL-2-deprived cells, and found that the transcription factor Aiolos interacts with Ras. The Ras-Aiolos interaction was confirmed in vitro and in vivo by co-immunoprecipitation. Indirect immunofluorescence shows that IL-2 controls the cellular distribution of Aiolos and induces its tyrosine phosphorylation, required for dissociation from Ras. We also identified functional Aiolos-binding sites in the Bcl-2 promoter, which are able to activate the luciferase reporter gene. Mutation of Aiolos-binding sites within the Bcl-2 promoter inhibits transactivation of the reporter gene luciferase, suggesting direct control of Bcl-2 expression by Aiolos. Co-transfection experiments confirm that Aiolos induces Bcl-2 expression and prevents apoptosis in IL-2-deprived cells. We propose a model for the regulation of Bcl-2 expression via Aiolos. PMID:10369681

  20. Cellular transcription factors enhance herpes simplex virus type 1 oriS-dependent DNA replication.

    PubMed

    Nguyen-Huynh, A T; Schaffer, P A

    1998-05-01

    The herpes simplex virus type 1 (HSV-1) origin of DNA replication, oriS, contains three binding sites for the viral origin binding protein (OBP) flanked by transcriptional regulatory elements of the immediate-early genes encoding ICP4 and ICP22/47. To assess the role of flanking sequences in oriS function, plasmids containing oriS and either wild-type or mutant flanking sequences were tested in transient DNA replication assays. Although the ICP4 and ICP22/47 regulatory regions were shown to enhance oriS function, most individual elements in these regions, including the VP16-responsive TAATGARAT elements, were found to be dispensable for oriS function. In contrast, two oriS core-adjacent regulatory (Oscar) elements, OscarL and OscarR, at the base of the oriS palindrome were shown to enhance oriS function significantly and additively. Specifically, mutational disruption of either element reduced oriS-dependent DNA replication by 60 to 70%, and disruption of both elements reduced replication by 90%. The properties of protein-DNA complexes formed in gel mobility shift assays using uninfected and HSV-1-infected Vero cell nuclear extracts demonstrated that both OscarL and OscarR are binding sites for cellular proteins. Whereas OscarR does not correspond to the consensus binding site of any known transcription factor, OscarL contains a consensus binding site for the transcription factor Sp1. Gel mobility shift and supershift experiments using antibodies directed against members of the Sp1 family of transcription factors demonstrated the presence of Sp1 and Sp3, but not Sp2 or Sp4, in the protein-DNA complexes formed at OscarL. The abilities of OscarL and OscarR to bind their respective cellular proteins correlated directly with the efficiency of oriS-dependent DNA replication. Cooperative interactions between the Oscar-binding factors and proteins binding to adjacent OBP binding sites were not observed. Notably, Oscar element mutations that impaired oriS-dependent DNA

  1. Detyrosinated Glu-tubulin is a substrate for cellular Factor XIIIA transglutaminase in differentiating osteoblasts.

    PubMed

    Wang, Shuai; Cui, Cui; Hitomi, Kiyotaka; Kaartinen, Mari T

    2014-06-01

    Microtubule components α- and β-tubulin undergo a number of posttranslational modifications that modulate their dynamics and cellular functions. These modifications include polyamination and covalent crosslinking by transglutaminase enzymes. We have demonstrated previously that the less dynamic and more stable tubulin form-detyrosinated Glu-tubulin-is found in high molecular weight, oligomeric complexes in bone-forming osteoblasts during differentiation and along with deposition of collagenous extracellular matrix. In this study, we report that oligomeric Glu-tubulin has high nocodazole tolerance, indicating further increased stability. We show that α-tubulin, which gives rise to Glu-tubulin, is a transglutaminase substrate in in vitro assays and that it is crosslinked into oligomers (dimers, trimers and tetramers) by transglutaminase 2 and Factor XIIIA; β-tubulin was not crosslinked by transglutaminase activity. The oligomeric Glu-tubulin was specifically localized to the plasma membrane of osteoblasts as analyzed by subcellular fractionation, cell surface biotinylation experiments and total internal reflection fluorescence (TIRF) microscopy. Glu- and α-tubulin co-localized with cellular Factor XIIIA as analyzed by conventional and TIRF microscopy. The Factor XIIIA-specific substrate peptide bF11 co-localized with α-tubulin and acted as a competitive inhibitor to oligomerization of Glu-tubulin, attenuating its formation in cells. This was associated with significantly decreased type I collagen deposition and decreased secretory activity as measured by synaptotagmin VII levels on the osteoblast plasma membrane. Our results suggest that Glu-tubulin may exist as covalently stabilized form which may be linked to the secretion and elaboration of collagenous extracellular matrix. PMID:24643364

  2. Quantifying colocalization of a conditionally active transcription factor FOXP3 in three-dimensional cellular space

    NASA Astrophysics Data System (ADS)

    Abraham, Thomas; Allan, Sarah E.; Levings, Megan K.

    2009-02-01

    Biological macromolecular interactions between proteins, transcription factors, DNA and other types of biomolecules, are fundamentally important to several cellular and biological processes. 3D Multi-channel confocal microscopy and colocalization analysis of fluorescent signals have proven to be invaluable tools for detecting such molecular interactions. The aim of this work was to quantify colocalization of the FOXP3 transcription factor in 3D cellular space generated from the confocal 3D image sets. 293T cells transfected with a conditionally active form of FOXP3 were stained for nuclei with Hoechst, for FOXP3 with anti-FOXP3 conjugated to PE, and 4-hydroxytamoxifen used as protein translocation and activation agent. Since the protein signal was weak and nonspecific intensity contributions were strong, it was difficult to perform colocalization analysis and estimate colocalization quantities. We performed 3D restoration by deconvolution method on the confocal images using experimentally measured point spread functions (PSFs) and subsequently a color shift correction. The deconvolution method eliminated nonspecific intensity contributions originating from PSF imposed by optical microscopy diffraction resolution limits and noise since these factors significantly affected colocalization analysis and quantification. Visual inspection of the deconvolved 3D image suggested that the FOXP3 molecules are predominantly colocalized within the nuclei although the fluorescent signals from FOXP3 molecules were also present in the cytoplasm. A close inspection of the scatter plot (colocalization map) and correlation quantities such as the Pearsons and colocalization coefficients showed that the fluorescent signals from the FOXP3 molecules and DNA are strongly correlated. In conclusion, our colocalization quantification approach confirms the preferential association of the FOXP3 molecules with the DNA despite the presence of fluorescent signals from the former one both in the

  3. The Nutrient-Responsive Transcription Factor TFE3, Promotes Autophagy, Lysosomal Biogenesis, and Clearance of Cellular Debris

    PubMed Central

    Martina, José A.; Diab, Heba I.; Lishu, Li; Jeong-A, Lim; Patange, Simona; Raben, Nina; Puertollano, Rosa

    2015-01-01

    The discovery of a gene network regulating lysosomal biogenesis and its transcriptional regulator TFEB revealed that cells monitor lysosomal function and respond to degradation requirements and environmental cues. Here, we report the identification of transcription factor E3 (TFE3) as another regulator of lysosomal homeostasis that induced expression of genes encoding proteins involved in autophagy and lysosomal biogenesis in ARPE-19 cells in response to starvation and lysosomal stress. We found that in nutrient-replete cells, TFE3 was recruited to lysosomes through interaction with active Rag GTPases and exhibited mTORC1-dependent phosphorylation. Phosphorylated TFE3 was retained in the cytosol through its interaction with the cytosolic chaperone 14-3-3. Following starvation, TFE3 rapidly translocated to the nucleus and bound to the CLEAR elements present in the promoter region of many lysosomal genes, thereby inducing lysosomal biogenesis. Depletion of endogenous TFE3 entirely abolished the response of ARPE-19 cells to starvation, suggesting that TFE3 plays a critical role in nutrient sensing and regulation of energy metabolism. Furthermore, overexpression of TFE3 triggered lysosomal exocytosis and resulted in efficient cellular clearance in a cellular model of a lysosomal storage disorder, Pompe disease, thus identifying TFE3 as a potential therapeutic target for the treatment of lysosomal disorders. PMID:24448649

  4. hCLE/C14orf166, a cellular protein required for viral replication, is incorporated into influenza virus particles

    PubMed Central

    Rodriguez-Frandsen, Ariel; de Lucas, Susana; Pérez-González, Alicia; Pérez-Cidoncha, Maite; Roldan-Gomendio, Alejandro; Pazo, Alejandra; Marcos-Villar, Laura; Landeras-Bueno, Sara; Ortín, Juan; Nieto, Amelia

    2016-01-01

    The influenza A virus polymerase associates with a number of cellular transcription-related factors, including the RNA polymerase II (RNAP II). We previously described that the cellular protein hCLE/C14orf166 interacts with and stimulates influenza virus polymerase as well as RNAP II activities. Here we show that, despite the considerable cellular shut-off observed in infected cells, which includes RNAP II degradation, hCLE protein levels increase throughout infection in a virus replication-dependent manner. Human and avian influenza viruses of various subtypes increase hCLE levels, but other RNA or DNA viruses do not. hCLE colocalises and interacts with viral ribonucleoproteins (vRNP) in the nucleus, as well as in the cytoplasm late in infection. Furthermore, biochemical analysis of purified virus particles and immunoelectron microscopy of infected cells show hCLE in virions, in close association with viral vRNP. These findings indicate that hCLE, a cellular protein important for viral replication, is one of the very few examples of transcription factors that are incorporated into particles of an RNA-containing virus. PMID:26864902

  5. Transforming growth factor-beta 1 in experimental autoimmune neuritis. Cellular localization and time course.

    PubMed Central

    Kiefer, R.; Funa, K.; Schweitzer, T.; Jung, S.; Bourde, O.; Toyka, K. V.; Hartung, H. P.

    1996-01-01

    Experimental autoimmune neuritis (EAN) is a monophasic inflammatory disorder of the peripheral nervous system that resolves spontaneously by molecular mechanisms as yet unknown. We have investigated whether the immunosuppressive cytokine transforming growth factor-beta 1 (TGF-beta 1) might be endogenously expressed in the peripheral nervous system of Lewis rats with actively induced and adoptive transfer EAN. TGF-beta 1 mRNA was upregulated to high levels in sensory and motor roots, spinal ganglia, and sciatic nerve as revealed by quantitative Northern blot analysis and in situ hybridization histochemistry, with peak levels just preceding the first signs of clinical recovery. TGF-beta 1 mRNA was localized to scattered round cells and dense cellular infiltrates, but only rarely to Schwann cell profiles. Double labeling studies revealed macrophages and subpopulations of T cells as the major cellular source of TGF-beta 1 mRNA. TGF-beta 1 protein was visualized immunocytochemically and localized to infiltrating mononuclear cells with peak expression around the same time as mRNA, in addition to some constitutive expression in axons and Schwann cells. Our studies suggest that the spontaneous recovery observed in Lewis rat EAN might be mediated by the endogenous elaboration of TGF-beta 1 within the peripheral nerve, and that macrophages might control their own cytotoxicity by expressing TGF-beta 1. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8546208

  6. Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Barajas, Daniel; Risco, Cristina; Nagy, Peter D.

    2016-01-01

    RNA viruses exploit host cells by co-opting host factors and lipids and escaping host antiviral responses. Previous genome-wide screens with Tomato bushy stunt virus (TBSV) in the model host yeast have identified 18 cellular genes that are part of the actin network. In this paper, we show that the p33 viral replication factor interacts with the cellular cofilin (Cof1p), which is an actin depolymerization factor. Using temperature-sensitive (ts) Cof1p or actin (Act1p) mutants at a semi-permissive temperature, we find an increased level of TBSV RNA accumulation in yeast cells and elevated in vitro activity of the tombusvirus replicase. We show that the large p33 containing replication organelle-like structures are located in the close vicinity of actin patches in yeast cells or around actin cable hubs in infected plant cells. Therefore, the actin filaments could be involved in VRC assembly and the formation of large viral replication compartments containing many individual VRCs. Moreover, we show that the actin network affects the recruitment of viral and cellular components, including oxysterol binding proteins and VAP proteins to form membrane contact sites for efficient transfer of sterols to the sites of replication. Altogether, the emerging picture is that TBSV, via direct interaction between the p33 replication protein and Cof1p, controls cofilin activities to obstruct the dynamic actin network that leads to efficient subversion of cellular factors for pro-viral functions. In summary, the discovery that TBSV interacts with cellular cofilin and blocks the severing of existing filaments and the formation of new actin filaments in infected cells opens a new window to unravel the way by which viruses could subvert/co-opt cellular proteins and lipids. By regulating the functions of cofilin and the actin network, which are central nodes in cellular pathways, viruses could gain supremacy in subversion of cellular factors for pro-viral functions. PMID:26863541

  7. Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements

    SciTech Connect

    Wharton, W.

    1984-01-01

    Cultures of human fibroblasts were prepared from chest skin obtained either from newborns (less than 3 months old) or adults (more than 35 years old) and maintained in vitro until they senesced. Adult cells grew logarithmically in medium supplemented with whole blood serum but not with platelet-poor plasma. Early passage cells obtained from newborns grew equally well in either plasma- or serum-supplemented medium. The difference in growth factor requirements between adult and newborn cells persisted through the lifespan of the cells; i.e., newborn cells did not develop adult hormonal requirements when maintained in culture. Thus, in vitro cellular aging can be distinguished from some types of differentiation.

  8. Cellular Requirements for Bovine Immunodeficiency Virus Vif-Mediated Inactivation of Bovine APOBEC3 Proteins

    PubMed Central

    Zhang, Wenyan; Wang, Hong; Li, Zhaolong; Liu, Xin; Liu, Guanchen; Harris, Reuben S.

    2014-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) viral infectivity factor (Vif) form a CRL5 E3 ubiquitin ligase complex to suppress virus restriction by host APOBEC3 (A3) proteins. The primate lentiviral Vif complex is composed of the unique cofactor core binding factor β (CBF-β) and canonical ligase components Cullin 5 (CUL5), Elongin B/C (ELOB/C), and RBX2. However, the mechanism by which the Vif protein of the related lentivirus bovine immunodeficiency virus (BIV) overcomes its host A3 proteins is less clear. In this study, we show that BIV Vif interacts with Cullin 2 (CUL2), ELOB/C, and RBX1, but not with CBF-β or CUL5, to form a CRL2 E3 ubiquitin ligase and degrade the restrictive bovine A3 proteins (A3Z2Z3 and A3Z3). RNA interference-mediated knockdown of ELOB or CUL2 inhibited BIV Vif-mediated degradation of these A3 proteins, whereas knockdown of CUL5 or CBF-β did not. BIV Vif with mutations in the BC box (Vif SLQ-AAA) or putative VHL box (Vif YI-AA), which cannot interact with ELOB/C or CUL2, respectively, lost the ability to counteract bovine A3 proteins. Moreover, CUL2 and UBE2M dominant negative mutants competitively inhibited the BIV Vif-mediated degradation mechanism. Thus, although the general strategy for inhibiting A3 proteins is conserved between HIV-1/SIV and BIV, the precise mechanisms can differ substantially, with only the HIV-1/SIV Vif proteins requiring CBF-β as a cofactor, HIV-1/SIV Vif using CUL5-RBX2, and BIV Vif using CUL2-RBX1. IMPORTANCE Primate lentivirus HIV-1 and SIV Vif proteins form a ubiquitin ligase complex to target host antiviral APOBEC3 proteins for degradation. However, the mechanism by which the nonprimate lentivirus BIV Vif inhibits bovine APOBEC3 proteins is unclear. In the present study, we determined the mechanism for BIV Vif-mediated degradation of bovine APOBEC3 proteins and found that it differs from the mechanism of HIV-1/SIV Vif by being CBF-β independent and

  9. Downregulation of Cellular Protective Factors of Rumen Epithelium in Goats Fed High Energy Diet

    PubMed Central

    Hollmann, Manfred; Miller, Ingrid; Hummel, Karin; Sabitzer, Sonja; Metzler-Zebeli, Barbara U.; Razzazi-Fazeli, Ebrahim; Zebeli, Qendrim

    2013-01-01

    Energy-rich diets can challenge metabolic and protective functions of the rumen epithelial cells, but the underlying factors are unclear. This study sought to evaluate proteomic changes of the rumen epithelium in goats fed a low, medium, or high energy diet. Expression of protein changes were compared by two-dimensional differential gel electrophoresis followed by protein identification with matrix assisted laser desorption ionisation tandem time-of-flight mass spectrometry. Of about 2,000 spots commonly detected in all gels, 64 spots were significantly regulated, which were traced back to 24 unique proteins. Interestingly, the expression profiles of several chaperone proteins with important cellular protective functions such as heat shock cognate 71 kDa protein, peroxiredoxin-6, serpin H1, protein disulfide-isomerase, and selenium-binding protein were collectively downregulated in response to high dietary energy supply. Similar regulation patterns were obtained for some other proteins involved in transport or metabolic functions. In contrast, metabolic enzymes like retinal dehydrogenase 1 and ATP synthase subunit beta, mitochondrial precursor were upregulated in response to high energy diet. Lower expressions of chaperone proteins in the rumen epithelial cells in response to high energy supply may suggest that these cells were less protected against the potentially harmful rumen toxic compounds, which might have consequences for rumen and systemic health. Our findings also suggest that energy-rich diets and the resulting acidotic insult may render rumen epithelial cells more vulnerable to cellular damage by attenuating their cell defense system, hence facilitating the impairment of rumen barrier function, typically observed in energy-rich fed ruminants. PMID:24349094

  10. Graphene Enhances Cellular Proliferation through Activating the Epidermal Growth Factor Receptor.

    PubMed

    Liu, Wei; Sun, Cheng; Liao, Chunyang; Cui, Lin; Li, Haishan; Qu, Guangbo; Yu, Wenlian; Song, Naining; Cui, Yuan; Wang, Zheng; Xie, Wenping; Chen, Huiming; Zhou, Qunfang

    2016-07-27

    Graphene has promising applications in food packaging, water purification, and detective sensors for contamination monitoring. However, the biological effects of graphene are not fully understood. It is necessary to clarify the potential risks of graphene exposure to humans through diverse routes, such as foods. In the present study, graphene, as the model nanomaterial, was used to test its potential effects on the cell proliferation based on multiple representative cell lines, including HepG2, A549, MCF-7, and HeLa cells. Graphene was characterized by Raman spectroscopy, particle size analysis, atomic force microscopy, and transmission electron microscopy. The cellular responses to graphene exposure were evaluated using flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and alamarBlue assays. Rat cerebral astrocyte cultures, as the non-cancer cells, were used to assess the potential cytotoxicity of graphene as well. The results showed that graphene stimulation enhanced cell proliferation in all tested cell cultures and the highest elevation in cell growth was up to 60%. A western blot assay showed that the expression of epidermal growth factor (EGF) was upregulated upon graphene treatment. The phosphorylation of EGF receptor (EGFR) and the downstream proteins, ShC and extracellular regulating kinase (ERK), were remarkably induced, indicating that the activation of the mitogen-activated protein kinase (MAPK)/ERK signaling pathway was triggered. The activation of PI3 kinase p85 and AKT showed that the PI3K/AKT signaling pathway was also involved in graphene-induced cell proliferation, causing the increase of cell ratios in the G2/M phase. No influences on cell apoptosis were observed in graphene-treated cells when compared to the negative controls, proving the low cytotoxicity of this emerging nanomaterial. The findings in this study revealed the potential cellular biological effect of graphene, which may give useful hints on its biosafety

  11. Cellular and biochemical mechanisms, risk factors and management of preterm birth: state of the art.

    PubMed

    Vitale, S G; Marilli, I; Rapisarda, A M; Rossetti, D; Belluomo, G; Iapichino, V; Stancanelli, F; Cianci, A

    2014-12-01

    Preterm birth (PTB) is usually defined as a delivery before 37 completed weeks or 259 days of gestation. World Health Organization estimates a worldwide incidence of PTB of 9.6%. Infants born preterm are at higher risks than infants born at term for mortality, and acute and chronic morbidity. Major causes of PTB are the following: spontaneous preterm labor with intact membranes (50%), labor induction or caesarean delivery for maternal or fetal indications (30%), and preterm premature rupture of membranes or PPROM (20%). The aim of this review is to analyze this medical condition, focusing on cellular and biochemical mechanisms, maternal risk factors and role of inflammation and infections in preterm premature rupture of membranes (PPROM) and PTB. Moreover we will discuss about the proper therapeutic strategies for its management. Although different methods have been introduced to predict the advent of preterm labour in asymptomatic women, possibilities for real primary prevention are rare. An early estimation of potential risk factors is pivotal in the secondary prevention of PTB. Finally most efforts so far have been tertiary interventions. These measures have reduced perinatal morbidity and mortality. Advances in primary and secondary care will be needed to prevent prematurity-related illness in infants and children. PMID:25373016

  12. Metabolism of platelet activating factor at the whole organ and cellular level

    SciTech Connect

    Haroldsen, P.E.

    1987-01-01

    Platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-3-glycerophosphocholine) has been characterized as a phospholipid possessing a myriad of effects from the cellular to whole organism levels. Analytical methods and procedures were developed in order to measure and identify PAF precursors and metabolites. Two quantitative physicochemical methods based on isotope dilution mass spectrometry (MS) were developed to measure lyso-PAF and applied to the calcium ionophore stimulated human neutrophil. Levels of lyso-PAF were found to be significantly increased, 2-3 fold, upon cell activation with a stimulus that concomitantly elicits the production of PAF. Investigation into the metabolism of PAF by the isolated perfused rat lung by intratracheal instillation revealed (/sup 3/H)-PAF to be extensively metabolized over a 15 minute time course. Greater than 96% of the administered dose was retained by the lung and was distributed as: lyso-PAF (3.3%), phosphatidylcholine (GPC, 82.3%), phosphatidylethanolamine (2.5%), and neutral lipid (2.5%), the remainder was intact PAF.

  13. Cellular Signaling by Fibroblast Growth Factors (FGFs) and Their Receptors (FGFRs) in Male Reproduction

    PubMed Central

    Cotton, Leanne M.; O’Bryan, Moira K.; Hinton, Barry T.

    2008-01-01

    The major function of the reproductive system is to ensure the survival of the species by passing on hereditary traits from one generation to the next. This is accomplished through the production of gametes and the generation of hormones that function in the maturation and regulation of the reproductive system. It is well established that normal development and function of the male reproductive system is mediated by endocrine and paracrine signaling pathways. Fibroblast growth factors (FGFs), their receptors (FGFRs), and signaling cascades have been implicated in a diverse range of cellular processes including: proliferation, apoptosis, cell survival, chemotaxis, cell adhesion, motility, and differentiation. The maintenance and regulation of correct FGF signaling is evident from human and mouse genetic studies which demonstrate that mutations leading to disruption of FGF signaling cause a variety of developmental disorders including dominant skeletal diseases, infertility, and cancer. Over the course of this review, we will provide evidence for differential expression of FGFs/FGFRs in the testis, male germ cells, the epididymis, the seminal vesicle, and the prostate. We will show that this signaling cascade has an important role in sperm development and maturation. Furthermore, we will demonstrate that FGF/FGFR signaling is essential for normal epididymal function and prostate development. To this end, we will provide evidence for the involvement of the FGF signaling system in the regulation and maintenance of the male reproductive system. PMID:18216218

  14. Intracellular Localization and Cellular Factors Interaction of HTLV-1 and HTLV-2 Tax Proteins: Similarities and Functional Differences

    PubMed Central

    Bertazzoni, Umberto; Turci, Marco; Avesani, Francesca; Di Gennaro, Gianfranco; Bidoia, Carlo; Romanelli, Maria Grazia

    2011-01-01

    Human T-lymphotropic viruses type 1 (HTLV-1) and type 2 (HTLV-2) present very similar genomic structures but HTLV-1 is more pathogenic than HTLV-2. Is this difference due to their transactivating Tax proteins, Tax-1 and Tax-2, which are responsible for viral and cellular gene activation? Do Tax-1 and Tax-2 differ in their cellular localization and in their interaction pattern with cellular factors? In this review, we summarize Tax-1 and Tax-2 structural and phenotypic properties, their interaction with factors involved in signal transduction and their localization-related behavior within the cell. Special attention will be given to the distinctions between Tax-1 and Tax-2 that likely play an important role in their transactivation activity. PMID:21994745

  15. Administrative and research policies required to bring cellular therapies from the research laboratory to the patient's bedside.

    PubMed

    Yim, Robyn

    2005-10-01

    presidential administrations on cellular therapy, variations in individual state laws, and states becoming involved in research funding, such as California's Proposition 71. Legal concerns include expanding private litigation with diversity of lawsuits, expanding lists of defendants, and the use of class-action lawsuits in research cases. Ownership issues also arise in terms of intellectual property, patents, and ownership of stem cells collected from minors, as in umbilical cord blood donations. Situations that challenge the regulatory processes established to ensure participant safety include differences in reporting requirements for private- and public-funded research and the lack of adequate funding and resources to implement and support the institutional review board (IRB) process. Financial considerations influence the development of clinical protocols, because funding is often limited. Financial incentives, personal investment in companies funding research activities, and fundraising pressures may present potential conflicts. In addition, the increasing role of emerging biotechnology start-up companies and pharmaceutical companies in clinical research introduces additional financial considerations. Administrative policies are needed to address these possible conflicts and ensure research participant safety as cellular therapies progress from the research laboratories to the patient's bedside. Administrative policies to ensure minimum standards of quality for emerging products before human clinical trials, policies to enforce consistent reporting requirements for private and public cellular research, policies to minimize financial conflicts of interest, policies to strengthen implementation of the existing IRB process and to structure into the process a consistent, systematic review of these identified conflicts, and policies to limit private litigation will help to preserve the objectivity of the review process and ultimately increase participant safety. PMID:16181400

  16. De novo fatty acid synthesis at the mitotic exit is required to complete cellular division

    PubMed Central

    Scaglia, Natalia; Tyekucheva, Svitlana; Zadra, Giorgia; Photopoulos, Cornelia; Loda, Massimo

    2014-01-01

    Although the regulation of the cell cycle has been extensively studied, much less is known about its coordination with the cellular metabolism. Using mass spectrometry we found that lysophospholipid levels decreased drastically from G2/M to G1 phase, while de novo phosphatidylcholine synthesis, the main phospholipid in mammalian cells, increased, suggesting that enhanced membrane production was concomitant to a decrease in its turnover. In addition, fatty acid synthesis and incorporation into membranes was increased upon cell division. The rate-limiting reaction for de novo fatty acid synthesis is catalyzed by acetyl-CoA carboxylase. As expected, its inhibiting phosphorylation decreased prior to cytokinesis initiation. Importantly, the inhibition of fatty acid synthesis arrested the cells at G2/M despite the presence of abundant fatty acids in the media. Our results suggest that de novo lipogenesis is essential for cell cycle completion. This “lipogenic checkpoint” at G2/M may be therapeutically exploited for hyperproliferative diseases such as cancer. PMID:24418822

  17. Transcriptional control of fungal cell cycle and cellular events by Fkh2, a forkhead transcription factor in an insect pathogen

    PubMed Central

    Wang, Juan-Juan; Qiu, Lei; Cai, Qing; Ying, Sheng-Hua; Feng, Ming-Guang

    2015-01-01

    Transcriptional control of the cell cycle by forkhead (Fkh) transcription factors is likely associated with fungal adaptation to host and environment. Here we show that Fkh2, an ortholog of yeast Fkh1/2, orchestrates cell cycle and many cellular events of Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of Fkh2 in B. bassiana resulted in dramatic down-regulation of the cyclin-B gene cluster and hence altered cell cycle (longer G2/M and S, but shorter G0/G1, phases) in unicellular blastospores. Consequently, ΔFkh2 produced twice as many, but smaller, blastospores than wild-type under submerged conditions, and formed denser septa and shorter/broader cells in aberrantly branched hyphae. In these hyphae, clustered genes required for septation and conidiation were remarkedly up-regulated, followed by higher yield and slower germination of aerial conidia. Moreover, ΔFkh2 displayed attenuated virulence and decreased tolerance to chemical and environmental stresses, accompanied with altered transcripts and activities of phenotype-influencing proteins or enzymes. All the changes in ΔFkh2 were restored by Fkh2 complementation. All together, Fkh2-dependent transcriptional control is vital for the adaptation of B. bassiana to diverse habitats of host insects and hence contributes to its biological control potential against arthropod pests. PMID:25955538

  18. Transcriptional control of fungal cell cycle and cellular events by Fkh2, a forkhead transcription factor in an insect pathogen.

    PubMed

    Wang, Juan-Juan; Qiu, Lei; Cai, Qing; Ying, Sheng-Hua; Feng, Ming-Guang

    2015-01-01

    Transcriptional control of the cell cycle by forkhead (Fkh) transcription factors is likely associated with fungal adaptation to host and environment. Here we show that Fkh2, an ortholog of yeast Fkh1/2, orchestrates cell cycle and many cellular events of Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of Fkh2 in B. bassiana resulted in dramatic down-regulation of the cyclin-B gene cluster and hence altered cell cycle (longer G2/M and S, but shorter G0/G1, phases) in unicellular blastospores. Consequently, ΔFkh2 produced twice as many, but smaller, blastospores than wild-type under submerged conditions, and formed denser septa and shorter/broader cells in aberrantly branched hyphae. In these hyphae, clustered genes required for septation and conidiation were remarkedly up-regulated, followed by higher yield and slower germination of aerial conidia. Moreover, ΔFkh2 displayed attenuated virulence and decreased tolerance to chemical and environmental stresses, accompanied with altered transcripts and activities of phenotype-influencing proteins or enzymes. All the changes in ΔFkh2 were restored by Fkh2 complementation. All together, Fkh2-dependent transcriptional control is vital for the adaptation of B. bassiana to diverse habitats of host insects and hence contributes to its biological control potential against arthropod pests. PMID:25955538

  19. Regulation of cellular diacylglycerol through lipid phosphate phosphatases is required for pathogenesis of the rice blast fungus, Magnaporthe oryzae.

    PubMed

    Sadat, Md Abu; Jeon, Junhyun; Mir, Albely Afifa; Choi, Jaeyoung; Choi, Jaehyuk; Lee, Yong-Hwan

    2014-01-01

    Considering implication of diacylglycerol in both metabolism and signaling pathways, maintaining proper levels of diacylglycerol (DAG) is critical to cellular homeostasis and development. Except the PIP2-PLC mediated pathway, metabolic pathways leading to generation of DAG converge on dephosphorylation of phosphatidic acid catalyzed by lipid phosphate phosphatases. Here we report the role of such enzymes in a model plant pathogenic fungus, Magnaporthe oryzae. We identified five genes encoding putative lipid phosphate phosphatases (MoLPP1 to MoLPP5). Targeted disruption of four genes (except MoLPP4) showed that MoLPP3 and MoLPP5 are required for normal progression of infection-specific development and proliferation within host plants, whereas MoLPP1 and MoLPP2 are indispensable for fungal pathogenicity. Reintroduction of MoLPP3 and MoLPP5 into individual deletion mutants restored all the defects. Furthermore, exogenous addition of saturated DAG not only restored defect in appressorium formation but also complemented reduced virulence in both mutants. Taken together, our data indicate differential roles of lipid phosphate phosphatase genes and requirement of proper regulation of cellular DAGs for fungal development and pathogenesis. PMID:24959955

  20. Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Zhang, K.; Flanders, K. C.; Phan, S. H.

    1995-01-01

    Bleomycin-induced pulmonary fibrosis is associated with increased lung transforming growth factor-beta (TGF-beta) gene expression, but cellular localization of the source of this expression has not been unequivocally established. In this study, lung fibrosis was induced in rats by endotracheal bleomycin injection on day 0 and, on selected days afterwards, lungs were harvested for in situ hybridization, immunohistochemical and histochemical analyses for TGF-beta 1 mRNA and protein expression, and cell identification. The results show that control lungs express essentially no detectable TGF-beta 1 mRNA or protein in the parenchyma. Before day 3 after bleomycin treatment, scattered bronchiolar epithelial cells, mononuclear cells, and eosinophils expressed elevated levels of TGF-beta 1. Between days 3 and 14, there was a major increase in the number of eosinophils, myofibroblasts, and fibroblasts strongly expressing TGF-beta 1 mRNA and protein. TGF-beta 1-producing cells were predominantly localized within areas of injury and active fibrosis. After day 14, the intensity and number of TGF-beta 1-expressing cells significantly declined and were predominantly found in fibroblasts in fibrotic areas. The expression of TGF-beta 1 protein was generally coincident with that for mRNA with the exception of bronchiolar epithelial cells in which strong protein expression was unaccompanied by a commensurate increase in mRNA. The study demonstrates that myofibroblasts, fibroblasts, and eosinophils represent the major sources of increased lung TGF-beta 1 expression in this model of pulmonary fibrosis. Images Figure 2 Figure 3 Figure 4 PMID:7543734

  1. Internalization and cellular pools of never growth factor in pheochromocytoma (PC12) cells

    SciTech Connect

    Neet, K.E.; Kasaian, M.

    1987-05-01

    Nerve Growth Factor (NGF) binds to a cell surface receptor on responsive neuronal cells to initiate cell maintenance and/or differentiation regimes. The purpose of these studies was to define quantitatively the fate of NGF in PC12 cells with respect to various cellular compartments in a single series of biochemical experiments. Different binding methodologies were evaluated in suspension and on plates. 50 pM SVI-NGF was bound to rat PC12 cells in suspension for 30 min at 37, followed by various methods and combinations of methods to remove subsets of bound ligand. Distinction could be made between NGF bound to fast vs. slow cell surface receptors, NGF bound to slow receptors at the cell surface vs. cell interior, and detergent-soluble vs. cytoskeletally-attached NGF. These treatments defined the relative size of five pools, including the fast receptor (65%), two intracellular compartments (12% and 3%) susceptible to nonionic detergent, and a detergent-stable intracellular pool of ligand (16%). At 37 the cold chase stable and the acid stable pools were about the same size because of rapid internalization, but the slow receptor was measurable at 4. Inhibitors were used to define the route of NGF through the cell from the plasma membrane to degradation. Chloroquine caused accumulation of NGF only in pools that were not associated with the cytoskeleton, implicating this compartment in supplying ligand to the lysosome. Results with cytochalasin B and colchicine and suggested both microfilament and microtubule pathways in NGF degradation. A model for the movement of NGF through the cell was developed based on these observations.

  2. Cell reprogramming. Histone chaperone ASF1A is required for maintenance of pluripotency and cellular reprogramming.

    PubMed

    Gonzalez-Muñoz, Elena; Arboleda-Estudillo, Yohanna; Otu, Hasan H; Cibelli, Jose B

    2014-08-15

    Unfertilized oocytes have the intrinsic capacity to remodel sperm and the nuclei of somatic cells. The discoveries that cells can change their phenotype from differentiated to embryonic state using oocytes or specific transcription factors have been recognized as two major breakthroughs in the biomedical field. Here, we show that ASF1A, a histone-remodeling chaperone specifically enriched in the metaphase II human oocyte, is necessary for reprogramming of human adult dermal fibroblasts (hADFs) into undifferentiated induced pluripotent stem cell. We also show that overexpression of just ASF1A and OCT4 in hADFs exposed to the oocyte-specific paracrine growth factor GDF9 can reprogram hADFs into pluripotent cells. Our Report underscores the importance of studying the unfertilized MII oocyte as a means to understand the molecular pathways governing somatic cell reprogramming. PMID:25035411

  3. Enamel matrix proteins exhibit growth factor activity: A review of evidence at the cellular and molecular levels

    PubMed Central

    WYGANOWSKA-ŚWIĄTKOWSKA, MARZENA; URBANIAK, PAULINA; NOHAWICA, MICHAŁ MAREK; KOTWICKA, MAŁGORZATA; JANKUN, JERZY

    2015-01-01

    Enamel matrix derivative (EMD) is a commercially available protein extract, mainly comprising amelogenins. A number of other polypeptides have been identified in EMD, mostly growth factors, which promote cementogenesis and osteogenesis during the regeneration processes through the regulation of cell proliferation, differentiation and activity; however, not all of their functions are clear. Enamel extracts have been proposed to have numerous activities such as bone morphogenetic protein- and transforming growth factor β (TGF-β)-like activity, and activities similar to those of insulin-like growth factor, fibroblast growth factor, platelet-derived growth factor, vascular endothelial growth factor and epidermal growth factor. These activities have been observed at the molecular and cellular levels and in numerous animal models. Furthermore, it has been suggested that EMD contains an unidentified biologically active factor that acts in combination with TGF-β1, and several studies have reported functional similarities between growth factors and TGF-β in cellular processes. The effects of enamel extracts on the cell cycle and biology are summarized and discussed in this review. PMID:26161150

  4. Voltage-gated Nav channel targeting in the heart requires an ankyrin-G–dependent cellular pathway

    PubMed Central

    Lowe, John S.; Palygin, Oleg; Bhasin, Naina; Hund, Thomas J.; Boyden, Penelope A.; Shibata, Erwin; Anderson, Mark E.; Mohler, Peter J.

    2008-01-01

    Voltage-gated Nav channels are required for normal electrical activity in neurons, skeletal muscle, and cardiomyocytes. In the heart, Nav1.5 is the predominant Nav channel, and Nav1.5-dependent activity regulates rapid upstroke of the cardiac action potential. Nav1.5 activity requires precise localization at specialized cardiomyocyte membrane domains. However, the molecular mechanisms underlying Nav channel trafficking in the heart are unknown. In this paper, we demonstrate that ankyrin-G is required for Nav1.5 targeting in the heart. Cardiomyocytes with reduced ankyrin-G display reduced Nav1.5 expression, abnormal Nav1.5 membrane targeting, and reduced Na+ channel current density. We define the structural requirements on ankyrin-G for Nav1.5 interactions and demonstrate that loss of Nav1.5 targeting is caused by the loss of direct Nav1.5–ankyrin-G interaction. These data are the first report of a cellular pathway required for Nav channel trafficking in the heart and suggest that ankyrin-G is critical for cardiac depolarization and Nav channel organization in multiple excitable tissues. PMID:18180363

  5. Cellular Requirements for Systemic Control of Salmonella enterica Serovar Typhimurium Infections in Mice

    PubMed Central

    Bedoui, Sammy

    2014-01-01

    The rational design of vaccines requires an understanding of the contributions of individual immune cell subsets to immunity. With this understanding, targeted vaccine delivery approaches and adjuvants can be developed to maximize vaccine efficiency and to minimize side effects (S. H. E. Kaufmann et al., Immunity 33:555–577, 2010; T. Ben-Yedidia and R. Arnon, Hum. Vaccines 1:95–101, 2005). We have addressed the contributions of different immune cell subsets and their ability to contribute to the control and clearance of the facultative intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) in a murine model. Using a systematic and reproducible model of experimental attenuated S. Typhimurium infection, we show that distinct lymphocyte deficiencies lead to one of four different infection outcomes: clearance, chronic infection, early death, or late death. Our study demonstrates a high level of functional redundancy in the ability of different lymphocyte subsets to provide interferon gamma (IFN-γ), a critical cytokine in Salmonella immunity. Whereas early control of the infection was entirely dependent on IFN-γ but not on any particular lymphocyte subset, clearance of the infection critically required CD4+ T cells but appeared to be independent of IFN-γ. These data reinforce the idea of a bimodal immune response against Salmonella: an early T cell-independent but IFN-γ-dependent phase and a late T cell-dependent phase that may be IFN-γ independent. PMID:25225248

  6. Cellular requirements for systemic control of Salmonella enterica serovar Typhimurium infections in mice.

    PubMed

    Kupz, Andreas; Bedoui, Sammy; Strugnell, Richard A

    2014-12-01

    The rational design of vaccines requires an understanding of the contributions of individual immune cell subsets to immunity. With this understanding, targeted vaccine delivery approaches and adjuvants can be developed to maximize vaccine efficiency and to minimize side effects (S. H. E. Kaufmann et al., Immunity 33:555-577, 2010; T. Ben-Yedidia and R. Arnon, Hum. Vaccines 1:95-101, 2005). We have addressed the contributions of different immune cell subsets and their ability to contribute to the control and clearance of the facultative intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) in a murine model. Using a systematic and reproducible model of experimental attenuated S. Typhimurium infection, we show that distinct lymphocyte deficiencies lead to one of four different infection outcomes: clearance, chronic infection, early death, or late death. Our study demonstrates a high level of functional redundancy in the ability of different lymphocyte subsets to provide interferon gamma (IFN-γ), a critical cytokine in Salmonella immunity. Whereas early control of the infection was entirely dependent on IFN-γ but not on any particular lymphocyte subset, clearance of the infection critically required CD4(+) T cells but appeared to be independent of IFN-γ. These data reinforce the idea of a bimodal immune response against Salmonella: an early T cell-independent but IFN-γ-dependent phase and a late T cell-dependent phase that may be IFN-γ independent. PMID:25225248

  7. ROLE OF CELLULAR BIOENERGETICS IN SMOOTH MUSCLE CELL PROLIFERATION INDUCED BY PLATELET-DERIVED GROWTH FACTOR

    PubMed Central

    Perez, Jessica; Hill, Bradford G.; Benavides, Gloria A.; Dranka, Brian P.; Darley-Usmar, Victor M.

    2013-01-01

    SYNOPSIS Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that platelet-derived growth factor (PDGF) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux, and mitochondrial oxygen consumption were measured after treatment of primary rat aortic smooth muscle cells with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, lactate dehydrogenase protein levels and activity were significantly increased after PDGF treatment. Moreover, L-lactate substitution for D-glucose was sufficient for increasing the mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the lactate dehydrogenase inhibitor, oxamate. These data suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMC in the diseased vasculature. PMID:20331438

  8. Cellular factors associated with latency and spontaneous Epstein-Barr virus reactivation in B-lymphoblastoid cell lines.

    PubMed

    Davies, Michael L; Xu, Shushen; Lyons-Weiler, James; Rosendorff, Adam; Webber, Steven A; Wasil, Laura R; Metes, Diana; Rowe, David T

    2010-04-25

    EBV-immortalized B-lymphoblastoid cell lines are used as models for cellular transformation and as antigen-presenting cells in immunological assays. LCLs vary in surface markers and other phenotypic properties, but it is not known how this heterogeneity relates to the EBV life cycle. To explore correlations, we examined 62 LCLs for cellular and viral phenotypes. LCLs generated from pediatric and adult donors could similarly be categorized as either low in EBV copy number or fluctuating within a high range. High-copy status accompanied higher lytic viral gene expression and lower latent gene expression. Inhibiting lytic EBV replication did not affect cellular phenotype or lytic switch protein expression, indicating that an LCL's lytic permissivity was a stable property. Among the cellular genes overexpressed in permissive LCLs were unfolded protein response genes and plasma cell markers. Among genes overexpressed in non-permissive LCLs were transcription factors involved in maintaining B cell lineage, in particular EBF1. This study suggests previously undetected mechanisms by which cellular pathways influence the lytic reactivation of EBV. PMID:20153012

  9. Glutamate Dehydrogenase Is Required by Mycobacterium bovis BCG for Resistance to Cellular Stress

    PubMed Central

    Gallant, James L.; Viljoen, Albertus J.; van Helden, Paul D.; Wiid, Ian J. F.

    2016-01-01

    We recently reported on our success to generate deletion mutants of the genes encoding glutamate dehydrogenase (GDH) and glutamine oxoglutarate aminotransferase (GOGAT) in M. bovis BCG, despite their in vitro essentiality in M. tuberculosis. We could use these mutants to delineate the roles of GDH and GOGAT in mycobacterial nitrogen metabolism by using M. bovis BCG as a model for M. tuberculosis specifically. Here, we extended our investigation towards the involvement of GDH and GOGAT in other aspects of M. bovis BCG physiology, including the use of glutamate as a carbon source and resistance to known phagosomal stresses, as well as in survival inside macrophages. We find that gdh is indispensable for the utilization of glutamate as a major carbon source, in low pH environments and when challenged with nitric oxide. On the other hand, the gltBD mutant had increased viability under low pH conditions and was unaffected by a challenge with nitric oxide. Strikingly, GDH was required to sustain M. bovis BCG during infection of both murine RAW 264.7 and bone-marrow derived and macrophages, while GOGAT was not. We conclude that the catabolism of glutamate in slow growing mycobacteria may be a crucial function during infection of macrophage cells and demonstrate a novel requirement for M. bovis BCG GDH in the protection against acidic and nitrosative stress. These results provide strong clues on the role of GDH in intracellular survival of M. tuberculosis, in which the essentiality of the gdh gene complicates knock out studies making the study of the role of this enzyme in pathogenesis difficult. PMID:26824899

  10. Cellular transformation and malignancy induced by ras require c-jun.

    PubMed Central

    Johnson, R; Spiegelman, B; Hanahan, D; Wisdom, R

    1996-01-01

    ras is an important oncogene in experimental animals and humans. In addition, activated ras proteins are potent inducers of the transcription factor AP-1, which is composed of heterodimeric complexes of Fos and Jun proteins. Together with the fact that deregulated expression of some AP-1 proteins can cause neoplastic transformation, this finding suggests that AP-1 may function as a critical ras effector. We have tested this hypothesis directly by analyzing the response to activated ras in cells that harbor a null mutation in the c-jun gene. The transcriptional response of AP-1-responsive genes to activated ras is severely impaired in c-jun null fibroblasts. Compared with wild-type cells, the c-jun null cells lack many characteristics of ras transformation, including loss of contact inhibition, anchorage independence, and tumorigenicity in nude mice; these properties are restored by forced expression of c-jun. Rare tumorigenic variants of ras-expressing c-jun null fibroblasts do arise. Analysis of these variants reveals a consistent restoration of AP-1 activity. The results provide genetic evidence that c-jun is a crucial effector for transformation by activated ras proteins. PMID:8754851

  11. Transcriptional and post-transcriptional regulation of HIV-1 gene expression: role of cellular factors for Tat and Rev.

    PubMed

    Nekhai, Sergei; Jeang, Kuan-Teh

    2006-12-01

    The emergence of drug-resistant HIV-1 strains presents a challenge for the design of new therapy. Targeting host cell factors that regulate HIV-1 replication might be one way to overcome the propensity for HIV-1 to mutate in order to develop resistance to antivirals. This article reviews the interplay between viral proteins Tat and Rev and their cellular cofactors in the transcriptional and post-transcriptional regulation of HIV-1 gene expression. HIV-1 Tat regulates viral transcription by recruiting cellular factors to the HIV promoter. Tat interacts with protein kinase complexes Cdk9/cyclin T1 and Cdk2/cyclin E; acetyltransferases p300/CBP, p300/CBP-associated factor and hGCN5; protein phosphatases and other factors. HIV-1 Rev regulates post-transcriptional processing of viral mRNAs. Rev primarily functions to export unspliced and partially spliced viral RNAs from the nucleus into the cytoplasm. For this activity, Rev cooperates with cellular transport protein CRM1 and RNA helicases DDX1 and DDX3, amongst others. PMID:17661632

  12. Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry.

    PubMed

    Bravery, Christopher A; Carmen, Jessica; Fong, Timothy; Oprea, Wanda; Hoogendoorn, Karin H; Woda, Juliana; Burger, Scott R; Rowley, Jon A; Bonyhadi, Mark L; Van't Hof, Wouter

    2013-01-01

    The evaluation of potency plays a key role in defining the quality of cellular therapy products (CTPs). Potency can be defined as a quantitative measure of relevant biologic function based on the attributes that are linked to relevant biologic properties. To achieve an adequate assessment of CTP potency, appropriate in vitro or in vivo laboratory assays and properly controlled clinical data need to be created. The primary objective of a potency assay is to provide a mechanism by which the manufacturing process and the final product for batch release are scrutinized for quality, consistency and stability. A potency assay also provides the basis for comparability assessment after process changes, such as scale-up, site transfer and new starting materials (e.g., a new donor). Potency assays should be in place for early clinical development, and validated assays are required for pivotal clinical trials. Potency is based on the individual characteristics of each individual CTP, and the adequacy of potency assays will be evaluated on a case-by-case basis by regulatory agencies. We provide an overview of the expectations and challenges in development of potency assays specific for CTPs; several real-life experiences from the cellular therapy industry are presented as illustrations. The key observation and message is that aggressive early investment in a solid potency evaluation strategy can greatly enhance eventual CTP deployment because it can mitigate the risk of costly product failure in late-stage development. PMID:23260082

  13. Essential requirement of cytochrome c release for caspase activation by procaspase-activating compound defined by cellular models

    PubMed Central

    Seervi, M; Joseph, J; Sobhan, P K; Bhavya, B C; Santhoshkumar, T R

    2011-01-01

    Mitochondrial cytochrome c (cyt. c) release and caspase activation are often impaired in tumors with Bcl-2 overexpression or Bax and Bak-defective status. Direct triggering of cell death downstream of Bax and Bak is an attractive strategy to kill such cancers. Small molecule compounds capable of direct caspase activation appear to be the best mode for killing such tumors. However, there is no precise model to screen such compounds. The currently employed cell-free systems possess the inherent drawback of lacking cellular contents and organelles that operate in integrating cell death signaling. We have developed highly refined cell-based approaches to validate direct caspase activation in cancer cells. Using this approach, we show that PAC-1 (first procaspase-activating compound), the first direct activator of procaspases identified in a cell-free system, in fact requires mitochondrial cyt. c release for triggering caspase activation similar to other antitumor agents. It can induce significant caspase activation and cell death in the absence of Bax and Bak, and in cells overexpressing Bcl-2 and Bcl-xL. This study for the first time defines precise criteria for the validation of direct caspase-activating compounds using specialized cellular models that is expected to accelerate the discovery of potential direct caspase activators. PMID:21900958

  14. Protection against Streptococcus pneumoniae lung infection after nasopharyngeal colonization requires both humoral and cellular immune responses

    PubMed Central

    Wilson, R; Cohen, J M; Jose, R J; de Vogel, C; Baxendale, H; Brown, J S

    2015-01-01

    Streptococcus pneumoniae is a common cause of pneumonia and infective exacerbations of chronic lung disease, yet there are few data on how adaptive immunity can specifically prevent S. pneumoniae lung infection. We have used a murine model of nasopharyngeal colonization by the serotype 19F S. pneumoniae strain EF3030 followed by lung infection to investigate whether colonization protects against subsequent lung infection and the mechanisms involved. EF3030 colonization induced systemic and local immunoglobulin G against a limited number of S. pneumoniae protein antigens rather than capsular polysaccharide. During lung infection, previously colonized mice had increased early cytokine responses and neutrophil recruitment and reduced bacterial colony-forming units in the lungs and bronchoalveolar lavage fluid compared with control mice. Colonization-induced protection was lost when experiments were repeated in B-cell- or neutrophil-deficient mice. Furthermore, the improved interleukin (IL)-17 response to infection in previously colonized mice was abolished by depletion of CD4+ cells, and prior colonization did not protect against lung infection in mice depleted of CD4+ cells or IL17. Together these data show that naturally acquired protective immunity to S. pneumoniae lung infection requires both humoral and cell-mediated immune responses, providing a template for the design of improved vaccines that can specifically prevent pneumonia or acute bronchitis. PMID:25354319

  15. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion

    PubMed Central

    Davy, Alice; Gale, Nicholas W.; Murray, Elizabeth W.; Klinghoffer, Richard A.; Soriano, Philippe; Feuerstein, Claude; Robbins, Stephen M.

    1999-01-01

    Eph receptor tyrosine kinases and their corresponding surface-bound ligands, the ephrins, provide cues to the migration of cells and growth cones during embryonic development. Here we show that ephrin-A5, which is attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidylinositol-anchor, induces compartmentalized signaling within a caveolae-like membrane microdomain when bound to the extracellular domain of its cognate Eph receptor. The physiological response induced by this signaling event is concomitant with a change in the cellular architecture and adhesion of the ephrin-A5-expressing cells and requires the activity of the Fyn protein tyrosine kinase. This study stresses the relevance of bidirectional signaling involving the ephrins and Eph receptors during brain development. PMID:10601038

  16. The Effects of Imatinib Mesylate on Cellular Viability, Platelet Derived Growth Factor and Stem Cell Factor in Mouse Testicular Normal Leydig Cells

    PubMed Central

    Kheradmand, Fatemeh; Hashemnia, Seyyed Mohammad Reza; Valizadeh, Nasim; Roshan-Milani, Shiva

    2016-01-01

    Background: Growth factors play an essential role in the development of tumor and normal cells like testicular leydig cells. Treatment of cancer with anti-cancer agents like imatinib mesylate may interfere with normal leydig cell activity, growth and fertility through failure in growth factors’ production or their signaling pathways. The purpose of the study was to determine cellular viability and the levels of, platelet derived growth factor (PDGF) and stem cell factor (SCF) in normal mouse leydig cells exposed to imatinib, and addressing the effect of imatinib on fertility potential. Methods: The mouse TM3 leydig cells were treated with 0 (control), 2.5, 5, 10 and 20 μM imatinib for 2, 4 and 6 days. Each experiment was repeated three times (15 experiments in each day).The cellular viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, one-way ANOVA with Tukey’s post hoc and Kruskal-Wallis test were performed. A p-value less than 0.05 was considered statistically significant. Results: With increasing drug concentration, cellular viability decreased significantly (p<0.05) and in contrast, PDGF levels increased (p<0.05). Different imatinib concentrations had no significant effect on SCF level. Increasing the duration of treatment from 2 to 6 days had no obvious effect on cellular viability, PDGF and SCF levels. Conclusion: Imatinib may reduce fertility potential especially at higher concentrations in patients treated with this drug by decreasing cellular viability. The effect of imatinib on leydig cells is associated with PDGF stimulation. Of course future studies can be helpful in exploring the long term effects of this drug. PMID:27141462

  17. Decoding Cellular Dynamics in Epidermal Growth Factor Signaling Using a New Pathway-Based Integration Approach for Proteomics and Transcriptomics Data

    PubMed Central

    Wachter, Astrid; Beißbarth, Tim

    2016-01-01

    Identification of dynamic signaling mechanisms on different cellular layers is now facilitated as the increased usage of various high-throughput techniques goes along with decreasing costs for individual experiments. A lot of these signaling mechanisms are known to be coordinated by their dynamics, turning time-course data sets into valuable information sources for inference of regulatory mechanisms. However, the combined analysis of parallel time-course measurements from different high-throughput platforms still constitutes a major challenge requiring sophisticated bioinformatic tools in order to ease biological interpretation. We developed a new pathway-based integration approach for the analysis of coupled omics time-series data, which we implemented in the R package pwOmics. Unlike many other approaches, our approach acknowledges the role of the different cellular layers of measurement and infers consensus profiles and time profile clusters for further biological interpretation. We investigated a time-course data set on epidermal growth factor stimulation of human mammary epithelial cells generated on the two layers of RNA and proteins. The data was analyzed using our new approach with a focus on feedback signaling and pathway crosstalk. We could confirm known regulatory patterns relevant in the physiological cellular response to epidermal growth factor stimulation as well as identify interesting new interactions in this signaling context, such as the regulatory influence of the connective tissue growth factor on transferrin receptor or the influence of growth arrest and DNA-damage-inducible alpha on the connective tissue growth factor. Thus, we show that integrated cross-platform analysis provides a deeper understanding of regulatory signaling mechanisms. Combined with time-course information it enables the characterization of dynamic signaling processes and leads to the identification of important regulatory interactions which might be dysregulated in disease

  18. MicroRNA-mediated regulation of p21 and TASK1 cellular restriction factors enhances HIV-1 infection

    PubMed Central

    Farberov, Luba; Herzig, Eytan; Modai, Shira; Isakov, Ofer; Hizi, Amnon; Shomron, Noam

    2015-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that play a central role in the regulation of gene expression by binding to target mRNAs. Several studies have revealed alterations in cellular miRNA profiles following HIV-1 infection, mostly for miRNAs involved in inhibiting viral infection. These miRNA expression modifications might also serve to block the innate HIV-1 inhibition mechanism. As a result, it is expected that during HIV-1 infection miRNAs target genes that hinder or prevent the progression of the HIV-1 replication cycle. One of the major sets of genes known to inhibit the progression of HIV-1 infection are cellular restriction factors. In this study, we identified a direct miRNA target gene that modulates viral spread in T-lymphocytes and HeLa-CCR5 cell lines. Following infection, let-7c, miR-34a or miR-124a were upregulated, and they targeted and downregulated p21 and TASK1 (also known as CDKN1A and KCNK3, respectively) cellular proteins. This eventually led to increased virion release and higher copy number of viral genome transcripts in infected cells. Conversely, by downregulating these miRNAs, we could suppress viral replication and spread. Our data suggest that HIV-1 exploits the host miRNA cellular systems in order to block the innate inhibition mechanism, allowing a more efficient infection process. PMID:25717002

  19. Epstein-Barr virus transcription factor Zta acts through distal regulatory elements to directly control cellular gene expression.

    PubMed

    Ramasubramanyan, Sharada; Osborn, Kay; Al-Mohammad, Rajaei; Naranjo Perez-Fernandez, Ijiel B; Zuo, Jianmin; Balan, Nicolae; Godfrey, Anja; Patel, Harshil; Peters, Gordon; Rowe, Martin; Jenner, Richard G; Sinclair, Alison J

    2015-04-20

    Lytic replication of the human gamma herpes virus Epstein-Barr virus (EBV) is an essential prerequisite for the spread of the virus. Differential regulation of a limited number of cellular genes has been reported in B-cells during the viral lytic replication cycle. We asked whether a viral bZIP transcription factor, Zta (BZLF1, ZEBRA, EB1), drives some of these changes. Using genome-wide chromatin immunoprecipitation coupled to next-generation DNA sequencing (ChIP-seq) we established a map of Zta interactions across the human genome. Using sensitive transcriptome analyses we identified 2263 cellular genes whose expression is significantly changed during the EBV lytic replication cycle. Zta binds 278 of the regulated genes and the distribution of binding sites shows that Zta binds mostly to sites that are distal to transcription start sites. This differs from the prevailing view that Zta activates viral genes by binding exclusively at promoter elements. We show that a synthetic Zta binding element confers Zta regulation at a distance and that distal Zta binding sites from cellular genes can confer Zta-mediated regulation on a heterologous promoter. This leads us to propose that Zta directly reprograms the expression of cellular genes through distal elements. PMID:25779048

  20. Induction of Specific Cellular and Humoral Responses against Renal Cell Carcinoma after Combination Therapy with Cryoablation and Granulocyte-Macrophage Colony Stimulating Factor: A Pilot Study

    PubMed Central

    Thakur, Archana; Littrup, Peter; Paul, Elyse N.; Adam, Barbara; Heilbrun, Lance K.; Lum, Lawrence G.

    2013-01-01

    Cryotherapy offers a minimally invasive treatment option for the management of both irresectable and localized prostate, liver, pulmonary and renal tumors. The anti-neoplastic effects of cryotherapy are mediated by direct tumor lysis and by indirect effects such as intracellular dehydration, pH changes, and microvascular damage resulting in ischemic necrosis. In this study, we investigated whether percutaneous cryoablation of lung metastasis from renal cell carcinoma (RCC) in combination with aerosolized granulocyte-macrophage colony stimulating factor (GM-CSF) can induce systemic cellular and humoral immune responses in 6 RCC patients. Peripheral blood mononuclear cells (PBMC) were sequentially studied up to 63 days post cryoimmunotherapy (CI). PBMC from pre and post CI were phenotyped for lymphocyte subsets and tested for cytotoxicity and IFNγ Elispots directed at RCC cells. Humoral responses were measured by in vitro antibody synthesis assay directed at RCC cells. The immune monitoring data showed that CI induced tumor specific CTL, specific in vitro anti-tumor antibody responses, and enhanced Th1 cytokine production in 4 out of 6 patients. More importantly, the magnitude of cellular and humoral anti-tumor response appears to be associated with clinical responses. These pilot data show that CI can induce robust and brisk cellular and humoral immune responses in metastatic RCC patients, but requires further evaluation in optimized protocols. PMID:21577139

  1. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements

    PubMed Central

    Viktorovskaya, Olga V.; Greco, Todd M.; Cristea, Ileana M.; Thompson, Sunnie R.

    2016-01-01

    Background There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication. Methodology/Principal Findings Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated. Conclusions/Significance The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with

  2. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer's Disease.

    PubMed

    McGinley, Lisa M; Sims, Erika; Lunn, J Simon; Kashlan, Osama N; Chen, Kevin S; Bruno, Elizabeth S; Pacut, Crystal M; Hazel, Tom; Johe, Karl; Sakowski, Stacey A; Feldman, Eva L

    2016-03-01

    Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD. PMID:26744412

  3. Chemical structure requirements and cellular targeting of microRNA-122 by peptide nucleic acids anti-miRs

    PubMed Central

    Torres, Adrian G.; Fabani, Martin M.; Vigorito, Elena; Williams, Donna; Al-Obaidi, Naowras; Wojciechowski, Filip; Hudson, Robert H. E.; Seitz, Oliver; Gait, Michael J.

    2012-01-01

    Anti-miRs are oligonucleotide inhibitors complementary to miRNAs that have been used extensively as tools to gain understanding of specific miRNA functions and as potential therapeutics. We showed previously that peptide nucleic acid (PNA) anti-miRs containing a few attached Lys residues were potent miRNA inhibitors. Using miR-122 as an example, we report here the PNA sequence and attached amino acid requirements for efficient miRNA targeting and show that anti-miR activity is enhanced substantially by the presence of a terminal-free thiol group, such as a Cys residue, primarily due to better cellular uptake. We show that anti-miR activity of a Cys-containing PNA is achieved by cell uptake through both clathrin-dependent and independent routes. With the aid of two PNA analogues having intrinsic fluorescence, thiazole orange (TO)-PNA and [bis-o-(aminoethoxy)phenyl]pyrrolocytosine (BoPhpC)-PNA, we explored the subcellular localization of PNA anti-miRs and our data suggest that anti-miR targeting of miR-122 may take place in or associated with endosomal compartments. Our findings are valuable for further design of PNAs and other oligonucleotides as potent anti-miR agents. PMID:22070883

  4. The maize pentatricopeptide repeat gene empty pericarp4 (emp4) is required for proper cellular development in vegetative tissues.

    PubMed

    Gabotti, Damiano; Caporali, Elisabetta; Manzotti, Priscilla; Persico, Martina; Vigani, Gianpiero; Consonni, Gabriella

    2014-06-01

    The empty pericarp4 (emp4) gene encodes a mitochondrion-targeted pentatricopeptide repeat (ppr) protein that is involved in the regulation of mitochondrial gene expression and is required for seed development. In homozygous mutant emp4-1 kernels the endosperm is drastically reduced and the embryo is retarded in its development and unable to germinate. With the aim of investigating the role of emp4 during post-germinative development, homozygous mutant seedlings were obtained by cultivation of excised immature embryos on a synthetic medium. In the mutants both germination frequency as well as the proportion of seedlings reaching the first and second leaf stages were reduced. The anatomy of the leaf blades and the root cortex was not affected by the mutation, however severe alterations such as the presence of empty cells or cells containing poorly organized organelles, were observed. Moreover both mitochondria and chloroplast functionality was impaired in the mutants. Our hypothesis is that mitochondrial impairment, the primary effect of the mutation, causes secondary effects on the development of other cellular organelles. Ultra-structural features of mutant leaf blade mesophyll cells are reminiscent of cells undergoing senescence. Interestingly, both structural and functional damage was less severe in seedlings grown in total darkness compared with those exposed to light, thus suggesting that the effects of the mutation are enhanced by the presence of light. PMID:24767112

  5. Risk factors for endophthalmitis requiring evisceration or enucleation

    PubMed Central

    Lu, Xuehui; Ng, Danny Siu-Chun; Zheng, Kangkeng; Peng, Kun; Jin, Chuang; Xia, Honghe; Chen, Weiqi; Chen, Haoyu

    2016-01-01

    Endophthalmitis has devastating sequelae resulting in blindness and even loss of eyeball. Although the prognosis of endophthalmitis has much improved with the advances of antibiotics and vitreoretinal surgery, of the number of patients that required evisceration or enucleation is still significant. We retrospectively reviewed the charts of 210 eyes of 210 patients with endophthalmitis andcompared the group that required evisceration or enucleation with those that received salvaging therapies. Regression analysis was used to identify the risk factors for evisceration or enucleation. Thirty eyes (14.3%) underwent enucleation or evisceration. The group of eviscerated or enucleated eyes were older (58.7 vs. 42.2 years, p < 0.001), had more women (56.7% vs. 22.2%, p = 0.003), had poorer initial visual acuity (2.79 vs. 2.10 LogMAR, p < 0.001), and had longer duration before intervention (18.03 vs. 5.74 days, p = 0.031). The most common primary indications for endophthalmitis were infections from corneal ulcer (50.0% vs. 4.4%, p < 0.001) andfrom endogenous source (23.3% vs. 5.6%, p < 0.001). Less common indications were trauma (26.7% vs. 67.8%, p < 0.001) and postoperative (6.7% vs. 22.2%, p = 0.049) endophthalmitis. After adjusting for confounding factors, corneal ulcer-related endophthalmitis, endogenous endophthalmitis and initial visual acuity were the independent risk factors for evisceration or enucleation. PMID:27302573

  6. Matrix Metalloproteinase 3 Promotes Cellular Anti-Dengue Virus Response via Interaction with Transcription Factor NFκB in Cell Nucleus

    PubMed Central

    Zuo, Xiangyang; Pan, Wen; Feng, Tingting; Shi, Xiaohong; Dai, Jianfeng

    2014-01-01

    Dengue virus (DENV), the causative agent of human Dengue hemorrhagic fever, is a mosquito-borne virus of immense global health importance. Characterization of cellular factors promoting or inhibiting DENV infection is important for understanding the mechanism of DENV infection. In this report, MMP3 (stromelysin-1), a secretory endopeptidase that degrades extracellular matrices, has been shown promoting cellular antiviral response against DENV infection. Quantitative RT-PCR and Western Blot showed that the expression of MMP3 was upregulated in DENV-infected RAW264.7 cells. The intracellular viral loads were significantly higher in MMP3 silenced cells compared with controls. The expression level of selective anti-viral cytokines were decreased in MMP3 siRNA treated cells, and the transcription factor activity of NFκB was significantly impaired upon MMP3 silencing during DENV infection. Further, we found that MMP3 moved to cell nucleus upon DENV infection and colocalized with NFκB P65 in nucleus. Co-immunoprecipitation analysis suggested that MMP3 directly interacted with NFκB in nucleus during DENV infection and the C-terminal hemopexin-like domain of MMP3 was required for the interaction. This study suggested a novel role of MMP3 in nucleus during viral infection and provided new evidence for MMPs in immunomodulation. PMID:24416274

  7. Low neural exosomal levels of cellular survival factors in Alzheimer’s disease

    PubMed Central

    Goetzl, Edward J; Boxer, Adam; Schwartz, Janice B; Abner, Erin L; Petersen, Ronald C; Miller, Bruce L; Carlson, Olga D; Mustapic, Maja; Kapogiannis, Dimitrios

    2015-01-01

    Transcription factors that mediate neuronal defenses against diverse stresses were quantified in plasma neural-derived exosomes of Alzheimer’s disease or frontotemporal dementia patients and matched controls. Exosomal levels of low-density lipoprotein receptor-related protein 6, heat-shock factor-1, and repressor element 1-silencing transcription factor all were significantly lower in Alzheimer’s disease patients than controls (P < 0.0001). In frontotemporal dementia, the only significant difference was higher levels of repressor element 1-silencing transcription factor than in controls. Exosomal transcription factors were diminished 2–10 years before clinical diagnosis of Alzheimer’s disease. Low exosomal levels of survival proteins may explain decreased neuronal resistance to Alzheimer’s disease neurotoxic proteins. PMID:26273689

  8. Biomimetic hybrid porous scaffolds immobilized with platelet derived growth factor-BB promote cellularization and vascularization in tissue engineering.

    PubMed

    Murali, Ragothaman; Ponrasu, Thangavel; Cheirmadurai, Kalirajan; Thanikaivelan, Palanisamy

    2016-02-01

    Development of hybrid scaffolds with synergistic combination of growth factor is a promising approach to promote early in vivo wound repair and tissue regeneration. Here, we show the rapid wound healing in Wistar albino rats using biomimetic collagen-poly(dialdehyde) guar gum based hybrid porous scaffolds covalently immobilized with platelet derived growth factor-BB. The immobilized platelet derived growth factor in the hybrid scaffolds not only enhance the total protein, collagen, hexosamine, and uronic acid contents in the granulation tissue but also provide stronger tissues. The wound closure analysis reveal that the complete epithelialization period is 15.4 ± 0.9 days for collagen-poly(dialdehyde) guar gum-platelet derived growth factor hybrid scaffolds, whereas it is significantly higher for control, collagen, collagen- poly(dialdehyde) guar gum and povidine-iodine treated groups. Further, the histological evaluation shows that the immobilized platelet derived growth factor in the hybrid scaffolds induced a more robust cellular and vascular response in the implanted site. Hence, we demonstrate that the collagen-poly(dialdehyde) guar gum hybrid scaffolds loaded with platelet derived growth factor stimulates chemotactic effects in the implanted site to promote rapid tissue regeneration and wound repair without the assistance of antibacterial agents. PMID:26414915

  9. Epstein-Barr virus induces cellular transcription factors to allow active expression of EBER genes by RNA polymerase III.

    PubMed

    Felton-Edkins, Zoë A; Kondrashov, Alexander; Karali, Dimitra; Fairley, Jennifer A; Dawson, Christopher W; Arrand, John R; Young, Lawrence S; White, Robert J

    2006-11-10

    The EBER genes of Epstein-Barr virus (EBV) are transcribed by RNA polymerase (pol) III to produce untranslated RNAs that are implicated in oncogenesis. These EBER transcripts are the most highly expressed viral gene products in EBV-transformed cells. We have identified changes to the cellular transcription machinery that may contribute to the high levels of EBER RNA. These include phosphorylation of ATF2, which interacts with EBER promoters. A second is induction of TFIIIC, a pol III-specific factor that activates EBER genes; all five subunits of TFIIIC are overexpressed in EBV-positive cells. In addition, EBV induces BDP1, a subunit of the pol III-specific factor TFIIIB. Although BDP1 is the only TFIIIB subunit induced by EBV, its induction is sufficient to stimulate EBER expression in vivo, implying a limiting function. The elevated levels of BDP1 and TFIIIC in EBV-positive cells stimulate production of tRNA, 7SL, and 5S rRNA. Abnormally high expression of these cellular pol III products may contribute to the ability of EBV to enhance growth potential. PMID:16956891

  10. CRISPR Immunological Memory Requires a Host Factor for Specificity.

    PubMed

    Nuñez, James K; Bai, Lawrence; Harrington, Lucas B; Hinder, Tracey L; Doudna, Jennifer A

    2016-06-16

    Bacteria and archaea employ adaptive immunity against foreign genetic elements using CRISPR-Cas systems. To generate immunological memory, the Cas1-Cas2 protein complex captures 30-40 base pair segments of foreign DNA and catalyzes their integration into the host genome as unique spacer sequences. Although spacers are inserted strictly at the A-T-rich leader end of CRISPR loci in vivo, the molecular mechanism of leader-specific spacer integration remains poorly understood. Here we show that the E. coli integration host factor (IHF) protein is required for spacer acquisition in vivo and for integration into linear DNA in vitro. IHF binds to the leader sequence and induces a sharp DNA bend, allowing the Cas1-Cas2 integrase to catalyze the first integration reaction at the leader-repeat border. Together, these results reveal that Cas1-Cas2-mediated spacer integration requires IHF-induced target DNA bending and explain the elusive role of CRISPR leader sequences during spacer acquisition. PMID:27211867

  11. Risk factors for hemorrhage requiring embolization after percutaneous nephrolithotomy

    PubMed Central

    Un, Sitki; Cakir, Volkan; Kara, Cengiz; Turk, Hakan; Kose, Osman; Balli, Omur; Yilmaz, Yuksel

    2015-01-01

    Introduction: Percutaneous nephrolithotomy (PCNL) is the primary surgical intervention in kidney stone management. Even though it is performed quite often, the complication rates are also high. Arteriovenous fistulas following extended hemorrhages after PCNL are one of the most serious complications of this operation. Our main objective was to review the data of patients who required angiography and embolization. Methods: In total, we included 1405 patients who underwent PCNL between 2007 and 2014. All patient data were retrospectively reviewed. All patients went under PCNL using fluoroscopy. Following informed consent, all hemorrhagic patients underwent angiography in the interventional radiology department and embolization was performed in patients with a hemorrhage focus point. Results: A total of 147 patients (10.4%) required transfusion for post-PCNL hemorrhages. Of them, 14 (0.99%) underwent angiography and embolization (9 [64.2%] were male and 5 [35.8%] were female, with a mean age of 39.4 ± 10.2). The remaining 133 patients were conservatively managed (81 [60.9%] males and 52 [39.1%] females, with a mean age of 42.3 ± 12.4). When the predicting factors for angiography and embolization were reviewed, renal abnormalities and the mean size of stones were significant in both univariate and multivariate analysis (p < 0.001). Conclusion: Patients with extended and intermittent hematuria should be monitored closely for hemodynamics; if there is an ongoing necessity for transfusion, angiography should be considered. PMID:26425220

  12. Canonical Initiation Factor Requirements of the Myc Family of Internal Ribosome Entry Segments▿ †

    PubMed Central

    Spriggs, Keith A.; Cobbold, Laura C.; Jopling, Catherine L.; Cooper, Rebecca E.; Wilson, Lindsay A.; Stoneley, Mark; Coldwell, Mark J.; Poncet, Didier; Shen, Ya-Ching; Morley, Simon J.; Bushell, Martin; Willis, Anne E.

    2009-01-01

    Initiation of protein synthesis in eukaryotes requires recruitment of the ribosome to the mRNA and its translocation to the start codon. There are at least two distinct mechanisms by which this process can be achieved; the ribosome can be recruited either to the cap structure at the 5′ end of the message or to an internal ribosome entry segment (IRES), a complex RNA structural element located in the 5′ untranslated region (5′-UTR) of the mRNA. However, it is not well understood how cellular IRESs function to recruit the ribosome or how the 40S ribosomal subunits translocate from the initial recruitment site on the mRNA to the AUG initiation codon. We have investigated the canonical factors that are required by the IRESs found in the 5′-UTRs of c-, L-, and N-myc, using specific inhibitors and a tissue culture-based assay system, and have shown that they differ considerably in their requirements. The L-myc IRES requires the eIF4F complex and the association of PABP and eIF3 with eIF4G for activity. The minimum requirements of the N- and c-myc IRESs are the C-terminal domain of eIF4G to which eIF4A is bound and eIF3, although interestingly this protein does not appear to be recruited to the IRES RNA via eIF4G. Finally, our data show that all three IRESs require a ternary complex, although in contrast to c- and L-myc IRESs, the N-myc IRES has a lesser requirement for a ternary complex. PMID:19124605

  13. Off the shelf cellular therapeutics: Factors to consider during cryopreservation and storage of human cells for clinical use.

    PubMed

    Woods, Erik J; Thirumala, Sreedhar; Badhe-Buchanan, Sandhya S; Clarke, Dominic; Mathew, Aby J

    2016-06-01

    The field of cellular therapeutics has immense potential, affording an exciting array of applications in unmet medical needs. One of several key issues is an emphasis on getting these therapies from bench to bedside without compromising safety and efficacy. The successful commercialization of cellular therapeutics will require many to extend the shelf-life of these therapies beyond shipping "fresh" at ambient or chilled temperatures for "just in time" infusion. Cryopreservation is an attractive option and offers potential advantages, such as storing and retaining patient samples in case of a relapse, banking large quantities of allogeneic cells for broader distribution and use and retaining testing samples for leukocyte antigen typing and matching. However, cryopreservation is only useful if cells can be reanimated to physiological life with negligible loss of viability and functionality. Also critical is the logistics of storing, processing and transporting cells in clinically appropriate packaging systems and storage devices consistent with quality and regulatory standards. Rationalized approaches to develop commercial-scale cell therapies require an efficient cryopreservation system that provides the ability to inventory standardized products with maximized shelf life for later on-demand distribution and use, as well as a method that is scientifically sound and optimized for the cell of interest. The objective of this review is to bridge this gap between the basic science of cryobiology and its application in this context by identifying several key aspects of cryopreservation science in a format that may be easily integrated into mainstream cell therapy manufacture. PMID:27173747

  14. Modulation of Enhancer Looping and Differential Gene Targeting by Epstein-Barr Virus Transcription Factors Directs Cellular Reprogramming

    PubMed Central

    McClellan, Michael J.; Wood, C. David; Ojeniyi, Opeoluwa; Cooper, Tim J.; Kanhere, Aditi; Arvey, Aaron; Webb, Helen M.; Palermo, Richard D.; Harth-Hertle, Marie L.; Kempkes, Bettina; Jenner, Richard G.; West, Michelle J.

    2013-01-01

    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of

  15. Cellular factors promoting resistance to effective treatment of glioma with oncolytic Myxoma virus

    PubMed Central

    Zemp, Franz J.; McKenzie, Brienne A.; Lun, Xueqing; Reilly, Karlyne M.; McFadden, Grant; Yong, V. Wee; Forsyth, Peter A.

    2014-01-01

    Oncolytic virus therapy is being evaluated in clinical trials for human glioma. While it is widely assumed that the patient's immune response to the virus infection limits the therapy's utility, investigations into the specific cell type(s) involved in this response have been performed using non-specific pharmacological inhibitors or allogeneic models with compromised immunity. To identify the immune cells that participate in clearing an oncolytic infection in glioma, we used flow cytometry and immunohistochemistry to immunophenotype an orthotopic glioma model in immunocompetent mice after Myxoma virus (MYXV) administration. These studies revealed a large resident microglia and macrophage population in untreated tumours, and robust monocyte, T and NK cell infiltration 3 days following MYXV infection. To determine the role on the clinical utility of MYXV therapy for glioma, we used a combination of knockout mouse strains and specific immunocyte ablation techniques. Collectively, our experiments identify an important role for tumour-resident myeloid cells and overlapping roles for recruited NK and T cells in the clearance and efficacy of oncolytic MYXV from gliomas. Using a cyclophosphamide regimen to achieve lymphoablation prior and during MYXV treatment, we prevented treatment-induced peripheral immunocyte recruitment and, surprisingly, largely ablated the tumour-resident macrophage population. Virotherapy of CPA-treated animals resulted in sustained viral infection within the glioma as well as a substantial survival advantage. This study demonstrates that resistance to MYXV virotherapy in syngeneic glioma models involves a multi-faceted cellular immune response that can be overcome with CPA-mediated lymphoablation. PMID:25336188

  16. Differential expression of growth factors at the cellular level in virus-infected brain.

    PubMed

    Prosniak, Mikhail; Zborek, Anna; Scott, Gwen S; Roy, Anirban; Phares, Timothy W; Koprowski, Hilary; Hooper, D Craig

    2003-05-27

    The contribution of host factors to rabies virus (RV) transcription/replication and axonal/transsynaptic spread is largely unknown. We previously identified several host genes that are up-regulated in the mouse brain during RV infection, including neuroleukin, which is involved in neuronal growth and survival, cell motility, and differentiation, and fibroblast growth factor homologous factor 4 (FHF4), which has been implicated in limb and nervous system development. In this study, we used real-time quantitative RT-PCR to assess the expression of mRNAs specific for neuroleukin, the two isoforms of FHF4 (FHF4-1a and -1b) encoded by the FHF4 gene, and N protein of RV in neurons and astrocytes isolated by laser capture microdissection from mouse brains infected with the laboratory-adapted RV strain CVS-N2c or with a street RV of silver-haired bat origin. Differences in the gene expression patterns suggest that the capacity of RV strains to infect nonneuronal cells and differentially modulate host gene expression may be important in virus replication and spread in the CNS. PMID:12736376

  17. Differential expression of growth factors at the cellular level in virus-infected brain

    PubMed Central

    Prosniak, Mikhail; Zborek, Anna; Scott, Gwen S.; Roy, Anirban; Phares, Timothy W.; Koprowski, Hilary; Hooper, D. Craig

    2003-01-01

    The contribution of host factors to rabies virus (RV) transcription/replication and axonal/transsynaptic spread is largely unknown. We previously identified several host genes that are up-regulated in the mouse brain during RV infection, including neuroleukin, which is involved in neuronal growth and survival, cell motility, and differentiation, and fibroblast growth factor homologous factor 4 (FHF4), which has been implicated in limb and nervous system development. In this study, we used real-time quantitative RT-PCR to assess the expression of mRNAs specific for neuroleukin, the two isoforms of FHF4 (FHF4-1a and -1b) encoded by the FHF4 gene, and N protein of RV in neurons and astrocytes isolated by laser capture microdissection from mouse brains infected with the laboratory-adapted RV strain CVS-N2c or with a street RV of silver-haired bat origin. Differences in the gene expression patterns suggest that the capacity of RV strains to infect nonneuronal cells and differentially modulate host gene expression may be important in virus replication and spread in the CNS. PMID:12736376

  18. Identification of TRAPPC8 as a Host Factor Required for Human Papillomavirus Cell Entry

    PubMed Central

    Ishii, Yoshiyuki; Nakahara, Tomomi; Kataoka, Michiyo; Kusumoto-Matsuo, Rika; Mori, Seiichiro; Takeuchi, Takamasa; Kukimoto, Iwao

    2013-01-01

    Human papillomavirus (HPV) is a non-enveloped virus composed of a circular DNA genome and two capsid proteins, L1 and L2. Multiple interactions between its capsid proteins and host cellular proteins are required for infectious HPV entry, including cell attachment and internalization, intracellular trafficking and viral genome transfer into the nucleus. Using two variants of HPV type 51, the Ma and Nu strains, we have previously reported that MaL2 is required for efficient pseudovirus (PsV) transduction. However, the cellular factors that confer this L2 dependency have not yet been identified. Here we report that the transport protein particle complex subunit 8 (TRAPPC8) specifically interacts with MaL2. TRAPPC8 knockdown in HeLa cells yielded reduced levels of reporter gene expression when inoculated with HPV51Ma, HPV16, and HPV31 PsVs. TRAPPC8 knockdown in HaCaT cells also showed reduced susceptibility to infection with authentic HPV31 virions, indicating that TRAPPC8 plays a crucial role in native HPV infection. Immunofluorescence microscopy revealed that the central region of TRAPPC8 was exposed on the cell surface and colocalized with inoculated PsVs. The entry of Ma, Nu, and L2-lacking PsVs into cells was equally impaired in TRAPPC8 knockdown HeLa cells, suggesting that TRAPPC8-dependent endocytosis plays an important role in HPV entry that is independent of L2 interaction. Finally, expression of GFP-fused L2 that can also interact with TRAPPC8 induced dispersal of the Golgi stack structure in HeLa cells, a phenotype also observed by TRAPPC8 knockdown. These results suggest that during viral intracellular trafficking, binding of L2 to TRAPPC8 inhibits its function resulting in Golgi destabilization, a process that may assist HPV genome escape from the trans-Golgi network. PMID:24244674

  19. Functional interaction between the human cytomegalovirus 86-kilodalton IE2 protein and the cellular transcription factor CREB.

    PubMed Central

    Lang, D; Gebert, S; Arlt, H; Stamminger, T

    1995-01-01

    The 86-kDa IE2 protein (IE86) of human cytomegalovirus (HCMV) has been described as a promiscuous transactivator of viral, as well as cellular, gene expression. Investigation of the mechanism used by IE86 to activate gene expression from the early UL112/113 promoter of HCMV revealed the existence of three binding sites for IE86 located between nucleotides -290 and -120 relative to the transcriptional start site (H. Arlt, D. Lang, S. Gebert, and T. Stamminger, J. Virol. 68:4117-4125, 1994). As shown previously, deletion of these target sites resulted in a reduction of IE86-mediated transactivation by approximately 70%. The remaining promoter, however, could still be stimulated about 40-fold, indicating the presence of an additional responsive element within these sequences. Here, we provide evidence that a binding site for the cellular transcription factor CREB can also act as a target for IE86 transactivation. By DNase I protection analysis, a binding sequence for CREB could be detected between nucleotides -78 and -56 within the respective promoter region. After in vitro mutagenesis of this CREB-binding site within the context of the entire UL112/113 promoter, a marked reduction in transactivation levels was evident. Moreover, when individual CREB-binding sites were positioned upstream of a minimal, TATA box-containing UL112/113 promoter, they were able to confer strong IE86 responsiveness, whereas a mutated sequence did not exert any effect. In far Western blot and pull-down experiments, a direct interaction of IE86 with the cellular transcription factor CREB could be observed. The in vivo relevance of this in vitro interaction was confirmed by using various GAL4 fusion proteins in the presence or absence of IE86 which revealed a strong activation only in the presence of both a GAL4-CREB fusion and IE86. This shows that at least one specific member of the ATF/CREB family of transcription factors is involved in mediating transactivation by the HCMV IE86 protein

  20. Direct cellular effects of some mediators, hormones and growth factor-like agents on denervated (isolated) rat gastric mucosal cells.

    PubMed

    Bódis, B; Karádi, O; Nagy, L; Dohoczky, C; Kolega, M; Mózsik, G

    1997-01-01

    The brain-gut axis has an important role in the mechanism of gastric cytoprotection in vivo. The aim of this study was to evaluate the in vitro effect of protective agents without any central and peripheral innervation. A mixed population of rat gastric mucosal cells was isolated by the method of Nagy et al (Gastroenterology (1994) 77, 433-443). Cells were incubated for 60 min with cytoprotective drugs such as prostacyclin, histamine, pentagastrin and PL-10 substances (synthesized parts of BPC). At the end of this incubation cells were treated by 15% ethanol for 5 min. Cell viability was tested by trypan blue exclusion test and succinic dehydrogenase activity. The following results were obtained: 1) prostacyclin, histamine and pentagastrin had no direct cytoprotective effect on isolated cells; and 2) PL-10 substances significantly protected the cells against ethanol-induced cellular damage. This led to the following conclusions: 1) in the phenomenon of gastric cytoprotection only the growth factor-like agents have a direct cellular effect; and 2) the intact peripheral innervation is basically necessary for the development of mediators and hormone-induced gastric cytoprotection. PMID:9403792

  1. Glutathione and the rate of cellular proliferation determine tumour cell sensitivity to tumour necrosis factor in vivo.

    PubMed Central

    Obrador, E; Navarro, J; Mompo, J; Asensi, M; Pellicer, J A; Estrela, J M

    1997-01-01

    Low rates of cellular proliferation are associated with low GSH content and enhanced sensitivity of Ehrlich ascites-tumour (EAT) cells to the cytotoxic effects of recombinant human tumour necrosis factor (rhTNF-alpha). Buthionine sulphoximine, a selective inhibitor of GSH synthesis, inhibited tumour growth and increased rhTNF-alpha cytoxicity in vitro. Administration of sublethal doses (10(6)units/kg per day) of rhTNF-alpha to EAT-bearing mice promoted oxidative stress (as measured by increases in intracellular peroxide levels, O2(-); generation and mitochondrial GSSG) and resulted in a slight reduction (19%) in tumour cell number when controls showed the highest rate of cellular proliferation. ATP (1mmol/kg per day)-induced selective GSH depletion, when combined with rhTNF-alpha administration, afforded a 61% inhibition of tumour growth and resulted in a significant extension of host survival. Administration of N-acetylcysteine (1mmol/kg per day) or GSH ester (5mmol/kg per day) abolished the rhTNF-alpha- and ATP-induced effects on tumour growth by maintaining high GSH levels in the cancer cells. Our results demonstrate that the sensitivity of tumour cells to rhTNF-alpha in vivo depends on their GSH content and their rate of proliferation. PMID:9224645

  2. Drosophila translational elongation factor-1gamma is modified in response to DOA kinase activity and is essential for cellular viability.

    PubMed

    Fan, Yujie; Schlierf, Michael; Gaspar, Ana Cuervo; Dreux, Catherine; Kpebe, Arlette; Chaney, Linda; Mathieu, Aurelie; Hitte, Christophe; Grémy, Olivier; Sarot, Emeline; Horn, Mark; Zhao, Yunlong; Kinzy, Terri Goss; Rabinow, Leonard

    2010-01-01

    Drosophila translational elongation factor-1gamma (EF1gamma) interacts in the yeast two-hybrid system with DOA, the LAMMER protein kinase of Drosophila. Analysis of mutant EF1gamma alleles reveals that the locus encodes a structurally conserved protein essential for both organismal and cellular survival. Although no genetic interactions were detected in combinations with mutations in EF1alpha, an EF1gamma allele enhanced mutant phenotypes of Doa alleles. A predicted LAMMER kinase phosphorylation site conserved near the C terminus of all EF1gamma orthologs is a phosphorylation site in vitro for both Drosophila DOA and tobacco PK12 LAMMER kinases. EF1gamma protein derived from Doa mutant flies migrates with altered mobility on SDS gels, consistent with it being an in vivo substrate of DOA kinase. However, the aberrant mobility appears to be due to a secondary protein modification, since the mobility of EF1gamma protein obtained from wild-type Drosophila is unaltered following treatment with several nonspecific phosphatases. Expression of a construct expressing a serine-to-alanine substitution in the LAMMER kinase phosphorylation site into the fly germline rescued null EF1gamma alleles but at reduced efficiency compared to a wild-type construct. Our data suggest that EF1gamma functions in vital cellular processes in addition to translational elongation and is a LAMMER kinase substrate in vivo. PMID:19841092

  3. Nuclear transcription factors: a new approach to enhancing cellular responses to ALA-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Maytin, Edward V.; Anand, Sanjay; Sato, Nobuyuki; Moore, Brian; Mack, Judith; Gasbarre, Christopher; Keevey, Samantha; Ortel, Bernhard; Sinha, Alok; Khachemoune, Amor

    2006-02-01

    Photodynamic therapy (PDT) using aminolevulinic acid (ALA) relies upon the uptake of ALA into cancer cells, where it is converted into a porphyrin intermediate, protoporphyrin IX (PpIX) that is highly photosensitizing. For large or resistant tumors, however, ALA/PDT is often not completely effective due to inadequate PpIX levels. Therefore, new approaches to enhance the intracellular production of PpIX are sought. Here, we describe a general approach to improve intracellular PpIX accumulation via manipulations that increase the expression of an enzyme, coproporphyrinogen oxidase (CPO), that is rate-determining for PpIX production. We show that nuclear hormones that promote terminal differentiation, e.g. vitamin D or androgens, can also increase the accumulation of PpIX and the amount of killing of the target cells upon exposure to light. These hormones bind to intracellular hormone receptors that translocate to the nucleus, where they act as transcription factors to increase the expression of target genes. We have found that several other transcription factors associated with terminal differentiation, including members of the CCAAT enhancer binding (C/EBP) family, and a homeobox protein named Hoxb13, are also capable of enhancing PpIX accumulation. These latter transcription factors appear to interact directly with the CPO gene promoter, resulting in enhanced CPO transcriptional activity. Our data in several different cell systems, including epithelial cells of the skin and prostate cancer cells, indicate that enhancement of CPO expression and PpIX accumulation represents a viable new approach toward improving the efficacy of ALA/PDT.

  4. The Grp170 nucleotide exchange factor executes a key role during ERAD of cellular misfolded clients

    PubMed Central

    Inoue, Takamasa; Tsai, Billy

    2016-01-01

    When a protein misfolds in the endoplasmic reticulum (ER), it retrotranslocates to the cytosol and is degraded by the proteasome via a pathway called ER-associated degradation (ERAD). To initiate ERAD, ADP-BiP is often recruited to the misfolded client, rendering it soluble and translocation competent. How the misfolded client is subsequently released from BiP so that it undergoes retrotranslocation, however, remains enigmatic. Here we demonstrate that the ER-resident nucleotide exchange factor (NEF) Grp170 plays an important role during ERAD of the misfolded glycosylated client null Hong Kong (NHK). As a NEF, Grp170 triggers nucleotide exchange of BiP to generate ATP-BiP. ATP-BiP disengages from NHK, enabling it to retrotranslocate to the cytosol. We demonstrate that Grp170 binds to Sel1L, an adapter of the transmembrane Hrd1 E3 ubiquitin ligase postulated to be the retrotranslocon, and links this interaction to Grp170’s function during ERAD. More broadly, Grp170 also promotes degradation of the nonglycosylated transthyretin (TTR) D18G misfolded client. Our findings thus establish a general function of Grp170 during ERAD and suggest that positioning this client-release factor at the retrotranslocation site may afford a mechanism to couple client release from BiP and retrotranslocation. PMID:27030672

  5. Cytoplasmic domains determine signal specificity, cellular routing characteristics and influence ligand binding of epidermal growth factor and insulin receptors.

    PubMed Central

    Riedel, H; Dull, T J; Honegger, A M; Schlessinger, J; Ullrich, A

    1989-01-01

    The cell surface receptors for insulin and epidermal growth factor (EGF) both employ a tyrosine-specific protein kinase activity to fulfil their distinct biological roles. To identify the structural domains responsible for various receptor activities, we have generated chimeric receptor polypeptides consisting of major EGF and insulin receptor structural domains and examined their biochemical properties and cellular signalling activities. The EGF-insulin receptor hybrids are properly synthesized and transported to the cell surface, where they form binding competent structures that are defined by the origin of their extracellular domains. While their ligand binding affinities are altered, we find that these chimeric receptors are fully functional in transmitting signals across the plasma membrane and into the cell. Thus, EGF receptor and insulin receptor cytoplasmic domain signalling capabilities are independent of their new heterotetrameric or monomeric environments respectively. Furthermore, the cytoplasmic domains carry the structural determinants that define kinase specificity, mitogenic and transforming potential, and receptor routing. Images PMID:2583088

  6. Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa.

    PubMed

    Hall, Susan; McDermott, Catherine; Anoopkumar-Dukie, Shailendra; McFarland, Amelia J; Forbes, Amanda; Perkins, Anthony V; Davey, Andrew K; Chess-Williams, Russ; Kiefel, Milton J; Arora, Devinder; Grant, Gary D

    2016-01-01

    Pyocyanin has recently emerged as an important virulence factor produced by Pseudomonas aeruginosa. The redox-active tricyclic zwitterion has been shown to have a number of potential effects on various organ systems in vitro, including the respiratory, cardiovascular, urological, and central nervous systems. It has been shown that a large number of the effects to these systems are via the formation of reactive oxygen species. The limitations of studies are, to date, focused on the localized effect of the release of pyocyanin (PCN). It has been postulated that, given its chemical properties, PCN is able to readily cross biological membranes, however studies have yet to be undertaken to evaluate this effect. This review highlights the possible manifestations of PCN exposure; however, most studies to date are in vitro. Further high quality in vivo studies are needed to fully assess the physiological manifestations of PCN exposure on the various body systems. PMID:27517959

  7. Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa

    PubMed Central

    Hall, Susan; McDermott, Catherine; Anoopkumar-Dukie, Shailendra; McFarland, Amelia J.; Forbes, Amanda; Perkins, Anthony V.; Davey, Andrew K.; Chess-Williams, Russ; Kiefel, Milton J.; Arora, Devinder; Grant, Gary D.

    2016-01-01

    Pyocyanin has recently emerged as an important virulence factor produced by Pseudomonas aeruginosa. The redox-active tricyclic zwitterion has been shown to have a number of potential effects on various organ systems in vitro, including the respiratory, cardiovascular, urological, and central nervous systems. It has been shown that a large number of the effects to these systems are via the formation of reactive oxygen species. The limitations of studies are, to date, focused on the localized effect of the release of pyocyanin (PCN). It has been postulated that, given its chemical properties, PCN is able to readily cross biological membranes, however studies have yet to be undertaken to evaluate this effect. This review highlights the possible manifestations of PCN exposure; however, most studies to date are in vitro. Further high quality in vivo studies are needed to fully assess the physiological manifestations of PCN exposure on the various body systems. PMID:27517959

  8. GABP Transcription Factor (Nuclear Respiratory Factor 2) Is Required for Mitochondrial Biogenesis

    PubMed Central

    Yang, Zhong-Fa; Drumea, Karen; Mott, Stephanie; Wang, Junling

    2014-01-01

    Mitochondria are membrane-bound cytoplasmic organelles that serve as the major source of ATP production in eukaryotic cells. GABP (also known as nuclear respiratory factor 2) is a nuclear E26 transformation-specific transcription factor (ETS) that binds and activates mitochondrial genes that are required for electron transport and oxidative phosphorylation. We conditionally deleted Gabpa, the DNA-binding component of this transcription factor complex, from mouse embryonic fibroblasts (MEFs) to examine the role of Gabp in mitochondrial biogenesis, function, and gene expression. Gabpα loss modestly reduced mitochondrial mass, ATP production, oxygen consumption, and mitochondrial protein synthesis but did not alter mitochondrial morphology, membrane potential, apoptosis, or the expression of several genes that were previously reported to be GABP targets. However, the expression of Tfb1m, a methyltransferase that modifies ribosomal rRNA and is required for mitochondrial protein translation, was markedly reduced in Gabpα-null MEFs. We conclude that Gabp regulates Tfb1m expression and plays an essential, nonredundant role in mitochondrial biogenesis. PMID:24958105

  9. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations

    PubMed Central

    Hurtado-Alvarado, Gabriela; Castillo-García, Stephanie Ariadne; Hernández, María Eugenia; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier; Gómez-González, Beatriz

    2013-01-01

    A reduction in the amount of time spent sleeping occurs chronically in modern society. Clinical and experimental studies in humans and animal models have shown that immune function is impaired when sleep loss is experienced. Sleep loss exerts a strong regulatory influence on peripheral levels of inflammatory mediators of the immune response. An increasing number of research projects support the existence of reciprocal regulation between sleep and low-intensity inflammatory response. Recent studies show that sleep deficient humans and rodents exhibit a proinflammatory component; therefore, sleep loss is considered as a risk factor for developing cardiovascular, metabolic, and neurodegenerative diseases (e.g., diabetes, Alzheimer's disease, and multiple sclerosis). Circulating levels of proinflammatory mediators depend on the intensity and duration of the method employed to induce sleep loss. Recognizing the fact that the concentration of proinflammatory mediators is different between acute and chronic sleep-loss may expand the understanding of the relationship between sleep and the immune response. The aim of this review is to integrate data from recent published reports (2002–2013) on the effects of sleep loss on the immune response. This review may allow readers to have an integrated view of the mechanisms involved in central and peripheral deficits induced by sleep loss. PMID:24367384

  10. Effect of photo-immobilization of epidermal growth factor on the cellular behaviors

    SciTech Connect

    Ogiwara, Kazutaka; Nagaoka, Masato; Cho, Chong-Su; Akaike, Toshihiro . E-mail: takaike@bio.titech.ac.jp

    2006-06-23

    We constructed photo-reactive epidermal growth factor (EGF) bearing p-azido phenylalanine at the C-terminal (HEGFP) by genetic engineering to investigate the possibility of immobilized EGF as a novel artificial extracellular matrix (ECM). The constructed recombinant protein was immobilized to glass surface by ultraviolet irradiation. A431 cells adhered both to HEGFP-immobilized and collagen-coated surfaces. Interaction between immobilized HEGFP and EGF receptors in the A431 cells was independent of Mg{sup 2+} although integrin-mediated cell adhesion to natural ECMs is dependent on Mg{sup 2+}. Phosphorylation of EGF receptors in A431 cells was induced by immobilized HEGFP as same as soluble EGF. DNA uptake of hepatocytes decreased by immobilized HEGFP whereas it increased by soluble EGF. Liver-specific functions of hepatocytes were maintained for 3 days by immobilized HEGFP whereas they were not maintained by soluble EGF, indicating that immobilized HEGFP follows different signal transduction pathway from soluble EGF.

  11. Early nucleosome deposition on, and replication of, HSV DNA requires cell factor PCNA

    PubMed Central

    Sanders, Iryna; Boyer, Mark; Fraser, Nigel W.

    2015-01-01

    Herpes Simplex Virus (HSV) is a double stranded DNA virus that can cause lytic infections in epithelial cells of the skin and latent infections in neuronal cells of the peripheral nervous system. After virion attachment to the cell membrane, the capsid enters the cytoplasm and is transported to the nucleus. Following docking at the nuclear pore, the HSV DNA, and contents of the virion, are injected into the nucleus. The viral DNA that enters the nucleus is devoid of histones, but begins to be covered with them soon after entry. The covering of histones, in the form of nucleosomes, reaches a maximum during the early stages of infection and drops off during late infection (after DNA replication). However during latency the genome is saturated with nucleosomes. In this study, we examine the role of cell Proliferating Cell Nuclear Antigen (PCNA) a cellular DNA polymerase accessory protein (processivity factor), and cell DNA polymerases in histone deposition during the early stages of HSV infection. Using SiRNA knockdown, and a cytosine arabinoside (araC) chemical inhibitor, we conclude that PCNA is important for viral replication and histone deposition. However, cell DNA polymerases that bind PCNA do not appear to be required for these processes and PCNA does not appear to bind to the viral DNA polymerase (which has its own viral processivity factor). PMID:25672886

  12. RNA export factor Ddx19 is required for nuclear import of the SRF coactivator MKL1

    PubMed Central

    Rajakylä, Eeva Kaisa; Viita, Tiina; Kyheröinen, Salla; Huet, Guillaume; Treisman, Richard; Vartiainen, Maria K.

    2015-01-01

    Controlled transport of macromolecules between the cytoplasm and nucleus is essential for homeostatic regulation of cellular functions. For instance, gene expression entails coordinated nuclear import of transcriptional regulators to activate transcription and nuclear export of the resulting messenger RNAs for cytoplasmic translation. Here we link these two processes by reporting a novel role for the mRNA export factor Ddx19/Dbp5 in nuclear import of MKL1, the signal-responsive transcriptional activator of SRF. We show that Ddx19 is not a general nuclear import factor, and that its specific effect on MKL1 nuclear import is separate from its role in mRNA export. Both helicase and nuclear pore-binding activities of Ddx19 are dispensable for MKL1 nuclear import, but RNA binding is required. Mechanistically, Ddx19 operates by modulating the conformation of MKL1, which affects its interaction with Importin-β for efficient nuclear import. Thus, Ddx19 participates in mRNA export, translation and nuclear import of a key transcriptional regulator. PMID:25585691

  13. RNA export factor Ddx19 is required for nuclear import of the SRF coactivator MKL1.

    PubMed

    Rajakylä, Eeva Kaisa; Viita, Tiina; Kyheröinen, Salla; Huet, Guillaume; Treisman, Richard; Vartiainen, Maria K

    2015-01-01

    Controlled transport of macromolecules between the cytoplasm and nucleus is essential for homeostatic regulation of cellular functions. For instance, gene expression entails coordinated nuclear import of transcriptional regulators to activate transcription and nuclear export of the resulting messenger RNAs for cytoplasmic translation. Here we link these two processes by reporting a novel role for the mRNA export factor Ddx19/Dbp5 in nuclear import of MKL1, the signal-responsive transcriptional activator of SRF. We show that Ddx19 is not a general nuclear import factor, and that its specific effect on MKL1 nuclear import is separate from its role in mRNA export. Both helicase and nuclear pore-binding activities of Ddx19 are dispensable for MKL1 nuclear import, but RNA binding is required. Mechanistically, Ddx19 operates by modulating the conformation of MKL1, which affects its interaction with Importin-β for efficient nuclear import. Thus, Ddx19 participates in mRNA export, translation and nuclear import of a key transcriptional regulator. PMID:25585691

  14. Cellular and extracellular factors in early root resorption repair in the rat.

    PubMed

    Jäger, Andreas; Kunert, Dominique; Friesen, Therese; Zhang, Dongliang; Lossdörfer, Stefan; Götz, Werner

    2008-08-01

    The aim of this study was to investigate the role of extracellular matrix components, such as collagen type I, fibronectin, and osteopontin (OPN) during cementum repair following experimentally induced tooth movement, and to characterize the cells taking part in the regenerative process. The upper right first molars were moved mesially in 21 three-month-old male Wistar rats using a coil spring with a force of 0.5 N. After 9 days, the appliance was removed and the animals were killed in groups of three immediately after withdrawal of the force and 5, 7, 10, 12, 14, and 17 days later. Three rats served as non-experimental control animals. The maxillae were prepared and processed for histological analysis. Together with the disappearance of the multinucleated odontoclasts from the resorption lacunae, signs of repair were visible 5 days after the release of the orthodontic force. The first signs of cementum repair were seen on day 10. The newly produced cementum was of the acellular extrinsic fibre type (AEFC) and reattachment was achieved with the principal periodontal ligament (PDL) fibres orientated almost perpendicular to the root surface. The initial interface formed between the old and new cementum, as well as the new AEFC, was characterized by a strong immunoreaction with OPN and collagen I antibody, but only a weak immunoreaction with the fibronectin antibody. Only a small number of mononuclear cells, which were involved in the repair process, showed a positive immunoreaction with the osteoblastic lineage markers runt-related transcription factor 2 and osteocalcin. These same cells stained sparsely with muscle segment homeobox homologue 2, but not with the E11 antibody. Thus, most of the cells associated with this reparative activity on the surface of the lacunae were differentiated PDL cells of the fibroblastic phenotype. Cells with a defined osteoblastic phenotype seemed to be of minor importance in this repair process. PMID:18632841

  15. Mosquito Cellular Factors and Functions in Mediating the Infectious entry of Chikungunya Virus

    PubMed Central

    Lee, Regina Ching Hua; Hapuarachchi, Hapuarachchige Chanditha; Chen, Karen Caiyun; Hussain, Khairunnisa' Mohamed; Chen, Huixin; Low, Swee Ling; Ng, Lee Ching; Lin, Raymond; Ng, Mary Mah-Lee; Chu, Justin Jang Hann

    2013-01-01

    Chikungunya virus (CHIKV) is an arthropod-borne virus responsible for recent epidemics in the Asia Pacific regions. A customized gene expression microarray of 18,760 transcripts known to target Aedes mosquito genome was used to identify host genes that are differentially regulated during the infectious entry process of CHIKV infection on C6/36 mosquito cells. Several genes such as epsin I (EPN1), epidermal growth factor receptor pathway substrate 15 (EPS15) and Huntingtin interacting protein I (HIP1) were identified to be differentially expressed during CHIKV infection and known to be involved in clathrin-mediated endocytosis (CME). Transmission electron microscopy analyses further revealed the presence of CHIKV particles within invaginations of the plasma membrane, resembling clathrin-coated pits. Characterization of vesicles involved in the endocytic trafficking processes of CHIKV revealed the translocation of the virus particles to the early endosomes and subsequently to the late endosomes and lysosomes. Treatment with receptor-mediated endocytosis inhibitor, monodansylcadaverine and clathrin-associated drug inhibitors, chlorpromazine and dynasore inhibited CHIKV entry, whereas no inhibition was observed with caveolin-related drug inhibitors. Inhibition of CHIKV entry upon treatment with low-endosomal pH inhibitors indicated that low pH is essential for viral entry processes. CHIKV entry by clathrin-mediated endocytosis was validated via overexpression of a dominant-negative mutant of Eps15, in which infectious entry was reduced, while siRNA-based knockdown of genes associated with CME, low endosomal pH and RAB trafficking proteins exhibited significant levels of CHIKV inhibition. This study revealed, for the first time, that the infectious entry of CHIKV into mosquito cells is mediated by the clathrin-dependent endocytic pathway. PMID:23409203

  16. Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells

    SciTech Connect

    Amin, Mohammed Abdullahel; Matsunaga, Sachihiro; Ma, Nan; Takata, Hideaki; Yokoyama, Masami; Uchiyama, Susumu; Fukui, Kiichi . E-mail: kfukui@bio.eng.osaka-u.ac.jp

    2007-08-24

    Fibrillarin is a key small nucleolar protein in eukaryotes, which has an important role in pre-rRNA processing during ribosomal biogenesis. Though several functions of fibrillarin are known, its function during the cell cycle is still unknown. In this study, we confirmed the dynamic localization of fibrillarin during the cell cycle of HeLa cells and also performed functional studies by using a combination of immunofluorescence microscopy and RNAi technique. We observed that depletion of fibrillarin has almost no effect on the nucleolar structure. However, fibrillarin-depleted cells showed abnormal nuclear morphology. Moreover, fibrillarin depletion resulted in the reduction of the cellular growth and modest accumulation of cells with 4n DNA content. Our data suggest that fibrillarin would play a critical role in the maintenance of nuclear shape and cellular growth.

  17. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    SciTech Connect

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  18. The catalytic subunit of DNA-dependent protein kinase is required for cellular resistance to oxidative stress independent of DNA double strand break repair

    PubMed Central

    Li, Mengxia; Lin, Yu-Fen; Palchik, Guillermo; Matsunaga, Shinji; Wang, Dong; Chen, Benjamin P.C.

    2014-01-01

    DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and Ataxia telangiectasia mutated (ATM) are the two major kinases involved in DNA double-strand break (DSB) repair, and are required for cellular resistance to ionizing radiation. While ATM is the key upstream kinase for DSB signaling, DNA-PKcs is primarily involved in DSB repair through the non-homologous end-joining (NHEJ) mechanism. In addition to DSB repair, ATM has been shown to be involved in oxidative stress response and could be activated directly in vitro upon hydrogen peroxide (H2O2) treatment. However, the role of DNA-PKcs in cellular response to oxidative stress is not clear. We hypothesize that DNA-PKcs may participate in the regulation of ATM activation in response to oxidative stress, and that this regulatory role is independent of its role in DNA double strand break repair. Our findings reveal that H2O2 induces hyperactivation of ATM signaling in DNA-PKcs deficient, but not Ligase 4 deficient cells, suggesting an NHEJ-independent role for DNA-PKcs. Furthermore, DNA-PKcs deficiency leads to the elevation of reactive oxygen species (ROS) production, and to a decrease in cellular survival against H2O2. For the first time, our results reveal that DNA-PKcs plays a non-canonical role in the cellular response to oxidative stress, which is independent from its role in NHEJ. In addition, DNA-PKcs is a critical regulator of the oxidative stress response and contributes to the maintenance of redox homeostasis. Our findings reveal that DNA-PKcs is required for cellular resistance to oxidative stress and suppression of ROS build-up independently to its function in DSB repair. PMID:25224041

  19. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: relevance for drug delivery systems.

    PubMed

    Firdessa, Rebuma; Oelschlaeger, Tobias A; Moll, Heidrun

    2014-01-01

    Nanoparticles may address challenges by human diseases through improving diagnosis, vaccination and treatment. The uptake mechanism regulates the type of threat a particle poses on the host cells and how a cell responds to it. Hence, understanding the uptake mechanisms and cellular interactions of nanoparticles at the cellular and subcellular level is a prerequisite for their effective biomedical applications. The present study shows the uptake mechanisms of polystyrene nanoparticles and factors affecting their uptake in bone marrow-derived macrophages, 293T kidney epithelial cells and L929 fibroblasts. Labeling with the endocytic marker FM4-64 and transmission electron microscopy studies show that the nanoparticles were internalized rapidly via endocytosis and accumulated in intracellular vesicles. Soon after their internalizations, nanoparticles trafficked to organelles with acidic pH. Analysis of the ultrastructural morphology of the plasma membrane invaginations or extravasations provides clear evidence for the involvement of several uptake routes in parallel to internalize a given type of nanoparticles by mammalian cells, highlighting the complexity of the nanoparticle-cell interactions. Blocking the specific endocytic pathways by different pharmacological inhibitors shows similar outcomes. The potential to take up nanoparticles varies highly among different cell types in a particle sizes-, time- and energy-dependent manner. Furthermore, infection and the activation status of bone marrow-derived macrophages significantly affect the uptake potential of the cells, indicating the need to understand the diseases' pathogenesis to establish effective and rational drug-delivery systems. This study enhances our understanding of the application of nanotechnology in biomedical sciences. PMID:25224362

  20. Role of Viral RNA and Co-opted Cellular ESCRT-I and ESCRT-III Factors in Formation of Tombusvirus Spherules Harboring the Tombusvirus Replicase

    PubMed Central

    Kovalev, Nikolay; de Castro Martín, Isabel Fernández; Pogany, Judit; Barajas, Daniel; Pathak, Kunj; Risco, Cristina

    2016-01-01

    ABSTRACT Plus-stranded RNA viruses induce membrane deformations in infected cells in order to build viral replication complexes (VRCs). Tomato bushy stunt virus (TBSV) co-opts cellular ESCRT (endosomal sorting complexes required for transport) proteins to induce the formation of vesicle (spherule)-like structures in the peroxisomal membrane with tight openings toward the cytosol. In this study, using a yeast (Saccharomyces cerevisiae) vps23Δ bro1Δ double-deletion mutant, we showed that the Vps23p ESCRT-I protein (Tsg101 in mammals) and Bro1p (ALIX) ESCRT-associated protein, both of which bind to the viral p33 replication protein, play partially complementary roles in TBSV replication in cells and in cell extracts. Dual expression of dominant-negative versions of Arabidopsis homologs of Vps23p and Bro1p inhibited tombusvirus replication to greater extent than individual expression in Nicotiana benthamiana leaves. We also demonstrated the critical role of Snf7p (CHMP4), Vps20p, and Vps24p ESCRT-III proteins in tombusvirus replication in yeast and in vitro. Electron microscopic imaging of vps23Δ yeast revealed the lack of tombusvirus-induced spherule-like structures, while crescent-like structures are formed in ESCRT-III deletion yeasts replicating TBSV RNA. In addition, we also showed that the length of the viral RNA affects the sizes of spherules formed in N. benthamiana cells. The 4.8-kb genomic RNA is needed for the formation of spherules 66 nm in diameter, while spherules formed during the replication of the ∼600-nucleotide (nt)-long defective interfering RNA in the presence of p33 and p92 replication proteins are 42 nm. We propose that the viral RNA serves as a “measuring string” during VRC assembly and spherule formation. IMPORTANCE Plant positive-strand RNA viruses, similarly to animal positive-strand RNA viruses, replicate in membrane-bound viral replicase complexes in the cytoplasm of infected cells. Identification of cellular and viral factors

  1. Differential effects of carboxy-terminal sequence deletions on platelet-derived growth factor receptor signaling activities and interactions with cellular substrates.

    PubMed Central

    Seedorf, K; Millauer, B; Kostka, G; Schlessinger, J; Ullrich, A

    1992-01-01

    Chimeric receptors composed of the human epidermal growth factor receptor (EGF-R) extracellular domain fused to wild-type and truncated platelet-derived growth factor receptor (PDGF-R) intracellular sequences were stably expressed in NIH 3T3 cells devoid of endogenous EGF-Rs. This experimental system allowed us to investigate the biological activity of PDGF-R cytoplasmic-domain mutants in PDGF-R-responsive NIH 3T3 cells by activating PDGF-specific signaling pathways with EGF. Deletion of 74 carboxy-terminal amino acids severely impaired the ability of the PDGF-R cytoplasmic domain to associate with cellular substrates in vitro. This deletion also inhibited receptor and substrate phosphorylation, reduced the receptor's mitogenic activity, and completely abolished its oncogenic signaling potential. Surprisingly, removal of only six additional amino acids, including Tyr-989, restored substantial receptor and substrate phosphorylation capacity as well as transforming potential and yielded a receptor with wild-type levels of ligand-induced mitogenic activity. However, the ability of this chimera to bind phospholipase C gamma was severely impaired in comparison with the ability of the wild-type receptor, while the association with other cellular proteins was not affected. Further deletion of 35 residues, including Tyr-977, nearly abolished all PDGF-R cytoplasmic-domain biological signaling activities. None of the three C-terminal truncations completely abolished the mitogenic potential of the receptors or had any influence on ligand binding or receptor down regulation. Together, these data implicate the 80 C-terminal-most residues of the PDGF-R, and possibly Tyr-989, in phospholipase C gamma binding, while receptor sequences upstream from Asp-988 appear to be essential for specific interactions with other cellular polypeptides such as ras GTPase-activating protein and phosphatidylinositol 3-kinase. Thus, the mutants described here allow the separation of distinct PDGF

  2. Auxin and Cellular Elongation.

    PubMed

    Velasquez, Silvia Melina; Barbez, Elke; Kleine-Vehn, Jürgen; Estevez, José M

    2016-03-01

    Auxin is a crucial growth regulator in plants. However, a comprehensive understanding of how auxin induces cell expansion is perplexing, because auxin acts in a concentration- and cell type-dependent manner. Consequently, it is desirable to focus on certain cell types to exemplify the underlying growth mechanisms. On the other hand, plant tissues display supracellular growth (beyond the level of single cells); hence, other cell types might compromise the growth of a certain tissue. Tip-growing cells do not display neighbor-induced growth constraints and, therefore, are a valuable source of information for growth-controlling mechanisms. Here, we focus on auxin-induced cellular elongation in root hairs, exposing a mechanistic view of plant growth regulation. We highlight a complex interplay between auxin metabolism and transport, steering root hair development in response to internal and external triggers. Auxin signaling modules and downstream cascades of transcription factors define a developmental program that appears rate limiting for cellular growth. With this knowledge in mind, the root hair cell is a very suitable model system in which to dissect cellular effectors required for cellular expansion. PMID:26787325

  3. Cleavage of the HPV16 Minor Capsid Protein L2 during Virion Morphogenesis Ablates the Requirement for Cellular Furin during De Novo Infection

    PubMed Central

    Cruz, Linda; Biryukov, Jennifer; Conway, Michael J.; Meyers, Craig

    2015-01-01

    Infections by high-risk human papillomaviruses (HPV) are the causative agents for the development of cervical cancer. As with other non-enveloped viruses, HPVs are taken up by the cell through endocytosis following primary attachment to the host cell. Through studies using recombinant pseudovirus particles (PsV), many host cellular proteins have been implicated in the process. The proprotein convertase furin has been demonstrated to cleave the minor capsid protein, L2, post-attachment to host cells and is required for infectious entry by HPV16 PsV. In contrast, using biochemical inhibition by a furin inhibitor and furin-negative cells, we show that tissue-derived HPV16 native virus (NV) initiates infection independent of cellular furin. We show that HPV16 L2 is cleaved during virion morphogenesis in differentiated tissue. In addition, HPV45 is also not dependent on cellular furin, but two other alpha papillomaviruses, HPV18 and HPV31, are dependent on the activity of cellular furin for infection. PMID:26569287

  4. Stereospecific Inhibitory Effects of CCG-1423 on the Cellular Events Mediated by Myocardin-Related Transcription Factor A

    PubMed Central

    Watanabe, Bunta; Minami, Saki; Ishida, Hideaki; Yoshioka, Ryuzo; Nakagawa, Yoshiaki; Morita, Tsuyoshi; Hayashi, Ken’ichiro

    2015-01-01

    CCG-1423 suppresses several pathological processes including cancer cell migration, tissue fibrosis, and the development of atherosclerotic lesions. These suppressions are caused by inhibition of myocardin-related transcription factor A (MRTF-A), which is a critical factor for epithelial–mesenchymal transition (EMT). CCG-1423 can therefore be a potent inhibitor for EMT. CCG-1423 and related compounds, CCG-100602 and CCG-203971 possess similar biological activities. Although these compounds are comprised of two stereoisomers, the differences in their biological activities remain to be assessed. To address this issue, we stereoselectively synthesized optically pure isomers of these compounds and validated their biological activities. The S-isomer of CCG-1423 rather than the R-isomer exhibited modestly but significantly higher inhibitory effects on the cellular events triggered by MRTF-A activation including serum response factor-mediated gene expression and cell migration of fibroblasts and B16F10 melanoma cells. Accordingly, the S-isomer of CCG-1423 more potently blocked the serum-induced nuclear import of MRTF-A than the R-isomer. No such difference was observed in cells treated with each of two stereoisomers of CCG-100602 or CCG-203971. We previously reported that the N-terminal basic domain (NB), which functions as a nuclear localization signal of MRTF-A, is a binding site for CCG-1423. Consistent with the biological activities of two stereoisomers of CCG-1423, docking simulation demonstrated that the S-isomer of CCG-1423 was more likely to bind to NB than the R-isomer. This is a first report demonstrating the stereospecific biological activities of CCG-1423. PMID:26295164

  5. Information System Requirements Determination: Factors Impeding Stakeholders from Reaching Common Understandings and Agreements on Requirements

    ERIC Educational Resources Information Center

    Gissel, Richard L.

    2010-01-01

    Information system implementations require developers to first know what they must create and then determine how best to create it. The requirements determination phase of the system development life cycle typically determines what functions a system must perform and how well it must accomplish required functions. Implementation success depends on…

  6. Stemness factor Sall4 is required for DNA damage response in embryonic stem cells

    PubMed Central

    Xiong, Jianhua; Todorova, Dilyana; Su, Ning-Yuan; Kim, Jinchul; Lee, Pei-Jen; Shen, Zhouxin; Briggs, Steven P.

    2015-01-01

    Mouse embryonic stem cells (ESCs) are genetically more stable than somatic cells, thereby preventing the passage of genomic abnormalities to their derivatives including germ cells. The underlying mechanisms, however, remain largely unclear. In this paper, we show that the stemness factor Sall4 is required for activating the critical Ataxia Telangiectasia Mutated (ATM)–dependent cellular responses to DNA double-stranded breaks (DSBs) in mouse ESCs and confer their resistance to DSB-induced cytotoxicity. Sall4 is rapidly mobilized to the sites of DSBs after DNA damage. Furthermore, Sall4 interacts with Rad50 and stabilizes the Mre11–Rad50–Nbs1 complex for the efficient recruitment and activation of ATM. Sall4 also interacts with Baf60a, a member of the SWI/SNF (switch/sucrose nonfermentable) ATP-dependent chromatin-remodeling complex, which is responsible for recruiting Sall4 to the site of DNA DSB damage. Our findings provide novel mechanisms to coordinate stemness of ESCs with DNA damage response, ensuring genomic stability during the expansion of ESCs. PMID:25733712

  7. Activation and Cellular Localization of the Cyclosporine A-sensitive Transcription Factor NF-AT in Skeletal Muscle Cells

    PubMed Central

    Abbott, Karen L.; Friday, Bret B.; Thaloor, Deepa; Murphy, T.J.; Pavlath, Grace K.

    1998-01-01

    The widely used immunosuppressant cyclosporine A (CSA) blocks nuclear translocation of the transcription factor, NF-AT (nuclear factor of activated T cells), preventing its activity. mRNA for several NF-AT isoforms has been shown to exist in cells outside of the immune system, suggesting a possible mechanism for side effects associated with CSA treatment. In this study, we demonstrate that CSA inhibits biochemical and morphological differentiation of skeletal muscle cells while having a minimal effect on proliferation. Furthermore, in vivo treatment with CSA inhibits muscle regeneration after induced trauma in mice. These results suggest a role for NF-AT–mediated transcription outside of the immune system. In subsequent experiments, we examined the activation and cellular localization of NF-AT in skeletal muscle cells in vitro. Known pharmacological inducers of NF-AT in lymphoid cells also stimulate transcription from an NF-AT–responsive reporter gene in muscle cells. Three isoforms of NF-AT (NF-ATp, c, and 4/x/c3) are present in the cytoplasm of muscle cells at all stages of myogenesis tested. However, each isoform undergoes calcium-induced nuclear translocation from the cytoplasm at specific stages of muscle differentiation, suggesting specificity among NF-AT isoforms in gene regulation. Strikingly, one isoform (NF-ATc) can preferentially translocate to a subset of nuclei within a single multinucleated myotube. These results demonstrate that skeletal muscle cells express functionally active NF-AT proteins and that the nuclear translocation of individual NF-AT isoforms, which is essential for the ability to coordinate gene expression, is influenced markedly by the differentiation state of the muscle cell. PMID:9763451

  8. Cellular Internalization of Fibroblast Growth Factor-12 Exerts Radioprotective Effects on Intestinal Radiation Damage Independently of FGFR Signaling

    SciTech Connect

    Nakayama, Fumiaki; Umeda, Sachiko; Yasuda, Takeshi; Fujita, Mayumi; Asada, Masahiro; Meineke, Viktor; Imamura, Toru; Imai, Takashi

    2014-02-01

    Purpose: Several fibroblast growth factors (FGFs) were shown to inhibit radiation-induced tissue damage through FGF receptor (FGFR) signaling; however, this signaling was also found to be involved in the pathogenesis of several malignant tumors. In contrast, FGF12 cannot activate any FGFRs. Instead, FGF12 can be internalized readily into cells using 2 cell-penetrating peptide domains (CPP-M, CPP-C). Therefore, this study focused on clarifying the role of FGF12 internalization in protection against radiation-induced intestinal injury. Methods and Materials: Each FGF or peptide was administered intraperitoneally to BALB/c mice in the absence of heparin 24 hours before or after total body irradiation with γ rays at 9 to 12 Gy. Several radioprotective effects were examined in the jejunum. Results: Administration of FGF12 after radiation exposure was as effective as pretreatment in significantly promoting intestinal regeneration, proliferation of crypt cells, and epithelial differentiation. Two domains, comprising amino acid residues 80 to 109 and 140 to 169 of FGF12B, were identified as being responsible for the radioprotective activity, so that deletion of both domains from FGF12B resulted in a reduction in activity. Interestingly, these regions included the CPP-M and CPP-C domains, respectively; however, CPP-C by itself did not show an antiapoptotic effect. In addition, FGF1, prototypic FGF, possesses a domain corresponding to CPP-M, whereas it lacks CPP-C, so the fusion of FGF1 with CPP-C (FGF1/CPP-C) enhanced cellular internalization and increased radioprotective activity. However, FGF1/CPP-C reduced in vitro mitogenic activity through FGFRs compared with FGF1, implying that FGFR signaling might not be essential for promoting the radioprotective effect of FGF1/CPP-C. In addition, internalized FGF12 suppressed the activation of p38α after irradiation, resulting in reduced radiation-induced apoptosis. Conclusions: These findings indicate that FGF12 can protect the

  9. The S2 Cu(I) site in CupA from Streptococcus pneumoniae is required for cellular copper resistance†

    PubMed Central

    Fu, Yue; Bruce, Kevin E.; Wu, Hongwei; Giedroc, David P.

    2015-01-01

    Pathogenic bacteria have evolved copper homeostasis and resistance systems for fighting copper toxicity imposed by the human immune system. Streptococcus pneumoniae is a respiratory pathogen that encodes an obligatorily membrane-anchored Cu(I) binding protein, CupA, and a P1B-type ATPase efflux transporter, CopA. The soluble, cytoplasmic domain of CupA (sCupA) contains a binuclear Cu(I) cluster consisting of S1 and S2 Cu(I) ions. The NMR solution structure of apo-sCupA reveals the same cupredoxin fold of Cu2-sCupA, except that the Cu(I) binding loop (residues 112–116, harboring S2 Cu ligands M113 and M115) is highly dynamic as documented by both backbone and side chain methionine methyl order parameters. In contrast to the more solvent exposed, lower affinity S2 Cu site, the high affinity S1 Cu-coordinating cysteines (C74, C111) are pre-organized in the apo-sCupA structure. Biological experiments reveal that the S1 site is largely dispensable for cellular Cu resistance and may be involved in buffering low cytoplasmic Cu(I). In contrast, the S2 site is essential for Cu resistance. Expression of a chimeric CopZ chaperone fused to the CupA transmembrane helix does not protect S. pneumoniae from copper toxicity and substitution of a predicted cytoplasm-facing Cu(I) entry metal-binding site (MBS) on CopA also gives rise to a Cu-sensitivity phenotype. These findings suggest that CupA and CopA may interact and filling of the CupA S2 site with Cu(I) results in stimulation of cellular copper efflux by CopA. PMID:26346139

  10. A heteromeric transcription factor required for mammalian RNA polymerase II.

    PubMed Central

    Kitajima, S; Tanaka, Y; Kawaguchi, T; Nagaoka, T; Weissman, S M; Yasukochi, Y

    1990-01-01

    A general transcription factor, FC, essential for specific initiation of in vitro transcription by mammalian RNA polymerase II was identified and a procedure developed to purify it to near homogeneity from HeLa cell nuclei. Purified FC is composed of two polypeptides of apparent molecular masses 80 kDa and 30 kDa, on SDS-PAGE, and has a native size of 280 kDa estimated by gel filtration column. Both polypeptides were shown to be essential for reconstituting in vitro transcription activity. Biochemical analysis showed that the 80 kDa and 30 kDa components were present in a 1:1 molar ratio. FC was also demonstrated to interact directly or indirectly with purified RNA polymerase II. Similarities between FC and transcription factors reported by others from human, rat or Drosophila cells are discussed. Images PMID:2395645

  11. A human factors analysis of EVA time requirements

    NASA Technical Reports Server (NTRS)

    Pate, D. W.

    1996-01-01

    Human Factors Engineering (HFE), also known as Ergonomics, is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. A human factors motion and time study was initiated with the goal of developing a database of EVA task times and a method of utilizing the database to predict how long an ExtraVehicular Activity (EVA) should take. Initial development relied on the EVA activities performed during the STS-61 mission (Hubble repair). The first step of the analysis was to become familiar with EVAs and with the previous studies and documents produced on EVAs. After reviewing these documents, an initial set of task primitives and task time modifiers was developed. Videotaped footage of STS-61 EVAs were analyzed using these primitives and task time modifiers. Data for two entire EVA missions and portions of several others, each with two EVA astronauts, was collected for analysis. Feedback from the analysis of the data will be used to further refine the primitives and task time modifiers used. Analysis of variance techniques for categorical data will be used to determine which factors may, individually or by interactions, effect the primitive times and how much of an effect they have.

  12. 21 CFR 1311.115 - Additional requirements for two-factor authentication.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Additional requirements for two-factor... Additional requirements for two-factor authentication. (a) To sign a controlled substance prescription, the... authentication protocol that uses two of the following three factors: (1) Something only the practitioner...

  13. A Human Factors Analysis of EVA Time Requirements

    NASA Technical Reports Server (NTRS)

    Pate, Dennis W.

    1997-01-01

    Human Factors Engineering (HFE) is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. During the summer of 1995, a human factors motion and time study was initiated with the goals of developing a database of EVA task times and developing a method of utilizing the database to predict how long an EVA should take. Initial development relied on the EVA activities performed during the STS-61 (Hubble) mission. The first step of the study was to become familiar with EVA's, the previous task-time studies, and documents produced on EVA's. After reviewing these documents, an initial set of task primitives and task-time modifiers was developed. Data was collected from videotaped footage of two entire STS-61 EVA missions and portions of several others, each with two EVA astronauts. Feedback from the analysis of the data was used to further refine the primitives and modifiers used. The project was continued during the summer of 1996, during which data on human errors was also collected and analyzed. Additional data from the STS-71 mission was also collected. Analysis of variance techniques for categorical data was used to determine which factors may affect the primitive times and how much of an effect they have. Probability distributions for the various task were also generated. Further analysis of the modifiers and interactions is planned.

  14. Transcription factor motif quality assessment requires systematic comparative analysis

    PubMed Central

    Kibet, Caleb Kipkurui; Machanick, Philip

    2016-01-01

    Transcription factor (TF) binding site prediction remains a challenge in gene regulatory research due to degeneracy and potential variability in binding sites in the genome. Dozens of algorithms designed to learn binding models (motifs) have generated many motifs available in research papers with a subset making it to databases like JASPAR, UniPROBE and Transfac. The presence of many versions of motifs from the various databases for a single TF and the lack of a standardized assessment technique makes it difficult for biologists to make an appropriate choice of binding model and for algorithm developers to benchmark, test and improve on their models. In this study, we review and evaluate the approaches in use, highlight differences and demonstrate the difficulty of defining a standardized motif assessment approach. We review scoring functions, motif length, test data and the type of performance metrics used in prior studies as some of the factors that influence the outcome of a motif assessment. We show that the scoring functions and statistics used in motif assessment influence ranking of motifs in a TF-specific manner. We also show that TF binding specificity can vary by source of genomic binding data. We also demonstrate that information content of a motif is not in isolation a measure of motif quality but is influenced by TF binding behaviour. We conclude that there is a need for an easy-to-use tool that presents all available evidence for a comparative analysis. PMID:27092243

  15. F-box and leucine-rich repeat protein 5 (FBXL5) is required for maintenance of cellular and systemic iron homeostasis.

    PubMed

    Ruiz, Julio C; Walker, Scott D; Anderson, Sheila A; Eisenstein, Richard S; Bruick, Richard K

    2013-01-01

    Maintenance of cellular iron homeostasis requires post-transcriptional regulation of iron metabolism genes by iron regulatory protein 2 (IRP2). The hemerythrin-like domain of F-box and leucine-rich repeat protein 5 (FBXL5), an E3 ubiquitin ligase subunit, senses iron and oxygen availability and facilitates IRP2 degradation in iron replete cells. Disruption of the ubiquitously expressed murine Fbxl5 gene results in a failure to sense increased cellular iron availability, accompanied by constitutive IRP2 accumulation and misexpression of IRP2 target genes. FBXL5-null mice die during embryogenesis, although viability is restored by simultaneous deletion of the IRP2, but not IRP1, gene. Mice containing a single functional Fbxl5 allele behave like their wild type littermates when fed an iron-sufficient diet. However, unlike wild type mice that manifest decreased hematocrit and hemoglobin levels when fed a low-iron diet, Fbxl5 heterozygotes maintain normal hematologic values due to increased iron absorption. The responsiveness of IRP2 to low iron is specifically enhanced in the duodena of the heterozygotes and is accompanied by increased expression of the divalent metal transporter-1. These results confirm the role of FBXL5 in the in vivo maintenance of cellular and systemic iron homeostasis and reveal a privileged role for the intestine in their regulation by virtue of its unique FBXL5 iron sensitivity. PMID:23135277

  16. F-box and Leucine-rich Repeat Protein 5 (FBXL5) Is Required for Maintenance of Cellular and Systemic Iron Homeostasis*

    PubMed Central

    Ruiz, Julio C.; Walker, Scott D.; Anderson, Sheila A.; Eisenstein, Richard S.; Bruick, Richard K.

    2013-01-01

    Maintenance of cellular iron homeostasis requires post-transcriptional regulation of iron metabolism genes by iron regulatory protein 2 (IRP2). The hemerythrin-like domain of F-box and leucine-rich repeat protein 5 (FBXL5), an E3 ubiquitin ligase subunit, senses iron and oxygen availability and facilitates IRP2 degradation in iron replete cells. Disruption of the ubiquitously expressed murine Fbxl5 gene results in a failure to sense increased cellular iron availability, accompanied by constitutive IRP2 accumulation and misexpression of IRP2 target genes. FBXL5-null mice die during embryogenesis, although viability is restored by simultaneous deletion of the IRP2, but not IRP1, gene. Mice containing a single functional Fbxl5 allele behave like their wild type littermates when fed an iron-sufficient diet. However, unlike wild type mice that manifest decreased hematocrit and hemoglobin levels when fed a low-iron diet, Fbxl5 heterozygotes maintain normal hematologic values due to increased iron absorption. The responsiveness of IRP2 to low iron is specifically enhanced in the duodena of the heterozygotes and is accompanied by increased expression of the divalent metal transporter-1. These results confirm the role of FBXL5 in the in vivo maintenance of cellular and systemic iron homeostasis and reveal a privileged role for the intestine in their regulation by virtue of its unique FBXL5 iron sensitivity. PMID:23135277

  17. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development

    PubMed Central

    Zhou, Hao; Clapham, David E.

    2009-01-01

    Magnesium (Mg2+) is the second most abundant cation in cells, yet relatively few mechanisms have been identified that regulate cellular levels of this ion. The most clearly identified Mg2+ transporters are in bacteria and yeast. Here, we use a yeast complementary screen to identify two mammalian genes, MagT1 and TUSC3, as major mechanisms of Mg2+ influx. MagT1 is universally expressed in all human tissues and its expression level is up-regulated in low extracellular Mg2+. Knockdown of either MagT1 or TUSC3 protein significantly lowers the total and free intracellular Mg2+ concentrations in mammalian cell lines. Morpholino knockdown of MagT1 and TUSC3 protein expression in zebrafish embryos results in early developmental arrest; excess Mg2+ or supplementation with mammalian mRNAs can rescue the effects. We conclude that MagT1 and TUSC3 are indispensable members of the vertebrate plasma membrane Mg2+ transport system. PMID:19717468

  18. A new role for the cellular PABP repressor Paip2 as an innate restriction factor capable of limiting productive cytomegalovirus replication.

    PubMed

    McKinney, Caleb; Yu, Dong; Mohr, Ian

    2013-08-15

    The capacity of polyadenylate-binding protein PABPC1 (PABP1) to stimulate translation is regulated by its repressor, Paip2. Paradoxically, while PABP accumulation promotes human cytomegalovirus (HCMV) protein synthesis, we show that this is accompanied by an analogous increase in the abundance of Paip2 and EDD1, an E3 ubiquitin ligase that destabilizes Paip2. Coordinate control of PABP1, Paip2, and EDD1 required the virus-encoded UL38 mTORC1 activator and resulted in augmented Paip2 synthesis, stability, and association with PABP1. Paip2 synthesis also increased following serum stimulation of uninfected normal fibroblasts, suggesting that this coregulation may play a role in how uninfected cells respond to stress. Significantly, Paip2 accumulation was dependent on PABP accrual, as preventing PABP1 accumulation suppressed viral replication and inhibited the corresponding Paip2 increase. Furthermore, depleting Paip2 restored the ability of infected cells to assemble the translation initiation factor eIF4F, promoting viral protein synthesis and replication without increasing PABP1. This establishes a new role for the cellular PABP1 inhibitor Paip2 as an innate defense that restricts viral protein synthesis and replication. Moreover, it illustrates how a stress-induced rise in PABP1 triggered by virus infection can counter and surpass a corresponding increase in Paip2 abundance and stability. PMID:23964095

  19. Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells

    PubMed Central

    Jun, Jesse E.; Rubio, Ignacio; Roose, Jeroen P.

    2013-01-01

    The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells. PMID:24027568

  20. Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland.

    PubMed

    Castro, Analía E; Benitez, Sergio G; Farias Altamirano, Luz E; Savastano, Luis E; Patterson, Sean I; Muñoz, Estela M

    2015-05-01

    Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner. PMID:25752781

  1. CELLULAR BIOAVAILABILITY OF NATURAL HORMONES AND ENVIRONMENTAL CONTAMINANTS AS A FUNCTION OF SERUM AND CYTOSOLIC BINDING FACTORS

    EPA Science Inventory

    Environmental contaminants have been reported to function as hormone mimics in various wildlife species. To investigate a potential mechanism for the interaction of contaminants with the endocrine system, we evaluated the cellular bioavailability of numerous chemicals. Hormone bi...

  2. Human factor requirements of helmet trackers for HMDs

    NASA Astrophysics Data System (ADS)

    Martinsen, Gary L.; Havig, Paul R.; Post, David L.; Reis, George A.; Simpson, Matthew A.

    2003-09-01

    A helmet tracker is a critical element in the path that delivers targeting and other sensor data to the user of a helmet-mounted display (HMD) in a military aircraft. The original purpose of an HMD was to serve as a helmet-mounted sight and provide a means to fully utilize the capabilities of off-boresight munitions. Recently, the role of the HMD has evolved from being strictly a targeting tool to providing detailed flight path and situation awareness information. These changes, however, have placed even greater value on the visual information that is transferred through the helmet tracker to the HMD. Specifically, the timeliness and accuracy of the information, which is of critical importance when the HMD is used as a targeting aid, is of even greater importance when the HMD is used to display flight reference information. This is especially relevant since it has been proposed to build new military aircraft without a physical head-up display (HUD) and display HUD information virtually with an HMD. In this paper, we review the current state of helmet tracker technology with respect to use in military aviation. We also identify the parameters of helmet trackers that offer the greatest risk when using an HMD to provide information beyond targeting data to the user. Finally, we discuss the human factors limitations of helmet tracker systems for delivering both targeting and flight reference information to a military pilot.

  3. Making Bunyaviruses Talk: Interrogation Tactics to Identify Host Factors Required for Infection

    PubMed Central

    Riblett, Amber M.; Doms, Robert W.

    2016-01-01

    The identification of host cellular genes that act as either proviral or antiviral factors has been aided by the development of an increasingly large number of high-throughput screening approaches. Here, we review recent advances in which these new technologies have been used to interrogate host genes for the ability to impact bunyavirus infection, both in terms of technical advances as well as a summary of biological insights gained from these studies. PMID:27187446

  4. Cellular resilience.

    PubMed

    Smirnova, Lena; Harris, Georgina; Leist, Marcel; Hartung, Thomas

    2015-01-01

    Cellular resilience describes the ability of a cell to cope with environmental changes such as toxicant exposure. If cellular metabolism does not collapse directly after the hit or end in programmed cell death, the ensuing stress responses promote a new homeostasis under stress. The processes of reverting "back to normal" and reversal of apoptosis ("anastasis") have been studied little at the cellular level. Cell types show astonishingly similar vulnerability to most toxicants, except for those that require a very specific target, metabolism or mechanism present only in specific cell types. The majority of chemicals triggers "general cytotoxicity" in any cell at similar concentrations. We hypothesize that cells differ less in their vulnerability to a given toxicant than in their resilience (coping with the "hit"). In many cases, cells do not return to the naive state after a toxic insult. The phenomena of "pre-conditioning", "tolerance" and "hormesis" describe this for low-dose exposures to toxicants that render the cell more resistant to subsequent hits. The defense and resilience programs include epigenetic changes that leave a "memory/scar" - an alteration as a consequence of the stress the cell has experienced. These memories might have long-term consequences, both positive (resistance) and negative, that contribute to chronic and delayed manifestations of hazard and, ultimately, disease. This article calls for more systematic analyses of how cells cope with toxic perturbations in the long-term after stressor withdrawal. A technical prerequisite for these are stable (organotypic) cultures and a characterization of stress response molecular networks. PMID:26536287

  5. Are cellular polarisation and mitotic frequency prognostic factors for local recurrence in patients with ductal carcinoma in situ of the breast?

    PubMed

    Idvall, I; Anderson, H; Ringberg, A; Fernö, M

    2003-08-01

    There is still no generally accepted histopathological classification system for ductal carcinoma in situ (DCIS) of the breast. Nuclear grade, with or without other histopathological parameters (i.e. comedo-type necrosis and cellular polarisation), has been demonstrated to yield prognostic information. A detailed method for the evaluation of the mitotic frequency in DCIS, based on an approach by Contesso, was used in this study. We also investigated if cellular polarisation and mitotic frequency were important for the ipsilateral local recurrence-free interval (IL-RFI) in 121 DCIS patients who had been operated upon with breast-conserving treatment (BCT) without radiotherapy. Both cellular polarisation and the mitotic frequency were associated with histopathological and cellular biological factors (in previous evaluations), and were of borderline significance for IL-RFI in the univariate analyses. However, when nuclear grade was included in the multivariate analyses (with or without the growth pattern), neither cellular polarisation nor the mitotic frequency were of any independent prognostic value. PMID:12888365

  6. A Mechanism to Enhance Cellular Responsivity to Hormone Action: Krüppel-Like Factor 9 Promotes Thyroid Hormone Receptor-β Autoinduction During Postembryonic Brain Development.

    PubMed

    Hu, Fang; Knoedler, Joseph R; Denver, Robert J

    2016-04-01

    Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs. PMID:26886257

  7. Cellular and humoral immune effector mechanisms required for sterile protection against sporozoite challenge induced with the novel malaria vaccine candidate CelTOS.

    PubMed

    Bergmann-Leitner, Elke S; Legler, Patricia M; Savranskaya, Tatyana; Ockenhouse, Christian F; Angov, Evelina

    2011-08-11

    The malarial protein CelTOS, for cell-traversal protein for ookinetes and sporozoites, from Plasmodium berghei has been shown to mediate malarial invasion of both vertebrate and insect host cells and is required for establishing their successful infections. In the vertebrate host, Plasmodium sporozoites traverse via a complex passage through cellular barriers in the skin and the liver sinusoid to infect hepatocytes. Induction of immunity targeted to molecules involved in sporozoite motility and migration into hepatocytes may lead to abrogation of hepatocyte infection. We have previously demonstrated the potential of CelTOS as a target antigen for a pre-erythrocytic vaccine. The objective of the current study was to determine the potency of different vaccine platforms to induce protective immunity and determine the mode of action in protective immune responses. To this end, inbred Balb/c and outbred ICR mice were immunized with either the recombinant protein adjuvanted with Montanide ISA-720 or with a pCI-TPA plasmid encoding the P. berghei CelTOS (epidermal delivery by gene-gun) and assessed for the induction of protective responses against a homologous P. berghei challenge. Humoral and cellular immune responses induced by the various immunization regimens were evaluated in an effort to establish immune correlates. The results confirm that the CelTOS antigen is a potentially interesting pre-erythrocytic vaccine candidate and demonstrate that both arms of the adaptive immune system are required to mediate complete sterile protection against sporozoite challenge. PMID:21722682

  8. Requirements for the production of high-titre C3 nephritic factor (NEF) antibody in vitro.

    PubMed Central

    Marín, M A; Fontán, G; López-Trascasa, M

    1992-01-01

    C3 nephritic factor (NEF) is an IgG autoantibody directed against neoantigenic determinants of the alternative C3 convertase (C3b.Bb). Structural and functional studies require important amounts of this antibody, which are difficult to obtain from patients' sera. We have developed a method for increasing NEF production in vitro. Epstein-Barr virus is a herpes virus which transforms B lymphocytes. Some authors were able to induce the production of NEF in vitro after infection with Epstein-Barr virus (EBV). These works were preformed without any previous cellular selection of B cells. We have performed a method of preselecting antigen-binding cells prior to EBV transformation. Non-preselected cells yielded 0.16 U/million cells in culture (U/M) of NEF antibody, whereas enriched cells for NEF antibody in eliminated 8 U/M (sheep erythrocytes coated with anti-IgG, A, M). Specific NEF synthesis can be increased, in peripheral blood mononuclear cells (PBMC) from patients by in vitro stimulation with the antigens recognized by NEF [C3b.Bb, 21,000 MW protein from patients' E membranes and 26,000 MW protein from sheep E membranes (ShE)]. The highest stimulation is induced by the C3b.Bb and by 26,000 MW protein, 21,000 MW protein had lowest stimulatory effect. In this work also we have shown that patients having NEF antibody in sera have an increase of the CD5-CD19 subset, when compared with the controls. Images Figure 2 PMID:1321794

  9. Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu

    PubMed Central

    Tao, Min; Xie, Ping; Chen, Jun; Qin, Boqiang; Zhang, Dawen; Niu, Yuan; Zhang, Meng; Wang, Qing; Wu, Laiyan

    2012-01-01

    Lake Taihu is the third largest freshwater lake in China and is suffering from serious cyanobacterial blooms with the associated drinking water contamination by microcystin (MC) for millions of citizens. So far, most studies on MCs have been limited to two small bays, while systematic research on the whole lake is lacking. To explain the variations in MC concentrations during cyanobacterial bloom, a large-scale survey at 30 sites across the lake was conducted monthly in 2008. The health risks of MC exposure were high, especially in the northern area. Both Microcystis abundance and MC cellular quotas presented positive correlations with MC concentration in the bloom seasons, suggesting that the toxic risks during Microcystis proliferations were affected by variations in both Microcystis density and MC production per Microcystis cell. Use of a powerful predictive modeling tool named generalized additive model (GAM) helped visualize significant effects of abiotic factors related to carbon fixation and proliferation of Microcystis (conductivity, dissolved inorganic carbon (DIC), water temperature and pH) on MC cellular quotas from recruitment period of Microcystis to the bloom seasons, suggesting the possible use of these factors, in addition to Microcystis abundance, as warning signs to predict toxic events in the future. The interesting relationship between macrophytes and MC cellular quotas of Microcystis (i.e., high MC cellular quotas in the presence of macrophytes) needs further investigation. PMID:22384128

  10. Use of a generalized additive model to investigate key abiotic factors affecting microcystin cellular quotas in heavy bloom areas of Lake Taihu.

    PubMed

    Tao, Min; Xie, Ping; Chen, Jun; Qin, Boqiang; Zhang, Dawen; Niu, Yuan; Zhang, Meng; Wang, Qing; Wu, Laiyan

    2012-01-01

    Lake Taihu is the third largest freshwater lake in China and is suffering from serious cyanobacterial blooms with the associated drinking water contamination by microcystin (MC) for millions of citizens. So far, most studies on MCs have been limited to two small bays, while systematic research on the whole lake is lacking. To explain the variations in MC concentrations during cyanobacterial bloom, a large-scale survey at 30 sites across the lake was conducted monthly in 2008. The health risks of MC exposure were high, especially in the northern area. Both Microcystis abundance and MC cellular quotas presented positive correlations with MC concentration in the bloom seasons, suggesting that the toxic risks during Microcystis proliferations were affected by variations in both Microcystis density and MC production per Microcystis cell. Use of a powerful predictive modeling tool named generalized additive model (GAM) helped visualize significant effects of abiotic factors related to carbon fixation and proliferation of Microcystis (conductivity, dissolved inorganic carbon (DIC), water temperature and pH) on MC cellular quotas from recruitment period of Microcystis to the bloom seasons, suggesting the possible use of these factors, in addition to Microcystis abundance, as warning signs to predict toxic events in the future. The interesting relationship between macrophytes and MC cellular quotas of Microcystis (i.e., high MC cellular quotas in the presence of macrophytes) needs further investigation. PMID:22384128

  11. 40 CFR 63.1431 - Process vent annual epoxides emission factor plan requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... factor plan requirements. 63.1431 Section 63.1431 Protection of Environment ENVIRONMENTAL PROTECTION... group determination procedures in the NESHAP for Group I Polymers and Resins (40 CFR part 63, subpart U... Production § 63.1431 Process vent annual epoxides emission factor plan requirements. (a) Applicability...

  12. Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation.

    PubMed

    David, Gregory; Grandinetti, Kathryn B; Finnerty, Patricia M; Simpson, Natalie; Chu, Gerald C; Depinho, Ronald A

    2008-03-18

    The Sin3-histone deacetylase (HDAC) corepressor complex is conserved from yeast to humans. Mammals possess two highly related Sin3 proteins, mSin3A and mSin3B, which serve as scaffolds tethering HDAC enzymatic activity, and numerous sequence-specific transcription factors to enable local chromatin regulation at specific gene targets. Despite broad overlapping expression of mSin3A and mSin3B, mSin3A is cell-essential and vital for early embryonic development. Here, genetic disruption of mSin3B reveals a very different phenotype characterized by the survival of cultured cells and lethality at late stages of embryonic development with defective differentiation of multiple lineages-phenotypes that are strikingly reminiscent of those associated with loss of retinoblastoma family members or E2F transcriptional repressors. Additionally, we observe that, whereas mSin3B(-/-) cells cycle normally under standard growth conditions, they show an impaired ability to exit the cell cycle with limiting growth factors. Correspondingly, mSin3B interacts physically with the promoters of known E2F target genes, and its deficiency is associated with derepression of these gene targets in vivo. Together, these results reveal a critical role for mSin3B in the control of cell cycle exit and terminal differentiation in mammals and establish contrasting roles for the mSin3 proteins in the growth and development of specific lineages. PMID:18332431

  13. Timed interactions between viral and cellular replication factors during the initiation of SV40 in vitro DNA replication

    PubMed Central

    Taneja, Poonam; Nasheuer, Heinz-Peter; Hartmann, Hella; Grosse, Frank; Fanning, Ellen; Weisshart, Klaus

    2007-01-01

    The initiation of SV40 (simian virus 40) DNA replication requires the co-operative interactions between the viral Tag (large T-antigen), RPA (replication protein A) and Pol (DNA polymerase α-primase) on the template DNA. Binding interfaces mapped on these enzymes and expressed as peptides competed with the mutual interactions of the native proteins. Prevention of the genuine interactions was accomplished only prior to the primer synthesis step and blocked the assembly of a productive initiation complex. Once the complex was engaged in the synthesis of an RNA primer and its extension, the interfering effects of the peptides ceased, suggesting a stable association of the replication factors during the initiation phase. Specific antibodies were still able to disrupt preformed interactions and inhibited primer synthesis and extension activities, underlining the crucial role of specific protein–protein contacts during the entire initiation process. PMID:17666013

  14. Epithelial Adhesion Mediated by Pilin SpaC Is Required for Lactobacillus rhamnosus GG-Induced Cellular Responses

    PubMed Central

    Ardita, Courtney S.; Mercante, Jeffrey W.; Kwon, Young Man; Luo, Liping; Crawford, Madelyn E.; Powell, Domonica N.; Jones, Rheinallt M.

    2014-01-01

    Lactobacillus rhamnosus GG is a widely used probiotic, and the strain's salutary effects on the intestine have been extensively documented. We previously reported that strain GG can modulate inflammatory signaling, as well as epithelial migration and proliferation, by activating NADPH oxidase 1-catalyzed generation of reactive oxygen species (ROS). However, how strain GG induces these responses is unknown. Here, we report that strain GG's probiotic benefits are dependent on the bacterial-epithelial interaction mediated by the SpaC pilin subunit. By comparing strain GG to an isogenic mutant that lacks SpaC (strain GGΩspaC), we establish that SpaC is necessary for strain GG to adhere to gut mucosa, that SpaC contributes to strain GG-induced epithelial generation of ROS, and that SpaC plays a role in strain GG's capacity to stimulate extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling in enterocytes. In addition, we show that SpaC is required for strain GG-mediated stimulation of cell proliferation and protection against radiologically inflicted intestinal injury. The identification of a critical surface protein required for strain GG to mediate its probiotic influence advances our understanding of the molecular basis for the symbiotic relationship between some commensal bacteria of the gut lumen and enterocytes. Further insights into this relationship are critical for the development of novel approaches to treat intestinal diseases. PMID:24928883

  15. GAP Activity, but Not Subcellular Targeting, Is Required for Arabidopsis RanGAP Cellular and Developmental Functions[OPEN

    PubMed Central

    Boruc, Joanna; Griffis, Anna H.N.; Rodrigo-Peiris, Thushani; Zhou, Xiao; Tilford, Bailey; Van Damme, Daniël; Meier, Iris

    2015-01-01

    The Ran GTPase activating protein (RanGAP) is important to Ran signaling involved in nucleocytoplasmic transport, spindle organization, and postmitotic nuclear assembly. Unlike vertebrate and yeast RanGAP, plant RanGAP has an N-terminal WPP domain, required for nuclear envelope association and several mitotic locations of Arabidopsis thaliana RanGAP1. A double null mutant of the two Arabidopsis RanGAP homologs is gametophyte lethal. Here, we created a series of mutants with various reductions in RanGAP levels by combining a RanGAP1 null allele with different RanGAP2 alleles. As RanGAP level decreases, the severity of developmental phenotypes increases, but nuclear import is unaffected. To dissect whether the GAP activity and/or the subcellular localization of RanGAP are responsible for the observed phenotypes, this series of rangap mutants were transformed with RanGAP1 variants carrying point mutations abolishing the GAP activity and/or the WPP-dependent subcellular localization. The data show that plant development is differentially affected by RanGAP mutant allele combinations of increasing severity and requires the GAP activity of RanGAP, while the subcellular positioning of RanGAP is dispensable. In addition, our results indicate that nucleocytoplasmic trafficking can tolerate both partial depletion of RanGAP and delocalization of RanGAP from the nuclear envelope. PMID:26091693

  16. Cellular Stress Responses and Monitored Cellular Activities.

    PubMed

    Sawa, Teiji; Naito, Yoshifumi; Kato, Hideya; Amaya, Fumimasa

    2016-08-01

    To survive, organisms require mechanisms that enable them to sense changes in the outside environment, introduce necessary responses, and resist unfavorable distortion. Consequently, through evolutionary adaptation, cells have become equipped with the apparatus required to monitor their fundamental intracellular processes and the mechanisms needed to try to offset malfunction without receiving any direct signals from the outside environment. It has been shown recently that eukaryotic cells are equipped with a special mechanism that monitors their fundamental cellular functions and that some pathogenic proteobacteria can override this monitoring mechanism to cause harm. The monitored cellular activities involved in the stressed intracellular response have been researched extensively in Caenorhabditis elegans, where discovery of an association between key mitochondrial activities and innate immune responses was named "cellular associated detoxification and defenses (cSADD)." This cellular surveillance pathway (cSADD) oversees core cellular activities such as mitochondrial respiration and protein transport into mitochondria, detects xenobiotics and invading pathogens, and activates the endocrine pathways controlling behavior, detoxification, and immunity. The cSADD pathway is probably associated with cellular responses to stress in human inflammatory diseases. In the critical care field, the pathogenesis of lethal inflammatory syndromes (e.g., respiratory distress syndromes and sepsis) involves the disturbance of mitochondrial respiration leading to cell death. Up-to-date knowledge about monitored cellular activities and cSADD, especially focusing on mitochondrial involvement, can probably help fill a knowledge gap regarding the pathogenesis of lethal inflammatory syndromes in the critical care field. PMID:26954943

  17. Cellular entry via an actin and clathrin-dependent route is required for Lv2 restriction of HIV-2

    SciTech Connect

    Harrison, I.P.; McKnight, A.

    2011-06-20

    Lv2 is a human factor that restricts infection of some HIV-2 viruses after entry into particular target cells. HIV-2 MCR is highly susceptible to Lv2 whereas HIV-2 MCN is not. The block is after reverse transcription but prior to nuclear entry. The viral determinants for this restriction have been mapped to the HIV-2 envelope and the capsid genes. Our model of Lv2 restriction suggests that the route taken into a cell is important in determining whether a productive infection occurs. Here we characterised the infectious routes used by MCN and MCR using chemical compounds and molecular techniques to distinguish between potential pathways. Our results suggest that susceptible MCR can enter restrictive HeLa{sup CD4} cells via two pathways; a clathrin/AP2 mediated endocytic route that is sensitive to Lv2 restriction and an alternative, non-clathrin mediated route, which results in more efficient infection.

  18. Transglutaminase activity arising from Factor XIIIA is required for stabilization and conversion of plasma fibronectin into matrix in osteoblast cultures.

    PubMed

    Cui, Cui; Wang, Shuai; Myneni, Vamsee D; Hitomi, Kiyotaka; Kaartinen, Mari T

    2014-02-01

    Circulating plasma fibronectin (pFN), produced by hepatocytes, is a major component of the noncollagenous bone matrix where it was recently shown in vivo in mice to control the biomechanical quality as well as the mineral-to-matrix ratio in bone. FN fibrillogenesis is a process generally requiring FN binding to cellular integrins, and cellular tension to elongate and assemble the molecule. Whether soluble pFN undergoes cell-mediated assembly in bone is not fully established. FN is a well-known substrate for transglutaminases (TGs), which are protein-crosslinking enzymes capable of stabilizing macromolecular structures. The role of this modification regarding the function of FN in bone matrix has remained unknown. Osteoblasts express two TGs-transglutaminase 2 and Factor XIIIA-and we have shown that Factor XIIIA is the main TG active during osteoblast differentiation. In the present study, conducted using MC3T3-E1 osteoblast cultures and bone marrow stromal cells, we demonstrate that pFN requires a TG-mediated crosslinking step to form osteoblast matrix in vitro. This modification step is specific for pFN; cellular FN (EDA-FN) does not serve as a TG substrate. Inhibition of pFN assembly using a TG inhibitor, or depletion of pFN from cell culture serum, dramatically decreased total FN matrix assembly in the osteoblast cultures and affected both the quantity and quality of the type I collagen matrix, and decreased lysyl oxidase and alkaline phosphatase levels, resulting in decreased mineralization. Experiments with isozyme-specific substrate peptides showed that FXIIIA is responsible for the crosslinking of pFN. Addition of exogenous preactivated FXIIIA to osteoblast cultures promoted pFN assembly from the media into matrix. Exogenous TG2 had no effect. Analysis of pFN and EDA-FN fibrils by immunofluorescence microscopy demonstrated that they form distinct matrix network, albeit with minor overlap, suggesting different functions for the two FN forms. Further analysis

  19. Glucose-dependent anaplerosis in cancer cells is required for cellular redox balance in the absence of glutamine.

    PubMed

    Cetinbas, Naniye Mallı; Sudderth, Jessica; Harris, Robert C; Cebeci, Aysun; Negri, Gian L; Yılmaz, Ömer H; DeBerardinis, Ralph J; Sorensen, Poul H

    2016-01-01

    Cancer cells have altered metabolism compared to normal cells, including dependence on glutamine (GLN) for survival, known as GLN addiction. However, some cancer cell lines do not require GLN for survival and the basis for this discrepancy is not well understood. GLN is a precursor for antioxidants such as glutathione (GSH) and NADPH, and GLN deprivation is therefore predicted to deplete antioxidants and increase reactive oxygen species (ROS). Using diverse human cancer cell lines we show that this occurs only in cells that rely on GLN for survival. Thus, the preference for GLN as a dominant antioxidant source defines GLN addiction. We show that despite increased glucose uptake, GLN addicted cells do not metabolize glucose via the TCA cycle when GLN is depleted, as revealed by (13)C-glucose labeling. In contrast, GLN independent cells can compensate by diverting glucose-derived pyruvate into the TCA cycle. GLN addicted cells exhibit reduced PDH activity, increased PDK1 expression, and PDK inhibition partially rescues GLN starvation-induced ROS and cell death. Finally, we show that combining GLN starvation with pro-oxidants selectively kills GLN addicted cells. These data highlight a major role for GLN in maintaining redox balance in cancer cells that lack glucose-dependent anaplerosis. PMID:27605385

  20. Glucose-dependent anaplerosis in cancer cells is required for cellular redox balance in the absence of glutamine

    PubMed Central

    Cetinbas, Naniye Mallı; Sudderth, Jessica; Harris, Robert C.; Cebeci, Aysun; Negri, Gian L.; Yılmaz, Ömer H.; DeBerardinis, Ralph J.; Sorensen, Poul H.

    2016-01-01

    Cancer cells have altered metabolism compared to normal cells, including dependence on glutamine (GLN) for survival, known as GLN addiction. However, some cancer cell lines do not require GLN for survival and the basis for this discrepancy is not well understood. GLN is a precursor for antioxidants such as glutathione (GSH) and NADPH, and GLN deprivation is therefore predicted to deplete antioxidants and increase reactive oxygen species (ROS). Using diverse human cancer cell lines we show that this occurs only in cells that rely on GLN for survival. Thus, the preference for GLN as a dominant antioxidant source defines GLN addiction. We show that despite increased glucose uptake, GLN addicted cells do not metabolize glucose via the TCA cycle when GLN is depleted, as revealed by 13C-glucose labeling. In contrast, GLN independent cells can compensate by diverting glucose-derived pyruvate into the TCA cycle. GLN addicted cells exhibit reduced PDH activity, increased PDK1 expression, and PDK inhibition partially rescues GLN starvation-induced ROS and cell death. Finally, we show that combining GLN starvation with pro-oxidants selectively kills GLN addicted cells. These data highlight a major role for GLN in maintaining redox balance in cancer cells that lack glucose-dependent anaplerosis. PMID:27605385

  1. HTLV-1 Rex is required for viral spread and persistence in vivo but is dispensable for cellular immortalization in vitro

    PubMed Central

    Ye, Jianxin; Silverman, Lee; Lairmore, Michael D.; Green, Patrick L.

    2010-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is associated with leukemia/lymphoma and neurologic disorders. Although the viral transcriptional activator Tax is the critical viral oncoprotein, Rex, which regulates the expression of the viral structural and enzymatic genes, is essential for efficient viral replication. Herein, we investigate the contribution of Rex in HTLV-1 immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. A Rex-deficient HTLV-1 (HTLVRex−) was constructed and characterized for viral gene expression, protein production, and immortalization capacity. Cells transiently transfected with the HTLVRex− proviral clone produced low detectable levels of p19 Gag. 729HTLVRex− stable transfectants produced functional Tax, but undetectable levels of Rex or p19 Gag. Coculture of irradiated 729HTLVRex− cells with peripheral blood mononuclear cells (PBMCs) resulted in sustained interleukin-2 (IL-2)–dependent growth of primary T lymphocytes. These cells carried the HTLVRex− genome and expressed tax/rex mRNA but produced no detectable Rex or p19 Gag. Rabbits inoculated with irradiated 729HTLVRex− cells or 729HTLVRex− cells transiently transfected with a Rex cDNA expression plasmid failed to become persistently infected or mount a detectable antibody response to the viral gene products. Together, our results provide the first direct evidence that Rex and its function to modulate viral gene expression and virion production is not required for in vitro immortalization by HTLV-1. However, Rex is critical for efficient infection of cells and persistence in vivo. PMID:12907436

  2. The LIM domain-containing Dbm1 GTPase-activating protein is required for normal cellular morphogenesis in Saccharomyces cerevisiae.

    PubMed Central

    Chen, G C; Zheng, L; Chan, C S

    1996-01-01

    Normal cell growth in the yeast Saccharomyces cerevisiae involves the selection of genetically determined bud sites where most growth is localized. Previous studies have shown that BEM2, which encodes a GTPase-activating protein (GAP) that is specific for the Rho-type GTPase Rho1p in vitro, is required for proper bud site selection and bud emergence. We show here that DBM1, which encodes another putative Rho-type GAP with two tandemly arranged cysteine-rich LIM domains, also is needed for proper bud site selection, as haploid cells lacking Dbm1p bud predominantly in a bipolar, rather than the normal axial, manner. Furthermore, yeast cells lacking both Bem2p and Dbm1p are inviable. The nonaxial budding defect of dbm1 mutants can be rescued partially by overproduction of Bem3p and is exacerbated by its absence. Since Bem3p has previously been shown to function as a GAP for Cdc42p, and also less efficiently for Rho1p, our results suggest that Dbm1p, like Bem2p and Bem3p, may function in vivo as a GAP for Cdc42p and/or Rho1p. Both LIM domains of Dbm1p are essential for its normal function. Point mutations that alter single conserved cysteine residues within either LIM domain result in mutant forms of Dbm1p that can no longer function in bud site selection but instead are capable of rescuing the inviability of bem2 mutants at 35 degrees C. PMID:8657111

  3. Cellular zinc is required for intestinal epithelial barrier maintenance via the regulation of claudin-3 and occludin expression.

    PubMed

    Miyoshi, Yuka; Tanabe, Soichi; Suzuki, Takuya

    2016-07-01

    Intracellular zinc is required for a variety of cell functions, but its precise roles in the maintenance of the intestinal tight junction (TJ) barrier remain unclear. The present study investigated the essential roles of intracellular zinc in the preservation of intestinal TJ integrity and the underlying molecular mechanisms. Depletion of intracellular zinc in both intestinal Caco-2 cells and mouse colons through the application of a cell-permeable zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) induced a disruption of the TJ barrier, as indicated by increased FITC-labeled dextran flux and decreased transepithelial electrical resistance. The TPEN-induced TJ disruption is associated with downregulation of two TJ proteins, occludin and claudin-3. Biotinylation of cell surface proteins revealed that the zinc depletion induced the proteolysis of occludin but not claudin-3. Occludin proteolysis was sensitive to the inhibition of calpain activity, and increased calpain activity was observed in the zinc-depleted cells. Although quantitative PCR analysis and promoter reporter assay have demonstrated that the zinc depletion-induced claudin-3 downregulation occurred at transcriptional levels, a site-directed mutation in the egr1 binding site in the claudin-3 promoter sequence induced loss of both the basal promoter activity and the TPEN-induced decreases. Reduced egr1 expression by a specific siRNA also inhibited claudin-3 expression and transepithelial electrical resistance maintenance in cells. This study shows that intracellular zinc has an essential role in the maintenance of the intestinal epithelial TJ barrier through regulation of occludin proteolysis and claudin-3 transcription. PMID:27151944

  4. Protective effects of a Modified Vaccinia Ankara-based vaccine candidate against Crimean-Congo Haemorrhagic Fever virus require both cellular and humoral responses

    PubMed Central

    Dowall, Stuart D.; Graham, Victoria A.; Rayner, Emma; Hunter, Laura; Watson, Robert; Taylor, Irene; Rule, Antony; Carroll, Miles W.; Hewson, Roger

    2016-01-01

    Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP). It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge. PMID:27272940

  5. Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity.

    PubMed

    Shelton, Dale; Stranne, Maria; Mikkelsen, Lisbeth; Pakseresht, Nima; Welham, Tracey; Hiraka, Hideki; Tabata, Satoshi; Sato, Shusei; Paquette, Suzanne; Wang, Trevor L; Martin, Cathie; Bailey, Paul

    2012-06-01

    Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors. PMID:22529285

  6. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer’s Disease

    PubMed Central

    McGinley, Lisa M.; Sims, Erika; Lunn, J. Simon; Kashlan, Osama N.; Chen, Kevin S.; Bruno, Elizabeth S.; Pacut, Crystal M.; Hazel, Tom; Johe, Karl; Sakowski, Stacey A.

    2016-01-01

    Alzheimer’s disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar “best in class” cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD. Significance There is no cure for Alzheimer’s disease (AD) and

  7. Fibroblast Growth Factor 2 Is Required for Epithelial Recovery, but Not for Pulmonary Fibrosis, in Response to Bleomycin

    PubMed Central

    Guzy, Robert D.; Stoilov, Ivan; Elton, Timothy J.; Mecham, Robert P.

    2015-01-01

    The pathogenesis of pulmonary fibrosis involves lung epithelial injury and aberrant proliferation of fibroblasts, and results in progressive pulmonary scarring and declining lung function. In vitro, fibroblast growth factor (FGF) 2 promotes myofibroblast differentiation and proliferation in cooperation with the profibrotic growth factor, transforming growth factor-β1, but the in vivo requirement for FGF2 in the development of pulmonary fibrosis is not known. The bleomycin model of lung injury and pulmonary fibrosis was applied to Fgf2 knockout (Fgf2−/−) and littermate control mice. Weight loss, mortality, pulmonary fibrosis, and histology were analyzed after a single intranasal dose of bleomycin. Inflammation was evaluated in bronchoalveolar lavage (BAL) fluid, and epithelial barrier integrity was assessed by measuring BAL protein and Evans Blue dye permeability. Fgf2 is expressed in mouse and human lung epithelial and inflammatory cells, and, in response to bleomycin, Fgf2−/− mice have significantly increased mortality and weight loss. Analysis of BAL fluid and histology show that pulmonary fibrosis is unaltered, but Fgf2−/− mice fail to efficiently resolve inflammation, have increased BAL cellularity, and, importantly, deficient recovery of epithelial integrity. Fgf2−/− mice similarly have deficient recovery of club cell secretory protein+ bronchial epithelium in response to naphthalene. We conclude that FGF2 is not required for bleomycin-induced pulmonary fibrosis, but rather is essential for epithelial repair and maintaining epithelial integrity after bleomycin-induced lung injury in mice. These data identify that FGF2 acts as a protective growth factor after lung epithelial injury, and call into question the role of FGF2 as a profibrotic growth factor in vivo. PMID:24988442

  8. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    SciTech Connect

    Reuther, Sebastian; Metzke, Elisabeth; Bonin, Michael; Petersen, Cordula; Dikomey, Ekkehard; Raabe, Annette

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  9. Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors.

    PubMed

    Vogg, Matthias C; Owlarn, Suthira; Pérez Rico, Yuvia A; Xie, Jianlei; Suzuki, Yoko; Gentile, Luca; Wu, Wei; Bartscherer, Kerstin

    2014-06-15

    Planarians can regenerate their head within days. This process depends on the direction of adult stem cells to wound sites and the orchestration of their progenitors to commit to appropriate lineages and to arrange into patterned tissues. We identified a zinc finger transcription factor, Smed-ZicA, as a downstream target of Smed-FoxD, a Forkhead transcription factor required for head regeneration. Smed-zicA and Smed-FoxD are co-expressed with the Wnt inhibitor notum and the Activin inhibitor follistatin in a cluster of cells at the anterior-most tip of the regenerating head - the anterior regeneration pole - and in surrounding stem cell progeny. Depletion of Smed-zicA and Smed-FoxD by RNAi abolishes notum and follistatin expression at the pole and inhibits head formation downstream of initial polarity decisions. We suggest a model in which ZicA and FoxD transcription factors synergize to control the formation of Notum- and Follistatin-producing anterior pole cells. Pole formation might constitute an early step in regeneration, resulting in a signaling center that orchestrates cellular events in the growing tissue. PMID:24704339

  10. Long-term channel block is required to inhibit cellular transformation by human ether-à-go-go-related gene (hERG1) potassium channels.

    PubMed

    Pier, David M; Shehatou, George S G; Giblett, Susan; Pullar, Christine E; Trezise, Derek J; Pritchard, Catrin A; Challiss, R A John; Mitcheson, John S

    2014-08-01

    Both human ether-à-go-go-related gene (hERG1) and the closely related human ether-à-go-go (hEAG1) channel are aberrantly expressed in a large proportion of human cancers. In the present study, we demonstrate that transfection of hERG1 into mouse fibroblasts is sufficient to induce many features characteristic of malignant transformation. An important finding of this work is that this transformation could be reversed by chronic incubation (for 2-3 weeks) with the hERG channel blocker dofetilide (100 nM), whereas more acute applications (for 1-2 days) were ineffective. The hERG1 expression resulted in a profound loss of cell contact inhibition, multiple layers of overgrowing cells, and high saturation densities. Cells also changed from fibroblast-like to a more spindle-shaped morphology, which was associated with a smaller cell size, a dramatic increase in cell polarization, a reduction in the number of actin stress fibers, and less punctate labeling of focal adhesions. Analysis of single-cell migration and scratch-wound closure clearly demonstrated that hERG1-expressing cells migrated more rapidly than vector-transfected control cells. In contrast to previous studies on hEAG1, there were no increases in rates of proliferation, or loss of growth factor dependency; however, hERG1-expressing cells were capable of substrate-independent growth. Allogeneic transplantation of hERG1-expressing cells into nude mice resulted in an increased incidence of tumors. In contrast to hEAG1, the mechanism of cellular transformation is dependent on ion conduction. Trafficking-deficient and conduction-deficient hERG1 mutants also prevented cellular transformation. These results provide evidence that hERG1 expression is sufficient to induce cellular transformation by a mechanism distinct from hEAG1. The most important conclusion of this study is that selective hERG1 channel blockers have therapeutic potential in the treatment of hERG1-expressing cancers. PMID:24830940

  11. Cholangiocyte Myosin IIB Is Required for Localized Aggregation of Sodium Glucose Cotransporter 1 to Sites of Cryptosporidium parvum Cellular Invasion and Facilitates Parasite Internalization ▿

    PubMed Central

    O'Hara, Steven P.; Gajdos, Gabriella B.; Trussoni, Christy E.; Splinter, Patrick L.; LaRusso, Nicholas F.

    2010-01-01

    Internalization of the obligate intracellular apicomplexan parasite, Cryptosporidium parvum, results in the formation of a unique intramembranous yet extracytoplasmic niche on the apical surfaces of host epithelial cells, a process that depends on host cell membrane extension. We previously demonstrated that efficient C. parvum invasion of biliary epithelial cells (cholangiocytes) requires host cell actin polymerization and localized membrane translocation/insertion of Na+/glucose cotransporter 1 (SGLT1) and of aquaporin 1 (Aqp1), a water channel, at the attachment site. The resultant localized water influx facilitates parasite cellular invasion by promoting host-cell membrane protrusion. However, the molecular mechanisms by which C. parvum induces membrane translocation/insertion of SGLT1/Aqp1 are obscure. We report here that cultured human cholangiocytes express several nonmuscle myosins, including myosins IIA and IIB. Moreover, C. parvum infection of cultured cholangiocytes results in the localized selective aggregation of myosin IIB but not myosin IIA at the region of parasite attachment, as assessed by dual-label immunofluorescence confocal microscopy. Concordantly, treatment of cells with the myosin light chain kinase inhibitor ML-7 or the myosin II-specific inhibitor blebbistatin or selective RNA-mediated repression of myosin IIB significantly inhibits (P < 0.05) C. parvum cellular invasion (by 60 to 80%). Furthermore ML-7 and blebbistatin significantly decrease (P < 0.02) C. parvum-induced accumulation of SGLT1 at infection sites (by approximately 80%). Thus, localized actomyosin-dependent membrane translocation of transporters/channels initiated by C. parvum is essential for membrane extension and parasite internalization, a phenomenon that may also be relevant to the mechanisms of cell membrane protrusion in general. PMID:20457792

  12. Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons.

    PubMed

    Balkowiec, Agnieszka; Katz, David M

    2002-12-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in activity-dependent modifications of neuronal connectivity and synaptic strength, including establishment of hippocampal long-term potentiation (LTP). To shed light on mechanisms underlying BDNF-dependent synaptic plasticity, the present study was undertaken to characterize release of native BDNF from newborn rat hippocampal neurons in response to physiologically relevant patterns of electrical field stimulation in culture, including tonic stimulation at 5 Hz, bursting stimulation at 25 and 100 Hz, and theta-burst stimulation (TBS). Release was measured using the ELISA in situ technique, developed in our laboratory to quantify secretion of native BDNF without the need to first overexpress the protein to nonphysiological levels. Each stimulation protocol resulted in a significant increase in BDNF release that was tetrodotoxin sensitive and occurred in the absence of glutamate receptor activation. However, 100 Hz tetanus and TBS, stimulus patterns that are most effective in inducing hippocampal LTP, were significantly more effective in releasing native BDNF than lower-frequency stimulation. For all stimulation protocols tested, removal of extracellular calcium, or blockade of N-type calcium channels, prevented BDNF release. Similarly, depletion of intracellular calcium stores with thapsigargin and treatment with dantrolene, an inhibitor of calcium release from caffeine-ryanodine-sensitive stores, markedly inhibited activity-dependent BDNF release. Our results indicate that BDNF release can encode temporal features of hippocampal neuronal activity. The dual requirement for calcium influx through N-type calcium channels and calcium mobilization from intracellular stores strongly implicates a role for calcium-induced calcium release in activity-dependent BDNF secretion. PMID:12451139

  13. 21 CFR 1311.115 - Additional requirements for two-factor authentication.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... authentication. 1311.115 Section 1311.115 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE... requirements for two-factor authentication. (a) To sign a controlled substance prescription, the electronic... authentication protocol that uses two of the following three factors: (1) Something only the practitioner...

  14. 21 CFR 1311.115 - Additional requirements for two-factor authentication.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... authentication. 1311.115 Section 1311.115 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE... requirements for two-factor authentication. (a) To sign a controlled substance prescription, the electronic... authentication protocol that uses two of the following three factors: (1) Something only the practitioner...

  15. 21 CFR 1311.115 - Additional requirements for two-factor authentication.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... authentication. 1311.115 Section 1311.115 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE... requirements for two-factor authentication. (a) To sign a controlled substance prescription, the electronic... authentication protocol that uses two of the following three factors: (1) Something only the practitioner...

  16. 21 CFR 1311.115 - Additional requirements for two-factor authentication.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... authentication. 1311.115 Section 1311.115 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE... requirements for two-factor authentication. (a) To sign a controlled substance prescription, the electronic... authentication protocol that uses two of the following three factors: (1) Something only the practitioner...

  17. Girdin/GIV is upregulated by cyclic tension, propagates mechanical signal transduction, and is required for the cellular proliferation and migration of MG-63 cells

    SciTech Connect

    Hu, Jiang-Tian; Li, Yan; Yu, Bing; Gao, Guo-Jie; Zhou, Ting; Li, Song

    2015-08-21

    To explore how Girdin/GIV is regulated by cyclic tension and propagates downstream signals to affect cell proliferation and migration. Human osteoblast-like MG-63 cells were exposed to cyclic tension force at 4000 μstrain and 0.5 Hz for 6 h, produced by a four-point bending system. Cyclic tension force upregulated Girdin and Akt expression and phosphorylation in cultured MG-63 cells. Girdin and Akt each promoted the phosphorylation of the other under stimulated tension. In vitro MTT and transwell assays showed that Girdin and Akt are required for cell proliferation and migration during cellular quiescence. Moreover, STAT3 was determined to be essential for Girdin expression under stimulated tension force in the physiological condition, as well as for osteoblast proliferation and migration during quiescence. These findings suggest that the STAT3/Girdin/Akt pathway activates in osteoblasts in response to mechanical stimulation and may play a significant role in triggering osteoblast proliferation and migration during orthodontic treatment. - Highlights: • Tension force upregulates Girdin and Akt expression and phosphorylation. • Girdin and Akt promotes the phosphorylation of each other under tension stimulation. • Girdin and Akt are required for MG-63 cell proliferation and migration. • STAT3 is essential for Girdin expression after application of the tension forces.

  18. Postures and Motions Library Development for Verification of Ground Crew Human Factors Requirements

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Henderson, Gena; Jackson, Mariea Dunn; Dischinger, Charles

    2013-01-01

    Spacecraft and launch vehicle ground processing activities require a variety of unique human activities. These activities are being documented in a primitive motion capture library. The library will be used by human factors engineering analysts to infuse real to life human activities into the CAD models to verify ground systems human factors requirements. As the primitive models are being developed for the library, the project has selected several current human factors issues to be addressed for the Space Launch System (SLS) and Orion launch systems. This paper explains how the motion capture of unique ground systems activities is being used to verify the human factors engineering requirements for ground systems used to process the SLS and Orion vehicles, and how the primitive models will be applied to future spacecraft and launch vehicle processing.

  19. USP17 is required for clathrin mediated endocytosis of epidermal growth factor receptor

    PubMed Central

    Jaworski, Jakub; de la Vega, Michelle; Fletcher, Sarah J.; McFarlane, Cheryl; Greene, Michelle K.; Smyth, Andrew W.; Van Schaeybroeck, Sandra; Johnston, James A.; Scott, Christopher J.; Rappoport, Joshua Z.; Burrows, James F.

    2014-01-01

    Previously we have shown that expression of the deubiquitinating enzyme USP17 is required for cell proliferation and motility. More recently we reported that USP17 deubiquitinates RCE1 isoform 2 and thus regulates the processing of ‘CaaX’ motif proteins. Here we now show that USP17 expression is induced by epidermal growth factor and that USP17 expression is required for clathrin mediated endocytosis of epidermal growth factor receptor. In addition, we show that USP17 is required for the endocytosis of transferrin, an archetypal substrate for clathrin mediated endocytosis, and that USP17 depletion impedes plasma membrane recruitment of the machinery required for clathrin mediated endocytosis. Thus, our data reveal that USP17 is necessary for epidermal growth factor receptor and transferrin endocytosis via clathrin coated pits, indicate this is mediated via the regulation of the recruitment of the components of the endocytosis machinery and suggest USP17 may play a general role in receptor endocytosis. PMID:25026282

  20. Structural studies on the RNA-recognition motif of NELF E, a cellular negative transcription elongation factor involved in the regulation of HIV transcription

    PubMed Central

    Rao, Jampani N.; Neumann, Liane; Wenzel, Sabine; Schweimer, Kristian; Rösch, Paul; Wöhrl, Birgitta M.

    2006-01-01

    The elongation of transcription of HIV RNA at the TAR (transactivation-response element) is highly regulated by positive and negative factors. The cellular negative transcription elongation factor NELF (negative elongation factor) was suggested to be involved in transcriptional regulation of HIV-1 (HIV type 1) by binding to the stem of the viral TAR RNA which is synthesized by cellular RNA polymerase II at the viral long terminal repeat. NELF is a heterotetrameric protein consisting of NELF A, B, C or the splice variant D, and E. In the present study, we determined the solution structure of the RRM (RNA-recognition motif) of the RNA-binding subunit NELF E and studied its interaction with the viral TAR RNA. Our results show that the separately expressed recombinant NELF E RRM has α-helical and β-strand elements adopting a βαββαβ fold and is able to bind to TAR RNA. Fluorescence equilibrium titrations with fluorescently labelled double- and single-stranded oligoribonucleotides representing the TAR RNA stem imply that NELF E RRM binds to the single-stranded TAR RNAs with Kd values in the low-micromolar range. PMID:16898873

  1. Purification of a cellular, double-stranded DNA-binding protein required for initiation of adenovirus DNA replication by using a rapid filter-binding assay.

    PubMed Central

    Diffley, J F; Stillman, B

    1986-01-01

    A rapid and quantitative nitrocellulose filter-binding assay is described for the detection of nuclear factor I, a HeLa cell sequence-specific DNA-binding protein required for the initiation of adenovirus DNA replication. In this assay, the abundant nonspecific DNA-binding activity present in unfractionated HeLa nuclear extracts was greatly reduced by preincubation of these extracts with a homopolymeric competitor DNA. Subsequently, specific DNA-binding activity was detected as the preferential retention of a labeled 48-base-pair DNA fragment containing a functional nuclear factor I binding site compared with a control DNA fragment to which nuclear factor I did not bind specifically. This specific DNA-binding activity was shown to be both quantitative and time dependent. Furthermore, the conditions of this assay allowed footprinting of nuclear factor I in unfractionated HeLa nuclear extracts and quantitative detection of the protein during purification. Using unfrozen HeLa cells and reagents known to limit endogenous proteolysis, nuclear factor I was purified to near homogeneity from HeLa nuclear extracts by a combination of standard chromatography and specific DNA affinity chromatography. Over a 400-fold purification of nuclear factor I, on the basis of the specific activity of both sequence-specific DNA binding and complementation of adenovirus DNA replication in vitro, was affected by this purification. The most highly purified fraction was greatly enriched for a polypeptide of 160 kilodaltons on silver-stained sodium dodecyl sulfate-polyacrylamide gels. Furthermore, this protein cosedimented with specific DNA-binding activity on glycerol gradients. That this fraction indeed contained nuclear factor I was demonstrated by both DNase I footprinting and its function in the initiation of adenovirus DNA replication. Finally, the stoichiometry of specific DNA binding by nuclear factor I is shown to be most consistent with 2 mol of the 160-kilodalton polypeptide

  2. ERp57 as a novel cellular factor controlling prion protein biosynthesis: Therapeutic potential of protein disulfide isomerases.

    PubMed

    Sepulveda, Martin; Rozas, Pablo; Hetz, Claudio; Medinas, Danilo B

    2016-01-01

    Disturbance of endoplasmic reticulum (ER) proteostasis is observed in Prion-related disorders (PrDs). The protein disulfide isomerase ERp57 is a stress-responsive ER chaperone up-regulated in the brain of Creutzfeldt-Jakob disease patients. However, the actual role of ERp57 in prion protein (PrP) biogenesis and the ER stress response remained poorly defined. We have recently addressed this question using gain- and loss-of-function approaches in vitro and animal models, observing that ERp57 regulates steady-state levels of PrP. Our results revealed that ERp57 modulates the biosynthesis and maturation of PrP but, surprisingly, does not contribute to the global cellular reaction against ER stress in neurons. Here we discuss the relevance of ERp57 as a possible therapeutic target in PrDs and other protein misfolding disorders. PMID:26864548

  3. The ROP vesicle release factor is required in adult Drosophila glia for normal circadian behavior

    PubMed Central

    Ng, Fanny S.; Jackson, F. Rob

    2015-01-01

    We previously showed that endocytosis and/or vesicle recycling mechanisms are essential in adult Drosophila glial cells for the neuronal control of circadian locomotor activity. In this study, our goal was to identify specific glial vesicle trafficking, recycling, or release factors that are required for rhythmic behavior. From a glia-specific, RNAi-based genetic screen, we identified eight glial factors that are required for normally robust circadian rhythms in either a light-dark cycle or in constant dark conditions. In particular, we show that conditional knockdown of the ROP vesicle release factor in adult glial cells results in arrhythmic behavior. Immunostaining for ROP reveals reduced protein in glial cell processes and an accumulation of the Par Domain Protein 1ε (PDP1ε) clock output protein in the small lateral clock neurons. These results suggest that glia modulate rhythmic circadian behavior by secretion of factors that act on clock neurons to regulate a clock output factor. PMID:26190976

  4. Factors determining insulin requirements in women with type 1 diabetes mellitus during pregnancy: a review

    PubMed Central

    McIntyre, Harold David; Callaway, Leonie

    2014-01-01

    Most women with type 1 diabetes mellitus (T1DM) have increased insulin requirements during pregnancy. However, a minority of women have a fall in insulin requirements. When this occurs in late gestation, it often provokes concern regarding possible compromise of the feto-placental unit. In some centres, this is considered as an indication for delivery, including premature delivery. There are, however, many other factors that affect insulin requirements in pregnancy in women with type 1 diabetes mellitus and the decline in insulin requirements may represent a variant of normal pregnancy. If there is no underlying pathological process, expedited delivery in these women is not warranted and confers increased risks to the newborn. We will explore the factors affecting insulin requirements in gestation in this review. We will also discuss some novel concepts regarding beta-cell function in pregnancy.

  5. Cellular apoptosis susceptibility (CAS) is linked to integrin β1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC)

    PubMed Central

    Winkler, Juliane; Roessler, Stephanie; Sticht, Carsten; DiGuilio, Amanda L.; Drucker, Elisabeth; Holzer, Kerstin; Eiteneuer, Eva; Herpel, Esther; Breuhahn, Kai; Gretz, Norbert; Schirmacher, Peter; Ori, Alessandro; Singer, Stephan

    2016-01-01

    Importins and exportins represent an integral part of the nucleocytoplasmic transport machinery with fundamental importance for eukaryotic cell function. A variety of malignancies including hepatocellular carcinoma (HCC) show de-regulation of nuclear transport factors such as overexpression of the exportin Cellular Apoptosis Susceptibility (CAS). The functional implications of CAS in hepatocarcinogenesis remain, however, poorly understood. Here we integrated proteomics, transcriptomics and functional assays with patient data to further characterize the role of CAS in HCC. By analyzing ∼ 1700 proteins using quantitative mass spectrometry in HCC cells we found that CAS depletion by RNAi leads to de-regulation of integrins, particularly down-regulation of integrin β1. Consistent with this finding, CAS knockdown resulted in substantially reduced migration and invasion of HCC cell lines as analyzed by 2D ‘scratch’ and invasion chamber assays, respectively. Supporting the potential in vivo relevance, high expression levels of CAS in HCC tissue samples were associated with macroangioinvasion and poorer patient outcome. Our data suggest a previously unanticipated link between CAS and integrin signaling which correlates with an aggressive HCC phenotype. PMID:27015362

  6. The transcription factor VpCRZ1 is required for fruiting body formation and pathogenicity in Valsa pyri.

    PubMed

    He, Feng; Zhang, Xiong; Mafurah, Joseph Juma; Zhang, Meixiang; Qian, Guoliang; Wang, Rongbo; Safdar, Asma; Yang, Xiaolei; Liu, Fengquan; Dou, Daolong

    2016-06-01

    Valsa pyri is a fatal pathogenic fungus that causes pear and apple canker disease. To date, its cellular development and pathogenicity have been poorly understood. In this study, a V. pyri Ca(2+)/calcineurin-dependent transcription factor CRZ1 (VpCRZ1) is identified and functionally characterized. The △VpCRZ1 mutant exhibits impaired pathogenicity and is no longer able to form fruiting body. Interestingly, this mutant also exhibits enhanced pigment deposition and increased resistance to cell wall perturbing agents including SDS, Congo red and calcofluor white (CFW). The expression levels of Congo red resistance genes (VpRCR1 and VpRCR2) and chitin synthetase genes (VpCHS2 and VpCHS6) are upregulated in the △VpCRZ1 mutant compared to the wild type. Furthermore, We show that a VpCRZ1: eGFP fusion protein localizes to the nucleus in a Ca(2+)-dependent manner similar to its homologs in other fungi, and that the VpFKS1, VpPMC1, VpPMC2, VpPMR1, and VpPMA1 genes are regulated by VpCRZ1 in response to Ca(2+) levels. Together, these results suggest that VpCRZ1 is a Ca(2+)-dependent transcription factor and required for regulating mycelial morphology, fruiting body formation, and virulence of this important pear and apple pathogen. PMID:26970115

  7. Tumor Cellular Proteasome Inhibition and Growth Suppression by 8-Hydroxyquinoline and Clioquinol Requires Their Capabilities to Bind Copper and Transport Copper into Cells

    PubMed Central

    Zhai, Shumei; Yang, Lei; Cui, Qiuzhi Cindy; Sun, Ying; Dou, Q. Ping; Yan, Bing

    2009-01-01

    We have previously reported that when mixed with copper, 8-hydroxyquinoline (8-OHQ) and its analog clioquinol (CQ) inhibited the proteasomal activity and proliferation in cultured human cancer cells. CQ treatment of high copper-containing human tumor xenografts also caused cancer suppression, associated with proteasome inhibition in vivo. However, the nature of copper dependence of these events has not been elucidated experimentally. In the current study, by using chemical probe molecules that mimic structures of 8-OHQ and CQ, but have no copper binding capability, we dissected the complex cellular processes elicited by 8-OHQ-Cu or CQ-Cu mixture and revealed that copper-binding to 8-OHQ or CQ is required for transportation of copper complex into human breast cancer cells and the consequent proteasome-inhibitory, growth-suppressive and apoptosis-inducing activities. In contrast, the non-copper-binding analogs of 8-OHQ or CQ blocked the very first step – copper binding in this chain of events mediated by 8-OHQ-Cu or CQ-Cu. PMID:19809836

  8. Time course of increased cellular proliferation in collateral arteries after administration of vascular endothelial growth factor in a rabbit model of lower limb vascular insufficiency.

    PubMed Central

    Takeshita, S.; Rossow, S. T.; Kearney, M.; Zheng, L. P.; Bauters, C.; Bunting, S.; Ferrara, N.; Symes, J. F.; Isner, J. M.

    1995-01-01

    Proliferation of vascular cells has been previously shown to contribute to spontaneous development of coronary collaterals. Recent studies from several laboratories have established that collateral artery growth in both the heart and limb can be enhanced by administration of angiogenic growth factors, or therapeutic angiogenesis. In this study, we sought (1) to define the extent and time course of endothelial cell (EC) and smooth muscle cell (SMC) proliferation accompanying spontaneous collateral development during limb ischemia and (2) to determine the extent to which proliferative activity of ECs and SMCs is augmented during therapeutic angiogenesis with vascular endothelial growth factor (VEGF), a heparin-binding EC-specific mitogen. Ten days after induction of limb ischemia by surgically excising the femoral artery of rabbits, either VEGF (500 to 1000 micrograms) or saline was administered as a bolus into the iliac artery of the ischemic limb. Cellular proliferation was evaluated by bromodeoxyuridine labeling for 24 hours at day 0 (immediately before VEGF administration) and at days 3, 5, and 7 after VEGF, EC proliferation in the midzone collaterals of VEGF-treated animals increased 2.8-fold at day 5 (P < 0.05 versus control), and returned to baseline levels by day 7. SMC proliferation in midzone collaterals also increased 2.7-fold in response to VEGF (P < 0.05). No significant increase in EC or SMC proliferation was observed in either the stem or re-entry collaterals of VEGF-treated animals compared with untreated ischemic control animals. Reduction of hemodynamic deficit in the ischemic limb measured by lower limb blood pressure was documented at day 7 after VEGF (P < 0.01 versus untreated, ischemic control). These data thus (1) establish the contribution of cellular proliferation to collateral vessel development in limb ischemia and (2) support the concept that augmented cellular proliferation contributes to the enhanced formation of collateral vessels after

  9. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells.

    PubMed

    Gu, Jijin; Hao, Junguo; Fang, Xiaoling; Sha, Xianyi

    2016-04-01

    Generally, the major obstacles for efficient gene delivery are cellular internalization and endosomal escape of nucleic acid such as plasmid DNA (pDNA) or small interfering RNA (siRNA). We previously developed Pluronic P123 modified polypropyleneimine (PPI)/pDNA (P123-PPI/pDNA) polyplexes as a gene delivery system. The results showed that P123-PPI/pDNA polyplexes revealed higher transfection efficiency than PPI/pDNA polyplexes in multidrug resistant breast cancer cells. As a continued effort, the present investigation on the factors influencing the transfection efficiency, cellular uptake mechanisms, and intracellular fate of P123-PPI/pDNA polyplexes is reported. The presence of P123 was the main factor influencing the transfection efficiency of P123-PPI/pDNA polyplexes in MCF-7/ADR cells, but other parameters, such as N/P ratio, FBS concentration, incubation time and temperature were important as well. The endocytic inhibitors against clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis (CvME), and macropinocytosis were involved in the internalization to investigate their effects on the cellular uptake and transfection efficiency of P123-PPI/pDNA polyplexes in vitro. The data showed that the internalization of P123-PPI/pDNA polyplexes was obtained from both CME and CvME. Colocalization experiments with TRITC-transferrin (CME indicator), Alexa Fluor 555-CTB (CvME indicator), monoclonal anti-α-tubulin (microtubule indicator), and LysoTracker Green (Endosome/lysosome indicator) were carried out to confirm the internalization routes. The results showed that both CME and CvME played vital roles in the effective transfection of P123-PPI/pDNA polyplexes. Endosome/lysosome system and skeleton, including actin filament and microtubule, were necessary for the transportation after internalization. PMID:26741268

  10. The coordinate cellular response to insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-2 (IGFBP-2) is regulated through vimentin binding to receptor tyrosine phosphatase β (RPTPβ).

    PubMed

    Shen, Xinchun; Xi, Gang; Wai, Christine; Clemmons, David R

    2015-05-01

    Insulin-like growth factor-binding protein-2 (IGFBP-2) functions coordinately with IGF-I to stimulate cellular proliferation and differentiation. IGFBP-2 binds to receptor tyrosine phosphatase β (RPTPβ), and this binding in conjunction with IGF-I receptor stimulation induces RPTPβ polymerization leading to phosphatase and tensin homolog inactivation, AKT stimulation, and enhanced cell proliferation. To determine the mechanism by which RPTPβ polymerization is regulated, we analyzed the protein(s) that associated with RPTPβ in response to IGF-I and IGFBP-2 in vascular smooth muscle cells. Proteomic experiments revealed that IGF-I stimulated the intermediate filament protein vimentin to bind to RPTPβ, and knockdown of vimentin resulted in failure of IGFBP-2 and IGF-I to stimulate RPTPβ polymerization. Knockdown of IGFBP-2 or inhibition of IGF-IR tyrosine kinase disrupted vimentin/RPTPβ association. Vimentin binding to RPTPβ was mediated through vimentin serine phosphorylation. The serine threonine kinase PKCζ was recruited to vimentin in response to IGF-I and inhibition of PKCζ activation blocked these signaling events. A cell-permeable peptide that contained the vimentin phosphorylation site disrupted vimentin/RPTPβ association, and IGF-I stimulated RPTPβ polymerization and AKT activation. Integrin-linked kinase recruited PKCζ to SHPS-1-associated vimentin in response to IGF-I and inhibition of integrin-linked kinase/PKCζ association reduced vimentin serine phosphorylation. PKCζ stimulation of vimentin phosphorylation required high glucose and vimentin/RPTPβ-association occurred only during hyperglycemia. Disruption of vimetin/RPTPβ in diabetic mice inhibited RPTPβ polymerization, vimentin serine phosphorylation, and AKT activation in response to IGF-I, whereas nondiabetic mice showed no difference. The induction of vimentin phosphorylation is important for IGFBP-2-mediated enhancement of IGF-I-stimulated proliferation during hyperglycemia, and it

  11. Hepatic nuclear factor 3 is an accessory factor required for the stimulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids.

    PubMed

    Wang, J C; Strömstedt, P E; O'Brien, R M; Granner, D K

    1996-07-01

    Transcription of the hepatic phosphoenolpyruvate carboxykinase gene is stimulated by glucocorticoids and inhibited by insulin. The glucocorticoid response is mediated by a complex glucocorticoid response unit that consists of two glucocorticoid receptor (GR)-binding sites (GR1 and GR2) and two accessory factor-binding sites (AF1 and AF2). The complete unit is required for the full glucocorticoid response. The dominant insulin effect is mediated in part through an insulin response sequence that is coincident with the AF2 element. Members of the hepatic nuclear factor 3 (HNF3) and CCAAT enhancer binding protein (C/EBP) families bind to the AF2 element; however, there is no correlation between binding of these factors and the ability of the AF2 element to mediate an insulin response. We show here that binding of HNF3 does correlate with the stimulation of the glucocorticoid response by the AF2 element and that C/EBP is apparently not involved in this effect. This requirement for HNF3 is quite specific since the substitution of elements known to enhance the action of the GR in other promoters fails to recapitulate AF2 accessory factor activity. By contrast, an HNF3-binding site from the transthyretin gene is able to substitute for the wild type AF2 sequence and elicit a maximal glucocorticoid response. Based on current and previous observations, the glucocorticoid response unit consists of four DNA elements that bind four different proteins. These are: AF1 (hepatic nuclear factor 4/chicken ovalbumin upstream promoter transcription factor), AF2 (HNF3), GR1 (GR), and GR2 (GR). PMID:8813720

  12. Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fat-specific protein 27 (FSP27), a member of the cell death-inducing DNA fragmentation factor a-like effector (Cide) family, is highly expressed in adipose tissues and is a lipid droplet (LD)-associated protein that induces the accumulation of LDs. Using a yeast two-hybrid system to examine potentia...

  13. Inhibition of cellular proliferation and modulation of insulin-like growth factor binding proteins by retinoids in a bovine mammary epithelial cell line.

    PubMed

    Woodward, T L; Turner, J D; Hung, H T; Zhao, X

    1996-06-01

    Retinoids are potent inhibitors of growth and tumor progression in many mammary carcinoma cell lines, though regulation of growth in nontumorigenic mammary epithelial cells by retinoids is less clear. Here, we have characterized the inhibition of MAC-T (a nontransformed bovine mammary epithelial cell line) cellular proliferation by retinoids and their role in regulating insulin-like growth factor binding proteins (IGFBPs). Retinoic acid (RA) (100 nM) was a potent inhibitor of MAC-T cell proliferation. Retinol was 10-100 times less effective. Neither retinoid could completely arrest growth at noncytotoxic concentrations. Retinoic acid inhibited cellular proliferation by 1 h (P < .05), but inhibition was fivefold greater by 24 h (P < .01). This second stage of growth inhibition (after 12 h) was dependent upon protein synthesis. However, RA-induced inhibition of cellular proliferation did not persist, with thymidine incorporation increasing toward control levels by 4 days in culture. Retinoic acid was less effective in inhibiting thymidine incorporation when cells were stimulated with insulin, des(1-3) IGF-I, or Long(R3) IGF-I when compared to cells stimulated with native IGF-I or serum. Inhibition of proliferation by RA was associated with increased levels of IGFBP-2 in conditioned media and in plasma membrane preparations. Treatment with insulin or des(1-3) IGF-I resulted in the appearance of IGFBP-3 in conditioned media and on the cell surface. However, RA significantly reduced IGFBP-3 levels in conditioned media and eliminated IGFBP-3 associated with the plasma membrane. Thus, RA is a potent but transient inhibitor of bovine mammary epithelial cell proliferation, and this growth inhibition is correlated with increased IGFBP-2 accumulation and inhibition of IGF-I stimulated IGFBP-3 protein secretion. PMID:8655603

  14. Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: identification of mitochondrial fission factor as a new AMPK substrate.

    PubMed

    Ducommun, Serge; Deak, Maria; Sumpton, David; Ford, Rebecca J; Núñez Galindo, Antonio; Kussmann, Martin; Viollet, Benoit; Steinberg, Gregory R; Foretz, Marc; Dayon, Loïc; Morrice, Nicholas A; Sakamoto, Kei

    2015-05-01

    AMP-activated protein kinase (AMPK) is a key cellular energy sensor and regulator of metabolic homeostasis. Although it is best known for its effects on carbohydrate and lipid metabolism, AMPK is implicated in diverse cellular processes, including mitochondrial biogenesis, autophagy, and cell growth and proliferation. To further our understanding of energy homeostasis through AMPK-dependent processes, the design and application of approaches to identify and characterise novel AMPK substrates are invaluable. Here, we report an affinity proteomicstrategy for the discovery and validation of AMPK targets using an antibody to isolate proteins containing the phospho-AMPK substrate recognition motif from hepatocytes that had been treated with pharmacological AMPK activators. We identified 57 proteins that were uniquely enriched in the activator-treated hepatocytes, but were absent in hepatocytes lacking AMPK. We focused on two candidates, cingulin and mitochondrial fission factor (MFF), and further characterised/validated them as AMPK-dependent targets by immunoblotting with phosphorylation site-specific antibodies. A small-molecule AMPK activator caused transient phosphorylation of endogenous cingulin at S137 in intestinal Caco2 cells. Multiple splice-variants of MFF appear to express in hepatocytes and we identified a common AMPK-dependent phospho-site (S129) in all the 3 predominant variants spanning the mass range and a short variant-specific site (S146). Collectively, our proteomic-based approach using a phospho-AMPK substrate antibody in combination with genetic models and selective AMPK activators will provide a powerful and reliable platform for identifying novel AMPK-dependent cellular targets. PMID:25683918

  15. 34 CFR 373.6 - What are the priorities and other factors and requirements for competitions?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false What are the priorities and other factors and requirements for competitions? 373.6 Section 373.6 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF...

  16. Inhibition of cellular proliferation by the Wilms' tumor suppressor WT1 is associated with suppression of insulin-like growth factor I receptor gene expression.

    PubMed Central

    Werner, H; Shen-Orr, Z; Rauscher, F J; Morris, J F; Roberts, C T; LeRoith, D

    1995-01-01

    We have investigated the regulation of the insulin-like growth factor I receptor (IGF-I-R) gene promoter by the Wilms' tumor suppressor WT1 in intact cells. The levels of endogenous IGF-I-R mRNA and the activity of IGF-I-R gene promoter fragments in luciferase reporter constructs were found to be significantly higher in G401 cells (a Wilms' tumor-derived cell line lacking detectable WT1 mRNA) than in 293 cells (a human embryonic kidney cell line which expresses significant levels of WT1 mRNA). To study whether WT1 could suppress the expression of the endogenous IGF-I-R gene, WT1-negative G401 cells were stably transfected with a WT1 expression vector. Expression of WT1 mRNA in G401 cells resulted in a significant decrease in the rate of cellular proliferation, which was associated with a reduction in the levels of IGF-I-R mRNA, promoter activity, and ligand binding and with a reduction in IGF-I-stimulated cellular proliferation, thymidine incorporation, and anchorage-independent growth. These data suggest that a major aspect of the action of the WT1 tumor suppressor is the repression of IGF-I-R gene expression. PMID:7791758

  17. Cellular Factor XIIIA Transglutaminase Localizes in Caveolae and Regulates Caveolin-1 Phosphorylation, Homo-oligomerization and c-Src Signaling in Osteoblasts.

    PubMed

    Wang, Shuai; Kaartinen, Mari T

    2015-11-01

    Transglutaminases (TGs) are a family of widely distributed enzymes that catalyze protein crosslinking by forming a covalent isopeptide bond between the substrate proteins. We have shown that MC3T3-E1 osteoblasts express Factor XIII-A (FXIII-A), and that the extracellular crosslinking activity of FXIII-A is involved in regulating matrix secretion and deposition. In this study, we have investigated the localization and potential role of intracellular FXIII-A. Conventional immunofluorescence microscopy and TIRF microscopy analyses showed that FXIII-A co-localizes with caveolin-1 in specialized membrane structures, caveolae, in differentiating osteoblasts. The caveolae-disrupting agent methyl-β-cyclodextrin abolished FXIII-A staining and co-localization with caveolin-1 from the osteoblast plasma membrane. The presence of FXIII-A in caveolae was confirmed by preparing caveolae-enriched cellular fractions using sucrose density gradient ultracentrifugation followed by western blotting. Despite this association of FXIII-A with caveolae, there was no detectable transglutaminase activity in caveolae, as measured by monodansylcadaverine incorporation. TG inhibitor NC9--which can alter TG enzyme conformation--localized to caveolae and displaced FXIII-A from these structures when added to the osteoblast cultures. The decreased FXIII-A levels in caveolae after NC9 treatment increased c-Src activation, which resulted in caveolin-1 phosphorylation, homo-oligomerization and Akt phosphorylation, suggesting cellular FXIII-A has a role in regulating c-Src signaling in osteoblasts. PMID:26231113

  18. The HCMV gH/gL/UL128-131 Complex Triggers the Specific Cellular Activation Required for Efficient Viral Internalization into Target Monocytes

    PubMed Central

    Nogalski, Maciej T.; Chan, Gary C. T.; Stevenson, Emily V.; Collins-McMillen, Donna K.; Yurochko, Andrew D.

    2013-01-01

    We have established that HCMV acts as a specific ligand engaging and activating cellular integrins on monocytes. As a result, integrin signaling via Src activation leads to the functional activation of paxillin required for efficient viral entry and for the biological changes in monocytes needed for viral dissemination. These biological/molecular changes allow HCMV to use monocytes as “vehicles” for systemic spread and the establishment of lifelong persistence. However, it remains unresolved how HCMV specifically induces this observed monocyte activation. It was previously demonstrated that the HCMV gH/gL/UL128-131 glycoprotein complex facilitates viral entry into biologically relevant cell types. Nevertheless, the mechanism by which the gH/gL/UL128-131 complex promotes this process is unknown. We now show that only HCMV virions possessing the gH/gL/UL128-131 complex are capable of activating integrin/Src/paxillin-signaling in monocytes. In fibroblasts, this signaling is reversed, such that virus lacking the gH/gL/UL128-131 complex is the only virus able to induce the paxillin activation cascade. The presence of the gH/gL/UL128-131 complex also may have an inhibitory effect on integrin-mediated signaling pathway in fibroblasts. Furthermore, we demonstrate that the presence of the gH/gL/UL128-131 complex on the viral envelope, through its activation of the integrin/Src/paxillin pathway, is necessary for efficient HCMV internalization into monocytes and that appropriate actin and dynamin regulation is critical for this entry process. Importantly, productive infection in monocyte-derived macrophages was seen only in cells exposed to HCMV expressing the gH/gL/UL128-131 complex. From our data, the HCMV gH/gL/U128-131 complex emerges as the specific ligand driving the activation of the receptor-mediated signaling required for the regulation of the actin cytoskeleton and, consequently, for efficient and productive internalization of HCMV into monocytes. To our

  19. Activation of nuclear factor-kappaB and not activator protein-1 in cellular response to nickel compounds.

    PubMed Central

    Huang, Yi; Davidson, Gerard; Li, Jingxia; Yan, Yan; Chen, Fei; Costa, Max; Chen, Lung Chi; Huang, Chuanshu

    2002-01-01

    The predominant exposure route for nickel compounds is by inhalation, and several studies have indicated the correlation between nickel exposure and respiratory cancers. The tumor-promoting effects of nickel compounds are thought to be associated with their transactivation of transcription factors. We have investigated the possible activation of activator protein-1 (AP-1) and nuclear factor KB (NF-kappaB) in mouse C141 epidermal cells and fibroblasts 3T3 and B82, and human bronchoepithelial BEAS-2B cells in response to nickel compound exposure. Our results show that NF-kappaB activity is induced by nickel exposure in 3T3 and BEAS-2B cells. Conversely, similar nickel treatment of these cells did not induce AP-1 activity, suggesting that nickel tumorigenesis occurs through NF-kappaB and not AP-1. We also investigated the role of NF-kappaB in the induction of Cap43 by nickel compounds using dominant negative mutant Ikappabeta kinase b-KM BEAS-2B transfectants. PMID:12426142

  20. BAX is required for neuronal death after trophic factor deprivation and during development.

    PubMed

    Deckwerth, T L; Elliott, J L; Knudson, C M; Johnson, E M; Snider, W D; Korsmeyer, S J

    1996-09-01

    Members of the BCL2-related family of proteins either promote or repress programmed cell death. BAX, a death-promoting member, heterodimerizes with multiple death-repressing molecules, suggesting that it could prove critical to cell death. We tested whether Bax is required for neuronal death by trophic factor deprivation and during development. Neonatal sympathetic neurons and facial motor neurons from Bax-deficient mice survived nerve growth factor deprivation and disconnection from their targets by axotomy, respectively. These salvaged neurons displayed remarkable soma atrophy and reduced elaboration of neurities; yet they responded to readdition of trophic factor with soma hypertrophy and enhanced neurite outgrowth. Bax-deficient superior cervical ganglia and facial nuclei possessed increased numbers of neurons. Our observations demonstrate that trophic factor deprivation-induced death of sympathetic and motor neurons depends on Bax. PMID:8816704

  1. Expression of the Human Endogenous Retrovirus HTDV/HERV-K Is Enhanced by Cellular Transcription Factor YY1

    PubMed Central

    Knössl, Michael; Löwer, Roswitha; Löwer, Johannes

    1999-01-01

    The human endogenous retrovirus HTDV/HERV-K, which resides in moderate copy numbers in the human genome, is expressed in a cell-type-specific manner, predominantly in teratocarcinoma cells. We have analyzed the regulatory potential of the 5′ enhancer of the HERV-K long terminal repeat. Protein extracts of HERV-K-expressing teratocarcinoma cell lines (GH and Tera2) and nonexpressing HeLa and HepG2 cells form different protein complexes on the enhancer sequence as detected by electrophoretic mobility shift assays (EMSA). Using competition EMSAs, DNase I footprinting, and supershift experiments, we localized the binding site of these complexes to a 20-bp sequence within the enhancer and showed that the transcription factor YY1 is one component of the HERV-K enhancer complex. Replacement of the YY1 binding site with unrelated sequences reduced expression of the luciferase gene as a reporter in transient-transfection assays. PMID:9882329

  2. Human Factors Engineering Requirements for the International Space Station - Successes and Challenges

    NASA Technical Reports Server (NTRS)

    Whitmore, M.; Blume, J.

    2003-01-01

    Advanced technology coupled with the desire to explore space has resulted in increasingly longer human space missions. Indeed, any exploration mission outside of Earth's neighborhood, in other words, beyond the moon, will necessarily be several months or even years. The International Space Station (ISS) serves as an important advancement toward executing a successful human space mission that is longer than a standard trip around the world or to the moon. The ISS, which is a permanently occupied microgravity research facility orbiting the earth, will support missions four to six months in duration. In planning for the ISS, the NASA developed an agency-wide set of human factors standards for the first time in a space exploration program. The Man-Systems Integration Standard (MSIS), NASA-STD-3000, a multi-volume set of guidelines for human-centered design in microgravity, was developed with the cooperation of human factors experts from various NASA centers, industry, academia, and other government agencies. The ISS program formed a human factors team analogous to any major engineering subsystem. This team develops and maintains the human factors requirements regarding end-to-end architecture design and performance, hardware and software design requirements, and test and verification requirements. It is also responsible for providing program integration across all of the larger scale elements, smaller scale hardware, and international partners.

  3. The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism.

    PubMed

    Freitas, Fernanda Zanolli; Virgilio, Stela; Cupertino, Fernanda Barbosa; Kowbel, David John; Fioramonte, Mariana; Gozzo, Fabio Cesar; Glass, N Louise; Bertolini, Maria Célia

    2016-01-01

    When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms. PMID:26994287

  4. Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming.

    PubMed

    Jeon, Hyojung; Waku, Tsuyoshi; Azami, Takuya; Khoa, Le Tran Phuc; Yanagisawa, Jun; Takahashi, Satoru; Ema, Masatsugu

    2016-01-01

    Pluripotency is maintained in mouse embryonic stem (ES) cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf family members exert self-renewal and reprogramming functions when overexpressed. In this study, we examined whether overexpression of any representative Klf family member, such as Klf1-Klf10, would be sufficient for the self-renewal of mouse ES cells. We found that only Klf2, Klf4, and Klf5 produced leukemia inhibitory factor (LIF)-independent self-renewal, although most KLF proteins, if not all, have the ability to occupy the regulatory regions of Nanog, a critical Klf target gene. We also examined whether overexpression of any of Klf1-Klf10 would be sufficient to convert epiblast stem cells into a naïve pluripotent state and found that Klf5 had such reprogramming ability, in addition to Klf2 and Klf4. We also delineated the functional domains of the Klf2 protein for LIF-independent self-renewal and reprogramming. Interestingly, we found that both the N-terminal transcriptional activation and C-terminal zinc finger domains were indispensable for this activity. Taken together, our comprehensive analysis provides new insight into the contribution of Klf family members to mouse ES self-renewal and cellular reprogramming. PMID:26943822

  5. Characterization of a Novel Human Herpesvirus 8-Encoded Protein, vIRF-3, That Shows Homology to Viral and Cellular Interferon Regulatory Factors

    PubMed Central

    Lubyova, Barbora; Pitha, Paula M.

    2000-01-01

    The genome of the human herpesvirus 8 (HHV-8) contains a cluster of open reading frames (ORFs) encoding proteins with homology to the cellular transcription factors of the interferon regulatory factor (IRF) family. Two of these homologues, vIRF-1 and vIRF-2, were previously identified and functionally analyzed. In this study, we have characterized a novel gene, designated vIRF-3, encoded within the previously predicted ORF K10.5 and our newly identified ORF K10.6. Northern blotting of RNA extracted from BCBL-1 cells with a vIRF-3-specific probe and reverse transcription-PCR analyses revealed a single transcript of 2.2 kb with a splice present in the coding region. The vIRF-3 mRNA levels in BCBL-1 cells were increased upon 12-O-tetradecanoylphorbol-13-acetate treatment, with kinetics of expression similar to those of the early immediate genes. The vIRF-3 ORF encodes a 73-kDa protein with homology to cellular IRF-4 and HHV-8-encoded vIRF-2 and K11. In transient transfection assays with the IFNACAT reporter, vIRF-3 functioned as a dominant-negative mutant of both IRF-3 and IRF-7 and inhibited virus-mediated transcriptional activity of the IFNA promoter. Similarly, the overexpression of vIRF-3 in mouse L929 cells resulted in inhibition of virus-mediated synthesis of biologically active interferons. These results suggest that by targeting IRF-3 and IRF-7, which play a critical role in the activation of alpha/beta interferon (IFN) genes, HHV-8 has evolved a mechanism by which it directly subverts the functions of IRFs and down-regulates the induction of the IFN genes that are important components of the innate immunity. PMID:10933732

  6. The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism

    PubMed Central

    Freitas, Fernanda Zanolli; Virgilio, Stela; Cupertino, Fernanda Barbosa; Kowbel, David John; Fioramonte, Mariana; Gozzo, Fabio Cesar; Glass, N. Louise; Bertolini, Maria Célia

    2016-01-01

    When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms. PMID:26994287

  7. Cellular transcription factor Oct-1 interacts with the Epstein-Barr virus BRLF1 protein to promote disruption of viral latency.

    PubMed

    Robinson, Amanda R; Kwek, Swee Sen; Hagemeier, Stacy R; Wille, Coral K; Kenney, Shannon C

    2011-09-01

    The Epstein-Barr virus (EBV) latent-to-lytic switch is an essential part of the viral life cycle, but the cellular factors that promote viral reactivation are not well defined. In this report, we demonstrate that the cellular transcription factor Oct-1 cooperates with the EBV immediate-early protein BRLF1 (R, Rta) to induce lytic viral reactivation. We show that cotransfected Oct-1 enhances the ability of BRLF1 to activate lytic gene expression in 293 cells stably infected with a BRLF1-defective EBV mutant (BRLF1-stop) and that Oct-1 increases BRLF1-mediated activation of lytic EBV promoters in reporter gene assays. We find that Oct-1 interacts directly with BRLF1 in vitro and that a mutant BRLF1 protein (the M140A mutant) attenuated for the ability to interact with Oct-1 in vitro is also resistant to Oct-1-mediated transcriptional enhancement in 293 BRLF1-stop cells. Furthermore, we show that cotransfected Oct-1 augments BRLF1 binding to a variety of lytic EBV promoters in chromatin immunoprecipitation (ChIP) assays (including the BZLF1, BMRF1, and SM promoters) and that BRLF1 tethers Oct-1 to lytic EBV promoters. In addition, we demonstrate that an Oct-1 mutant defective in DNA binding (the S335D mutant) still retains the ability to enhance BRLF1 transcriptional effects. Finally, we show that knockdown of endogenous Oct-1 expression reduces the level of constitutive lytic EBV gene expression in both EBV-positive B-cell and EBV-positive epithelial cell lines. These results suggest that Oct-1 acts as a positive regulator of EBV lytic gene expression and that this effect is at least partially mediated through its interaction with the viral protein BRLF1. PMID:21697476

  8. Krüppel-like Factor 3 (KLF3/BKLF) Is Required for Widespread Repression of the Inflammatory Modulator Galectin-3 (Lgals3).

    PubMed

    Knights, Alexander J; Yik, Jinfen J; Mat Jusoh, Hanapi; Norton, Laura J; Funnell, Alister P W; Pearson, Richard C M; Bell-Anderson, Kim S; Crossley, Merlin; Quinlan, Kate G R

    2016-07-29

    The Lgals3 gene encodes a multifunctional β-galactoside-binding protein, galectin-3. Galectin-3 has been implicated in a broad range of biological processes from chemotaxis and inflammation to fibrosis and apoptosis. The role of galectin-3 as a modulator of inflammation has been studied intensively, and recent evidence suggests that it may serve as a protective factor in obesity and other metabolic disorders. Despite considerable interest in galectin-3, little is known about its physiological regulation at the transcriptional level. Here, using knockout mice, chromatin immunoprecipitations, and cellular and molecular analyses, we show that the zinc finger transcription factor Krüppel-like factor 3 (KLF3) directly represses galectin-3 transcription. We find that galectin-3 is broadly up-regulated in KLF3-deficient mouse tissues, that KLF3 occupies regulatory regions of the Lgals3 gene, and that KLF3 directly binds its cognate elements (CACCC boxes) in the galectin-3 promoter and represses its activation in cellular assays. We also provide mechanistic insights into the regulation of Lgals3, demonstrating that C-terminal binding protein (CtBP) is required to drive optimal KLF3-mediated silencing. These findings help to enhance our understanding of how expression of the inflammatory modulator galectin-3 is controlled, opening up avenues for potential therapeutic interventions in the future. PMID:27226561

  9. Epidermal Growth Factor Receptor mediated cellular and subcellular targeted delivery of Iron oxide core-Titanium dioxide shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Ye

    TiO2 nanomaterials can carry a multitude of therapeutic and diagnostic agents and the semiconductor properties of TiO2 allow for the production of cytotoxic reactive oxygen species following photoactivation. However, the delivery of these nanomaterials to specific cancer cells and specific subcellular organelles within these cells can have a substantial impact on the efficacy and safety of TiO2 nanoparticle therapeutics. Targeting cell surface receptors that are overexpressed by cancer cells is one strategy to improve the specificity of nanoparticle delivery. Therefore we decided to target the Epidermal Growth Factor Receptor (EGFR) because ligand- binding induces rapid receptor endocytosis and ligand-bound EGFR can translocate to the nucleus of cancer cells. To create NPs that can bind EGFR, we identified a peptide derived from the B-loop of Epidermal Growth Factor (EGF) that has been shown to bind and activate EGFR and conjugated it to the surface of Fe3O4 core-TiO2 shell NPs to produce B-loop NCs. We then devised a pulldown assay to show that B-loop NCs, but not bare NPs or NCs carrying a scrambled B-loop peptide, can bind and extract EGFR from HeLa cell protein extracts. Interestingly, B-loop NCs can also pulldown importin-beta, a protein that can transport EGFR to the nucleus. Furthermore, we used flow cytometry and fluorescently labeled NPs to show that B-loop peptides can significantly improve the internalization of NPs by EGFR-expressing HeLa cells. We determined that B-loop NCs can bind EGFR on the membrane of HeLa cells and that these NCs can be transported to the nucleus, by using a combination of confocal microscopy and X-ray Fluorescence Microscopy (XFM) to indirectly and directly track the subcellular distribution of NCs. Finally, we demonstrate how the Bionanoprobe, a novel high-resolution XFM apparatus that can scan whole-mounted, frozen-hydrated cells at multiple angles can be used to verify the subcellular distribution of B-loop NCs.

  10. Meeting Human Reliability Requirements through Human Factors Design, Testing, and Modeling

    SciTech Connect

    R. L. Boring

    2007-06-01

    In the design of novel systems, it is important for the human factors engineer to work in parallel with the human reliability analyst to arrive at the safest achievable design that meets design team safety goals and certification or regulatory requirements. This paper introduces the System Development Safety Triptych, a checklist of considerations for the interplay of human factors and human reliability through design, testing, and modeling in product development. This paper also explores three phases of safe system development, corresponding to the conception, design, and implementation of a system.

  11. An analysis of thermal response factors and how to reduce their computational time requirement

    NASA Technical Reports Server (NTRS)

    Wiese, M. R.

    1982-01-01

    Te RESFAC2 version of the Thermal Response Factor Program (RESFAC) is the result of numerous modifications and additions to the original RESFAC. These modifications and additions have significantly reduced the program's computational time requirement. As a result of this work, the program is more efficient and its code is both readable and understandable. This report describes what a thermal response factor is; analyzes the original matrix algebra calculations and root finding techniques; presents a new root finding technique and streamlined matrix algebra; supplies ten validation cases and their results.

  12. Constraint factor graph cut–based active contour method for automated cellular image segmentation in RNAi screening

    PubMed Central

    CHEN, C.; LI, H.; ZHOU, X.; WONG, S. T. C.

    2010-01-01

    Summary Image-based, high throughput genome-wide RNA interference (RNAi) experiments are increasingly carried out to facilitate the understanding of gene functions in intricate biological processes. Automated screening of such experiments generates a large number of images with great variations in image quality, which makes manual analysis unreasonably time-consuming. Therefore, effective techniques for automatic image analysis are urgently needed, in which segmentation is one of the most important steps. This paper proposes a fully automatic method for cells segmentation in genome-wide RNAi screening images. The method consists of two steps: nuclei and cytoplasm segmentation. Nuclei are extracted and labelled to initialize cytoplasm segmentation. Since the quality of RNAi image is rather poor, a novel scale-adaptive steerable filter is designed to enhance the image in order to extract long and thin protrusions on the spiky cells. Then, constraint factor GCBAC method and morphological algorithms are combined to be an integrated method to segment tight clustered cells. Compared with the results obtained by using seeded watershed and the ground truth, that is, manual labelling results by experts in RNAi screening data, our method achieves higher accuracy. Compared with active contour methods, our method consumes much less time. The positive results indicate that the proposed method can be applied in automatic image analysis of multi-channel image screening data. PMID:18445146

  13. Disassembly activity of actin-depolymerizing factor (ADF) is associated with distinct cellular processes in apicomplexan parasites

    PubMed Central

    Haase, Silvia; Zimmermann, Dennis; Olshina, Maya A.; Wilkinson, Mark; Fisher, Fabio; Tan, Yan Hong; Stewart, Rebecca J.; Tonkin, Christopher J.; Wong, Wilson; Kovar, David R.; Baum, Jake

    2015-01-01

    Proteins of the actin-depolymerizing factor (ADF)/cofilin family have been shown to be crucial for the motility and survival of apicomplexan parasites. However, the mechanisms by which ADF proteins fulfill their function remain poorly understood. In this study, we investigate the comparative activities of ADF proteins from Toxoplasma gondii and Plasmodium falciparum, the human malaria parasite, using a conditional T. gondii ADF-knockout line complemented with ADF variants from either species. We show that P. falciparum ADF1 can fully restore native TgADF activity, demonstrating functional conservation between parasites. Strikingly, mutation of a key basic residue (Lys-72), previously implicated in disassembly in PfADF1, had no detectable phenotypic effect on parasite growth, motility, or development. In contrast, organelle segregation was severely impaired when complementing with a TgADF mutant lacking the corresponding residue (Lys-68). Biochemical analyses of each ADF protein confirmed the reduced ability of lysine mutants to mediate actin depolymerization via filament disassembly although not severing, in contrast to previous reports. These data suggest that actin filament disassembly is essential for apicomplexan parasite development but not for motility, as well as pointing to genus-specific coevolution between ADF proteins and their native actin. PMID:26157165

  14. Disassembly activity of actin-depolymerizing factor (ADF) is associated with distinct cellular processes in apicomplexan parasites.

    PubMed

    Haase, Silvia; Zimmermann, Dennis; Olshina, Maya A; Wilkinson, Mark; Fisher, Fabio; Tan, Yan Hong; Stewart, Rebecca J; Tonkin, Christopher J; Wong, Wilson; Kovar, David R; Baum, Jake

    2015-09-01

    Proteins of the actin-depolymerizing factor (ADF)/cofilin family have been shown to be crucial for the motility and survival of apicomplexan parasites. However, the mechanisms by which ADF proteins fulfill their function remain poorly understood. In this study, we investigate the comparative activities of ADF proteins from Toxoplasma gondii and Plasmodium falciparum, the human malaria parasite, using a conditional T. gondii ADF-knockout line complemented with ADF variants from either species. We show that P. falciparum ADF1 can fully restore native TgADF activity, demonstrating functional conservation between parasites. Strikingly, mutation of a key basic residue (Lys-72), previously implicated in disassembly in PfADF1, had no detectable phenotypic effect on parasite growth, motility, or development. In contrast, organelle segregation was severely impaired when complementing with a TgADF mutant lacking the corresponding residue (Lys-68). Biochemical analyses of each ADF protein confirmed the reduced ability of lysine mutants to mediate actin depolymerization via filament disassembly although not severing, in contrast to previous reports. These data suggest that actin filament disassembly is essential for apicomplexan parasite development but not for motility, as well as pointing to genus-specific coevolution between ADF proteins and their native actin. PMID:26157165

  15. Hypoxia-inducible factors in T lymphocyte differentiation and function. A Review in the Theme: Cellular Responses to Hypoxia.

    PubMed

    Tao, Jin-Hui; Barbi, Joseph; Pan, Fan

    2015-11-01

    Low oxygen concentrations or hypoxia is a trait common to inflamed tissues. Therefore it is not surprising that pathways of hypoxic stress response, largely governed by hypoxia-inducible factors (HIF), are highly relevant to the proper function of immune cells. HIF expression and stabilization in immune cells can be triggered not only by hypoxia, but also by a variety of stimuli and pathological stresses associated with leukocyte activation and inflammation. In addition to its role as a sensor of oxygen scarcity, HIF is also a major regulator of immune cell metabolic function. Rapid progress is being made in elucidating the roles played by HIF in diverse aspects of both innate and adaptive immunity. Here we discuss a number of breakthroughs that have shed light on how HIF expression and activity impact the differentiation and function of diverse T cell populations. The insights gained from these findings may serve as the foundation for future therapies aimed at fine-tuning the immune response. PMID:26354751

  16. TRANSFORMING GROWTH FACTOR-BETA MEDIATED SUPPRESSION OF ANTI-TUMOR T CELLS REQUIRES FOXP1 TRANSCRIPTION FACTOR EXPRESSION

    PubMed Central

    Stephen, Tom L.; Rutkowski, Melanie R.; Allegrezza, Michael J.; Perales-Puchalt, Alfredo; Tesone, Amelia J.; Svoronos, Nikolaos; Nguyen, Jenny M.; Sarmin, Fahmida; Borowsky, Mark E.; Tchou, Julia; Conejo-Garcia, Jose R.

    2014-01-01

    SUMMARY Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the up-regulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8+ T cells from proliferating and up-regulating Granzyme-B and interferon-γ (IFN-γ) in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors, and promoted protection against tumor re-challenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in pre-activated CD8+ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. PMID:25238097

  17. CELLULAR PATHOGENESIS OF DIABETIC GASTROENTEROPATHY

    PubMed Central

    Ördög, Tamás; Hayashi, Yujiro; Gibbons, Simon J.

    2010-01-01

    SUMMARY Gastroenteropathy manifesting in upper gastrointestinal symptoms, delayed gastric emptying, constipation, diarrhea and fecal incontinence occurs frequently in patients with diabetes mellitus and represents a significant health care burden. Current treatments are largely symptomatic and ineffective. Better understanding of the cellular and molecular pathogenesis of these disorders is required for the development of more effective therapies. Recent advances in our understanding of the inherent, high-level complexities of the control systems that execute and regulate gastrointestinal motility, together with the utilization of new experimental models and sophisticated physiological, morphological and molecular techniques have lead to the realization that diabetic gastroenteropathies cannot be ascribed to any singular defect or dysfunction. In fact, these disorders are multifactorial and involve a spectrum of metabolic and dystrophic changes that can potentially affect all key components of motor control including the systemic autonomic and enteric nervous systems, interstitial cells of Cajal and smooth muscle cells. Candidate pathomechanisms are also varied and include imbalance between pro- and anti-oxidative factors, altered trophic stimuli to mature cells and their progenitors, and, possibly, autoimmune factors. The goal of this paper is to review the cellular changes underlying diabetic gastroenteropathies and their potential causes, with particular focus on functional interactions between various cell types. It is proposed that diabetic gastroenteropathies should be considered a form of gastrointestinal neuromuscular dystrophy rather than a “functional” disorder. Future research should identify ways to block cytotoxic factors, support the regeneration of damaged cells and translate the experimental findings into new treatment modalities. PMID:19829287

  18. Identification of Major Factors Influencing ELISpot-Based Monitoring of Cellular Responses to Antigens from Mycobacterium tuberculosis

    PubMed Central

    Smith, Steven G.; Joosten, Simone A.; Verscheure, Virginie; Pathan, Ansar A.; McShane, Helen; Ottenhoff, Tom H. M.; Dockrell, Hazel M.; Mascart, Françoise

    2009-01-01

    A number of different interferon-γ ELISpot protocols are in use in laboratories studying antigen-specific immune responses. It is therefore unclear how results from different assays compare, and what factors most significantly influence assay outcome. One such difference is that some laboratories use a short in vitro stimulation period of cells before they are transferred to the ELISpot plate; this is commonly done in the case of frozen cells, in order to enhance assay sensitivity. Other differences that may be significant include antibody coating of plates, the use of media with or without serum, the serum source and the number of cells added to the wells. The aim of this paper was to identify which components of the different ELISpot protocols influenced assay sensitivity and inter-laboratory variation. Four laboratories provided protocols for quantifying numbers of interferon-γ spot forming cells in human peripheral blood mononuclear cells stimulated with Mycobacterium tuberculosis derived antigens. The differences in the protocols were compared directly. We found that several sources of variation in assay protocols can be eliminated, for example by avoiding serum supplementation and using AIM-V serum free medium. In addition, the number of cells added to ELISpot wells should also be standardised. Importantly, delays in peripheral blood mononuclear cell processing before stimulation had a marked effect on the number of detectable spot forming cells; processing delay thus should be minimised as well as standardised. Finally, a pre-stimulation culture period improved the sensitivity of the assay, however this effect may be both antigen and donor dependent. In conclusion, small differences in ELISpot protocols in routine use can affect the results obtained and care should be given to conditions selected for use in a given study. A pre-stimulation step may improve the sensitivity of the assay, particularly when cells have been previously frozen. PMID:19956718

  19. Regulation of gene expression by NFAT transcription factors in hibernating ground squirrels is dependent on the cellular environment.

    PubMed

    Zhang, Yichi; Storey, Kenneth B

    2016-09-01

    Calcineurin is a calmodulin-stimulated phosphatase that regulates the nuclear translocation of nuclear factor of activated T cell (NFAT) c1-4 through dephosphorylation. We believe that this mechanism plays various roles in the remodeling and maintenance of Ictidomys tridecemlineatus skeletal muscle. During hibernation, bouts of torpor and arousal take place, and squirrels do not lose muscle mass despite being inactive. Protein expression of Ca(2+) signaling proteins were studied using immunoblotting. A DNA-protein interaction ELISA technique was created to test the binding of NFATs in the nucleus to DNA probes containing the NFAT response element under environmental conditions reflective of those during hibernation. Calcineurin protein levels increased by 3.08-fold during torpor (compared to euthermic control), whereas calpain1 levels also rose by 3.66-fold during torpor. Calmodulin levels were elevated upon entering torpor. NFATc4 binding to DNA showed a 1.4-fold increase during torpor, and we found that this binding was further enhanced when 600 nM of Ca(2+) was supplemented. We also found that decreasing the temperature of ELISAs resulted in progressive decreases in the binding of NFATs c1, c3, and c4 to DNA. In summary, calmodulin and calpain1 appear to activate calcineurin and NFATc4 during torpor. NFAT binding to target promoters is affected by intranuclear [Ca(2+)] and environmental temperatures. Therefore, Ca(2+) signaling and temperature changes play key roles in regulation of the NFAT-calcineurin pathway in skeletal muscle of hibernating 13-lined ground squirrels over the torpor-arousal cycle, and they may contribute to the avoidance of disuse-induced muscle atrophy that occurs naturally in these animals. PMID:27344571

  20. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios.

    PubMed

    Kim, Hye-Jung; Barnitz, R Anthony; Kreslavsky, Taras; Brown, Flavian D; Moffett, Howell; Lemieux, Madeleine E; Kaygusuz, Yasemin; Meissner, Torsten; Holderried, Tobias A W; Chan, Susan; Kastner, Philippe; Haining, W Nicholas; Cantor, Harvey

    2015-10-16

    The maintenance of immune homeostasis requires regulatory T cells (T(regs)). Given their intrinsic self-reactivity, T(regs) must stably maintain a suppressive phenotype to avoid autoimmunity. We report that impaired expression of the transcription factor (TF) Helios by FoxP3(+) CD4 and Qa-1-restricted CD8 T(regs) results in defective regulatory activity and autoimmunity in mice. Helios-deficient T(regs) develop an unstable phenotype during inflammatory responses characterized by reduced FoxP3 expression and increased effector cytokine expression secondary to diminished activation of the STAT5 pathway. CD8 T(regs) also require Helios-dependent STAT5 activation for survival and to prevent terminal T cell differentiation. The definition of Helios as a key transcription factor that stabilizes T(regs) in the face of inflammatory responses provides a genetic explanation for a core property of T(regs). PMID:26472910

  1. Cloning of a factor required for activity of the Ah (dioxin) receptor

    SciTech Connect

    Hoffman, E.C.; Reyes, H.; Chu, Fongfong; Sander, F.; Conley, L.H.; Brooks, B.A.; Hankinson, O. )

    1991-05-17

    The aryl hydrocarbon (Ah) receptor binds various environmental pollutants, such as polycyclic aromatic hydrocarbons, heterocyclic amines, and polychlorinated aromatic compounds (dioxins, dibenzofurans, and biphenyls), and mediates the carcinogenic effects of these agents. The complementary DNA and part of the gene for an 87-kilodalton human protein that is necessary for Ah receptor function have been cloned. The protein is not the ligand-binding subunit of the receptor but is a factor that is required for the ligand-binding subunit to translocate from the cytosol to the nucleus after binding ligand. The requirement for this factor distinguishes the Ah receptor from the glucocorticoid receptor, to which the Ah receptor has been presumed to be similar. Two portions of the 87-kilodalton protein share sequence similarities with two Drosophila proteins, Per and Sim. Another segment of the protein shows conformity to the consensus sequence for the basic helix-loop-helix motif found in proteins that bind DNA as homodimers or heterodimers.

  2. Role of Cellular Tumor Necrosis Factor Receptor-Associated Factors in NF-κB Activation and Lymphocyte Transformation by Herpesvirus Saimiri STP

    PubMed Central

    Lee, Heuiran; Choi, Joong-Kook; Li, Mengtao; Kaye, Ken; Kieff, Elliott; Jung, Jae U.

    1999-01-01

    The STP oncoproteins of the herpesvirus saimiri (HVS) subgroup A strain 11 and subgroup C strain 488 are now found to be stably associated with tumor necrosis factor receptor-associated factor (TRAF) 1, 2, or 3. Mutational analyses identified residues of PXQXT/S in STP-A11 as critical for TRAF association. In addition, a somewhat divergent region of STP-C488 is critical for TRAF association. Mutational analysis also revealed that STP-C488 induced NF-κB activation that was correlated with its ability to associate with TRAFs. The HVS STP-C488 P10→R mutant was deficient in human T-lymphocyte transformation to interleukin-2-independent growth but showed wild-type phenotype for marmoset T-lymphocyte transformation in vitro and in vivo. The STP-C488 P10→R mutant was also defective in Rat-1 fibroblast transformation, and fibroblast cell transformation was blocked by a TRAF2 dominant-negative mutant. These data implicate TRAFs in STP-C488-mediated transformation of human lymphocytes and rodent fibroblasts. Other factors are implicated in immortalization of common marmoset T lymphocytes and may also be critical in the transformation of human lymphocytes and rodent fibroblasts. PMID:10196286

  3. HIV-1 Resistance to the Capsid-Targeting Inhibitor PF74 Results in Altered Dependence on Host Factors Required for Virus Nuclear Entry

    PubMed Central

    Zhou, Jing; Price, Amanda J.; Halambage, Upul D.; James, Leo C.

    2015-01-01

    ABSTRACT During HIV-1 infection of cells, the viral capsid plays critical roles in reverse transcription and nuclear entry of the virus. The capsid-targeting small molecule PF74 inhibits HIV-1 at early stages of infection. HIV-1 resistance to PF74 is complex, requiring multiple amino acid substitutions in the viral CA protein. Here we report the identification and analysis of a novel PF74-resistant mutant encoding amino acid changes in both domains of CA, three of which are near the pocket where PF74 binds. Interestingly, the mutant virus retained partial PF74 binding, and its replication was stimulated by the compound. The mutant capsid structure was not significantly perturbed by binding of PF74; rather, the mutations inhibited capsid interactions with CPSF6 and Nup153 and altered HIV-1 dependence on these host factors and on TNPO3. Moreover, the replication of the mutant virus was markedly impaired in activated primary CD4+ T cells and macrophages. Our results suggest that HIV-1 escapes a capsid-targeting small molecule inhibitor by altering the virus's dependence on host factors normally required for entry into the nucleus. They further imply that clinical resistance to inhibitors targeting the PF74 binding pocket is likely to be strongly limited by functional constraints on HIV-1 evolution. IMPORTANCE The HIV-1 capsid plays critical roles in early steps of infection and is an attractive target for therapy. Here we show that selection for resistance to a capsid-targeting small molecule inhibitor can result in viral dependence on the compound. The mutant virus was debilitated in primary T cells and macrophages—cellular targets of infection in vivo. The mutations also altered the virus's dependence on cellular factors that are normally required for HIV-1 entry into the nucleus. This work provides new information regarding mechanisms of HIV-1 resistance that should be useful in efforts to develop clinically useful drugs targeting the HIV-1 capsid. PMID:26109731

  4. The collagen triple helix repeat containing 1 facilitates hepatitis B virus-associated hepatocellular carcinoma progression by regulating multiple cellular factors and signal cascades.

    PubMed

    Zhang, Rui; Cao, Yanhua; Bai, Lan; Zhu, Chengliang; Li, Rui; He, Hui; Liu, Yingle; Wu, Kailang; Liu, Fang; Wu, Jianguo

    2015-12-01

    Hepatitis B virus (HBV) infection is one of the major causes of acute and chronic liver diseases, fulminant hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). HCC accounts for more than 85% of primary liver cancers and is the seventh most common cancer and the third leading cause of cancer-related deaths. However, the mechanism by which HBV induces HCC is largely unknown. Collagen triple helixes repeat containing 1 (CTHRC1) is a secreted protein and has characteristics of a circulating hormone with potentially broad implications for cell metabolism and physiology. CTHRC1 is associated with human cancers, but its effect on HCC is unknown. Here, we revealed that CTHRC1 expression is highly correlated with HCC progression in HBV-infected patients, and demonstrated that HBV stimulates CTHRC1 expression by activating nuclear factor-kappa B (NF-κB) and cAMP response element binding protein (CREB), through extracellular signal-regulated kinase/c-Jun N-terminal kinase (ERK/c-JNK) pathway. In addition, CTHRC1 activates hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) through regulating phosphoinosmde-3-kinase/protein kinase B/mammalian target of rapamycin (PI-3K/AKT/mTOR) pathway. More interestingly, CTHRC1 enhances colony formation, migration, and invasion of hepatoma cells by regulating p53 and stimulating matrix metalloproteinase-9 (MMP-9) expression. In addition, knock-down of CTHRC1 results in the repression of HBV-associated carcinogenesis in nude mice. Thus, we revealed a novel mechanism by which HBV facilitates HCC development through activating the oncoprotein CTHRC1, which in turn enhances HBV-related HCC progression by stimulates colony formation, migration, and invasion of hepatoma cells through regulating multiple cellular factors and signal cascades. PMID:25263696

  5. Mysm1 is required for interferon regulatory factor expression in maintaining HSC quiescence and thymocyte development.

    PubMed

    Huang, X F; Nandakumar, V; Tumurkhuu, G; Wang, T; Jiang, X; Hong, B; Jones, L; Won, H; Yoshii, H; Ozato, K; Masumi, A; Chen, S-Y

    2016-01-01

    Mysm1(-/-) mice have severely decreased cellularity in hematopoietic organs. We previously revealed that Mysm1 knockout impairs self-renewal and lineage reconstitution of HSCs by abolishing the recruitment of key transcriptional factors to the Gfi-1 locus, an intrinsic regulator of HSC function. The present study further defines a large LSKs in >8-week-old Mysm1(-/-) mice that exhibit increased proliferation and reduced cell lineage differentiation compared with those of WT LSKs. We found that IRF2 and IRF8, which are important for HSC homeostasis and commitment as transcription repressors, were expressed at lower levels in Mysm1(-/-) HSCs, and Mysm1 enhanced function of the IRF2 and IRF8 promoters, suggesting that Mysm1 governs the IRFs for HSC homeostasis. We further found that the lower expressions of IRF2 and IRF8 led to an enhanced transcription of p53 in Mysm1(-/-) HSCs, which was recently defined to have an important role in mediating Mysm1(-/-)-associated defects. The study also revealed that Mysm1(-/-) thymocytes exhibited lower IRF2 expression, but had higher Sca1 expression, which has a role in mediating thymocyte death. Furthermore, we found that the thymocytes from B16 melanoma-bearing mice, which display severe thymus atrophy at late tumor stages, exhibited reduced Mysm1 and IRF2 expression but enhanced Sca1 expression, suggesting that tumors may downregulate Mysm1 and IRF2 for thymic T-cell elimination. PMID:27277682

  6. Co-repressor activity of scaffold attachment factor B1 requires sumoylation

    SciTech Connect

    Garee, Jason P.; Meyer, Rene; Systems Biology of Signal Transduction, German Cancer Research Center , INF 280, 69120 Heidelberg ; Oesterreich, Steffi

    2011-05-20

    Highlights: {yields} SAFB1 is sumoylated to two lysine residues K231 and K294. {yields} SAFB1 sumoylation is regulated by PIAS1 and SENP1. {yields} Sumoylation of SAFB1 regulates its transcriptional repressor activity. {yields} Mutation of sumoylation sites leads to decreased SAFB1 binding to HDAC3. -- Abstract: Sumoylation is an emerging modification associated with a variety of cellular processes including the regulation of transcriptional activities of nuclear receptors and their coregulators. As SUMO modifications are often associated with transcriptional repression, we examined if sumoylation was involved in modulation of the transcriptional repressive activity of scaffold attachment factor B1. Here we show that SAFB1 is modified by both the SUMO1 and SUMO2/3 family of proteins, on lysine's K231 and K294. Further, we demonstrate that SAFB1 can interact with PIAS1, a SUMO E3 ligase which mediates SAFB1 sumoylation. Additionally, SENP1 was identified as the enzyme desumoylating SAFB1. Mutation of the SAFB1 sumoylation sites lead to a loss of transcriptional repression, at least in part due to decreased interaction with HDAC3, a known transcriptional repressor and SAFB1 binding partner. In summary, the transcriptional repressor SAFB1 is modified by both SUMO1 and SUMO2/3, and this modification is necessary for its full repressive activity.

  7. REQUIREMENTS FOR THE CATALYTIC CYCLE OF THE N-ETHYLMALEIMIDE-SENSITIVE FACTOR (NSF)

    PubMed Central

    Zhao, Chunxia; Smith, Everett C.; Whiteheart, Sidney W.

    2014-01-01

    The N-ethylmaleimide-Sensitive Factor (NSF) was one of the initial members of the ATPases Associated with various cellular Activities Plus (AAA+) family. In this review, we discuss what is known about the mechanism of NSF action and how that relates to the mechanisms of other AAA+ proteins. Like other family members, NSF binds to a protein complex (i.e., SNAP-SNARE complex) and utilizes ATP hydrolysis to affect the conformations of that complex. SNAP-SNARE complex disassembly is essential for SNARE recycling and sustained membrane trafficking. NSF is a homo-hexamer; each protomer is composed of an N-terminal domain, NSF-N, and two adjacent AAA-domains, NSF-D1 and NSF-D2. Mutagenesis analysis has established specific roles for many of the structural elements of NSF-D1, the catalytic ATPase domain, and NSF-N, the SNAP-SNARE binding domain. Hydrodynamic analysis of NSF, labeled with (Ni2+-NTA)2-Cy3, detected conformational differences in NSF, in which the ATP-bound conformation appears more compact than the ADP-bound form. This indicates that NSF undergoes significant conformational changes as it progresses through its ATP-hydrolysis cycle. Incorporating these data, we propose a sequential mechanism by which NSF uses NSF-N and NSF-D1 to disassemble SNAP-SNARE complexes. We also illustrate how analytical centrifugation might be used to study other AAA+ proteins. PMID:21689688

  8. Cellular Uptake and Cytotoxic Effect of Epidermal Growth Factor Receptor Targeted and Plitidepsin Loaded Co-Polymeric Polymersomes on Colorectal Cancer Cell Lines.

    PubMed

    Goñi-de-Cerio, Felipe; Thevenot, Julie; Oliveira, Hugo; Pérez-Andrés, Encarnación; Berra, Edurne; Masa, Marc; Suárez-Merino, Blanca; Lecommandoux, Sébastien; Heredia, Pedro

    2015-11-01

    Encapsulating chemotherapy drugs in targeted nanodelivery systems is one of the most promising approaches to tackle cancer disease, avoiding side effects of common treatment. In the last decade, several nanocarriers with different nature have been tested, but polypeptide-based copolymers have attracted considerable attention for their biocompatibility, controlled and slow biodegradability as well as their low toxicity. In this work, we synthesized, characterized and evaluated poly(trimethylene carbonate)-bock-poly(L-glutamic acid) derived polymersomes, targeted to epidermal growth factor receptor (EGFR), loaded with plitidepsin and ultimately tested in HT29 and LS174T colorectal cancer cell lines for specificity and efficacy. Furthermore, morphology, physico-chemical properties and plitidepsin loading were carefully investigated. A thorough in vitro cytotoxicity analysis of the unloaded polymersomes was carried out for biocompatibility check, studying viability, cell membrane asymmetry and reactive oxygen species levels. Those cytotoxicity assays showed good biocompatibility for plitidepsin-unloaded polymersomes. Cellular uptake and cytotoxic effect of EGFR targeted and plitidepsin loaded polymersome indicated that colorectal cancer cell lines were.more sensitive to anti-EGFR-drug-loaded than untargeted drug-loaded polymersomes. Also, in both cell lines, the use of untargeted polymersomes greatly reduced plitidepsin cytotoxicity as well as the cellular uptake, indicating that the use of this targeted nanocarrier is a promising approach to tackle colorectal cancer disease and avoid the undesired effects of the usual treatment. Furthermore, in vivo assays support the in vitro conclusions that EGFR targeted polymersomes could be a good drug delivery system. This work provides a proof of concept for the use of encapsulated targeted drugs as future therapeutic treatments for cancer. PMID:26554161

  9. Cellular inhibitor of apoptosis protein-1 (cIAP1) can regulate E2F1 transcription factor-mediated control of cyclin transcription.

    PubMed

    Cartier, Jessy; Berthelet, Jean; Marivin, Arthur; Gemble, Simon; Edmond, Valérie; Plenchette, Stéphanie; Lagrange, Brice; Hammann, Arlette; Dupoux, Alban; Delva, Laurent; Eymin, Béatrice; Solary, Eric; Dubrez, Laurence

    2011-07-29

    The inhibitor of apoptosis protein cIAP1 (cellular inhibitor of apoptosis protein-1) is a potent regulator of the tumor necrosis factor (TNF) receptor family and NF-κB signaling pathways in the cytoplasm. However, in some primary cells and tumor cell lines, cIAP1 is expressed in the nucleus, and its nuclear function remains poorly understood. Here, we show that the N-terminal part of cIAP1 directly interacts with the DNA binding domain of the E2F1 transcription factor. cIAP1 dramatically increases the transcriptional activity of E2F1 on synthetic and CCNE promoters. This function is not conserved for cIAP2 and XIAP, which are cytoplasmic proteins. Chromatin immunoprecipitation experiments demonstrate that cIAP1 is recruited on E2F binding sites of the CCNE and CCNA promoters in a cell cycle- and differentiation-dependent manner. cIAP1 silencing inhibits E2F1 DNA binding and E2F1-mediated transcriptional activation of the CCNE gene. In cells that express a nuclear cIAP1 such as HeLa, THP1 cells and primary human mammary epithelial cells, down-regulation of cIAP1 inhibits cyclin E and A expression and cell proliferation. We conclude that one of the functions of cIAP1 when localized in the nucleus is to regulate E2F1 transcriptional activity. PMID:21653699

  10. Molecular cloning of cellular genes encoding retinoblastoma-associated proteins: identification of a gene with properties of the transcription factor E2F.

    PubMed Central

    Shan, B; Zhu, X; Chen, P L; Durfee, T; Yang, Y; Sharp, D; Lee, W H

    1992-01-01

    The retinoblastoma protein interacts with a number of cellular proteins to form complexes which are probably crucial for its normal physiological function. To identify these proteins, we isolated nine distinct clones by direct screening of cDNA expression libraries using purified RB protein as a probe. One of these clones, Ap12, is expressed predominantly at the G1-S boundary and in the S phase of the cell cycle. The nucleotide sequence of Ap12 has features characteristic of transcription factors. The C-terminal region binds to unphosphorylated RB in regions similar to those to which T antigen binds and contains a transactivation domain. A region containing a potential leucine zipper flanked by basic residues is able to bind an E2F recognition sequence specifically. Expression of Ap12 in mammalian cells significantly enhances E2F-dependent transcriptional activity. These results suggest that Ap12 encodes a protein with properties known to be characteristic of transcription factor E2F. Images PMID:1448092

  11. Cellular Mechanisms Controlling Caspase Activation and Function

    PubMed Central

    Parrish, Amanda B.; Freel, Christopher D.; Kornbluth, Sally

    2013-01-01

    Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death. PMID:23732469

  12. Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression.

    PubMed Central

    Bennett, A M; Hausdorff, S F; O'Reilly, A M; Freeman, R M; Neel, B G

    1996-01-01

    Using transient overexpression and microinjection approaches, we examined SHPTP2's function in growth factor signaling. Overexpression of catalytically inactive SHPTP2 (PTP2CS) but not catalytically inactive SHPTP1, inhibited mitogen-activated protein (MAP) kinase activation and Elk-1 transactivation following epidermal growth factor (EGF) stimulation of 293 cells. An SHPTP2 mutant with both C-terminal tyrosyl phosphorylation sites converted to phenylalanine (PTP2YF) was also without effect; moreover, PTP2YF rescued PTP2CS-induced inhibition of EGF-induced Elk-1 transactivation. PTP2CS did not inhibit transactivation by activated Ras, suggesting that SHPTP2 acts upstream of or parallel to Ras. Neither PTP2CS nor PTP2YF inhibited platelet-derived growth factor (PDGF)-induced Elk-1 transactivation. Thus, protein-tyrosine phosphatase activity, but not tyrosyl phosphorylation of SHPTP2, is required for the immediate-early responses to EGF but not to PDGF. To determine whether SHPTP2 is required later in the cell cycle, we assessed S-phase entry in NIH 3T3 cells microinjected with anti-SHPTP2 antibodies or with a glutathione S-transferase (GST) fusion protein encoding both SH2 domains (GST-SH2). Microinjection of anti-SHPTP2 antibodies prior to stimulation inhibited EGF- but no PDGF- or serum-induced S-phase entry. Anti-SHPTP2 antibodies or GST-SH2 fusion protein could inhibit EGF-induced S-phase entry for up to 8 h after EGF addition. Although MAP kinase activation was detected shortly after EGF stimulation, no MAP kinase activation was detected around the restriction point. Therefore, SHPTP2 is absolutely required for immediate-early and late events induced by some, but not all, growth factors, and the immediate-early and late signal transduction pathways regulated by SHPTP2 are distinguishable. PMID:8622663

  13. Pharmaceutical strategic purchasing requirements in Iran: Price interventions and the related effective factors

    PubMed Central

    Bastani, Peivand; Dinarvand, Rasoul; SamadBeik, Mahnaz; Pourmohammadi, Kimia

    2016-01-01

    Objective: Pharmaceutical access for the poor is an essential factor in developing countries that can be improved through strategic purchasing. This study was conducted to identify the elements affecting price in order to enable insurance organizations to put strategic purchasing into practice. Methods: This was a qualitative study conducted through content analysis with an inductive approach applying a five-stage framework analysis (familiarization, identifying a thematic framework, indexing, mapping, and interpretation). Data analysis was started right after transcribing each interview applying ATLAS.ti. Data were saturated after 32 semi-structured interviews by experts. These key informants were selected purposefully and through snowball sampling. Findings: Findings showed that there are four main themes as Pharmaceutical Strategic Purchasing Requirements in Iran as follows essential and structural factors, international factors, economical factors, and legal factors. Moreover, totally 14 related sub-themes were extracted in this area as the main effective variables. Conclusion: It seems that paying adequate attention to the four present themes and 14 sub-themes affecting price can enable health system policy-makers of developing countries like Iran to make the best decisions through strategic purchasing of drugs by the main insurers in order to improve access and health in the country. PMID:26985434

  14. Translation initiation factors are not required for Dicistroviridae IRES function in vivo

    PubMed Central

    Deniz, Nilsa; Lenarcic, Erik M.; Landry, Dori M.; Thompson, Sunnie R.

    2009-01-01

    The cricket paralysis virus (CrPV) intergenic region (IGR) internal ribosome entry site (IRES) uses an unusual mechanism of initiating translation, whereby the IRES occupies the P-site of the ribosome and the initiating tRNA enters the A-site. In vitro experiments have demonstrated that the CrPV IGR IRES is able to bind purified ribosomes and form 80S complexes capable of synthesizing small peptides in the absence of any translation initiation factors. These results suggest that initiation by this IRES is factor-independent. To determine whether the IGR IRES functions in the absence of initiation factors in vivo, we assayed IGR IRES activity in various yeast strains harboring mutations in canonical translation initiation factors. We used a dicistronic reporter assay in yeast to determine whether the CrPV IGR IRES is able to promote translation sufficient to support growth in the presence of various deletions or mutations in translation initiation factors. Using this assay, we have previously shown that the CrPV IGR IRES functions efficiently in yeast when ternary complexes (eIF2•GTP•initiator tRNAmet) are reduced. Here, we demonstrate that the CrPV IGR IRES activity does not require the eukaryotic initiation factors eIF4G1 or eIF5B, and it is enhanced when eIF2B, the eIF3b subunit of eIF3, or eIF4E are impaired. Taken together, these data support a model in which the CrPV IGR IRES is capable of initiating protein synthesis in the absence of any initiation factors in vivo, and suggests that the CrPV IGR IRES initiates translation by directly recruiting the ribosomal subunits in vivo. PMID:19299549

  15. Cellular Homeostasis and Aging.

    PubMed

    Hartl, F Ulrich

    2016-06-01

    Aging and longevity are controlled by a multiplicity of molecular and cellular signaling events that interface with environmental factors to maintain cellular homeostasis. Modulation of these pathways to extend life span, including insulin-like signaling and the response to dietary restriction, identified the cellular machineries and networks of protein homeostasis (proteostasis) and stress resistance pathways as critical players in the aging process. A decline of proteostasis capacity during aging leads to dysfunction of specific cell types and tissues, rendering the organism susceptible to a range of chronic diseases. This volume of the Annual Review of Biochemistry contains a set of two reviews addressing our current understanding of the molecular mechanisms underlying aging in model organisms and humans. PMID:27050288

  16. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    SciTech Connect

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  17. ENDOGLIN is dispensable for vasculogenesis, but required for vascular endothelial growth factor-induced angiogenesis.

    PubMed

    Liu, Zhen; Lebrin, Franck; Maring, Janita A; van den Driesche, Sander; van der Brink, Stieneke; van Dinther, Maarten; Thorikay, Midory; Martin, Sabrina; Kobayashi, Kazuki; Hawinkels, Lukas J A C; van Meeteren, Laurens A; Pardali, Evangelia; Korving, Jeroen; Letarte, Michelle; Arthur, Helen M; Theuer, Charles; Goumans, Marie-José; Mummery, Christine; ten Dijke, Peter

    2014-01-01

    ENDOGLIN (ENG) is a co-receptor for transforming growth factor-β (TGF-β) family members that is highly expressed in endothelial cells and has a critical function in the development of the vascular system. Mutations in Eng are associated with the vascular disease known as hereditary hemorrhagic telangiectasia type l. Using mouse embryonic stem cells we observed that angiogenic factors, including vascular endothelial growth factor (VEGF), induce vasculogenesis in embryoid bodies even when Eng deficient cells or cells depleted of Eng using shRNA are used. However, ENG is required for the stem cell-derived endothelial cells to organize effectively into tubular structures. Consistent with this finding, fetal metatarsals isolated from E17.5 Eng heterozygous mouse embryos showed reduced VEGF-induced vascular network formation. Moreover, shRNA-mediated depletion and pharmacological inhibition of ENG in human umbilical vein cells mitigated VEGF-induced angiogenesis. In summary, we demonstrate that ENG is required for efficient VEGF-induced angiogenesis. PMID:24489709

  18. ENDOGLIN Is Dispensable for Vasculogenesis, but Required for Vascular Endothelial Growth Factor-Induced Angiogenesis

    PubMed Central

    van der Brink, Stieneke; van Dinther, Maarten; Thorikay, Midory; Martin, Sabrina; Kobayashi, Kazuki; Hawinkels, Lukas J. A. C.; van Meeteren, Laurens A.; Pardali, Evangelia; Korving, Jeroen; Letarte, Michelle; Arthur, Helen M.; Theuer, Charles; Goumans, Marie-José; Mummery, Christine; ten Dijke, Peter

    2014-01-01

    ENDOGLIN (ENG) is a co-receptor for transforming growth factor-β (TGF-β) family members that is highly expressed in endothelial cells and has a critical function in the development of the vascular system. Mutations in Eng are associated with the vascular disease known as hereditary hemorrhagic telangiectasia type l. Using mouse embryonic stem cells we observed that angiogenic factors, including vascular endothelial growth factor (VEGF), induce vasculogenesis in embryoid bodies even when Eng deficient cells or cells depleted of Eng using shRNA are used. However, ENG is required for the stem cell-derived endothelial cells to organize effectively into tubular structures. Consistent with this finding, fetal metatarsals isolated from E17.5 Eng heterozygous mouse embryos showed reduced VEGF-induced vascular network formation. Moreover, shRNA-mediated depletion and pharmacological inhibition of ENG in human umbilical vein cells mitigated VEGF-induced angiogenesis. In summary, we demonstrate that ENG is required for efficient VEGF-induced angiogenesis. PMID:24489709

  19. The Herpes Simplex Virus Type 1 vhs-UL41 Gene Secures Viral Replication by Temporarily Evading Apoptotic Cellular Response to Infection: Vhs-UL41 Activity Might Require Interactions with Elements of Cellular mRNA Degradation Machinery

    PubMed Central

    Barzilai, Ari; Zivony-Elbom, Ifaat; Sarid, Ronit; Noah, Eran; Frenkel, Niza

    2006-01-01

    We have previously shown that herpes simplex virus type 1 (HSV-1) infection is associated with early destabilization/degradation of infected cell mRNAs and consequent shutoff of host protein synthesis by the activity of the virion-associated host shutoff (vhs) UL41 protein. Wild-type (wt) virus destabilized/degraded the housekeeping β-actin and α-tubulin mRNAs as well host stress functions, like the heat shock 70 protein induced postinfection. vhs mutants did not degrade the mRNAs. Elaborate studies by others have been concerned with the mode of mRNA degradation and the mRNAs affected. We now describe vhs activity in primary cultures of mouse cerebellar granule neurons (CGNs). Specifically, (i) upon infection in the presence of actinomycin D to test activity of input viral particles, there was a generalized inhibition of protein synthesis, which depended on the input multiplicity of infection (MOI). (ii) Low-MOI infection with vhs-1 mutant virus was associated with increased synthesis of all apparent proteins. Higher MOIs caused some shutoff, albeit significantly lower than that of wt virus. This pattern could reflect an interaction(s) of vhs-1 protein with host machinery involved in cellular mRNA destabilization/degradation, sequestering this activity. (iii) wt virus infection was associated with cell survival, at least for a while, whereas mutant virus induced apoptotic cell death at earlier times. (iv) wt virus replicated well in the CGNs, whereas there was no apparent replication of the vhs-1 mutant virus. (v) The vhs-1 mutant could serve as helper virus for composite amplicon vectors carrying marker genes and the human p53 gene. Ongoing studies test the use of vhs-1-based composite oncolytic vectors towards cancer gene therapy. PMID:16352574

  20. Interaction between insulin-like growth factor-I receptor and alphaVbeta3 integrin linked signaling pathways: cellular responses to changes in multiple signaling inputs.

    PubMed

    Clemmons, D R; Maile, L A

    2005-01-01

    Integrins are heterodimeric transmembrane proteins that mediate cell attachment to extracellular matrix, migration, division, and inhibition of apoptosis. Because growth factors are also important for these processes, there has been interest in cooperative signaling between growth factor receptors and integrins. IGF-I is an important growth factor for vascular cells. One integrin, alphaVbeta3, that is expressed in smooth muscle cells modulates IGF-I actions. Ligand occupancy of alphaVbeta3 is required for IGF-I to stimulate cell migration and division. Src homology 2 containing tyrosine phosphatase (SHP-2) is a tyrosine phosphatase whose recruitment to signaling molecules is stimulated by growth factors including IGF-I. If alphaVbeta3 ligand occupancy is inhibited, there is no recruitment of SHP-2 to alphaVbeta3 and its transfer to downstream signaling molecules is blocked. Ligand occupancy of alphaVbeta3 stimulates tyrosine phosphorylation of the beta3-subunit, resulting in recruitment of SHP-2. This transfer is mediated by an insulin receptor substrate-1-related protein termed DOK-1. Subsequently, SHP-2 is transferred to another transmembrane protein, SHPS-1. This transfer requires IGF-I receptor-mediated tyrosine phosphorylation of SHPS-1, which contains two YXXL motifs that mediate SHP-2 binding. The transfer of SHP-2 to SHPS-1 is also required for recruitment of Shc to SHPS-1. Ligand occupancy of alphaVbeta3 results in sustained Shc phosphorylation and enhanced Shc recruitment. Shc activation results in induction of MAPK. Inhibition of the Shc/SHPS-1 complex formation results in failure to achieve sustained MAPK activation and an attenuated mitogenic response. Thus, within the vessel wall, a mechanism exists whereby ligand occupancy of the alphaVbeta3 integrin is required for assembly of a multicomponent membrane signaling complex that is necessary for cells to respond optimally to IGF-I. PMID:15528274

  1. Human factors requirements for telerobotic command and control: The European Space Agency experimental programme

    NASA Technical Reports Server (NTRS)

    Stone, Robert J.

    1991-01-01

    Space Telerobotics research, performed under contract to the European Space Agency (ESA), concerning the execution of human factors experiments, and ultimately leading to the development of a telerobotics test bed, has been carried out since 1985 by a British Consortium consisting of British Aerospace, the United Kingdom Atomic Energy Authority and, more recently, the UK National Advanced Robotics Research Centre. The principal aim of the first study of the series was to derive preliminary requirements for a teleoperation servicing system, with reference to two mission model scenarios. The first scenario introduced the problem of communications time delays, and their likely effect on the ground-based operator in control of a manipulator system on board an unmanned servicing vehicle in Low Earth Orbit. In the second scenario, the operator was located on the NASA Orbiter aft flight deck, supervising the control of a prototype manipulator in the 'servicing' of an experimental payload in the cargo bay area. Human factors analyses centered on defining the requirements for the teleoperator workstation, such as identifying basic ergonomic requirements for workstation and panel layouts, defining teleoperation strategies, developing alphanumeric and graphic screen formats for the supervision or direct control of the manipulator, and the potential applications of expert system technology. The second study for ESA involved an experimental appraisal of some of the important issues highlighted in the first study, for which relevant human factors data did not exist. Of central importance during the second study was the issue of communications time delays and their effect on the manual control of a teleoperated manipulator from a ground-based command and control station.

  2. Neuronal migration in the murine rostral migratory stream requires serum response factor

    PubMed Central

    Alberti, Siegfried; Krause, Sven M.; Kretz, Oliver; Philippar, Ulrike; Lemberger, Thomas; Casanova, Emilio; Wiebel, Franziska F.; Schwarz, Heinz; Frotscher, Michael; Schütz, Günther; Nordheim, Alfred

    2005-01-01

    The central nervous system is fundamentally dependent on guided cell migration, both during development and in adulthood. We report an absolute requirement of the transcription factor serum response factor (SRF) for neuronal migration in the mouse forebrain. Conditional, late-prenatal deletion of Srf causes neurons to accumulate ectopically at the subventricular zone (SVZ), a prime neurogenic region in the brain. SRF-deficient cells of the SVZ exhibit impaired tangential chain migration along the rostral migratory stream into the olfactory bulb. SVZ explants display retarded chain migration in vitro. Regarding target genes, SRF deficiency impairs expression of the β-actin and gelsolin genes, accompanied by reduced cytoskeletal actin fiber density. At the posttranslational level, cofilin, a key regulator of actin dynamics, displays dramatically elevated inhibitory phosphorylation at Ser-3. Our studies indicate that SRF-controlled gene expression directs both the structure and dynamics of the actin microfilament, thereby determining cell-autonomous neuronal migration. PMID:15837932

  3. Insulin-like growth factor I is required for vessel remodeling in the adult brain

    PubMed Central

    Lopez-Lopez, C.; LeRoith, D.; Torres-Aleman, I.

    2004-01-01

    Although vascular dysfunction is a major suspect in the etiology of several important neurodegenerative diseases, the signals involved in vessel homeostasis in the brain are still poorly understood. We have determined whether insulin-like growth factor I (IGF-I), a wide-spectrum growth factor with angiogenic actions, participates in vascular remodeling in the adult brain. IGF-I induces the growth of cultured brain endothelial cells through hypoxiainducible factor 1α and vascular endothelial growth factor, a canonical angiogenic pathway. Furthermore, the systemic injection of IGF-I in adult mice increases brain vessel density. Physical exercise that stimulates widespread brain vessel growth in normal mice fails to do so in mice with low serum IGF-I. Brain injury that stimulates angiogenesis at the injury site also requires IGF-I to promote perilesion vessel growth, because blockade of IGF-I input by an anti-IGF-I abrogates vascular growth at the injury site. Thus, IGF-I participates in vessel remodeling in the adult brain. Low serum/brain IGF-I levels that are associated with old age and with several neurodegenerative diseases may be related to an increased risk of vascular dysfunction. PMID:15210967

  4. The transcription factor XBP1 is selectively required for eosinophil differentiation

    PubMed Central

    Bettigole, Sarah E.; Lis, Raphael; Adoro, Stanley; Lee, Ann-Hwee; Spencer, Lisa A.; Weller, Peter F.; Glimcher, Laurie H.

    2015-01-01

    The transcription factor XBP1 has been linked to the development of highly secretory tissues such as plasma cells and Paneth cells, yet its function in granulocyte maturation has remained unknown. Here we discovered an unexpectedly selective and absolute requirement for XBP1 in eosinophil differentiation without an effect on the survival of basophils or neutrophils. Progenitors of myeloid cells and eosinophils selectively activated the endoribonuclease IRE1α and spliced Xbp1 mRNA without inducing parallel endoplasmic reticulum (ER) stress signaling pathways. Without XBP1, nascent eosinophils exhibited massive defects in the post-translational maturation of key granule proteins required for survival, and these unresolvable structural defects fed back to suppress critical aspects of the transcriptional developmental program. Hence, we present evidence that granulocyte subsets can be distinguished by their differential reliance on secretory-pathway homeostasis. PMID:26147683

  5. Diversity in requirement of genetic and epigenetic factors for centromere function in fungi.

    PubMed

    Roy, Babhrubahan; Sanyal, Kaustuv

    2011-11-01

    A centromere is a chromosomal region on which several proteins assemble to form the kinetochore. The centromere-kinetochore complex helps in the attachment of chromosomes to spindle microtubules to mediate segregation of chromosomes to daughter cells during mitosis and meiosis. In several budding yeast species, the centromere forms in a DNA sequence-dependent manner, whereas in most other fungi, factors other than the DNA sequence also determine the centromere location, as centromeres were able to form on nonnative sequences (neocentromeres) when native centromeres were deleted in engineered strains. Thus, in the absence of a common DNA sequence, the cues that have facilitated centromere formation on a specific DNA sequence for millions of years remain a mystery. Kinetochore formation is facilitated by binding of a centromere-specific histone protein member of the centromeric protein A (CENP-A) family that replaces a canonical histone H3 to form a specialized centromeric chromatin structure. However, the process of kinetochore formation on the rapidly evolving and seemingly diverse centromere DNAs in different fungal species is largely unknown. More interestingly, studies in various yeasts suggest that the factors required for de novo centromere formation (establishment) may be different from those required for maintenance (propagation) of an already established centromere. Apart from the DNA sequence and CENP-A, many other factors, such as posttranslational modification (PTM) of histones at centric and pericentric chromatin, RNA interference, and DNA methylation, are also involved in centromere formation, albeit in a species-specific manner. In this review, we discuss how several genetic and epigenetic factors influence the evolution of structure and function of centromeres in fungal species. PMID:21908596

  6. N-Ethylmaleimide–Sensitive Factor b (nsfb) Is Required for Normal Pigmentation of the Zebrafish Retinal Pigment Epithelium

    PubMed Central

    Hanovice, Nicholas J.; Daly, Christina M. S.; Gross, Jeffrey M.

    2015-01-01

    Purpose Despite the number of albinism-causing mutations identified in human patients and animal models, there remain a significant number of cases for which no mutation has been identified, suggesting that our understanding of melanogenesis is incomplete. Previously, we identified two oculocutaneous albinism mutations in zebrafish, au13 and au18. Here, we sought to identify the mutated loci and determine how the affected proteins contribute to normal pigmentation of the retinal pigment epithelium (RPE). Methods Complementation analyses revealed that au13 and au18 belonged to a single complementation group, suggesting that they affected the same locus. Whole-genome sequencing and single nucleotide polymorphism (SNP) analysis was performed to identify putative mutations, which were confirmed by cDNA sequencing and mRNA rescue. Transmission electron microscopy (TEM) and image quantification were used to identify the cellular basis of hypopigmentation. Results Whole-genome sequencing and SNP mapping identified a nonsense mutation in the N-ethylmaleimide–sensitive factor b (nsfb) gene in au18 mutants. Complementary DNA sequencing confirmed the presence of the mutation (C893T), which truncates the nsfb protein by roughly two-thirds (Y297X). No coding sequence mutations were identified in au13, but quantitative PCR revealed a significant decrease in nsfb expression, and nsfb mRNA injection rescued the hypopigmentation phenotype, suggesting a regulatory mutation. In situ hybridization revealed that nsfb is broadly expressed during embryonic development, including in the RPE. Transmission electron microscopy analyses indicated that average melanosome density and maturity were significantly decreased in nsfb mutants. Conclusions au18 and au13 contain mutations in nsfb, which encodes a protein that is required for the maturation of melanosomes in zebrafish RPE. PMID:26618645

  7. The outcomes and prognostic factors of patients requiring prolonged mechanical ventilation

    PubMed Central

    Lai, Chih-Cheng; Shieh, Jiunn-Min; Chiang, Shyh-Ren; Chiang, Kuo-Hwa; Weng, Shih-Feng; Ho, Chung-Han; Tseng, Kuei-Ling; Cheng, Kuo-Chen

    2016-01-01

    The aims of this study were to investigate the outcomes of patients requiring prolonged mechanical ventilation (PMV) and to identify risk factors associated with its mortality rate. All patients admitted to the respiratory care centre (RCC) who required PMV (the use of MV ≥21 days) between January 2006 and December 2014 were enrolled. A total of 1,821 patients were identified; their mean age was 69.8 ± 14.2 years, and 521 patients (28.6%) were aged >80 years. Upon RCC admission, the APACHE II scores were 16.5 ± 6.3, and 1,311 (72.0%) patients had at least one comorbidity. Pulmonary infection was the most common diagnosis (n = 770, 42.3%). A total of 320 patients died during hospitalization, and the in-hospital mortality rate was 17.6%. A multivariate stepwise logistic regression analysis indicated that patients were more likely to die if they who were >80 years of age, had lower albumin levels (<2 g/dl) and higher APACHE II scores (≥15), required haemodialysis, or had a comorbidity. In conclusion, the in-hospital mortality for patients requiring PMV in our study was 17%, and mortality was associated with disease severity, hypoalbuminaemia, haemodialysis, and an older age. PMID:27296248

  8. The outcomes and prognostic factors of patients requiring prolonged mechanical ventilation.

    PubMed

    Lai, Chih-Cheng; Shieh, Jiunn-Min; Chiang, Shyh-Ren; Chiang, Kuo-Hwa; Weng, Shih-Feng; Ho, Chung-Han; Tseng, Kuei-Ling; Cheng, Kuo-Chen

    2016-01-01

    The aims of this study were to investigate the outcomes of patients requiring prolonged mechanical ventilation (PMV) and to identify risk factors associated with its mortality rate. All patients admitted to the respiratory care centre (RCC) who required PMV (the use of MV ≥21 days) between January 2006 and December 2014 were enrolled. A total of 1,821 patients were identified; their mean age was 69.8 ± 14.2 years, and 521 patients (28.6%) were aged >80 years. Upon RCC admission, the APACHE II scores were 16.5 ± 6.3, and 1,311 (72.0%) patients had at least one comorbidity. Pulmonary infection was the most common diagnosis (n = 770, 42.3%). A total of 320 patients died during hospitalization, and the in-hospital mortality rate was 17.6%. A multivariate stepwise logistic regression analysis indicated that patients were more likely to die if they who were >80 years of age, had lower albumin levels (<2 g/dl) and higher APACHE II scores (≥15), required haemodialysis, or had a comorbidity. In conclusion, the in-hospital mortality for patients requiring PMV in our study was 17%, and mortality was associated with disease severity, hypoalbuminaemia, haemodialysis, and an older age. PMID:27296248

  9. Effect of triptolide on secretion of inflammatory cellular factors TNF-α and IL-8 in peritoneal macrophages of mice activated by lipopolysaccharide

    PubMed Central

    Yang, Fan; Bai, Xiang-jun; Hu, Duan; Li, Zhan-fei; Liu, Kai-jun

    2010-01-01

    BACKGROUND: Research has been carried out to look for safe and effective anti-inflammation drugs from traditional Chinese herbal medicine. As a powerful research technology of life science, molecular biology has entered many areas of traditional Chinese medicine. This study aimed to investigate the effect of triptolide on tumor necrosis factor-a (TNF-α) and interleukin-8 (IL-8) of peritoneal macrophages activated by lipopolysaccharide (LPS) in mice. METHODS: Peritoneal elicited macrophages were separated, purified and activated by LPS in mice, then cultured in vitro with triptolide at different concentrations. The activity of TNF-α and the level of IL-8 of cellular supernatants were determined by MTT colorimetric assay and ELISA, respectively. RESULTS: The activity of TNF-α in macrophages was significantly inhibited (P<0.01) by triptolide (10-1-101μg/ml) during 4-24 hours in a time- and dose-dependent manner. The level of IL-8 in macrophages was significantly inhibited (P<0.01) by triptolide (10-1-101μg/ml) in 12 hours in a dose-dependent manner. CONCLUSION: Triptolide could inhibit the activity of TNF-α and the level of IL-8 in macrophages activated by LPS. PMID:25214945

  10. Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis.

    PubMed

    Momose, F; Basler, C F; O'Neill, R E; Iwamatsu, A; Palese, P; Nagata, K

    2001-02-01

    Previous biochemical data identified a host cell fraction, designated RAF-2, which stimulated influenza virus RNA synthesis. A 48-kDa polypeptide (RAF-2p48), a cellular splicing factor belonging to the DEAD-box family of RNA-dependent ATPases previously designated BAT1 (also UAP56), has now been identified as essential for RAF-2 stimulatory activity. Additionally, RAF-2p48 was independently identified as an influenza virus nucleoprotein (NP)-interacting protein, NPI-5, in a yeast two-hybrid screen of a mammalian cDNA library. In vitro, RAF-2p48 interacted with free NP but not with NP bound to RNA, and the RAF-2p48-NP complex was dissociated following addition of free RNA. Furthermore, RAF-2p48 facilitated formation of the NP-RNA complexes that likely serve as templates for the viral RNA polymerase. RAF-2p48 was shown, in both in vitro binding assays and the yeast two-hybrid system, to bind to the amino-terminal region of NP, a domain essential for RNA binding. Together, these observations suggest that RAF-2p48 facilitates NP-RNA interaction, thus leading to enhanced influenza virus RNA synthesis. PMID:11160689

  11. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    SciTech Connect

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  12. Nuclear factor-kappa B directs carcinoembryonic antigen-related cellular adhesion molecule 1 receptor expression in Neisseria gonorrhoeae-infected epithelial cells.

    PubMed

    Muenzner, Petra; Billker, Oliver; Meyer, Thomas F; Naumann, Michael

    2002-03-01

    The human-specific pathogen Neisseria gonorrhoeae expresses opacity-associated (Opa) protein adhesins that bind to various members of the carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. In this study, we have analyzed the mechanism underlying N. gonorrhoeae-induced CEACAM up-regulation in epithelial cells. Epithelial cells represent the first barrier for the microbial pathogen. We therefore characterized CEACAM expression in primary human ovarian surface epithelial (HOSE) cells and found that CEACAM1-3 (L, S) and CEACAM1-4 (L, S) splice variants mediate an increased Opa(52)-dependent gonoccocal binding to HOSE cells. Up-regulation of these CEACAM molecules in HOSE cells is a direct process that takes place within 2 h postinfection and depends on close contact between microbial pathogen and HOSE cells. N. gonorrhoeae-triggered CEACAM1 up-regulation involves activation of the transcription factor nuclear factor kappaB (NF-kappaB), which translocates as a p50/p65 heterodimer into the nucleus, and an NF-kappaB-specific inhibitory peptide inhibited CEACAM1-receptor up-regulation in N. gonorrhoeae-infected HOSE cells. Bacterial lipopolysaccharides did not induce NF-kappaB and CEACAM up-regulation, which corresponds to our findings that HOSE cells do not express toll-like receptor 4. The ability of N. gonorrhoeae to up-regulate its epithelial receptor CEACAM1 through NF-kappaB suggests an important mechanism allowing efficient bacterial colonization during the initial infection process. PMID:11751883

  13. Carthami Flos suppresses neutrophilic lung inflammation in mice, for which nuclear factor-erythroid 2-related factor-1 is required.

    PubMed

    Kim, Jeehye; Woo, Juyoun; Lyu, Ji Hyo; Song, Hyuk-Hwan; Jeong, Han-Sol; Ha, Ki-Tae; Choi, Jun-Yong; Han, Chang Woo; Ahn, Kyung-Seop; Oh, Sei-Ryang; Sadikot, Ruxana T; Kim, Kyun Ha; Joo, Myungsoo

    2014-03-15

    Carthami Flos (CF) is used in traditional Asian medicine to treat blood stagnation and its associated diseases in patients. While the underlying mechanism for this effect remains unknown, CF has been reported to activate Nrf2, a transcription factor that is critical in protecting from various inflammatory lung diseases including acute lung injury (ALI). Here, we examined whether CF has a therapeutic effect on lung inflammation and assessed the impact of Nrf2 on the effect of CF using an ALI mouse model. Treatment of bone marrow derived macrophages with standardized aqueous extract of CF (AECF) activated Nrf2, resulting in the expression of Nrf2 dependent genes including GCLC, NQO-1 and HO-1. While intranasal LPS treatment of wild type mice resulted in neutrophilic infiltration and a concomitant expression of pro-inflammatory cytokine genes in the lung, the hallmarks of ALI, an intratracheal spraying of AECF to the lung 2h after LPS treatment suppressed the inflammatory response. By contrast, similar treatment in nrf2(-/-) mice with AECF failed to attenuate the inflammatory response. Thus, our results show that AECF attenuated neutrophilic lung inflammation in mice, which required Nrf2. Since AECF administration abrogates lung inflammation after LPS treatment, we propose CF as a potential therapeutics in the management of ALI. PMID:24252335

  14. Rewiring of Cellular Membrane Homeostasis by Picornaviruses

    PubMed Central

    2014-01-01

    Viruses are obligatory intracellular parasites and utilize host elements to support key viral processes, including penetration of the plasma membrane, initiation of infection, replication, and suppression of the host's antiviral defenses. In this review, we focus on picornaviruses, a family of positive-strand RNA viruses, and discuss the mechanisms by which these viruses hijack the cellular machinery to form and operate membranous replication complexes. Studies aimed at revealing factors required for the establishment of viral replication structures identified several cellular-membrane-remodeling proteins and led to the development of models in which the virus used a preexisting cellular-membrane-shaping pathway “as is” for generating its replication organelles. However, as more data accumulate, this view is being increasingly questioned, and it is becoming clearer that viruses may utilize cellular factors in ways that are distinct from the normal functions of these proteins in uninfected cells. In addition, the proteincentric view is being supplemented by important new studies showing a previously unappreciated deep remodeling of lipid homeostasis, including extreme changes to phospholipid biosynthesis and cholesterol trafficking. The data on viral modifications of lipid biosynthetic pathways are still rudimentary, but it appears once again that the viruses may rewire existing pathways to generate novel functions. Despite remarkable progress, our understanding of how a handful of viral proteins can completely overrun the multilayered, complex mechanisms that control the membrane organization of a eukaryotic cell remains very limited. PMID:24920802

  15. A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis.

    PubMed

    Fujii, Masayuki; Shimokawa, Mariko; Date, Shoichi; Takano, Ai; Matano, Mami; Nanki, Kosaku; Ohta, Yuki; Toshimitsu, Kohta; Nakazato, Yoshihiro; Kawasaki, Kenta; Uraoka, Toshio; Watanabe, Toshiaki; Kanai, Takanori; Sato, Toshiro

    2016-06-01

    Colorectal tumor is a heterogeneous disease, with varying clinical presentation and prognosis in patients. To establish a platform encompassing this diversity, we generated 55 colorectal tumor organoid lines from a range of histological subtypes and clinical stages, including rare subtypes. Each line was defined by gene expression signatures and optimized for organoid culture according to niche factor requirements. In vitro and in xenografts, the organoids reproduced the histopathological grade and differentiation capacity of their parental tumors. Notably, we found that niche-independent growth is predominantly associated with the adenoma-carcinoma transition reflecting accumulation of multiple mutations. For matched pairs of primary and metastatic organoids, which had similar genetic profiles and niche factor requirements, the metastasis-derived organoids exhibited higher metastatic capacity. These observations underscore the importance of genotype-phenotype analyses at a single-patient level and the value of our resource to provide insights into colorectal tumorigenesis and patient-centered therapeutic development. PMID:27212702

  16. Influence of cell size on cellular uptake of gold nanoparticles.

    PubMed

    Wang, Xinlong; Hu, Xiaohong; Li, Jingchao; Russe, Adriana C Mulero; Kawazoe, Naoki; Yang, Yingnan; Chen, Guoping

    2016-06-24

    Nanoparticles (NPs) have shown great potential for biomedical applications because of their unique physical and structural properties. A critical aspect for their clinical applications is cellular uptake that depends on both particle properties and the cell mechanical state. Despite the numerous studies trying to disclose the influencing factors, the role of cell size on cellular uptake remains unclear. In this study, poly(vinyl alcohol) was micropatterned on tissue culture polystyrene surfaces using UV photolithography to control the cell size, and the influence of cell size on the cellular uptake of gold NPs was investigated. Cells with a large size had a high total cellular uptake, but showed a low average uptake per unit area of cells. Cells with a small size showed opposite behaviors. The results were related to both cell/NP contacting area and membrane tension. A large cell size was beneficial for a high total cellular uptake due to the large contact area with the NPs. On the other hand, the large cell size resulted in high membrane tension that required high wrapping energy for engulfing of NPs and thus reduced the uptake. The two oppositely working effects decided the cellular uptake of NPs. The results would shed light on the influence of the cellular microenvironment on cellular uptake behavior. PMID:27095054

  17. Risk Factors for Refractory and Delayed De novo Otitis Media Requiring Pressure Equalization Tube Insertion

    PubMed Central

    Bowe, Sarah N.; Jatana, Kris R.; Kang, D. Richard

    2016-01-01

    Objective Limited data exists regarding risk factors for otitis media in older children and specifically those for which surgical intervention is performed. This study investigated potential risk factors in this older age group who required pressure equalization tube (PET) insertion. Study design Retrospective cohort study Setting Tertiary care pediatric academic medical center Subjects and methods Children 6–12 years old undergoing PET insertion between October 1, 2010 and September 30, 2011. Data was stratified into two separate age cohorts (6–7 versus 8–12-year-olds) and compared using chi-square analysis. Results A total of 263 patients met study criteria. PET insertion was most common in 6 year-olds (36%, 95/263). Presence of siblings (p=0.03) and history of recurrent upper respiratory tract infection (p<0.01), otalgia (p<0.05), otorrhea (p<0.001), and nasal discharge (p<0.001) were common in the older cohort. No statistical difference was found for history of recurrent acute otitis media, allergy, asthma, or atopy between the two groups (p=0.23–0.92), although the overall prevalence of these conditions was high in both cohorts. Conclusion The 8–12-year-olds had a history of recurrent upper respiratory tract infection and more infectious symptoms than the 6–7-year-olds. Atopy can lead to a heightened susceptibility to upper respiratory tract infections and potential increase in the relative risk of otitis media. In our patient population, while there was no statistically significant difference in history of asthma, allergy, or atopy, the overall prevalence within both cohorts was relatively high. Therefore, this study provides insight into many pertinent and potentially modifiable risk factors for older children requiring PET insertion. PMID:27175444

  18. PsbU, a Protein Associated with Photosystem II, Is Required for the Acquisition of Cellular Thermotolerance in Synechococcus species PCC 70021

    PubMed Central

    Nishiyama, Yoshitaka; Los, Dmitry A.; Murata, Norio

    1999-01-01

    PsbU is an extrinsic protein of the photosystem II complex of cyanobacteria and red algae. Our previous in vitro studies (Y. Nishiyama, D.A. Los, H. Hayashi, N. Murata [1997] Plant Physiol 115: 1473–1480) revealed that PsbU stabilizes the oxygen-evolving machinery of the photosystem II complex against heat-induced inactivation in the cyanobacterium Synechococcus sp. PCC 7002. To elucidate the role of PsbU in vivo, we inactivated the psbU gene in Synechococcus sp. PCC 7002 by targeted mutagenesis. Inactivation of the psbU gene resulted in marked changes in the acclimative responses of cells to high temperature: Mutated cells were unable to increase the thermal stability of their oxygen-evolving machinery when grown at moderately high temperatures. Moreover, the cellular thermotolerance of the mutated cells failed to increase upon acclimation of cells to high temperature. The heat-shock response, as assessed in terms of the levels of homologs of the heat-shock proteins Hsp60, Hsp70, and Hsp17, was unaffected by the mutation in psbU, suggesting that heat-shock proteins were not involved in the changes in the acclimative responses. Our observations indicate that PsbU is involved in the mechanism that underlies the enhancement of the thermal stability of the oxygen-evolving machinery and that the stabilization of the oxygen-evolving machinery is crucial for the acquisition of cellular thermotolerance. PMID:10318707

  19. Characteristics of Active Tuberculosis Patients Requiring Intensive Care Monitoring and Factors Affecting Mortality

    PubMed Central

    Levent, Dalar; Emel, Eryüksel; Pelin, Uysal; Turkay, Akbaş; Aybüke, Kekeçoğlu

    2016-01-01

    Background One to three percent of cases of acute tuberculosis (TB) require monitoring in the intensive care unit (ICU). The purpose of this study is to establish and determine the mortality rate and discuss the causes of high mortality in these cases, and to evaluate the clinical and laboratory findings of TB patients admitted to the pulmonary ICU. Methods The data of patients admitted to the ICU of Yedikule Chest Diseases and Chest Surgery Education and Research Hospital due to active TB were retrospectively evaluated. Demographic characteristics, medical history, and clinical and laboratory findings were evaluated. Results Thirty-five TB patients (27 males) with a median age of 47 years were included, of whom 20 died within 30 days (57%). The Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA) scores were significantly higher, and albumin and PaO2/FIO2 levels were significantly lower, and shock, multiple organ failure, the need for invasive mechanical ventilation and drug resistance were more common in the patients who died. The mortality risk was 7.58 times higher in the patients requiring invasive mechanical ventilation. The SOFA score alone was a significant risk factor affecting survival. Conclusion The survival rate is low in cases of tuberculosis treated in an ICU. The predictors of mortality include the requirement of invasive mechanical ventilation and multiple organ failure. Another factor specific to TB patients is the presence of drug resistance, which should be taken seriously in countries where there is a high incidence of the disease. Finding new variables that can be established with new prospective studies may help to decrease the high mortality rate. PMID:27433176

  20. Minimum requirements for the function of eukaryotic translation initiation factor 2.

    PubMed Central

    Erickson, F L; Nika, J; Rippel, S; Hannig, E M

    2001-01-01

    Eukaryotic translation initiation factor 2 (eIF2) is a G protein heterotrimer required for GTP-dependent delivery of initiator tRNA to the ribosome. eIF2B, the nucleotide exchange factor for eIF2, is a heteropentamer that, in yeast, is encoded by four essential genes and one nonessential gene. We found that increased levels of wild-type eIF2, in the presence of sufficient levels of initiator tRNA, overcome the requirement for eIF2B in vivo. Consistent with bypassing eIF2B, these conditions also suppress the lethal effect of overexpressing the mammalian tumor suppressor PKR, an eIF2alpha kinase. The effects described are further enhanced in the presence of a mutation in the G protein (gamma) subunit of eIF2, gcd11-K250R, which mimics the function of eIF2B in vitro. Interestingly, the same conditions that bypass eIF2B also overcome the requirement for the normally essential eIF2alpha structural gene (SUI2). Our results suggest that the eIF2betagamma complex is capable of carrying out the essential function(s) of eIF2 in the absence of eIF2alpha and eIF2B and are consistent with the idea that the latter function primarily to regulate the level of eIF2.GTP.Met-tRNA(i)(Met) ternary complexes in vivo. PMID:11333223

  1. Factors Associated with Treatment Failure in Vertebral Osteomyelitis Requiring Spinal Instrumentation

    PubMed Central

    Arnold, Ryan; Croft, Lindsay; Gilliam, Bruce L.

    2014-01-01

    Patients with vertebral osteomyelitis may require instrumentation for spinal stabilization. Determining the optimal duration and type of antimicrobial therapy for these patients is challenging. The aim of this study was to examine risk factors for treatment failure, in particular antimicrobial duration, in a cohort of patients requiring spinal instrumentation for vertebral osteomyelitis. We conducted a retrospective cohort study of all patients with vertebral osteomyelitis who had spinal instrumentation between January 2002 and January 2012 at the University of Maryland Medical Center. The primary outcome measure was treatment failure >4 weeks postoperatively. We identified 131 patients with vertebral osteomyelitis requiring spinal instrumentation, 94 of whom had >4 weeks of follow-up and were included in the primary analysis. Treatment failure occurred in 22 of the 94 patients (23%) at a median of 4 months after surgery. Among patients who failed therapy, 20 of 22 failed within 1 year of surgery. Cervical and thoracic infection sites and the presence of negative cultures were associated with fewer treatment failures. Addition of rifampin and the use of chronic suppressive antimicrobials did not affect treatment failure rate. Twenty-three percent of patients with spinal instrumentation for vertebral osteomyelitis experienced treatment failure. Treatment failure almost always occurred within the first year of spinal instrumentation. PMID:24277039

  2. A "Whirly" transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis.

    PubMed

    Desveaux, Darrell; Subramaniam, Rajagopal; Després, Charles; Mess, Jean-Nicholas; Lévesque, Caroline; Fobert, Pierre R; Dangl, Jeffery L; Brisson, Normand

    2004-02-01

    Transcriptional reprogramming is critical for plant disease resistance responses; its global control is not well understood. Salicylic acid (SA) can induce plant defense gene expression and a long-lasting disease resistance state called systemic acquired resistance (SAR). Plant-specific "Whirly" DNA binding proteins were previously implicated in defense gene regulation. We demonstrate that the potato StWhy1 protein is a transcriptional activator of genes containing the PBF2 binding PB promoter element. DNA binding activity of AtWhy1, the Arabidopsis StWhy1 ortholog, is induced by SA and is required for both SA-dependent disease resistance and SA-induced expression of an SAR response gene. AtWhy1 is required for both full basal and specific disease resistance responses. The transcription factor-associated protein NPR1 is also required for SAR. Surprisingly, AtWhy1 activation by SA is NPR1 independent, suggesting that AtWhy1 works in conjunction with NPR1 to transduce the SA signal. Our analysis of AtWhy1 adds a critical component to the SA-dependent plant disease resistance response. PMID:14960277

  3. Heterodimerization of the transcription factors E2F-1 and DP-1 is required for binding to the adenovirus E4 (ORF6/7) protein.

    PubMed Central

    Helin, K; Harlow, E

    1994-01-01

    Adenovirus infection leads to E1A-dependent activation of the transcription factor E2F. E2F has recently been identified in complexes with cellular proteins such as the retinoblastoma protein (pRB) and the two pRB family members p107 and p130. E1A dissociates E2F from these cellular proteins, and another viral protein, E4 (ORF6/7), can bind to E2F. The binding of E4 to E2F induces the formation of a stable DNA-binding complex containing the two proteins, and stimulation of the adenovirus E2 early promoter can occur. Recent studies have shown that E2F is the combined activity of several proteins, and we demonstrate here that heterodimerization of two of these proteins, E2F-1 and DP-1, is required for stable binding to E4. This complex is formed independently of DNA binding and requires the C-terminal 20 amino acids of E4. Furthermore, the binding is dependent on a region of E2F-1 between amino acids 284 and 358. This region of E2F-1 is conserved in E2F-2 and E2F-3, and deletion of this region drastically reduces the transcriptional activity of the molecule without affecting DP-1 binding, suggesting that this region of the E2F transcription factors is involved in regulating their activity. Our experiments also demonstrate that pRB binding to the E2F-1/DP-1 heterodimer prevents the formation of an E2F-1/DP-1/E4 complex. Images PMID:8035503

  4. AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance

    PubMed Central

    Burla, Romina; Carcuro, Mariateresa; Raffa, Grazia D.; Galati, Alessandra; Raimondo, Domenico; Rizzo, Angela; La Torre, Mattia; Micheli, Emanuela; Ciapponi, Laura; Cenci, Giovanni; Cundari, Enrico; Musio, Antonio; Biroccio, Annamaria; Cacchione, Stefano; Gatti, Maurizio; Saggio, Isabella

    2015-01-01

    Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively

  5. A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells.

    PubMed Central

    Shafren, D R; Williams, D T; Barry, R D

    1997-01-01

    The composition of the cellular receptor complex for coxsackievirus B3 (CVB3) has been an area of much contention for the last 30 years. Recently, two individual components of a putative CVB3 cellular receptor complex have been identified as (i) decay-accelerating factor (DAF) and (ii) the coxsackievirus-adenovirus receptor protein (CAR). The present study elucidates the individual roles of DAF and CAR in cell entry of CVB3 Nancy. First, we confirm that the DAF-binding phenotype of CVB3 correlates to the presence of key amino acids located in the viral capsid protein, VP2. Second, using antibody blockade, we show that complete protection of permissive cells from infection by high input multiplicities of CVB3 requires a combination of both anti-DAF and anti-CAR antibodies. Finally, it is shown that expression of the CAR protein on the surface of nonpermissive DAF-expressing RD cells renders them highly susceptible to CVB3-mediated lytic infection. Therefore, although the majority of CVB3 Nancy attaches to the cell via DAF, only virus directly interacting with the CAR protein mediates lytic infection. The role of DAF in CVB3 cell infection may be analogous to that recently described for coxsackievirus A21 (D. R. Shafren, D. J. Dorahy, R. A. Ingham, G. F. Burns, and R. D. Barry, J. Virol. 71:4736-4743, 1997), in that DAF may act as a CVB3 sequestration site, enhancing viral presentation to the functional CAR protein. PMID:9371658

  6. Changes in gene expression and cellular localization of insulin-like growth factors 1 and 2 in the ovaries during ovary development of the yellowtail, Seriola quinqueradiata.

    PubMed

    Higuchi, Kentaro; Gen, Koichiro; Izumida, Daisuke; Kazeto, Yukinori; Hotta, Takuro; Takashi, Toshinori; Aono, Hideaki; Soyano, Kiyoshi

    2016-06-01

    A method of controlling the somatic growth and reproduction of yellowtail fish (Seriola quinqueradiata) is needed in order to establish methods for the efficient aquaculture production of the species. However, little information about the hormonal interactions between somatic growth and reproduction is available for marine teleosts. There is accumulating evidence that insulin-like growth factor (IGF), a major hormone related somatic growth, plays an important role in fish reproduction. As the first step toward understanding the physiological role of IGF in the development of yellowtail ovaries, we characterized the expression and cellular localization of IGF-1 and IGF-2 in the ovary during development. We histologically classified the maturity of two-year-old females with ovaries at various developmental stages into the perinucleolar (Pn), yolk vesicle (Yv), primary yolk (Py), secondary yolk and tertiary yolk (Ty) stages, according to the most advanced type of oocyte present. The IGF-1 gene expression showed constitutively high levels at the different developmental stages, although IGF-1 mRNA levels tended to increase from the Py to the Ty stage with vitellogenesis, reaching maximum levels during the Ty stage. The IGF-2 mRNA levels increased as ovarian development advanced. Using immunohistochemistry methods, immunoreactive IGF-1 was mainly detected in the theca cells of ovarian follicles during late secondary oocyte growth, and in part of the granulosa cells of Ty stage oocytes. IGF-2 immunoreactivity was observed in all granulosa cells in layer in Ty stage oocytes. These results indicate that follicular IGFs may be involved in yellowtail reproduction via autocrine/paracrine mechanisms. PMID:26764214

  7. Oxidative stress enables Epstein-Barr virus-induced B-cell transformation by posttranscriptional regulation of viral and cellular growth-promoting factors.

    PubMed

    Chen, X; Kamranvar, S A; Masucci, M G

    2016-07-21

    Infection of human B lymphocytes by Epstein-Barr virus (EBV) leads to the establishment of immortalized lymphoblastoid cell lines (LCLs) that are widely used as a model of viral oncogenesis. An early consequence of infection is the induction of DNA damage and activation of the DNA damage response, which limits the efficiency of growth transformation. The cause of the DNA damage remains poorly understood. We have addressed this question by comparing the response of B lymphocytes infected with EBV or stimulated with a potent B-cell mitogen. We found that although the two stimuli induce comparable proliferation during the first 10 days of culture, the EBV-infected blasts showed significantly higher levels of DNA damage, which correlated with stronger and sustained accumulation of reactive oxygen species (ROS). Treatment with ROS scavengers decreased DNA damage in both mitogen-stimulated and EBV-infected cells. However, while mitogen-induced proliferation was slightly improved, the proliferation of EBV-infected cells and the establishment of LCLs were severely impaired. Quenching of ROS did not affect the kinetics and magnitude of viral gene expression but was associated with selective downregulation of the viral LMP1 and phosphorylated cellular transcription factor STAT3 that have key roles in transformation. Analysis of the mechanism by which high levels of ROS support LMP1 expression revealed selective inhibition of viral microRNAs that target the LMP1 transcript. Our study provides novel insights into the role of EBV-induced oxidative stress in promoting B-cell immortalization and malignant transformation. PMID:26592445

  8. Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB

    PubMed Central

    Boer, Karin; Troost, Dirk; Spliet, Wim G. M.; van Rijen, Peter C.; Gorter, Jan A.

    2008-01-01

    Members of the vascular endothelial growth factor (VEGF) family are key signaling proteins in the induction and regulation of angiogenesis, both during development and in pathological conditions. However, signaling mediated through VEGF family proteins and their receptors has recently been shown to have direct effects on neurons and glial cells. In the present study, we immunocytochemically investigated the expression and cellular distribution of VEGFA, VEGFB, and their associated receptors (VEGFR-1 and VEGFR-2) in focal cortical dysplasia (FCD) type IIB from patients with medically intractable epilepsy. Histologically normal temporal cortex and perilesional regions displayed neuronal immunoreactivity (IR) for VEGFA, VEGFB, and VEGF receptors (VEGFR-1 and VEGFR-2), mainly in pyramidal neurons. Weak IR was observed in blood vessels and there was no notable glial IR within the grey and white matter. In all FCD specimens, VEGFA, VEGFB, and both VEGF receptors were highly expressed in dysplastic neurons. IR in astroglial and balloon cells was observed for VEGFA and its receptors. VEGFR-1 displayed strong endothelial staining in FCD. Double-labeling also showed expression of VEGFA, VEGFB and VEGFR-1 in cells of the microglia/macrophage lineage. The neuronal expression of both VEGFA and VEGFB, together with their specific receptors in FCD, suggests autocrine/paracrine effects on dysplastic neurons. These autocrine/paracrine effects could play a role in the development of FCD, preventing the death of abnormal neuronal cells. In addition, the expression of VEGFA and its receptors in glial cells within the dysplastic cortex indicates that VEGF-mediated signaling could contribute to astroglial activation and associated inflammatory reactions. PMID:18317782

  9. Cellular steatosis in ethanol oxidizing-HepG2 cells is partially controlled by the transcription factor, early growth response-1

    PubMed Central

    Thomes, Paul G.; Osna, Natalia A.; Davis, John S.; Donohue, Terrence M.

    2012-01-01

    Recent studies have shown that the transcription factor early growth response-1 (Egr-1) regulates ethanol-induced fatty liver. However, the mechanism(s) through which ethanol oxidation controls Egr-1 is unknown. Here, using recombinant hepatoma (HepG2; VL-17A) cells that metabolize ethanol, we show that alcohol dehydrogenase catalysis of ethanol oxidation and subsequent acetaldehyde production controls Egr-1 expression. Further, the induction of Egr-1 enhances expression of other steatosis-related genes, resulting in triglyceride accumulation. Ethanol exposure increased Egr-1 promoter activity, messenger RNA and Egr-1 protein levels in VL-17A cells. Elevated Egr-1 protein was sustained by an ethanol-induced decrease in proteasome activity, thereby stabilizing the Egr-1 protein. Egr-1 induction depended on ethanol oxidation, as it was prevented when ethanol oxidation was blocked. Ethanol exposure induced Egr-1 and triglyceride accumulation only in alcohol dehydrogenase-expressing cells that produced acetaldehyde. Such induction did not occur in parental, non-metabolizing HepG2 cells or in cells that express only cytochrome P450 2E1. However, direct exposure of HepG2 cells to acetaldehyde induced both Egr-1 protein and triglycerides. Egr-1 over-expression elevated triglyceride levels, which were augmented by ethanol exposure. However, these triglyceride levels did not exceed those in ethanol-exposed cells that had normal Egr-1 expression. Conversely, Egr-1 knockdown by siRNA only partially blocked ethanol-induced triglyceride accumulation and was associated not only with lower Egr-1 expression but also attenuation of SREBP1c and TNF-α mRNAs. Double knockdown of both Egr-1 and SREBP-1c abolished ethanol-elicited steatosis. Collectively, our findings provide important new insights into the temporal regulation by ethanol oxidation of Egr-1 and cellular steatosis. PMID:23103837

  10. Molecular and cellular analysis of the pH response transcription factor PacC in the fungal symbiont Epichloë festucae.

    PubMed

    Lukito, Yonathan; Chujo, Tetsuya; Scott, Barry

    2015-12-01

    In order to survive and adapt to the environment, it is imperative for fungi to be able to sense and respond to changes in extracellular pH conditions. In ascomycetes, sensing of extracellular pH is mediated by the Pal pathway resulting in activation of the PacC transcription factor at alkaline pH. The role of PacC in regulating fungal virulence and pathogenicity has been described in several pathogenic fungi but to date not in a symbiotic fungus. Epichloë festucae is a biotrophic fungal endophyte that forms a stable mutualistic interaction with Lolium perenne. In this study, pacC deletion (ΔpacC) and dominant active (pacC(C)) mutants were generated in order to study the cellular roles of PacC in E. festucae. Deletion of pacC resulted in increased sensitivity of the mutant to salt-stress but surprisingly did not affect the ability of the mutant to grow under alkaline pH conditions. Alkaline pH was observed to induce conidiation in wild-type E. festucae but not in the ΔpacC mutant. On the other hand the pacC(C) mutant had increased conidiation at neutral pH alone. Null pacC mutants had no effect on the symbiotic interaction with ryegrass plants whereas the pacC(C) mutant increased the tiller number. Examination of the growth of the pacC(C) mutant in the plant revealed the formation of aberrant convoluted hyphal structures and an increase in hyphal breakage, which are possible reasons for the altered host interaction phenotype. PMID:26529380

  11. JunB is required for endothelial cell morphogenesis by regulating core-binding factor β

    PubMed Central

    Licht, Alexander H.; Pein, Oliver T.; Florin, Lore; Hartenstein, Bettina; Reuter, Hendrik; Arnold, Bernd; Lichter, Peter; Angel, Peter; Schorpp-Kistner, Marina

    2006-01-01

    The molecular mechanism triggering the organization of endothelial cells (ECs) in multicellular tubules is mechanistically still poorly understood. We demonstrate that cell-autonomous endothelial functions of the AP-1 subunit JunB are required for proper endothelial morphogenesis both in vivo in mouse embryos with endothelial-specific ablation of JunB and in in vitro angiogenesis models. By cDNA microarray analysis, we identified core-binding factor β (CBFβ), which together with the Runx proteins forms the heterodimeric core-binding transcription complex CBF, as a novel JunB target gene. In line with our findings, expression of the CBF target MMP-13 was impaired in JunB-deficient ECs. Reintroduction of CBFβ into JunB-deficient ECs rescued the tube formation defect and MMP-13 expression, indicating an important role for CBFβ in EC morphogenesis. PMID:17158955

  12. Myoferlin is required for insulin-like growth factor response and muscle growth

    PubMed Central

    Demonbreun, Alexis R.; Posey, Avery D.; Heretis, Konstantina; Swaggart, Kayleigh A.; Earley, Judy U.; Pytel, Peter; McNally, Elizabeth M.

    2010-01-01

    Insulin-like growth factor (IGF) is a potent stimulus of muscle growth. Myoferlin is a membrane-associated protein important for muscle development and regeneration. Myoferlin-null mice have smaller muscles and defective myoblast fusion. To understand the mechanism by which myoferlin loss retards muscle growth, we found that myoferlin-null muscle does not respond to IGF1. In vivo after IGF1 infusion, control muscle increased myofiber diameter by 25%, but myoferlin-null muscle was unresponsive. Myoblasts cultured from myoferlin-null muscle and treated with IGF1 also failed to show the expected increase in fusion to multinucleate myotubes. The IGF1 receptor colocalized with myoferlin at sites of myoblast fusion. The lack of IGF1 responsiveness in myoferlin-null myoblasts was linked directly to IGF1 receptor mistrafficking as well as decreased IGF1 signaling. In myoferlin-null myoblasts, the IGF1 receptor accumulated into large vesicular structures. These vesicles colocalized with a marker of late endosomes/lysosomes, LAMP2, specifying redirection from a recycling to a degradative pathway. Furthermore, ultrastructural analysis showed a marked increase in vacuoles in myoferlin-null muscle. These data demonstrate that IGF1 receptor recycling is required for normal myogenesis and that myoferlin is a critical mediator of postnatal muscle growth mediated by IGF1.—Demonbreun, A. R., Posey, A. D., Heretis, K., Swaggart, K. A., Earley, J. U., Pytel, P., McNally, E. M. Myoferlin is required for insulin-like growth factor response and muscle growth. PMID:20008164

  13. Group 3 innate lymphoid cells continuously require the transcription factor GATA3 after commitment

    PubMed Central

    Zhong, Chao; Cui, Kairong; Wilhelm, Christoph; Hu, Gangqing; Mao, Kairui; Belkaid, Yasmine; Zhao, Keji; Zhu, Jinfang

    2015-01-01

    The transcription factor GATA3 is indispensable for the development of all interleukin-7 receptor α (IL-7Rα)-expressing innate lymphoid cells (ILCs). However, the functional role of low GATA3 expression in committed ILC3s has not been identified. We report that GATA3 regulates homeostasis of ILC3s by controlling IL-7Rα expression. In addition, GATA3 is critical for the development of the NKp46+ ILC3 subset by regulating the balance between the transcription factors T-bet and RORγt. Alhough GATA3 positively regulates NKp46+ ILC3 subset-specific genes, it negatively regulates CCR6+ ILC3 subset lymphoid tissue inducer (LTi)-specific genes in NKp46+ ILC3s. Furthermore, GATA3 is required for IL-22 production in both LTi and NKp46+ ILC3s. Thus, despite its low expression, GATA3 is critical for the homeostasis, development and function of ILC3 subsets. PMID:26595886

  14. Group 3 innate lymphoid cells continuously require the transcription factor GATA-3 after commitment.

    PubMed

    Zhong, Chao; Cui, Kairong; Wilhelm, Christoph; Hu, Gangqing; Mao, Kairui; Belkaid, Yasmine; Zhao, Keji; Zhu, Jinfang

    2016-02-01

    The transcription factor GATA-3 is indispensable for the development of all innate lymphoid cells (ILCs) that express the interleukin 7 receptor α-chain (IL-7Rα). However, the function of low GATA-3 expression in committed group 3 ILCs (ILC3 cells) has not been identified. We found that GATA-3 regulated the homeostasis of ILC3 cells by controlling IL-7Rα expression. In addition, GATA-3 served a critical function in the development of the NKp46(+) ILC3 subset by regulating the balance between the transcription factors T-bet and RORγt. Among NKp46(+) ILC3 cells, although GATA-3 positively regulated genes specific to the NKp46(+) ILC3 subset, it negatively regulated genes specific to lymphoid tissue-inducer (LTi) or LTi-like ILC3 cells. Furthermore, GATA-3 was required for IL-22 production in both ILC3 subsets. Thus, despite its low expression, GATA-3 was critical for the homeostasis, development and function of ILC3 subsets. PMID:26595886

  15. Whole Genome Sequencing Identifies a Novel Factor Required for Secretory Granule Maturation in Tetrahymena thermophila.

    PubMed

    Kontur, Cassandra; Kumar, Santosh; Lan, Xun; Pritchard, Jonathan K; Turkewitz, Aaron P

    2016-01-01

    Unbiased genetic approaches have a unique ability to identify novel genes associated with specific biological pathways. Thanks to next generation sequencing, forward genetic strategies can be expanded to a wider range of model organisms. The formation of secretory granules, called mucocysts, in the ciliate Tetrahymena thermophila relies, in part, on ancestral lysosomal sorting machinery, but is also likely to involve novel factors. In prior work, multiple strains with defects in mucocyst biogenesis were generated by nitrosoguanidine mutagenesis, and characterized using genetic and cell biological approaches, but the genetic lesions themselves were unknown. Here, we show that analyzing one such mutant by whole genome sequencing reveals a novel factor in mucocyst formation. Strain UC620 has both morphological and biochemical defects in mucocyst maturation-a process analogous to dense core granule maturation in animals. Illumina sequencing of a pool of UC620 F2 clones identified a missense mutation in a novel gene called MMA1 (Mucocyst maturation). The defects in UC620 were rescued by expression of a wild-type copy of MMA1, and disrupting MMA1 in an otherwise wild-type strain phenocopies UC620. The product of MMA1, characterized as a CFP-tagged copy, encodes a large soluble cytosolic protein. A small fraction of Mma1p-CFP is pelletable, which may reflect association with endosomes. The gene has no identifiable homologs except in other Tetrahymena species, and therefore represents an evolutionarily recent innovation that is required for granule maturation. PMID:27317773

  16. Whole Genome Sequencing Identifies a Novel Factor Required for Secretory Granule Maturation in Tetrahymena thermophila

    PubMed Central

    Kontur, Cassandra; Kumar, Santosh; Lan, Xun; Pritchard, Jonathan K.; Turkewitz, Aaron P.

    2016-01-01

    Unbiased genetic approaches have a unique ability to identify novel genes associated with specific biological pathways. Thanks to next generation sequencing, forward genetic strategies can be expanded to a wider range of model organisms. The formation of secretory granules, called mucocysts, in the ciliate Tetrahymena thermophila relies, in part, on ancestral lysosomal sorting machinery, but is also likely to involve novel factors. In prior work, multiple strains with defects in mucocyst biogenesis were generated by nitrosoguanidine mutagenesis, and characterized using genetic and cell biological approaches, but the genetic lesions themselves were unknown. Here, we show that analyzing one such mutant by whole genome sequencing reveals a novel factor in mucocyst formation. Strain UC620 has both morphological and biochemical defects in mucocyst maturation—a process analogous to dense core granule maturation in animals. Illumina sequencing of a pool of UC620 F2 clones identified a missense mutation in a novel gene called MMA1 (Mucocyst maturation). The defects in UC620 were rescued by expression of a wild-type copy of MMA1, and disrupting MMA1 in an otherwise wild-type strain phenocopies UC620. The product of MMA1, characterized as a CFP-tagged copy, encodes a large soluble cytosolic protein. A small fraction of Mma1p-CFP is pelletable, which may reflect association with endosomes. The gene has no identifiable homologs except in other Tetrahymena species, and therefore represents an evolutionarily recent innovation that is required for granule maturation. PMID:27317773

  17. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    SciTech Connect

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R. )

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV.

  18. Comprehensive identification of virulence factors required for respiratory melioidosis using Tn-seq mutagenesis

    PubMed Central

    Gutierrez, Maria G.; Yoder-Himes, Deborah R.; Warawa, Jonathan M.

    2015-01-01

    Respiratory melioidosis is a disease presentation of the biodefense pathogen, Burkholderia pseudomallei, which is frequently associated with a lethal septicemic spread of the bacteria. We have recently developed an improved respiratory melioidosis model to study the pathogenesis of Burkholderia pseudomallei in the lung (intubation-mediated intratracheal [IMIT] inoculation), which more closely models descriptions of human melioidosis, including prominent septicemic spread from the lung and reduced involvement of the upper respiratory tract. We previously demonstrated that the Type 3 Secretion System cluster 3 (T3SS3) is a critical virulence determinant for B. pseudomallei when delivered directly into the lung. We decided to comprehensively identify all virulence determinants required for respiratory melioidosis using the Tn-seq phenotypic screen, as well as to investigate which virulence determinants are required for dissemination to the liver and spleen. While previous studies have used Tn-seq to identify essential genes for in vitro cultured B. pseudomallei, this represents the first study to use Tn-seq to identify genes required for in vivo fitness. Consistent with our previous findings, we identified T3SS3 as the largest genetic cluster required for fitness in the lung. Furthermore, we identified capsular polysaccharide and Type 6 Secretion System cluster 5 (T6SS5) as the two additional major genetic clusters facilitating respiratory melioidosis. Importantly, Tn-seq did not identify additional, novel large genetic systems supporting respiratory melioidosis, although these studies identified additional small gene clusters that may also play crucial roles in lung fitness. Interestingly, other previously identified virulence determinants do not appear to be required for lung fitness, such as lipopolysaccharide. The role of T3SS3, capsule, and T6SS5 in lung fitness was validated by competition studies, but only T3SS3 was found to be important for respiratory

  19. Kruppel-like factor 5 is required for perinatal lung morphogenesis and function

    PubMed Central

    Wan, Huajing; Luo, Fengming; Wert, Susan E.; Zhang, Liqian; Xu, Yan; Ikegami, Machiko; Maeda, Yutaka; Bell, Sheila M.; Whitsett, Jeffrey A.

    2015-01-01

    The transition to air breathing after birth requires both anatomic and biochemical maturation of the lung. Lung morphogenesis is mediated by complex paracrine interactions between respiratory epithelial cells and mesenchymal cells that direct transcriptional programs guiding patterning and cytodifferentiation of the lung. In the present study, transgenic mice were generated in which the Kruppel-like factor 5 gene (Klf5) was conditionally deleted in respiratory epithelial cells in the fetal lung. Lack of KLF5 inhibited maturation of the lung during the saccular stage of development. Klf5Δ/Δ mice died of respiratory distress immediately after birth. Abnormalities in lung maturation and morphogenesis were observed in the respiratory epithelium, the bronchiolar smooth muscle, and the pulmonary vasculature. Respiratory epithelial cells of both the conducting and peripheral airways were immature. Surfactant phospholipids were decreased and lamellar bodies, the storage form of surfactant, were rarely found. mRNA microarray analysis demonstrated that KLF5 influenced the expression of genes regulating surfactant lipid and protein homeostasis, vasculogenesis, including Vegfa, and smooth muscle cell differentiation. KLF5 regulates genes controlling paracrine interactions during lung morphogenesis, as well as those regulating the maturation of the respiratory epithelium that is required for lung function after birth. PMID:18599506

  20. Human mitochondrial transcription factor A is required for the segregation of mitochondrial DNA in cultured cells.

    PubMed

    Kasashima, Katsumi; Sumitani, Megumi; Endo, Hitoshi

    2011-01-15

    The segregation and transmission of the mitochondrial genome in humans are complicated processes but are particularly important for understanding the inheritance and clinical abnormalities of mitochondrial disorders. However, the molecular mechanism of the segregation of mitochondrial DNA (mtDNA) is largely unclear. In this study, we demonstrated that human mitochondrial transcription factor A (TFAM) is required for the segregation of mtDNA in cultured cells. RNAi-mediated knockdown of TFAM in HeLa cells resulted in the enlarged mtDNA, as indicated by the assembly of fluorescent signals stained with PicoGreen. Fluorescent in situ hybridization confirmed the enlarged mtDNA and further showed the existence of increased numbers of mitochondria lacking mtDNA signals in TFAM knockdown cells. By complementation analysis, the C-terminal tail of TFAM, which enhances its affinity with DNA, was found to be required for the appropriate distribution of mtDNA. Furthermore, we found that TFAM knockdown induced asymmetric segregation of mtDNA between dividing daughter cells. These results suggest an essential role for human TFAM in symmetric segregation of mtDNA. PMID:20955698

  1. Adrenal Development in Mice Requires GATA4 and GATA6 Transcription Factors

    PubMed Central

    Jiménez, Elizabeth; Hatch, Heather M.; Jiang, Tianyu; Morse, Deborah A.; Fox, Shawna C.

    2015-01-01

    The adrenal glands consist of an outer cortex and an inner medulla, and their primary purposes include hormone synthesis and secretion. The adrenal cortex produces a complex array of steroid hormones, whereas the medulla is part of the sympathetic nervous system and produces the catecholamines epinephrine and norepinephrine. In the mouse, GATA binding protein (GATA) 4 and GATA6 transcription factors are coexpressed in several embryonic tissues, including the adrenal cortex. To explore the roles of GATA4 and GATA6 in mouse adrenal development, we conditionally deleted these genes in adrenocortical cells using the Sf1Cre strain of animals. We report here that mice with Sf1Cre-mediated double deletion of Gata4 and Gata6 genes lack identifiable adrenal glands, steroidogenic factor 1-positive cortical cells and steroidogenic gene expression in the adrenal location. The inactivation of the Gata6 gene alone (Sf1Cre;Gata6flox/flox) drastically reduced the adrenal size and corticosterone production in the adult animals. Adrenocortical aplasia is expected to result in the demise of the animal within 2 weeks after birth unless glucocorticoids are provided. In accordance, Sf1Cre;Gata4flox/floxGata6flox/flox females depend on steroid supplementation to survive after weaning. Surprisingly, Sf1Cre;Gata4flox/floxGata6flox/flox males appear to live normal lifespans as vital steroidogenic synthesis shifts to their testes. Our results reveal a requirement for GATA factors in adrenal development and provide a novel tool to characterize the transcriptional network controlling adrenocortical cell fates. PMID:25933105

  2. Characterization of the Host Factors Required for Hepadnavirus Covalently Closed Circular (ccc) DNA Formation

    PubMed Central

    Zhou, Tianlun; Block, Timothy M.; Guo, Ju-Tao

    2012-01-01

    Synthesis of the covalently closed circular (ccc) DNA is a critical, but not well-understood step in the life cycle of hepadnaviruses. Our previous studies favor a model that removal of genome-linked viral DNA polymerase occurs in the cytoplasm and the resulting deproteinized relaxed circular DNA (DP-rcDNA) is subsequently transported into the nucleus and converted into cccDNA. In support of this model, our current study showed that deproteinization of viral double-stranded linear (dsl) DNA also took place in the cytoplasm. Furthermore, we demonstrated that Ku80, a component of non-homologous end joining DNA repair pathway, was essential for synthesis of cccDNA from dslDNA, but not rcDNA. In an attempt to identify additional host factors regulating cccDNA biosynthesis, we found that the DP-rcDNA was produced in all tested cell lines that supported DHBV DNA replication, but cccDNA was only synthesized in the cell lines that accumulated high levels of DP-rcDNA, except for NCI-H322M and MDBK cells, which failed to synthesize cccDNA despite of the existence of nuclear DP-rcDNA. The results thus imply that while removal of the genome-linked viral DNA polymerase is most likely catalyzed by viral or ubiquitous host function(s), nuclear factors required for the conversion of DP-rcDNA into cccDNA and/or its maintenance are deficient in the above two cell lines, which could be useful tools for identification of the elusive host factors essential for cccDNA biosynthesis or maintenance. PMID:22912842

  3. Accessory Factors of Cytoplasmic Viral RNA Sensors Required for Antiviral Innate Immune Response

    PubMed Central

    Oshiumi, Hiroyuki; Kouwaki, Takahisa; Seya, Tsukasa

    2016-01-01

    Type I interferon (IFN) induces many antiviral factors in host cells. RIG-I-like receptors (RLRs) are cytoplasmic viral RNA sensors that trigger the signal to induce the innate immune response that includes type I IFN production. RIG-I and MDA5 are RLRs that form nucleoprotein filaments along viral double-stranded RNA, resulting in the activation of MAVS adaptor molecule. The MAVS protein forms a prion-like aggregation structure, leading to type I IFN production. RIG-I and MDA5 undergo post-translational modification. TRIM25 and Riplet ubiquitin ligases deliver a K63-linked polyubiquitin moiety to the RIG-I N-terminal caspase activation and recruitment domains (CARDs) and C-terminal region; the polyubiquitin chain then stabilizes the two-CARD tetramer structure required for MAVS assembly. MDA5 activation is regulated by phosphorylation. RIOK3 is a protein kinase that phosphorylates the MDA5 protein in a steady state, and PP1α/γ dephosphorylate this protein, resulting in its activation. RIG-I and MDA5 require cytoplasmic RNA helicases for their efficient activation. LGP2, another RLR, is an RNA helicase involved in RLR signaling. This protein does not possess N-terminal CARDs and, thus, cannot trigger downstream signaling by itself. Recent studies have revealed that this protein modulates MDA5 filament formation, resulting in enhanced type I IFN production. Several other cytoplasmic RNA helicases are involved in RLR signaling. DDX3, DHX29, DHX36, and DDX60 RNA helicases have been reported to be involved in RLR-mediated type I IFN production after viral infection. However, the underlying mechanism is largely unknown. Future studies are required to reveal the role of RNA helicases in the RLR signaling pathway. PMID:27252702

  4. Cellular Reprogramming

    PubMed Central

    Takahashi, Kazutoshi

    2014-01-01

    Nuclear reprogramming technology was first established more than 50 years ago. It can rejuvenate somatic cells by erasing the epigenetic memories and reconstructing a new pluripotent order. The recent discovery reviewed here that induced pluripotency can be achieved by a small set of transcription factors has opened up unprecedented opportunities in the pharmaceutical industry, the clinic, and laboratories. This technology allows us to access pathological studies by using patient-specific induced pluripotent stem (iPS) cells. In addition, iPS cells are also expected to be a rising star for regenerative medicine, as sources of transplantation therapy. PMID:24492711

  5. Fabrication of cellular materials

    NASA Astrophysics Data System (ADS)

    Prud'homme, Robert K.; Aksay, Ilhan A.; Garg, Rajeev

    1996-02-01

    Nature uses cellular materials in applications requiring strength while, simultaneously, minimizing raw materials requirements. Minimizing raw materials is efficient both in terms of the energy expended by the organism to synthesize the structure and in terms of the strength- to-weight ratio of the structure. Wood is the most obvious example of cellular bio-materials, and it is the focus of other presentations in this symposium. The lightweight bone structure of birds is another excellent example where weight is a key criterion. The anchoring foot of the common muscle [Mytilus edulis] whereby it attaches itself to objects is a further example of a biological system that uses a foam to fill space and yet conserve on raw materials. In the case of the muscle the foam is water filled and the foot structure distributes stress over a larger area so that the strength of the byssal thread from which it is suspended is matched to the strength of interfacial attachment of the foot to a substrate. In these examples the synthesis and fabrication of the cellular material is directed by intercellular, genetically coded, biochemical reactions. The resulting cell sizes are microns in scale. Cellular materials at the next larger scale are created by organisms at the next higher level of integration. For example an African tree frog lays her eggs in a gas/fluid foam sack she builds on a branch overhanging a pond. The outside of the foam sack hardens in the sun and prevents water evaporation. The foam structure minimizes the amount of fluid that needs to be incorporated into the sack and minimizes its weight. However, as far as the developing eggs are concerned, they are in an aqueous medium, i.e. the continuous fluid phase of the foam. After precisely six days the eggs hatch, and the solidified outer wall re-liquefies and dumps the emerging tadpoles into the pond below. The bee honeycomb is an example of a cellular material with exquisite periodicity at millimeter length scales. The

  6. Cellular and molecular basis of cerebellar development

    PubMed Central

    Martinez, Salvador; Andreu, Abraham; Mecklenburg, Nora; Echevarria, Diego

    2013-01-01

    Historically, the molecular and cellular mechanisms of cerebellar development were investigated through structural descriptions and studying spontaneous mutations in animal models and humans. Advances in experimental embryology, genetic engineering, and neuroimaging techniques render today the possibility to approach the analysis of molecular mechanisms underlying histogenesis and morphogenesis of the cerebellum by experimental designs. Several genes and molecules were identified to be involved in the cerebellar plate regionalization, specification, and differentiation of cerebellar neurons, as well as the establishment of cellular migratory routes and the subsequent neuronal connectivity. Indeed, pattern formation of the cerebellum requires the adequate orchestration of both key morphogenetic signals, arising from distinct brain regions, and local expression of specific transcription factors. Thus, the present review wants to revisit and discuss these morphogenetic and molecular mechanisms taking place during cerebellar development in order to understand causal processes regulating cerebellar cytoarchitecture, its highly topographically ordered circuitry and its role in brain function. PMID:23805080

  7. Negative feedback regulation of NF-κB-inducing kinase is proteasome-dependent but does not require cellular inhibitors of apoptosis.

    PubMed

    Gray, Carolyn M; McCorkell, Kelly A; Chunduru, Srinivas K; McKinlay, Mark A; May, Michael J

    2014-07-18

    Non-canonical NF-κB signaling is controlled by the precise regulation of NF-κB inducing kinase (NIK) stability. NIK is constitutively ubiquitylated by cellular inhibitor of apoptosis (cIAP) proteins 1 and 2, leading to its complete proteasomal degradation in resting cells. Following stimulation, cIAP-mediated ubiquitylation of NIK ceases and NIK is stabilized, allowing for inhibitor of κB kinase (IKK)α activation and non-canonical NF-κB signaling. Non-canonical NF-κB signaling is terminated by feedback phosphorylation of NIK by IKKα that promotes NIK degradation; however, the mechanism of active NIK protein turnover remains unknown. To address this question, we established a strategy to precisely distinguish between basal degradation of newly synthesized endogenous NIK and induced active NIK in stimulated cells. Using this approach, we found that IKKα-mediated degradation of signal-induced activated NIK occurs through the proteasome. To determine whether cIAP1 or cIAP2 play a role in active NIK turnover, we utilized a Smac mimetic (GT13072), which promotes degradation of these E3 ubiquitin ligases. As expected, GT13072 stabilized NIK in resting cells. However, loss of the cIAPs did not inhibit proteasome-dependent turnover of signal-induced NIK showing that unlike the basal regulatory mechanism, active NIK turnover is independent of cIAP1 and cIAP2. Our results therefore establish that the negative feedback control of IKKα-mediated NIK turnover occurs via a novel proteasome-dependent and cIAP-independent mechanism. PMID:24942881

  8. Epidermal growth factor receptor is required for estradiol-stimulated bovine satellite cell proliferation.

    PubMed

    Reiter, B C; Kamanga-Sollo, E; Pampusch, M S; White, M E; Dayton, W R

    2014-07-01

    The objective of this study was to assess the role of the epidermal growth factor receptor (EGFR) in estradiol-17β (E2)-stimulated proliferation of cultured bovine satellite cells (BSCs). Treatment of BSC cultures with AG1478 (a specific inhibitor of EGFR tyrosine kinase activity) suppresses E2-stimulated BSC proliferation (P < 0.05). In addition, E2-stimulated proliferation is completely suppressed (P < 0.05) in BSCs in which EGFR expression is silenced by treatment with EGFR small interfering RNA (siRNA). These results indicate that EGFR is required for E2 to stimulate proliferation in BSC cultures. Both AG1478 treatment and EGFR silencing also suppress proliferation stimulated by LR3-IGF-1 (an IGF1 analogue that binds normally to the insulin-like growth factor receptor (IGFR)-1 but has little or no affinity for IGF binding proteins) in cultured BSCs (P < 0.05). Even though EGFR siRNA treatment has no effect on IGFR-1β mRNA expression in cultured BSCs, IGFR-1β protein level is substantially reduced in BSCs treated with EGFR siRNA. These data suggest that EGFR silencing results in post-transcriptional modifications that result in decreased IGFR-1β protein levels. Although it is clear that functional EGFR is necessary for E2-stimulated proliferation of BSCs, the role of EGFR is not clear. Transactivation of EGFR may directly stimulate proliferation, or EGFR may function to maintain the level of IGFR-1β which is necessary for E2-stimulated proliferation. It also is possible that the role of EGFR in E2-stimulated BSC proliferation may involve both of these mechanisms. PMID:24906928

  9. Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus.

    PubMed

    Asnani, Mukta; Pestova, Tatyana V; Hellen, Christopher U T

    2016-04-20

    Cadicivirus (CDV) is unique amongst picornaviruses in having a dicistronic genome with internal ribosomal entry sites (IRESs) preceding both open reading frames. Here, we investigated initiation on the 5'-terminal IRES. We report that the 982-nt long 5'UTR comprises 12 domains (d1-d12), five of which (d8-d12, nts 341-950) constitute a divergent Type I IRES. It comprises central elements (the apex of d10, d11 and the following polypyrimidine tract) that are homologous to corresponding elements in canonical Type 1 IRESs, and non-canonical flanking domains (d8, d9 and d12).In vitroreconstitution revealed that as with canonical Type I IRESs, 48S complex formation requires eukaryotic initiation factors (eIFs) 1, 1A, 2, 3, 4A, 4B and 4G, and the poly(C) binding protein 2 (PCBP2), and starts with specific binding of eIF4G/eIF4A to d11. However, in contrast to canonical Type I IRESs, subsequent recruitment of 43S ribosomal complexes does not require direct interaction of their eIF3 constituent with the IRES-bound eIF4G. On the other hand, the CDV IRES forms a 40S/eIF3/IRES ternary complex, with multiple points of contact. These additional interactions with translational components could potentially stimulate recruitment of the 43S complex and alleviate the necessity for direct eIF4G/eIF3 interaction. PMID:26873921

  10. BIOGENESIS FACTOR REQUIRED FOR ATP SYNTHASE 3 Facilitates Assembly of the Chloroplast ATP Synthase Complex.

    PubMed

    Zhang, Lin; Duan, Zhikun; Zhang, Jiao; Peng, Lianwei

    2016-06-01

    Thylakoid membrane-localized chloroplast ATP synthases use the proton motive force generated by photosynthetic electron transport to produce ATP from ADP. Although it is well known that the chloroplast ATP synthase is composed of more than 20 proteins with α3β3γ1ε1δ1I1II1III14IV1 stoichiometry, its biogenesis process is currently unclear. To unravel the molecular mechanisms underlying the biogenesis of chloroplast ATP synthase, we performed extensive screening for isolating ATP synthase mutants in Arabidopsis (Arabidopsis thaliana). In the recently identified bfa3 (biogenesis factors required for ATP synthase 3) mutant, the levels of chloroplast ATP synthase subunits were reduced to approximately 25% of wild-type levels. In vivo labeling analysis showed that assembly of the CF1 component of chloroplast ATP synthase was less efficient in bfa3 than in the wild type, indicating that BFA3 is required for CF1 assembly. BFA3 encodes a chloroplast stromal protein that is conserved in higher plants, green algae, and a few species of other eukaryotic algae, and specifically interacts with the CF1β subunit. The BFA3 binding site was mapped to a region in the catalytic site of CF1β. Several residues highly conserved in eukaryotic CF1β are crucial for the BFA3-CF1β interaction, suggesting a coevolutionary relationship between BFA3 and CF1β. BFA3 appears to function as a molecular chaperone that transiently associates with unassembled CF1β at its catalytic site and facilitates subsequent association with CF1α during assembly of the CF1 subcomplex of chloroplast ATP synthase. PMID:27208269

  11. Initiation on the divergent Type I cadicivirus IRES: factor requirements and interactions with the translation apparatus

    PubMed Central

    Asnani, Mukta; Pestova, Tatyana V.; Hellen, Christopher U.T.

    2016-01-01

    Cadicivirus (CDV) is unique amongst picornaviruses in having a dicistronic genome with internal ribosomal entry sites (IRESs) preceding both open reading frames. Here, we investigated initiation on the 5′-terminal IRES. We report that the 982-nt long 5′UTR comprises 12 domains (d1-d12), five of which (d8-d12, nts 341–950) constitute a divergent Type I IRES. It comprises central elements (the apex of d10, d11 and the following polypyrimidine tract) that are homologous to corresponding elements in canonical Type 1 IRESs, and non-canonical flanking domains (d8, d9 and d12). In vitro reconstitution revealed that as with canonical Type I IRESs, 48S complex formation requires eukaryotic initiation factors (eIFs) 1, 1A, 2, 3, 4A, 4B and 4G, and the poly(C) binding protein 2 (PCBP2), and starts with specific binding of eIF4G/eIF4A to d11. However, in contrast to canonical Type I IRESs, subsequent recruitment of 43S ribosomal complexes does not require direct interaction of their eIF3 constituent with the IRES-bound eIF4G. On the other hand, the CDV IRES forms a 40S/eIF3/IRES ternary complex, with multiple points of contact. These additional interactions with translational components could potentially stimulate recruitment of the 43S complex and alleviate the necessity for direct eIF4G/eIF3 interaction. PMID:26873921

  12. Ciliary neurotrophic factor is not required for terminal sprouting and compensatory reinnervation of neuromuscular synapses: Re-evaluation of CNTF null mice

    PubMed Central

    Wright, Megan C.; Son, Young-Jin

    2007-01-01

    Loss of synaptic activity or innervation induces sprouting of intact motor nerve terminals that adds or restores nerve-muscle connectivity. Ciliary neurotrophic factor (CNTF) and terminal Schwann cells (tSCs) have been implicated as molecular and cellular mediators of the compensatory process. We wondered if the previously reported lack of terminal sprouting in CNTF null mice was due to abnormal reactivity of tSCs. To this end, we examined nerve terminal and tSC responses in CNTF null mice using experimental systems that elicited extensive sprouting in wildtype mice. Contrary to the previous report, we found that motor nerve terminals in the null mice sprout extensively in response to major sprouting-stimuli such as exogenously applied CNTF per se, botulinum toxin-elicited paralysis, and partial denervation by L4 spinal root transection. In addition, the number, length and growth patterns of terminal sprouts, and the extent of reinnervation by terminal or nodal sprouts, were similar in wildtype and null mice. tSCs in the null mice were also reactive to the sprouting-stimuli, elaborating cellular processes that accompanied terminal sprouts or guided reinnervation of denervated muscle fibers. Lastly, CNTF was absent in quiescent tSCs in intact, wildtype muscles and little if any was detected in reactive tSCs in denervated muscles. Thus, CNTF is not required for induction of nerve terminal sprouting, for reactivation of tSCs, and for compensatory reinnervation after nerve injury. We interpret these results to support the notion that compensatory sprouting in adult muscles is induced primarily by contact-mediated mechanisms, rather than by diffusible factors. PMID:17445802

  13. Cellular localization and expression of insulin-like growth factors (IGFs) and IGF binding proteins within the epiphyseal growth plate of the ovine fetus: possible functional implications.

    PubMed

    de los Rios, P; Hill, D J

    1999-04-01

    The insulin-like growth factors (IGFs) are important in the regulation of normal fetal musculoskeletal growth and development, and their actions have been shown to be modulated by IGF binding proteins (IGFBPs). Because the anatomical distribution of IGFBPs is likely to dictate IGF bioavailability, we determined the cellular distribution and expression of IGF-I, IGF-II, and IGFBP-1 to IGFBP-6 in epiphyseal growth plates of the fetal sheep, using immunocytochemistry and in situ hybridization. Little mRNA for IGF-I was detectable within the growth plates, but mRNA for IGF-II was abundant in germinal and proliferative chondrocytes, although absent from some differentiating chondrocytes and hypertrophic cells. Immunohistochemistry for IGF-I and IGF-II showed a presence of both peptides in all chondrocyte zones, including hypertrophic cells. Immunoreactive IGFBP-2 to -5 were localized within the germinal and proliferative zones of chondrocytes, but little immunoreactivity was present within the columns of differentiating cells. IGFBP immunoreactivity again appeared in hypertrophic chondrocytes. IGFBP mRNA in chondrocytes of the epiphyseal growth plate was below the detectable limit of in situ hybridization. However, low levels of mRNAs for IGFBP-2 to -6 were detected by the reverse transcriptase polymerase chain reaction. A co-localization of IGFBPs with IGF peptides in intact cartilage suggests that they may regulate IGF bioavailability and action locally. To test this hypothesis, monolayer cultures of chondrocytes were established from the proliferative zone of the growth plate, and were found to release immunoreactive IGF-II and to express mRNAs encoding IGFBP-2 to -6. Exogenous IGFBP-3, -4, and -5 had an inhibitory action on IGF-II-dependent DNA synthesis. IGFBP-2 had a biphasic effect, potentiating IGF-II action at low concentrations but inhibiting DNA synthesis at equimolar or greater concentrations relative to IGF-II. Long R3 IGF-I, which has a reduced binding

  14. Nutrient requirements and other factors involved in the culture of human kidney cells on microcarrier beads

    NASA Technical Reports Server (NTRS)

    Lewis, Marian L.; Morrison, Dennis R.

    1987-01-01

    The culture of human kidney cells on microcarrier beads in the Bioprocessing Laboratory at the Johnson Space Center is described. These were the first series of studies performed before and during 1983 to determine optimum conditions, including medium type, bead type and density. The composition of several medium types and the molecular weights of some common culture medium supplements and cellular proteins are included. The microgravity cell-to-bead attachment experiment performed on Space Transportation System Flight 8 is described.

  15. Dimerization of the CENP-A assembly factor HJURP is required for centromeric nucleosome deposition

    PubMed Central

    Zasadzińska, Ewelina; Barnhart-Dailey, Meghan C; Kuich, P Henning J L; Foltz, Daniel R

    2013-01-01

    The epigenetic mark of the centromere is thought to be a unique centromeric nucleosome that contains the histone H3 variant, centromere protein-A (CENP-A). The deposition of new centromeric nucleosomes requires the CENP-A-specific chromatin assembly factor HJURP (Holliday junction recognition protein). Crystallographic and biochemical data demonstrate that the Scm3-like domain of HJURP binds a single CENP-A–histone H4 heterodimer. However, several lines of evidence suggest that HJURP forms an octameric CENP-A nucleosome. How an octameric CENP-A nucleosome forms from individual CENP-A/histone H4 heterodimers is unknown. Here, we show that HJURP forms a homodimer through its C-terminal domain that includes the second HJURP_C domain. HJURP exists as a dimer in the soluble preassembly complex and at chromatin when new CENP-A is deposited. Dimerization of HJURP is essential for the deposition of new CENP-A nucleosomes. The recruitment of HJURP to centromeres occurs independent of dimerization and CENP-A binding. These data provide a mechanism whereby the CENP-A pre-nucleosomal complex achieves assembly of the octameric CENP-A nucleosome through the dimerization of the CENP-A chaperone HJURP. PMID:23771058

  16. Forkhead Box m1 transcription factor is required for perinatal lung function

    PubMed Central

    Kalin, Tanya V.; Wang, I-Ching; Meliton, Lucille; Zhang, Yufang; Wert, Susan E.; Ren, Xiaomeng; Snyder, Jonathan; Bell, Sheila M.; Graf, Lloyd; Whitsett, Jeffrey A.; Kalinichenko, Vladimir V.

    2008-01-01

    The Forkhead Box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is an important positive regulator of DNA replication and mitosis in a variety of cell types. Global deletion of Foxm1 in Foxm1−/− mice is lethal in the embryonic period, causing multiple abnormalities in the liver, heart, lung, and blood vessels. In the present study, Foxm1 was deleted conditionally in the respiratory epithelium (epFoxm1−/−). Surprisingly, deletion of Foxm1 did not alter lung growth, branching morphogenesis, or epithelial proliferation but inhibited lung maturation and caused respiratory failure after birth. Maturation defects in epFoxm1−/− lungs were associated with decreased expression of T1-α and aquaporin 5, consistent with a delay of type I cell differentiation. Expression of surfactant-associated proteins A, B, C, and D was decreased by deletion of Foxm1. Foxm1 directly bound and induced transcriptional activity of the mouse surfactant protein B and A (Sftpb and Sftpa) promoters in vitro, indicating that Foxm1 is a direct transcriptional activator of these genes. Foxm1 is critical for surfactant homeostasis and lung maturation before birth and is required for adaptation to air breathing. PMID:19033457

  17. A Serum Response Factor homolog is required for spore differentiation in Dictyostelium.

    PubMed

    Escalante, R; Sastre, L

    1998-10-01

    A homolog of the Serum Response Factor (SRF) has been isolated from Dictyostelium discoideum and its function studied by analyzing the consequences of its gene disruption. The MADS-box region of Dictyostelium SRF (DdSRF) is highly conserved with those of the human, Drosophila and yeast homologs. srfA is a developmentally regulated gene expressed in prespore and spore cells. This gene plays an essential role in sporulation as its disruption leads to abnormal spore morphology and loss of viability. The mutant spores were round and cellulose deposition seemed to be partially affected. Initial prestalk and prespore cell differentiation did not seem to be compromised in the mutant since the expression of several cell-type-specific markers were found to be unaffected. However, the mRNA level of the spore marker spiA was greatly reduced. Activation of the cAMP-dependent protein kinase (PKA) by 8-Br-cAMP was not able to fully bypass the morphological defects of srfA- mutant spores, although this treatment induced spiA mRNA expression. Our results suggest that DdSRF is required for full maturation of spores and participates in the regulation of the expression of the spore-coat marker spiA and probably other maturation genes necessary for proper spore cell differentiation. PMID:9729488

  18. Factors Impacting Habitable Volume Requirements: Results from the 2011 Habitable Volume Workshop

    NASA Technical Reports Server (NTRS)

    Simon, M.; Whitmire, A.; Otto, C.; Neubek, D. (Editor)

    2011-01-01

    This report documents the results of the Habitable Volume Workshop held April 18-21, 2011 in Houston, TX at the Center for Advanced Space Studies-Universities Space Research Association. The workshop was convened by NASA to examine the factors that feed into understanding minimum habitable volume requirements for long duration space missions. While there have been confinement studies and analogs that have provided the basis for the guidance found in current habitability standards, determining the adequacy of the volume for future long duration exploration missions is a more complicated endeavor. It was determined that an improved understanding of the relationship between behavioral and psychosocial stressors, available habitable and net habitable volume, and interior layouts was needed to judge the adequacy of long duration habitat designs. The workshop brought together a multi-disciplinary group of experts from the medical and behavioral sciences, spaceflight, human habitability disciplines and design professionals. These subject matter experts identified the most salient design-related stressors anticipated for a long duration exploration mission. The selected stressors were based on scientific evidence, as well as personal experiences from spaceflight and analogs. They were organized into eight major categories: allocation of space; workspace; general and individual control of environment; sensory deprivation; social monotony; crew composition; physical and medical issues; and contingency readiness. Mitigation strategies for the identified stressors and their subsequent impact to habitat design were identified. Recommendations for future research to address the stressors and mitigating design impacts are presented.

  19. Transcriptional activation of cyclooxygenase-2 by tumor suppressor p53 requires nuclear factor-kappaB.

    PubMed

    Benoit, V; de Moraes, E; Dar, N A; Taranchon, E; Bours, V; Hautefeuille, A; Tanière, P; Chariot, A; Scoazec, J-Y; de Moura Gallo, C V; Merville, M-P; Hainaut, P

    2006-09-21

    Overexpression of cyclooxygenase-2 (Cox-2) is thought to exert antiapoptotic effects in cancer. Here we show that the tumor suppressor p53 upregulated Cox-2 in esophageal and colon cancer cell lines by inducing the binding of nuclear factor-kappaB (NF-kappaB) to its response element in the COX-2 promoter. Inhibition of NF-kappaB prevented p53 induction of Cox-2 expression. Cooperation between p53 and NF-kappaB was required for activation of COX-2 promoter in response to daunomycin, a DNA-damaging agent. Pharmacological inhibition of Cox-2 enhanced apoptosis in response to daunomycin, in particular in cells containing active p53. In esophageal cancer, there was a correlation between Cox-2 expression and wild-type TP53 in Barrett's esophagus (BE) and in adenocarcinoma, but not in squamous cell carcinoma (P<0.01). These results suggest that p53 and NF-kappaB cooperate in upregulating Cox-2 expression, promoting cell survival in inflammatory precursor lesions such as BE. PMID:16682957

  20. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing.

    PubMed

    Muppavarapu, Mridula; Huch, Susanne; Nissan, Tracy

    2016-04-01

    Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation. PMID:26918764

  1. von Willebrand factor and factor VIII are independently required to form stable occlusive thrombi in injured veins

    PubMed Central

    Chauhan, Anil K.; Kisucka, Janka; Lamb, Colin B.; Bergmeier, Wolfgang

    2007-01-01

    von Willebrand factor (VWF) protects factor VIII (FVIII) from proteolysis and mediates the initial contact of platelets with the injured vessel wall, thus playing an important role in hemostasis and thrombosis. VWF is crucial for the formation of occlusive thrombi at arterial shear rates. However, with only a few conflicting studies published, the role of VWF in venous thrombosis is still unclear. Using gene-targeted mice, we show that in ferric chloride–injured veins platelet adhesion to subendothelium is decreased and thrombus growth is impaired in VWF−/− mice when compared with wild type (WT). We also observed increased embolization in the VWF−/− mice, which was due to lower FVIII levels in these mice as recombinant factor VIII (r-FVIII) restored thrombus stability. Despite normalization of blood clotting time and thrombus stability after r-FVIII infusion, the VWF−/− venules did not occlude. Transgenic platelets lacking the VWF receptor GPIbα extracellular domain showed decreased adhesion to injured veins. But, after a delay, all the injured venules occluded in these transgenic mice. Thus, VWF likely uses other adhesion receptors besides GPIbα in thrombus growth under venous shear conditions. Our studies document crucial roles for VWF and FVIII in experimental thrombosis under venous flow conditions in vivo. PMID:17119108

  2. An auxiliary peptide required for the function of two activation domains in upstream stimulatory factor 2 (USF2) transcription factor.

    PubMed

    Gourdon, L; Lefrançois-Martinez, A M; Viollet, B; Martinez, A; Kahn, A; Raymondjean, M

    1997-04-01

    Ubiquitous upstream stimulatory factors (USF1, USF2a and USF2b) are members of the basic-helix-loop-helix-leucine-zipper family of transcription factors that have been shown to be involved in the transcriptional response of the L-type pyruvate kinase (L-PK) gene to glucose. To understand the mechanisms of action of the USF2 isoforms, we initiated a series of co-transfection assays with deletion mutants and Ga14-USF2 fusions. The transactivating efficiency of the different native and mutant factors was determined at similar DNA binding activity. We found that: (i) exons 3- and 5-encoded regions are activation domains, (ii) a modulator domain encoded by exon 4 could be necessary to their additive action, (iii) a hexapeptide encoded by the first 5' codons of exon 6 is indispensable for transmitting activation due to both exon 3- and exon 5-encoded domains to the transcriptional machinery. Therefore, USF2 presents a modular structure and mediates transcriptional activation thanks to two non-autonomous activation domains dependent on an auxiliary peptide for expressing their activating potential. PMID:9680311

  3. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles

    PubMed Central

    2012-01-01

    Background Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact on the transfection efficiency of these vectors. Therefore, understanding the physicochemical properties that may influence the cellular uptake and the intracellular trafficking can aid the design of more efficient non-viral gene delivery systems. Recently, we developed novel amino acid-substituted gemini surfactants that showed higher transfection efficiency than their parent compound. In this study, we evaluated the mechanism of cellular uptake of the plasmid/gemini surfactant/helper lipid nanoparticles and their effect on the transfection efficiency. Results Nanoparticles were incubated with Sf 1 Ep cells in the presence of different endocytic inhibitors and gene expression (interferon-γ) was measured using ELISA. Clathrin-mediated and caveolae-mediated uptake were found to be equally contributing to cellular internalization of both P/12-7NH-12/L (parent gemini surfactant) and P/12-7NGK-12/L (amino acid-substituted gemini surfactant) nanoparticles. The plasmid and the helper lipid were fluorescently tagged to track the nanoparticles inside the cells, using confocal laser scanning microscopy. Transmission electron microscopy images showed that the P/12-7NGK-12/L particles were cylindrical while the P/12-7NH-12/L particles were spherical which may influence the cellular uptake behaviour of these particles. Dye exclusion assay and pH-titration of the nanoparticles suggested that high buffering capacity, pH-dependent increase in particle size and balanced DNA binding properties may be contributing to a more efficient endosomal escape of P/12-7NGK-12/L compared to the P/12-7NH-12/L nanoparticles, leading to higher gene expression. Conclusion Amino-acid substitution in the spacer of gemini surfactant did not alter the cellular uptake pathway, showing similar pattern to the

  4. Stimulation of proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization.

    PubMed Central

    Wiedłocha, A; Falnes, P O; Rapak, A; Muñoz, R; Klingenberg, O; Olsnes, S

    1996-01-01

    U2OS Dr1 cells, originating from a human osteosarcoma, are resistant to the intracellular action of diphtheria toxin but contain toxin receptors on their surfaces. These cells do not have detectable amounts of fibroblast growth factor receptors. When these cells were transfected with fibroblast growth factor receptor 4, the addition of acidic fibroblast growth factor to the medium induced tyrosine phosphorylation, DNA synthesis, and cell proliferation. A considerable fraction of the cell-associated growth factor was found in the nuclear fraction. When the growth factor was fused to the diphtheria toxin A fragment, it was still bound to the growth factor receptor and induced tyrosine phosphorylation but did not induce DNA synthesis or cell proliferation, nor was any fusion protein recovered in the nuclear fraction. On the other hand, when the fusion protein was associated with the diphtheria toxin B fragment to allow translocation to the cytosol by the toxin pathway, the fusion protein was targeted to the nucleus and stimulated both DNA synthesis and cell proliferation. In untransfected cells containing toxin receptors but not fibroblast growth factor receptors, the fusion protein was translocated to the cytosol and targeted to the nucleus, but in this case, it stimulated only DNA synthesis. These data indicate that the following two signals are required to stimulate cell proliferation in transfected U2OS Dr1 cells: the tyrosine kinase signal from the activated fibroblast growth factor receptor and translocation of the growth factor into the cell. PMID:8524304

  5. Structural Design Requirements and Factors of Safety for Spaceflight Hardware: For Human Spaceflight. Revision A

    NASA Technical Reports Server (NTRS)

    Bernstein, Karen S.; Kujala, Rod; Fogt, Vince; Romine, Paul

    2011-01-01

    This document establishes the structural requirements for human-rated spaceflight hardware including launch vehicles, spacecraft and payloads. These requirements are applicable to Government Furnished Equipment activities as well as all related contractor, subcontractor and commercial efforts. These requirements are not imposed on systems other than human-rated spacecraft, such as ground test articles, but may be tailored for use in specific cases where it is prudent to do so such as for personnel safety or when assets are at risk. The requirements in this document are focused on design rather than verification. Implementation of the requirements is expected to be described in a Structural Verification Plan (SVP), which should describe the verification of each structural item for the applicable requirements. The SVP may also document unique verifications that meet or exceed these requirements with NASA Technical Authority approval.

  6. Endoplasmic Reticulum Stress-Activated Transcription Factor ATF6α Requires the Disulfide Isomerase PDIA5 To Modulate Chemoresistance

    PubMed Central

    Higa, Arisa; Taouji, Said; Lhomond, Stéphanie; Jensen, Devon; Fernandez-Zapico, Martin E.; Simpson, Jeremy C.; Pasquet, Jean-Max; Schekman, Randy

    2014-01-01

    ATF6α, a membrane-anchored transcription factor from the endoplasmic reticulum (ER) that modulates the cellular response to stress as an effector of the unfolded-protein response (UPR), is a key player in the development of tumors of different origin. ATF6α activation has been linked to oncogenic transformation and tumor maintenance; however, the mechanism(s) underlying this phenomenon remains elusive. Here, using a phenotypic small interfering RNA (siRNA) screening, we identified a novel role for ATF6α in chemoresistance and defined the protein disulfide isomerase A5 (PDIA5) as necessary for ATF6α activation upon ER stress. PDIA5 contributed to disulfide bond rearrangement in ATF6α under stress conditions, thereby leading to ATF6α export from the ER and activation of its target genes. Further analysis of the mechanism demonstrated that PDIA5 promotes ATF6α packaging into coat protein complex II (COPII) vesicles and that the PDIA5/ATF6α activation loop is essential to confer chemoresistance on cancer cells. Genetic and pharmacological inhibition of the PDIA5/ATF6α axis restored sensitivity to the drug treatment. This work defines the mechanisms underlying the role of ATF6α activation in carcinogenesis and chemoresistance; furthermore, it identifies PDIA5 as a key regulator ATF6α-mediated cellular functions in cancer. PMID:24636989

  7. Pluripotency transcription factor Sox2 is strongly adsorbed by heparin but requires a protein transduction domain for cell internalization

    SciTech Connect

    Albayrak, Cem; Yang, William C.; Swartz, James R.

    2013-02-15

    Highlights: ► Both R9Sox2 and Sox2 bind heparin with comparable affinity. ► Both R9Sox2 and Sox2 bind to fibroblasts, but only R9Sox2 is internalized. ► Internalization efficiency of R9Sox2 is 0.3% of the administered protein. ► Heparan sulfate adsorption may be part of a mechanism for managing cell death. -- Abstract: The binding of protein transduction domain (PTD)-conjugated proteins to heparan sulfate is an important step in cellular internalization of macromolecules. Here, we studied the pluripotency transcription factor Sox2, with or without the nonaarginine (R9) PTD. Unexpectedly, we observed that Sox2 is strongly adsorbed by heparin and by the fibroblasts without the R9 PTD. However, only the R9Sox2 fusion protein is internalized by the cells. These results collectively show that binding to heparan sulfate is not sufficient for cellular uptake, thereby supporting a recent hypothesis that other proteins play a role in cell internalization of PTD-conjugated proteins.

  8. Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth

    SciTech Connect

    Takahashi, Hidekazu; Shirai, Atsuko; Matsuyama, Akihisa; Yoshida, Minoru

    2011-03-04

    Research highlights: {yields} Fission yeast manganese superoxide dismutase (MnSOD) is acetylated. {yields} The mitochondrial targeting sequence (MTS) is required for the acetylation of MnSOD. {yields} The MTS is not crucial for MnSOD activity, but is important for respiratory growth. {yields} Posttranslational regulation of MnSOD differs between budding and fission yeast. -- Abstract: Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.

  9. Combined structural, biochemical and cellular evidence demonstrates that both FGDF motifs in alphavirus nsP3 are required for efficient replication

    PubMed Central

    Schulte, Tim; Liu, Lifeng; Panas, Marc D.; Thaa, Bastian; Dickson, Nicole; Götte, Benjamin; Achour, Adnane

    2016-01-01

    Recent findings have highlighted the role of the Old World alphavirus non-structural protein 3 (nsP3) as a host defence modulator that functions by disrupting stress granules, subcellular phase-dense RNA/protein structures formed upon environmental stress. This disruption mechanism was largely explained through nsP3-mediated recruitment of the host G3BP protein via two tandem FGDF motifs. Here, we present the 1.9 Å resolution crystal structure of the NTF2-like domain of G3BP-1 in complex with a 25-residue peptide derived from Semliki Forest virus nsP3 (nsP3-25). The structure reveals a poly-complex of G3BP-1 dimers interconnected through the FGDF motifs in nsP3-25. Although in vitro and in vivo binding studies revealed a hierarchical interaction of the two FGDF motifs with G3BP-1, viral growth curves clearly demonstrated that two intact FGDF motifs are required for efficient viral replication. Chikungunya virus nsP3 also binds G3BP dimers via a hierarchical interaction, which was found to be critical for viral replication. These results highlight a conserved molecular mechanism in host cell modulation. PMID:27383630

  10. Prostaglandin E2 requirement for transforming growth factor beta 1 inhibition of elicited macrophage 14 kDa phospholipase A2 release.

    PubMed Central

    McCord, M.; Bolognese, B.; Marshall, L. A.

    1995-01-01

    1. Cultured elicited-peritoneal macrophages release a soluble type II 14 kDa phospholipase A2 (PLA2) over time, reaching a plateau by 20-24 h of incubation and maintaining these levels over 72 h. Prostaglandin E2 (PGE2) is also produced but does not plateau until 48-72 h. 2. Transforming growth factor beta 1 (TGF beta 1) reduces cellular 14 kDa PLA2 and its subsequent release by approximately half, but does not alter PGE2 production. Co-incubation of TGF beta 1 with indomethacin interfered, in a concentration-dependent manner, with the ability of TGF beta 1 to reduce cellular 14 kDa PLA2 and its subsequent release over 24 h. The regulation of TGF beta 1 was not specific to indomethacin since other non-steroidal anti-inflammatory drugs had the same effect. This suggested that cyclooxygenase activity was essential for TGF beta 1 to exert its effect and indeed, the addition of exogenous PGE2 restored the TGF beta 1 action. 3. PGE2 alone exerted a concentration-dependent negative feedback action on elicited-macrophage 14 kDa PLA2 release. The inhibitory concentration (IC50 = approximately 180 ng PGE2 ml-1) approximated the PGE2 levels measured in the 24 h macrophage conditioned media (85-140 ng PGE2 ml-1) where PLA2 release began to plateau. Further, incubation of cells with indomethacin over 48 h resulted in the enhancement of 14 kDa PLA2 activity compared to that released from untreated cells. Forskolin failed to inhibit 14 kDa PLA2 release, suggesting PGE2 was not acting through an increase in adenylate cyclase. 4. Taken together, the data are consistent with the immunosuppressive aspects reported for both mediators during inflammation and demonstrates the requirement of PGE2 for TGF beta 1 action on the elicited macrophage. Images Figure 3 PMID:8590973

  11. Phenylalanine Is Required to Promote Specific Developmental Responses and Prevents Cellular Damage in Response to Ultraviolet Light in Soybean (Glycine max) during the Seed-to-Seedling Transition

    PubMed Central

    Sullivan, Joe H.; Muhammad, DurreShahwar; Warpeha, Katherine M.

    2014-01-01

    UV-radiation elicits a suite of developmental (photomorphogenic) and protective responses in plants, but responses early post-germination have received little attention, particularly in intensively bred plants of economic importance. We examined germination, hypocotyl elongation, leaf pubescence and subcellular responses of germinating and/or etiolated soybean (Glycine max (L.) Merr.) seedlings in response to treatment with discrete wavelengths of UV-A or UV-B radiation. We demonstrate differential responses of germinating/young soybean seedlings to a range of UV wavelengths that indicate unique signal transduction mechanisms regulate UV-initiated responses. We have investigated how phenylalanine, a key substrate in the phenylpropanoid pathway, may be involved in these responses. Pubescence may be a key location for phenylalanine-derived protective compounds, as UV-B irradiation increased pubescence and accumulation of UV-absorbing compounds within primary leaf pubescence, visualized by microscopy and absorbance spectra. Mass spectrometry analysis of pubescence indicated that sinapic esters accumulate in the UV-irradiated hairs compared to unirradiated primary leaf tissue. Deleterious effects of some UV-B wavelengths on germination and seedling responses were reduced or entirely prevented by inclusion of phenylalanine in the growth media. Key effects of phenylalanine were not duplicated by tyrosine or tryptophan or sucrose, nor is the specificity of response due to the absorbance of phenylalanine itself. These results suggest that in the seed-to-seedling transition, phenylalanine may be a limiting factor in the development of initial mechanisms of UV protection in the developing leaf. PMID:25549094

  12. What Factors Are Required for Microbes to Grow, Survive, and Die?

    NASA Astrophysics Data System (ADS)

    Kornacki, Jeffrey L.

    This chapter focuses on the impact of extrinsic and intrinsic factors that impact the growth of bacteria and fungi in foods. A bacterium with a generation time of 20 min can grow from 1 cell to over a million in 7 h. Intrinsic factors that impact microbial growth or survival are those properties within the food itself. Examples of such factors are the amount of available (not chemically bound) water (i.e., water activity), the oxidation/reduction potential (ORP) of the food, its pH, and the type of acid present. Extrinsic factors are those applied to the food such as thermal processes and refrigeration. Sometimes extrinsic factors such as heating result in creation of intrinsic factors such as a reduced ORP. The dynamic interaction between intrinsic and extrinsic factors will have a profound effect on the type of microbiota in the ingredient, food, and factory environment. The extrinsic and intrinsic factors that impact microbial survival and growth in food or in factory niches are manifold and can be quite dynamic. This highlights the need for research to better understand the relationship of microbes to their environments. Food processors should exercise appropriate caution (e.g., via challenge studies, appropriate testing, selection, and monitoring of valid CCPs) when formulating new products. Assumptions about microbial behavior in one product may not necessarily apply to another.

  13. Long-duration isolation and confinement: Human factors issues and research requirements

    NASA Technical Reports Server (NTRS)

    Stuster, Jack

    1990-01-01

    Viewgraphs for a presentation on habitability issues and requirements of long-term isolation and confinement are provided. Analogous situations were scored, design implications were listed, and research requirements that could be satisfied by behavioral studies conducted in the Antarctic are itemized, as well as habitat projects already designed.

  14. Serum Response Factor-GATA Ternary Complex Required for Nuclear Signaling by a G-Protein-Coupled Receptor

    PubMed Central

    Morin, Steves; Paradis, Pierre; Aries, Anne; Nemer, Mona

    2001-01-01

    Endothelins are a family of biologically active peptides that are critical for development and function of neural crest-derived and cardiovascular cells. These effects are mediated by two G-protein-coupled receptors and involve transcriptional regulation of growth-responsive and/or tissue-specific genes. We have used the cardiac ANF promoter, which represents the best-studied tissue-specific endothelin target, to elucidate the nuclear pathways responsible for the transcriptional effects of endothelins. We found that cardiac-specific response to endothelin 1 (ET-1) requires the combined action of the serum response factor (SRF) and the tissue-restricted GATA proteins which bind over their adjacent sites, within a 30-bp ET-1 response element. We show that SRF and GATA proteins form a novel ternary complex reminiscent of the well-characterized SRF-ternary complex factor interaction required for transcriptional induction of c-fos in response to growth factors. In transient cotransfections, GATA factors and SRF synergistically activate atrial natriuretic factor and other ET-1-inducible promoters that contain both GATA and SRF binding sites. Thus, GATA factors may represent a new class of tissue-specific SRF accessory factors that account for muscle- and other cell-specific SRF actions. PMID:11158291

  15. Tiam1 and Rac1 are required for platelet-activating factor-induced endothelial junctional disassembly and increase in vascular permeability.

    PubMed

    Knezevic, Ivana I; Predescu, Sanda A; Neamu, Radu F; Gorovoy, Matvey S; Knezevic, Nebojsa M; Easington, Cordus; Malik, Asrar B; Predescu, Dan N

    2009-02-20

    It is known that platelet-activating factor (PAF) induces severe endothelial barrier leakiness, but the signaling mechanisms remain unclear. Here, using a wide range of biochemical and morphological approaches applied in both mouse models and cultured endothelial cells, we addressed the mechanisms of PAF-induced disruption of interendothelial junctions (IEJs) and of increased endothelial permeability. The formation of interendothelial gaps filled with filopodia and lamellipodia is the cellular event responsible for the disruption of endothelial barrier. We observed that PAF ligation of its receptor induced the activation of the Rho GTPase Rac1. Following PAF exposure, both Rac1 and its guanine nucleotide exchange factor Tiam1 were found associated with a membrane fraction from which they co-immunoprecipitated with PAF receptor. In the same time frame with Tiam1-Rac1 translocation, the junctional proteins ZO-1 and VE-cadherin were relocated from the IEJs, and formation of numerous interendothelial gaps was recorded. Notably, the response was independent of myosin light chain phosphorylation and thus distinct from other mediators, such as histamine and thrombin. The changes in actin status are driven by the PAF-induced localized actin polymerization as a consequence of Rac1 translocation and activation. Tiam1 was required for the activation of Rac1, actin polymerization, relocation of junctional associated proteins, and disruption of IEJs. Thus, PAF-induced IEJ disruption and increased endothelial permeability requires the activation of a Tiam1-Rac1 signaling module, suggesting a novel therapeutic target against increased vascular permeability associated with inflammatory diseases. PMID:19095647

  16. Tiam1 and Rac1 Are Required for Platelet-activating Factor-induced Endothelial Junctional Disassembly and Increase in Vascular Permeability*

    PubMed Central

    Knezevic, Ivana I.; Predescu, Sanda A.; Neamu, Radu F.; Gorovoy, Matvey S.; Knezevic, Nebojsa M.; Easington, Cordus; Malik, Asrar B.; Predescu, Dan N.

    2009-01-01

    It is known that platelet-activating factor (PAF) induces severe endothelial barrier leakiness, but the signaling mechanisms remain unclear. Here, using a wide range of biochemical and morphological approaches applied in both mouse models and cultured endothelial cells, we addressed the mechanisms of PAF-induced disruption of interendothelial junctions (IEJs) and of increased endothelial permeability. The formation of interendothelial gaps filled with filopodia and lamellipodia is the cellular event responsible for the disruption of endothelial barrier. We observed that PAF ligation of its receptor induced the activation of the Rho GTPase Rac1. Following PAF exposure, both Rac1 and its guanine nucleotide exchange factor Tiam1 were found associated with a membrane fraction from which they co-immunoprecipitated with PAF receptor. In the same time frame with Tiam1-Rac1 translocation, the junctional proteins ZO-1 and VE-cadherin were relocated from the IEJs, and formation of numerous interendothelial gaps was recorded. Notably, the response was independent of myosin light chain phosphorylation and thus distinct from other mediators, such as histamine and thrombin. The changes in actin status are driven by the PAF-induced localized actin polymerization as a consequence of Rac1 translocation and activation. Tiam1 was required for the activation of Rac1, actin polymerization, relocation of junctional associated proteins, and disruption of IEJs. Thus, PAF-induced IEJ disruption and increased endothelial permeability requires the activation of a Tiam1-Rac1 signaling module, suggesting a novel therapeutic target against increased vascular permeability associated with inflammatory diseases. PMID:19095647

  17. Characterization of the betaherpesviral pUL69 protein family reveals binding of the cellular mRNA export factor UAP56 as a prerequisite for stimulation of nuclear mRNA export and for efficient viral replication.

    PubMed

    Zielke, Barbara; Thomas, Marco; Giede-Jeppe, Antje; Müller, Regina; Stamminger, Thomas

    2011-02-01

    UL69 of human cytomegalovirus (HCMV) encodes a pleiotropic transactivator protein and has a counterpart in every member of the Herpesviridae family thus far sequenced. However, little is known about the conservation of the functions of the nuclear phosphoprotein pUL69 in the homologous proteins of other betaherpesviruses. Therefore, eukaryotic expression vectors were constructed for pC69 of chimpanzee cytomegalovirus, pRh69 of rhesus cytomegalovirus, pM69 of murine cytomegalovirus, pU42 of human herpesvirus 6, and pU42 of elephant endotheliotropic herpesvirus. Indirect immunofluorescence experiments showed that all pUL69 homologs expressed by these vectors were localized to the cell nucleus. Coimmunoprecipitation experiments identified homodimerization as a conserved feature of all homologs, whereas heterodimerization with pUL69 was restricted to its closer relatives. Further analyses demonstrated that pC69 and pRh69 were the only two homologs that functioned, like pUL69, as viral-mRNA export factors. As we had reported recently that nucleocytoplasmic shuttling and interaction with the cellular DExD/H-box helicases UAP56 and URH49 were prerequisites for the nuclear-mRNA export activity of pUL69, the homologs were characterized with regard to these properties. Heterokaryon assays demonstrated nucleocytoplasmic shuttling for all homologs, and coimmunoprecipitation and mRNA export assays revealed that the interaction of UAP56 and/or URH49 with pC69 or pRh69 was required for mRNA export activity. Moreover, characterization of HCMV recombinants harboring mutations within the N-terminal sequence of pUL69 revealed a strong replication defect of viruses expressing pUL69 variants that were deficient in UAP56 binding. In summary, homodimerization and nucleocytoplasmic shuttling activity were identified as conserved features of betaherpesviral pUL69 homologs. UAP56 binding was shown to represent a unique characteristic of members of the genus Cytomegalovirus that is required

  18. Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction

    PubMed Central

    Rothé, Benjamin; Saliou, Jean-Michel; Quinternet, Marc; Back, Régis; Tiotiu, Decebal; Jacquemin, Clémence; Loegler, Christine; Schlotter, Florence; Peña, Vlad; Eckert, Kelvin; Moréra, Solange; Dorsselaer, Alain Van; Branlant, Christiane; Massenet, Séverine; Sanglier-Cianférani, Sarah; Manival, Xavier; Charpentier, Bruno

    2014-01-01

    Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82–R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3′-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317–352–Hit1p70–164 complex reveals a novel mode of protein–protein association explaining the strong stability of the Rsa1p–Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p–Rsa1p–Hit1p heterotrimer. PMID:25170085

  19. Cellular Adaptation to VEGF-Targeted Antiangiogenic Therapy Induces Evasive Resistance by Overproduction of Alternative Endothelial Cell Growth Factors in Renal Cell Carcinoma12

    PubMed Central

    Han, Kyung Seok; Raven, Peter A.; Frees, Sebastian; Gust, Kilian; Fazli, Ladan; Ettinger, Susan; Hong, Sung Joon; Kollmannsberger, Cristian; Gleave, Martin E.; So, Alan I.

    2015-01-01

    Vascular endothelial growth factor (VEGF)–targeted antiangiogenic therapy significantly inhibits the growth of clear cell renal cell carcinoma (RCC). Eventually, therapy resistance develops in even the most responsive cases, but the mechanisms of resistance remain unclear. Herein, we developed two tumor models derived from an RCC cell line by conditioning the parental cells to two different stresses caused by VEGF-targeted therapy (sunitinib exposure and hypoxia) to investigate the mechanism of resistance to such therapy in RCC. Sunitinib-conditioned Caki-1 cells in vitro did not show resistance to sunitinib compared with parental cells, but when tested in vivo, these cells appeared to be highly resistant to sunitinib treatment. Hypoxia-conditioned Caki-1 cells are more resistant to hypoxia and have increased vascularity due to the upregulation of VEGF production; however, they did not develop sunitinib resistance either in vitro or in vivo. Human endothelial cells were more proliferative and showed increased tube formation in conditioned media from sunitinib-conditioned Caki-1 cells compared with parental cells. Gene expression profiling using RNA microarrays revealed that several genes related to tissue development and remodeling, including the development and migration of endothelial cells, were upregulated in sunitinib-conditioned Caki-1 cells compared with parental and hypoxia-conditioned cells. These findings suggest that evasive resistance to VEGF-targeted therapy is acquired by activation of VEGF-independent angiogenesis pathways induced through interactions with VEGF-targeted drugs, but not by hypoxia. These results emphasize that increased inhibition of tumor angiogenesis is required to delay the development of resistance to antiangiogenic therapy and maintain the therapeutic response in RCC. PMID:26678908

  20. Activation of the Transcription Factor NF-[Kappa]B by Retrieval Is Required for Long-Term Memory Reconsolidation

    ERIC Educational Resources Information Center

    Maldonado, Hector; Romano, Arturo; Merlo, Emiliano; Freudenthal, Ramiro

    2005-01-01

    Several studies support that stored memories undergo a new period of consolidation after retrieval. It is not known whether this process, termed reconsolidation, requires the same transcriptional mechanisms involved in consolidation. Increasing evidence supports the participation of the transcription factor NF-[Kappa]B in memory. This was…

  1. 20 CFR 416.936 - Treatment required for individuals whose drug addiction or alcoholism is a contributing factor...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.936 Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction...

  2. 20 CFR 404.1536 - Treatment required for individuals whose drug addiction or alcoholism is a contributing factor...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction or...), you must avail yourself of appropriate treatment for your drug addiction or alcoholism at...

  3. 20 CFR 404.1536 - Treatment required for individuals whose drug addiction or alcoholism is a contributing factor...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction or...), you must avail yourself of appropriate treatment for your drug addiction or alcoholism at...

  4. 20 CFR 404.1536 - Treatment required for individuals whose drug addiction or alcoholism is a contributing factor...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction or...), you must avail yourself of appropriate treatment for your drug addiction or alcoholism at...

  5. 20 CFR 416.936 - Treatment required for individuals whose drug addiction or alcoholism is a contributing factor...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.936 Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction...

  6. 20 CFR 416.936 - Treatment required for individuals whose drug addiction or alcoholism is a contributing factor...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.936 Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction...

  7. 20 CFR 404.1536 - Treatment required for individuals whose drug addiction or alcoholism is a contributing factor...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction or...), you must avail yourself of appropriate treatment for your drug addiction or alcoholism at...

  8. 20 CFR 404.1536 - Treatment required for individuals whose drug addiction or alcoholism is a contributing factor...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction or...), you must avail yourself of appropriate treatment for your drug addiction or alcoholism at...

  9. 20 CFR 416.936 - Treatment required for individuals whose drug addiction or alcoholism is a contributing factor...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.936 Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction...

  10. 20 CFR 416.936 - Treatment required for individuals whose drug addiction or alcoholism is a contributing factor...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... AGED, BLIND, AND DISABLED Determining Disability and Blindness Drug Addiction and Alcoholism § 416.936 Treatment required for individuals whose drug addiction or alcoholism is a contributing factor material to the determination of disability. (a) If we determine that you are disabled and drug addiction...

  11. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    SciTech Connect

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.; Russell, J.D.; Trupin, J.S.

    1988-01-01

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloid fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.

  12. [Type 2 diabetes mellitus and cardiovascular risk factors: is comprehensive treatment required?].

    PubMed

    Nadal, Josep Franch; Gutiérrez, Pedro Conthe

    2013-09-01

    Diabetes mellitus, especially type 2, is a metabolic disease involving the coexistence of several cardiovascular risk factors. Affected patients are therefore at high cardiovascular risk (2-3 times higher than that of men in the general population and 2-6 times higher than that of women). Cardiovascular disease is the main cause of death in the diabetic population, followed by cancer. Cardiovascular risk cannot be compared between diabetic patients and persons who have already shown one or more manifestations of cardiovascular disease (such as myocardial infarction). Single risk factors should be evaluated in combination with other risk factors and a person's cardiovascular risk should be individually assessed. Cardiovascular risk assessment in patients with diabetes through current calculations methods is complex because their ability to predict risk in individuals is very low. Studies such as that by Steno have demonstrated the validity of a comprehensive strategy to control all the risk factors present in persons with type 2 diabetes mellitus, which can reduce the development of micro- and macrovascular complications and mortality by almost 50%. The present article reviews each of the classical cardiovascular risk factors (hypertension, dyslipidemia, smoking, obesity, sedentariness) in relation to diabetes, as well as their recommended targets and the benefits of their control. In view of the above, a comprehensive approach is recommended to control the multiple risk factors that can coexist in persons with type 2 diabetes mellitus. PMID:24444518

  13. Superoxide radicals increase transforming growth factor-{beta}1 and collagen release from human lung fibroblasts via cellular influx through chloride channels

    SciTech Connect

    Qi Shufan Hartog, Gertjan J.M. den; Bast, Aalt

    2009-05-15

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of fibrosis. However, it remains unclear which ROS is the major cause. We hypothesize that superoxide elicits specific toxicity to human lung fibroblasts and plays an important role in the development of pulmonary fibrosis. In this study, superoxide generated from xanthine and xanthine oxidase activated lung fibroblasts by increasing the release of TGF-{beta}1 and collagen. This was associated with increased levels of intracellular superoxide. SOD and tempol, by scavenging respectively extracellular and intracellular superoxide, prevented the activation of fibroblasts induced by exposure to exogenous superoxide, whereas catalase did not. Moreover, hydrogen peroxide did not activate fibroblasts. Apparently, superoxide rather than hydrogen peroxide is involved in the regulation of TGF-{beta}1 and collagen release in lung fibroblasts. The chloride channel blocker, DIDS, inhibited the increase of intracellular superoxide levels induced by exogenous superoxide and consequently prevented the activation of fibroblasts. This suggests that the cellular influx of superoxide through chloride channels is essential for superoxide-induced activation of fibroblasts. ERK1/2 and p38 MAPKs are involved in the intracellular pathway leading to superoxide-induced fibroblasts activation. Superoxide possesses until now undiscovered specific pro-fibrotic properties in human lung fibroblasts. This takes place via the cellular influx of superoxide through chloride channels rather than via the formation of hydrogen peroxide.

  14. Dynamic Modulation of HIV-1 Integrase Structure and Function by Cellular Lens Epithelium-derived Growth Factor (LEDGF) Protein*S⃞

    PubMed Central

    McKee, Christopher J.; Kessl, Jacques J.; Shkriabai, Nikolozi; Dar, Mohd Jamal; Engelman, Alan; Kvaratskhelia, Mamuka

    2008-01-01

    The mandatory integration of the reverse-transcribed HIV-1 genome into host chromatin is catalyzed by the viral protein integrase (IN), and IN activity can be regulated by numerous viral and cellular proteins. Among these, LEDGF has been identified as a cellular cofactor critical for effective HIV-1 integration. The x-ray crystal structure of the catalytic core domain (CCD) of IN in complex with the IN binding domain (IBD) of LEDGF has furthermore revealed essential protein-protein contacts. However, mutagenic studies indicated that interactions between the full-length proteins were more extensive than the contacts observed in the co-crystal structure of the isolated domains. Therefore, we have conducted detailed biochemical characterization of the interactions between full-length IN and LEDGF. Our results reveal a highly dynamic nature of IN subunit-subunit interactions. LEDGF strongly stabilized these interactions and promoted IN tetramerization. Mass spectrometric protein footprinting and molecular modeling experiments uncovered novel intra- and inter-protein-protein contacts in the full-length IN-LEDGF complex that lay outside of the observable IBD-CCD structure. In particular, our studies defined the IN tetramer interface important for enzymatic activities and high affinity LEDGF binding. These findings provide new insight into how LEDGF modulates HIV-1 IN structure and function, and highlight the potential for exploiting the highly dynamic structure of multimeric IN as a novel therapeutic target. PMID:18801737

  15. Glucocorticoid Induction of Occludin Expression and Endothelial Barrier Requires Transcription Factor p54 NONO

    PubMed Central

    Keil, Jason M.; Liu, Xuwen; Antonetti, David A.

    2013-01-01

    Purpose. Glucocorticoids (GCs) effectively reduce retinal edema and induce vascular barrier properties but possess unwanted side effects. Understanding GC induction of barrier properties may lead to more effective and specific therapies. Previous work identified the occludin enhancer element (OEE) as a GC-responsive cis-element in the promoters of multiple junctional genes, including occludin, claudin-5, and cadherin-9. Here, we identify two OEE-binding factors and determine their contribution to GC induction of tight junction (TJ) gene expression and endothelial barrier properties. Methods. OEE-binding factors were isolated from human retinal endothelial cells (HREC) using DNA affinity purification followed by MALDI-TOF MS/MS. Chromatin immunoprecipitation (ChIP) assays determined in situ binding. siRNA was used to evaluate the role of trans-acting factors in transcription of TJ genes in response to GC stimulation. Paracellular permeability was determined by quantifying flux through a cell monolayer, whereas transendothelial electrical resistance (TER) was measured using the ECIS system. Results. MS/MS analysis of HREC nuclear extracts identified the heterodimer of transcription factors p54/NONO (p54) and polypyrimidine tract-binding protein-associated splicing factor (PSF) as OEE-binding factors, which was confirmed by ChIP assay from GC-treated endothelial cells and rat retina. siRNA knockdown of p54 demonstrated that this factor is necessary for GC induction of occludin and claudin-5 expression. Further, p54 knockdown ablated the pro-barrier effects of GC treatment. Conclusions. p54 is essential for GC-mediated expression of occludin, claudin-5, and barrier induction, and the p54/PSF heterodimer may contribute to normal blood-retinal barrier (BRB) induction in vivo. Understanding the mechanism of GC induction of BRB properties may provide novel therapies for macular edema. PMID:23640037

  16. Identification of cellular target genes of the Epstein-Barr virus transactivator Zta: activation of transforming growth factor beta igh3 (TGF-beta igh3) and TGF-beta 1.

    PubMed Central

    Cayrol, C; Flemington, E K

    1995-01-01

    The lytic switch transactivator Zta initiates the ordered cascade of Epstein-Barr virus gene expression that culminates in virus production. Zta is a sequence-specific DNA-binding protein that transactivates early viral promotes via cis-acting sequences. Activation of some of these genes is mediated through binding to consensus AP-1 promoter elements. This observation suggests that Zta may also regulate the expression of cellular genes. While many targets of Zta have been identified in the Epstein-Barr virus genome, putative host cell targets remain largely unknown. To address this issue, a tetracycline-regulated Zta expression system was generated, and differential hybridization screening was used to isolate Zta-responsive cellular genes. The major target identified by this analysis is a gene encoding a fasciclin-like secreted factor, transforming growth factor beta igh3 (TGF-beta igh3), that was originally identified as a gene that is responsive to the potent immunosuppressor TGF-beta 1. Northern (RNA) blot analysis demonstrated that induction of Zta expression results in a 10-fold increase in TGF-beta igh3 mRNA levels. Zta was also found to increase TGF-beta 1 mRNA levels as well as the amount of active TGF-beta 1 secreted into the medium. Interestingly, alpha 1-collagen IV, which has been shown to potentiate the effects of TGF-beta 1, is also a cellular target of Zta. These results suggest that Zta could play a role in modulating the host cell environment through activating the expression of secreted factors. PMID:7769680

  17. Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion.

    PubMed

    Capellera-Garcia, Sandra; Pulecio, Julian; Dhulipala, Kishori; Siva, Kavitha; Rayon-Estrada, Violeta; Singbrant, Sofie; Sommarin, Mikael N E; Walkley, Carl R; Soneji, Shamit; Karlsson, Göran; Raya, Ángel; Sankaran, Vijay G; Flygare, Johan

    2016-06-14

    Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC) development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs). We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM) can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development. PMID:27264182

  18. The Glucose Transporter (GLUT4) Enhancer Factor Is Required for Normal Wing Positioning in Drosophila

    PubMed Central

    Yazdani, Umar; Huang, Zhiyu; Terman, Jonathan R.

    2008-01-01

    Many of the transcription factors and target genes that pattern the developing adult remain unknown. In the present study, we find that an ortholog of the poorly understood transcription factor, glucose transporter (GLUT4) enhancer factor (Glut4EF, GEF) [also known as the Huntington's disease gene regulatory region-binding protein (HDBP) 1], plays a critical role in specifying normal wing positioning in adult Drosophila. Glut4EF proteins are zinc-finger transcription factors named for their ability to regulate expression of GLUT4 but nothing is known of Glut4EF's in vivo physiological functions. Here, we identify a family of Glut4EF proteins that are well conserved from Drosophila to humans and find that mutations in Drosophila Glut4EF underlie the wing-positioning defects seen in stretch mutants. In addition, our results indicate that previously uncharacterized mutations in Glut4EF are present in at least 11 publicly available fly lines and on the widely used TM3 balancer chromosome. These results indicate that previous observations utilizing these common stocks may be complicated by the presence of Glut4EF mutations. For example, our results indicate that Glut4EF mutations are also present on the same chromosome as two gain-of-function mutations of the homeobox transcription factor Antennapedia (Antp) and underlie defects previously attributed to Antp. In fact, our results support a role for Glut4EF in the modulation of morphogenetic processes mediated by Antp, further highlighting the importance of Glut4EF transcription factors in patterning and morphogenesis. PMID:18245850

  19. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B.

    PubMed

    Bond, M; Fabunmi, R P; Baker, A H; Newby, A C

    1998-09-11

    Matrix metalloproteinase (MMPs) enzymes are implicated in matrix remodelling during proliferative inflammatory processes including wound healing. We report here synergistic upregulation of MMP-9 protein and mRNA by platelet-derived growth factor (PDGF) or basic fibroblast growth factor (bFGF) in combination with interleukin-1alpha (IL-1alpha) or tumour necrosis factor-alpha (TNF-alpha) in primary rabbit and human dermal fibroblasts. The synergistic interaction between growth factors and cytokines implies that basement membrane remodelling is maximal physiologically when both are present together. The signalling pathways mediating this synergistic regulation are not understood, although analysis of the MMP-9 promoter has identified an essential proximal AP-1 element and an upstream nuclear factor kappa-B (NF-kappaB) site. Using electromobility shift assays, binding to the AP-1 site was only slightly increased by growth factors and cytokines. NF-kappaB binding was rapidly induced by IL-1alpha or TNF-alpha but was neither induced nor potentiated by bFGF or PDGF. Neither AP-1 nor NF-kappaB was therefore sufficient on its own for synergistic regulation. Using a recently developed adenovirus that overexpresses the inhibitory subunit, IkappaB alpha, we demonstrated an absolute requirement for NF-kappaB in upregulation of MMP-9. Activation of NF-kappaB binding by inflammatory cytokines was therefore necessary but not sufficient for synergistic upregulation of MMP-9. PMID:9755853

  20. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    PubMed

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody

  1. Cross-resistance to UV radiation of a cisplatin-resistant human cell line: Overexpression of cellular factors that recognize UV-modified DNA

    SciTech Connect

    Chao, C.C.; Huang, S.L.; Huang, H.M.; Lin-Chao, S. )

    1991-04-01

    A human cell line selected for cisplatin resistance (CPR) was irradiated with UV light and showed cross-resistance to UV light. Applying a modified chloramphenicol acetyltransferase assay, we observed that CPR cells acquired enhanced host cell reactivation of a transfected plasmid carrying UV damage. Gel mobility shift analysis indicated that two nuclear factors that recognize UV-modified DNA were overexpressed in CPR cells. In addition, factors that bind UV-modified DNA were independent from the factors that bind cisplatin-modified DNA. The significance of the identified binding factors, possibly DNA repair enzymes, is discussed.

  2. The AP-2 Transcription Factor APTF-2 Is Required for Neuroblast and Epidermal Morphogenesis in Caenorhabditis elegans Embryogenesis.

    PubMed

    Budirahardja, Yemima; Tan, Pei Yi; Doan, Thang; Weisdepp, Peter; Zaidel-Bar, Ronen

    2016-05-01

    The evolutionarily conserved family of AP-2 transcription factors (TF) regulates proliferation, differentiation, and apoptosis. Mutations in human AP-2 TF have been linked with bronchio-occular-facial syndrome and Char Syndrome, congenital birth defects characterized by craniofacial deformities and patent ductus arteriosus, respectively. How mutations in AP-2 TF cause the disease phenotypes is not well understood. Here, we characterize the aptf-2(qm27) allele in Caenorhabditis elegans, which carries a point mutation in the conserved DNA binding region of AP-2 TF. We show that compromised APTF-2 activity leads to defects in dorsal intercalation, aberrant ventral enclosure and elongation defects, ultimately culminating in the formation of morphologically deformed larvae or complete arrest during epidermal morphogenesis. Using cell lineaging, we demonstrate that APTF-2 regulates the timing of cell division, primarily in ABarp, D and C cell lineages to control the number of neuroblasts, muscle and epidermal cells. Live imaging revealed nuclear enrichment of APTF-2 in lineages affected by the qm27 mutation preceding the relevant morphogenetic events. Finally, we found that another AP-2 TF, APTF-4, is also essential for epidermal morphogenesis, in a similar yet independent manner. Thus, our study provides novel insight on the cellular-level functions of an AP-2 transcription factor in development. PMID:27176626

  3. The AP-2 Transcription Factor APTF-2 Is Required for Neuroblast and Epidermal Morphogenesis in Caenorhabditis elegans Embryogenesis

    PubMed Central

    Budirahardja, Yemima; Tan, Pei Yi; Weisdepp, Peter; Zaidel-Bar, Ronen

    2016-01-01

    The evolutionarily conserved family of AP-2 transcription factors (TF) regulates proliferation, differentiation, and apoptosis. Mutations in human AP-2 TF have been linked with bronchio-occular-facial syndrome and Char Syndrome, congenital birth defects characterized by craniofacial deformities and patent ductus arteriosus, respectively. How mutations in AP-2 TF cause the disease phenotypes is not well understood. Here, we characterize the aptf-2(qm27) allele in Caenorhabditis elegans, which carries a point mutation in the conserved DNA binding region of AP-2 TF. We show that compromised APTF-2 activity leads to defects in dorsal intercalation, aberrant ventral enclosure and elongation defects, ultimately culminating in the formation of morphologically deformed larvae or complete arrest during epidermal morphogenesis. Using cell lineaging, we demonstrate that APTF-2 regulates the timing of cell division, primarily in ABarp, D and C cell lineages to control the number of neuroblasts, muscle and epidermal cells. Live imaging revealed nuclear enrichment of APTF-2 in lineages affected by the qm27 mutation preceding the relevant morphogenetic events. Finally, we found that another AP-2 TF, APTF-4, is also essential for epidermal morphogenesis, in a similar yet independent manner. Thus, our study provides novel insight on the cellular-level functions of an AP-2 transcription factor in development. PMID:27176626

  4. The Arabidopsis Transcription Factor LUH/MUM1 Is Required for Extrusion of Seed Coat Mucilage1[W][OA

    PubMed Central

    Huang, Jun; DeBowles, Danisha; Esfandiari, Elahe; Dean, Gillian; Carpita, Nicholas C.; Haughn, George W.

    2011-01-01

    During differentiation, the Arabidopsis (Arabidopsis thaliana) seed coat epidermal cells secrete mucilage composed primarily of rhamnogalacturonan I that is extruded from the seed coat upon imbibition. The mucilage of the mucilage modified1 (mum1) mutant contains rhamnogalacturonan I that is more highly branched and lacks the ability to be extruded when exposed to water. Our cloning of the MUM1 gene shows that it encodes a putative transcription factor, LEUNIG_HOMOLOG (LUH). Cellular localization and transcriptional assay results suggest that LUH/MUM1 is a nucleus-localized transcriptional activator. LUH/MUM1 is expressed in all the tissues examined, including the seed coat. Quantitative reverse transcription-polymerase chain reaction data suggest that LUH/MUM1 is expressed throughout seed coat development, reaching peak expression late in differentiation. LUH1/MUM1 expression in plants homozygous for mutations in several genes encoding regulators of seed coat mucilage was unchanged. Thus, LUH/MUM1 expression appears to be independent of other transcription factors known to regulate aspects of seed coat mucilage biology. The expression in the luh/mum1 mutant of three genes encoding enzymes needed for mucilage extrusion, MUM2, SUBSILIN PROTEASE1.7, and β-XYLOSIDASE1, was reduced relative to that of the wild type. Overexpression of MUM2 could partially rescue the mum1 phenotype. These data suggest that LUH/MUM1 is a positive regulator of all three genes. PMID:21518777

  5. The Transcriptional Activator Krüppel-like Factor-6 Is Required for CNS Myelination

    PubMed Central

    Mariani, John N.; Zhang, Jingya; Liu, Jia; Sawai, Setsu; Chapouly, Candice; Horng, Sam; Kramer, Elisabeth G.; Loo, Hannah; Burlant, Natalie; Nudelman, German; Lee, Young-Min; Braun, David A.; Lu, Q. Richard; Narla, Goutham; Raine, Cedric S.; Friedman, Scott L.; Casaccia, Patrizia; John, Gareth R.

    2016-01-01

    Growth factors of the gp130 family promote oligodendrocyte differentiation, and viability, and myelination, but their mechanisms of action are incompletely understood. Here, we show that these effects are coordinated, in part, by the transcriptional activator Krüppel-like factor-6 (Klf6). Klf6 is rapidly induced in oligodendrocyte progenitors (OLP) by gp130 factors, and promotes differentiation. Conversely, in mice with lineage-selective Klf6 inactivation, OLP undergo maturation arrest followed by apoptosis, and CNS myelination fails. Overlapping transcriptional and chromatin occupancy analyses place Klf6 at the nexus of a novel gp130-Klf-importin axis, which promotes differentiation and viability in part via control of nuclear trafficking. Klf6 acts as a gp130-sensitive transactivator of the nuclear import factor importin-α5 (Impα5), and interfering with this mechanism interrupts step-wise differentiation. Underscoring the significance of this axis in vivo, mice with conditional inactivation of gp130 signaling display defective Klf6 and Impα5 expression, OLP maturation arrest and apoptosis, and failure of CNS myelination. PMID:27213272

  6. The Transcriptional Activator Krüppel-like Factor-6 Is Required for CNS Myelination.

    PubMed

    Laitman, Benjamin M; Asp, Linnéa; Mariani, John N; Zhang, Jingya; Liu, Jia; Sawai, Setsu; Chapouly, Candice; Horng, Sam; Kramer, Elisabeth G; Mitiku, Nesanet; Loo, Hannah; Burlant, Natalie; Pedre, Xiomara; Hara, Yuko; Nudelman, German; Zaslavsky, Elena; Lee, Young-Min; Braun, David A; Lu, Q Richard; Narla, Goutham; Raine, Cedric S; Friedman, Scott L; Casaccia, Patrizia; John, Gareth R

    2016-05-01

    Growth factors of the gp130 family promote oligodendrocyte differentiation, and viability, and myelination, but their mechanisms of action are incompletely understood. Here, we show that these effects are coordinated, in part, by the transcriptional activator Krüppel-like factor-6 (Klf6). Klf6 is rapidly induced in oligodendrocyte progenitors (OLP) by gp130 factors, and promotes differentiation. Conversely, in mice with lineage-selective Klf6 inactivation, OLP undergo maturation arrest followed by apoptosis, and CNS myelination fails. Overlapping transcriptional and chromatin occupancy analyses place Klf6 at the nexus of a novel gp130-Klf-importin axis, which promotes differentiation and viability in part via control of nuclear trafficking. Klf6 acts as a gp130-sensitive transactivator of the nuclear import factor importin-α5 (Impα5), and interfering with this mechanism interrupts step-wise differentiation. Underscoring the significance of this axis in vivo, mice with conditional inactivation of gp130 signaling display defective Klf6 and Impα5 expression, OLP maturation arrest and apoptosis, and failure of CNS myelination. PMID:27213272

  7. Cellular signaling protective against noise-induced hearing loss – A role for novel intrinsic cochlear signaling involving corticotropin-releasing factor?

    PubMed

    Vetter, Douglas E

    2015-09-01

    Hearing loss afflicts approximately 15% of the world's population, and crosses all socioeconomic boundaries. While great strides have been made in understanding the genetic components of syndromic and non-syndromic hearing loss, understanding of the mechanisms underlying noise-induced hearing loss (NIHL) have come much more slowly. NIHL is not simply a mechanism by which older individuals loose their hearing. Significantly, the incidence of NIHL is increasing, and is now involving ever younger populations. This may predict future increased occurrences of hearing loss. Current research has shown that even short-term exposures to loud sounds generating what was previously considered temporary hearing loss, actually produces an almost immediate and permanent loss of specific populations of auditory nerve fibers. Additionally, recurrent exposures to intense sound may hasten age-related hearing loss. While NIHL is a significant medical concern, to date, few compounds have delivered significant protection, arguing that new targets need to be identified. In this commentary, we will explore cellular signaling processes taking place in the cochlea believed to be involved in protection against hearing loss, and highlight new data suggestive of novel signaling not previously recognized as occurring in the cochlea, that is perhaps protective of hearing. This includes a recently described local hypothalamic-pituitary-adrenal axis (HPA)-like signaling system fully contained in the cochlea. This system may represent a local cellular stress-response system based on stress hormone release similar to the systemic HPA axis. Its discovery may hold hope for new drug therapies that can be delivered directly to the cochlea, circumventing systemic side effects. PMID:26074267

  8. A Novel Interaction between FLICE-Associated Huge Protein (FLASH) and E2A Regulates Cell Proliferation and Cellular Senescence via Tumor Necrosis Factor (TNF)-Alpha-p21WAF1/CIP1 Axis

    PubMed Central

    Hirano, Takahiro; Murakami, Taichi; Ono, Hiroyuki; Sakurai, Akiko; Tominaga, Tatsuya; Takahashi, Toshikazu; Nagai, Kojiro; Doi, Toshio; Abe, Hideharu

    2015-01-01

    Dysregulation of the cell proliferation has been implicated in the pathophysiology of a number of diseases. Cellular senescence limits proliferation of cancer cells, preventing tumorigenesis and restricting tissue damage. However, the role of cellular senescence in proliferative nephritis has not been determined. The proliferative peak in experimental rat nephritis coincided with a peak in E2A expression in the glomeruli. Meanwhile, E12 (an E2A-encoded transcription factor) did not promote proliferation of Mesangial cells (MCs) by itself. We identified caspase-8-binding protein FLICE-associated huge protein (FLASH) as a novel E2A-binding partner by using a yeast two-hybrid screening. Knockdown of FLASH suppressed proliferation of MCs. This inhibitory effect was partially reversed by the knockdown of E2A. In addition, the knockdown of FLASH induced cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) expression, but did not affect p53 expression. Furthermore, overexpression of E12 and E47 induced p21, but not p53 in MCs, in the absence of FLASH. We also demonstrated that E2A and p21 expression at the peak of proliferation was followed by significant induction of FLASH in mesangial areas in rat proliferative glomerulonephritis. Moreover, we revealed that FLASH negatively regulates cellular senescence via the interaction with E12. We also demonstrated that FLASH is involved in the TNF-α-induced p21 expressions. These results suggest that the functional interaction of E2A and FLASH play an important role in cell proliferation and cellular senescence via regulation of p21 expression in experimental glomerulonephritis. PMID:26208142

  9. Beyond Transcription Factors: The Role of Chromatin Modifying Enzymes in Regulating Transcription Required for Memory

    ERIC Educational Resources Information Center

    Barrett, Ruth M.; Wood, Marcelo A.

    2008-01-01

    One of the alluring aspects of examining chromatin modifications in the role of modulating transcription required for long-term memory processes is that these modifications may provide transient and potentially stable epigenetic marks in the service of activating and/or maintaining transcriptional processes. These, in turn, may ultimately…

  10. Cellular Phone Towers

    MedlinePlus

    ... the call. How are people exposed to the energy from cellular phone towers? As people use cell ... where people can be exposed to them. The energy from a cellular phone tower antenna, like that ...

  11. Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity

    SciTech Connect

    Atkinson, E.M.; Long, S.R. ); Palcic, M.M.; Hindsgaul, O. )

    1994-08-30

    Rhizobium bacteria synthesize N-acylated [beta]-1,4-N-acetylglucosamine lipooligosaccharides, called Nod factors, which act as morphogenic signal molecules to legume roots during development of nitrogen-fixing nodules. The biosynthesis of Nod factors is genetically dependent upon the nodulation (nod) genes, including the common nod genes nodABC. We used the Rhizobium meliloti NodH sulfotransferase to prepare [sup 35]S-labeled oligosaccharides which served as metabolic tracers for Nod enzyme activities. This approach provides a general method for following chitooligosaccharide modifications. We found nodAB-dependent conversion of N-acetylchitotetraose (chitotetraose) monosulfate into hydrophobic compounds which by chromatographic and chemical tests were equivalent to acylated Nod factors. Sequential incubation of labeled intermediates with Escherichia coli containing either NodA or NodB showed that NodB was required before NodA during Nod factor biosynthesis. The acylation activity was sensitive to oligosaccharide chain length, with chitotetraose serving as a better substrate than chitobiose or chitotriose. We constructed a putative Nod factor intermediate, GlcN-[beta]1,4-(GlcNac)[sub 3], by enzymatic synthesis and labeled it by NodH-mediated sulfation to create a specific metabolic probe. Acylation of this oligosaccharide required only NodA. These results confirm previous reports that NodB is an N-deacetylase and suggest that NodA is an N-acyltransferase. 31 refs., 6 figs.

  12. A fragment of anthrax lethal factor delivers proteins to the cytosol without requiring protective antigen

    PubMed Central

    Kushner, Nicholas; Zhang, Dong; Touzjian, Neal; Essex, Max; Lieberman, Judy; Lu, Yichen

    2003-01-01

    Anthrax protective antigen (PA) is a 735-aa polypeptide that facilitates the exit of anthrax lethal factor (LF) from the endosome to the cytosol where the toxin acts. We recently found, however, that a fusion protein of the detoxified N-terminal domain of lethal factor (LFn) with a foreign peptide could induce CD8 T cell immune responses in the absence of PA. Because CD8 T cells recognize peptides derived from proteins degraded in the cytosol, this result suggests that lethal factor may be capable of entering the cytosol independently of PA. To investigate this further, the intracellular trafficking of an LFn-enhanced green fluorescent protein fusion protein (LFn-GFP) in the presence or absence of PA was examined by using confocal microscopy. LFn-GFP is able to enter the cytosol without PA. Moreover, it efficiently colocalizes with the proteosome 20s subunit, which degrades proteins into peptides for presentation to CD8 T cells by the MHC class I pathway. We further demonstrate that in the presence of an immune adjuvant LFn fusion protein without PA is able to effectively elicit anti-HIV cytotoxic T lymphocyte in inbred mice. These results indicate that LFn may be used without PA in a protein vaccine as a carrier to deliver antigens into the cytosol for efficient induction of T lymphocyte responses. Furthermore, these results enable us to propose a modified molecular mechanism of anthrax lethal toxin. PMID:12740437

  13. Nuclear localization of Src-family tyrosine kinases is required for growth factor-induced euchromatinization

    SciTech Connect

    Takahashi, Akinori; Obata, Yuuki; Fukumoto, Yasunori; Nakayama, Yuji; Kasahara, Kousuke; Kuga, Takahisa; Higashiyama, Yukihiro; Saito, Takashi; Yokoyama, Kazunari K.; Yamaguchi, Naoto

    2009-04-15

    Src-family kinases (SFKs), which participate in various signaling events, are found at not only the plasma membrane but also several subcellular compartments, including the nucleus. Nuclear structural changes are frequently observed during transcription, cell differentiation, senescence, tumorigenesis, and cell cycle. However, little is known about signal transduction in the alteration of chromatin texture. Here, we develop a pixel imaging method for quantitatively evaluating chromatin structural changes. Growth factor stimulation increases euchromatic hypocondensation and concomitant heterochromatic hypercondensation in G{sub 1} phase, and the levels reach a plateau by 30 min, sustain for at least 5 h and return to the basal levels after 24 h. Serum-activated SFKs in the nucleus were more frequently detected in the euchromatin areas than the heterochromatin areas. Nuclear expression of kinase-active SFKs, but not unrelated Syk kinase, drastically increases both euchromatinization and heterochromatinization in a manner dependent on the levels of nuclear tyrosine phosphorylation. However, growth factor stimulation does not induce chromatin structural changes in SYF cells lacking SFKs, and reintroduction of one SFK member into SYF cells can, albeit insufficiently, induce chromatin structural changes. These results suggest that nuclear tyrosine phosphorylation by SFKs plays an important role in chromatin structural changes upon growth factor stimulation.

  14. Hierarchical cellular materials

    SciTech Connect

    Gibson, L.J.

    1991-01-01

    In this paper a method for estimating the contributions of both the composite and the cellular microstructures to the overall material properties and the mechanical efficiency of natural cellular solids will be described. The method will be demonstrated by focusing on the Young's modulus; similar techniques can be used for other material properties. The results suggest efficient microstructures for engineered cellular materials.

  15. Hierarchical cellular materials

    SciTech Connect

    Gibson, L.J.

    1991-12-31

    In this paper a method for estimating the contributions of both the composite and the cellular microstructures to the overall material properties and the mechanical efficiency of natural cellular solids will be described. The method will be demonstrated by focusing on the Young`s modulus; similar techniques can be used for other material properties. The results suggest efficient microstructures for engineered cellular materials.

  16. RRM2 induces NF-{kappa}B-dependent MMP-9 activation and enhances cellular invasiveness

    SciTech Connect

    Duxbury, Mark S.; Whang, Edward E. . E-mail: ewhang1@partners.org

    2007-03-02

    Ribonucleotide reductase is a dimeric enzyme that catalyzes conversion of ribonucleotide 5'-diphosphates to their 2'-deoxynucleotide forms, a rate-limiting step in the production of 2'-deoxyribonucleoside 5'-triphosphates required for DNA synthesis. The ribonucleotide reductase M2 subunit (RRM2) is a determinant of malignant cellular behavior in a range of human cancers. We examined the effect of RRM2 overexpression on pancreatic adenocarcinoma cellular invasiveness and nuclear factor-{kappa}B (NF-{kappa}B) transcription factor activity. RRM2 overexpression increases pancreatic adenocarcinoma cellular invasiveness and MMP-9 expression in a NF-{kappa}B-dependent manner. RNA interference (RNAi)-mediated silencing of RRM2 expression attenuates cellular invasiveness and NF-{kappa}B activity. NF-{kappa}B is a key mediator of the invasive phenotypic changes induced by RRM2 overexpression.

  17. Genetic factors required to maintain repression of a paramutagenic maize pl1 allele.

    PubMed Central

    Hollick, J B; Chandler, V L

    2001-01-01

    A genetic screen identified two novel gene functions required to maintain mitotically and meiotically heritable gene silencing associated with paramutation of the maize purple plant 1 (pl1) locus. Paramutation at pl1 leads to heritable alterations of pl1 gene regulation; the Pl-Rhoades (Pl-Rh) allele, which typically confers strong pigmentation to juvenile and adult plant structures, changes to a lower expression state termed Pl'-mahogany (Pl'). Paramutation spontaneously occurs at low frequencies in Pl-Rh homozygotes but always occurs when Pl-Rh is heterozygous with Pl'. We identified four mutations that caused increased Pl' pigment levels. Allelism tests revealed that three mutations identified two new maize loci, required to maintain repression 1 (rmr1) and rmr2 and that the other mutation represents a new allele of the previously described mediator of paramutation 1 (mop1) locus. RNA levels from Pl' are elevated in rmr mutants and genetic tests demonstrate that Pl' can heritably change back to Pl-Rh in rmr mutant individuals at variable frequencies. Pigment levels controlled by two pl1 alleles that do not participate in paramutation are unaffected in rmr mutants. These results suggest that RMR functions are intimately involved in maintaining the repressed expression state of paramutant Pl' alleles. Despite strong effects on Pl' repression, rmr mutant plants have no gross developmental abnormalities even after several generations of inbreeding, implying that RMR1 and RMR2 functions are not generally required for developmental homeostasis. PMID:11139517

  18. Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells.

    PubMed

    Sasseville, Maxime; Ritter, Lesley J; Nguyen, Thao M; Liu, Fang; Mottershead, David G; Russell, Darryl L; Gilchrist, Robert B

    2010-09-15

    Ovarian folliculogenesis is driven by the combined action of endocrine cues and paracrine factors. The oocyte secretes powerful mitogens, such as growth differentiation factor 9 (GDF9), that regulate granulosa cell proliferation, metabolism, steroidogenesis and differentiation. This study investigated the role of the epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase 1 and 2 (ERK1/2; also known as MAPK3/1) signaling pathway on GDF9 action on granulosa cells. Results show that mitogenic action of the oocyte is prevented by pharmacological inhibition of the EGFR-ERK1/2 pathway. Importantly, EGFR-ERK1/2 activity as well as rous sarcoma oncogene family kinases (SFK) are required for signaling through SMADs, mediating GDF9, activin A and TGFbeta1 mitogenic action in granulosa cells. GDF9 could not activate ERK1/2 or affect EGF-stimulated ERK1/2 in granulosa cells. However, induction of the SMAD3-specific CAGA reporter by GDF9 in granulosa cells required active EGFR, SFKs and ERK1/2 as did GDF9-responsive gene expression. Finally, the EGFR-SFKs-ERK1/2 pathway was shown to be required for the maintenance of phosphorylation of the SMAD3 linker region. Together our results suggest that receptivity of granulosa cells to oocyte-secreted factors, including GDF9, is regulated by the level of activation of the EGFR and resulting ERK1/2 activity, through the requisite permissive phosphorylation of SMAD3 in the linker region. Our results indicate that oocyte-secreted TGFbeta-like ligands and EGFR-ERK1/2 signaling are cooperatively required for the unique granulosa cell response to the signal from oocytes mediating granulosa cell survival and proliferation and hence the promotion of follicle growth and ovulation. PMID:20736313

  19. Current good manufacturing practices, quality control procedures, quality factors, notification requirements, and records and reports, for infant formula. Final rule.

    PubMed

    2014-06-10

    The Food and Drug Administration (FDA or we) is issuing a final rule that adopts, with some modifications, the interim final rule (IFR) entitled "Current Good Manufacturing Practices, Quality Control Procedures, Quality Factors, Notification Requirements, and Records and Reports, for Infant Formula'' (February 10, 2014). This final rule affirms the IFR's changes to FDA's regulations and provides additional modifications and clarifications. The final rule also responds to certain comments submitted in response to the request for comments in the IFR. PMID:24922980

  20. Reactive Oxygen Species and Cellular Oxygen Sensing

    PubMed Central

    Cash, Timothy P; Pan, Yi; Simon, M. Celeste

    2008-01-01

    Many organisms activate adaptive transcriptional programs to help them cope with decreased oxygen levels, or hypoxia, in their environment. These responses are triggered by various oxygen sensing systems in bacteria, yeast and metazoans. In metazoans, the hypoxia inducible factors (HIFs) mediate the adaptive transcriptional response to hypoxia by upregulating genes involved in maintaining bioenergetic homeostasis. The HIFs in turn are regulated by HIF-specific prolyl hydroxlase activity, which is sensitive to cellular oxygen levels and other factors such as tricarboxylic acid cycle metabolites and reactive oxygen species (ROS). Establishing a role for ROS in cellular oxygen sensing has been challenging since ROS are intrinsically unstable and difficult to measure. However, recent advances in fluorescence energy transfer resonance (FRET)-based methods for measuring ROS are alleviating some of the previous difficulties associated with dyes and luminescent chemicals. In addition, new genetic models have demonstrated that functional mitochondrial electron transport and associated ROS production during hypoxia are required for HIF stabilization in mammalian cells. Current efforts are directed at how ROS mediate prolyl hydroxylase activity and hypoxic HIF stabilization. Progress in understanding this process has been enhanced by the development of the FRET-based ROS probe, an vivo prolyl hydroxylase reporter and various genetic models harboring mutations in components of the mitochondrial electron transport chain. PMID:17893032

  1. Regulation of Motility Behavior in Myxococcus xanthus May Require an Extracytoplasmic-Function Sigma Factor

    PubMed Central

    Ward, Mandy J.; Lew, Helen; Treuner-Lange, Anke; Zusman, David R.

    1998-01-01

    Using interaction trap technology, we identified a putative extracytoplasmic-function (ECF) sigma factor (RpoE1) in Myxococcus xanthus, a bacterium which has a complex life cycle that includes fruiting body formation. The first domain of the response regulator protein FrzZ, a component of the Frz signal transduction system, was used as bait. Although the RpoE1 protein displayed no interactions with control proteins presented as bait, a weak interaction with a second M. xanthus response regulator (AsgA) was observed. While the specificity of the FrzZ-RpoE1 interaction therefore remains speculative, cloning and sequencing of the region surrounding rpoE1 localized it to a position downstream of the frzZ gene. A potential promoter site for binding of an ECF sigma factor was identified upstream of rpoE1, suggesting the gene may be autoregulated. However, primer extension studies suggested that transcription of rpoE1 occurs under both vegetative and developmental conditions from a ς70-like promoter. Dot blot analysis of RNA preparations confirmed the low-level, constitutive expression of rpoE1 during both stages of the life cycle. Analysis of an insertion mutant also indicated a role for RpoE1 under both vegetative and developmental conditions, since swarming was reduced on nutrient-rich agar and developmental aggregation was effected under starvation conditions, especially at high cell densities. An insertion mutation introduced into the gene directly downstream of rpoE1 (orf5) did not result in either swarming or developmental aggregation defects, even though the gene is transcribed as part of the same operon. Therefore, we propose that this new ECF sigma factor could play a role in the transcriptional regulation of genes involved in motility behavior during both stages of the complex M. xanthus life cycle. PMID:9791117

  2. [Hyponatremia as a risk factor of death in patients with community-acquired pneumonia requiring hospitalization].

    PubMed

    Barcia, Ricardo E; Castiglia, Nora I; Villaverde, Marcelo E; Lanosa, Gustavo A; Ujeda Mantello, Carlos J; Aguirre, Marina; Borello, Gustavo J; Caisson, Alejandro M

    2006-01-01

    We investigated whether hyponatremia is a risk factor of death in patients hospitalized with community-acquired pneumonia (CAP) and estimated the relative risk of death by CAP of other risk factors. The design was prospective multicentre cohort study. In 5 centers in Buenos Aires, Argentina, we studied adults hospitalized with CAP between March 21, 2000 and December 21, 2000. Using stepwise logistic regression, we analyzed risk factors that showed a univariate association with mortality; alpha significance level was 0.05. During a 9-month period, 238 patients were admitted with CAP: 150 (63%) male and 88 (36%) female, mean age 52.99 (+/-20.35) and 55.06 (+/-20.94), respectively. Mortality was 10.5% (25/238). By multivariate analysis, the following variables were statistically associated with evolution: cerebrovascular disease (CD) (B: 2.614, p < 0.001, RRE: 13.6, IC 95%: 3.7-49.6); hyponatremia at admission or during hospitalization (B: 1.994, p<0.001, RRE: 7.3, IC 95%: 2.5-20.8); and elevated blood urea (B: 0.016, p= 0.003, RRE: 1.016, IC 95%: 1.005-1.02). We developed a formula to predict mortality by CAP: P (death) = 1/1 + exp - (-4.03 + 2.61 x l + 1.99 x 2 + 0.016x3), where: x1=CD (yes = 1/ no=0); x2= hyponatremia (yes = 1/ no=0); x3 = blood urea (mg/dl). The predictability was 91.1%. The mortality risk by CAP was statistically higher in patients with CD, hyponatremia and elevated blood urea. PMID:17240620

  3. Detection of cis- and trans-acting Factors in DNA Structure-Induced Genetic Instability Using In silico and Cellular Approaches

    PubMed Central

    Wang, Guliang; Zhao, Junhua; Vasquez, Karen M.

    2016-01-01

    Sequences that can adopt alternative DNA structures (i.e., non-B DNA) are very abundant in mammalian genomes, and recent studies have revealed many important biological functions of non-B DNA structures in chromatin remodeling, DNA replication, transcription, and genetic instability. Here, we provide results from an in silico web-based search engine coupled with cell-based experiments to characterize the roles of non-B DNA conformations in genetic instability in eukaryotes. The purpose of this article is to illustrate strategies that can be used to identify and interrogate the biological roles of non-B DNA structures, particularly on genetic instability. We have included unpublished data using a short H-DNA-forming sequence from the human c-MYC promoter region as an example, and identified two different mechanisms of H-DNA-induced genetic instability in yeast and mammalian cells: a DNA replication-related model of mutagenesis; and a replication-independent cleavage model. Further, we identified candidate proteins involved in H-DNA-induced genetic instability by using a yeast genetic screen. A combination of in silico and cellular methods, as described here, should provide further insight into the contributions of non-B DNA structures in biological functions, genetic evolution, and disease development. PMID:27532010

  4. Detection of cis- and trans-acting Factors in DNA Structure-Induced Genetic Instability Using In silico and Cellular Approaches.

    PubMed

    Wang, Guliang; Zhao, Junhua; Vasquez, Karen M

    2016-01-01

    Sequences that can adopt alternative DNA structures (i.e., non-B DNA) are very abundant in mammalian genomes, and recent studies have revealed many important biological functions of non-B DNA structures in chromatin remodeling, DNA replication, transcription, and genetic instability. Here, we provide results from an in silico web-based search engine coupled with cell-based experiments to characterize the roles of non-B DNA conformations in genetic instability in eukaryotes. The purpose of this article is to illustrate strategies that can be used to identify and interrogate the biological roles of non-B DNA structures, particularly on genetic instability. We have included unpublished data using a short H-DNA-forming sequence from the human c-MYC promoter region as an example, and identified two different mechanisms of H-DNA-induced genetic instability in yeast and mammalian cells: a DNA replication-related model of mutagenesis; and a replication-independent cleavage model. Further, we identified candidate proteins involved in H-DNA-induced genetic instability by using a yeast genetic screen. A combination of in silico and cellular methods, as described here, should provide further insight into the contributions of non-B DNA structures in biological functions, genetic evolution, and disease development. PMID:27532010

  5. Serum response factor is required for sprouting angiogenesis and vascular integrity.

    PubMed

    Franco, Claudio Areias; Mericskay, Mathias; Parlakian, Ara; Gary-Bobo, Guillaume; Gao-Li, Jacqueline; Paulin, Denise; Gustafsson, Erika; Li, Zhenlin

    2008-09-01

    Serum response factor (SRF) is a transcription factor that controls the expression of cytoskeletal proteins and immediate early genes in different cell types. Here, we found that SRF expression is restricted to endothelial cells (ECs) of small vessels such as capillaries in the mouse embryo. EC-specific Srf deletion led to aneurysms and hemorrhages from 11.5 days of mouse development (E11.5) and lethality at E14.5. Mutant embryos presented a reduced capillary density and defects in EC migration, with fewer numbers of filopodia in tip cells and ECs showing defects in actin polymerization and intercellular junctions. We show that SRF is essential for the expression of VE-cadherin and beta-actin in ECs both in vivo and in vitro. Moreover, knockdown of SRF in ECs impaired VEGF- and FGF-induced in vitro angiogenesis. Taken together, our results demonstrate that SRF plays an important role in sprouting angiogenesis and small vessel integrity in the mouse embryo. PMID:18804439

  6. Autoactivation by a Candida glabrata copper metalloregulatory transcription factor requires critical minor groove interactions.

    PubMed Central

    Koch, K A; Thiele, D J

    1996-01-01

    Rapid transcriptional autoactivation of the Candida glabrata AMT1 copper metalloregulatory transcription factor gene is essential for survival in the presence of high extracellular copper concentrations. Analysis of the interactions between purified recombinant AMT1 protein and the AMT1 promoter metal regulatory element was carried out by a combination of missing-nucleoside analysis, ethylation interference, site-directed mutagenesis, and quantitative in vitro DNA binding studies. The results of these experiments demonstrate that monomeric AMT1 binds the metal regulatory element with very high affinity and utilizes critical contacts in both the major and minor grooves. A single adenosine residue in the minor groove, conserved in all known yeast Cu metalloregulatory transcription factor DNA binding sites, plays a critical role in both AMT1 DNA binding in vitro and Cu-responsive AMT1 gene transcription in vivo. Furthermore, a mutation in the AMT1 Cu-activated DNA binding domain which converts a single arginine, found in a conserved minor groove binding domain, to lysine markedly reduces AMT1 DNA binding affinity in vitro and results in a severe defect in the ability of C. glabrata cells to mount a protective response against Cu toxicity. PMID:8552101

  7. A transcription factor FgSte12 is required for pathogenicity in Fusarium graminearum.

    PubMed

    Gu, Qin; Zhang, Chengqi; Liu, Xin; Ma, Zhonghua

    2015-01-01

    A conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast Fus3/Kss1 mating/filamentation pathway is involved in the regulation of vegetative development and pathogenicity in Fusarium graminearum. However, little is known about the downstream transcription factors of this pathway. In Saccharomyces cerevisiae, the homeodomain protein Ste12 is a key transcription factor activated by Fus3/Kss1. In this study, we characterized a Ste12 orthologue FgSte12 in F. graminearum. The FgSTE12 deletion mutant (ΔFgSte12) was impaired in virulence and in the secretion of cellulase and protease, although it did not show recognizable phenotype changes in hyphal growth, conidiation or deoxynivalenol (DON) biosynthesis. In addition, ΔFgSte12 and the FgGPMK1 (a FUS3/KSS1-related MAPK gene) mutant shared several phenotypic traits. Furthermore, we found that FgGpmk1 controls the nuclear localization of FgSte12. Yeast two-hybrid and affinity capture assays indicated that FgSte12 interacts with the FgSte11-Ste7-Gpmk1 complex. Taken together, these results indicate that FgSte12 is a downstream target of FgSte11-Ste7-Gpmk1 and plays an important role in pathogenicity in F. graminearum. PMID:24832137

  8. Myocardin-related transcription factors are required for skeletal muscle development.

    PubMed

    Cenik, Bercin K; Liu, Ning; Chen, Beibei; Bezprozvannaya, Svetlana; Olson, Eric N; Bassel-Duby, Rhonda

    2016-08-01

    Myocardin-related transcription factors (MRTFs) play a central role in the regulation of actin expression and cytoskeletal dynamics. Stimuli that promote actin polymerization allow for shuttling of MRTFs to the nucleus where they activate serum response factor (SRF), a regulator of actin and other cytoskeletal protein genes. SRF is an essential regulator of skeletal muscle differentiation and numerous components of the muscle sarcomere, but the potential involvement of MRTFs in skeletal muscle development has not been examined. We explored the role of MRTFs in muscle development in vivo by generating mutant mice harboring a skeletal muscle-specific deletion of MRTF-B and a global deletion of MRTF-A. These double knockout (dKO) mice were able to form sarcomeres during embryogenesis. However, the sarcomeres were abnormally small and disorganized, causing skeletal muscle hypoplasia and perinatal lethality. Transcriptome analysis demonstrated dramatic dysregulation of actin genes in MRTF dKO mice, highlighting the importance of MRTFs in actin cycling and myofibrillogenesis. MRTFs were also shown to be necessary for the survival of skeletal myoblasts and for the efficient formation of intact myotubes. Our findings reveal a central role for MRTFs in sarcomere formation during skeletal muscle development and point to the potential involvement of these transcriptional co-activators in skeletal myopathies. PMID:27385017

  9. Cryptococcal phosphoglucose isomerase is required for virulence factor production, cell wall integrity and stress resistance.

    PubMed

    Zhang, Ping; Wei, Dongsheng; Li, Zhongming; Sun, Zhixiong; Pan, Jiao; Zhu, Xudong

    2015-11-01

    Regulation of virulence factor production in the pathogen Cryptococcus neoformans remains to be fully illustrated. We present here a finding that a gene, encoding the glycolysis enzyme phosphoglucose isomerase (Pgi1), is critical for the biosynthesis of melanin and capsule, cell wall integrity and resistance to stress conditions. A leaky mutant of the yeast, LZM19, resulted from an insertion of T-DNA in the PGI1 promoter region, expressed PGI1 at a level only 1.9% of the wild type. LZM19 could synthesize the pigment melanin in the presence of 2% glucose, suggesting a status of LAC1 derepression. Phenotypically, capsule biosynthesis in LZM19 was remarkably reduced. Integrity of the cell wall and plasma membrane of LZM19 were impaired based on its sensitivity to Congo red and SDS. Also, LZM19 exhibited hypersensitivity to osmotic stress generated by 2 M NaCl or 1 M KCl, indicating possible impairment in the HOG signaling pathway. Furthermore, LZM19 failed to utilize mannose and fructose, suggesting a possible involvement of Pgi1 in the breakdown of these two sugars. Our results revealed a crucial role of PGI1 in coordination of the production of virulence factors, cell wall integrity and stress response in C. neoformans. PMID:26271120

  10. The LysR Transcription Factor, HexS, Is Required for Glucose Inhibition of Prodigiosin Production by Serratia marcescens.

    PubMed

    Stella, Nicholas A; Fender, James E; Lahr, Roni M; Kalivoda, Eric J; Shanks, Robert M Q

    2012-12-01

    Generation of many useful microbe-derived secondary metabolites, including the red pigment prodigiosin of the bacterium Serratia marcescens, is inhibited by glucose. In a previous report, a genetic approach was used to determine that glucose dehydrogenase activity (GDH) is required for inhibiting prodigiosin production and transcription of the prodigiosin biosynthetic operon (pigA-N). However, the transcription factor(s) that regulate this process were not characterized. Here we tested the hypothesis that HexS, a LysR-family transcription factor similar to LrhA of Escherichia coli, is required for inhibition of prodigiosin by growth in glucose. We observed that mutation of the hexS gene in S. marcescens allowed the precocious production of prodigiosin in glucose-rich medium conditions that completely inhibited prodigiosin production by the wild type. Unlike previously described mutants able to generate prodigiosin in glucose-rich medium, hexS mutants exhibited GDH activity and medium acidification similar to the wild type. Glucose inhibittion of pigA expression was shown to be dependent upon HexS, suggesting that HexS is a key transcription factor in secondary metabolite regulation in response to medium pH. These data give insight into the prodigiosin regulatory pathway and could be used to enhance the production of secondary metabolites. PMID:24358451

  11. Critical evaluation of factors required to terminate the postclosure monitoring period at solid waste landfills.

    PubMed

    Barlaz, Morton A; Rooker, Alix P; Kjeldsen, Peter; Gabr, Mohammed A; Bordent, Robert C

    2002-08-15

    Regulations governing the disposal of solid waste in landfills specify that they must be monitored for 30 years after closure unless this period is extended by the governing regulatory authority. Given the wide range of conditions under which refuse is buried, technical criteria, rather than a specific time period, are preferable for evaluation of when it is acceptable to terminate postclosure monitoring. The objectives of this paper are to identify and evaluate parameters that can be used to define the end of the postclosure monitoring period and to present a conceptual framework for an investigation of whether postclosure monitoring can be terminated at a landfill. Parameters evaluated include leachate composition and leachate and gas production. Estimates of leachate production from closed landfills are used to assess the potential environmental impacts of a hypothetical release to surface water or groundwater. The acceptability of gaseous releases should be evaluated against criteria for odors, the potential for subsurface migration, and greenhouse gas and ozone precursor emissions. The approach presented here must be tested on a site-specific basis to identify additional data requirements and regulatory activity that might be required to prepare regulators for the large number of requests to terminate postclosure monitoring expected over the next 20 years. An approach in which the frequency and extent of postclosure monitoring is reduced as warranted by site-specific data and impact analysis should provide an effective strategy to manage closed landfills. PMID:12214635

  12. Transcription Factor SCL Is Required for c-kit Expression and c-Kit Function in Hemopoietic Cells

    PubMed Central

    Krosl, Gorazd; He, Gang; Lefrancois, Martin; Charron, Frédéric; Roméo, Paul-Henri; Jolicoeur, Paul; Kirsch, Ilan R.; Nemer, Mona; Hoang, Trang

    1998-01-01

    In normal hemopoietic cells that are dependent on specific growth factors for cell survival, the expression of the basic helix-loop-helix transcription factor SCL/Tal1 correlates with that of c-Kit, the receptor for Steel factor (SF) or stem cell factor. To address the possibility that SCL may function upstream of c-kit, we sought to modulate endogenous SCL function in the CD34+ hemopoietic cell line TF-1, which requires SF, granulocyte/macrophage colony–stimulating factor, or interleukin 3 for survival. Ectopic expression of an antisense SCL cDNA (as-SCL) or a dominant negative SCL (dn-SCL) in these cells impaired SCL DNA binding activity, and prevented the suppression of apoptosis by SF only, indicating that SCL is required for c-Kit–dependent cell survival. Consistent with the lack of response to SF, the level of c-kit mRNA and c-Kit protein was significantly and specifically reduced in as-SCL– or dn-SCL– expressing cells. c-kit mRNA, c-kit promoter activity, and the response to SF were rescued by SCL overexpression in the antisense or dn-SCL transfectants. Furthermore, ectopic c-kit expression in as-SCL transfectants is sufficient to restore cell survival in response to SF. Finally, enforced SCL in the pro–B cell line Ba/F3, which is both SCL and c-kit negative is sufficient to induce c-Kit and SF responsiveness. Together, these results indicate that c-kit, a gene that is essential for the survival of primitive hemopoietic cells, is a downstream target of the transcription factor SCL. PMID:9687522

  13. Expression of the CD4 gene requires a Myb transcription factor.

    PubMed Central

    Siu, G; Wurster, A L; Lipsick, J S; Hedrick, S M

    1992-01-01

    We have analyzed the control of developmental expression of the CD4 gene, which encodes an important recognition molecule and differentiation antigen on T cells. We have determined that the CD4 promoter alone functions at high levels in the CD4+ CD8- mature T cell but not at the early CD4+ CD8+ stage of T-cell development. In addition, the CD4 promoter functions only in T lymphocytes; thus, the stage and tissue specificity of the CD4 gene is mediated in part by its promoter. We have determined that a Myb transcription factor binds to the CD4 promoter and is critical for full promoter function. Thus, Myb plays an important role in the expression of T-cell-specific developmentally regulated genes. Images PMID:1347906

  14. E protein transcription factors are required for the development of CD4(+) lineage T cells.

    PubMed

    Jones-Mason, Mary Elizabeth; Zhao, Xudong; Kappes, Dietmar; Lasorella, Anna; Iavarone, Antonio; Zhuang, Yuan

    2012-03-23

    The double-positive (DP) to single-positive (SP) transition during T cell development is initiated by downregulation of the E protein transcription factors HEB and E2A. Here, we have demonstrated that in addition to regulating the onset of this transition, HEB and E2A also play a separate role in CD4(+) lineage choice. Deletion of HEB and E2A in DP thymocytes specifically blocked the development of CD4(+) lineage T cells. Furthermore, deletion of the E protein inhibitors Id2 and Id3 allowed CD4(+) T cell development but blocked CD8(+) lineage development. Analysis of the CD4(+) lineage transcriptional regulators ThPOK and Gata3 placed HEB and E2A upstream of CD4(+) lineage specification. These studies identify an important role for E proteins in the activation of CD4(+) lineage differentiation as thymocytes undergo the DP to SP transition. PMID:22425249

  15. Sox transcription factors require selective interactions with Oct4 and specific transactivation functions to mediate reprogramming.

    PubMed

    Aksoy, Irene; Jauch, Ralf; Eras, Volker; Chng, Wen-Bin Alfred; Chen, Jiaxuan; Divakar, Ushashree; Ng, Calista Keow Leng; Kolatkar, Prasanna R; Stanton, Lawrence W

    2013-12-01

    The unique ability of Sox2 to cooperate with Oct4 at selective binding sites in the genome is critical for reprogramming somatic cells into induced pluripotent stem cells (iPSCs). We have recently demonstrated that Sox17 can be converted into a reprogramming factor by alteration of a single amino acid (Sox17EK) within its DNA binding HMG domain. Here we expanded this study by introducing analogous mutations to 10 other Sox proteins and interrogated the role of N-and C-termini on the reprogramming efficiency. We found that point-mutated Sox7 and Sox17 can convert human and mouse fibroblasts into iPSCs, but Sox4, Sox5, Sox6, Sox8, Sox9, Sox11, Sox12, Sox13, and Sox18 cannot. Next we studied regions outside the HMG domain and found that the C-terminal transactivation domain of Sox17 and Sox7 enhances the potency of Sox2 in iPSC assays and confers weak reprogramming potential to the otherwise inactive Sox4EK and Sox18EK proteins. These results suggest that the glutamate (E) to lysine (K) mutation in the HMG domain is necessary but insufficient to swap the function of Sox factors. Moreover, the HMG domain alone fused to the VP16 transactivation domain is able to induce reprogramming, albeit at low efficiency. By molecular dissection of the C-terminus of Sox17, we found that the β-catenin interaction region contributes to the enhanced reprogramming efficiency of Sox17EK. To mechanistically understand the enhanced reprogramming potential of Sox17EK, we analyzed ChIP-sequencing and expression data and identified a subset of candidate genes specifically regulated by Sox17EK and not by Sox2. PMID:23963638

  16. Mitochondrial Outer Membrane Proteome of Trypanosoma brucei Reveals Novel Factors Required to Maintain Mitochondrial Morphology*

    PubMed Central

    Niemann, Moritz; Wiese, Sebastian; Mani, Jan; Chanfon, Astrid; Jackson, Christopher; Meisinger, Chris; Warscheid, Bettina; Schneider, André

    2013-01-01

    Trypanosoma brucei is a unicellular parasite that causes devastating diseases in humans and animals. It diverged from most other eukaryotes very early in evolution and, as a consequence, has an unusual mitochondrial biology. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the parasite. The outer mitochondrial membrane defines the boundary of the organelle. Its properties are therefore key for understanding how the cytosol and mitochondria communicate and how the organelle is integrated into the metabolism of the whole cell. We have purified the mitochondrial outer membrane of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal outer membrane proteome consists of 82 proteins, two-thirds of which have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins, 33 of which are specific to trypanosomatids, remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and for the first time identified factors that control mitochondrial shape in T. brucei. PMID:23221899

  17. Automated work packages architecture: An initial set of human factors and instrumentation and controls requirements

    SciTech Connect

    Agarwal, Vivek; Oxstrand, Johanna H.; Le Blanc, Katya L.

    2014-09-01

    The work management process in current fleets of national nuclear power plants is so highly dependent on large technical staffs and quality of work instruction, i.e., paper-based, that this puts nuclear energy at somewhat of a long-term economic disadvantage and increase the possibility of human errors. Technologies like mobile portable devices and computer-based procedures can play a key role in improving the plant work management process, thereby increasing productivity and decreasing cost. Automated work packages are a fundamentally an enabling technology for improving worker productivity and human performance in nuclear power plants work activities because virtually every plant work activity is accomplished using some form of a work package. As part of this year’s research effort, automated work packages architecture is identified and an initial set of requirements identified, that are essential and necessary for implementation of automated work packages in nuclear power plants.

  18. Skin sensitization induced Langerhans' cell mobilization: variable requirements for tumour necrosis factor-α.

    PubMed

    Eaton, Laura H; Roberts, Ruth A; Kimber, Ian; Dearman, Rebecca J; Metryka, Aleksandra

    2015-01-01

    Upon antigen/allergen recognition, epidermal Langerhans' cells (LC) are mobilized and migrate to the local lymph node where they play a major role in initiating or regulating immune responses. It had been proposed that all chemical allergens induce LC migration via common cytokine signals delivered by TNF-α and IL-1β. Here the dependence of LC migration on TNF-α following treatment of mice with various chemical allergens has been investigated. It was found that under standard conditions the allergens oxazolone, paraphenylene diamine, and trimellitic anhydride, in addition to the skin irritant sodium lauryl sulfate, were unable to trigger LC mobilization in the absence of TNF-α signalling. In contrast, two members of the dinitrohalobenezene family (2,4-dinitrochlorobenzene [DNCB] and 2,4-dinitrofluorobenzene [DNFB]) promoted LC migration independently of TNF-R2 (the sole TNF-α receptor expressed by LC) and TNF-α although the presence of IL-1β was still required. However, increasing doses of oxazolone overcame the requirement of TNF-α for LC mobilization, whereas lower doses of DNCB were still able to induce LC migration in a TNF-α-independent manner. These novel findings demonstrate unexpected heterogeneity among chemical allergens and furthermore that LC can be induced to migrate from the epidermis via different mechanisms that are either dependent or independent of TNF-α. Although the exact mechanisms with regard to the signals that activate LC have yet to be elucidated, these differences may translate into functional speciation that will likely impact on the extent and quality of allergic sensitization. PMID:25039377

  19. Skin sensitization induced Langerhans’ cell mobilization: variable requirements for tumour necrosis factor

    PubMed Central

    Eaton, Laura H; Roberts, Ruth A; Kimber, Ian; Dearman, Rebecca J; Metryka, Aleksandra

    2015-01-01

    Upon antigen/allergen recognition, epidermal Langerhans’ cells (LC) are mobilized and migrate to the local lymph node where they play a major role in initiating or regulating immune responses. It had been proposed that all chemical allergens induce LC migration via common cytokine signals delivered by TNF-α and IL-1β. Here the dependence of LC migration on TNF-α following treatment of mice with various chemical allergens has been investigated. It was found that under standard conditions the allergens oxazolone, paraphenylene diamine, and trimellitic anhydride, in addition to the skin irritant sodium lauryl sulfate, were unable to trigger LC mobilization in the absence of TNF-α signalling. In contrast, two members of the dinitrohalobenezene family (2,4-dinitrochlorobenzene [DNCB] and 2,4-dinitrofluorobenzene [DNFB]) promoted LC migration independently of TNF-R2 (the sole TNF-α receptor expressed by LC) and TNF-α although the presence of IL-1β was still required. However, increasing doses of oxazolone overcame the requirement of TNF-α for LC mobilization, whereas lower doses of DNCB were still able to induce LC migration in a TNF-α-independent manner. These novel findings demonstrate unexpected heterogeneity among chemical allergens and furthermore that LC can be induced to migrate from the epidermis via different mechanisms that are either dependent or independent of TNF-α. Although the exact mechanisms with regard to the signals that activate LC have yet to be elucidated, these differences may translate into functional speciation that will likely impact on the extent and quality of allergic sensitization. PMID:25039377

  20. Induction of metallothionein I by phenolic antioxidants requires metal-activated transcription factor 1 (MTF-1) and zinc.

    PubMed Central

    Bi, Yongyi; Palmiter, Richard D; Wood, Kristi M; Ma, Qiang

    2004-01-01

    Phenolic antioxidants, such as tBHQ [2,5-di-(t-butyl)-1,4-hydroquinone], induce Mt1 (metallothionein 1) gene expression and accumulation of MT protein. Induction of Mt1 mRNA does not depend on protein synthesis, and correlates with oxidation-reduction functions of the antioxidants. In the present study, we analysed the biochemical pathway of the induction. Induction depends on the presence of MTF-1 (metal-activated transcription factor 1), a transcription factor that is required for metal-induced transcription of Mt1, but does not require nuclear factor erythroid 2-related factor 2, a tBHQ-activated CNC bZip (cap 'n' collar basic leucine zipper) protein, that is responsible for regulating genes encoding phase II drug-metabolizing enzymes. Moreover, tBHQ induces the expression of MRE-beta Geo, a reporter gene driven by five metal response elements that constitute an optimal MTF-1 binding site. Reconstitution of Mtf1 -null cells with MTF-1 restores induction by both zinc and tBHQ. Unlike activation of phase II genes by tBHQ, induction of Mt1 expression does not occur in the presence of EDTA, when cells are cultured in zinc-depleted medium, or in cells with reduced intracellular 'free' zinc due to overexpression of ZnT1, a zinc-efflux transporter, indicating that induction requires zinc. In addition, fluorescence imaging reveals that tBHQ increases cytoplasmic free zinc concentration by mobilizing intracellular zinc pools. These findings establish that phenolic antioxidants activate Mt1 transcription by a zinc-dependent mechanism, which involves MTF-1 binding to metal regulator elements in the Mt1 gene promoter. PMID:14998373

  1. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling.

    PubMed

    Lovelace, Erica S; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard P; Zink, Erika M; Kim, Young-Mo; Kyle, Jennifer E; Webb-Robertson, Bobbie-Jo M; Waters, Katrina M; Metz, Thomas O; Farin, Federico; Oberlies, Nicholas H; Polyak, Stephen J

    2015-08-28

    Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e., 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, whereas silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation. PMID:26186142

  2. Myxoma virus M130R is a novel virulence factor required for lethal myxomatosis in rabbits.

    PubMed

    Barrett, John W; Werden, Steven J; Wang, Fuan; McKillop, William M; Jimenez, June; Villeneuve, Danielle; McFadden, Grant; Dekaban, Gregory A

    2009-09-01

    Myxoma virus (MV) is a highly lethal, rabbit-specific poxvirus that induces a disease called myxomatosis in European rabbits. In an effort to understand the function of predicted immunomodulatory genes we have deleted various viral genes from MV and tested the ability of these knockout viruses to induce lethal myxomatosis. MV encodes a unique 15 kD cytoplasmic protein (M130R) that is expressed late (12h post infection) during infection. M130R is a non-essential gene for MV replication in rabbit, monkey or human cell lines. Construction of a targeted gene knockout virus (vMyx130KO) and infection of susceptible rabbits demonstrate that the M130R knockout virus is attenuated and that loss of M130R expression allows the rabbit host immune system to effectively respond to and control the lethal effects of MV. M130R expression is a bona fide poxviral virulence factor necessary for full and lethal development of myxomatosis. PMID:19477207

  3. The putative Drosophila transcription factor woc is required to prevent telomeric fusions.

    PubMed

    Raffa, Grazia D; Cenci, Giovanni; Siriaco, Giorgia; Goldberg, Michael L; Gatti, Maurizio

    2005-12-22

    Woc is a Drosophila zinc finger protein that shares homology with the human polypeptides ZNF261 and ZNF198 implicated in mental retardation and leukemia syndromes. We show that mutations in the woc gene cause frequent telomeric fusions in Drosophila brain cells. Woc localizes to all telomeres and most interbands of polytene chromosomes. In interbands, Woc precisely colocalizes with the initiating forms of RNA polymerase II (Pol II). To characterize the role of woc in telomere maintenance, we analyzed its relationships with Su(var)205, cav, atm, and rad50, four genes that prevent telomeric fusions; Su(var)205 and cav encode HP1 and HP1/ORC Associated Protein (HOAP), respectively. woc mutants displayed normal telomeric accumulations of both HP1 and HOAP, and mutations in cav, Su(var)205, atm, and rad50 did not affect Woc localization on polytene chromosome telomeres. Collectively, our results indicate that Woc is a transcription factor with a telomere-capping function independent of those of Su(var)205, cav, atm, and rad50. PMID:16364909

  4. Expression of corticotropin-releasing factor in inflamed tissue is required for intrinsic peripheral opioid analgesia.

    PubMed Central

    Schafer, M; Mousa, S A; Zhang, Q; Carter, L; Stein, C

    1996-01-01

    Immune cell-derived opioid peptides can activate opioid receptors on peripheral sensory nerves to inhibit inflammatory pain. The intrinsic mechanisms triggering this neuroimmune interaction are unknown. This study investigates the involvement of endogenous corticotropin-releasing factor (CRF) and interleukin-1beta (IL-1). A specific stress paradigm, cold water swim (CWS), produces potent opioid receptor-specific antinociception in inflamed paws of rats. This effect is dose-dependently attenuated by intraplantar but not by intravenous alpha-helical CRF. IL-1 receptor antagonist is ineffective. Similarly, local injection of antiserum against CRF, but not to IL-1, dose-dependently reverses this effect. Intravenous anti-CRF is only inhibitory at 10(4)-fold higher concentrations and intravenous CRF does not produce analgesia. Pretreatment of inflamed paws with an 18-mer 3'-3'-end inverted CRF-antisense oligodeoxynucleotide abolishes CWS-induced antinociception. The same treatment significantly reduces the amount of CRF extracted from inflamed paws and the number of CRF-immunostained cells without affecting gross inflammatory signs. A mismatch oligodeoxynucleotide alters neither the CWS effect nor CRF immunoreactivity. These findings identify locally expressed CRF as the predominant agent to trigger opioid release within inflamed tissue. Endogenous IL-1, circulating CRF or antiinflammatory effects, are not involved. Thus, an intact immune system plays an essential role in pain control, which is important for the understanding of pain in immunosuppressed patients with cancer or AIDS. Images Fig. 4 PMID:8650225

  5. Requirement of HDAC6 for Transforming Growth Factor-β1-induced Epithelial-Mesenchymal Transition*

    PubMed Central

    Shan, Bin; Yao, Tso-pang; Nguyen, Hong T.; Zhuo, Ying; Levy, Dawn R.; Klingsberg, Ross C.; Tao, Hui; Palmer, Michael L.; Holder, Kevin N.; Lasky, Joseph A.

    2008-01-01

    The aberrant expression of transforming growth factor (TGF)-β1 in the tumor microenvironment and fibrotic lesions plays a critical role in tumor progression and tissue fibrosis by inducing epithelial-mesenchymal transition (EMT). EMT promotes tumor cell motility and invasiveness. How EMT affects motility and invasion is not well understood. Here we report that HDAC6 is a novel modulator of TGF-β1-induced EMT. HDAC6 is a microtubule-associated deacetylase that predominantly deacetylates nonhistone proteins, including α-tubulin, and regulates cell motility. We showed that TGF-β1-induced EMT is accompanied by HDAC6-dependent deacetylation of α-tubulin. Importantly, inhibition of HDAC6 by small interfering RNA or the small molecule inhibitor tubacin attenuated the TGF-β1-induced EMT markers, such as the aberrant expression of epithelial and mesenchymal peptides, as well as the formation of stress fibers. Reduced expression of HDAC6 also impaired the activation of SMAD3 in response to TGF-β1. Conversely, inhibition of SMAD3 activation substantially impaired HDAC6-dependent deacetylation of α-tubulin as well as the expression of EMT markers. These findings reveal a novel function of HDAC6 in EMT by intercepting the TGF-β-SMAD3 signaling cascade. Our results identify HDAC6 as a critical regulator of EMT and a potential therapeutic target against pathological EMT, a key event for tumor progression and fibrogenesis. PMID:18499657

  6. Homeodomain transcription factor and tumor suppressor Prep1 is required to maintain genomic stability.

    PubMed

    Iotti, Giorgio; Longobardi, Elena; Masella, Silvia; Dardaei, Leila; De Santis, Francesca; Micali, Nicola; Blasi, Francesco

    2011-07-19

    Prep1 is a homeodomain transcription factor that is essential in embryonic development and functions in the adult as a tumor suppressor. We show here that Prep1 is involved in maintaining genomic stability and preventing neoplastic transformation. Hypomorphic homozygous Prep1(i/i) fetal liver cells and mouse embryonic fibroblasts (MEFs) exhibit increased basal DNA damage and normal DNA damage response after γ-irradiation compared with WT. Cytogenetic analysis shows the presence of numerous chromosomal aberrations and aneuploidy in very early-passage Prep1(i/i) MEFs. In human fibroblasts, acute Prep1 down-regulation by siRNA induces DNA damage response, like in Prep1(i/i) MEFs, together with an increase in heterochromatin-associated modifications: rapid increase of histone methylation and decreased transcription of satellite DNA. Ectopic expression of Prep1 rescues DNA damage and heterochromatin methylation. Inhibition of Suv39 activity blocks the chromatin but not the DNA damage phenotype. Finally, Prep1 deficiency facilitates cell immortalization, escape from oncogene-induced senescence, and H-Ras(V12)-dependent transformation. Importantly, the latter can be partially rescued by restoration of Prep1 level. The results show that the tumor suppressor role of Prep1 is associated with the maintenance of genomic stability. PMID:21715654

  7. A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection

    PubMed Central

    Spera, Juan Manuel; Ugalde, Juan Esteban; Mucci, Juan; Comerci, Diego J.; Ugalde, Rodolfo Augusto

    2006-01-01

    Microbial pathogens with the ability to establish chronic infections have evolved strategies to actively modulate the host immune response. Brucellosis is a disease caused by a Gram-negative intracellular pathogen that if not treated during the initial phase of the infection becomes chronic as the bacteria persist for the lifespan of the host. How this pathogen and others achieve this action is a largely unanswered question. We report here the identification of a Brucella abortus gene (prpA) directly involved in the immune modulation of the host. PrpA belongs to the proline-racemase family and elicits a B lymphocyte polyclonal activation that depends on the integrity of its proline-racemase catalytic site. Stimulation of splenocytes with PrpA also results in IL-10 secretion. Construction of a B. abortus-prpA mutant allowed us to assess the contribution of PrpA to the infection process. Mice infected with B. abortus induced an early and transient nonresponsive status of splenocytes to both Escherichia coli LPS and ConA. This phenomenon was not observed when mice were infected with a B. abortus-prpA mutant. Moreover, the B. abortus-prpA mutant had a reduced capacity to establish a chronic infection in mice. We propose that an early and transient nonresponsive immune condition of the host mediated by this B cell polyclonal activator is required for establishing a successful chronic infection by Brucella. PMID:17053080

  8. Unique Requirement for ESCRT Factors in Flavivirus Particle Formation on the Endoplasmic Reticulum.

    PubMed

    Tabata, Keisuke; Arimoto, Masaru; Arakawa, Masashi; Nara, Atsuki; Saito, Kazunobu; Omori, Hiroko; Arai, Arisa; Ishikawa, Tomohiro; Konishi, Eiji; Suzuki, Ryosuke; Matsuura, Yoshiharu; Morita, Eiji

    2016-08-30

    Flavivirus infection induces endoplasmic reticulum (ER) membrane rearrangements to generate a compartment for replication of the viral genome and assembly of viral particles. Using quantitative mass spectrometry, we identified several ESCRT (endosomal sorting complex required for transport) proteins that are recruited to sites of virus replication on the ER. Systematic small interfering RNA (siRNA) screening revealed that release of both dengue virus and Japanese encephalitis virus was dramatically decreased by single depletion of TSG101 or co-depletion of specific combinations of ESCRT-III proteins, resulting in ≥1,000-fold titer reductions. By contrast, release was unaffected by depletion of some core ESCRTs, including VPS4. Reintroduction of ESCRT proteins to siRNA-depleted cells revealed interactions among ESCRT proteins that are crucial for flavivirus budding. Electron-microscopy studies revealed that the CHMP2 and CHMP4 proteins function directly in membrane deformation at the ER. Thus, a unique and specific subset of ESCRT contributes to ER membrane biogenesis during flavivirus infection. PMID:27545892

  9. The positive transcriptional elongation factor (P-TEFb) is required for neural crest specification.

    PubMed

    Hatch, Victoria L; Marin-Barba, Marta; Moxon, Simon; Ford, Christopher T; Ward, Nicole J; Tomlinson, Matthew L; Desanlis, Ines; Hendry, Adam E; Hontelez, Saartje; van Kruijsbergen, Ila; Veenstra, Gert Jan C; Münsterberg, Andrea E; Wheeler, Grant N

    2016-08-15

    Regulation of gene expression at the level of transcriptional elongation has been shown to be important in stem cells and tumour cells, but its role in the whole animal is only now being fully explored. Neural crest cells (NCCs) are a multipotent population of cells that migrate during early development from the dorsal neural tube throughout the embryo where they differentiate into a variety of cell types including pigment cells, cranio-facial skeleton and sensory neurons. Specification of NCCs is both spatially and temporally regulated during embryonic development. Here we show that components of the transcriptional elongation regulatory machinery, CDK9 and CYCLINT1 of the P-TEFb complex, are required to regulate neural crest specification. In particular, we show that expression of the proto-oncogene c-Myc and c-Myc responsive genes are affected. Our data suggest that P-TEFb is crucial to drive expression of c-Myc, which acts as a 'gate-keeper' for the correct temporal and spatial development of the neural crest. PMID:27343897

  10. ATP hydrolysis catalyzed by human replication factor C requires participation of multiple subunits.

    PubMed

    Cai, J; Yao, N; Gibbs, E; Finkelstein, J; Phillips, B; O'Donnell, M; Hurwitz, J

    1998-09-29

    Human replication factor C (hRFC) is a five-subunit protein complex (p140, p40, p38, p37, and p36) that acts to catalytically load proliferating cell nuclear antigen onto DNA, where it recruits DNA polymerase delta or epsilon to the primer terminus at the expense of ATP, leading to processive DNA synthesis. We have previously shown that a subcomplex of hRFC consisting of three subunits (p40, p37, and p36) contained DNA-dependent ATPase activity. However, it is not clear which subunit(s) hydrolyzes ATP, as all five subunits include potential ATP binding sites. In this report, we introduced point mutations in the putative ATP-binding sequences of each hRFC subunit and examined the properties of the resulting mutant hRFC complex and the ATPase activity of the hRFC or the p40.p37.p36 complex. A mutation in any one of the ATP binding sites of the p36, p37, p40, or p140 subunits markedly reduced replication activity of the hRFC complex and the ATPase activity of the hRFC or the p40.p37.p36 complex. A mutation in the ATP binding site of the p38 subunit did not alter the replication activity of hRFC. These findings indicate that the replication activity of hRFC is dependent on efficient ATP hydrolysis contributed to by the action of four hRFC subunits. PMID:9751713

  11. The LIM Homeodomain Factor Lhx2 Is Required for Hypothalamic Tanycyte Specification and Differentiation

    PubMed Central

    Salvatierra, Juan; Lee, Daniel A.; Zibetti, Cristina; Duran-Moreno, Maria; Yoo, Sooyeon; Newman, Elizabeth A.; Wang, Hong; Bedont, Joseph L.; de Melo, Jimmy; Miranda-Angulo, Ana L.; Gil-Perotin, Sara; Garcia-Verdugo, Jose Manuel

    2014-01-01

    Hypothalamic tanycytes, a radial glial-like ependymal cell population that expresses numerous genes selectively enriched in embryonic hypothalamic progenitors and adult neural stem cells, have recently been observed to serve as a source of adult-born neurons in the mammalian brain. The genetic mechanisms that regulate the specification and maintenance of tanycyte identity are unknown, but are critical for understanding how these cells can act as adult neural progenitor cells. We observe that LIM (Lin-11, Isl-1, Mec-3)-homeodomain gene Lhx2 is selectively expressed in hypothalamic progenitor cells and tanycytes. To test the function of Lhx2 in tanycyte development, we used an intersectional genetic strategy to conditionally delete Lhx2 in posteroventral hypothalamic neuroepithelium, both embryonically and postnatally. We observed that tanycyte development was severely disrupted when Lhx2 function was ablated during embryonic development. Lhx2-deficient tanycytes lost expression of tanycyte-specific genes, such as Rax, while also displaying ectopic expression of genes specific to cuboid ependymal cells, such as Rarres2. Ultrastructural analysis revealed that mutant tanycytes exhibited a hybrid identity, retaining radial morphology while becoming multiciliated. In contrast, postnatal loss of function of Lhx2 resulted only in loss of expression of tanycyte-specific genes. Using chromatin immunoprecipitation, we further showed that Lhx2 directly regulated expression of Rax, an essential homeodomain factor for tanycyte development. This study identifies Lhx2 as a key intrinsic regulator of tanycyte differentiation, sustaining Rax-dependent activation of tanycyte-specific genes while also inhibiting expression of ependymal cell-specific genes. These findings provide key insights into the transcriptional regulatory network specifying this still poorly characterized cell type. PMID:25505333

  12. Molecular and cellular effects of vitamin B12 in brain, myocardium and liver through its role as co-factor of methionine synthase.

    PubMed

    Guéant, Jean-Louis; Caillerez-Fofou, Maatem; Battaglia-Hsu, Shyuefang; Alberto, Jean-Marc; Freund, Jean-Noel; Dulluc, Isabelle; Adjalla, Charles; Maury, Florence; Merle, Carole; Nicolas, Jean-Pierre; Namour, Fares; Daval, Jean-Luc

    2013-05-01

    Vitamin B12 (cobalamin, cbl) is a cofactor of methionine synthase (MTR) in the synthesis of methionine, the precursor of the universal methyl donor S-Adenosylmethionine (SAM), which is involved in epigenomic regulatory mechanisms. We have established a neuronal cell model with stable expression of a transcobalamin-oleosin chimer and subsequent decreased cellular availability of vitamin B12, which produces reduced proliferation, increased apoptosis and accelerated differentiation through PP2A, NGF and TACE pathways. Anti-transcobalamin antibody or impaired transcobalamin receptor expression produce also impaired proliferation in other cells. Consistently, the transcription, protein expression and activity of MTR are increased in proliferating cells of skin and intestinal epitheliums, in rat intestine crypts and in proliferating CaCo2 cells, while MTR activity correlates with DNA methylation in rat intestine villi. Exposure to nitrous oxide in animal models identified impairment of MTR reaction as the most important metabolic cause of neurological manifestations of B12 deficiency. Early vitamin B12 and folate deprivation during gestation and lactation of a 'dam-progeny' rat model developed in our laboratory is associated with long-lasting disabilities of behavior and memory capacities, with persisting hallmarks related to increased apoptosis, impaired neurogenesis and altered plasticity. We found also an epigenomic deregulation of energy metabolism and fatty acids beta-oxidation in myocardium and liver, through imbalanced methylation/acetylation of PGC-1alpha and decreased expression of SIRT1. These nutrigenomic effects display similarities with the molecular mechanisms of fetal programming. Beside deficiency, B12 loading increases the expression of MTR through internal ribosome entry sites (IRES) and down-regulates MDR-1 gene expression. In conclusion, vitamin B12 influences cell proliferation, differentiation and apoptosis in brain. Vitamin B12 and folate combined

  13. Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR)

    PubMed Central

    Trussoni, Christy E.; Tabibian, James H.; Splinter, Patrick L.; O’Hara, Steven P.

    2015-01-01

    Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05) and proliferation (p<0.01). Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC) livers exhibited increased phospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes. PMID:25915403

  14. Lipopolysaccharide (LPS)-Induced Biliary Epithelial Cell NRas Activation Requires Epidermal Growth Factor Receptor (EGFR).

    PubMed

    Trussoni, Christy E; Tabibian, James H; Splinter, Patrick L; O'Hara, Steven P

    2015-01-01

    Cholangiocytes (biliary epithelial cells) actively participate in microbe-induced proinflammatory responses in the liver and contribute to inflammatory and infectious cholangiopathies. We previously demonstrated that cholangiocyte TLR-dependent NRas activation contributes to proinflammatory/ proliferative responses. We test the hypothesis that LPS-induced activation of NRas requires the EGFR. SV40-transformed human cholangiocytes (H69 cells), or low passage normal human cholangiocytes (NHC), were treated with LPS in the presence or absence of EGFR or ADAM metallopeptidase domain 17 (TACE) inhibitors. Ras activation assays, quantitative RT-PCR, and proliferation assays were performed in cells cultured with or without inhibitors or an siRNA to Grb2. Immunofluorescence for phospho-EGFR was performed on LPS-treated mouse samples and specimens from patients with primary sclerosing cholangitis, primary biliary cirrhosis, hepatitis C, and normal livers. LPS-treatment induced an association between the TLR/MyD88 and EGFR/Grb2 signaling apparatus, NRas activation, and EGFR phosphorylation. NRas activation was sensitive to EGFR and TACE inhibitors and correlated with EGFR phosphorylation. The TACE inhibitor and Grb2 depletion prevented LPS-induced IL6 expression (p<0.05) and proliferation (p<0.01). Additionally, cholangiocytes from LPS-treated mouse livers and human primary sclerosing cholangitis (PSC) livers exhibited increased phospho-EGFR (p<0.01). Moreover, LPS-induced mouse cholangiocyte proliferation was inhibited by concurrent treatment with the EGFR inhibitor, Erlotinib. Our results suggest that EGFR is essential for LPS-induced, TLR4/MyD88-mediated NRas activation and induction of a robust proinflammatory cholangiocyte response. These findings have implications not only for revealing the signaling potential of TLRs, but also implicate EGFR as an integral component of cholangiocyte TLR-induced proinflammatory processes. PMID:25915403

  15. Hepatitis B virus X protein activates transcription factor NF-kappa B without a requirement for protein kinase C.

    PubMed Central

    Lucito, R; Schneider, R J

    1992-01-01

    The hepatitis B virus X protein stimulates transcription from a variety of promoter elements, including those activated by transcription factor NF-kappa B. A diverse group of extra- and intracellular agents, including growth factors and the human immunodeficiency virus tat protein, have been shown to require a functional protein kinase C (PKC) system to achieve activation of NF-kappa B. In this study we have investigated the molecular mechanism by which X protein activates NF-kappa B. We demonstrate that in hepatocytes, X protein induces a maximal activation of NF-kappa B corresponding to the sequestered pool of factor, which is also activated by phorbol esters. To determine whether X protein requires activation of PKC to stimulate transcription by NF-kappa B, we attempted to prevent transactivation by X protein in the presence of the PKC inhibitors calphostin C and H7. We show that PKC inhibitors do not block X protein activation of NF-kappa B, whereas they largely impair activation by phorbol esters. In addition, activation of PKC is correlated with its translocation from the cytoplasm to the plasma membrane. The subcellular distribution of PKC was investigated by introducing X protein from a replication-defective adenovirus vector, followed by immunochemical detection of PKC in cell fractions. These data also indicate that X protein stimulates transcription by NF-kappa B without the activation and translocation of PKC. Images PMID:1309924

  16. Aeromonas salmonicida Infection Only Moderately Regulates Expression of Factors Contributing to Toll-Like Receptor Signaling but Massively Activates the Cellular and Humoral Branches of Innate Immunity in Rainbow Trout (Oncorhynchus mykiss).

    PubMed

    Brietzke, Andreas; Korytář, Tomáš; Jaros, Joanna; Köllner, Bernd; Goldammer, Tom; Seyfert, Hans-Martin; Rebl, Alexander

    2015-01-01

    Toll-like receptors (TLRs) are known to detect a defined spectrum of microbial structures. However, the knowledge about the specificity of teleost Tlr factors for distinct pathogens is limited so far. We measured baseline expression profiles of 18 tlr genes and associated signaling factors in four immune-relevant tissues of rainbow trout Oncorhynchus mykiss. Intraperitoneal injection of a lethal dose of Aeromonas salmonicida subsp. salmonicida induced highly increased levels of cytokine mRNAs during a 72-hour postinfection (hpi) period. In contrast, only the fish-specific tlr22a2 and the downstream factor irak1 featured clearly increased transcript levels, while the mRNA concentrations of many other tlr genes decreased. Flow cytometry quantified cell trafficking after infection indicating a dramatic influx of myeloid cells into the peritoneum and a belated low level immigration of lymphoid cells. T and B lymphocytes were differentiated with RT-qPCR revealing that B lymphocytes emigrated from and T lymphocytes immigrated into head kidney. In conclusion, no specific TLR can be singled out as a dominant receptor for A. salmonicida. The recruitment of cellular factors of innate immunity rather than induced expression of pathogen receptors is hence of key importance for mounting a first immune defense against invading A. salmonicida. PMID:26266270

  17. Transcription Factor SomA Is Required for Adhesion, Development and Virulence of the Human Pathogen Aspergillus fumigatus

    PubMed Central

    Lin, Chi-Jan; Sasse, Christoph; Gerke, Jennifer; Valerius, Oliver; Irmer, Henriette; Frauendorf, Holm; Heinekamp, Thorsten; Straßburger, Maria; Tran, Van Tuan; Herzog, Britta; Braus-Stromeyer, Susanna A.; Braus, Gerhard H.

    2015-01-01

    The transcription factor Flo8/Som1 controls filamentous growth in Saccharomyces cerevisiae and virulence in the plant pathogen Magnaporthe oryzae. Flo8/Som1 includes a characteristic N-terminal LUG/LUH-Flo8-single-stranded DNA binding (LUFS) domain and is activated by the cAMP dependent protein kinase A signaling pathway. Heterologous SomA from Aspergillus fumigatus rescued in yeast flo8 mutant strains several phenotypes including adhesion or flocculation in haploids and pseudohyphal growth in diploids, respectively. A. fumigatus SomA acts similarly to yeast Flo8 on the promoter of FLO11 fused with reporter gene (LacZ) in S. cerevisiae. FLO11 expression in yeast requires an activator complex including Flo8 and Mfg1. Furthermore, SomA physically interacts with PtaB, which is related to yeast Mfg1. Loss of the somA gene in A. fumigatus resulted in a slow growth phenotype and a block in asexual development. Only aerial hyphae without further differentiation could be formed. The deletion phenotype was verified by a conditional expression of somA using the inducible Tet-on system. A adherence assay with the conditional somA expression strain indicated that SomA is required for biofilm formation. A ptaB deletion strain showed a similar phenotype supporting that the SomA/PtaB complex controls A. fumigatus biofilm formation. Transcriptional analysis showed that SomA regulates expression of genes for several transcription factors which control conidiation or adhesion of A. fumigatus. Infection assays with fertilized chicken eggs as well as with mice revealed that SomA is required for pathogenicity. These data corroborate a complex control function of SomA acting as a central factor of the transcriptional network, which connects adhesion, spore formation and virulence in the opportunistic human pathogen A. fumigatus. PMID:26529322

  18. Serum and growth factor requirements for proliferation of human adrenocortical cells in culture: comparison with bovine adrenocortical cells.

    PubMed

    Hornsby, P J; Sturek, M; Harris, S E; Simonian, M H

    1983-11-01

    Although bovine adrenocortical cells proliferate readily in cell culture, proliferation of fetal or adult human adrenocortical cells has been observed to be limited and preparation of pure proliferating cultures of human adrenocortical cells has not been reported. The growth requirements of fetal human definitive zone adrenocortical cells in culture were compared to the established requirements of bovine adrenocortical cells. The medium used was 1:1 Ham's F12 and Dulbecco's modified Eagle's medium supplemented with transferrin and insulin. Earlier experiments showed that human cells had a greater proliferative response to horse serum than to fetal bovine serum, whereas the opposite was true for bovine cells. When plated on fibronectin-coated dishes and exposed to varying concentrations of horse serum in the presence of 100 ng/ml fibroblast growth factor (FGF), increasing cell growth was observed up to a serum concentration of 50%. When 50% fetal bovine serum was used instead of horse serum proliferation was less. In contrast, bovine adrenocortical cells showed a maximal proliferative response to either fetal bovine serum or horse serum at 10%. Human adrenocortical cells thus have a very high requirement for serum; 50% is the highest level that may be practically used, but the shape of the dose-response curve suggests that this concentration is still suboptimal. Growth was less in the absence of FGF. Epidermal growth factor can partially substitute for FGF. No response to 100 nM placental lactogen was observed. Less growth was observed when dishes were not coated with fibronectin. The factors present in horse serum that are evidently needed in high amounts by human cells are unknown. Despite this lack of knowledge, use of 50% horse serum enabled long-term growth of human adrenocortical cells that are pure by the criterion of retraction in response to ACTH. Nonadrenocortical cells do not show a retraction response. Such long-term cultures may be useful in studies of

  19. Purification of Xenopus laevis mitochondrial RNA polymerase and identification of a dissociable factor required for specific transcription

    SciTech Connect

    Bogenhagen, D.F.; Insdorf, N.F.

    1988-07-01

    The Xenopus laevis mitochondrial RNA (mtRNA) polymerase was purified to near homogeneity with an overall yield approaching 50%. The major polypeptides in the final fraction were a doublet of proteins of approximately 140 kilodaltons that copurified with the mtRNA polymerase activity. It appeared likely that the smaller polypeptide is a breakdown product of the larger one. The highly purified polymerase was active in nonspecific transcription but required a dissociable factor for specific transcription of X. laevis mtDNA. The factor could be resolved from mtRNA polymerase by hydrophobic chromatography and had a sedimentation coefficient of 3.0 S. The transcription factor eluted from both the hydrophobic column and a Mono Q anion-exchange column as a single symmetrical peak. The mtRNA polymerase and this factor together are necessary and sufficient for active transcription from four promoters located in a noncoding region of the mtDNA genome between the gene for tRNA/sup Phe/ and the displacement loop.

  20. Adult community-acquired bacterial meningitis requiring ICU admission: epidemiological data, prognosis factors and adherence to IDSA guidelines.

    PubMed

    Georges, H; Chiche, A; Alfandari, S; Devos, P; Boussekey, N; Leroy, O

    2009-11-01

    Numerous guidelines are available to guide empirical antimicrobial therapy (EAT) in acute bacterial meningitis (ABM) patients. We analysed prognosis factors and compliance to the Infectious Diseases Society of America (IDSA) guidelines in ABM patients requiring stay in an intensive care unit (ICU). A 10-year retrospective study, using prospectively collected data, in 82 ABM patients admitted to a 16-bed university-affiliated French ICU was undertaken. Seventeen patients (20.7%) died during ICU stay. Multivariate analysis isolated four factors associated with in-ICU death: alcoholism (P = 0.007), acute kidney injury (P = 0.006), age >60 years (P = 0.006) and ICU admission for neurological failure (P = 0.01). Causative pathogens were isolated for 62 (75.6%) patients, including 29 pneumococci, 14/28 of which were non-susceptible to penicillin. No characteristics, particularly recent hospitalisation and/or antibiotic delivery, was associated with penicillin susceptibility. Compliance to IDSA guidelines was 65%. Non-compliance concerned to be essentially the non-delivery or low dosage of vancomycin. Treatment compatible with IDSA guidelines was associated with a decreased ICU mortality in univariate (61.5% survival vs. 35.3%, P = 0.05) but not in multivariate analysis. In-ICU mortality associated with ABM remains high. Prognosis factors are related to the severity of disease or underlying conditions. Penicillin non-susceptible Streptococcus pneumoniae can occur without any of the usual predisposing factors. PMID:19727871

  1. Purification of Xenopus laevis mitochondrial RNA polymerase and identification of a dissociable factor required for specific transcription.

    PubMed Central

    Bogenhagen, D F; Insdorf, N F

    1988-01-01

    The Xenopus laevis mitochondrial RNA (mtRNA) polymerase was purified to near homogeneity with an overall yield approaching 50%. The major polypeptides in the final fraction were a doublet of proteins of approximately 140 kilodaltons that copurified with the mtRNA polymerase activity. It appeared likely that the smaller polypeptide is a breakdown product of the larger one. The highly purified polymerase was active in nonspecific transcription but required a dissociable factor for specific transcription of X. laevis mtDNA. The factor could be resolved from mtRNA polymerase by hydrophobic chromatography and had a sedimentation coefficient of 3.0 S. The transcription factor eluted from both the hydrophobic column and a Mono Q anion-exchange column as a single symmetrical peak. The mtRNA polymerase and this factor together are necessary and sufficient for active transcription from four promoters located in a noncoding region of the mtDNA genome between the gene for tRNA(Phe) and the displacement loop. Images PMID:2457154

  2. Predictive factors for flexible ureterorenoscopy requirement after rigid ureterorenoscopy in cases with renal pelvic stones sized 1 to 2 cm

    PubMed Central

    Gülpinar, Ömer; Özcan, Cihat; Göğüş, Çağatay; Kerimov, Seymur; Şafak, Mut

    2015-01-01

    Purpose To evaluate the outcomes of rigid ureterorenoscopy (URS) for renal pelvic stones (RPS) sized 1 to 2 cm and to determine the predictive factors for the requirement for flexible URS (F-URS) when rigid URS fails. Materials and Methods A total of 88 patients were included into the study. In 48 patients, the RPS were totally fragmented with rigid URS and F-URS was not required (group 1). In 40 patients, rigid URS was not able to access the renal pelvis or fragmentation of the stones was not completed owing to stone position or displacement and F-URS was utilized for retrograde intrarenal surgery (RIRS) (group 2). The predictive factors for F-URS requirement during RIRS for RPS were evaluated. Both groups were compared regarding age, height, sex, body mass index, stone size, stone opacity, hydronephrosis, and previous treatments. Results The mean patient age was 48.6±16.5 years and the mean follow-period was 39±11.5 weeks. The overall stone-free rate in the study population was 85% (75 patients). In groups 1 and 2, the overall stone-free rates were 83% (40 patients) and 87% (35 patients), respectively (p>0.05). The independent predictors of requirement for F-URS during RIRS were male gender, patient height, and higher degree of hydronephrosis. Conclusions Rigid URS can be utilized in selected patients for the fragmentation of RPS sized 1 to 2 cm with outcomes similar to that of F-URS. In case of failure of rigid URS, F-URS can be performed successfully in this group of patients. PMID:25685301

  3. Release of platelet-activating factor (PAF) and histamine. II. The cellular origin of human PAF: monocytes, polymorphonuclear neutrophils and basophils.

    PubMed Central

    Camussi, G; Aglietta, M; Coda, R; Bussolino, F; Piacibello, W; Tetta, C

    1981-01-01

    The origin of platelet activating factor (PAF) from human leucocytes was investigated. Purified monocytes release PAF passively at pH 10.6, when challenged with Ionophore A 23187 or under phagocytic stimuli. Pure preparations of polymorphonuclear neutrophils liberate PAF passively, when challenged with C5a, neutrophil cationic proteins (CP), their carboxypeptidase B derived products (C5a des Arg, CP des Arg) or under phagocytic stimuli. Basophil rich buffy coat cells release PAF when challenged with C5a, CP, anti-IgE (in low amount) or Synacthen concomitantly with basophil degranulation and histamine release. Electron microscopy studies, carried out on Synacthen-stimulated basophil rich buffy coat, provide morphological evidence for platelet-basophil interaction. In conclusion our data demonstrate that PAF can be released from different leucocyte populations. However, the stimuli able to trigger such release appear to have some specificity for the cell target. Images Figure 5 PMID:6161885

  4. Optical information storage in cellular mobile terminals

    NASA Astrophysics Data System (ADS)

    Makela, Jakke S.; Aikio, Janne K.; Vadde, Venkatesh; Kolehmainen, Timo T.; Karioja, Pentti

    2001-11-01

    The trend towards so-called digital convergence (multiple functionality within a single terminal) is opening up a need for high-capacity storage within the cellular mobile terminals (CMT). Solid-state memories and magnetic microdrives are the most commercially mature options. Optical disk technology in this size range is immature, but has a unique potential: no other medium at present has the capability to be simultaneously low-cost, high-capacity, and exchangeable. In this paper, we explore the requirements for the implementation of optical disk storage in a CMT environment. From the technical point of view, these requirements include small form factor, high-enough data density and throughput, low power consumption, robustness, low cost, mass productability, and modularity. Although current technologies may satisfy some of these requirements individually, there is a need for combined optimization of all of these parameters. From the commercial point of view, the most crucial requirement is global standardization. Such standardization is crucial if wide interoperability is wanted (between CMT manufacturers, and even more crucially between CMTs and other appliances). Current optical storage standards are industry-driven and tend to be proprietary and/or incompatible. Even if the technical challenges can be met, optical data storage is not likely to be accepted in CMT applications unless global standardization proceeds more quickly than it is doing at present.

  5. Statistical Mechanics of Surjective Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kari, Jarkko; Taati, Siamak

    2015-09-01

    Reversible cellular automata are seen as microscopic physical models, and their states of macroscopic equilibrium are described using invariant probability measures. We establish a connection between the invariance of Gibbs measures and the conservation of additive quantities in surjective cellular automata. Namely, we show that the simplex of shift-invariant Gibbs measures associated to a Hamiltonian is invariant under a surjective cellular automaton if and only if the cellular automaton conserves the Hamiltonian. A special case is the (well-known) invariance of the uniform Bernoulli measure under surjective cellular automata, which corresponds to the conservation of the trivial Hamiltonian. As an application, we obtain results indicating the lack of (non-trivial) Gibbs or Markov invariant measures for "sufficiently chaotic" cellular automata. We discuss the relevance of the randomization property of algebraic cellular automata to the problem of approach to macroscopic equilibrium, and pose several open questions. As an aside, a shift-invariant pre-image of a Gibbs measure under a pre-injective factor map between shifts of finite type turns out to be always a Gibbs measure. We provide a sufficient condition under which the image of a Gibbs measure under a pre-injective factor map is not a Gibbs measure. We point out a potential application of pre-injective factor maps as a tool in the study of phase transitions in statistical mechanical models.

  6. Modelling cellular behaviour

    NASA Astrophysics Data System (ADS)

    Endy, Drew; Brent, Roger

    2001-01-01

    Representations of cellular processes that can be used to compute their future behaviour would be of general scientific and practical value. But past attempts to construct such representations have been disappointing. This is now changing. Increases in biological understanding combined with advances in computational methods and in computer power make it possible to foresee construction of useful and predictive simulations of cellular processes.

  7. Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice.

    PubMed

    Balkowiec, A; Katz, D M

    1998-07-15

    1. Molecular mechanisms underlying maturation of the central respiratory rhythm are largely unknown. Previously, we found that brain-derived neurotrophic factor (BDNF) is required for expression of normal breathing behaviour in newborn mice, raising the possibility that maturation of central respiratory output is dependent on BDNF. 2. Respiratory activity was recorded in vitro from cervical ventral roots (C1 or C4) using the isolated brainstem-spinal cord preparation from postnatal day (P) 0.5-2.0 and P4.5 wild-type mice and mice lacking functional bdnf alleles. 3. Loss of one or both bdnf alleles resulted in an approximately 50% depression of central respiratory frequency compared with wild-type controls. In addition, respiratory cycle length variability was 214% higher in bdnf null (bdnf-/-) animals compared with controls at P4.5. In contrast, respiratory burst duration was unaffected by bdnf gene mutation. 4. These derangements of central respiratory rhythm paralleled the ventilatory depression and irregular breathing characteristic of bdnf mutants in vivo, indicating that central deficits can largely account for the abnormalities in resting ventilation produced by genetic loss of BDNF. BDNF is thus the first growth factor identified that is required for normal development of the central respiratory rhythm, including the stabilization of central respiratory output that occurs after birth. PMID:9706001

  8. Brain-derived neurotrophic factor is required for normal development of the central respiratory rhythm in mice

    PubMed Central

    Balkowiec, Agnieszka; Katz, David M

    1998-01-01

    Molecular mechanisms underlying maturation of the central respiratory rhythm are largely unknown. Previously, we found that brain-derived neurotrophic factor (BDNF) is required for expression of normal breathing behaviour in newborn mice, raising the possibility that maturation of central respiratory output is dependent on BDNF. Respiratory activity was recorded in vitro from cervical ventral roots (C1 or C4) using the isolated brainstem–spinal cord preparation from postnatal day (P) 0.5–2.0 and P4.5 wild-type mice and mice lacking functional bdnf alleles. Loss of one or both bdnf alleles resulted in an approximately 50 % depression of central respiratory frequency compared with wild-type controls. In addition, respiratory cycle length variability was 214 % higher in bdnf null (bdnf−/−) animals compared with controls at P4.5. In contrast, respiratory burst duration was unaffected by bdnf gene mutation. These derangements of central respiratory rhythm paralleled the ventilatory depression and irregular breathing characteristic of bdnf mutants in vivo, indicating that central deficits can largely account for the abnormalities in resting ventilation produced by genetic loss of BDNF. BDNF is thus the first growth factor identified that is required for normal development of the central respiratory rhythm, including the stabilization of central respiratory output that occurs after birth. PMID:9706001

  9. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity

    PubMed Central

    Virreira Winter, Sebastian; Zychlinsky, Arturo; Bardoel, Bart W.

    2016-01-01

    Staphylococcus aureus causes a wide variety of infections and antibiotic resistant strains are a major problem in hospitals. One of the best studied virulence factors of S. aureus is the pore-forming toxin alpha hemolysin (αHL) whose mechanism of action is incompletely understood. We performed a genome-wide loss-of-function screen using CRISPR/Cas9 technology to identify host targets required for αHL susceptibility in human myeloid cells. We found gRNAs for ten genes enriched after intoxication with αHL and focused on the top five hits. Besides a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), the host receptor for αHL, we identified three proteins, Sys1 golgi trafficking protein (SYS1), ADP-ribosylation factor 1 (ARFRP1), and tetraspanin-14 (TSPAN14) which regulate the presentation of ADAM10 on the plasma membrane post-translationally. Interestingly, we also showed that cells lacking sphingomyelin synthase 1 (SGMS1) resist αHL intoxication, but have only a slightly reduced ADAM10 surface expression. SGMS1 regulates lipid raft formation, suggesting that αHL requires these membrane microdomains for attachment and cytotoxicity. PMID:27066838

  10. Induction of plasminogen activator inhibitor 1 gene expression in murine liver by lipopolysaccharide. Cellular localization and role of endogenous tumor necrosis factor-alpha.

    PubMed Central

    Fearns, C.; Loskutoff, D. J.

    1997-01-01

    We previously demonstrated that lipopolysaccharide (LPS) induces plasminogen activator inhibitor 1 (PAI-1) gene expression primarily in endothelial cells in most organs of the mouse, with maximal induction by 3 hours. Here we show that induction in the liver occurs in a distinctly different pattern. For example, the increase in PAI-1 mRNA in liver was biphasic with an initial peak at 1 to 2 hours and a second peak at 6 to 8 hours. Moreover, in situ hybridization experiments revealed that PAI-1 mRNA was induced in both endothelial cells and hepatocytes. The endothelial cell response was monophasic and maximal between 1 and 4 hours, whereas the hepatocyte response was biphasic, peaking at 2 hours and again at 6 to 8 hours. To determine possible mechanisms involved in the induction of PAI-1 by LPS, we analyzed the tissues for changes in tumor necrosis factor (TNF)-alpha LPS caused a rapid induction of TNF-alpha mRNA in Kupffer cells, detectable within 15 minutes. Pretreatment of mice with anti-TNF antiserum before challenge with LPS reduced the subsequent increase in plasma levels of PAI-1 by 50 to 70% and significantly reduced the level of induction of PAI-1 mRNA in the liver at both early and late times. Pretreatment appeared to inhibit induction primarily within hepatocytes. These results suggest that LPS may induce PAI-1 in endothelial cells and hepatocytes by different mechanisms. Images Figure 3 Figure 4 Figure 7 PMID:9033272

  11. Platelet-derived growth factor-α receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer.

    PubMed

    Kabanova, Anna; Marcandalli, Jessica; Zhou, Tongqing; Bianchi, Siro; Baxa, Ulrich; Tsybovsky, Yaroslav; Lilleri, Daniele; Silacci-Fregni, Chiara; Foglierini, Mathilde; Fernandez-Rodriguez, Blanca Maria; Druz, Aliaksandr; Zhang, Baoshan; Geiger, Roger; Pagani, Massimiliano; Sallusto, Federica; Kwong, Peter D; Corti, Davide; Lanzavecchia, Antonio; Perez, Laurent

    2016-01-01

    Human cytomegalovirus encodes at least 25 membrane glycoproteins that are found in the viral envelope(1). While gB represents the fusion protein, two glycoprotein complexes control the tropism of the virus: the gHgLgO trimer is involved in the infection of fibroblasts, and the gHgLpUL128L pentamer is required for infection of endothelial, epithelial and myeloid cells(2-5). Two reports suggested that gB binds to ErbB1 and PDGFRα (refs 6,7); however, these results do not explain the tropism of the virus and were recently challenged(8,9). Here, we provide a 19 Å reconstruction for the gHgLgO trimer and show that it binds with high affinity through the gO subunit to PDGFRα, which is expressed on fibroblasts but not on epithelial cells. We also provide evidence that the trimer is essential for viral entry in both fibroblasts and epithelial cells. Furthermore, we identify the pentamer, which is essential for infection of epithelial cells, as a trigger for the ErbB pathway. These findings help explain the broad tropism of human cytomegalovirus and indicate that PDGFRα and the viral gO subunit could be targeted by novel anti-viral therapies. PMID:27573107

  12. Requirement for neurogenesis to proceed through the division of neuronal progenitors following differentiation of epidermal growth factor and fibroblast growth factor-2-responsive human neural stem cells.

    PubMed

    Ostenfeld, Thor; Svendsen, Clive N

    2004-01-01

    Epidermal growth factor (EGF)- and fibroblast growth factor-2 (FGF-2)-responsive human neural stem cells may provide insight into mechanisms of neural development and have applications in cell-based therapeutics for neurological disease. However, their biology after expansion in vitro is currently poorly understood. Cells grown in either EGF or FGF-2 or a combination of both mitogens displayed characteristically similar levels of transcriptional activation and comparable proliferative profiles with linear cell-cycle kinetics and possessed similar neuronal differentiation capabilities. These data support the view that human neurospheres at later stages of expansion (>10 weeks) are comprised overwhelmingly of a single type of stem cell responsive to both EGF and FGF-2. After mitogen withdrawal and neurosphere plating, bromodeoxyuridine pulse-chase experiments revealed that the stem cells did not undergo differentiation directly into neurons. Instead, most immature neurons arose via the division of emerging progenitor cells in the absence of exogenous EGF or FGF-2. Neurogenesis was abolished by application of high concentrations of either EGF/FGF-2 or the mitotic inhibitor cytosine-b-arabinofuranoside, suggesting that there is an obligatory requirement for at least one round of cell division in the absence of mitogens as a prelude to terminal neuronal differentiation. The differentiation of human neurospheres provides a useful model of human neurogenesis, and the data presented indicate that it proceeds through the division of committed neuronal progenitor cells rather than directly from the neural stem cell. PMID:15342944

  13. Phosphorylation of a WRKY Transcription Factor by MAPKs Is Required for Pollen Development and Function in Arabidopsis

    PubMed Central

    Guan, Yuefeng; Meng, Xiangzong; Khanna, Reshma; LaMontagne, Erica; Liu, Yidong; Zhang, Shuqun

    2014-01-01

    Plant male gametogenesis involves complex and dynamic changes in gene expression. At present, little is known about the transcription factors involved in this process and how their activities are regulated. Here, we show that a pollen-specific transcription factor, WRKY34, and its close homolog, WRKY2, are required for male gametogenesis in Arabidopsis thaliana. When overexpressed using LAT52, a strong pollen-specific promoter, epitope-tagged WRKY34 is temporally phosphorylated by MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs, or MPKs), at early stages in pollen development. During pollen maturation, WRKY34 is dephosphorylated and degraded. Native promoter-driven WRKY34-YFP fusion also follows the same expression pattern at the protein level. WRKY34 functions redundantly with WRKY2 in pollen development, germination, and pollen tube growth. Loss of MPK3/MPK6 phosphorylation sites in WRKY34 compromises the function of WRKY34 in vivo. Epistasis interaction analysis confirmed that MPK6 belongs to the same genetic pathway of WRKY34 and WRKY2. Our study demonstrates the importance of temporal post-translational regulation of WRKY transcription factors in the control of developmental phase transitions in plants. PMID:24830428

  14. Two distinct factors bind to the rabbit uteroglobin TATA-box region and are required for efficient transcription.

    PubMed Central

    Klug, J; Knapp, S; Castro, I; Beato, M

    1994-01-01

    The rabbit uteroglobin gene is expressed in a variety of epithelial cell types like the lung Clara cells and the glandular and luminal epithelial cells of the endometrium. Expression in Clara cells is on a high constitutive level, whereas expression in the rabbit endometrium is under tight hormonal control. One important element of the rabbit uteroglobin gene mediating its efficient transcription in two epithelial cell lines from human endometrium (Ishikawa) and lung (NCI-H441) is its noncanonical TATA box (TACA). Here, we show that two factors (TATA core factor [TCF] and TATA palindrome factor [TPF]) different from the TATA-box binding protein bind to the DNA major groove at two adjacent sites within the uteroglobin TATA-box region and that one of them (TCF) is specifically expressed in cell lines derived from uteroglobin-expressing tissues. The binding sites for TCF and TPF, respectively, are both required for efficient transcription in Ishikawa and NCI-H441 cells. Mutation of the TACA box, which we show is a poor TATA box in functional terms, to a canonical TATA motif does not affect TCF and TPF binding. Therefore, we suggest that the function of the unusual cytosine could be to reduce rabbit uteroglobin expression in cells lacking TCF and that the interaction of TATA-box binding protein with the weak TACA site is facilitated in TCF- and TPF-positive cells. Images PMID:8065353

  15. Potentiation of growth factor signaling by insulin-like growth factor-binding protein-3 in breast epithelial cells requires sphingosine kinase activity.

    PubMed

    Martin, Janet L; Lin, Mike Z; McGowan, Eileen M; Baxter, Robert C

    2009-09-18

    We have investigated the mechanism underlying potentiation of epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGFR1) signaling by IGF-binding protein-3 (IGFBP-3) in MCF-10A breast epithelial cells, focusing on a possible involvement of the sphingosine kinase (SphK) system. IGFBP-3 potentiated EGF-stimulated EGF receptor activation and DNA synthesis, and this was blocked by inhibitors of SphK activity or small interference RNA-mediated silencing of SphK1, but not SphK2, expression. Similarly, IGFR1 phosphorylation and DNA synthesis stimulated by LR3-IGF-I (an IGF-I analog not bound by IGFBP-3), were enhanced by IGFBP-3, and this was blocked by SphK1 silencing. SphK1 expression and activity were stimulated by IGFBP-3 approximately 2-fold over 24 h. Silencing of sphingosine 1-phosphate receptor 1 (S1P1) or S1P3, but not S1P2, abolished the effect of IGFBP-3 on EGF-stimulated EGFR activation. The effects of IGFBP-3 could be reproduced with exogenous S1P or medium conditioned by cells treated with IGFBP-3, and this was also blocked by inhibition of S1P1 and S1P3. These data indicate that potentiation of growth factor signaling by IGFBP-3 in MCF-10A cells requires SphK1 activity and S1P1/S1P3, suggesting that S1P, the product of SphK activity and ligand for S1P1 and S1P3, is the "missing link" mediating IGF and EGFR transactivation and cell growth stimulation by IGFBP-3. PMID:19633297

  16. Hox Targets and Cellular Functions

    PubMed Central

    Sánchez-Herrero, Ernesto

    2013-01-01

    Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function. PMID:24490109

  17. Cellular Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2010-01-01

    The cellular reflectarray antenna is intended to replace conventional parabolic reflectors that must be physically aligned with a particular satellite in geostationary orbit. These arrays are designed for specified geographical locations, defined by latitude and longitude, each called a "cell." A particular cell occupies nominally 1,500 square miles (3,885 sq. km), but this varies according to latitude and longitude. The cellular reflectarray antenna designed for a particular cell is simply positioned to align with magnetic North, and the antenna surface is level (parallel to the ground). A given cellular reflectarray antenna will not operate in any other cell.

  18. Cellular Manufacturing Internet Performance Support System

    SciTech Connect

    Bohley, M.C.; Schwartz, M.E.

    1998-03-04

    The objective of this project was to develop an Internet-based electronic performance support system (EPSS) for cellular manufacturing providing hardware/software specifications, process descriptions, estimated cost savings, manufacturing simulations, training information, and service resources for government and industry users of Cincinnati Milacron machine tools and products. AlliedSignal Federal Manufacturing and Technologies (ASFM and T) used expertise in the areas of Internet design and multimedia creation to develop a performance support system (PSS) for the Internet with assistance from CM's subject matter experts from engineering, manufacturing, and technical support. Reference information was both created and re-purposed from other existing formats, then made available on the Internet. On-line references on cellular manufacturing operations include: definitions of cells and cellular manufacturing; illustrations on how cellular manufacturing improves part throughput, resource utilization, part quality, and manufacturing flexibility; illustrations on how cellular manufacturing reduces labor and overhead costs; identification of critical factors driving decisions toward cellular manufacturing; a method for identifying process improvement areas using cellular manufacturing; a method for customizing the size of cells for a specific site; a simulation for making a part using cellular manufacturing technology; and a glossary of terms and concepts.

  19. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    PubMed

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. PMID:27533012

  20. The amino-terminal portion of CD1 of the adenovirus E1A proteins is required to induce susceptibility to tumor necrosis factor cytolysis in adenovirus-infected mouse cells.

    PubMed

    Duerksen-Hughes, P J; Hermiston, T W; Wold, W S; Gooding, L R

    1991-03-01

    Previous work by our laboratory and others has shown that mouse cells normally resistant to tumor necrosis factor can be made sensitive to the cytokine by the expression of adenovirus E1A. The E1A gene can be introduced by either infection or transfection, and either of the two major E1A proteins, 289R or 243R, can induce this sensitivity. The E1A proteins are multifunctional and modular, with specific domains associated with specific functions. Here, we report that the CD1 domain of E1A is required to induce susceptibility to tumor necrosis factor cytolysis in adenovirus-infected mouse C3HA fibroblasts. Amino acids C terminal to residue 60 and N terminal to residue 36 are not necessary for this function. This conclusion is based on 51Cr-release assays for cytolysis in cells infected with adenovirus mutants with deletions in various portions of E1A. These E1A mutants are all in an H5dl309 background and therefore they lack the tumor necrosis factor protection function provided by the 14.7-kilodalton (14.7K) protein encoded by region E3. Western blot (immunoblot) analysis indicated that most of the mutant E1A proteins were stable in infected C3HA cells, although with certain large deletions the E1A proteins were unstable. The region between residues 36 and 60 is included within but does not precisely correlate with domains in E1A that have been implicated in nuclear localization, enhancer repression, cellular immortalization, cell transformation in cooperation with ras, induction of cellular DNA synthesis and proliferation, induction of DNA degradation, and binding to the 300K protein and the 105K retinoblastoma protein. PMID:1825340

  1. Cellular and molecular mechanisms in kidney fibrosis

    PubMed Central

    Duffield, Jeremy S.

    2014-01-01

    Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution. PMID:24892703

  2. Repression of AS2 by WOX family transcription factors is required for leaf development in Medicago and Arabidopsis

    PubMed Central

    Zhang, Fei; Tadege, Million

    2015-01-01

    WOX transcription factors are key regulators of meristematic activity in plants. The Medicago WOX gene, STF, functions in maintenance of leaf marginal meristem, analogous to the function of WUS in the shoot apical meristem. Both STF and WUS directly repress AS2 expression in their respective domains. Ectopic expression of AS2 with WUS promoter leads to a narrow leaf phenotype and other phenotypes similar to the wus mutant. We also found that a wox1 prs wus triple mutant produces much narrower leaf blades than the wox1 prs double mutant, indicating that WUS genetically interacts with WOX1 and PRS in Arabidopsis leaf blade development. Our data points to a general requirement for AS2 repression in meristematic regions to allow cell proliferation. PMID:25807065

  3. Repression of AS2 by WOX family transcription factors is required for leaf development in Medicago and Arabidopsis.

    PubMed

    Zhang, Fei; Tadege, Million

    2015-01-01

    WOX transcription factors are key regulators of meristematic activity in plants. The Medicago WOX gene, STF, functions in maintenance of leaf marginal meristem, analogous to the function of WUS in the shoot apical meristem. Both STF and WUS directly repress AS2 expression in their respective domains. Ectopic expression of AS2 with WUS promoter leads to a narrow leaf phenotype and other phenotypes similar to the wus mutant. We also found that a wox1 prs wus triple mutant produces much narrower leaf blades than the wox1 prs double mutant, indicating that WUS genetically interacts with WOX1 and PRS in Arabidopsis leaf blade development. Our data points to a general requirement for AS2 repression in meristematic regions to allow cell proliferation. PMID:25807065

  4. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function.

    PubMed

    Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R

    2016-01-19

    The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. PMID:26795252

  5. Lentiviral hepatitis B pseudotype entry requires sodium taurocholate co-transporting polypeptide and additional hepatocyte-specific factors.

    PubMed

    Meredith, L W; Hu, K; Cheng, X; Howard, C R; Baumert, T F; Balfe, P; van de Graaf, K F; Protzer, U; McKeating, J A

    2016-01-01

    Hepatitis B virus (HBV) is one of the world's major unconquered infections, resulting in progressive liver disease, and current treatments rarely cure infection. A limitation to discovering new therapies is our limited knowledge of HBV entry and dissemination pathways that hinders the development of in vitro culture systems. To address this gap in our understanding we optimized the genesis of infectious lentiviral pseudoparticles (HBVpps). The recent discovery that the bile salt transporter sodium taurocholate co-transporting polypeptide (NTCP) acts as a receptor for HBV enabled us to assess the receptor dependency of HBVpp infection. HBVpps preferentially infect hepatoma cells expressing NTCP, whereas other non-liver cells engineered to express NTCP do not support infection, suggesting that additional hepatocyte-specific factors are required for HBVpp internalization. These results highlight the value of the HBVpp system to dissect the pathways of HBV entry and dissemination. PMID:26474824

  6. Passive Noise Filtering by Cellular Compartmentalization.

    PubMed

    Stoeger, Thomas; Battich, Nico; Pelkmans, Lucas

    2016-03-10

    Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity. PMID:26967282

  7. CELLULAR MAGNESIUM HOMEOSTASIS

    PubMed Central

    Romani, Andrea M.P.

    2011-01-01

    Magnesium, the second most abundant cellular cation after potassium, is essential to regulate numerous cellular functions and enzymes, including ion channels, metabolic cycles, and signaling pathways, as attested by more than 1000 entries in the literature. Despite significant recent progress, however, our understanding of how cells regulate Mg2+ homeostasis and transport still remains incomplete. For example, the occurrence of major fluxes of Mg2+ in either direction across the plasma membrane of mammalian cells following metabolic or hormonal stimuli has been extensively documented. Yet, the mechanisms ultimately responsible for magnesium extrusion across the cell membrane have not been cloned. Even less is known about the regulation in cellular organelles. The present review is aimed at providing the reader with a comprehensive and up-to-date understanding of the mechanisms enacted by eukaryotic cells to regulate cellular Mg2+ homeostasis and how these mechanisms are altered under specific pathological conditions. PMID:21640700

  8. Two initiator-like elements are required for the combined activation of the human apolipoprotein C-III promoter by upstream stimulatory factor and hepatic nuclear factor-4.

    PubMed

    Pastier, Daniele; Lacorte, Jean-Marc; Chambaz, Jean; Cardot, Philippe; Ribeiro, Agnes

    2002-04-26

    Human apoC-III (-890/+24) promoter activity is strongly activated by hepatic nuclear factor (HNF)-4 through its binding to the proximal (-87/-72) element B. This site overlaps the binding site for an activity that we identified as the ubiquitously expressed upstream stimulatory factor (USF) (Ribeiro, A., Pastier, D., Kardassis, D., Chambaz, J., and Cardot, P. (1999) J. Biol. Chem. 274, 1216-1225). In the present study, we characterized the relationship between USF and HNF-4 in the activation of human apoC-III transcription. Although USF and HNF-4 binding to element B is mutually exclusive, co-transfection experiments in HepG2 cells surprisingly showed a combined effect of USF and HNF-4 in the transactivation of the (-890/+24) apoC-III promoter. This effect only requires the proximal region (-99/+24) of the apoC-III promoter and depends neither on USF binding to its cognate site in element B nor on a USF-dependent facilitation of HNF-4 binding to its site. By contrast, we found by electrophoretic mobility shift assay and footprinting analysis two USF low affinity binding sites, located within the proximal promoter at positions -58/-31 (element II) and -19/-4 (element I), which are homologous to initiator-like element sequence. Co-transfection experiments in HepG2 cells show that a mutation in element II reduces 2-fold the USF transactivation effect on the proximal promoter of apoC-III and that a mutation in element I inhibits the combined effect of USF and HNF-4. In conclusion, these initiator-like elements are directly involved in the transactivation of the apoC-III promoter by USF and are necessary to the combined effect between USF and HNF-4 for the apoC-III transcription. PMID:11839757

  9. Forkhead Box M1 Transcriptional Factor is Required for Smooth Muscle Cells during Embryonic Development of Blood Vessels and Esophagus

    PubMed Central

    Ustiyan, Vladimir; Wang, I-Ching; Ren, Xiaomeng; Zhang, Yufang; Snyder, Jonathan; Xu, Yan; Wert, Susan E.; Lessard, James L.; Kalin, Tanya V.; Kalinichenko, Vladimir V.

    2009-01-01

    The Forkhead Box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is expressed in a variety of tissues during embryogenesis, including vascular, airway and intestinal smooth muscle cells (SMC). Although global deletion of Foxm1 in Foxm1−/− mice is lethal in the embryonic period due to multiple abnormalities in the liver, heart and lung, the specific role of Foxm1 in SMC remains unknown. In the present study, Foxm1 was deleted conditionally in the developing SMC (smFoxm1−/− mice). The majority of smFoxm1−/− mice died immediately after birth due to severe pulmonary hemorrhage, and structural defects in arterial wall and esophagus. Although Foxm1 deletion did not influence SMC differentiation, decreased proliferation of SMC was found in smFoxm1−/− blood vessels and esophagus. Depletion of Foxm1 in cultured SMC caused G2 arrest and decreased numbers of cells undergoing mitosis. Foxm1-deficiency in vitro and in vivo was associated with reduced expression of cell cycle regulatory genes, including cyclin B1, Cdk1-activator Cdc25b phosphatase, Polo-like 1 and JNK1 kinases, and cMyc transcription factor. Foxm1 is critical for proliferation of smooth muscle cells and is required for proper embryonic development of blood vessels and esophagus. PMID:19835856

  10. Legionella pneumophila EnhC is required for efficient replication in tumor necrosis factor α-stimulated macrophages

    PubMed Central

    Liu, Mingyu; Conover, Gloria M.; Isberg, Ralph R.

    2008-01-01

    Legionella pneumophila enhC− mutants were originally identified as being defective for uptake into host cells. In this work, we found that the absence of EnhC resulted in defective intracellular growth when dissemination of intracellular bacteria to neighboring cells was expected to occur. No such defect was observed during growth within the amoeba Dictyostelium discoideum Culture supernatants containing the secreted products of infected macrophages added to host cells restricted the growth of the ΔenhC strain, while tumor necrosis factor α (TNF-α), at concentrations similar to those found in macrophage culture supernatants, could reproduce the growth restriction exerted by culture supernatants on L. pneumophila ΔenhC. The absence of EnhC also caused defective trafficking of the Legionella-containing vacuole in TNF-α treated macrophages. EnhC was shown to be an envelope-associated protein largely localized to the periplasm, with its expression induced in post-exponential phase, as is true for many virulence-associated proteins. Furthermore, the absence of EnhC appeared to affect survival under stress conditions, as the ΔenhC mutant was more susceptible to H2O2 treatment than the wild type strain. EnhC, therefore, is a unique virulence factor that is required for growth specifically when macrophages have heightened potential to restrict microbial replication. PMID:18549456

  11. Telomerase RNA TLC1 shuttling to the cytoplasm requires mRNA export factors and is important for telomere maintenance.

    PubMed

    Wu, Haijia; Becker, Daniel; Krebber, Heike

    2014-09-25

    Telomerases protect the ends of linear chromosomes from shortening. They are composed of an RNA (TLC1 in S. cerevisiae) and several proteins. TLC1 undergoes several maturation steps before it is exported into the cytoplasm to recruit the Est proteins for complete assembly. The mature telomerase is subsequently reimported into the nucleus, where it fulfills its function on telomeres. Here, we show that TLC1 export into the cytoplasm requires not only the Ran GTPase-dependent karyopherin Crm1/Xpo1 but also the mRNA export machinery. mRNA export factor mutants accumulate mature and export-competent TLC1 RNAs in their nuclei. Moreover, TLC1 physically interacts with the mRNA transport factors Mex67 and Dbp5/Rat8. Most importantly, we show that the nuclear export of TLC1 is an essential step for the formation of the functional RNA containing enzyme, because blocking TLC1 export in the mex67-5 xpo1-1 double mutant prevents its cytoplasmic maturation and leads to telomere shortening. PMID:25220466

  12. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology.

    PubMed Central

    Katsani, K R; Hajibagheri, M A; Verrijzer, C P

    1999-01-01

    The POZ domain is a conserved protein-protein interaction motif present in a variety of transcription factors involved in development, chromatin remodelling and human cancers. Here, we study the role of the POZ domain of the GAGA transcription factor in promoter recognition. Natural target promoters for GAGA typically contain multiple GAGA-binding elements. Our results show that the POZ domain mediates strong co-operative binding to multiple sites but inhibits binding to single sites. Protein cross-linking and gel filtration chromatography experiments established that the POZ domain is required for GAGA oligomerization into higher order complexes. Thus, GAGA oligomerization increases binding specificity by selecting only promoters with multiple sites. Electron microscopy revealed that GAGA binds to multiple sites as a large oligomer and induces bending of the promoter DNA. Our results indicate a novel mode of DNA binding by GAGA, in which a large GAGA complex binds multiple GAGA elements that are spread out over a region of a few hundred base pairs. We suggest a model in which the promoter DNA is wrapped around a GAGA multimer in a conformation that may exclude normal nucleosome formation. PMID:9927429

  13. A genome-wide RNAi screen identifies factors required for distinct stages of C. elegans piRNA biogenesis

    PubMed Central

    Goh, Wee-Siong Sho; Seah, Jun Wen Eugene; Harrison, Emily J.; Chen, Caifu; Hammell, Christopher M.; Hannon, Gregory J.

    2014-01-01

    In animals, piRNAs and their associated Piwi proteins guard germ cell genomes against mobile genetic elements via an RNAi-like mechanism. In Caenorhabditis elegans, 21U-RNAs comprise the piRNA class, and these collaborate with 22G RNAs via unclear mechanisms to discriminate self from nonself and selectively and heritably silence the latter. Recent work indicates that 21U-RNAs are post-transcriptional processing products of individual transcription units that produce ∼26-nucleotide capped precursors. However, nothing is known of how the expression of precursors is controlled or how primary transcripts give rise to mature small RNAs. We conducted a genome-wide RNAi screen to identify components of the 21U biogenesis machinery. Screening by direct, quantitative PCR (qPCR)-based measurements of mature 21U-RNA levels, we identified 22 genes important for 21U-RNA production, termed TOFUs (Twenty-One-u Fouled Ups). We also identified seven genes that normally repress 21U production. By measuring mature 21U-RNA and precursor levels for the seven strongest hits from the screen, we assigned factors to discrete stages of 21U-RNA production. Our work identifies for the first time factors separately required for the transcription of 21U precursors and the processing of these precursors into mature 21U-RNAs, thereby providing a resource for studying the biogenesis of this important small RNA class. PMID:24696458

  14. A Member of the Arabidopsis Mitochondrial Transcription Termination Factor Family Is Required for Maturation of Chloroplast Transfer RNAIle(GAU).

    PubMed

    Romani, Isidora; Manavski, Nikolay; Morosetti, Arianna; Tadini, Luca; Maier, Swetlana; Kühn, Kristina; Ruwe, Hannes; Schmitz-Linneweber, Christian; Wanner, Gerhard; Leister, Dario; Kleine, Tatjana

    2015-09-01

    Plastid gene expression is crucial for organelle function, but the factors that control it are still largely unclear. Members of the so-called mitochondrial transcription termination factor (mTERF) family are found in metazoans and plants and regulate organellar gene expression at different levels. Arabidopsis (Arabidopsis thaliana) mTERF6 is localized in chloroplasts and mitochondria, and its knockout perturbs plastid development and results in seedling lethality. In the leaky mterf6-1 mutant, a defect in photosynthesis is associated with reduced levels of photosystem subunits, although corresponding messenger RNA levels are unaffected, whereas translational capacity and maturation of chloroplast ribosomal RNAs (rRNAs) are perturbed in mterf6-1 mutants. Bacterial one-hybrid screening, electrophoretic mobility shift assays, and coimmunoprecipitation experiments reveal a specific interaction between mTERF6 and an RNA sequence in the chloroplast isoleucine transfer RNA gene (trnI.2) located in the rRNA operon. In vitro, recombinant mTERF6 bound to its plastid DNA target site can terminate transcription. At present, it is unclear whether disturbed rRNA maturation is a primary or secondary defect. However, it is clear that mTERF6 is required for the maturation of trnI.2. This points to an additional function of mTERFs. PMID:26152711

  15. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment.

    PubMed

    Rossi, Chiara; Angelucci, Andrea; Costantin, Laura; Braschi, Chiara; Mazzantini, Mario; Babbini, Francesco; Fabbri, Maria Elena; Tessarollo, Lino; Maffei, Lamberto; Berardi, Nicoletta; Caleo, Matteo

    2006-10-01

    Neurogenesis continues to occur in the adult mammalian hippocampus and is regulated by both genetic and environmental factors. It is known that exposure to an enriched environment enhances the number of newly generated neurons in the dentate gyrus. However, the mechanisms by which enriched housing produces these effects are poorly understood. To test a role for neurotrophins, we used heterozygous knockout mice for brain-derived neurotrophic factor (BDNF+/-) and mice lacking neurotrophin-4 (NT-4-/-) together with their wild-type littermates. Mice were either reared in standard laboratory conditions or placed in an enriched environment for 8 weeks. Animals received injections of the mitotic marker bromodeoxyuridine (BrdU) to label newborn cells. Enriched wild-type and enriched NT-4-/- mice showed a two-fold increase in hippocampal neurogenesis as assessed by stereological counting of BrdU-positive cells in the dentate gyrus and double labelling for BrdU and the neuronal marker NeuN. Remarkably, this enhancement of hippocampal neurogenesis was not seen in enriched BDNF+/- mice. Failure to up-regulate BDNF accompanied the lack of a neurogenic response in enriched BDNF heterozygous mice. We conclude that BDNF but not NT-4 is required for the environmental induction of neurogenesis. PMID:17040481

  16. A forkhead Transcription Factor Is Wound-Induced at the Planarian Midline and Required for Anterior Pole Regeneration

    PubMed Central

    Scimone, M. Lucila; Lapan, Sylvain W.; Reddien, Peter W.

    2014-01-01

    Planarian regeneration requires positional information to specify the identity of tissues to be replaced as well as pluripotent neoblasts capable of differentiating into new cell types. We found that wounding elicits rapid expression of a gene encoding a Forkhead-family transcription factor, FoxD. Wound-induced FoxD expression is specific to the ventral midline, is regulated by Hedgehog signaling, and is neoblast-independent. FoxD is subsequently expressed within a medial subpopulation of neoblasts at wounds involving head regeneration. Ultimately, FoxD is co-expressed with multiple anterior markers at the anterior pole. Inhibition of FoxD with RNA interference (RNAi) results in the failure to specify neoblasts expressing anterior markers (notum and prep) and in anterior pole formation defects. FoxD(RNAi) animals fail to regenerate a new midline and to properly pattern the anterior blastema, consistent with a role for the anterior pole in organizing pattern of the regenerating head. Our results suggest that wound signaling activates a forkhead transcription factor at the midline and, if the head is absent, FoxD promotes specification of neoblasts at the prior midline for anterior pole regeneration. PMID:24415944

  17. KDM5 interacts with Foxo to modulate cellular levels of oxidative stress.

    PubMed

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-10-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  18. KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress

    PubMed Central

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-01-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to tr