Science.gov

Sample records for cellular metabolic structure

  1. Elements of the cellular metabolic structure

    PubMed Central

    De la Fuente, Ildefonso M.

    2015-01-01

    A large number of studies have demonstrated the existence of metabolic covalent modifications in different molecular structures, which are able to store biochemical information that is not encoded by DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by specific input stimuli. Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in covalent post-translational modulation, so that determined functional memory can be embedded in multiple stable molecular marks. The metabolic dynamics governed by Hopfield-type attractors (functional processes), as well as the enzymatic covalent modifications of specific molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell. PMID:25988183

  2. Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures

    PubMed Central

    de la Fuente, Ildefonso Martínez

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111

  3. Global Self-Organization of the Cellular Metabolic Structure

    PubMed Central

    De La Fuente, Ildefonso M.; Martínez, Luis; Pérez-Samartín, Alberto L.; Ormaetxea, Leire; Amezaga, Cristian; Vera-López, Antonio

    2008-01-01

    Background Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using “metabolic networks models” are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used “dissipative metabolic networks” (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms. Methodology/Principal Findings Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state. Conclusions/Significance This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures. PMID:18769681

  4. Engineering Cellular Metabolism.

    PubMed

    Nielsen, Jens; Keasling, Jay D

    2016-03-10

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds, and pharmaceuticals. However, making cells into efficient factories is challenging because cells have evolved robust metabolic networks with hard-wired, tightly regulated lines of communication between molecular pathways that resist efforts to divert resources. Here, we will review the current status and challenges of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation. PMID:26967285

  5. Mathematical Modeling of Cellular Metabolism.

    PubMed

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research. PMID:27557541

  6. Cellular compartmentalization of secondary metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors sh...

  7. Cellular energy metabolism

    SciTech Connect

    Glaser, M.

    1991-06-01

    Studies have been carried out on adenylate kinase which is an important enzyme in determining the concentrations of the adenine nucleotides. An efficient method has been developed to clone mutant adenylate kinase genes in E. coli. Site-specific mutagenesis of the wild type gene also has been used to obtain forms of adenylate kinase with altered amino acids. The wild type and mutant forms of adenylate kinase have been overexpressed and large quantities were readily isolated. The kinetic and fluorescence properties of the different forms of adenylate kinase were characterized. This has led to a new model for the location of the AMP and ATP bindings sites on the enzyme and a proposal for the mechanism of substrate inhibition. Crystals of the wild type enzyme were obtained that diffract to at least 2.3 {angstrom} resolution. Experiments were also initiated to determine the function of adenylate kinase in vivo. In one set of experiments, E. coli strains with mutations in adenylate kinase showed large changes in cellular nucleotides after reaching the stationary phase in a low phosphate medium. This was caused by selective proteolytic degradation of the mutant adenylate kinase caused by phosphate starvation.

  8. Peroxisome Metabolism and Cellular Aging

    PubMed Central

    Titorenko, Vladimir I.; Terlecky, Stanley R.

    2010-01-01

    The essential role of peroxisomes in fatty acid oxidation, anaplerotic metabolism, and hydrogen peroxide turnover is well established. Recent findings suggest these and other related biochemical processes governed by the organelle may also play a critical role in regulating cellular aging. The goal of this review is to summarize and integrate into a model, the evidence that peroxisome metabolism actually helps define the replicative and chronological age of a eukaryotic cell. In this model, peroxisomal reactive oxygen species (ROS) are seen as altering organelle biogenesis and function, and eliciting changes in the dynamic communication networks that exist between peroxisomes and other cellular compartments. At low levels, peroxisomal ROS activate an anti-aging program in the cell; at concentrations beyond a specific threshold, a pro-aging course is triggered. PMID:21083858

  9. Cellular compartmentalization of secondary metabolism

    PubMed Central

    Kistler, H. Corby; Broz, Karen

    2015-01-01

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported. PMID:25709603

  10. Cellular metabolism of unnatural sialic acid precursors.

    PubMed

    Pham, Nam D; Fermaintt, Charles S; Rodriguez, Andrea C; McCombs, Janet E; Nischan, Nicole; Kohler, Jennifer J

    2015-10-01

    Carbohydrates, in addition to their metabolic functions, serve important roles as receptors, ligands, and structural molecules for diverse biological processes. Insight into carbohydrate biology and mechanisms has been aided by metabolic oligosaccharide engineering (MOE). In MOE, unnatural carbohydrate analogs with novel functional groups are incorporated into cellular glycoconjugates and used to probe biological systems. While MOE has expanded knowledge of carbohydrate biology, limited metabolism of unnatural carbohydrate analogs restricts its use. Here we assess metabolism of SiaDAz, a diazirine-modified analog of sialic acid, and its cell-permeable precursor, Ac4ManNDAz. We show that the efficiency of Ac4ManNDAz and SiaDAz metabolism depends on cell type. Our results indicate that different cell lines can have different metabolic roadblocks in the synthesis of cell surface SiaDAz. These findings point to roles for promiscuous intracellular esterases, kinases, and phosphatases during unnatural sugar metabolism and provide guidance for ways to improve MOE. PMID:25957566

  11. Primitive control of cellular metabolism

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1974-01-01

    It is pointed out that control substances must have existed from the earliest times in the evolution of life and that the same control mechanisms must exist today. The investigation reported is concerned with the concept that carbon dioxide is a primitive regulator of cell function. The effects of carbon dioxide on cellular materials are examined, taking into account questions of solubilization, dissociation, changes of charge, stabilization, structural changes, wettability, the exclusion of other gases, the activation of compounds, changes in plasticity, and changes in membrane permeability.

  12. Cellular metabolism and disease: what do metabolic outliers teach us?

    PubMed Central

    DeBerardinis, Ralph J.; Thompson, Craig B.

    2012-01-01

    An understanding of metabolic pathways based solely on biochemistry textbooks would underestimate the pervasive role of metabolism in essentially every aspect of biology. It is evident from recent work that many human diseases involve abnormal metabolic states – often genetically programmed – that perturb normal physiology and lead to severe tissue dysfunction. Understanding these metabolic outliers is now a crucial frontier in disease-oriented research. This review discusses the broad impact of metabolism in cellular function, how modern concepts of metabolism can inform our understanding of common diseases like cancer, and considers the prospects of developing new metabolic approaches to disease treatment. PMID:22424225

  13. Immunometabolism: Cellular Metabolism Turns Immune Regulator.

    PubMed

    Loftus, Róisín M; Finlay, David K

    2016-01-01

    Immune cells are highly dynamic in terms of their growth, proliferation, and effector functions as they respond to immunological challenges. Different immune cells can adopt distinct metabolic configurations that allow the cell to balance its requirements for energy, molecular biosynthesis, and longevity. However, in addition to facilitating immune cell responses, it is now becoming clear that cellular metabolism has direct roles in regulating immune cell function. This review article describes the distinct metabolic signatures of key immune cells, explains how these metabolic setups facilitate immune function, and discusses the emerging evidence that intracellular metabolism has an integral role in controlling immune responses. PMID:26534957

  14. Optimal flux patterns in cellular metabolic networks

    SciTech Connect

    Almaas, E

    2007-01-20

    The availability of whole-cell level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30,000 random cellular environments. The distribution of reaction fluxes is heavy-tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations have relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reaction are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central-carbon metabolic pathways for the sample of random environments.

  15. Optimal flux patterns in cellular metabolic networks

    NASA Astrophysics Data System (ADS)

    Almaas, Eivind

    2007-06-01

    The availability of whole-cell-level metabolic networks of high quality has made it possible to develop a predictive understanding of bacterial metabolism. Using the optimization framework of flux balance analysis, I investigate the metabolic response and activity patterns to variations in the availability of nutrient and chemical factors such as oxygen and ammonia by simulating 30 000 random cellular environments. The distribution of reaction fluxes is heavy tailed for the bacteria H. pylori and E. coli, and the eukaryote S. cerevisiae. While the majority of flux balance investigations has relied on implementations of the simplex method, it is necessary to use interior-point optimization algorithms to adequately characterize the full range of activity patterns on metabolic networks. The interior-point activity pattern is bimodal for E. coli and S. cerevisiae, suggesting that most metabolic reactions are either in frequent use or are rarely active. The trimodal activity pattern of H. pylori indicates that a group of its metabolic reactions (20%) are active in approximately half of the simulated environments. Constructing the high-flux backbone of the network for every environment, there is a clear trend that the more frequently a reaction is active, the more likely it is a part of the backbone. Finally, I briefly discuss the predicted activity patterns of the central carbon metabolic pathways for the sample of random environments.

  16. Lipid Droplets And Cellular Lipid Metabolism

    PubMed Central

    Walther, Tobias C.; Farese, Robert V.

    2013-01-01

    Among organelles, lipid droplets (LDs) uniquely constitute a hydrophobic phase in the aqueous environment of the cytosol. Their hydrophobic core of neutral lipids stores metabolic energy and membrane components, making LDs hubs for lipid metabolism. In addition, LDs are implicated in a number of other cellular functions, ranging from protein storage and degradation to viral replication. These processes are functionally linked to many physiological and pathological conditions, including obesity and related metabolic diseases. Despite their important functions and nearly ubiquitous presence in cells, many aspects of LD biology are unknown. In the past few years, the pace of LD investigation has increased, providing new insights. Here, we review the current knowledge of LD cell biology and its translation to physiology. PMID:22524315

  17. Formin’ cellular structures

    PubMed Central

    Bogdan, Sven; Schultz, Jörg; Grosshans, Jörg

    2014-01-01

    Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation. PMID:24719676

  18. Sesquiterpene antitumor agents: inhibitors of cellular metabolism.

    PubMed

    Lee, K H; Hall, I H; Mar, E C; Starnes, C O; ElGebaly, S A; Waddell, T G; HADGRAFT, R I; Ruffner, C G; Weidner, I

    1977-04-29

    Helenalin and tenulin injected into CF1 male mice bearing Ehrlich ascites tumors inhibit DNA synthesis and DNA polymerase enzymatic activity in the tumor cells. Helenalin inhibited protein synthesis. Both drugs increased the concentration of adenosine 3',5'-monophosphate, and interfered with glycolytic and mitochondrial energy processes. Cholesterol synthesis was also inhibited, resulting in lower serum cholesterol levels in tumor-bearing animals. Data obtained in vitro indicate that the cyclopentenone-bearing sesquiterpene lactone and related compounds do not alkylate puring bases of nucleic acids but rather undergo a Michael-type addition reaction with the sulfhydryl groups of reduced glutathione and l-cysteine. Thus, the inhibition of cellular enzyme activities and metabolism that has been observed with these drugs might be explained by the occurrence of a Michael-type teaction. PMID:191909

  19. [Cellular metabolism of sodium and hypertension].

    PubMed

    Cusi, D; Colombo, R; Pozzoli, E; Bianchi, G

    1989-01-01

    Essential hypertension develops from interactions between genetic and environmental components. Studies on cell membrane ions (in particular the sodium ion) transport in essential hypertension were originally carried out in order to better understand the roles these two components play in a less complex system than the overall organ system or the single organs involved in blood pressure regulation. The theory supporting this experimental approach is based on the observation that cell membrane function affects all the phenomena involved in blood pressure regulation. Receptor function, hormonal secretion, cell volume regulation, ion transport and ion composition of the cell are all regulated at the cell membrane level. However the problem of the relevance of cellular sodium metabolism in the pathogenesis of essential hypertension and of the interpretation of the many conflicting results has grown in complexity with the growing mass of data published in the literature. At least part of this complexity seems related to methodological problems but part is surely due to real differences among the various populations or subpopulations studied. This review analyzes the main sources of the discrepancies, the different ion transport systems and the end point of the overall transport system as well as the steady state intracellular cation concentration in both genetic animal models of essential hypertension and in man. PMID:2702018

  20. Wrinkling in Cellular Structured Composites

    NASA Astrophysics Data System (ADS)

    Kaynia, Narges; Li, Yaning; Boyce, Mary C.

    2013-03-01

    Many structured composites found in nature possess undulating and wrinkled interfacial layers that regulate mechanical, chemical, acoustic, adhesive, thermal, electrical and optical functions of the material. This research focused on the formation of wrinkling patterns in cellular structured composites and the effect of the wrinkling pattern on the overall structural response. The cellular composites consisted of stiffer interfacial layers constructing a network submerged in a soft matrix. Analytical and finite element models were developed to capture various aspects of the wrinkling mechanism. The characteristics of the undulation patterns and the instability modes were investigated as functions of model geometry and material composition. Mechanical experiments were designed to further explore the modeling results. The cellular composite samples were fabricated by using different types of elastomers and by varying the geometry and the material properties. The experimental and numerical results were consistent with the analytical predictions. The results in this research improve understanding of the mechanisms governing the undulation pattern formation in cellular composites and can be used to enable on-demand tunability of different functions to provide, among others, active control of wave propagation, mechanical stiffness and deformation, and material swelling and growth.

  1. Approximating the stabilization of cellular metabolism by compartmentalization.

    PubMed

    Fürtauer, Lisa; Nägele, Thomas

    2016-06-01

    Biochemical regulation in compartmentalized metabolic networks is highly complex and non-intuitive. This is particularly true for cells of higher plants showing one of the most compartmentalized cellular structures across all kingdoms of life. The interpretation and testable hypothesis generation from experimental data on such complex systems is a challenging step in biological research and biotechnological applications. While it is known that subcellular compartments provide defined reaction spaces within a cell allowing for the tight coordination of complex biochemical reaction sequences, its role in the coordination of metabolic signals during metabolic reprogramming due to environmental fluctuations is less clear. In the present study, we numerically analysed the effects of environmental fluctuations in a subcellular metabolic network with regard to the stability of an experimentally observed steady state in the genetic model plant Arabidopsis thaliana. Applying a method for kinetic parameter normalization, several millions of probable enzyme kinetic parameter constellations were simulated and evaluated with regard to the stability information of the metabolic homeostasis. Information about the stability of the metabolic steady state was derived from real parts of eigenvalues of Jacobian matrices. Our results provide evidence for a differential stabilizing contribution of different subcellular compartments. We could identify stabilizing and destabilizing network components which we could classify according to their subcellular localization. The findings prove that a highly dynamic interplay between intracellular compartments is preliminary for an efficient stabilization of a metabolic homeostasis after environmental perturbation. Further, our results provide evidence that feedback-inhibition originating from the cytosol and plastid seem to stabilize the sucrose homeostasis more efficiently than vacuolar control. In summary, our results indicate stabilizing and

  2. Pressure-actuated cellular structures.

    PubMed

    Pagitz, M; Lamacchia, E; Hol, J M A M

    2012-03-01

    Shape changing structures will play an important role in future engineering designs since rigid structures are usually only optimal for a small range of service conditions. Hence, a concept for reliable and energy-efficient morphing structures that possess a large strength to self-weight ratio would be widely applicable. We propose a novel concept for morphing structures that is inspired by the nastic movement of plants. The idea is to connect prismatic cells with tailored pentagonal and/or hexagonal cross sections such that the resulting cellular structure morphs into given target shapes for certain cell pressures. An efficient algorithm for computing equilibrium shapes as well as cross-sectional geometries is presented. The potential of this novel concept is demonstrated by several examples that range from a flagellum like propulsion device to a morphing aircraft wing. PMID:22278936

  3. Autophagy in cellular metabolism and cancer

    PubMed Central

    Jiang, Xuejun; Overholtzer, Michael; Thompson, Craig B.

    2015-01-01

    Autophagy is a catabolic process mediated by incorporation of cellular material into cytosolic membrane vesicles for lysosomal degradation. It is crucial for maintaining cell viability and homeostasis in response to numerous stressful conditions. In this Review, the role of autophagy in both normal biology and disease is discussed. Emphasis is given to the interplay of autophagy with nutrient signaling through the ULK1 autophagy pre-initiation complex. Furthermore, related cellular processes utilizing components of the canonical autophagy pathway are discussed due to their potential roles in nutrient scavenging. Finally, the role of autophagy in cancer and its potential as a cancer therapeutic target are considered. PMID:25654550

  4. Sestrins orchestrate cellular metabolism to attenuate aging

    PubMed Central

    Karin, Michael

    2013-01-01

    Summary The Sestrins constitute a family of evolutionarily-conserved stress-inducible proteins that suppress oxidative stress and regulate adenosine monophosphate-dependent protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling. By virtue of these activities, the Sestrins serve as important regulators of metabolic homeostasis. Accordingly, inactivation of Sestrin genes in invertebrates resulted in diverse metabolic pathologies, including oxidative damage, fat accumulation, mitochondrial dysfunction and muscle degeneration that resemble accelerated tissue aging. Likewise, Sestrin deficiencies in mice led to accelerated diabetic progression upon obesity. Further investigation of Sestrin function and regulation should provide new insights into age-associated metabolic diseases, such as diabetes, myopathies and cancer. PMID:24055102

  5. Translation Factors Specify Cellular Metabolic State.

    PubMed

    Mata, Juan

    2016-08-16

    In this issue of Cell Reports, Shah et al. present evidence that a subcomplex of the eIF3 translation initiation factor regulates translation of mRNAs encoding components of the mitochondrial electron transport chain and glycolytic enzymes, thus linking translational control with energy metabolism. PMID:27533178

  6. MOLECULAR PROCESSES IN CELLULAR ARSENIC METABOLISM

    EPA Science Inventory

    Elucidating molecular processes that underlie accumulation, metabolism, and binding of iAs and its methylated metabolites provides a basis for understanding the modes of action by which iAs acts as a toxin and a carcinogen. One approach to this problem is to construct a conceptu...

  7. Is cancer a disease of abnormal cellular metabolism?

    PubMed Central

    DeBerardinis, Ralph J.

    2009-01-01

    In the 1920s, Otto Warburg observed that tumor cells consume a large amount of glucose, much more than normal cells, and convert most of it to lactic acid. This phenomenon, now known as the ‘Warburg effect,’ is the foundation of one of the earliest general concepts of cancer: that a fundamental disturbance of cellular metabolic activity is at the root of tumor formation and growth. In the ensuing decades, as it became apparent that abnormalities in chromosomes and eventually individual genes caused cancer, the ‘metabolic’ model of cancer lost a good deal of its appeal, even as emerging technologies were exploiting the Warburg effect clinically to detect tumors in vivo. We now know that tumor suppressors and proto-oncogenes influence metabolism, and that mutations in these genes can promote a metabolic phenotype supporting cell growth and proliferation. Thus, these advances have unified aspects of the metabolic and genetic models of cancer, and have stimulated a renewed interest in the role of cellular metabolism in tumorigenesis. This review reappraises the notion that dysregulated cellular metabolism is a key feature of cancer, and discusses some metabolic issues that have escaped scrutiny over the years and now deserve closer attention. PMID:18941420

  8. The challenges of cellular compartmentalization in plant metabolic engineering.

    PubMed

    Heinig, Uwe; Gutensohn, Michael; Dudareva, Natalia; Aharoni, Asaph

    2013-04-01

    The complex metabolic networks in plants are highly compartmentalized and biochemical steps of a single pathway can take place in multiple subcellular locations. Our knowledge regarding reactions and precursor compounds in the various cellular compartments has increased in recent years due to innovations in tracking the spatial distribution of proteins and metabolites. Nevertheless, to date only few studies have integrated subcellular localization criteria in metabolic engineering attempts. Here, we highlight the crucial factors for subcellular-localization-based strategies in plant metabolic engineering including substrate availability, enzyme targeting, the role of transporters, and multigene transfer approaches. The availability of compartmentalized metabolic network models for plants in the near future will greatly advance the integration of localization constraints in metabolic engineering experiments and aid in predicting their outcomes. PMID:23246154

  9. Torsins Are Essential Regulators of Cellular Lipid Metabolism.

    PubMed

    Grillet, Micheline; Dominguez Gonzalez, Beatriz; Sicart, Adria; Pöttler, Maria; Cascalho, Ana; Billion, Karolien; Hernandez Diaz, Sergio; Swerts, Jef; Naismith, Teresa V; Gounko, Natalia V; Verstreken, Patrik; Hanson, Phyllis I; Goodchild, Rose E

    2016-08-01

    Torsins are developmentally essential AAA+ proteins, and mutation of human torsinA causes the neurological disease DYT1 dystonia. They localize in the ER membranes, but their cellular function remains unclear. We now show that dTorsin is required in Drosophila adipose tissue, where it suppresses triglyceride levels, promotes cell growth, and elevates membrane lipid content. We also see that human torsinA at the inner nuclear membrane is associated with membrane expansion and elevated cellular lipid content. Furthermore, the key lipid metabolizing enzyme, lipin, is mislocalized in dTorsin-KO cells, and dTorsin increases levels of the lipin substrate, phosphatidate, and reduces the product, diacylglycerol. Finally, genetic suppression of dLipin rescues dTorsin-KO defects, including adipose cell size, animal growth, and survival. These findings identify that torsins are essential regulators of cellular lipid metabolism and implicate disturbed lipid biology in childhood-onset DYT1 dystonia. PMID:27453503

  10. Integrated segmentation of cellular structures

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter; Al-Kofahi, Yousef; Scott, Richard; Donovan, Michael; Fernandez, Gerardo

    2011-03-01

    Automatic segmentation of cellular structures is an essential step in image cytology and histology. Despite substantial progress, better automation and improvements in accuracy and adaptability to novel applications are needed. In applications utilizing multi-channel immuno-fluorescence images, challenges include misclassification of epithelial and stromal nuclei, irregular nuclei and cytoplasm boundaries, and over and under-segmentation of clustered nuclei. Variations in image acquisition conditions and artifacts from nuclei and cytoplasm images often confound existing algorithms in practice. In this paper, we present a robust and accurate algorithm for jointly segmenting cell nuclei and cytoplasm using a combination of ideas to reduce the aforementioned problems. First, an adaptive process that includes top-hat filtering, Eigenvalues-of-Hessian blob detection and distance transforms is used to estimate the inverse illumination field and correct for intensity non-uniformity in the nuclei channel. Next, a minimum-error-thresholding based binarization process and seed-detection combining Laplacian-of-Gaussian filtering constrained by a distance-map-based scale selection is used to identify candidate seeds for nuclei segmentation. The initial segmentation using a local maximum clustering algorithm is refined using a minimum-error-thresholding technique. Final refinements include an artifact removal process specifically targeted at lumens and other problematic structures and a systemic decision process to reclassify nuclei objects near the cytoplasm boundary as epithelial or stromal. Segmentation results were evaluated using 48 realistic phantom images with known ground-truth. The overall segmentation accuracy exceeds 94%. The algorithm was further tested on 981 images of actual prostate cancer tissue. The artifact removal process worked in 90% of cases. The algorithm has now been deployed in a high-volume histology analysis application.

  11. Complement-Mediated Regulation of Metabolism and Basic Cellular Processes.

    PubMed

    Hess, Christoph; Kemper, Claudia

    2016-08-16

    Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings. PMID:27533012

  12. The widespread role of non-enzymatic reactions in cellular metabolism

    PubMed Central

    Keller, Markus A; Piedrafita, Gabriel; Ralser, Markus

    2015-01-01

    Enzymes shape cellular metabolism, are regulated, fast, and for most cases specific. Enzymes do not however prevent the parallel occurrence of non-enzymatic reactions. Non-enzymatic reactions were important for the evolution of metabolic pathways, but are retained as part of the modern metabolic network. They divide into unspecific chemical reactivity and specific reactions that occur either exclusively non-enzymatically as part of the metabolic network, or in parallel to existing enzyme functions. Non-enzymatic reactions resemble catalytic mechanisms as found in all major enzyme classes and occur spontaneously, small molecule (e.g. metal-) catalyzed or light-induced. The frequent occurrence of non-enzymatic reactions impacts on stability and metabolic network structure, and has thus to be considered in the context of metabolic disease, network modeling, biotechnology and drug design. PMID:25617827

  13. Metabolic modulation and cellular therapy of cardiac dysfunction and failure

    PubMed Central

    Revenco, Diana; Morgan, James P

    2009-01-01

    Abstract At present the prevalence of heart failure rises along with aging of the population. Current heart failure therapeutic options are directed towards disease prevention via neurohormonal antagonism (β-blockers, angiotensin converting enzyme inhibitors and/or angiotensin receptor blockers and aldosterone antagonists), symptomatic treatment with diuretics and digitalis and use of biventricular pacing and defibrillators in a special subset of patients. Despite these therapies and device interventions heart failure remains a progressive disease with high mortality and morbidity rates. The number of patients who survive to develop advanced heart failure is increasing. These patients require new therapeutic strategies. In this review two of emerging therapies in the treatment of heart failure are discussed: metabolic modulation and cellular therapy. Metabolic modulation aims to optimize the myocardial energy utilization via shifting the substrate utilization from free fatty acids to glucose. Cellular therapy on the other hand has the goal to achieve true cardiac regeneration. We review the experimental data that support these strategies as well as the available pharmacological agents for metabolic modulation and clinical application of cellular therapy. PMID:19382894

  14. Integrating Cellular Metabolism into a Multiscale Whole-Body Model

    PubMed Central

    Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars

    2012-01-01

    Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351

  15. Cellular hallmarks reveal restricted aerobic metabolism at thermal limits

    PubMed Central

    Neves, Aitana; Busso, Coralie; Gönczy, Pierre

    2015-01-01

    All organisms live within a given thermal range, but little is known about the mechanisms setting the limits of this range. We uncovered cellular features exhibiting signature changes at thermal limits in Caenorhabditis elegans embryos. These included changes in embryo size and shape, which were also observed in Caenorhabditis briggsae, indicating evolutionary conservation. We hypothesized that such changes could reflect restricted aerobic capacity at thermal limits. Accordingly, we uncovered that relative respiration in C. elegans embryos decreases at the thermal limits as compared to within the thermal range. Furthermore, by compromising components of the respiratory chain, we demonstrated that the reliance on aerobic metabolism is reduced at thermal limits. Moreover, embryos thus compromised exhibited signature changes in size and shape already within the thermal range. We conclude that restricted aerobic metabolism at the thermal limits contributes to setting the thermal range in a metazoan organism. DOI: http://dx.doi.org/10.7554/eLife.04810.001 PMID:25929283

  16. Molecular and Cellular Bases of Iron Metabolism in Humans.

    PubMed

    Milto, I V; Suhodolo, I V; Prokopieva, V D; Klimenteva, T K

    2016-06-01

    Iron is a microelement with the most completely studied biological functions. Its wide dissemination in nature and involvement in key metabolic pathways determine the great importance of this metal for uni- and multicellular organisms. The biological role of iron is characterized by its indispensability in cell respiration and various biochemical processes providing normal functioning of cells and organs of the human body. Iron also plays an important role in the generation of free radicals, which under different conditions can be useful or damaging to biomolecules and cells. In the literature, there are many reviews devoted to iron metabolism and its regulation in pro- and eukaryotes. Significant progress has been achieved recently in understanding molecular bases of iron metabolism. The purpose of this review is to systematize available data on mechanisms of iron assimilation, distribution, and elimination from the human body, as well as on its biological importance and on the major iron-containing proteins. The review summarizes recent ideas about iron metabolism. Special attention is paid to mechanisms of iron absorption in the small intestine and to interrelationships of cellular and extracellular pools of this metal in the human body. PMID:27301283

  17. Cellular Metabolic Network Analysis: Discovering Important Reactions in Treponema pallidum

    PubMed Central

    Chen, Xueying; Zhao, Min; Qu, Hong

    2015-01-01

    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis. PMID:26495292

  18. Cellular metabolic network analysis: discovering important reactions in Treponema pallidum.

    PubMed

    Chen, Xueying; Zhao, Min; Qu, Hong

    2015-01-01

    T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum's metabolism. Here, we apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are identified. As a comparison, we also apply the analytical approaches to the metabolic network of H. pylori to find coregulated drug targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum. These reactions could be potential drug targets for treating syphilis. PMID:26495292

  19. Parametric study of double cellular detonation structure

    NASA Astrophysics Data System (ADS)

    Khasainov, B.; Virot, F.; Presles, H.-N.; Desbordes, D.

    2013-05-01

    A parametric numerical study is performed of a detonation cellular structure in a model gaseous explosive mixture whose decomposition occurs in two successive exothermic reaction steps with markedly different characteristic times. Kinetic and energetic parameters of both reactions are varied in a wide range in the case of one-dimensional steady and two-dimensional (2D) quasi-steady self-supported detonations. The range of governing parameters of both exothermic steps is defined where a "marked" double cellular structure exists. It is shown that the two-level cellular structure is completely governed by the kinetic parameters and the local overdrive ratio of the detonation front propagating inside large cells. Furthermore, since it is quite cumbersome to use detailed chemical kinetics in unsteady 2D case, the proposed work should help to identify the mixtures and the domain of their equivalence ratio where double detonation structure could be observed.

  20. A computational model of skeletal muscle metabolism linking cellular adaptations induced by altered loading states to metabolic responses during exercise

    PubMed Central

    Dash, Ranjan K; DiBella, John A; Cabrera, Marco E

    2007-01-01

    Background The alterations in skeletal muscle structure and function after prolonged periods of unloading are initiated by the chronic lack of mechanical stimulus of sufficient intensity, which is the result of a series of biochemical and metabolic interactions spanning from cellular to tissue/organ level. Reduced activation of skeletal muscle alters the gene expression of myosin heavy chain isoforms to meet the functional demands of reduced mechanical load, which results in muscle atrophy and reduced capacity to process fatty acids. In contrast, chronic loading results in the opposite pattern of adaptations. Methods To quantify interactions among cellular and skeletal muscle metabolic adaptations, and to predict metabolic responses to exercise after periods of altered loading states, we develop a computational model of skeletal muscle metabolism. The governing model equations – with parameters characterizing chronic loading/unloading states- were solved numerically to simulate metabolic responses to moderate intensity exercise (WR ≤ 40% VO2 max). Results Model simulations showed that carbohydrate oxidation was 8.5% greater in chronically unloaded muscle compared with the loaded muscle (0.69 vs. 0.63 mmol/min), while fat oxidation was 7% higher in chronically loaded muscle (0.14 vs. 0.13 mmol/min), during exercise. Muscle oxygen uptake (VO2) and blood flow (Q) response times were 29% and 44% shorter in chronically loaded muscle (0.4 vs. 0.56 min for VO2 and 0.25 vs. 0.45 min for Q). Conclusion The present model can be applied to test complex hypotheses during exercise involving the integration and control of metabolic processes at various organizational levels (cellular to tissue) in individuals who have undergone periods of chronic loading or unloading. PMID:17448235

  1. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    PubMed Central

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-01-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states. PMID:27483987

  2. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states.

    PubMed

    Lancaster, Gemma; Suprunenko, Yevhen F; Jenkins, Kirsten; Stefanovska, Aneta

    2016-01-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states. PMID:27483987

  3. [Caloric restriction: about its positive metabolic effects and cellular impact].

    PubMed

    Ortiz-Bautista, Raúl Julián; Aguilar-Salinas, Carlos Alberto; Monroy-Guzmán, Adriana

    2013-01-01

    Caloric restriction, as a 30 to 60% decrease of ad libitum balanced caloric intake, without malnutrition, is the non-genetic strategy that has consistently extended the average and maximum lifespan of most living beings, and it has been tested from unicellular organisms like yeast Saccharomyces cerevisiae to Rhesus primates. In addition, various genetic and pharmacological caloric restriction models have shown to protect against cancer, cardiovascular and neurodegenerative diseases. Primate studies suggest that this intervention delays the onset of age-related diseases; in humans, it has physiological, biochemical and metabolic effects decreasing diabetes and cardiovascular disease risk factor. Although currently the mechanism by which caloric restriction has its positive effects at the cellular level is unknown, it has been reported to decrease oxidative stress and increase in mitochondrial biogenesis. PMID:25125067

  4. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    PubMed Central

    Habibi, Meisam K.; Lu, Yang

    2014-01-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well. PMID:24998298

  5. C. elegans Metabolic Gene Regulatory Networks Govern the Cellular Economy

    PubMed Central

    Watson, Emma; Walhout, Albertha J.M.

    2014-01-01

    Diet greatly impacts metabolism in health and disease. In response to the presence or absence of specific nutrients, metabolic gene regulatory networks sense the metabolic state of the cell and regulate metabolic flux accordingly, for instance by the transcriptional control of metabolic enzymes. Here we discuss recent insights regarding metazoan metabolic regulatory networks using the nematode Caenorhabditis elegans as a model, including the modular organization of metabolic gene regulatory networks, the prominent impact of diet on the transcriptome and metabolome, specialized roles of nuclear hormone receptors in responding to dietary conditions, regulation of metabolic genes and metabolic regulators by microRNAs, and feedback between metabolic genes and their regulators. PMID:24731597

  6. The Impact of Non-Enzymatic Reactions and Enzyme Promiscuity on Cellular Metabolism during (Oxidative) Stress Conditions

    PubMed Central

    Piedrafita, Gabriel; Keller, Markus A; Ralser, Markus

    2015-01-01

    Cellular metabolism assembles in a structurally highly conserved, but functionally dynamic system, known as the metabolic network. This network involves highly active, enzyme-catalyzed metabolic pathways that provide the building blocks for cell growth. In parallel, however, chemical reactivity of metabolites and unspecific enzyme function give rise to a number of side products that are not part of canonical metabolic pathways. It is increasingly acknowledged that these molecules are important for the evolution of metabolism, affect metabolic efficiency, and that they play a potential role in human disease—age-related disorders and cancer in particular. In this review we discuss the impact of oxidative and other cellular stressors on the formation of metabolic side products, which originate as a consequence of: (i) chemical reactivity or modification of regular metabolites; (ii) through modifications in substrate specificity of damaged enzymes; and (iii) through altered metabolic flux that protects cells in stress conditions. In particular, oxidative and heat stress conditions are causative of metabolite and enzymatic damage and thus promote the non-canonical metabolic activity of the cells through an increased repertoire of side products. On the basis of selected examples, we discuss the consequences of non-canonical metabolic reactivity on evolution, function and repair of the metabolic network. PMID:26378592

  7. Cellular Structure Pattern in Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dong, Lifang; Liu, Weibo; Gao, Xing; Wei, Lingyan

    2015-12-01

    We report the observation of a cellular structure pattern in a dielectric barrier discharge system. The evolution sequence and phase diagram of the pattern are given. It is firstly observed that the "cell nucleus" fire three or even more times at a fixed location at the rising edge of the applied voltage, and that the "cell walls" which have the same discharge times with the "cell nucleus" are ignited slightly after the "cell nucleus". By observing a series of frames recorded by a high speed video camera, it is found that the cellular structure pattern consists of volume discharges (VDs) and surface discharges (SDs) corresponding to the "cell nucleus" and "cell walls" respectively. That VDs and SDs are ignited in turn for several times in each half cycle of the applied voltage confirms the fact that VDs induce the SDs and SDs also affect the following VDs.

  8. Light weight cellular structures based on aluminium

    SciTech Connect

    Prakash, O.; Embury, J.D.; Sinclair, C.; Sang, H.; Silvetti, P.

    1997-02-01

    An interesting form of lightweight material which has emerged in the past 2 decades is metallic foam. This paper deals with the basic concepts of making metallic foams and a detailed study of foams produced from Al-SiC. In addition, some aspects of cellular solids based on honeycomb structures are outlined including the concept of producing both two-phase foams and foams with composite walls.

  9. Gravitational Effects on Cellular Flame Structure

    NASA Technical Reports Server (NTRS)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  10. Natural Products as Tools for Defining How Cellular Metabolism Influences Cellular Immune and Inflammatory Function during Chronic Infection

    PubMed Central

    Lovelace, Erica S.; Polyak, Stephen J.

    2015-01-01

    Chronic viral infections like those caused by hepatitis C virus (HCV) and human immunodeficiency virus (HIV) cause disease that establishes an ongoing state of chronic inflammation. While there have been tremendous improvements towards curing HCV with directly acting antiviral agents (DAA) and keeping HIV viral loads below detection with antiretroviral therapy (ART), there is still a need to control inflammation in these diseases. Recent studies indicate that many natural products like curcumin, resveratrol and silymarin alter cellular metabolism and signal transduction pathways via enzymes such as adenosine monophosphate kinase (AMPK) and mechanistic target of rapamycin (mTOR), and these pathways directly influence cellular inflammatory status (such as NF-κB) and immune function. Natural products represent a vast toolkit to dissect and define how cellular metabolism controls cellular immune and inflammatory function. PMID:26633463

  11. Molecular Biology, Biochemistry and Cellular Physiology of Cysteine Metabolism in Arabidopsis thaliana

    PubMed Central

    Hell, Rüdiger; Wirtz, Markus

    2011-01-01

    Cysteine is one of the most versatile molecules in biology, taking over such different functions as catalysis, structure, regulation and electron transport during evolution. Research on Arabidopsis has contributed decisively to the understanding of cysteine synthesis and its role in the assimilatory pathways of S, N and C in plants. The multimeric cysteine synthase complex is present in the cytosol, plastids and mitochondria and forms the centre of a unique metabolic sensing and signaling system. Its association is reversible, rendering the first enzyme of cysteine synthesis active and the second one inactive, and vice-versa. Complex formation is triggered by the reaction intermediates of cysteine synthesis in response to supply and demand and gives rise to regulation of genes of sulfur metabolism to adjust cellular sulfur homeostasis. Combinations of biochemistry, forward and reverse genetics, structural- and cell-biology approaches using Arabidopsis have revealed new enzyme functions and the unique pattern of spatial distribution of cysteine metabolism in plant cells. These findings place the synthesis of cysteine in the centre of the network of primary metabolism. PMID:22303278

  12. Phylogenetic sequence of metabolic pathways in Precambrian cellular life

    NASA Technical Reports Server (NTRS)

    Barnabas, J.; Schwartz, R. M.; Dayhoff, M. O.

    1981-01-01

    A sequence of major metabolic events is presented as they may have appeared during prokaryote evolution. This is based on (1) the phylogenetic schema derived from sequences of bacterial ferredoxin, 2Fe-2S ferredoxin, 5S ribosomal RNA, and c-type cytochromes; (2) metabolic settings in which these macromolecules are found; and (3) metabolic capabilities of the prokaryotes that carry these molecules.

  13. Sphingosine-1-phosphate metabolism: A structural perspective.

    PubMed

    Pulkoski-Gross, Michael J; Donaldson, Jane C; Obeid, Lina M

    2015-01-01

    Sphingolipids represent an important class of bioactive signaling lipids which have key roles in numerous cellular processes. Over the last few decades, the levels of bioactive sphingolipids and/or their metabolizing enzymes have been realized to be important factors involved in disease development and progression, most notably in cancer. Targeting sphingolipid-metabolizing enzymes in disease states has been the focus of many studies and has resulted in a number of pharmacological inhibitors, with some making it into the clinic as therapeutics. In order to better understand the regulation of sphingolipid-metabolizing enzymes as well as to develop much more potent and specific inhibitors, the field of sphingolipids has recently taken a turn toward structural biology. The last decade has seen the structural determination of a number of sphingolipid enzymes and effector proteins. In these terms, one of the most complete arms of the sphingolipid pathway is the sphingosine-1-phosphate (S1P) arm. The structures of proteins involved in the function and regulation of S1P are being used to investigate further the regulation of said proteins as well as in the design and development of inhibitors as potential therapeutics. PMID:25923252

  14. Open cellular structure in marine stratocumulus sheets

    SciTech Connect

    Wood, Robert; Comstock, K. K.; Bretherton, Christopher S.; Cornish, C.; Tomlinson, Jason M.; Collins, Donald R.; Fairall, C.

    2008-06-25

    Geostationary and sunsynchronous satellite data and in-situ observations from ship cruises are used to investigate the formation of open cellular structure in marine stratocumulus clouds over the Southeast Pacific (SEP). Open cellular convection either forms spontaneously as pockets of open cells (POCs) within overcast stratocumulus, or is advected into the region from midlatitude regions. POC formation occurs most frequently during the latter part of the night demonstrating that this transition is not caused by solar absorption-driven decoupling. The transition preferentially occurs in clouds with low 11-3.7 microns nighttime brightness temperature difference (BTD) which is found to be well correlated with both in-situ measured accumulation mode aerosol concentration and cloud droplet concentration estimates derived from MODIS. Besides indicating that night time BTD is an excellent proxy for stratocumulus cloud droplet concentration Nd, this also suggests that low aerosol concentrations favor POC formation. Indeed, extremely low accumulation mode aerosol concentrations are found during the passage of open cell events over the ship. Free-tropospheric moisture is not found to be an important factor in POC formation. Significant subseasonal variability occurs in the fractional coverage of open cellular convection over the broader SEP. This coverage is well correlated with a MODIS-derived drizzle proxy (MDP) proportional to the ratio of liquid water path (LWP) to Nd for predominantly overcast regions. Both LWP and Nd variability influences the MDP. Periods of low MDP have significant positive large scale Nd anomalies and are preceded byoffshore winds at 850 hPa, which suggests a potential continental influence upon open cell formation over the SEP. Together, the results suggest important two-way interactions between aerosols and drizzle in marine stratocumulus and a role for drizzle in modulating the large scale albedo of these cloud systems.

  15. THE CELLULAR METABOLISM AND SYSTEMIC TOXICITY OF ARSENIC

    EPA Science Inventory

    Abstract

    Toxic Consequences of the Metabolism of Arsenic. David J. Thomas, Miroslav Styblo, and Shan Lin. (2001). Toxicol. Appl. Pharmacol. 000, xxx-yyy.
    Although it has been known for decades that humans and many other species metabolize inorganic arsenic to methyl ...

  16. Actions of ultraviolet light on cellular structures.

    PubMed

    Pattison, David I; Davies, Michael J

    2006-01-01

    Solar radiation is the primary source of human exposure to ultraviolet (UV) radiation. Overexposure without suitable protection (i.e., sunscreen and clothing) has been implicated in mutagenesis and the onset of skin cancer. These effects are believed to be initiated by UV-mediated cellular damage, with proteins and DNA as primary targets due to a combination of their UV absorption characteristics and their abundance in cells. UV radiation can mediate damage via two different mechanisms: (a) direct absorption of the incident light by the cellular components, resulting in excited state formation and subsequent chemical reaction, and (b) photosensitization mechanisms, where the light is absorbed by endogenous (or exogenous) sensitizers that are excited to their triplet states. The excited photosensitizers can induce cellular damage by two mechanisms: (a) electron transfer and hydrogen abstraction processes to yield free radicals (Type I); or (b) energy transfer with O2 to yield the reactive excited state, singlet oxygen (Type II). Direct UV absorption by DNA leads to dimers of nucleic acid bases including cyclobutane pyrimidine species and pyrimidine (6-4) pyrimidone compounds, together with their Dewar isomers. These three classes of dimers are implicated in the mutagenicity of UV radiation, which is typified by a high level of CC-->TT and C-->T transversions. Single base modifications can also occur via sensitized reactions including Type 1 and Type II processes. The main DNA product generated by (1)O2 is 8-oxo-Gua; this is a common lesion in DNA and is formed by a range of other oxidants in addition to UV. The majority of UV-induced protein damage appears to be mediated by (1)O2, which reacts preferentially with Trp, His, Tyr, Met, Cys and cystine side chains. Direct photo-oxidation reactions (particularly with short-wavelength UV) and radicals can also be formed via triplet excited states of some of these side chains. The initial products of (1)O2-mediated

  17. Minimal metabolic pathway structure is consistent with associated biomolecular interactions

    PubMed Central

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard O

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated. PMID:24987116

  18. Minimal metabolic pathway structure is consistent with associated biomolecular interactions.

    PubMed

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard O

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated. PMID:24987116

  19. Impaired cellular energy metabolism contributes to bluetongue-virus-induced autophagy.

    PubMed

    Lv, Shuang; Xu, Qingyuan; Sun, Encheng; Zhang, Jikai; Wu, Donglai

    2016-10-01

    Bluetongue virus (BTV) has been found to trigger autophagy to favor its replication, but the underlying mechanisms have not been clarified. Here, we show that cellular energy metabolism is involved in BTV-induced autophagy. Cellular ATP synthesis was impaired by BTV1 infection, causing metabolic stress, which was responsible for activation of autophagy, since the conversion of LC3 and aggregation of GFP-LC3 (autophagy markers) were suppressed when infection-caused energy depletion was reversed via MP (metabolic substrate) treatment. The reduced virus yields with MP further supported this view. Overall, our findings suggest that BTV1-induced disruption of cellular energy metabolism contributes to autophagy, and this provides new insights into BTV-host interactions. PMID:27379971

  20. From Ancient Pathways to Aging Cells-Connecting Metabolism and Cellular Senescence.

    PubMed

    Wiley, Christopher D; Campisi, Judith

    2016-06-14

    Cellular senescence is a complex stress response that permanently arrests the proliferation of cells at risk for oncogenic transformation. However, senescent cells can also drive phenotypes associated with aging. Although the senescence-associated growth arrest prevents the development of cancer, and the metabolism of cancer cells has been studied in depth, the metabolic causes and consequences of cellular senescence were largely unexplored until recently. New findings reveal key roles for several aspects of cellular metabolism in the establishment and control of senescent phenotypes. These discoveries have important implications for both cancer and aging. In this review, we highlight some of the recent links between metabolism and phenotypes that are commonly associated with senescent cells. PMID:27304503

  1. Cellular iron metabolism in prognosis and therapy of breast cancer.

    PubMed

    Torti, Suzy V; Torti, Frank M

    2013-01-01

    Despite many recent advances, breast cancer remains a clinical challenge. Current issues include improving prognostic evaluation and increasing therapeutic options for women whose tumors are refractory to current frontline therapies. Iron metabolism is frequently disrupted in breast cancer, and may offer an opportunity to address these challenges. Iron enhances breast tumor initiation, growth and metastases. Iron may contribute to breast tumor initiation by promoting redox cycling of estrogen metabolites. Up-regulation of iron import and down-regulation of iron export may enable breast cancer cells to acquire and retain excess iron. Alterations in iron metabolism in macrophages and other cells of the tumor microenvironment may also foster breast tumor growth. Expression of iron metabolic genes in breast tumors is predictive of breast cancer prognosis. Iron chelators and other strategies designed to limit iron may have therapeutic value in breast cancer. The dependence of breast cancer on iron presents rich opportunities for improved prognostic evaluation and therapeutic intervention. PMID:23879588

  2. An association of metabolic syndrome constellation with cellular membrane caveolae

    PubMed Central

    Zhang, Wei-zheng

    2014-01-01

    Metabolic syndrome (MetS) is a cluster of metabolic abnormalities that can predispose an individual to a greater risk of developing type-2 diabetes and cardiovascular diseases. The cluster includes abdominal obesity, dyslipidemia, hypertension, and hyperglycemia – all of which are risk factors to public health. While searching for a link among the aforementioned malaises, clues have been focused on the cell membrane domain caveolae, wherein the MetS-associated active molecules are colocalized and interacted with to carry out designated biological activities. Caveola disarray could induce all of those individual metabolic abnormalities to be present in animal models and humans, providing a new target for therapeutic strategy in the management of MetS. PMID:24563731

  3. A structural basis for cellular senescence

    PubMed Central

    Aranda-Anzaldo, Armando

    2009-01-01

    Replicative senescence (RS) that limits the proliferating potential of normal eukaryotic cells occurs either by a cell-division counting mechanism linked to telomere erosion or prematurely through induction by cell stressors such as oncogene hyper-activation. However, there is evidence that RS also occurs by a stochastic process that is independent of number of cell divisions or cellular stress and yet it leads to a highly-stable, non-reversible post-mitotic state that may be long-lasting and that such a process is widely represented among higher eukaryotes. Here I present and discuss evidence that the interactions between DNA and the nuclear substructure, commonly known as the nuclear matrix, define a higher-order structure within the cell nucleus that following thermodynamic constraints, stochastically evolves towards maximum stability, thus becoming limiting for mitosis to occur. It is suggested that this process is responsible for ultimate replicative senescence and yet it is compatible with long-term cell survival. PMID:20157542

  4. The anticancer plant triterpenoid, avicin D, regulates glucocorticoid receptor signaling: implications for cellular metabolism.

    PubMed

    Haridas, Valsala; Xu, Zhi-Xiang; Kitchen, Doug; Jiang, Anna; Michels, Peter; Gutterman, Jordan U

    2011-01-01

    Avicins, a family of apoptotic triterpene electrophiles, are known to regulate cellular metabolism and energy homeostasis, by targeting the mitochondria. Having evolved from "ancient hopanoids," avicins bear a structural resemblance with glucocorticoids (GCs), which are the endogenous regulators of metabolism and energy balance. These structural and functional similarities prompted us to compare the mode of action of avicin D with dexamethasone (Dex), a prototypical GC. Using cold competition assay, we show that Avicin D competes with Dex for binding to the GC receptor (GR), leading to its nuclear translocation. In contrast to Dex, avicin-induced nuclear translocation of GR does not result in transcriptional activation of GC-dependent genes. Instead we observe a decrease in the expression of GC-dependent metabolic proteins such as PEPCK and FASN. However, like Dex, avicin D treatment does induce a transrepressive effect on the pro-inflammatory transcription factor NF-κB. While avicin's ability to inhibit NF-κB and its downstream targets appear to be GR-dependent, its pro-apoptotic effects were independent of GR expression. Using various deletion mutants of GR, we demonstrate the requirement of both the DNA and ligand binding domains of GR in mediating avicin D's transrepressive effects. Modeling of avicin-GR interaction revealed that avicin molecule binds only to the antagonist confirmation of GR. These findings suggest that avicin D has properties of being a selective GR modulator that separates transactivation from transrepression. Since the gene-activating properties of GR are mainly linked to its metabolic effects, and the negative interference with the activity of transcription factors to its anti-inflammatory and immune suppressive effects, the identification of such a dissociated GR ligand could have great potential for therapeutic use. PMID:22132201

  5. Cellular automata modeling of weld solidification structure

    SciTech Connect

    Dress, W.B.; Zacharia, T.; Radhakrishnan, B.

    1993-12-31

    The authors explore the use of cellular automata in modeling arc-welding processes. A brief discussion of cellular automata and their previous use in micro-scale solidification simulations is presented. Macro-scale thermal calculations for arc-welding at a thin plate are shown to give good quantitative and qualitative results. Combining the two calculations in a single cellular array provides a realistic simulation of grain growth in a welding process. Results of simulating solidification in a moving melt pool in a poly-crystalline alloy sheet are presented.

  6. The Effects of Cholera Toxin on Cellular Energy Metabolism

    PubMed Central

    Snider, Rachel M.; McKenzie, Jennifer R.; Kraft, Lewis; Kozlov, Eugene; Wikswo, John P.; Cliffel, David E.

    2010-01-01

    Multianalyte microphysiometry, a real-time instrument for simultaneous measurement of metabolic analytes in a microfluidic environment, was used to explore the effects of cholera toxin (CTx). Upon exposure of CTx to PC-12 cells, anaerobic respiration was triggered, measured as increases in acid and lactate production and a decrease in the oxygen uptake. We believe the responses observed are due to a CTx-induced activation of adenylate cyclase, increasing cAMP production and resulting in a switch to anaerobic respiration. Inhibitors (H-89, brefeldin A) and stimulators (forskolin) of cAMP were employed to modulate the CTx-induced cAMP responses. The results of this study show the utility of multianalyte microphysiometry to quantitatively determine the dynamic metabolic effects of toxins and affected pathways. PMID:22069603

  7. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    PubMed Central

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. PMID:24498080

  8. Alkalizing Reactions Streamline Cellular Metabolism in Acidogenic Microorganisms

    PubMed Central

    Arioli, Stefania; Ragg, Enzio; Scaglioni, Leonardo; Fessas, Dimitrios; Signorelli, Marco; Karp, Matti; Daffonchio, Daniele; De Noni, Ivano; Mulas, Laura; Oggioni, Marco; Guglielmetti, Simone; Mora, Diego

    2010-01-01

    An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms. PMID:21152088

  9. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review.

    PubMed

    Belhadj Slimen, I; Najar, T; Ghram, A; Abdrrabba, M

    2016-06-01

    Elevated ambient temperatures affect animal production and welfare. Animal's reduced production performances during heat stress were traditionally thought to result from the decreased feed intake. However, it has recently been shown that heat stress disturbs the steady state concentrations of free radicals, resulting in both cellular and mitochondrial oxidative damage. Indeed, heat stress reorganizes the use of the body resources including fat, protein and energy. Heat stress reduces the metabolic rates and alters post-absorptive metabolism, regardless of the decreased feed intake. Consequently, growth, production, reproduction and health are not priorities any more in the metabolism of heat-stressed animals. The drastic effects of heat stress depend on its duration and severity. This review clearly describes about biochemical, cellular and metabolic changes that occur during thermal stress in farm animals. PMID:26250521

  10. Mitochondrial Mg2+ homeostasis decides cellular energy metabolism and vulnerability to stress

    PubMed Central

    Yamanaka, Ryu; Tabata, Sho; Shindo, Yutaka; Hotta, Kohji; Suzuki, Koji; Soga, Tomoyoshi; Oka, Kotaro

    2016-01-01

    Cellular energy production processes are composed of many Mg2+ dependent enzymatic reactions. In fact, dysregulation of Mg2+ homeostasis is involved in various cellular malfunctions and diseases. Recently, mitochondria, energy-producing organelles, have been known as major intracellular Mg2+ stores. Several biological stimuli alter mitochondrial Mg2+ concentration by intracellular redistribution. However, in living cells, whether mitochondrial Mg2+ alteration affect cellular energy metabolism remains unclear. Mg2+ transporter of mitochondrial inner membrane MRS2 is an essential component of mitochondrial Mg2+ uptake system. Here, we comprehensively analyzed intracellular Mg2+ levels and energy metabolism in Mrs2 knockdown (KD) cells using fluorescence imaging and metabolome analysis. Dysregulation of mitochondrial Mg2+ homeostasis disrupted ATP production via shift of mitochondrial energy metabolism and morphology. Moreover, Mrs2 KD sensitized cellular tolerance against cellular stress. These results indicate regulation of mitochondrial Mg2+ via MRS2 critically decides cellular energy status and cell vulnerability via regulation of mitochondrial Mg2+ level in response to physiological stimuli. PMID:27458051

  11. Mitochondrial Mg(2+) homeostasis decides cellular energy metabolism and vulnerability to stress.

    PubMed

    Yamanaka, Ryu; Tabata, Sho; Shindo, Yutaka; Hotta, Kohji; Suzuki, Koji; Soga, Tomoyoshi; Oka, Kotaro

    2016-01-01

    Cellular energy production processes are composed of many Mg(2+) dependent enzymatic reactions. In fact, dysregulation of Mg(2+) homeostasis is involved in various cellular malfunctions and diseases. Recently, mitochondria, energy-producing organelles, have been known as major intracellular Mg(2+) stores. Several biological stimuli alter mitochondrial Mg(2+) concentration by intracellular redistribution. However, in living cells, whether mitochondrial Mg(2+) alteration affect cellular energy metabolism remains unclear. Mg(2+) transporter of mitochondrial inner membrane MRS2 is an essential component of mitochondrial Mg(2+) uptake system. Here, we comprehensively analyzed intracellular Mg(2+) levels and energy metabolism in Mrs2 knockdown (KD) cells using fluorescence imaging and metabolome analysis. Dysregulation of mitochondrial Mg(2+) homeostasis disrupted ATP production via shift of mitochondrial energy metabolism and morphology. Moreover, Mrs2 KD sensitized cellular tolerance against cellular stress. These results indicate regulation of mitochondrial Mg(2+) via MRS2 critically decides cellular energy status and cell vulnerability via regulation of mitochondrial Mg(2+) level in response to physiological stimuli. PMID:27458051

  12. Modeling cellular compartmentation in one-carbon metabolism

    PubMed Central

    Scotti, Marco; Stella, Lorenzo; Shearer, Emily J.; Stover, Patrick J.

    2015-01-01

    Folate-mediated one-carbon metabolism (FOCM) is associated with risk for numerous pathological states including birth defects, cancers, and chronic diseases. Although the enzymes that constitute the biological pathways have been well described and their interdependency through the shared use of folate cofactors appreciated, the biological mechanisms underlying disease etiologies remain elusive. The FOCM network is highly sensitive to nutritional status of several B-vitamins and numerous penetrant gene variants that alter network outputs, but current computational approaches do not fully capture the dynamics and stochastic noise of the system. Combining the stochastic approach with a rule-based representation will help model the intrinsic noise displayed by FOCM, address the limited flexibility of standard simulation methods for coarse-graining the FOCM-associated biochemical processes, and manage the combinatorial complexity emerging from reactions within FOCM that would otherwise be intractable. PMID:23408533

  13. GIM3E: Condition-specific Models of Cellular Metabolism Developed from Metabolomics and Expression Data

    SciTech Connect

    Schmidt, Brian; Ebrahim, Ali; Metz, Thomas O.; Adkins, Joshua N.; Palsson, Bernard O.; Hyduke, Daniel R.

    2013-11-15

    Motivation: Genome-scale metabolic models have been used extensively to investigate alterations in cellular metabolism. The accuracy of these models to represent cellular metabolism in specific conditions has been improved by constraining the model with omics data sources. However, few practical methods for integrating metabolomics data with other omics data sources into genome-scale models of metabolism have been reported. Results: GIMMME (Gene Inactivation Moderated by Metabolism, Metabolomics, and Expression) is an algorithm that enables the development of condition-specific models based on an objective function, transcriptomics, and intracellular metabolomics data. GIMMME establishes metabolite utilization requirements with metabolomics data, uses model-paired transcriptomics data to find experimentally supported solutions, and also provides calculations of the turnover (production / consumption) flux of metabolites. GIMMME was employed to investigate the effects of integrating additional omics datasets to create increasingly constrained solution spaces of Salmonella Typhimurium metabolism during growth in both rich and virulence media. This integration proved to be informative and resulted in a requirement of additional active reactions (12 in each case) or metabolites (26 or 29, respectively). The addition of constraints from transcriptomics also impacted the allowed solution space, and the cellular metabolites with turnover fluxes that were necessarily altered by the change in conditions increased from 118 to 271 of 1397. Availability: GIMMME has been implemented in Python and requires a COBRApy 0.2.x. The algorithm and sample data described here are freely available at: http://opencobra.sourceforge.net/

  14. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler

    PubMed Central

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-01-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated. PMID:27221079

  15. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler

    NASA Astrophysics Data System (ADS)

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-05-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.

  16. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler.

    PubMed

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-01-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated. PMID:27221079

  17. The Crossroads of Iron with Hypoxia and Cellular Metabolism. Implications in the Pathobiology of Pulmonary Hypertension

    PubMed Central

    Graham, Brian B.; Rouault, Tracey C.; Tuder, Rubin M.

    2014-01-01

    The pathologic hallmark of pulmonary arterial hypertension (PAH) is pulmonary vascular remodeling, characterized by endothelial cell proliferation, smooth muscle hypertrophy, and perivascular inflammation, ultimately contributing to increased pulmonary arterial pressures. Several recent studies have observed that iron deficiency in patients with various forms of PAH is associated with worsened clinical outcome. Iron plays a key role in many cellular processes regulating the response to hypoxia, oxidative stress, cellular proliferation, and cell metabolism. Given the potential importance of iron supplementation in patients with the disease and the broad cellular functions of iron, we review its role in processes that pertain to PAH. PMID:24988529

  18. AMPK: A cellular metabolic and redox sensor. A minireview

    PubMed Central

    Shirwany, Najeeb A; Zou, Ming-Hui

    2014-01-01

    AMPK is a serine/threonine kinase that is found in all eukaryotes and is ubiquitously expressed in all organ systems. Once activated, AMPK stimulates hepatic fatty acid oxidation and ketogenesis, inhibits cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibits adipocyte lipolysis and lipogenesis, stimulates skeletal muscle fatty acid oxidation and muscle glucose uptake, and modulates insulin secretion by the pancreas. Thus its importance in many critical cellular processes is well established. For cells it is critical that energy supply and demand are closely matched. AMPK is recognized as a critical integrator of this balance. It is known to be allosterically activated by an increased AMP:ATP ratio. Activation of the kinase switches on catabolic pathways while switching off anabolic ones. It also acts as a redox sensor in endothelial cells where oxidative stress can disturb NO signaling. Abnormal NO signaling leads to disturbed vasodilatory responses. By inhibiting the formation of reactive oxygen species in the endothelium, AMPK can optimize the redox balance in the vasculature. Here, we review the role of AMPK in the cell. PMID:24389195

  19. Flexible Sheet-Type Sensor for Noninvasive Measurement of Cellular Oxygen Metabolism on a Culture Dish.

    PubMed

    Kojima, Mari; Takehara, Hiroaki; Akagi, Takanori; Shiono, Hirofumi; Ichiki, Takanori

    2015-01-01

    A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH) and poly(dimethylsiloxane) (PDMS) having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min). We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3) and dentate gyrus (DG). PMID:26624889

  20. Flexible Sheet-Type Sensor for Noninvasive Measurement of Cellular Oxygen Metabolism on a Culture Dish

    PubMed Central

    Akagi, Takanori; Shiono, Hirofumi; Ichiki, Takanori

    2015-01-01

    A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH) and poly(dimethylsiloxane) (PDMS) having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min). We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3) and dentate gyrus (DG). PMID:26624889

  1. Inhibition of HIV by Legalon-SIL is independent of its effect on cellular metabolism

    SciTech Connect

    McClure, Janela; Margineantu, Daciana H.; Sweet, Ian R.; Polyak, Stephen J.

    2014-01-20

    In this report, we further characterized the effects of silibinin (SbN), derived from milk thistle extract, and Legalon-SIL (SIL), a water-soluble derivative of SbN, on T cell metabolism and HIV infection. We assessed the effects of SbN and SIL on peripheral blood mononuclear cells (PBMC) and CEM-T4 cells in terms of cellular growth, ATP content, metabolism, and HIV infection. SIL and SbN caused a rapid and reversible (upon removal) decrease in cellular ATP levels, which was associated with suppression of mitochondrial respiration and glycolysis. SbN, but not SIL inhibited glucose uptake. Exposure of T cells to SIL (but not SbN or metabolic inhibitors) during virus adsorption blocked HIV infection. Thus, both SbN and SIL rapidly perturb T cell metabolism in vitro, which may account for its anti-inflammatory and anti-proliferative effects that arise with prolonged exposure of cells. However, the metabolic effects are not involved in SIL's unique ability to block HIV entry. - Highlights: • Silibinin (SbN) and Legalon-SIL (SIL) are cytoprotective mixtures of natural products. • SbN and SIL reduce T cell oxidative phosphorylation and glycolysis in vitro. • SIL but not SbN blocks entry of multiple HIV isolates into T cells in vitro. • SIL's suppression of HIV appears independent of its effects on T cell metabolism. • Metabolic effects of SIL and SbN may be relevant in inflammatory diseases.

  2. Cellular uptake and metabolism of curcuminoids in monocytes/macrophages: regulatory effects on lipid accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously showed that curcumin (CUR) may increase lipid accumulation in cultured THP-1 monocytes/macrophages, but tetrahydrocurcumin (THC), an in vivo metabolite of CUR, had no such effect. In the present study, we have hypothesized that different cellular uptake and/or metabolism of CUR and THC...

  3. The functions of cardiolipin in cellular metabolism-potential modifiers of the Barth syndrome phenotype.

    PubMed

    Raja, Vaishnavi; Greenberg, Miriam L

    2014-04-01

    The phospholipid cardiolipin (CL) plays a role in many cellular functions and signaling pathways both inside and outside of mitochondria. This review focuses on the role of CL in energy metabolism. Many reactions of electron transport and oxidative phosphorylation, the transport of metabolites required for these processes, and the stabilization of electron transport chain supercomplexes require CL. Recent studies indicate that CL is required for the synthesis of iron-sulfur (Fe-S) co-factors, which are essential for numerous metabolic pathways. Activation of carnitine shuttle enzymes that are required for fatty acid metabolism is CL dependent. The presence of substantial amounts of CL in the peroxisomal membrane suggests that CL may be required for peroxisomal functions. Understanding the role of CL in energy metabolism may identify physiological modifiers that exacerbate the loss of CL and underlie the variation in symptoms observed in Barth syndrome, a genetic disorder of CL metabolism. PMID:24445246

  4. Photonic cancer therapy: modulating cellular metabolism with light

    NASA Astrophysics Data System (ADS)

    Coutinho, Isabel; Correia, Manuel; Viruthachalam, Thiagarajan; Gajula, Gnana Prakash; Petersen, Steffen B.; Neves-Petersen, Maria Teresa

    2013-03-01

    The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases. EGFR activation upon binding of ligands (such as EGF and TGF-α) results in cell signaling cascades that promote cell proliferation, survival and apoptosis inhibition. As reported for many solid tumors, EGFR overactivation is associated with tumor development and progression, resistance to cancer therapies and poor prognosis. Therefore, inhibition of EGFR function is a rational cancer therapy approach. We have shown previously that 280 nm UV illumination of two cancer cell lines overexpressing EGFR could prevent phosphorylation of EGFR and of its downstream signalling molecules despite the presence of EGF. Our earlier studies demonstrated that UV illumination of aromatic residues in proteins leads to the disruption of nearby disulphide bridges. Since human EGFR is rich in disulphide bridges and aromatic residues, it is likely that structural changes can be induced upon UV excitation of its pool of aromatic residues (Trp, Tyr and Phe). Such changes may impair the correct binding of ligands to EGFR which will halt the process of tumor growth. In this paper we report structural changes induced by UV light on the extracellular domain of human EGFR. Steady state fluorescence spectroscopy and binding immunoassays were carried out. Our goal is to gain insight at the protein structure level that explains the way the new photonic cancer therapy works. This technology can be applicable to the treatment of various forms of cancer, alone or in combination with other therapies to improve treatment outcome.

  5. Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes

    PubMed Central

    Roze, Ludmila V.; Chanda, Anindya; Linz, John E.

    2010-01-01

    Great progress has been made in understanding the regulation of expression of genes involved in secondary metabolism. Less is known about the mechanisms that govern the spatial distribution of the enzymes, cofactors, and substrates that mediate catalysis of secondary metabolites within the cell. Filamentous fungi in the genus Aspergillus synthesize an array of secondary metabolites and provide useful systems to analyze the mechanisms that mediate the temporal and spatial regulation of secondary metabolism in eukaryotes. For example, aflatoxin biosynthesis in A. parasiticus has been studied intensively because this mycotoxin is highly toxic, mutagenic, and carcinogenic in humans and animals. Using aflatoxin synthesis to illustrate key concepts, this review focuses on the mechanisms by which sub-cellular compartmentalization and intra-cellular molecular traffic contribute to the initiation and completion of secondary metabolism within the cell. We discuss the recent discovery of aflatoxisomes, specialized trafficking vesicles that participate in the compartmentalization of aflatoxin synthesis and export of the toxin to the cell exterior; this work provides a new and clearer understanding of how cells integrate secondary metabolism into basic cellular metabolism via the intracellular trafficking machinery. PMID:20519149

  6. The lysosome as a command-and-control center for cellular metabolism.

    PubMed

    Lim, Chun-Yan; Zoncu, Roberto

    2016-09-12

    Lysosomes are membrane-bound organelles found in every eukaryotic cell. They are widely known as terminal catabolic stations that rid cells of waste products and scavenge metabolic building blocks that sustain essential biosynthetic reactions during starvation. In recent years, this classical view has been dramatically expanded by the discovery of new roles of the lysosome in nutrient sensing, transcriptional regulation, and metabolic homeostasis. These discoveries have elevated the lysosome to a decision-making center involved in the control of cellular growth and survival. Here we review these recently discovered properties of the lysosome, with a focus on how lysosomal signaling pathways respond to external and internal cues and how they ultimately enable metabolic homeostasis and cellular adaptation. PMID:27621362

  7. Using metabolomics approaches to understand the effects of changing nutrient availability on cellular metabolism

    NASA Astrophysics Data System (ADS)

    Higgins, M. B.; Rabinowitz, J. D.

    2010-12-01

    HPLC-MS-based metabolomics techniques allow for a holistic, quantitative understanding of the effects of changing environmental conditions on cellular metabolism. Here, we use HPLC-MS and HPLC-MS/MS to quantitatively analyze the dynamics of a suite of >100 intracellular metabolites in the model gram negative bacteria Escherichia coli under changing conditions of phosphorus availability. Using stable carbon isotope tracers, we examine the effects of phosphorus availability on central carbon metabolism on short (30s - 2h) timescales. This approach allows for enhanced understanding of nutrient-driven metabolic network regulation and how enzyme networks control fluxes and concentrations of metabolites. Such techniques have application for understanding the cellular control of carbon transformations in a variety of environmental settings.

  8. TMEM55B is a Novel Regulator of Cellular Cholesterol Metabolism

    PubMed Central

    Medina, Marisa W.; Bauzon, Frederick; Naidoo, Devesh; Theusch, Elizabeth; Stevens, Kristen; Schilde, Jessica; Schubert, Christian; Mangravite, Lara M.; Rudel, Lawrence L.; Temel, Ryan E.; Runz, Heiko; Krauss, Ronald M.

    2014-01-01

    Objective Inter-individual variation in pathways impacting cellular cholesterol metabolism can influence levels of plasma cholesterol, a well-established risk factor for cardiovascular disease. Inherent variation among immortalized lymphoblastoid cell lines (LCLs) from different donors can be leveraged to discover novel genes that modulate cellular cholesterol metabolism. The objective of this study was to identify novel genes that regulate cholesterol metabolism by testing for evidence of correlated gene expression with cellular levels of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) mRNA, a marker for cellular cholesterol homeostasis, in a large panel of LCLs. Approach and Results Expression array profiling was performed on 480 LCLs established from participants of the Cholesterol and Pharmacogenetics statin clinical trial, and transcripts were tested for evidence of correlated expression with HMGCR as a marker of intracellular cholesterol homeostasis. Of these, transmembrane protein 55b (TMEM55B) showed the strongest correlation (r=0.29, p=4.0E-08) of all genes not previously implicated in cholesterol metabolism and was found to be sterol regulated. TMEM55B knock-down in human hepatoma cell lines promoted the decay rate of the low density lipoprotein receptor (LDLR), reduced cell surface LDLR protein, impaired LDL uptake, and reduced intracellular cholesterol. Conclusions Here we report identification of TMEM55B as a novel regulator of cellular cholesterol metabolism through the combination of gene expression profiling and functional studies. The findings highlight the value of an integrated genomic approach for identifying genes that influence cholesterol homeostasis. PMID:25035345

  9. GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data

    PubMed Central

    Schmidt, Brian J.; Ebrahim, Ali; Metz, Thomas O.; Adkins, Joshua N.; Palsson, Bernhard Ø.; Hyduke, Daniel R.

    2013-01-01

    Motivation: Genome-scale metabolic models have been used extensively to investigate alterations in cellular metabolism. The accuracy of these models to represent cellular metabolism in specific conditions has been improved by constraining the model with omics data sources. However, few practical methods for integrating metabolomics data with other omics data sources into genome-scale models of metabolism have been developed. Results: GIM3E (Gene Inactivation Moderated by Metabolism, Metabolomics and Expression) is an algorithm that enables the development of condition-specific models based on an objective function, transcriptomics and cellular metabolomics data. GIM3E establishes metabolite use requirements with metabolomics data, uses model-paired transcriptomics data to find experimentally supported solutions and provides calculations of the turnover (production/consumption) flux of metabolites. GIM3E was used to investigate the effects of integrating additional omics datasets to create increasingly constrained solution spaces of Salmonella Typhimurium metabolism during growth in both rich and virulence media. This integration proved to be informative and resulted in a requirement of additional active reactions (12 in each case) or metabolites (26 or 29, respectively). The addition of constraints from transcriptomics also impacted the allowed solution space, and the cellular metabolites with turnover fluxes that were necessarily altered by the change in conditions increased from 118 to 271 of 1397. Availability: GIM3E has been implemented in Python and requires a COBRApy 0.2.x. The algorithm and sample data described here are freely available at: http://opencobra.sourceforge.net/ Contacts: brianjamesschmidt@gmail.com or hyduke@usu.edu Supplementary information: Supplementary information is available at Bioinformatics online. PMID:23975765

  10. Metabolic allometric scaling model: combining cellular transportation and heat dissipation constraints.

    PubMed

    Shestopaloff, Yuri K

    2016-08-15

    Living organisms need energy to be 'alive'. Energy is produced by the biochemical processing of nutrients, and the rate of energy production is called the metabolic rate. Metabolism is very important from evolutionary and ecological perspectives, and for organismal development and functioning. It depends on different parameters, of which organism mass is considered to be one of the most important. Simple relationships between the mass of organisms and their metabolic rates were empirically discovered by M. Kleiber in 1932. Such dependence is described by a power function, whose exponent is referred to as the allometric scaling coefficient. With the increase of mass, the metabolic rate usually increases more slowly; if mass increases by two times, the metabolic rate increases less than two times. This fact has far-reaching implications for the organization of life. The fundamental biological and biophysical mechanisms underlying this phenomenon are still not well understood. The present study shows that one such primary mechanism relates to transportation of substances, such as nutrients and waste, at a cellular level. Variations in cell size and associated cellular transportation costs explain the known variance of the allometric exponent. The introduced model also includes heat dissipation constraints. The model agrees with experimental observations and reconciles experimental results across different taxa. It ties metabolic scaling to organismal and environmental characteristics, helps to define perspective directions of future research and allows the prediction of allometric exponents based on characteristics of organisms and the environments they live in. PMID:27284070

  11. The Aryl Hydrocarbon Receptor Relays Metabolic Signals to Promote Cellular Regeneration.

    PubMed

    Casado, Fanny L

    2016-01-01

    While sensing the cell environment, the aryl hydrocarbon receptor (AHR) interacts with different pathways involved in cellular homeostasis. This review summarizes evidence suggesting that cellular regeneration in the context of aging and diseases can be modulated by AHR signaling on stem cells. New insights connect orphaned observations into AHR interactions with critical signaling pathways such as WNT to propose a role of this ligand-activated transcription factor in the modulation of cellular regeneration by altering pathways that nurture cellular expansion such as changes in the metabolic efficiency rather than by directly altering cell cycling, proliferation, or cell death. Targeting the AHR to promote regeneration might prove to be a useful strategy to avoid unbalanced disruptions of homeostasis that may promote disease and also provide biological rationale for potential regenerative medicine approaches. PMID:27563312

  12. The Aryl Hydrocarbon Receptor Relays Metabolic Signals to Promote Cellular Regeneration

    PubMed Central

    2016-01-01

    While sensing the cell environment, the aryl hydrocarbon receptor (AHR) interacts with different pathways involved in cellular homeostasis. This review summarizes evidence suggesting that cellular regeneration in the context of aging and diseases can be modulated by AHR signaling on stem cells. New insights connect orphaned observations into AHR interactions with critical signaling pathways such as WNT to propose a role of this ligand-activated transcription factor in the modulation of cellular regeneration by altering pathways that nurture cellular expansion such as changes in the metabolic efficiency rather than by directly altering cell cycling, proliferation, or cell death. Targeting the AHR to promote regeneration might prove to be a useful strategy to avoid unbalanced disruptions of homeostasis that may promote disease and also provide biological rationale for potential regenerative medicine approaches. PMID:27563312

  13. Subfailure damage in ligament: a structural and cellular evaluation.

    PubMed

    Provenzano, Paolo P; Heisey, Dennis; Hayashi, Kei; Lakes, Roderic; Vanderby, Ray

    2002-01-01

    Subfailure damage in ligaments was evaluated macroscopically from a structural perspective (referring to the entire ligament as a structure) and microscopically from a cellular perspective. Freshly harvested rat medial collateral ligaments (MCLs) were used as a model in ex vivo experiments. Ligaments were preloaded with 0.1 N to establish a consistent point of reference for length (and strain) measurements. Ligament structural damage was characterized by nonrecoverable difference in tissue length after a subfailure stretch. The tissue's mechanical properties (via stress vs. strain curves measured from a preloaded state) after a single subfailure stretch were also evaluated (n = 6 pairs with a different stretch magnitude applied to each stretched ligament). Regions containing necrotic cells were used to characterize cellular damage after a single stretch. It should be noted that the number of damaged cells was not quantified and the difference between cellular area and area of fluorescence is not known. Structural and cellular damage were represented and compared as functions of subfailure MCL strains. Statistical analysis indicated that the onset of structural damage occurs at 5.14% strain (referenced from a preloaded length). Subfailure strains above the damage threshold changed the shape of the MCL stress-strain curve by elongating the toe region (i.e., increasing laxity) as well as decreasing the tangential modulus and ultimate stress. Cellular damage was induced at ligament strains significantly below the structural damage threshold. This cellular damage is likely to be part of the natural healing process in mildly sprained ligaments. PMID:11744679

  14. FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1

    PubMed Central

    Scholz, Carsten C.; Rodriguez, Javier; Pickel, Christina; Burr, Stephen; Fabrizio, Jacqueline-alba; Nolan, Karen A.; Spielmann, Patrick; Cavadas, Miguel A. S.; Crifo, Bianca; Halligan, Doug N.; Nathan, James A.; Peet, Daniel J.; Wenger, Roland H.; Von Kriegsheim, Alex; Cummins, Eoin P.; Taylor, Cormac T.

    2016-01-01

    The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit. PMID:26752685

  15. Evolutionary Relationships Based on Cellular Structure.

    ERIC Educational Resources Information Center

    Van Winkle, Lon J.

    1979-01-01

    This laboratory exercise integrates the topics of cell structure, classification of living organisms, and evolution. It is suitable for secondary or college biology courses and was used in an interdisciplinary science course for nonscience majors. (BB)

  16. Obesity and cancer: At the crossroads of cellular metabolism and proliferation

    PubMed Central

    O’Rourke, Robert W.

    2014-01-01

    Obesity is associated with an increased risk of cancer. The mechanisms underlying this association include but are not limited to increased systemic inflammation, an anabolic hormonal milieu, and adipocyte-cancer crosstalk, aberrant stimuli that conspire to promote neoplastic transformation. Cellular proliferation is uncoupled from nutrient availability in malignant cells, promoting tumor progression. Elucidation of the mechanisms underlying the obesity-cancer connection will lead to the development of novel metabolism-based agents for cancer prevention and treatment. PMID:25264328

  17. [Construction and structural analysis of integrated cellular network of Corynebacterium glutamicum].

    PubMed

    Jiang, Jinguo; Song, Lifu; Zheng, Ping; Jia, Shiru; Sun, Jibin

    2012-05-01

    Corynebacterium glutamicum is one of the most important traditional industrial microorganisms and receiving more and more attention towards a novel cellular factory due to the recently rapid development in genomics and genetic operation toolboxes for Corynebacterium. However, compared to other model organisms such as Escherichia coli, there were few studies on its metabolic regulation, especially a genome-scale integrated cellular network model currently missing for Corynebacterium, which hindered the systematic study of Corynebacterium glutamicum and large-scale rational design and optimization for strains. Here, by gathering relevant information from a number of public databases, we successfully constructed an integrated cellular network, which was composed of 1384 reactions, 1276 metabolites, 88 transcriptional factors and 999 pairs of transcriptional regulatory relationships. The transcriptional regulatory sub-network could be arranged into five layers and the metabolic sub-network presented a clear bow-tie structure. We proposed a new method to extract complex metabolic and regulatory sub-network for product-orientated study taking lysine biosynthesis as an example. The metabolic and regulatory sub-network extracted by our method was more close to the real functional network than the simplex biochemical pathways. The results would be greatly helpful for understanding the high-yielding biomechanism for amino acids and the re-design of the industrial strains. PMID:22916496

  18. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  19. Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism

    PubMed Central

    Horniblow, Richard D.; Dowle, Miriam; Iqbal, Tariq H.; Latunde-Dada, Gladys O.; Palmer, Richard E.

    2015-01-01

    Alginates are a class of biopolymers with known iron binding properties which are routinely used in the fabrication of iron-oxide nanoparticles. In addition, alginates have been implicated in influencing human iron absorption. However, the synthesis of iron oxide nanoparticles employs non-physiological pH conditions and whether nanoparticle formation in vivo is responsible for influencing cellular iron metabolism is unclear. Thus the aims of this study were to determine how alginate and iron interact at gastric-comparable pH conditions and how this influences iron metabolism. Employing a range of spectroscopic techniques under physiological conditions alginate-iron complexation was confirmed and, in conjunction with aberration corrected scanning transmission electron microscopy, nanoparticles were observed. The results infer a nucleation-type model of iron binding whereby alginate is templating the condensation of iron-hydroxide complexes to form iron oxide centred nanoparticles. The interaction of alginate and iron at a cellular level was found to decrease cellular iron acquisition by 37% (p < 0.05) and in combination with confocal microscopy the alginate inhibits cellular iron transport through extracellular iron chelation with the resulting complexes not internalised. These results infer alginate as being useful in the chelation of excess iron, especially in the context of inflammatory bowel disease and colorectal cancer where excess unabsorbed luminal iron is thought to be a driver of disease. PMID:26378798

  20. Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasome

    SciTech Connect

    Squier, Thomas C.

    2006-02-01

    Under conditions of oxidative stress, the 20S proteasome plays a critical role in maintaining cellular homeostasis through the selective degradation of oxidized and damaged proteins. This adaptive stress response is distinct from ubiquitin-dependent pathways in that oxidized proteins are recognized and degraded in an ATP-independent mechanism, which can involve the molecular chaperone Hsp90. Like the regulatory complexes 19S and 11S REG, Hsp90 tightly associates with the 20S proteasome to mediate the recognition of aberrant proteins for degradation. In the case of the calcium signaling protein calmodulin, proteasomal degradation results from the oxidation of a single surface exposed methionine (i.e., Met145); oxidation of the other eight methionines has a minimal effect on the recognition and degradation of calmodulin by the proteasome. Since cellular concentrations of calmodulin are limiting, the targeted degradation of this critical signaling protein under conditions of oxidative stress will result in the downregulation of cellular metabolism, serving as a feedback regulation to diminish the generation of reactive oxygen species. The targeted degradation of critical signaling proteins, such as calmodulin, can function as sensors of oxidative stress to downregulate global rates of metabolism and enhance cellular survival.

  1. Multiphoton microscopy for skin wound healing study in terms of cellular metabolism and collagen regeneration

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Okano, Kazunori; Wu, Wei-Wen; Kao, Fu-Jen

    2014-02-01

    Multiphoton microscopy was employed to study normal skin wound healing in live rats noninvasively. Wound healing is a process involving series of biochemical events. This study evaluates the regeneration of collagen and change in cellular metabolic activity during wound healing in rats, with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM), respectively. In eukaryotic cells ATP is the molecule that holds the energy for cellular functioning. Whereas NADH is an electron donor in the metabolic pathways, required to generate ATP. Fluorescence lifetime of NADH free to protein bound ratio was evaluated to determine the relative metabolic activity. The FLIM data were acquired by a TCSPC system using SPCM software and analyzed by SPCImage software. Additionally, polarization resolved SHG signals were also collected to observe the changes in optical birefringence and hence the anisotropy of regenerated collagens from rat wound biopsy samples. Mat lab programming was used to process the data to construct the anisotropy images. Results indicated that, cells involved in healing had higher metabolic activity during the first week of healing, which decreases gradually and become equivalent to normal skin upon healing completes. A net degradation of collagen during the inflammatory phase and net regeneration starting from day 5 were observed in terms of SHG signal intensity change. Polarization resolved SHG imaging of the wound biopsy sample indicates higher value of anisotropy in proliferative phase, from day 4th to 8th, of wound formation; however the anisotropy decreases upon healing.

  2. Mitochondrial DNA Replication Defects Disturb Cellular dNTP Pools and Remodel One-Carbon Metabolism.

    PubMed

    Nikkanen, Joni; Forsström, Saara; Euro, Liliya; Paetau, Ilse; Kohnz, Rebecca A; Wang, Liya; Chilov, Dmitri; Viinamäki, Jenni; Roivainen, Anne; Marjamäki, Päivi; Liljenbäck, Heidi; Ahola, Sofia; Buzkova, Jana; Terzioglu, Mügen; Khan, Nahid A; Pirnes-Karhu, Sini; Paetau, Anders; Lönnqvist, Tuula; Sajantila, Antti; Isohanni, Pirjo; Tyynismaa, Henna; Nomura, Daniel K; Battersby, Brendan J; Velagapudi, Vidya; Carroll, Christopher J; Suomalainen, Anu

    2016-04-12

    Mitochondrial dysfunction affects cellular energy metabolism, but less is known about the consequences for cytoplasmic biosynthetic reactions. We report that mtDNA replication disorders caused by TWINKLE mutations-mitochondrial myopathy (MM) and infantile onset spinocerebellar ataxia (IOSCA)-remodel cellular dNTP pools in mice. MM muscle shows tissue-specific induction of the mitochondrial folate cycle, purine metabolism, and imbalanced and increased dNTP pools, consistent with progressive mtDNA mutagenesis. IOSCA-TWINKLE is predicted to hydrolyze dNTPs, consistent with low dNTP pools and mtDNA depletion in the disease. MM muscle also modifies the cytoplasmic one-carbon cycle, transsulfuration, and methylation, as well as increases glucose uptake and its utilization for de novo serine and glutathione biosynthesis. Our evidence indicates that the mitochondrial replication machinery communicates with cytoplasmic dNTP pools and that upregulation of glutathione synthesis through glucose-driven de novo serine biosynthesis contributes to the metabolic stress response. These results are important for disorders with primary or secondary mtDNA instability and offer targets for metabolic therapy. PMID:26924217

  3. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective.

    PubMed

    Schönfeld, Peter; Wojtczak, Lech

    2016-06-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. PMID:27080715

  4. Chiral hexagonal cellular sandwich structure: a vibro-acoustic assessment

    NASA Astrophysics Data System (ADS)

    Lew, Tze L.; Spadoni, Alessandro; Scarpa, Fabrizio; Ruzzene, Massimo

    2005-05-01

    In this work we describe the vibroacoustic behavior of a novel concept of core for sandwich structures featuring auxetic characteristics, enhanced shear stiffness and compressive strength compared to classical cellular cores in sandwich components for sandwich applications. The out-plane properties and density values are described in terms of geometric parameters of the honeycomb unit cells. Opposite to classical honeycomb cellular applications, the hexagonal chiral structure presents a noncentresymemetric configuration, i.e., a "mirror" symmetrical topology. The derived mechanical properties are used to assess the modal behaviour and modal densities of sandwich plate elements with chiral and standard cellular cores. The analytical findings are backed up by structural tests on chiral honeycomb plates and sandwich beams.

  5. Computational model of cellular metabolic dynamics: effect of insulin on glucose disposal in human skeletal muscle

    PubMed Central

    Li, Yanjun; Solomon, Thomas P. J.; Haus, Jacob M.; Saidel, Gerald M.; Cabrera, Marco E.

    2010-01-01

    Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitatively distinguish significant transport and metabolic mechanisms from limited experimental data, we developed a physiologically based, multiscale mathematical model of cellular metabolic dynamics in skeletal muscle. The model describes mass transport and metabolic processes including distinctive processes of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase, pyruvate dehydrogenase); or M.3, parallel activation by a phenomenological insulin-mediated intracellular signal that modifies reaction rate coefficients. These simulations indicated that models M.1 and M.2 were not sufficient to explain the experimentally measured metabolic responses. However, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development of type 2 diabetes. PMID:20332360

  6. Maintenance of mouse hematopoietic stem cells ex vivo by reprogramming cellular metabolism.

    PubMed

    Liu, Xia; Zheng, Hong; Yu, Wen-Mei; Cooper, Todd M; Bunting, Kevin D; Qu, Cheng-Kui

    2015-03-01

    The difficulty in maintaining the reconstituting capabilities of hematopoietic stem cells (HSCs) in culture outside of the bone marrow microenvironment has severely limited their utilization for clinical therapy. This hurdle is largely due to the differentiation of long-term stem cells. Emerging evidence suggests that energy metabolism plays an important role in coordinating HSC self-renewal and differentiation. Here, we show that treatment with alexidine dihydrochloride, an antibiotic and a selective inhibitor of the mitochondrial phosphatase Ptpmt1, which is crucial for the differentiation of HSCs, reprogrammed cellular metabolism from mitochondrial aerobic metabolism to glycolysis, resulting in a remarkable preservation of long-term HSCs ex vivo in part through hyperactivation of adenosine 5'-monophosphate-activated protein kinase (AMPK). In addition, inhibition of mitochondrial metabolism and activation of AMPK by metformin, a diabetes drug, also decreased differentiation and helped maintain stem cells in culture. Thus, manipulating metabolic pathways represents an effective new strategy for ex vivo maintenance of HSCs. PMID:25593337

  7. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress

    PubMed Central

    Palmfeldt, Johan; Vang, Søren; Stenbroen, Vibeke; Pedersen, Christina B; Christensen, Jane H; Bross, Peter; Gregersen, Niels

    2009-01-01

    Background Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. Results When fibroblast cultures were exposed to mild metabolic stress – by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. Conclusion The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress. PMID:19476632

  8. [EFFECT OF LIPOPOLYSACCHARIDE ON NEUTRAL LIPID METABOLISM AND CELLULAR ENERGETICS IN FROG URINARY BLADDER EPITHELIAL CELLS].

    PubMed

    Fedorova, E V; Fock, E M; Braylovskaya, I V; Bachteeva, V T; Lavrova, E A; Zabelinskiĭ, S A; Parnova, R G

    2015-09-01

    It was shown previously that colonization of the frog urinary bladder by gram-negative bacteria leads to decreased ability of antidiuretic hormone to reabsorb water from the urinary bladder (Fock et al. J. Exp. Zool., 2013, 319A: 487-494). In the present work performed on epithelial cells isolated from the frog urinary bladder the influence of E. coli lipopolysaccharide (LPS) on neutral lipid metabolism and cellular energetics was studied. It was shown that incubation of cells with LPS led to decrease of fatty acids oxidation and to retention of triacylglycerols (TAG) followed by an increase of the cytoplasmic lipid droplets content and cellular amount of TAG. Fatty acid composition of TAG was not changed under LPS. LPS did not alter mitochondrial membrane potential, however, LPS decreased oxygen consumption rate both in basal and uncoupling conditions. Cellular ATP production was also reduced in the presence of LPS. The data obtained indicate that a decreased ability of antidiuretic hormone to reabsorb water from the urinary bladder induced by bacterial pathogens could be related to inhibition of fatty acids oxidation and impaired energy metabolism. PMID:26672162

  9. A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization.

    PubMed

    Hofmann, Kristina; Thiele, Christoph; Schött, Hans-Frieder; Gaebler, Anne; Schoene, Mario; Kiver, Yuriy; Friedrichs, Silvia; Lütjohann, Dieter; Kuerschner, Lars

    2014-03-01

    Cholesterol is an important lipid of mammalian cells and plays a fundamental role in many biological processes. Its concentration in the various cellular membranes differs and is tightly regulated. Here, we present a novel alkyne cholesterol analog suitable for tracing both cholesterol metabolism and localization. This probe can be detected by click chemistry employing various reporter azides. Alkyne cholesterol is accepted by cellular enzymes from different biological species (Brevibacterium, yeast, rat, human) and these enzymes include cholesterol oxidases, hydroxylases, and acyl transferases that generate the expected metabolites in in vitro and in vivo assays. Using fluorescence microscopy, we studied the distribution of cholesterol at subcellular resolution, detecting the lipid in the Golgi and at the plasma membrane, but also in the endoplasmic reticulum and mitochondria. In summary, alkyne cholesterol represents a versatile, sensitive, and easy-to-use tool for tracking cellular cholesterol metabolism and localization as it allows for manifold detection methods including mass spectrometry, thin-layer chromatography/fluorography, and fluorescence microscopy. PMID:24334219

  10. Creatine transporter deficiency leads to increased whole body and cellular metabolism.

    PubMed

    Perna, Marla K; Kokenge, Amanda N; Miles, Keila N; Udobi, Kenea C; Clark, Joseph F; Pyne-Geithman, Gail J; Khuchua, Zaza; Skelton, Matthew R

    2016-08-01

    Creatine (Cr) is a guanidino compound required for rapid replenishment of ATP in cells with a high-energy demand. In humans, mutations in the Cr transporter (CRT;SLC6A8) prevent Cr entry into tissue and result in a significant intellectual impairment, epilepsy, and aphasia. The lack of Cr on both the whole body and cellular metabolism was evaluated in Crt knockout (Crt (-/y) ) mice, a high-fidelity model of human CRT deficiency. Crt (-/y) mice have reduced body mass and, however, show a twofold increase in body fat. There was increased energy expenditure in a home cage environment and during treadmill running in Crt (-/y) mice. Consistent with the increases in the whole-body metabolic function, Crt (-/y) mice show increased cellular metabolism as well. Mitochondrial respiration increased in skeletal muscle fibers and hippocampal lysates from Crt (-/y) mice. In addition, Crt (-/y) mice had increased citrate synthase activity, suggesting a higher number of mitochondria instead of an increase in mitochondrial activity. To determine if the increase in respiration was due to increased mitochondrial numbers, we measured oxygen consumption in an equal number of mitochondria from Crt (+/y) and Crt (-/y) mice. There were no changes in mitochondrial respiration when normalized to mitochondrial number, suggesting that the increase in respiration observed could be to higher mitochondrial content in Crt (-/y) mice. PMID:27401086

  11. Multi-scale Imaging of Cellular and Sub-cellular Structures using Scanning Probe Recognition Microscopy.

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Rice, A. F.

    2005-03-01

    Scanning Probe Recognition Microscopy is a new scanning probe capability under development within our group to reliably return to and directly interact with a specific nanobiological feature of interest. In previous work, we have successfully recognized and classified tubular versus globular biological objects from experimental atomic force microscope images using a method based on normalized central moments [ref. 1]. In this paper we extend this work to include recognition schemes appropriate for cellular and sub-cellular structures. Globular cells containing tubular actin filaments are under investigation. Thus there are differences in external/internal shapes and scales. Continuous Wavelet Transform with a differential Gaussian mother wavelet is employed for multi- scale analysis. [ref. 1] Q. Chen, V. Ayres and L. Udpa, ``Biological Investigation Using Scanning Probe Recognition Microscopy,'' Proceedings 3rd IEEE Conference on Nanotechnology, vol. 2, p 863-865 (2003).

  12. HMG Nuclear Proteins: Linking Chromatin Structure to Cellular Phenotype

    PubMed Central

    Reeves, Raymond

    2009-01-01

    I. Summary Although the three families of mammalian HMG proteins (HMGA, HMGB and HMGN) participate in many of the same nuclear processes, each family plays its own unique role in modulating chromatin structure and regulating genomic function. This review focuses on the similarities and differences in the mechanisms by which the different HMG families impact chromatin structure and influence cellular phenotype. The biological implications of having three architectural transcription factor families with complementary, but partially overlapping, nuclear functions are discussed. PMID:19748605

  13. Androgen-metabolizing enzymes: A structural perspective.

    PubMed

    Manenda, Mahder Seifu; Hamel, Charles Jérémie; Masselot-Joubert, Loreleï; Picard, Marie-Ève; Shi, Rong

    2016-07-01

    Androgen-metabolizing enzymes convert cholesterol, a relatively inert molecule, into some of the most potent chemical messengers in vertebrates. This conversion involves thermodynamically challenging reactions catalyzed by P450 enzymes and redox reactions catalyzed by Aldo-Keto Reductases (AKRs). This review covers the structures of these enzymes with a focus on active site interactions and proposed mechanisms. Due to their role in a number of diseases, particularly in cancer, androgen-metabolizing enzymes have been targets of drug design. Hence we will also highlight how existing knowledge of structure is being used to this end. PMID:26924584

  14. Current concepts in chronic inflammatory diseases: Interactions between microbes, cellular metabolism, and inflammation.

    PubMed

    Garn, Holger; Bahn, Sabine; Baune, Bernhard T; Binder, Elisabeth B; Bisgaard, Hans; Chatila, Talal A; Chavakis, Triantafyllos; Culmsee, Carsten; Dannlowski, Udo; Gay, Steffen; Gern, James; Haahtela, Tari; Kircher, Tilo; Müller-Ladner, Ulf; Neurath, Markus F; Preissner, Klaus T; Reinhardt, Christoph; Rook, Graham; Russell, Shannon; Schmeck, Bernd; Stappenbeck, Thaddeus; Steinhoff, Ulrich; van Os, Jim; Weiss, Scott; Zemlin, Michael; Renz, Harald

    2016-07-01

    Recent research indicates that chronic inflammatory diseases, including allergies and autoimmune and neuropsychiatric diseases, share common pathways of cellular and molecular dysregulation. It was the aim of the International von-Behring-Röntgen Symposium (October 16-18, 2014, in Marburg, Germany) to discuss recent developments in this field. These include a concept of biodiversity; the contribution of urbanization, lifestyle factors, and nutrition (eg, vitamin D); and new mechanisms of metabolic and immune dysregulation, such as extracellular and intracellular RNAs and cellular and mitochondrial stress. Epigenetic mechanisms contribute further to altered gene expression and therefore to the development of chronic inflammation. These novel findings provide the foundation for further development of preventive and therapeutic strategies. PMID:27373325

  15. Mammalian Mss51 is a skeletal muscle-specific gene modulating cellular metabolism

    PubMed Central

    Moyer, Adam L.; Wagner, Kathryn R.

    2015-01-01

    Background The transforming growth factor β (TGF-β) signaling pathways modulate skeletal muscle growth, regeneration, and cellular metabolism. Several recent gene expression studies have shown that inhibition of myostatin and TGF-β1 signaling consistently leads to a significant reduction in expression of Mss51, also named Zmynd17. The function of mammalian Mss51 is unknown although a putative homolog in yeast is a mitochondrial translational activator. Objective The objective of this work was to characterize mammalian Mss51. Methods Quantitative RT-PCR and immunoblot of subcellular fractionation were used to determine expression patterns and localization of Mss51. The CRISPR/Cas9 system was used to reduce expression of Mss51 in C2C12 myoblasts and the function of Mss51 was evaluated in assays of proliferation, differentiation and cellular metabolism. Results Mss51 was predominantly expressed in skeletal muscle and in those muscles dominated by fast-twitch fibers. In vitro, its expression was upregulated upon differentiation of C2C12 myoblasts into myotubes. Expression of Mss51 was modulated in response to altered TGF-β family signaling. In human muscle, Mss51 localized to the mitochondria. Its genetic disruption resulted in increased levels of cellular ATP, β-oxidation, glycolysis, and oxidative phosphorylation. Conclusions Mss51 is a novel, skeletal muscle-specific gene and a key target of myostatin and TGF-β1 signaling. Unlike myostatin, TGF-β1 and IGF-1, Mss51 does not regulate myoblast proliferation or differentiation. Rather, Mss51 appears to be one of the effectors of these growth factors on metabolic processes including fatty acid oxidation, glycolysis and oxidative phosphorylation. PMID:26634192

  16. Computer Modeling of the Earliest Cellular Structures and Functions

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Schweighofer, Karl

    2000-01-01

    In the absence of extinct or extant record of protocells (the earliest ancestors of contemporary cells). the most direct way to test our understanding of the origin of cellular life is to construct laboratory models of protocells. Such efforts are currently underway in the NASA Astrobiology Program. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs for molecules that perform proto-cellular functions. Many of these functions, such as import of nutrients, capture and storage of energy. and response to changes in the environment are carried out by proteins bound to membrane< We will discuss a series of large-scale, molecular-level computer simulations which demonstrate (a) how small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes, (b) how these peptides aggregate to form membrane-spanning structures (eg. channels), and (c) by what mechanisms such aggregates perform essential proto-cellular functions, such as proton transport of protons across cell walls, a key step in cellular bioenergetics. The simulations were performed using the molecular dynamics method, in which Newton's equations of motion for each item in the system are solved iteratively. The problems of interest required simulations on multi-nanosecond time scales, which corresponded to 10(exp 6)-10(exp 8) time steps.

  17. Structural mechanisms of plant glucan phosphatases in starch metabolism.

    PubMed

    Meekins, David A; Vander Kooi, Craig W; Gentry, Matthew S

    2016-07-01

    Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode two glucan phosphatases, called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases, and outlines how they are uniquely adapted to perform their cellular functions. We outline the physical mechanisms used by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan-binding platform comprising its dual-specificity phosphatase domain and carbohydrate-binding module, while LSF2 utilizes surface binding sites. SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic dual-specificity phosphatase domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2, and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism and protein-glucan interaction, thereby providing a framework for their application in both agricultural and industrial settings. PMID:26934589

  18. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    SciTech Connect

    Long, G.J.; Rosen, J.F.; Pounds, J.G. )

    1990-02-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state {sup 210}Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with {sup 210}Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of {sup 210}Pb from the cells over a {sup 210}-min period. The intracellular metabolism of {sup 210}Pb was characterized by three kinetic pools of {sup 210}Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of {sup 210}Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone.

  19. Cellular structure of detonation utilized in propulsion system

    NASA Astrophysics Data System (ADS)

    Zhang, XuDong; Fan, BaoChun; Gui, MingYue; Pan, ZhenHua

    2012-10-01

    How to confine a detonation in a combustor is a key issue of detonation applications in propulsion systems. Based on achieving schemes, detonations applied in the combustor, including pulse detonation wave (PDW), oblique detonation wave (ODW) and rotating detonation wave (RDW), are different from that described by the classic CJ theory in fine structures and its self-sustaining mechanisms. In this work, the cellular structures and flow fields of ODW and RDW were obtained numerically, and the fundamental characteristics and self-sustaining mechanisms of the detonations were analyzed and discussed. ODW front consists of three parts: the ZND-like front, the single-headed triple point front and the dual-headed triple point front. Cellular structures of RDW are heterogeneous, and the cell size near the outer wall is smaller than that near the inner wall.

  20. Glycolytic metabolism influences global chromatin structure

    PubMed Central

    Liu, Xue-Song; Little, John B.; Yuan, Zhi-Min

    2015-01-01

    Metabolic rewiring, specifically elevated glycolytic metabolism is a hallmark of cancer. Global chromatin structure regulates gene expression, DNA repair, and also affects cancer progression. But the interrelationship between tumor metabolism and chromatin architecture remain unclear. Here we show that increased glycolysis in cancer cells promotes an open chromatin configuration. Using complementary methods including Micrococcal nuclease (MNase) digestion assay, electron microscope and immunofluorescence staining, we demonstrate that glycolysis inhibition by pharmacological and genetic approaches was associated with induction of compacted chromatin structure. This condensed chromatin status appeared to result chiefly from histone hypoacetylation as restoration of histone acetylation with an HDAC inhibitor reversed the compacted chromatin state. Interestingly, glycolysis inhibition-induced chromatin condensation impeded DNA repair efficiency leading to increased sensitivity of cancer cells to DNA damage drugs, which may represent a novel molecular mechanism that can be exploited for cancer therapy. PMID:25784656

  1. Cellular Metabolic Activity and the Oxygen and Hydrogen Stable Isotope Composition of Intracellular Water and Metabolites

    NASA Astrophysics Data System (ADS)

    Kreuzer-Martin, H. W.; Hegg, E. L.

    2008-12-01

    Intracellular water is an important pool of oxygen and hydrogen atoms for biosynthesis. Intracellular water is usually assumed to be isotopically identical to extracellular water, but an unexpected experimental result caused us to question this assumption. Heme O isolated from Escherichia coli cells grown in 95% H218O contained only a fraction of the theoretical value of labeled oxygen at a position where the O atom was known to be derived from water. In fact, fewer than half of the oxygen atoms were labeled. In an effort to explain this surprising result, we developed a method to determine the isotope ratios of intracellular water in cultured cells. The results of our experiments showed that during active growth, up to 70% of the oxygen atoms and 50% of the hydrogen atoms in the intracellular water of E. coli are generated during metabolism and can be isotopically distinct from extracellular water. The fraction of isotopically distinct atoms was substantially less in stationary phase and chilled cells, consistent with our hypothesis that less metabolically-generated water would be present in cells with lower metabolic activity. Our results were consistent with and explained the result of the heme O labeling experiment. Only about 40% of the O atoms on the heme O molecule were labeled because, presumably, only about 40% of the water inside the cells was 18O water that had diffused in from the culture medium. The rest of the intracellular water contained 16O atoms derived from either nutrients or atmospheric oxygen. To test whether we could also detect metabolically-derived hydrogen atoms in cellular constituents, we isolated fatty acids from log-phase and stationary phase E. coli and determined the H isotope ratios of individual fatty acids. The results of these experiments showed that environmental water contributed more H atoms to fatty acids isolated in stationary phase than to the same fatty acids isolated from log-phase cells. Stable isotope analyses of

  2. Additive Manufacturing of Metal Cellular Structures: Design and Fabrication

    NASA Astrophysics Data System (ADS)

    Yang, Li; Harrysson, Ola; Cormier, Denis; West, Harvey; Gong, Haijun; Stucker, Brent

    2015-03-01

    With the rapid development of additive manufacturing (AM), high-quality fabrication of lightweight design-efficient structures no longer poses an insurmountable challenge. On the other hand, much of the current research and development with AM technologies still focuses on material and process development. With the design for additive manufacturing in mind, this article explores the design issue for lightweight cellular structures that could be efficiently realized via AM processes. A unit-cell-based modeling approach that combines experimentation and limited-scale simulation was demonstrated, and it was suggested that this approach could potentially lead to computationally efficient design optimizations with the lightweight structures in future applications.

  3. A Novel Mathematical Model Describing Adaptive Cellular Drug Metabolism and Toxicity in the Chemoimmune System

    PubMed Central

    Tóth, Attila; Brózik, Anna; Szakács, Gergely; Sarkadi, Balázs; Hegedüs, Tamás

    2015-01-01

    Cells cope with the threat of xenobiotic stress by activating a complex molecular network that recognizes and eliminates chemically diverse toxic compounds. This “chemoimmune system” consists of cellular Phase I and Phase II metabolic enzymes, Phase 0 and Phase III ATP Binding Cassette (ABC) membrane transporters, and nuclear receptors regulating these components. In order to provide a systems biology characterization of the chemoimmune network, we designed a reaction kinetic model based on differential equations describing Phase 0–III participants and regulatory elements, and characterized cellular fitness to evaluate toxicity. In spite of the simplifications, the model recapitulates changes associated with acquired drug resistance and allows toxicity predictions under variable protein expression and xenobiotic exposure conditions. Our simulations suggest that multidrug ABC transporters at Phase 0 significantly facilitate the defense function of successive network members by lowering intracellular drug concentrations. The model was extended with a novel toxicity framework which opened the possibility of performing in silico cytotoxicity assays. The alterations of the in silico cytotoxicity curves show good agreement with in vitro cell killing experiments. The behavior of the simplified kinetic model suggests that it can serve as a basis for more complex models to efficiently predict xenobiotic and drug metabolism for human medical applications. PMID:25699998

  4. Embryonic MicroRNA-369 Controls Metabolic Splicing Factors and Urges Cellular Reprograming

    PubMed Central

    Konno, Masamitsu; Koseki, Jun; Kawamoto, Koichi; Nishida, Naohiro; Matsui, Hidetoshi; Dewi, Dyah Laksmi; Ozaki, Miyuki; Noguchi, Yuko; Mimori, Koshi; Gotoh, Noriko; Tanuma, Nobuhiro; Shima, Hiroshi; Doki, Yuichiro

    2015-01-01

    Noncoding microRNAs inhibit translation and lower the transcript stability of coding mRNA, however miR-369 s, in aberrant silencing genomic regions, stabilizes target proteins under cellular stress. We found that in vitro differentiation of embryonic stem cells led to chromatin methylation of histone H3K4 at the miR-369 region on chromosome 12qF in mice, which is expressed in embryonic cells and is critical for pluripotency. Proteomic analyses revealed that miR-369 stabilized translation of pyruvate kinase (Pkm2) splicing factors such as HNRNPA2B1. Overexpression of miR-369 stimulated Pkm2 splicing and enhanced induction of cellular reprogramming by induced pluripotent stem cell factors, whereas miR-369 knockdown resulted in suppression. Furthermore, immunoprecipitation analysis showed that the Argonaute complex contained the fragile X mental retardation-related protein 1 and HNRNPA2B1 in a miR-369-depedent manner. Our findings demonstrate a unique role of the embryonic miR-369-HNRNPA2B1 axis in controlling metabolic enzyme function, and suggest a novel pathway linking epigenetic, transcriptional, and metabolic control in cell reprogramming. PMID:26176628

  5. Accelerated Cellular Uptake and Metabolism of L-Thyroxine during Acute Salmonella typhimurium Sepsis

    PubMed Central

    DeRubertis, Frederick R.; Woeber, Kenneth A.

    1973-01-01

    The effects of acute Salmonella typhimurium sepsis on the kinetics of peripheral L-thyroxine (T4) distribution and metabolism and on serum total and free T4 concentrations were studied in rhesus monkeys inoculated i.v. with either heat-killed or viable organisms. The rate of disappearance of labeled T4 from serum was increased within 8 h after inoculation of monkeys with either heat-killed or viable Salmonella. The effects of the heat-killed organisms were transient and no longer evident by 16 h postinoculation. The monkeys inoculated with the viable Salmonella experienced a 2-3 day febrile, septic illness that was accompanied by an increase in the absolute rate of T4 disposal. In the infected monkeys, serum total T4 and endogenously labeled protein-bound iodine concentrations fell significantly during the period of acute sepsis and then rose during convalescence to values that exceeded the preinoculation values, suggesting that thyroidal secretion of hormone had increased in response to a primary depletion of the peripheral hormonal pool. Total cellular and hepatic uptakes of T4 were enhanced by 4 h after inoculation of monkeys with either heat-killed or viable Salmonella, but the increase in total cellular uptake persisted for 24 h only in the monkeys inoculated with the viable organisms. These alterations in T4 kinetics could neither be correlated with changes in the binding of T4 in plasma nor attributed to an increase in vascular permeability. Moreover, they could not be ascribed to an in vitro product of bacterial growth, suggesting that the presence of the organisms themselves was required. An acceleration of T4 disappearance was also observed during Escherichia coli and Diplococcus pucumoniae bacteremias. Our findings are consistent with a primary increase in the cellular uptake and metabolism of T4 during bacterial sepsis, possibly related to phagocytic cell function in the host. PMID:4629910

  6. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    PubMed

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. PMID:22687625

  7. Linking Pulmonary Oxygen Uptake, Muscle Oxygen Utilization and Cellular Metabolism during Exercise

    PubMed Central

    Lai, Nicola; Camesasca, Marco; Saidel, Gerald M.; Dash, Ranjan K.; Cabrera, Marco E.

    2014-01-01

    The energy demand imposed by physical exercise on the components of the oxygen transport and utilization system requires a close link between cellular and external respiration in order to maintain ATP homeostasis. Invasive and non-invasive experimental approaches have been used to elucidate mechanisms regulating the balance between oxygen supply and consumption during exercise. Such approaches suggest that the mechanism controlling the various subsystems coupling internal to external respiration are part of a highly redundant and hierarchical multi-scale system. In this work, we present a “systems biology” framework that integrates experimental and theoretical approaches able to provide simultaneously reliable information on the oxygen transport and utilization processes occurring at the various steps in the pathway of oxygen from air to mitochondria, particularly at the onset of exercise. This multi-disciplinary framework provides insights into the relationship between cellular oxygen consumption derived from measurements of muscle oxygenation during exercise and pulmonary oxygen uptake by indirect calorimetry. With a validated model, muscle oxygen dynamic responses is simulated and quantitatively related to cellular metabolism under a variety of conditions. PMID:17380394

  8. Defective Ca2+ metabolism in Duchenne muscular dystrophy: effects on cellular and viral growth.

    PubMed Central

    Fingerman, E; Campisi, J; Pardee, A B

    1984-01-01

    Normal fibroblasts in medium containing 0.02 mM CaCl2 arrested growth within 24 hr, whereas Duchenne muscular dystrophy fibroblasts continued to grow for 5 days, albeit at 40% of their rate in standard medium (1.8 mM CaCl2). Moreover, Duchenne cells in calcium-deficient medium showed an enhanced rate of protein synthesis (60% over the rate in standard medium), whereas normal cells were unaffected. Previously we described a general assay for detection of mutant cells by using herpes simplex virus I replication as a probe of cellular function. By altering the growth medium, one can elicit changes in viral DNA replication that depend upon cellular differences. Duchenne fibroblasts in calcium-deficient low-serum (0.5%) medium supported viral replication at a rate 7- to 10-fold greater than did normal cells infected under the same conditions. Using this viral assay, we have successfully identified all 10 samples of a blind coded set of Duchenne muscular dystrophy, normal, and heterozygote cells. In addition, differences of a lower magnitude were found between these cell strains as measured by cellular growth or protein synthesis. Therefore, a cell's ability to grow and support viral replication in calcium-deficient medium can be used to readily distinguish Duchenne muscular dystrophy fibroblasts from normal ones. These results suggest that the viral assay could be used as a prenatal diagnostic test. A defect related to calcium metabolism may be fundamental to this disease. PMID:6095311

  9. Freeform inkjet printing of cellular structures with bifurcations.

    PubMed

    Christensen, Kyle; Xu, Changxue; Chai, Wenxuan; Zhang, Zhengyi; Fu, Jianzhong; Huang, Yong

    2015-05-01

    Organ printing offers a great potential for the freeform layer-by-layer fabrication of three-dimensional (3D) living organs using cellular spheroids or bioinks as building blocks. Vascularization is often identified as a main technological barrier for building 3D organs. As such, the fabrication of 3D biological vascular trees is of great importance for the overall feasibility of the envisioned organ printing approach. In this study, vascular-like cellular structures are fabricated using a liquid support-based inkjet printing approach, which utilizes a calcium chloride solution as both a cross-linking agent and support material. This solution enables the freeform printing of spanning and overhang features by providing a buoyant force. A heuristic approach is implemented to compensate for the axially-varying deformation of horizontal tubular structures to achieve a uniform diameter along their axial directions. Vascular-like structures with both horizontal and vertical bifurcations have been successfully printed from sodium alginate only as well as mouse fibroblast-based alginate bioinks. The post-printing fibroblast cell viability of printed cellular tubes was found to be above 90% even after a 24 h incubation, considering the control effect. PMID:25421556

  10. Thioflavin T as a fluorescence probe for monitoring RNA metabolism at molecular and cellular levels.

    PubMed

    Sugimoto, Shinya; Arita-Morioka, Ken-ichi; Mizunoe, Yoshimitsu; Yamanaka, Kunitoshi; Ogura, Teru

    2015-08-18

    The intrinsically stochastic dynamics of mRNA metabolism have important consequences on gene regulation and non-genetic cell-to-cell variability; however, no generally applicable methods exist for studying such stochastic processes quantitatively. Here, we describe the use of the amyloid-binding probe Thioflavin T (ThT) for monitoring RNA metabolism in vitro and in vivo. ThT fluoresced strongly in complex with bacterial total RNA than with genomic DNA. ThT bound purine oligoribonucleotides preferentially over pyrimidine oligoribonucleotides and oligodeoxyribonucleotides. This property enabled quantitative real-time monitoring of poly(A) synthesis and phosphorolysis by polyribonucleotide phosphorylase in vitro. Cellular analyses, in combination with genetic approaches and the transcription-inhibitor rifampicin treatment, demonstrated that ThT mainly stained mRNA in actively dividing Escherichia coli cells. ThT also facilitated mRNA metabolism profiling at the single-cell level in diverse bacteria. Furthermore, ThT can also be used to visualise transitions between non-persister and persister cell states, a phenomenon of isogenic subpopulations of antibiotic-sensitive bacteria that acquire tolerance to multiple antibiotics due to stochastically induced dormant states. Collectively, these results suggest that probing mRNA dynamics with ThT is a broadly applicable approach ranging from the molecular level to the single-cell level. PMID:25883145

  11. Early Cellular Changes in the Ascending Aorta and Myocardium in a Swine Model of Metabolic Syndrome

    PubMed Central

    Mahmood, Feroze; Owais, Khurram; Bardia, Amit; Khabbaz, Kamal R.; Liu, David; Senthilnathan, Venkatachalam; Lassaletta, Antonio D.; Sellke, Frank; Matyal, Robina

    2016-01-01

    Background Metabolic syndrome is associated with pathological remodeling of the heart and adjacent vessels. The early biochemical and cellular changes underlying the vascular damage are not fully understood. In this study, we sought to establish the nature, extent, and initial timeline of cytochemical derangements underlying reduced ventriculo-arterial compliance in a swine model of metabolic syndrome. Methods Yorkshire swine (n = 8 per group) were fed a normal diet (ND) or a high-cholesterol (HCD) for 12 weeks. Myocardial function and blood flow was assessed before harvesting the heart. Immuno-blotting and immuno-histochemical staining were used to assess the cellular changes in the myocardium, ascending aorta and left anterior descending artery (LAD). Results There was significant increase in body mass index, blood glucose and mean arterial pressures (p = 0.002, p = 0.001 and p = 0.024 respectively) in HCD group. At the cellular level there was significant increase in anti-apoptotic factors p-Akt (p = 0.007 and p = 0.002) and Bcl-xL (p = 0.05 and p = 0.01) in the HCD aorta and myocardium, respectively. Pro-fibrotic markers TGF-β (p = 0.01), pSmad1/5 (p = 0.03) and MMP-9 (p = 0.005) were significantly increased in the HCD aorta. The levels of pro-apoptotic p38MAPK, Apaf-1 and cleaved Caspase3 were significantly increased in aorta of HCD (p = 0.03, p = 0.04 and p = 0.007 respectively). Similar changes in coronary arteries were not observed in either group. Functionally, the high cholesterol diet resulted in significant increase in ventricular end systolic pressure and–dp/dt (p = 0.05 and p = 0.007 respectively) in the HCD group. Conclusion Preclinical metabolic syndrome initiates pro-apoptosis and pro-fibrosis pathways in the heart and ascending aorta, while sparing coronary arteries at this early stage of dietary modification. PMID:26766185

  12. Exact quantification of cellular robustness in genome-scale metabolic networks

    PubMed Central

    Gerstl, Matthias P.; Klamt, Steffen; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2016-01-01

    Motivation: Robustness, the ability of biological networks to uphold their functionality in spite of perturbations, is a key characteristic of all living systems. Although several theoretical approaches have been developed to formalize robustness, it still eludes an exact quantification. Here, we present a rigorous and quantitative approach for the structural robustness of metabolic networks by measuring their ability to tolerate random reaction (or gene) knockouts. Results: In analogy to reliability theory, based on an explicit consideration of all possible knockout sets, we exactly quantify the probability of failure for a given network function (e.g. growth). This measure can be computed if the network’s minimal cut sets (MSCs) are known. We show that even in genome-scale metabolic networks the probability of (network) failure can be reliably estimated from MSCs with lowest cardinalities. We demonstrate the applicability of our theory by analyzing the structural robustness of multiple Enterobacteriaceae and Blattibacteriaceae and show a dramatically low structural robustness for the latter. We find that structural robustness develops from the ability to proliferate in multiple growth environments consistent with experimentally found knowledge. Conclusion: The probability of (network) failure provides thus a reliable and easily computable measure of structural robustness and redundancy in (genome-scale) metabolic networks. Availability and implementation: Source code is available under the GNU General Public License at https://github.com/mpgerstl/networkRobustnessToolbox. Contact: juergen.zanghellini@boku.ac.at Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26543173

  13. Periodic Cellular Structure Technology for Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  14. From structure to cellular mechanism with infrared microspectroscopy

    PubMed Central

    Miller, Lisa M; Dumas, Paul

    2014-01-01

    Current efforts in structural biology aim to integrate structural information within the context of cellular organization and function. X-rays and infrared radiation stand at opposite ends of the electromagnetic spectrum and act as complementary probes for achieving this goal. Intense and bright beams are produced by synchrotron radiation, and are efficiently used in the wavelength domain extending from hard X-rays to the far-infrared (or THz) regime. While X-ray crystallography provides exquisite details on atomic structure, Fourier transform infrared microspectroscopy (FTIRM) is emerging as a spectroscopic probe and imaging tool for correlating molecular structure to biochemical dynamics and function. In this manuscript, the role of synchrotron FTIRM in bridging the gap towards ‘functional biology’ is discussed based upon recent achievements, with a critical assessment of the contributions to biological and biomedical research. PMID:20739176

  15. Preservation, induction or incorporation of metabolism into the in vitro cellular system - views to current opportunities and limitations.

    PubMed

    Pelkonen, Olavi; Turpeinen, Miia; Hakkola, Jukka; Abass, Khaled; Pasanen, Markku; Raunio, Hannu; Vähäkangas, Kirsi

    2013-08-01

    Metabolism plays a major role in the toxicokinetics of a vast majority of substances, although other dispositional processes have to be considered as well. There are currently a large repertoire of primary or permanent cells/cell lines with variable metabolic capacities and a number of experimental approaches to preserve, induce or incorporate biotransformation enzymes for the development of metabolically competent cells. Many of these cell lines possess also other important dispositional characteristics mimicking the in vivo situation. Such cell models can be employed in studies targeted for estimating metabolic disposition of a substance or the production of active metabolites and ensuing toxic end points. There are also ways to collect metabolic information by using a large number of non-cellular systems and build a coherent view on metabolism, although not really replacing the actual cellular system. Early consideration of metabolic competence is a necessary prerequisite for the validation and use of cellular systems for toxicity studies and in vitro-in vivo extrapolation. PMID:22728233

  16. The structural origin of metabolic quantitative diversity.

    PubMed

    Koshiba, Seizo; Motoike, Ikuko; Kojima, Kaname; Hasegawa, Takanori; Shirota, Matsuyuki; Saito, Tomo; Saigusa, Daisuke; Danjoh, Inaho; Katsuoka, Fumiki; Ogishima, Soichi; Kawai, Yosuke; Yamaguchi-Kabata, Yumi; Sakurai, Miyuki; Hirano, Sachiko; Nakata, Junichi; Motohashi, Hozumi; Hozawa, Atsushi; Kuriyama, Shinichi; Minegishi, Naoko; Nagasaki, Masao; Takai-Igarashi, Takako; Fuse, Nobuo; Kiyomoto, Hideyasu; Sugawara, Junichi; Suzuki, Yoichi; Kure, Shigeo; Yaegashi, Nobuo; Tanabe, Osamu; Kinoshita, Kengo; Yasuda, Jun; Yamamoto, Masayuki

    2016-01-01

    Relationship between structural variants of enzymes and metabolic phenotypes in human population was investigated based on the association study of metabolite quantitative traits with whole genome sequence data for 512 individuals from a population cohort. We identified five significant associations between metabolites and non-synonymous variants. Four of these non-synonymous variants are located in enzymes involved in metabolic disorders, and structural analyses of these moderate non-synonymous variants demonstrate that they are located in peripheral regions of the catalytic sites or related regulatory domains. In contrast, two individuals with larger changes of metabolite levels were also identified, and these individuals retained rare variants, which caused non-synonymous variants located near the catalytic site. These results are the first demonstrations that variant frequency, structural location, and effect for phenotype correlate with each other in human population, and imply that metabolic individuality and susceptibility for diseases may be elicited from the moderate variants and much more deleterious but rare variants. PMID:27528366

  17. The structural origin of metabolic quantitative diversity

    PubMed Central

    Koshiba, Seizo; Motoike, Ikuko; Kojima, Kaname; Hasegawa, Takanori; Shirota, Matsuyuki; Saito, Tomo; Saigusa, Daisuke; Danjoh, Inaho; Katsuoka, Fumiki; Ogishima, Soichi; Kawai, Yosuke; Yamaguchi-Kabata, Yumi; Sakurai, Miyuki; Hirano, Sachiko; Nakata, Junichi; Motohashi, Hozumi; Hozawa, Atsushi; Kuriyama, Shinichi; Minegishi, Naoko; Nagasaki, Masao; Takai-Igarashi, Takako; Fuse, Nobuo; Kiyomoto, Hideyasu; Sugawara, Junichi; Suzuki, Yoichi; Kure, Shigeo; Yaegashi, Nobuo; Tanabe, Osamu; Kinoshita, Kengo; Yasuda, Jun; Yamamoto, Masayuki

    2016-01-01

    Relationship between structural variants of enzymes and metabolic phenotypes in human population was investigated based on the association study of metabolite quantitative traits with whole genome sequence data for 512 individuals from a population cohort. We identified five significant associations between metabolites and non-synonymous variants. Four of these non-synonymous variants are located in enzymes involved in metabolic disorders, and structural analyses of these moderate non-synonymous variants demonstrate that they are located in peripheral regions of the catalytic sites or related regulatory domains. In contrast, two individuals with larger changes of metabolite levels were also identified, and these individuals retained rare variants, which caused non-synonymous variants located near the catalytic site. These results are the first demonstrations that variant frequency, structural location, and effect for phenotype correlate with each other in human population, and imply that metabolic individuality and susceptibility for diseases may be elicited from the moderate variants and much more deleterious but rare variants. PMID:27528366

  18. The Cellular Environment Stabilizes Adenine Riboswitch RNA Structure

    PubMed Central

    Tyrrell, Jillian; McGinnis, Jennifer L.; Weeks, Kevin M.; Pielak, Gary J.

    2016-01-01

    There are large differences between the intracellular environment and the conditions widely used to study RNA structure and function in vitro. To assess the effects of the crowded cellular environment on RNA, we examined the structure and ligand-binding function of the adenine riboswitch aptamer domain in healthy, growing Escherichia coli cells at single-nucleotide resolution on the minute timescale using SHAPE. The ligand-bound aptamer structure is essentially the same in cells and in buffer at 1 mM Mg2+, the approximate Mg2+ concentration we measured in cells. In contrast, the in-cell conformation of the ligand-free aptamer is much more similar to the fully folded ligand-bound state. Even adding high Mg2+ concentrations to the buffer used for in vitro analyses did not yield the conformation observed for the free aptamer in cells. The cellular environment thus stabilizes the aptamer significantly more than does Mg2+ alone. Our results show that the intracellular environment has a large effect on RNA structure that ultimately favors highly organized conformations. PMID:24215455

  19. New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study

    PubMed Central

    2010-01-01

    Background Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2) and degraded by exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS) structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP) formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA) cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency. PMID:20067623

  20. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    SciTech Connect

    Zhdanov, Alexander V.; Waters, Alicia H.C.; Golubeva, Anna V.; Papkovsky, Dmitri B.

    2015-01-01

    Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.

  1. Changes in Transcription and Metabolism During the Early Stage of Replicative Cellular Senescence in Budding Yeast*

    PubMed Central

    Kamei, Yuka; Tamada, Yoshihiro; Nakayama, Yasumune; Fukusaki, Eiichiro; Mukai, Yukio

    2014-01-01

    Age-related damage accumulates and a variety of biological activities and functions deteriorate in senescent cells. However, little is known about when cellular aging behaviors begin and what cellular aging processes change. Previous research demonstrated age-related mRNA changes in budding yeast by the 18th to 20th generation, which is the average replicative lifespan of yeast (i.e. about half of the population is dead by this time point). Here, we performed transcriptional and metabolic profiling for yeast at early stages of senescence (4th, 7th, and 11th generation), that is, for populations in which most cells are still alive. Transcriptional profiles showed up- and down-regulation for ∼20% of the genes profiled after the first four generations, few further changes by the 7th generation, and an additional 12% of the genes were up- and down-regulated after 11 generations. Pathway analysis revealed that these 11th generation cells had accumulated transcripts coding for enzymes involved in sugar metabolism, the TCA cycle, and amino acid degradation and showed decreased levels of mRNAs coding for enzymes involved in amino acid biosynthetic pathways. These observations were consistent with the metabolomic profiles of aging cells: an accumulation of pyruvic acid and TCA cycle intermediates and depletion of most amino acids, especially branched-chain amino acids. Stationary phase-induced genes were highly expressed after 11 generations even though the growth medium contained adequate levels of nutrients, indicating deterioration of the nutrient sensing and/or signaling pathways by the 11th generation. These changes are presumably early indications of replicative senescence. PMID:25294875

  2. Bioenergetic Impairment in Animal and Cellular Models of Alzheimer's Disease: PARP-1 Inhibition Rescues Metabolic Dysfunctions.

    PubMed

    Martire, Sara; Fuso, Andrea; Mosca, Luciana; Forte, Elena; Correani, Virginia; Fontana, Mario; Scarpa, Sigfrido; Maras, Bruno; d'Erme, Maria

    2016-08-10

    Amyloid-beta peptide accumulation in the brain is one of the main hallmarks of Alzheimer's disease. The amyloid aggregation process is associated with the generation of free radical species responsible for mitochondrial impairment and DNA damage that in turn activates poly(ADP-ribose)polymerase 1 (PARP-1). PARP-1 catalyzes the poly(ADP-ribosylation), a post-translational modification of proteins, cleaving the substrate NAD+ and transferring the ADP-ribose moieties to the enzyme itself or to an acceptor protein to form branched polymers of ADP-ribose. In this paper, we demonstrate that a mitochondrial dysfunction occurs in Alzheimer's transgenic mice TgCRND8, in SH-SY5Y treated with amyloid-beta and in 7PA2 cells. Moreover, PARP-1 activation contributes to the functional energetic decline affecting cytochrome oxidase IV protein levels, oxygen consumption rates, and membrane potential, resulting in cellular bioenergetic deficit. We also observed, for the first time, an increase of pyruvate kinase 2 expression, suggesting a modulation of the glycolytic pathway by PARP-1. PARP-1 inhibitors are able to restore both mitochondrial impairment and pyruvate kinase 2 expression. The overall data here presented indicate a pivotal role for this enzyme in the bioenergetic network of neuronal cells and open new perspectives for investigating molecular mechanisms underlying energy charge decline in Alzheimer's disease. In this scenario, PARP-1 inhibitors might represent a novel therapeutic intervention to rescue cellular energetic metabolism. PMID:27567805

  3. Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death

    PubMed Central

    Castano, Ana P.; Demidova, Tatiana N.; Hamblin, Michael R.

    2013-01-01

    Summary Photodynamic therapy (PDT) has been known for over a hundred years, but is only now becoming widely used. Originally developed as a tumor therapy, some of its most successful applications are for non-malignant disease. In the second of a series of three reviews, we will discuss the mechanisms that operate in PDT on a cellular level. In Part I [Castano AP, Demidova TN, Hamblin MR. Mechanism in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 2004;1:279–93] it was shown that one of the most important factors governing the outcome of PDT, is how the photosensitizer (PS) interacts with cells in the target tissue or tumor, and the key aspect of this interaction is the subcellular localization of the PS. PS can localize in mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes. An explosion of investigation and explorations in the field of cell biology have elucidated many of the pathways that mammalian cells undergo when PS are delivered in tissue culture and subsequently illuminated. There is an acute stress response leading to changes in calcium and lipid metabolism and production of cytokines and stress proteins. Enzymes particularly, protein kinases, are activated and transcription factors are expressed. Many of the cellular responses are centered on mitochondria. These effects frequently lead to induction of apoptosis either by the mitochondrial pathway involving caspases and release of cytochrome c, or by pathways involving ceramide or death receptors. However, under certain circumstances cells subjected to PDT die by necrosis. Although there have been many reports of DNA damage caused by PDT, this is not thought to be an important cell-death pathway. This mechanistic research is expected to lead to optimization of PDT as a tumor treatment, and to rational selection of combination therapies that include PDT as a component. PMID:25048553

  4. Computer Modeling of the Earliest Cellular Structures and Functions

    NASA Astrophysics Data System (ADS)

    Pohorille, Andrew

    2000-03-01

    In the absence of extinct or extant record of protocells (the earliest ancestors of contemporary cells), the most direct way to test ourunderstanding of the origin of cellular life is to construct laboratory models of protocells. Such efforts are currently underway in the NASA Astrobiology Program. They are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs for molecules that perform protocellular functions. Many of these functions, such as import of nutrients, capture and storage of energy, and response to changes in the environment are carried out by proteins bound to membranes. We will discuss a series of large-scale, molecular-level computer simulations which demonstrate (a) how small proteins (peptides)organize themselves into ordered structures at water-membrane interfaces and insert into membranes, (b) how these peptides aggregate to form membrane-spanning structures (e.g. channels), and (c) by what mechanisms such aggregates perform essential protocellular functions, such as proton transport of protons across cell walls, a key step in cellular bioenergetics. The simulations were performed using the molecular dynamics method, in which Newton's equations of motion for each atom in the system are solved iteratively. The problems of interest required simulations on multi-nanosecond time scales, which corresponded to 10^6-10^8 time steps.

  5. Metabolism of platelet activating factor at the whole organ and cellular level

    SciTech Connect

    Haroldsen, P.E.

    1987-01-01

    Platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-3-glycerophosphocholine) has been characterized as a phospholipid possessing a myriad of effects from the cellular to whole organism levels. Analytical methods and procedures were developed in order to measure and identify PAF precursors and metabolites. Two quantitative physicochemical methods based on isotope dilution mass spectrometry (MS) were developed to measure lyso-PAF and applied to the calcium ionophore stimulated human neutrophil. Levels of lyso-PAF were found to be significantly increased, 2-3 fold, upon cell activation with a stimulus that concomitantly elicits the production of PAF. Investigation into the metabolism of PAF by the isolated perfused rat lung by intratracheal instillation revealed (/sup 3/H)-PAF to be extensively metabolized over a 15 minute time course. Greater than 96% of the administered dose was retained by the lung and was distributed as: lyso-PAF (3.3%), phosphatidylcholine (GPC, 82.3%), phosphatidylethanolamine (2.5%), and neutral lipid (2.5%), the remainder was intact PAF.

  6. Poly(ADP-ribose) metabolism in young and old cells: response to cellular stresses

    SciTech Connect

    Gracy, R.W.; Sims, J.L.; Cini, J.

    1986-05-01

    The authors have examined the effect of several cellular stresses on poly(ADP-ribose) metabolism in human fibroblasts of low passage number derived from young and old donors. Poly(ADP-ribose) was synthesized in response to alkylation of DNA caused by N-methyl-N'-nitro-N-nitroguanidine and by hyperthermic treatment at 43 /sup 0/C or 45 /sup 0/C. Ethanol is able to potentiate poly(ADP-ribose) accumulation following these treatments. There was little if any difference in the response of young and old cells to these stresses. Amino acid analogs are thought to induce a response in mammalian cells similar to that caused by hyperthermia and ethanol. However, amino acid analogs such as L-azetidine did not produce effects on poly(ADP-ribose) metabolism like those produced by ethanol or hyperthermia. The authors have also examined the poly(ADP-ribose) content of bovine eye lens. Each eye lens contains populations of young and old cells that are distributed in a fixed graduated manner. Thus, the eye lens allows the study of aging cells with identical genetic backgrounds without the complications of serial passage of young cultures in in vitro aging systems.

  7. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling.

    PubMed

    Zhdanov, Alexander V; Waters, Alicia H C; Golubeva, Anna V; Papkovsky, Dmitri B

    2015-01-01

    Changes in availability and utilisation of O2 and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O2. Upon 2-4h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O2 and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O2 and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. PMID:25447307

  8. Monitoring intra-cellular lipid metabolism in macrophages by Raman- and CARS-microscopy

    NASA Astrophysics Data System (ADS)

    Matthäus, Christian; Bergner, Gero; Krafft, Christoph; Dietzek, Benjamin; Lorkowski, Stefan; Popp, Jürgen

    2010-04-01

    Monocyte-derived macrophages play a key role in lipid metabolism in vessel wall tissues. Macrophages can take up lipids by various mechanisms. As phagocytes, macrophages are important for the decomposition of lipid plaques within arterial walls that contribute to arteriosclerosis. Of special interest are uptake dynamics and intra-cellular fate of different individual types of lipids as, for example, fatty acids, triglycerides or free and esterified cholesterol. Here we utilize Raman microscopy to image the metabolism of such lipids and follow subsequent storage or degradation patterns. The combination of optical microscopy with Raman spectroscopy allows visualization at the diffraction limit of the employed laser light and biochemical characterization through the associated spectral information. Relatively long measuring times, due to the weakness of Raman scattering can be overcome by non-linear effects such as coherent anti-Stokes Raman scattering (CARS). With this contribution we introduce first results to monitor the incorporation of lipid components into individual cells employing Raman and CARS microscopy.

  9. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.

    PubMed

    Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R

    2016-08-01

    Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. PMID:27297969

  10. The Metabolic Core and Catalytic Switches Are Fundamental Elements in the Self-Regulation of the Systemic Metabolic Structure of Cells

    PubMed Central

    De la Fuente, Ildefonso M.; Cortes, Jesus M.; Perez-Pinilla, Martin B.; Ruiz-Rodriguez, Vicente; Veguillas, Juan

    2011-01-01

    Background Experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic Structure which seems to be a key feature common to all cellular organisms. Methodology/Principal Findings In order to investigate the functional importance of the metabolic core we have studied different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging biochemical data have been analysed using information-based dynamic tools, such as Pearson's correlation and Transfer Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity emerges which is dynamical and characterized by significant variations of bio-molecular information flows. Conclusions/Significance We have quantified essential aspects of the metabolic core functionality. The always active enzymatic reactions form a hub –with a high degree of effective connectivity- exhibiting a wide range of functional information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of the Systemic

  11. Kontur: Observations of cloud streets and open cellular structures

    NASA Astrophysics Data System (ADS)

    Brümmer, B.; Bakan, S.; Hinzpeter, H.

    1985-08-01

    In September and October 1981 the experiment KonTur (Convection and turbulence) was conducted over the North Sea. Its objectives were to investigate organized convective patterns, like cloud streets (boundary layer rolls) and cellular cloud structures. Two aircraft (British Hercules C-130 and German Falcon 20) performed detailed measurements within these patterns. Several cases of cloud streets and open cells were observed. Boundary layer rolls appear to be connected with an inflection point in the cross-roll wind component. The aspect ratio of the rolls (wavelength versus depth) is between three and four in accordance with other observations and linear stability analysis. Four scales of motion are involved: the mean flow, the roll circulation, individual clouds and turbulence. The vertical transport are dominated at lower levels by turbulence and at higher levels by roll-scale motions. Open cellular cloud structures are connected with large air-sea temperature differences due to cold air outbreaks from the northwest. The aspect ratio of the cells is of the order of 10. The bulk contribution to the total transport of heat and momentum originates from the cloudy walls of the cells. A vertical cross section through a composite open cell is presented.

  12. Modelling of detonation cellular structure in aluminium suspensions

    NASA Astrophysics Data System (ADS)

    Briand, A.; Veyssiere, B.; Khasainov, B. A.

    2010-12-01

    Heterogeneous detonations involving aluminium suspensions have been studied for many years for industrial safety policies, and for military and propulsion applications. Owing to their weak detonability and to the lack of available experimental results on the detonation cellular structure, numerical simulations provide a convenient way to improve the knowledge of such detonations. One major difficulty arising in numerical study of heterogeneous detonations involving suspensions of aluminium particles in oxidizing atmospheres is the modelling of aluminium combustion. Our previous two-step model provided results on the effect on the detonation cellular structure of particle diameter and characteristic chemical lengths. In this study, a hybrid model is incorporated in the numerical code EFAE, combining both kinetic and diffusion regimes in parallel. This more realistic model provides good agreement with the previous two-step model and confirms the correlations found between the detonation cell width, and particle diameter and characteristic lengths. Moreover, the linear dependence found between the detonation cell width and the induction length remains valid with the hybrid model.

  13. Shape-variable seals for pressure actuated cellular structures

    NASA Astrophysics Data System (ADS)

    Gramüller, B.; Tempel, A.; Hühne, C.

    2015-09-01

    Sealing concepts that allow a large change of cross-sectional area are investigated. Shape variable seals are indispensable for biologically inspired pressure actuated cellular structures (PACS), which can be utilized to develop energy efficient, lightweight and adaptive structures for diverse applications. The extensibility, stiffness and load capacity requirements exceed the characteristics of state of the art solutions. This work focuses on the design of seals suitable for extensional deformations of more than 25%. In a first step, a number of concepts are generated. Then the most suitable concept is chosen, based on numerical characterization and experimental examination. The deformation supportive end cap (DSEC) yields satisfying results as it displays a stress optimized shape under maximum load, an energetically inexpensive bending-based deformation mechanism and utilizes the applied forces to support distortion. In the first real-life implementation of a double row PACS demonstrator, which contains the DSEC, the proof of concept is demonstrated.

  14. Metabolism and motility in prebiotic structures

    PubMed Central

    Hanczyc, Martin M.

    2011-01-01

    Easily accessible, primitive chemical structures produced by self-assembly of hydrophobic substances into oil droplets may result in self-moving agents able to sense their environment and move to avoid equilibrium. These structures would constitute very primitive examples of life on the Earth, even more primitive than simple bilayer vesicle structures. A few examples of simple chemical systems are presented that self-organize to produce oil droplets capable of movement, environment remodelling and primitive chemotaxis. These chemical agents are powered by an internal chemical reaction based on the hydrolysis of an oleic anhydride precursor or on the hydrolysis of hydrogen cyanide (HCN) polymer, a plausible prebiotic chemistry. Results are presented on both the behaviour of such droplets and the surface-active properties of HCN polymer products. Such motile agents would be capable of finding resources while escaping equilibrium and sustaining themselves through an internal metabolism, thus providing a working chemical model for a possible origin of life. PMID:21930579

  15. Redox Modulation of Cellular Signaling and Metabolism Through Reversible Oxidation of Methionine Sensors in Calcium Regulatory Proteins

    SciTech Connect

    Bigelow, Diana J.; Squier, Thomas C.

    2005-01-17

    Adaptive responses associated with environmental stressors are critical to cell survival. These involve the modulation of central signaling protein functions through site-specific and enzymatically reversible oxidative modifications of methionines to coordinate cellular metabolism, energy utilization, and calcium signaling. Under conditions when cellular redox and antioxidant defenses are overwhelmed, the selective oxidation of critical methionines within selected protein sensors functions to down-regulate energy metabolism and the further generation of reactive oxygen species (ROS). Mechanistically, these functional changes within protein sensors take advantage of the helix-breaking character of methionine sulfoxide. Thus, depending on either the ecological niche of the organism or the cellular milieu of different organ systems, cellular metabolism can be fine-tuned to maintain optimal function in the face of variable amounts of collateral oxidative damage. The sensitivity of several calcium regulatory proteins to oxidative modification provides cellular sensors that link oxidative stress to cellular response and recovery. Calmodulin (CaM) is one such critical calcium regulatory protein, which is functionally sensitive to methionine oxidation. Helix destabilization resulting from the oxidation of either Met{sup 144} or Met{sup 145} results in the nonproductive association between CaM and target proteins. The ability of oxidized CaM to stabilize its target proteins in an inhibited state with an affinity similar to that of native (unoxidized) CaM permits this central regulatory protein to function as a cellular rheostat that down-regulates energy metabolism in response to oxidative stress. Likewise, oxidation of a methionine within a critical switch region of the regulatory protein phospholamban is expected to destabilize the phosphorylationdependent helix formation necessary for the release of enzyme inhibition, resulting in a down-regulation of the Ca-ATPase in

  16. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  17. Ocean warming alters cellular metabolism and induces mortality in fish early life stages: A proteomic approach.

    PubMed

    Madeira, D; Araújo, J E; Vitorino, R; Capelo, J L; Vinagre, C; Diniz, M S

    2016-07-01

    Climate change has pervasive effects on marine ecosystems, altering biodiversity patterns, abundance and distribution of species, biological interactions, phenology, and organisms' physiology, performance and fitness. Fish early life stages have narrow thermal windows and are thus more vulnerable to further changes in water temperature. The aim of this study was to address the sensitivity and underlying molecular changes of larvae of a key fisheries species, the sea bream Sparus aurata, towards ocean warming. Larvae were exposed to three temperatures: 18°C (control), 24°C (warm) and 30°C (heat wave) for seven days. At the end of the assay, i) survival curves were plotted for each temperature treatment and ii) entire larvae were collected for proteomic analysis via 2D gel electrophoresis, image analysis and mass spectrometry. Survival decreased with increasing temperature, with no larvae surviving at 30°C. Therefore, proteomic analysis was only carried out for 18°C and 24°C. Larvae up-regulated protein folding and degradation, cytoskeletal re-organization, transcriptional regulation and the growth hormone while mostly down-regulating cargo transporting and porphyrin metabolism upon exposure to heat stress. No changes were detected in proteins related to energetic metabolism suggesting that larval fish may not have the energetic plasticity needed to sustain cellular protection in the long-term. These results indicate that despite proteome modulation, S. aurata larvae do not seem able to fully acclimate to higher temperatures as shown by the low survival rates. Consequently, elevated temperatures seem to have bottleneck effects during fish early life stages, and future ocean warming can potentially compromise recruitment's success of key fisheries species. PMID:27062348

  18. The structural biology of oestrogen metabolism

    PubMed Central

    Thomas, Mark P.; Potter, Barry V.L.

    2013-01-01

    Many enzymes catalyse reactions that have an oestrogen as a substrate and/or a product. The reactions catalysed include aromatisation, oxidation, reduction, sulfonation, desulfonation, hydroxylation and methoxylation. The enzymes that catalyse these reactions must all recognise and bind oestrogen but, despite this, they have diverse structures. This review looks at each of these enzymes in turn, describing the structure and discussing the mechanism of the catalysed reaction. Since oestrogen has a role in many disease states inhibition of the enzymes of oestrogen metabolism may have an impact on the state or progression of the disease and inhibitors of these enzymes are briefly discussed. This article is part of a Special Issue entitled ‘CSR 2013’. PMID:23291110

  19. Quantification of asymmetric microtubule nucleation at sub-cellular structures

    PubMed Central

    Zhu, Xiaodong; Kaverina, Irina

    2012-01-01

    Cell polarization is important for multiple physiological processes. In polarized cells, microtubules (MTs) are organized into a spatially polarized array. Generally, in non-differentiated cells, it is assumed that MTs are symmetrically nucleated exclusively from centrosome (microtubule organizing center, MTOC) and then reorganized into the asymmetric array. We have recently identified the Golgi complex as an additional MTOC that asymmetrically nucleates MTs toward one side of the cell. Methods used for alternative MTOC identification include microtubule re-growth after complete drug-induced depolymerization and tracking of growing microtubules using fluorescence labeled MT +TIP binding proteins in living cells. These approaches can be used for quantification of MT nucleation sites at diverse sub-cellular structures. PMID:21773933

  20. Alteration of heme metabolism in a cellular model of Diamond-Blackfan anemia.

    PubMed

    Mercurio, Sonia; Aspesi, Anna; Silengo, Lorenzo; Altruda, Fiorella; Dianzani, Irma; Chiabrando, Deborah

    2016-04-01

    Diamond-Blackfan anemia (DBA) is a congenital pure red cell aplasia often associated with skeletal malformations. Mutations in ribosomal protein coding genes, mainly in RPS19, account for the majority of DBA cases. The molecular mechanisms underlying DBA pathogenesis are still not completely understood. Alternative spliced isoforms of FLVCR1 (feline leukemia virus subgroup C receptor 1) transcript coding for non-functional proteins have been reported in some DBA patients. Consistently, a phenotype very close to DBA has been described in animal models of FLVCR1 deficiency. FLVCR1 gene codes for two proteins: the plasma membrane heme exporter FLVCR1a and the mitochondrial heme exporter FLVCR1b. The coordinated expression of both FLVCR1 isoforms regulates an intracellular heme pool, necessary for proper expansion and differentiation of erythroid precursors. Here, we investigate the role of FLVCR1 isoforms in a cellular model of DBA. RPS19-downregulated TF1 cells show reduced FLVCR1a and FLVCR1b mRNA levels associated with heme overload. The downregulation of FLVCR1 isoforms affects cell cycle progression and apoptosis in differentiating K562 cells, a phenotype similar to DBA. Taken together, these data suggest that alteration of heme metabolism could play a role in the pathogenesis of DBA. PMID:26058344

  1. Neurophysiological, metabolic and cellular compartments that drive neurovascular coupling and neuroimaging signals.

    PubMed

    Moreno, Andrea; Jego, Pierrick; de la Cruz, Feliberto; Canals, Santiago

    2013-01-01

    Complete understanding of the mechanisms that coordinate work and energy supply of the brain, the so called neurovascular coupling, is fundamental to interpreting brain energetics and their influence on neuronal coding strategies, but also to interpreting signals obtained from brain imaging techniques such as functional magnetic resonance imaging. Interactions between neuronal activity and cerebral blood flow regulation are largely compartmentalized. First, there exists a functional compartmentalization in which glutamatergic peri-synaptic activity and its electrophysiological events occur in close proximity to vascular responses. Second, the metabolic processes that fuel peri-synaptic activity are partially segregated between glycolytic and oxidative compartments. Finally, there is cellular segregation between astrocytic and neuronal compartments, which has potentially important implications on neurovascular coupling. Experimental data is progressively showing a tight interaction between the products of energy consumption and neurotransmission-driven signaling molecules that regulate blood flow. Here, we review some of these issues in light of recent findings with special attention to the neuron-glia interplay on the generation of neuroimaging signals. PMID:23543907

  2. Neurophysiological, metabolic and cellular compartments that drive neurovascular coupling and neuroimaging signals

    PubMed Central

    Moreno, Andrea; Jego, Pierrick; de la Cruz, Feliberto; Canals, Santiago

    2013-01-01

    Complete understanding of the mechanisms that coordinate work and energy supply of the brain, the so called neurovascular coupling, is fundamental to interpreting brain energetics and their influence on neuronal coding strategies, but also to interpreting signals obtained from brain imaging techniques such as functional magnetic resonance imaging. Interactions between neuronal activity and cerebral blood flow regulation are largely compartmentalized. First, there exists a functional compartmentalization in which glutamatergic peri-synaptic activity and its electrophysiological events occur in close proximity to vascular responses. Second, the metabolic processes that fuel peri-synaptic activity are partially segregated between glycolytic and oxidative compartments. Finally, there is cellular segregation between astrocytic and neuronal compartments, which has potentially important implications on neurovascular coupling. Experimental data is progressively showing a tight interaction between the products of energy consumption and neurotransmission-driven signaling molecules that regulate blood flow. Here, we review some of these issues in light of recent findings with special attention to the neuron-glia interplay on the generation of neuroimaging signals. PMID:23543907

  3. Evidence that the tri-cellular metabolism of N-acetylaspartate functions as the brain's "operating system": how NAA metabolism supports meaningful intercellular frequency-encoded communications.

    PubMed

    Baslow, Morris H

    2010-11-01

    N-acetylaspartate (NAA), an acetylated derivative of L-aspartate (Asp), and N-acetylaspartylglutamate (NAAG), a derivative of NAA and L-glutamate (Glu), are synthesized by neurons in brain. However, neurons cannot catabolize either of these substances, and so their metabolism requires the participation of two other cell types. Neurons release both NAA and NAAG to extra-cellular fluid (ECF) upon stimulation, where astrocytes, the target cells for NAAG, hydrolyze it releasing NAA back into ECF, and oligodendrocytes, the target cells for NAA, hydrolyze it releasing Asp to ECF for recycling to neurons. This sequence is unique as it is the only known amino acid metabolic cycle in brain that requires three cell types for its completion. The results of this cycling are two-fold. First, neuronal metabolic water is transported to ECF for its removal from brain. Second, the rate of neuronal activity is coupled with focal hyperemia, providing stimulated neurons with the energy required for transmission of meaningful frequency-encoded messages. In this paper, it is proposed that the tri-cellular metabolism of NAA functions as the "operating system" of the brain, and is essential for normal cognitive and motor activities. Evidence in support of this hypothesis is provided by the outcomes of two human inborn errors in NAA metabolism. PMID:20563610

  4. Response of C2C12 Myoblasts to Hypoxia: The Relative Roles of Glucose and Oxygen in Adaptive Cellular Metabolism

    PubMed Central

    Li, Wei; Hu, Zhen-Fu; Chen, Bin; Ni, Guo-Xin

    2013-01-01

    Background. Oxygen and glucose are two important nutrients for mammalian cell function. In this study, the effect of glucose and oxygen concentrations on C2C12 cellular metabolism was characterized with an emphasis on detecting whether cells show oxygen conformance (OC) in response to hypoxia. Methods. After C2C12 cells being cultured in the levels of glucose at 0.6 mM (LG), 5.6 mM (MG), or 23.3 mM(HG) under normoxic or hypoxic (1% oxygen) condition, cellular oxygen consumption, glucose consumption, lactate production, and metabolic status were determined. Short-term oxygen consumption was measured with a novel oxygen biosensor technique. Longer-term measurements were performed with standard glucose, lactate, and cell metabolism assays. Results. It was found that oxygen depletion in normoxia is dependent on the glucose concentration in the medium. Cellular glucose uptake and lactate production increased significantly in hypoxia than those in normoxia. In hypoxia the cellular response to the level of glucose was different to that in normoxia. The metabolic activities decreased while glucose concentration increased in normoxia, while in hypoxia, metabolic activity was reduced in LG and MG, but unchanged in HG condition. The OC phenomenon was not observed in the present study. Conclusions. Our findings suggested that a combination of low oxygen and low glucose damages the viability of C2C12 cells more seriously than low oxygen alone. In addition, when there is sufficient glucose, C2C12 cells will respond to hypoxia by upregulating anaerobic respiration, as shown by lactate production. PMID:24294605

  5. Holistic design and implementation of pressure actuated cellular structures

    NASA Astrophysics Data System (ADS)

    Gramüller, B.; Köke, H.; Hühne, C.

    2015-12-01

    Providing the possibility to develop energy-efficient, lightweight adaptive components, pressure-actuated cellular structures (PACS) are primarily conceived for aeronautics applications. The realization of shape-variable flaps and even airfoils provides the potential to safe weight, increase aerodynamic efficiency and enhance agility. The herein presented holistic design process points out and describes the necessary steps for designing a real-life PACS structure, from the computation of truss geometry to the manufacturing and assembly. The already published methods for the form finding of PACS are adjusted and extended for the exemplary application of a variable-camber wing. The transfer of the form-finding truss model to a cross-sectional design is discussed. The end cap and sealing concept is described together with the implementation of the integral fluid flow. Conceptual limitations due to the manufacturing and assembly processes are discussed. The method’s efficiency is evaluated by finite element method. In order to verify the underlying methods and summarize the presented work a modular real-life demonstrator is experimentally characterized and validates the numerical investigations.

  6. Alteration of cellular lipids and lipid metabolism markers in RTL-W1 cells exposed to model endocrine disrupters.

    PubMed

    Dimastrogiovanni, Giorgio; Córdoba, Marlon; Navarro, Isabel; Jáuregui, Olga; Porte, Cinta

    2015-08-01

    This work investigates the suitability of the rainbow trout liver cell line (RTL-W1) as an in-vitro model to study the ability of model endocrine disrupters, namely TBT, TPT, 4-NP, BPA and DEHP, to act as metabolic disrupters by altering cellular lipids and markers of lipid metabolism. Among the tested compounds, BPA and DEHP significantly increased the intracellular accumulation of triacylglycerols (TAGs), while all the compounds -apart from TPT-, altered membrane lipids - phosphatidylcholines (PCs) and plasmalogen PCs - indicating a strong interaction of the toxicants with cell membranes and cell signaling. RTL-W1 expressed a number of genes involved in lipid metabolism that were modulated by exposure to BPA, TBT and TPT (up-regulation of FATP1 and FAS) and 4-NP and DEHP (down-regulation of FAS and LPL). Multiple and complex modes of action of these chemicals were observed in RTL-W1 cells, both in terms of expression of genes related to lipid metabolism and alteration of cellular lipids. Although further characterization is needed, this might be a useful model for the detection of chemicals leading to steatosis or other diseases associated with lipid metabolism in fish. PMID:26143618

  7. Combinatorics of feedback in cellular uptake and metabolism of small molecules.

    PubMed

    Krishna, Sandeep; Semsey, Szabolcs; Sneppen, Kim

    2007-12-26

    We analyze the connection between structure and function for regulatory motifs associated with cellular uptake and usage of small molecules. Based on the boolean logic of the feedback we suggest four classes: the socialist, consumer, fashion, and collector motifs. We find that the socialist motif is good for homeostasis of a useful but potentially poisonous molecule, whereas the consumer motif is optimal for nutrition molecules. Accordingly, examples of these motifs are found in, respectively, the iron homeostasis system in various organisms and in the uptake of sugar molecules in bacteria. The remaining two motifs have no obvious analogs in small molecule regulation, but we illustrate their behavior using analogies to fashion and obesity. These extreme motifs could inspire construction of synthetic systems that exhibit bistable, history-dependent states, and homeostasis of flux (rather than concentration). PMID:18093927

  8. Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism.

    PubMed

    Rajpurohit, R; Koch, C J; Tao, Z; Teixeira, C M; Shapiro, I M

    1996-08-01

    In endochondral bone, the growth cartilage is the site of rapid growth. Since the vascular supply to the cartilage is limited, it is widely assumed that cells of the cartilage are hypoxic and that limitations in the oxygen supply regulate the energetic state of the maturing cells. In this report, we evaluate the effects of oxygen tension on chondrocyte energy metabolism, thiol status, and expression of transcription elements, HIF and AP-1. Imposition of an hypoxic environment on cultured chondrocytes caused a proportional increase in glucose utilization and elevated levels of lactate synthesis. Although we observed a statistical increase in the activities of phosphofructokinase, pyruvate kinase, lactate dehydrogenase, and creatine kinase after exposure to lowered oxygen concentrations, the effect was small. The cultured cells exhibited a decreased utilization of glutamine, possibly due to down regulation of mitochondrial function and inhibition of oxidative deamination. With respect to total energy generation, we noted that these cells are quite capable of maintaining the energy charge of the cell at low oxygen tensions. Indeed, no changes in the absolute quantity of adenine nucleotides or the energy charge ratio was observed. Hypoxia caused a decrease in the glutathione content of cultured chondrocytes and a concomitant rise in cell and medium cysteine levels. It is likely that the fall in cell glutathione level is due to decreased synthesis of the tripeptide under reduced oxygen stress and the limited supply of glutamate. The observed rise in cellular and medium cysteine levels probably reflects an increase in the rate of degradation of glutathione and a decrease in synthesis of the peptide. To explore how cells transduce these metabolic effects, gel retardation assays were used to study chondrocyte HIF and AP-1 binding activities. Chondrocyte nuclear preparations bound an HIF-oligonucleotide; however, at low oxygen tensions, no increase in HIF binding was

  9. Multiphoton microscopy can visualize zonal damage and decreased cellular metabolic activity in hepatic ischemia-reperfusion injury in rats

    NASA Astrophysics Data System (ADS)

    Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.

    2011-11-01

    Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.

  10. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function.

    PubMed

    Marguet, Maïté; Bonduelle, Colin; Lecommandoux, Sébastien

    2013-01-21

    The cell is certainly one of the most complex and exciting systems in Nature that scientists are still trying to fully understand. Such a challenge pushes material scientists to seek to reproduce its perfection by building biomimetic materials with high-added value and previously unmatched properties. Thanks to their versatility, their robustness and the current state of polymer chemistry science, we believe polymer-based materials to constitute or represent ideal candidates when addressing the challenge of biomimicry, which defines the focus of this review. The first step consists in mimicking the structure of the cell: its inner compartments, the organelles, with a multicompartmentalized structure, and the rest, i.e. the cytoplasm minus the organelles (mainly cytoskeleton/cytosol) with gels or particular solutions (highly concentrated for example) in one compartment, and finally the combination of both. Achieving this first structural step enables us to considerably widen the gap of possibilities in drug delivery systems. Another powerful property of the cell lies in its metabolic function. The second step is therefore to achieve enzymatic reactions in a compartment, as occurs in the organelles, in a highly controlled, selective and efficient manner. We classify the most exciting polymersome nanoreactors reported in our opinion into two different subsections, depending on their very final concept or purpose of design. We also highlight in a thorough table the experimental sections crucial to such work. Finally, after achieving control over these prerequisites, scientists are able to combine them and push the frontiers of biomimicry further: from cell structure mimics towards a controlled biofunctionality. Such a biomimetic approach in material design and the future research it will stimulate, are believed to bring considerable enrichments to the fields of drug delivery, (bio)sensors, (bio)catalysis and (bio)technology. PMID:23073077

  11. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  12. VDAC2-specific cellular functions and the underlying structure.

    PubMed

    Naghdi, Shamim; Hajnóczky, György

    2016-10-01

    Voltage Dependent Anion-selective Channel 2 (VDAC2) contributes to oxidative metabolism by sharing a role in solute transport across the outer mitochondrial membrane (OMM) with other isoforms of the VDAC family, VDAC1 and VDAC3. Recent studies revealed that VDAC2 also has a distinctive role in mediating sarcoplasmic reticulum to mitochondria local Ca(2+) transport at least in cardiomyocytes, which is unlikely to be explained simply by the expression level of VDAC2. Furthermore, a strictly isoform-dependent VDAC2 function was revealed in the mitochondrial import and OMM-permeabilizing function of pro-apoptotic Bcl-2 family proteins, primarily Bak in many cell types. In addition, emerging evidence indicates a variety of other isoform-specific engagements for VDAC2. Since VDAC isoforms display 75% sequence similarity, the distinctive structure underlying VDAC2-specific functions is an intriguing problem. In this paper we summarize studies of VDAC2 structure and functions, which suggest a fundamental and exclusive role for VDAC2 in health and disease. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:27116927

  13. Extracellular Toxoplasma gondii tachyzoites metabolize and incorporate unnatural sugars into cellular proteins.

    PubMed

    Nazarova, Lidia A; Ochoa, Roxanna J; Jones, Krysten A; Morrissette, Naomi S; Prescher, Jennifer A

    2016-03-01

    Toxoplasma gondii is an obligate intracellular parasite that infects all nucleated cell types in diverse warm-blooded organisms. Many of the surface antigens and effector molecules secreted by the parasite during invasion and intracellular growth are modified by glycans. Glycosylated proteins in the nucleus and cytoplasm have also been reported. Despite their prevalence, the complete inventory and biological significance of glycosylated proteins in Toxoplasma remain unknown. In this study, we aimed to globally profile parasite glycoproteins using a bioorthogonal chemical reporter strategy. This strategy involves the metabolic incorporation of unnatural functional groups (i.e., "chemical reporters") into Toxoplasma glycans, followed by covalent labeling with visual probes or affinity tags. The two-step approach enables the visualization and identification of newly biosynthesized glycoconjugates in the parasite. Using a buffer that mimics intracellular conditions, extracellular Toxoplasma tachyzoites were found to metabolize and incorporate unnatural sugars (equipped with bioorthogonal functional groups) into diverse proteins. Covalent chemistries were used to visualize and retrieve these labeled structures. Subsequent mass spectrometry analysis revealed 89 unique proteins. This survey identified novel proteins as well as previously characterized proteins from lectin affinity analyses. PMID:26687036

  14. MicroRNAs Regulate Cellular ATP Levels by Targeting Mitochondrial Energy Metabolism Genes during C2C12 Myoblast Differentiation

    PubMed Central

    Siengdee, Puntita; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus; Ponsuksili, Siriluck

    2015-01-01

    In our previous study, we identified an miRNA regulatory network involved in energy metabolism in porcine muscle. To better understand the involvement of miRNAs in cellular ATP production and energy metabolism, here we used C2C12 myoblasts, in which ATP levels increase during differentiation, to identify miRNAs modulating these processes. ATP level, miRNA and mRNA microarray expression profiles during C2C12 differentiation into myotubes were assessed. The results suggest 14 miRNAs (miR-423-3p, miR-17, miR-130b, miR-301a/b, miR-345, miR-15a, miR-16a, miR-128, miR-615, miR-1968, miR-1a/b, and miR-194) as cellular ATP regulators targeting genes involved in mitochondrial energy metabolism (Cox4i2, Cox6a2, Ndufb7, Ndufs4, Ndufs5, and Ndufv1) during C2C12 differentiation. Among these, miR-423-3p showed a high inverse correlation with increasing ATP levels. Besides having implications in promoting cell growth and cell cycle progression, its function in cellular ATP regulation is yet unknown. Therefore, miR-423-3p was selected and validated for the function together with its potential target, Cox6a2. Overexpression of miR-423-3p in C2C12 myogenic differentiation lead to decreased cellular ATP level and decreased expression of Cox6a2 compared to the negative control. These results suggest miR-423-3p as a novel regulator of ATP/energy metabolism by targeting Cox6a2. PMID:26010876

  15. Cellular metabolic energy modulation by tangeretin in 7,12-dimethylbenz(a) anthracene-induced breast cancer

    PubMed Central

    Periyasamy, Kuppusamy; Sivabalan, Venkatachalam; Baskaran, Kuppusamy; Kasthuri, Kannayiram; Sakthisekaran, Dhanapal

    2016-01-01

    Abstract Breast cancer is the leading cause of death among women worldwide. Chemoprevention and chemotherapy play beneficial roles in reducing the incidence and mortality of cancer. Epidemiological and experimental studies showed that naturally-occurring antioxidants present in the diet may act as anticancer agents. Identifying the abnormalities of cellular energy metabolism facilitates early detection and management of breast cancer. The present study evaluated the effect of tangeretin on cellular metabolic energy fluxes in 7,12-dimethylbenz(a) anthracene (DMBA)-induced proliferative breast cancer. The results showed that the activities of glycolytic enzymes significantly increased in mammary tissues of DMBA-induced breast cancer bearing rats. The gluconeogenic tricarboxylic acid (TCA) cycle and respiratory chain enzyme activities significantly decreased in breast cancer-bearing rats. In addition, proliferating cell nuclear antigen (PCNA) was highly expressed in breast cancer tissues. However, the activities of glycolytic enzymes were significantly normalized in the tangeretin pre- and post-treated rats and the TCA cycle and respiratory chain enzyme activities were significantly increased in tangeretin treated rats. Furthermore, tangeretin down-regulated PCNA expression on breast cancer-bearing rats. Our study demonstrates that tangeretin specifically regulates cellular metabolic energy fluxes in DMBA-induced breast cancer-bearing rats.

  16. SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions.

    PubMed

    Zhang, Tong; Kraus, W Lee

    2010-08-01

    Sirtuins comprise a family of NAD(+)-dependent protein deacetylases and ADP-ribosyltransferases. Mammalian SIRT1 - a homolog of yeast Sir2, the prototypical member of the sirtuin family - is an important regulator of metabolism, cell differentiation and senescence, stress response, and cancer. As an NAD(+)-dependent enzyme, SIRT1 regulates gene expression programs in response to cellular metabolic status, thereby coordinating metabolic adaptation of the whole organism. Several important mechanisms have emerged for SIRT1-dependent regulation of transcription. First, SIRT1 can modulate chromatin function through direct deacetylation of histones as well as by promoting alterations in the methylation of histones and DNA, leading to the repression of transcription. The latter is accomplished through the recruitment of other nuclear enzymes to chromatin for histone methylation and DNA CpG methylation, suggesting a broader role of SIRT1 in epigenetic regulation. Second, SIRT1 can interact and deacetylate a broad range of transcription factors and coregulators, thereby regulating target gene expression both positively and negatively. Cellular energy state, specifically NAD(+) metabolism, plays a major role in the regulation of SIRT1 activity. Recent studies on the NAD(+) biosynthetic enzymes in the salvage pathway, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase 1 (NMNAT-1), have revealed important functions for these enzymes in SIRT1-dependent transcription regulation. The collective molecular actions of SIRT1 control specific patterns of gene expression that modulate a wide variety of physiological outcomes. PMID:19879981

  17. Cryo-Microscopic Analysis of the Effects of Extra Cellular Proteins on Polycrystalline Ice Structure

    NASA Astrophysics Data System (ADS)

    Brox, T.; Skidmore, M. L.; Christner, B. C.; Achberger, A.

    2010-12-01

    Recent work has demonstrated that microorganisms can occupy the liquid filled inter-crystalline veins in ice and maintain their metabolic activity under these conditions. While these discoveries have increased the extent of the biosphere to include the large continental ice sheets of Antarctica and Greenland as biomes, the habitat of the microorganisms within the inter-crystalline liquid veins is poorly understood. Certain cold tolerant organisms produce extra cellular proteins (i.e., ice-binding proteins) that have the ability to bind to the prism face of an ice crystal and inhibit recrystallization of ice. This phenotype affects the physical ice structure and the liquid vein network, potentially providing ice-inhabiting species a protective mechanism with which to control their habitat. One such microorganism is Chryseobacterium sp. V3519-10, a bacterium isolated from a depth of 3519 m in the Vostok Ice Core. Our investigation is examining the impact of extra cellular proteins from this ice-adapted bacterium on the formation of ice crystals and characterizing the inter-crystalline liquid filled vein network using cryo-microscopy.

  18. Structural and functional characterization of recombinant human cellular retinaldehyde-binding protein.

    PubMed Central

    Crabb, J. W.; Carlson, A.; Chen, Y.; Goldflam, S.; Intres, R.; West, K. A.; Hulmes, J. D.; Kapron, J. T.; Luck, L. A.; Horwitz, J.; Bok, D.

    1998-01-01

    Cellular retinaldehyde-binding protein (CRALBP) is abundant in the retinal pigment epithelium (RPE) and Müller cells of the retina where it is thought to function in retinoid metabolism and visual pigment regeneration. The protein carries 11-cis-retinal and/or 11-cis-retinol as endogenous ligands in the RPE and retina and mutations in human CRALBP that destroy retinoid binding functionality have been linked to autosomal recessive retinitis pigmentosa. CRALBP is also present in brain without endogenous retinoids, suggesting other ligands and physiological roles exist for the protein. Human recombinant cellular retinaldehyde-binding protein (rCRALBP) has been over expressed as non-fusion and fusion proteins in Escherichia coli from pET3a and pET19b vectors, respectively. The recombinant proteins typically constitute 15-20% of the soluble bacterial lysate protein and after purification, yield about 3-8 mg per liter of bacterial culture. Liquid chromatography electrospray mass spectrometry, amino acid analysis, and Edman degradation were used to demonstrate that rCRALBP exhibits the correct primary structure and mass. Circular dichroism, retinoid HPLC, UV-visible absorption spectroscopy, and solution state 19F-NMR were used to characterize the secondary structure and retinoid binding properties of rCRALBP. Human rCRALBP appears virtually identical to bovine retinal CRALBP in terms of secondary structure, thermal stability, and stereoselective retinoid-binding properties. Ligand-dependent conformational changes appear to influence a newly detected difference in the bathochromic shift exhibited by bovine and human CRALBP when complexed with 9-cis-retinal. These recombinant preparations provide valid models for human CRALBP structure-function studies. PMID:9541407

  19. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome.

    PubMed

    Escande, Carlos; Nin, Veronica; Price, Nathan L; Capellini, Verena; Gomes, Ana P; Barbosa, Maria Thereza; O'Neil, Luke; White, Thomas A; Sinclair, David A; Chini, Eduardo N

    2013-04-01

    Metabolic syndrome is a growing health problem worldwide. It is therefore imperative to develop new strategies to treat this pathology. In the past years, the manipulation of NAD(+) metabolism has emerged as a plausible strategy to ameliorate metabolic syndrome. In particular, an increase in cellular NAD(+) levels has beneficial effects, likely because of the activation of sirtuins. Previously, we reported that CD38 is the primary NAD(+)ase in mammals. Moreover, CD38 knockout mice have higher NAD(+) levels and are protected against obesity and metabolic syndrome. Here, we show that CD38 regulates global protein acetylation through changes in NAD(+) levels and sirtuin activity. In addition, we characterize two CD38 inhibitors: quercetin and apigenin. We show that pharmacological inhibition of CD38 results in higher intracellular NAD(+) levels and that treatment of cell cultures with apigenin decreases global acetylation as well as the acetylation of p53 and RelA-p65. Finally, apigenin administration to obese mice increases NAD(+) levels, decreases global protein acetylation, and improves several aspects of glucose and lipid homeostasis. Our results show that CD38 is a novel pharmacological target to treat metabolic diseases via NAD(+)-dependent pathways. PMID:23172919

  20. The in vitro manipulation of carbohydrate metabolism: a new strategy for deciphering the cellular defence mechanisms against nitric oxide attack.

    PubMed Central

    Le Goffe, C; Vallette, G; Jarry, A; Bou-Hanna, C; Laboisse, C L

    1999-01-01

    This study was aimed at examining the effects of manipulating the carbohydrate source of the culture medium on the cellular sensitivity of epithelial cells to an oxidative attack. Our rationale was that substituting galactose for glucose in culture media would remove the protection afforded by glucose utilization in two major metabolic pathways, i.e. anaerobic glycolysis and/or the pentose phosphate pathway (PPP), which builds up cellular reducing power. Indeed, we show that the polarized human colonic epithelial cell line HT29-Cl.16E was sensitive to the deleterious effects of the NO donor PAPANONOate [3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine] only in galactose-containing medium. In such medium NO attack led to cytotoxic and apoptotic cell death, associated with formation of derivatives of NO auto-oxidation (collectively termed NOx) and peroxynitrite, leading to intracellular GSH depletion and nitrotyrosine formation. The addition of 2-deoxyglucose, a non-glycolytic substrate, to galactose-fed cells protected HT29-Cl. 16E cells from NO attack and maintained control GSH levels through its metabolic utilization in the PPP, as shown by (14)CO(2) production from 2-deoxy[1-(14)C]glucose. Therefore, increasing the availability of reducing equivalents without interfering with energy metabolism is able to prevent NO-induced cell injury. Finally, this background provides the conceptual framework for establishing nutritional manipulation of cellular metabolic pathways that could provide new means for (i) deciphering the mechanisms of cell injury by reactive nitrogen species and reactive oxygen species at the whole-cell level and (ii) establishing the hierarchy of intracellular defence mechanisms against these attacks. PMID:10585850

  1. Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat)

    PubMed Central

    Walsh, Catherine J.; Leggett, Stephanie R.; Strohbehn, Kathryn; Pierce, Richard H.; Sleasman, John W.

    2008-01-01

    Harmful algal blooms (HABs) of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat) as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan), respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 – 10 μg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 μg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3. PMID:18728729

  2. Expression of transferrin receptors on mitogen-stimulated human peripheral blood lymphocytes: relation to cellular activation and related metabolic events.

    PubMed Central

    Galbraith, R M; Galbraith, G M

    1981-01-01

    Mitogen-activated normal human peripheral blood lymphocytes bind transferrin to specific membrane receptors. In this study, lymphocytes stimulated with phytohaemagglutinin for 0-66 hr were examined to determine the relation of this phenomenon to cellular activation and related metabolic events. Transferrin receptors were first detected at 20-24 hr. This event was consistently preceded by RNA and protein turnover which commenced during the first 6 hr of culture, whereas initiation of DNA synthesis was detected concurrently with the appearance of receptors or slightly later (24-30 hr). Exposure of cells to inhibitors of RNA and protein synthesis early during culture (at 0 or 24 hr) prevented the expression of transferrin receptors, but also caused generalized metabolic failure, and abrogated cellular activation. In contrast, later addition of these agents at 48 hr did not interfere significantly with the process of activation, but did suppress the terminal increase in receptor-bearing cells observed during the final 18 hr in control cultures lacking inhibitor. After deliberate thermal stripping of receptors from activated cells, the reappearance of membrance binding sites which normally occurred within 30 min, was also blocked by cycloheximide, puromycin and actinomycin D. However, similar inhibition of DNA which was induced by hydroxyurea had much less effect upon both the initial appearance of receptors and their reappearance after ligand-induced depletion. These results demonstrate that the appearance of transferrin receptors upon human lymphocytes is dependent upon cellular activation and requires synthesis of protein and RNA. PMID:6172372

  3. Thermodynamic-based computational profiling of cellular regulatory control in hepatocyte metabolism.

    PubMed

    Beard, Daniel A; Qian, Hong

    2005-03-01

    Thermodynamic-based constraints on biochemical fluxes and concentrations are applied in concert with mass balance of fluxes in glycogenesis and glycogenolysis in a model of hepatic cell metabolism. Constraint-based modeling methods that facilitate predictions of reactant concentrations, reaction potentials, and enzyme activities are introduced to identify putative regulatory and control sites in biological networks by computing the minimal control scheme necessary to switch between metabolic modes. Computational predictions of control sites in glycogenic and glycogenolytic operational modes in the hepatocyte network compare favorably with known regulatory mechanisms. The developed hepatic metabolic model is used to computationally analyze the impairment of glucose production in von Gierke's and Hers' diseases, two metabolic diseases impacting glycogen metabolism. The computational methodology introduced here can be generalized to identify downstream targets of agonists, to systematically probe possible drug targets, and to predict the effects of specific inhibitors (or activators) on integrated network function. PMID:15507536

  4. Cellular oxidative damage is more sensitive to biosynthetic rate than to metabolic rate: A test of the theoretical model on hornworms (Manduca sexta larvae).

    PubMed

    Amunugama, Kaushalya; Jiao, Lihong; Olbricht, Gayla R; Walker, Chance; Huang, Yue-Wern; Nam, Paul K; Hou, Chen

    2016-09-01

    We develop a theoretical model from an energetic viewpoint for unraveling the entangled effects of metabolic and biosynthetic rates on oxidative cellular damage accumulation during animal's growth, and test the model by experiments in hornworms. The theoretical consideration suggests that most of the cellular damages caused by the oxidative metabolism can be repaired by the efficient maintenance mechanisms, if the energy required by repair is unlimited. However, during growth a considerable amount of energy is allocated to the biosynthesis, which entails tradeoffs with the requirements of repair. Thus, the model predicts that cellular damage is more influenced by the biosynthetic rate than the metabolic rate. To test the prediction, we induced broad variations in metabolic and biosynthetic rates in hornworms, and assayed the lipid peroxidation and protein carbonyl. We found that the increase in the cellular damage was mainly caused by the increase in biosynthetic rate, and the variations in metabolic rate had negligible effect. The oxidative stress hypothesis of aging suggests that high metabolism leads to high cellular damage and short lifespan. However, some empirical studies showed that varying biosynthetic rate, rather than metabolic rate, changes animal's lifespan. The conflicts between the empirical evidence and the hypothesis are reconciled by this study. PMID:27296440

  5. The effect of fluid mechanical stress on cellular arachidonic acid metabolism

    NASA Technical Reports Server (NTRS)

    Mcintire, L. V.; Frangos, J. A.; Rhee, B. G.; Eskin, S. G.; Hall, E. R.

    1987-01-01

    The effect of sublytic levels of mechanical perturations of cells on cell metabolism were investigated by analyzing the products of arachidonic acid (used as a marker metabolite) in blood platelets, polymorphonuclear leucocytes, and cultured umbilical-vein endothelial cells after the suspensions of these cells were subjected to a shear stress in a modified viscometer. It is shown that the sublytic levels of mechanical stress stimulated the arachidonic acid metabolism in all these cell types. Possible biological implications of this stress-metabolism coupling are discussed.

  6. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation.

    PubMed

    Su, Xiaodi; Yu, Yingpu; Zhong, Yi; Giannopoulou, Eugenia G; Hu, Xiaoyu; Liu, Hui; Cross, Justin R; Rätsch, Gunnar; Rice, Charles M; Ivashkiv, Lionel B

    2015-08-01

    Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation. PMID:26147685

  7. Differentiation of Peptococcus and Peptostreptococcus by gas-liquid chromatography of cellular fatty acids and metabolic products.

    PubMed Central

    Lambert, M A; Armfield, A Y

    1979-01-01

    Gas-liquid chromatographic (GLC) profiles of cellular fatty acids and metabolic products were useful in identifying strains of Peptococcus saccharolyticus, Peptococcus asaccharolyticus, Peptostreptococcus anaerobius, Peptostreptococcus micros, and Streptococcus intermedius. The GLC results supported the recent taxonomic decision to transfer aerotolerant Peptostreptococcus species to the genus Streptococcus. Because inconsistencies in the results prevented our differentiating Peptococcus prevotii. Peptococcus magnus, and Peptococcus variabilis by GLC, additional strains will have to been examined. These GLC techniques are amenable to routine use; however, for interlaboratory results to be meaningful, the classification and nomenclature of the anaerobic gram-positive cocci should be standardized. PMID:528680

  8. Interface Pattern Selection Criterion for Cellular Structures in Directional Solidification

    NASA Technical Reports Server (NTRS)

    Trivedi, R.; Tewari, S. N.; Kurtze, D.

    1999-01-01

    The aim of this investigation is to establish key scientific concepts that govern the selection of cellular and dendritic patterns during the directional solidification of alloys. We shall first address scientific concepts that are crucial in the selection of interface patterns. Next, the results of ground-based experimental studies in the Al-4.0 wt % Cu system will be described. Both experimental studies and theoretical calculations will be presented to establish the need for microgravity experiments.

  9. Integrative Analysis of Metabolic Models – from Structure to Dynamics

    PubMed Central

    Hartmann, Anja; Schreiber, Falk

    2015-01-01

    The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the context of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM2 – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato. PMID:25674560

  10. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    SciTech Connect

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  11. Involvement of cellular metabolism in age-related LTP modifications in rat hippocampal slices

    PubMed Central

    Drulis-Fajdasz, Dominika; Wójtowicz, Tomasz; Wawrzyniak, Marcin; Wlodarczyk, Jakub; Mozrzymas, Jerzy W.; Rakus, Dariusz

    2015-01-01

    Recent studies emphasized crucial role of astrocytic glycogen metabolism in regulation of synaptic transmission and plasticity in young animals. However, the interplay between age-related synaptic plasticity impairments and changes in energetic metabolism remains obscure. To address this issue, we investigated, in hippocampal slices of young (one month) and aged rats (20-22-months), the impact of glycogen degradation inhibition on LTP, mRNA expression for glycogen metabolism enzymes and morphology of dendritic spines. We show that, whereas in young hippocampi, inhibition of glycogen phosphorolysis disrupts the late phase of LTP in the Schaffer collateral-CA1 pathway, in aged rats, blockade of glycogen phosphorylase tends to enhance it. Gene expression for key energy metabolism enzymes, such as glycogen synthase and phosphorylase and glutamine synthetase showed marked differences between young and aged groups and changes in expression of these enzymes preceded plasticity phenomena. Interestingly, in the aged group, a prominent expression of these enzymes was found also in neurons. Concluding, we show that LTP in the considered pathway is differentially modulated by metabolic processes in young and aging animals, indicating a novel venue of studies aiming at preventing cognitive decline during aging. PMID:26101857

  12. Iterative approach to joint segmentation of cellular structures

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter; Scott, Richard; Ramachandran, Janakiramanan; Liu, Qiuhua; Khan, Faisal; Zeineh, Jack; Donovan, Michael; Fernandez, Gerardo

    2012-02-01

    Accurate segmentation of overlapping nuclei is essential in determining nuclei count and evaluating the sub-cellular localization of protein biomarkers in image Cytometry and Histology. Current cellular segmentation algorithms generally lack fast and reliable methods for disambiguating clumped nuclei. In immuno-fluorescence segmentation, solutions to challenges including nuclei misclassification, irregular boundaries, and under-segmentation require reliable separation of clumped nuclei. This paper presents a fast and accurate algorithm for joint segmentation of cellular cytoplasm and nuclei incorporating procedures for reliably separating overlapping nuclei. The algorithm utilizes a combination of ideas and is a significant improvement on state-of-the-art algorithms for this application. First, an adaptive process that includes top-hat filtering, blob detection and distance transforms estimates the inverse illumination field and corrects for intensity non-uniformity. Minimum-error-thresholding based binarization augmented by statistical stability estimation is applied prior to seed-detection constrained by a distance-map-based scale-selection to identify candidate seeds for nuclei segmentation. The nuclei clustering step also incorporates error estimation based on statistical stability. This enables the algorithm to perform localized error correction. Final steps include artifact removal and reclassification of nuclei objects near the cytoplasm boundary as epithelial or stroma. Evaluation using 48 realistic phantom images with known ground-truth shows overall segmentation accuracy exceeding 96%. It significantly outperformed two state-of-the-art algorithms in clumped nuclei separation. Tests on 926 prostate biopsy images (326 patients) show that the segmentation improvement improves the predictive power of nuclei architecture features based on the minimum spanning tree algorithm. The algorithm has been deployed in a large scale pathology application.

  13. A cellular and metabolic assessment of the thermal stress responses in the endemic gastropod Benedictia limnaeoides ongurensis from Lake Baikal.

    PubMed

    Axenov-Gribanov, Denis V; Bedulina, Daria S; Shatilina, Zhanna M; Lubyaga, Yulia A; Vereshchagina, Kseniya P; Timofeyev, Maxim A

    2014-01-01

    Our objective was to determine if the Lake Baikal endemic gastropod Benedictia limnaeoides ongurensis, which inhabits in stable cold waters expresses a thermal stress response. We hypothesized that the evolution of this species in the stable cold waters of Lake Baikal resulted in a reduction of its thermal stress-response mechanisms at the biochemical and cellular levels. Contrary to our hypothesis, our results show that exposure to a thermal challenge activates the cellular and biochemical mechanisms of thermal resistance, such as heat shock proteins and antioxidative enzymes, and alters energetic metabolism in B. limnaeoides ongurensis. Thermal stress caused the elevation of heat shock protein 70 and the products of anaerobic glycolysis together with the depletion of glucose and phosphagens in the studied species. Thus, a temperature increase activates the complex biochemical system of stress response and alters the energetic metabolism in this endemic Baikal gastropod. It is concluded that the deepwater Lake Baikal endemic gastropod B. limnaeoides ongurensis retains the ability to activate well-developed biochemical stress-response mechanisms when exposed to a thermal challenge. PMID:24076104

  14. Function and expression of a novel rat salt-tolerant protein: evidence of a role in cellular sodium metabolism.

    PubMed

    Tsuji, E; Tsuji, Y; Sasaguri, M; Arakawa, K

    1998-09-01

    Higher dietary salt intake in humans is associated with higher BP, but the BP response to NaCl, so-called salt sensitivity, is heterogeneous among individuals. It has been postulated that modifications in cellular cation metabolism may be related to salt sensitivity in mammalian hypertension. The authors have isolated a novel rat complementary DNA, called salt-tolerant protein (STP), that can functionally complement Saccharomyces cervisiae HAL1, which improves salt tolerance by modulating the cation transport system. On high-salt (8% NaCl) diets, both Dahl salt-sensitive and salt-resistant rats displayed an elevated BP and increased STP mRNA expression. Immunohistochemistry using an anti-rat STP antibody demonstrated the presence of STP immunoreactivity in the proximal tubules. In cells that transiently expressed STP, the intracellular [Na+]/[K+] ratio was higher than that in control cells. STP contains predicted coiled-coil and Src homology 3 domains, and shows a partially high degree of nucleotide identity to human thyroid-hormone receptor interacting protein. These results suggest that STP may play an important role in salt sensitivity through cellular sodium metabolism by mediating signal transduction and a hormone-dependent transcription mechanism. PMID:9727364

  15. Identification of Circular RNAs from the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    PubMed Central

    Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts. PMID:27375638

  16. Identification of Circular RNAs from the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley.

    PubMed

    Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts. PMID:27375638

  17. Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation.

    PubMed

    Avin-Wittenberg, Tamar; Bajdzienko, Krzysztof; Wittenberg, Gal; Alseekh, Saleh; Tohge, Takayuki; Bock, Ralph; Giavalisco, Patrick; Fernie, Alisdair R

    2015-02-01

    Germination and early seedling establishment are developmental stages in which plants face limited nutrient supply as their photosynthesis mechanism is not yet active. For this reason, the plant must mobilize the nutrient reserves provided by the mother plant in order to facilitate growth. Autophagy is a catabolic process enabling the bulk degradation of cellular constituents in the vacuole. The autophagy mechanism is conserved among eukaryotes, and homologs of many autophagy-related (ATG) genes have been found in Arabidopsis thaliana. T-DNA insertion mutants (atg mutants) of these genes display higher sensitivity to various stresses, particularly nutrient starvation. However, the direct impact of autophagy on cellular metabolism has not been well studied. In this work, we used etiolated Arabidopsis seedlings as a model system for carbon starvation. atg mutant seedlings display delayed growth in response to carbon starvation compared with wild-type seedlings. High-throughput metabolomic, lipidomic, and proteomic analyses were performed, as well as extensive flux analyses, in order to decipher the underlying causes of the phenotype. Significant differences between atg mutants and wild-type plants have been demonstrated, suggesting global effects of autophagy on central metabolism during carbon starvation as well as severe energy deprivation, resulting in a morphological phenotype. PMID:25649436

  18. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    SciTech Connect

    Welin, Martin; Nordlund, Paer

    2010-05-21

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  19. Adaptive cellular structures and devices with internal features for enhanced structural performance

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Michael Eugene

    This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement

  20. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles.

    PubMed

    Hu, Xiangang; Ouyang, Shaohu; Mu, Li; An, Jing; Zhou, Qixing

    2015-09-15

    Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses. PMID:26295980

  1. Mammalian Gravity Receptors: Structure and Metabolism

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    1985-01-01

    Calcium metabolism in mammalian gravity receptors is examined. To accomplish this objective it is necessary to study both the mineral deposits of the receptors, the otoconia, and the sensory areas themselves, the saccular and utricular maculas. The main focus was to elucidate the natures of the organic and inorganic phases of the crystalline masses, first in rat otoconia but more recently in otoliths and otoconia of a comparative series of vertebrates. Some of the ultrastructural findings in rat maculas, however, have prompted a more thorough study of the organization of the hair cells and innervation patterns in graviceptors.

  2. Formation of ordered cellular structures in suspension via label-free negative magnetophoresis

    PubMed Central

    Krebs, Melissa D.; Erb, Randall M.; Yellen, Benjamin B.; Samanta, Bappaditya; Bajaj, Avinash; Rotello, Vincent M.; Alsberg, Eben

    2009-01-01

    The creation of ordered cellular structures is important for tissue engineering research. Here we present a novel strategy for the assembly of cells into linear arrangements by negative magnetophoresis using inert, cytocompatible magnetic nanoparticles. In this approach, magnetic nanoparticles dictate the cellular assembly without relying on cell binding or uptake. The linear cell structures are stable and can be further cultured without the magnetic field or nanoparticles, making this an attractive tool for tissue engineering. PMID:19326920

  3. STAT3-Mediated Metabolic Reprograming in Cellular Transformation and Implications for Drug Resistance

    PubMed Central

    Poli, Valeria; Camporeale, Annalisa

    2015-01-01

    Signal transducer and activator of transcription (STAT)3 mediates the signaling downstream of cytokine and growth factor receptors, regulating the expression of target genes. It is constitutively phosphorylated on tyrosine (Y-P) in many tumors, where its transcriptional activity can induce a metabolic switch toward aerobic glycolysis and down-regulate mitochondrial activity, a prominent metabolic feature of most cancer cells, correlating with reduced production of ROS, delayed senescence, and protection from apoptosis. STAT3 can, however, also localize to mitochondria, where its serine-phosphorylated (S-P) form preserves mitochondrial oxidative phosphorylation and controls the opening of the mitochondrial permeability transition pore, also promoting survival and resistance to apoptosis in response to specific signals/oncogenes such as RAS. Thus, downstream of different signals, both nuclear, Y-P STAT3, and mitochondrial, S-P STAT3, can act by promoting cell survival and reducing ROS production. Here, we discuss these properties in the light of potential connections between STAT3-driven alterations of mitochondrial metabolism and the development of drug resistance in cancer patients. PMID:26106584

  4. ABCC6- a new player in cellular cholesterol and lipoprotein metabolism?

    PubMed Central

    2014-01-01

    Background Dysregulations in cholesterol and lipid metabolism have been linked to human diseases like hypercholesterolemia, atherosclerosis or the metabolic syndrome. Many ABC transporters are involved in trafficking of metabolites derived from these pathways. Pseudoxanthoma elasticum (PXE), an autosomal-recessive disease caused by ABCC6 mutations, is characterized by atherogenesis and soft tissue calcification. Methods In this study we investigated the regulation of cholesterol biosynthesis in human dermal fibroblasts from PXE patients and healthy controls. Results Gene expression analysis of 84 targets indicated dysregulations in cholesterol metabolism in PXE fibroblasts. Transcript levels of ABCC6 were strongly increased in lipoprotein-deficient serum (LPDS) and under serum starvation in healthy controls. For the first time, increased HMG CoA reductase activities were found in PXE fibroblasts. We further observed strongly elevated transcript and protein levels for the proprotein convertase subtilisin/kexin type 9 (PCSK9), as well as a significant reduction in APOE mRNA expression in PXE. Conclusion Increased cholesterol biosynthesis, elevated PCSK9 levels and reduced APOE mRNA expression newly found in PXE fibroblasts could enforce atherogenesis and cardiovascular risk in PXE patients. Moreover, the increase in ABCC6 expression accompanied by the induction of cholesterol biosynthesis supposes a functional role for ABCC6 in human lipoprotein and cholesterol homeostasis. PMID:25064003

  5. Effects of calmodulin inhibitors on the cellular metabolism of /sup 45/Ca and /sup 210/Pb

    SciTech Connect

    Pounds, J.G.; Nye, A.C.

    1987-01-01

    Altered Ca/sup + +/ homeostasis may result from the direct inhibition of calmodulin-dependent or -independent transport processes. Changes in cell function not directly related to the transport of Ca, e.g., uncoupling of oxidative phosphorylation or altered membrane permeability also disrupt cell calcium metabolism. Thus, the effects of the calmodulin inhibitor W-13 on cell Pb/sup + +/ metabolism may be due to its direct effects on Pb/sup + +/ transporting Ca/sup + +/ pumps, or indirectly as a result of changes in Ca/sup + +/ homeostasis. Direct comparison of the effects of W-13 on the metabolism of Pb and Ca is impaired by differences in the kinetic distribution and behavior of Pb and Ca. A further complication is that the calmodulin-dependent processes are most active during periods of elevated intracellular Ca/sup + +/. The preliminary experiments reported here were conducted in unstimulated cells which have a low resting level of cytosolic Ca/sup + +/. Therefore, W-13 induced alterations in cell Ca/sup + +/ and Pb/sup + +/ may not reflect the changes which could occur in stimulated cells. 1 ref., 1 fig.

  6. Functional and Structural Mimicry of Cellular Protein Kinase A Anchoring Proteins by a Viral Oncoprotein

    PubMed Central

    King, Cason R.; Cohen, Michael J.; Fonseca, Gregory J.; Dirk, Brennan S.; Dikeakos, Jimmy D.; Mymryk, Joe S.

    2016-01-01

    The oncoproteins of the small DNA tumor viruses interact with a plethora of cellular regulators to commandeer control of the infected cell. During infection, adenovirus E1A deregulates cAMP signalling and repurposes it for activation of viral gene expression. We show that E1A structurally and functionally mimics a cellular A-kinase anchoring protein (AKAP). E1A interacts with and relocalizes protein kinase A (PKA) to the nucleus, likely to virus replication centres, via an interaction with the regulatory subunits of PKA. Binding to PKA requires the N-terminus of E1A, which bears striking similarity to the amphipathic α-helical domain present in cellular AKAPs. E1A also targets the same docking-dimerization domain of PKA normally bound by cellular AKAPs. In addition, the AKAP like motif within E1A could restore PKA interaction to a cellular AKAP in which its normal interaction motif was deleted. During infection, E1A successfully competes with endogenous cellular AKAPs for PKA interaction. E1A’s role as a viral AKAP contributes to viral transcription, protein expression and progeny production. These data establish HAdV E1A as the first known viral AKAP. This represents a unique example of viral subversion of a crucial cellular regulatory pathway via structural mimicry of the PKA interaction domain of cellular AKAPs. PMID:27137912

  7. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  8. Biomimetic cellular metals-using hierarchical structuring for energy absorption.

    PubMed

    Bührig-Polaczek, A; Fleck, C; Speck, T; Schüler, P; Fischer, S F; Caliaro, M; Thielen, M

    2016-01-01

    Fruit walls as well as nut and seed shells typically perform a multitude of functions. One of the biologically most important functions consists in the direct or indirect protection of the seeds from mechanical damage or other negative environmental influences. This qualifies such biological structures as role models for the development of new materials and components that protect commodities and/or persons from damage caused for example by impacts due to rough handling or crashes. We were able to show how the mechanical properties of metal foam based components can be improved by altering their structure on various hierarchical levels inspired by features and principles important for the impact and/or puncture resistance of the biological role models, rather than by tuning the properties of the bulk material. For this various investigation methods have been established which combine mechanical testing with different imaging methods, as well as with in situ and ex situ mechanical testing methods. Different structural hierarchies especially important for the mechanical deformation and failure behaviour of the biological role models, pomelo fruit (Citrus maxima) and Macadamia integrifolia, were identified. They were abstracted and transferred into corresponding structural principles and thus hierarchically structured bio-inspired metal foams have been designed. A production route for metal based bio-inspired structures by investment casting was successfully established. This allows the production of complex and reliable structures, by implementing and combining different hierarchical structural elements found in the biological concept generators, such as strut design and integration of fibres, as well as by minimising casting defects. To evaluate the structural effects, similar investigation methods and mechanical tests were applied to both the biological role models and the metallic foams. As a result an even deeper quantitative understanding of the form-structure

  9. Flux Balance Analysis of Plant Metabolism: The Effect of Biomass Composition and Model Structure on Model Predictions

    PubMed Central

    Yuan, Huili; Cheung, C. Y. Maurice; Hilbers, Peter A. J.; van Riel, Natal A. W.

    2016-01-01

    The biomass composition represented in constraint-based metabolic models is a key component for predicting cellular metabolism using flux balance analysis (FBA). Despite major advances in analytical technologies, it is often challenging to obtain a detailed composition of all major biomass components experimentally. Studies examining the influence of the biomass composition on the predictions of metabolic models have so far mostly been done on models of microorganisms. Little is known about the impact of varying biomass composition on flux prediction in FBA models of plants, whose metabolism is very versatile and complex because of the presence of multiple subcellular compartments. Also, the published metabolic models of plants differ in size and complexity. In this study, we examined the sensitivity of the predicted fluxes of plant metabolic models to biomass composition and model structure. These questions were addressed by evaluating the sensitivity of predictions of growth rates and central carbon metabolic fluxes to varying biomass compositions in three different genome-/large-scale metabolic models of Arabidopsis thaliana. Our results showed that fluxes through the central carbon metabolism were robust to changes in biomass composition. Nevertheless, comparisons between the predictions from three models using identical modeling constraints and objective function showed that model predictions were sensitive to the structure of the models, highlighting large discrepancies between the published models. PMID:27200014

  10. Electrospun cellular microenvironments: Understanding controlled release and scaffold structure.

    PubMed

    Szentivanyi, Andreas; Chakradeo, Tanmay; Zernetsch, Holger; Glasmacher, Birgit

    2011-04-30

    Electrospinning is a versatile technique in tissue engineering for the production of scaffolds. To guide tissue development, scaffolds must provide specific biochemical, structural and mechanical cues to cells and deliver them in a controlled fashion over time. Electrospun scaffold design thus includes aspects of both controlled release and structural cues. Controlled multicomponent and multiphasic drug delivery can be achieved by the careful application and combination of novel electrospinning techniques, i.e., emulsion and co-axial electrospinning. Drug distribution and polymer properties influence the resulting release kinetics. Pore size is far more relevant as a structural parameter than previously recognized. It enables cell proliferation and ingrowth, whereas fiber diameter predominantly influences cell fate. Both parameters can be exploited by combining multiple fiber types in the form of multifiber and multilayer scaffolds. Such scaffolds are required to reproduce more complex tissue structures. PMID:21145932

  11. Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles.

    PubMed

    Gerasimaitė, Rūta; Mayer, Andreas

    2016-02-01

    Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research. PMID:26862210

  12. Metabolism, Energetics, and Lipid Biology in the Podocyte – Cellular Cholesterol-Mediated Glomerular Injury

    PubMed Central

    Merscher, Sandra; Pedigo, Christopher E.; Mendez, Armando J.

    2014-01-01

    Chronic kidney disease (CKD) is associated with a high risk of death. Dyslipidemia is commonly observed in patients with CKD and is accompanied by a decrease in plasma high-density lipoprotein, and an increase in plasma triglyceride-rich lipoproteins and oxidized lipids. The observation that statins may decrease albuminuria but do not stop the progression of CKD indicates that pathways other than the cholesterol synthesis contribute to cholesterol accumulation in the kidneys of patients with CKD. Recently, it has become clear that increased lipid influx and impaired reverse cholesterol transport can promote glomerulosclerosis, and tubulointerstitial damage. Lipid-rafts are cholesterol-rich membrane domains with important functions in regulating membrane fluidity, membrane protein trafficking, and in the assembly of signaling molecules. In podocytes, which are specialized cells of the glomerulus, they contribute to the spatial organization of the slit diaphragm (SD) under physiological and pathological conditions. The discovery that podocyte-specific proteins such as podocin can bind and recruit cholesterol contributing to the formation of the SD underlines the importance of cholesterol homeostasis in podocytes and suggests cholesterol as an important regulator in the development of proteinuric kidney disease. Cellular cholesterol accumulation due to increased synthesis, influx, or decreased efflux is an emerging concept in podocyte biology. This review will focus on the role of cellular cholesterol accumulation in the pathogenesis of kidney diseases with a focus on glomerular diseases. PMID:25352833

  13. Minkowski tensor shape analysis of cellular, granular and porous structures.

    PubMed

    Schröder-Turk, G E; Mickel, W; Kapfer, S C; Klatt, M A; Schaller, F M; Hoffmann, M J F; Kleppmann, N; Armstrong, P; Inayat, A; Hug, D; Reichelsdorfer, M; Peukert, W; Schwieger, W; Mecke, K

    2011-06-17

    Predicting physical properties of materials with spatially complex structures is one of the most challenging problems in material science. One key to a better understanding of such materials is the geometric characterization of their spatial structure. Minkowski tensors are tensorial shape indices that allow quantitative characterization of the anisotropy of complex materials and are particularly well suited for developing structure-property relationships for tensor-valued or orientation-dependent physical properties. They are fundamental shape indices, in some sense being the simplest generalization of the concepts of volume, surface and integral curvatures to tensor-valued quantities. Minkowski tensors are based on a solid mathematical foundation provided by integral and stochastic geometry, and are endowed with strong robustness and completeness theorems. The versatile definition of Minkowski tensors applies widely to different types of morphologies, including ordered and disordered structures. Fast linear-time algorithms are available for their computation. This article provides a practical overview of the different uses of Minkowski tensors to extract quantitative physically-relevant spatial structure information from experimental and simulated data, both in 2D and 3D. Applications are presented that quantify (a) alignment of co-polymer films by an electric field imaged by surface force microscopy; (b) local cell anisotropy of spherical bead pack models for granular matter and of closed-cell liquid foam models; (c) surface orientation in open-cell solid foams studied by X-ray tomography; and (d) defect densities and locations in molecular dynamics simulations of crystalline copper. PMID:21681830

  14. Targeting Cellular Metabolism Chemosensitizes the Doxorubicin-Resistant Human Breast Adenocarcinoma Cells.

    PubMed

    Ma, Shulan; Jia, Rongfei; Li, Dongju; Shen, Bo

    2015-01-01

    Metabolic energy preferentially produced by glycolysis was an advantageous metabolic phenotype of cancer cells. It is also an essential contributor to the progression of multidrug resistance in cancer cells. By developing human breast cancer MCF-7 cells resistant to doxorubicin (DOX) (MCF-7/MDR cells), the effects and mechanisms of 2-deoxy-D-glucose (2DG), a glucose analogue, on reversing multidrug resistance were investigated. 2DG significantly inhibited the viability of MCF-7/MDR cells and enhanced DOX-induced apoptosis by upregulating protein expression of AMPKα, P53, and caspase-3. The study demonstrated that energy restriction induced by 2DG was relevant to the synergistic effect of 2DG and DOX. The proteins of multidrug gene (the MDR-related protein, MRP1) and P-glycoprotein (P-gp) in MCF-7/MDR cells were downregulated after exposure to 2DG, accompanied with the suppression of the activity of ATP-dependent drug-efflux pump and transmembrane transporter, increasing the intracellular accumulation of DOX to reverse the chemoresistance in multidrug cancer cells. PMID:26558272

  15. Computational evaluation of cellular metabolic costs successfully predicts genes whose expression is deleterious

    PubMed Central

    Wagner, Allon; Zarecki, Raphy; Reshef, Leah; Gochev, Camelia; Sorek, Rotem; Gophna, Uri; Ruppin, Eytan

    2013-01-01

    Gene suppression and overexpression are both fundamental tools in linking genotype to phenotype in model organisms. Computational methods have proven invaluable in studying and predicting the deleterious effects of gene deletions, and yet parallel computational methods for overexpression are still lacking. Here, we present Expression-Dependent Gene Effects (EDGE), an in silico method that can predict the deleterious effects resulting from overexpression of either native or foreign metabolic genes. We first test and validate EDGE’s predictive power in bacteria through a combination of small-scale growth experiments that we performed and analysis of extant large-scale datasets. Second, a broad cross-species analysis, ranging from microorganisms to multiple plant and human tissues, shows that genes that EDGE predicts to be deleterious when overexpressed are indeed typically down-regulated. This reflects a universal selection force keeping the expression of potentially deleterious genes in check. Third, EDGE-based analysis shows that cancer genetic reprogramming specifically suppresses genes whose overexpression impedes proliferation. The magnitude of this suppression is large enough to enable an almost perfect distinction between normal and cancerous tissues based solely on EDGE results. We expect EDGE to advance our understanding of human pathologies associated with up-regulation of particular transcripts and to facilitate the utilization of gene overexpression in metabolic engineering. PMID:24198337

  16. Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes?

    PubMed

    Nehlig, Astrid; Coles, Jonathan A

    2007-09-01

    Most techniques presently available to measure cerebral activity in humans and animals, i.e. positron emission tomography (PET), autoradiography, and functional magnetic resonance imaging, do not record the activity of neurons directly. Furthermore, they do not allow the investigator to discriminate which cell type is using glucose, the predominant fuel provided to the brain by the blood. Here, we review the experimental approaches aimed at determining the percentage of glucose that is taken up by neurons and by astrocytes. This review is integrated in an overview of the current concepts on compartmentation and substrate trafficking between astrocytes and neurons. In the brain in vivo, about half of the glucose leaving the capillaries crosses the extracellular space and directly enters neurons. The other half is taken up by astrocytes. Calculations suggest that neurons consume more energy than do astrocytes, implying that astrocytes transfer an intermediate substrate to neurons. Experimental approaches in vitro on the honeybee drone retina and on the isolated vagus nerve also point to a continuous transfer of intermediate metabolites from glial cells to neurons in these tissues. Solid direct evidence of such transfer in the mammalian brain in vivo is still lacking. PET using [(18)F]fluorodeoxyglucose reflects in part glucose uptake by astrocytes but does not indicate to which step the glucose taken up is metabolized within this cell type. Finally, the sequence of metabolic changes occurring during a transient increase of electrical activity in specific regions of the brain remains to be clarified. PMID:17659529

  17. Protection effect of nicotinamide on cardiomyoblast hypoxia/re-oxygenation injury: study of cellular mitochondrial metabolism.

    PubMed

    Wang, He; Liang, Xiaoping; Luo, Guoan; Ding, Mingyu; Liang, Qionglin

    2016-06-21

    Hypoxia/re-oxygenation (H/R) injury is an important cause of heart failure and results in a critical metabolism dysfunction. In this paper, the cytoprotective effect of the nicotinamide adenine dinucleotide (NAD) precursor nicotinamide was evaluated using an in vitro model of cardiac H/R injury. Nicotinamide (0-20 mM) was applied to the myoblast cell line H9c2 which was subjected to hypoxia (12, 24, 36 h) followed by a re-oxygenation process (0, 4, 8, 12 h). Cell viability was measured, and mitochondrial metabolites were extracted and then measured by HPLC/MS/MS. The present study showed that nicotinamide could down-regulate the NADH/NAD ratio and then maintain the NAD-dependent metabolism processes. Furthermore, an aberrant decrease of fumarate levels and an increase of succinate levels were observed in the nicotinamide group, which was demonstrated to be caused by nicotinamide-induced succinate dehydrogenase (SDH) inhibition. These results suggest that nicotinamide exerts a protective effect on cardiomyoblasts against H/R-induced injury through both NADH/NAD regulation and reduction of reactive oxygen species generation via SDH inhibition. PMID:27156848

  18. Topology optimization of adaptive fluid-actuated cellular structures with arbitrary polygonal motor cells

    NASA Astrophysics Data System (ADS)

    Lv, Jun; Tang, Liang; Li, Wenbo; Liu, Lei; Zhang, Hongwu

    2016-05-01

    This paper mainly focuses on the fast and efficient design method for plant bioinspired fluidic cellular materials and structures composed of polygonal motor cells. Here we developed a novel structural optimization method with arbitrary polygonal coarse-grid elements based on multiscale finite element frameworks. The fluidic cellular structures are meshed with irregular polygonal coarse-grid elements according to their natural size and the shape of the imbedded motor cells. The multiscale base functions of solid displacement and hydraulic pressure are then constructed to bring the small-scale information of the irregular motor cells to the large-scale simulations on the polygonal coarse-grid elements. On this basis, a new topology optimization method based on the resulting polygonal coarse-grid elements is proposed to determine the optimal distributions or number of motor cells in the smart cellular structures. Three types of optimization problems are solved according to the usages of the fluidic cellular structures. Firstly, the proposed optimization method is utilized to minimize the system compliance of the load-bearing fluidic cellular structures. Second, the method is further extended to design biomimetic compliant actuators of the fluidic cellular materials due to the fact that non-uniform volume expansions of fluid in the cells can induce elastic action. Third, the optimization problem focuses on the weight minimization of the cellular structure under the constraints for the compliance of the whole system. Several representative examples are investigated to validate the effectiveness of the proposed polygon-based topology optimization method of the smart materials.

  19. Flavoprotein imaging in the cerebellar cortex in vivo: cellular and metabolic basis and insights into cerebellar function

    NASA Astrophysics Data System (ADS)

    Gao, Wangcai; Chen, Gang; Ebner, Timothy J.

    2009-02-01

    Flavoprotein autofluorescence is an activity dependent intrinsic signal. Flavoproteins are involved in the electron transport chain and change their fluorescence according to the cellular redox state. We have been using flavoprotein autofluorescence in the cerebellum to examine properties of cerebellar circuits. Studies have also focused on understanding the cellular and metabolic origins of this intrinsic optical signal. Parallel fiber stimulation evokes a beamlike response intersected by bands of decreased fluorescence. The beam response is biphasic, with an early fluorescence increase (light phase) followed by a slower decrease (dark phase). We show this signal originates from flavoproteins as determined by its wavelength selectivity and sensitivity to blockers of the electron transport chain. Selectively blocking glutamate receptors abolished the on-beam light phase with the dark phase remaining intact. This demonstrates that the light phase is due to postsynaptic neuronal activation and suggests the dark phase is primarily due to glial activation. The bands of reduced fluorescence intersecting the beam are primarily neuronal in origin, mediated by GABAergic transmission, and due to the inhibitory action of molecular layer interneurons on Purkinje cells and the interneurons themselves. This parasagittally organized molecular layer inhibition differentially modulates the spatial pattern of cerebellar cortical activity. Flavoprotein imaging also reveals the functional architectures underlying the responses to inferior olive and peripheral whisker pad stimulation. Therefore, flavoprotein autofluorescence imaging is providing new insights into cerebellar cortical function and neurometabolic coupling.

  20. Alterations in cellular energy metabolism associated with the antiproliferative effects of the ATM inhibitor KU-55933 and with metformin.

    PubMed

    Zakikhani, Mahvash; Bazile, Miguel; Hashemi, Sina; Javeshghani, Shiva; Avizonis, Daina; St Pierre, Julie; Pollak, Michael N

    2012-01-01

    KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM), an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT), we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation. PMID:23185347

  1. Alterations in Cellular Energy Metabolism Associated with the Antiproliferative Effects of the ATM Inhibitor KU-55933 and with Metformin

    PubMed Central

    Zakikhani, Mahvash; Bazile, Miguel; Hashemi, Sina; Javeshghani, Shiva; Avizonis, Daina; Pierre, Julie St; Pollak, Michael N.

    2012-01-01

    KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM), an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT), we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation. PMID:23185347

  2. Structural Basis of Cargo Recognition by Unconventional Myosins in Cellular Trafficking.

    PubMed

    Li, Jianchao; Lu, Qing; Zhang, Mingjie

    2016-08-01

    Unconventional myosins are a superfamily of actin-based molecular motors playing diverse roles including cellular trafficking, mechanical supports, force sensing and transmission, etc. The variable neck and tail domains of unconventional myosins function to bind to specific cargoes including proteins and lipid vesicles and thus are largely responsible for the diverse cellular functions of myosins in vivo. In addition, the tail regions, together with their cognate cargoes, can regulate activities of the motor heads. This review outlines the advances made in recent years on cargo recognition and cargo binding-induced regulation of the activity of several unconventional myosins including myosin-I, V, VI and X in cellular trafficking. We approach this topic by describing a series of high-resolution structures of the neck and tail domains of these unconventional myosins either alone or in complex with their specific cargoes, and by discussing potential implications of these structural studies on cellular trafficking of these myosin motors. PMID:26842936

  3. Restriction on an Energy-Dense Diet Improves Markers of Metabolic Health and Cellular Aging in Mice Through Decreasing Hepatic mTOR Activity

    PubMed Central

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald

    2015-01-01

    Abstract Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum–fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5′-adenosine monophosphate–activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation. PMID:25405871

  4. Alterations of circulating lymphoid committed progenitor cellular metabolism after allogeneic stem cell transplantation in humans.

    PubMed

    Glauzy, Salomé; Peffault de Latour, Régis; André-Schmutz, Isabelle; Lachuer, Joël; Servais, Sophie; Socié, Gérard; Clave, Emmanuel; Toubert, Antoine

    2016-09-01

    Lymphoid-committed CD34(+)lin(-)CD10(+)CD24(-) progenitors undergo a rebound at month 3 after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the absence of acute graft-versus-host disease (aGVHD). Here, we analyzed transcriptional programs of cell-sorted circulating lymphoid-committed progenitors and CD34(+)Lin(-)CD10(-) nonlymphoid progenitors in 11 allo-HSCT patients who had (n = 5) or had not (n = 6) developed grade 2 or 3 aGVHD and in 7 age-matched healthy donors. Major upregulated pathways include protein synthesis, energy production, cell cycle regulation, and cytoskeleton organization. Notably, genes from protein biogenesis, translation machinery, and cell cycle (CDK6) were overexpressed in progenitors from patients in the absence of aGVHD compared with healthy donors and patients affected by aGVHD. Expression of many genes from the mitochondrial oxidative phosphorylation metabolic pathway leading to ATP production were more specifically increased in lymphoid-committed progenitors in the absence of aGVHD. This was also the case for genes involved in cell mobilization such as those regulating Rho GTPase activity. In all, we found that circulating lymphoid-committed progenitors undergo profound changes in metabolism, favoring cell proliferation, energy production, and cell mobilization after allo-HSCT in humans. These mechanisms are abolished in the case of aGVHD or its treatment, indicating a persistent cell-intrinsic defect after exit from the bone marrow. PMID:27321893

  5. Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation

    PubMed Central

    Martelli, Alain; Puccio, Hélène

    2014-01-01

    Friedreich ataxia (FRDA) is the most common recessive ataxia in the Caucasian population and is characterized by a mixed spinocerebellar and sensory ataxia frequently associating cardiomyopathy. The disease results from decreased expression of the FXN gene coding for the mitochondrial protein frataxin. Early histological and biochemical study of the pathophysiology in patient's samples revealed that dysregulation of iron metabolism is a key feature of the disease, mainly characterized by mitochondrial iron accumulation and by decreased activity of iron-sulfur cluster enzymes. In the recent past years, considerable progress in understanding the function of frataxin has been provided through cellular and biochemical approaches, pointing to the primary role of frataxin in iron-sulfur cluster biogenesis. However, why and how the impact of frataxin deficiency on this essential biosynthetic pathway leads to mitochondrial iron accumulation is still poorly understood. Herein, we review data on both the primary function of frataxin and the nature of the iron metabolism dysregulation in FRDA. To date, the pathophysiological implication of the mitochondrial iron overload in FRDA remains to be clarified. PMID:24917819

  6. Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics

    PubMed Central

    2014-01-01

    Background Cellular metabolism is highly dynamic and continuously adjusts to the physiological program of the cell. The regulation of metabolism appears at all biological levels: (post-) transcriptional, (post-) translational, and allosteric. This regulatory information is expressed in the metabolome, but in a complex manner. To decode such complex information, new methods are needed in order to facilitate dynamic metabolic characterization at high resolution. Results Here, we describe pulsed stable isotope-resolved metabolomics (pSIRM) as a tool for the dynamic metabolic characterization of cellular metabolism. We have adapted gas chromatography-coupled mass spectrometric methods for metabolomic profiling and stable isotope-resolved metabolomics. In addition, we have improved robustness and reproducibility and implemented a strategy for the absolute quantification of metabolites. Conclusions By way of examples, we have applied this methodology to characterize central carbon metabolism of a panel of cancer cell lines and to determine the mode of metabolic inhibition of glycolytic inhibitors in times ranging from minutes to hours. Using pSIRM, we observed that 2-deoxyglucose is a metabolic inhibitor, but does not directly act on the glycolytic cascade. PMID:25035808

  7. Changes in the expression of the human adenine nucleotide translocase isoforms condition cellular metabolic/proliferative status

    PubMed Central

    Mampel, Teresa; Viñas, Octavi

    2016-01-01

    Human cells express four mitochondrial adenine nucleotide translocase (hANT) isoforms that are tissue-specific and developmentally regulated. hANT1 is mainly expressed in terminally differentiated muscle cells; hANT2 is growth-regulated and is upregulated in highly glycolytic and proliferative cells; and hANT3 is considered to be ubiquitous and non-specifically regulated. Here, we studied how the expression of hANT isoforms is regulated by proliferation and in response to metabolic stimuli, and examined the metabolic consequences of their silencing and overexpression. In HeLa and HepG2 cells, expression of hANT3 was upregulated by shifting metabolism towards oxidation or by slowed growth associated with contact inhibition or growth-factor deprivation, indicating that hANT3 expression is highly regulated. Under these conditions, changes in hANT2 mRNA expression were not observed in either HeLa or HepG2 cells, whereas in SGBS preadipocytes (which, unlike HeLa and HepG2 cells, are growth-arrest-sensitive cells), hANT2 mRNA levels decreased. Additionally, overexpression of hANT2 promoted cell growth and glycolysis, whereas silencing of hANT3 decreased cellular ATP levels, limited cell growth and induced a stress-like response. Thus, cancer cells require both hANT2 and hANT3, depending on their proliferation status: hANT2 when proliferation rates are high, and hANT3 when proliferation slows. PMID:26842067

  8. Identification of dually acylated proteins from complementary DNA resources by cell-free and cellular metabolic labeling.

    PubMed

    Moriya, Koko; Kimoto, Mayumi; Matsuzaki, Kanako; Kiwado, Aya; Takamitsu, Emi; Utsumi, Toshihiko

    2016-10-15

    To establish a strategy to identify dually fatty acylated proteins from cDNA resources, seven N-myristoylated proteins with cysteine (Cys) residues within the 10 N-terminal residues were selected as potential candidates among 27 N-myristoylated proteins identified from a model human cDNA resource. Seven proteins C-terminally tagged with FLAG tag or EGFP were generated and their susceptibility to protein N-myristoylation and S-palmitoylation were evaluated by metabolic labeling with [(3)H]myristic acid or [(3)H]palmitic acid either in an insect cell-free protein synthesis system or in transfected mammalian cells. As a result, EEPD1, one of five proteins (RFTN1, EEPD1, GNAI1, PDE2A, RNF11) found to be dually acylated, was shown to be a novel dually fatty acylated protein. Metabolic labeling experiments using G2A and C7S mutants of EEPD1-EGFP revealed that the palmitoylation site of EEPD1 is Cys at position 7. Analysis of the intracellular localization of EEPD1 C-terminally tagged with FLAG tag or EGFP and its G2A and C7S mutants revealed that the dual acylation directs EEPD1 to localize to the plasma membrane. Thus, dually fatty acylated proteins can be identified from cDNA resources by cell-free and cellular metabolic labeling of N-myristoylated proteins with Cys residue(s) close to the N-myristoylated N-terminus. PMID:27480498

  9. Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis.

    PubMed

    Müller, Margit S; Fox, Rebecca; Schousboe, Arne; Waagepetersen, Helle S; Bak, Lasse K

    2014-04-01

    Astrocytic glycogen, the only storage form of glucose in the brain, has been shown to play a fundamental role in supporting learning and memory, an effect achieved by providing metabolic support for neurons. We have examined the interplay between glycogenolysis and the bioenergetics of astrocytic Ca(2+) homeostasis, by analyzing interdependency of glycogen and store-operated Ca(2+) entry (SOCE), a mechanism in cellular signaling that maintains high endoplasmatic reticulum (ER) Ca(2+) concentration and thus provides the basis for store-dependent Ca(2+) signaling. We stimulated SOCE in primary cultures of murine cerebellar and cortical astrocytes, and determined glycogen content to investigate the effects of SOCE on glycogen metabolism. By blocking glycogenolysis, we tested energetic dependency of SOCE-related Ca(2+) dynamics on glycogenolytic ATP. Our results show that SOCE triggers astrocytic glycogenolysis. Upon inhibition of adenylate cyclase with 2',5'-dideoxyadenosine, glycogen content was no longer significantly different from that in unstimulated control cells, indicating that SOCE triggers astrocytic glycogenolysis in a cAMP-dependent manner. When glycogenolysis was inhibited in cortical astrocytes by 1,4-dideoxy-1,4-imino-D-arabinitol, the amount of Ca(2+) loaded into ER via sarco/endoplasmic reticulum Ca(2)-ATPase (SERCA) was reduced, which suggests that SERCA pumps preferentially metabolize glycogenolytic ATP. Our study demonstrates SOCE as a novel pathway in stimulating astrocytic glycogenolysis. We also provide first evidence for a new functional role of brain glycogen, in providing local ATP to SERCA, thus establishing the bioenergetic basis for astrocytic Ca(2+) signaling. This mechanism could offer a novel explanation for the impact of glycogen on learning and memory. PMID:24464850

  10. Analysis of information gain and Kolmogorov complexity for structural evaluation of cellular automata configurations

    NASA Astrophysics Data System (ADS)

    Javaheri Javid, Mohammad Ali; Blackwell, Tim; Zimmer, Robert; Majid al-Rifaie, Mohammad

    2016-04-01

    Shannon entropy fails to discriminate structurally different patterns in two-dimensional images. We have adapted information gain measure and Kolmogorov complexity to overcome the shortcomings of entropy as a measure of image structure. The measures are customised to robustly quantify the complexity of images resulting from multi-state cellular automata (CA). Experiments with a two-dimensional multi-state cellular automaton demonstrate that these measures are able to predict some of the structural characteristics, symmetry and orientation of CA generated patterns.

  11. Localization-Based Super-Resolution Imaging of Cellular Structures

    PubMed Central

    Kanchanawong, Pakorn; Waterman, Clare M.

    2013-01-01

    Fluorescence microscopy allows direct visualization of fluorescently tagged proteins within cells. However, the spatial resolution of conventional fluorescence microscopes is limited by diffraction to ~250 nm, prompting the development of super-resolution microscopy which offers resolution approaching the scale of single proteins, i.e., ~20 nm. Here, we describe protocols for single molecule localization-based super-resolution imaging, using focal adhesion proteins as an example and employing either photoswitchable fluorophores or photoactivatable fluorescent proteins. These protocols should also be easily adaptable to imaging a broad array of macromolecular assemblies in cells whose components can be fluorescently tagged and assemble into high density structures. PMID:23868582

  12. Cellular energy metabolism. Final technical report, May 1, 1987--April 30, 1991

    SciTech Connect

    Glaser, M.

    1991-06-01

    Studies have been carried out on adenylate kinase which is an important enzyme in determining the concentrations of the adenine nucleotides. An efficient method has been developed to clone mutant adenylate kinase genes in E. coli. Site-specific mutagenesis of the wild type gene also has been used to obtain forms of adenylate kinase with altered amino acids. The wild type and mutant forms of adenylate kinase have been overexpressed and large quantities were readily isolated. The kinetic and fluorescence properties of the different forms of adenylate kinase were characterized. This has led to a new model for the location of the AMP and ATP bindings sites on the enzyme and a proposal for the mechanism of substrate inhibition. Crystals of the wild type enzyme were obtained that diffract to at least 2.3 {angstrom} resolution. Experiments were also initiated to determine the function of adenylate kinase in vivo. In one set of experiments, E. coli strains with mutations in adenylate kinase showed large changes in cellular nucleotides after reaching the stationary phase in a low phosphate medium. This was caused by selective proteolytic degradation of the mutant adenylate kinase caused by phosphate starvation.

  13. Linking the population pharmacokinetics of tenofovir and its metabolites with its cellular uptake and metabolism.

    PubMed

    Madrasi, K; Burns, R N; Hendrix, C W; Fossler, M J; Chaturvedula, A

    2014-01-01

    Empirical pharmacokinetic models are used to explain the pharmacokinetics of the antiviral drug tenofovir (TFV) and its metabolite TFV diphosphate (TFV-DP) in peripheral blood mononuclear cells. These empirical models lack the ability to explain differences between the disposition of TFV-DP in HIV-infected patients vs. healthy individuals. Such differences may lie in the mechanisms of TFV transport and phosphorylation. Therefore, we developed an exploratory model based on mechanistic mass transport principles and enzyme kinetics to examine the uptake and phosphorylation kinetics of TFV. TFV-DP median Cmax from the model was 38.5 fmol/10(6) cells, which is bracketed by two reported healthy volunteer studies (38 and 51 fmol/10(6) cells). The model presented provides a foundation for exploration of TFV uptake and phosphorylation kinetics for various routes of TFV administration and can be updated as more is known on actual mechanisms of cellular transport of TFV. PMID:25390686

  14. Capsule Biosynthesis and Basic Metabolism in Streptococcus pneumoniae Are Linked through the Cellular Phosphoglucomutase

    PubMed Central

    Hardy, Gail G.; Caimano, Melissa J.; Yother, Janet

    2000-01-01

    Synthesis of the type 3 capsular polysaccharide of Streptococcus pneumoniae requires UDP-glucose (UDP-Glc) and UDP-glucuronic acid (UDP-GlcUA) for production of the [3)-β-d-GlcUA-(1→4)-β-d-Glc-(1→]n polymer. The generation of UDP-Glc proceeds by conversion of Glc-6-P to Glc-1-P to UDP-Glc and is mediated by a phosphoglucomutase (PGM) and a Glc-1-P uridylyltransferase, respectively. Genes encoding both a Glc-1-P uridylyltransferase (cps3U) and a PGM homologue (cps3M) are present in the type 3 capsule locus, but these genes are not essential for capsule production. In this study, we characterized a mutant that produces fourfold less capsule than the type 3 parent. The spontaneous mutation resulting in this phenotype was not contained in the type 3 capsule locus but was instead located in a distant gene (pgm) encoding a second PGM homologue. The function of this gene product as a PGM was demonstrated through enzymatic and complementation studies. Insertional inactivation of pgm reduced capsule production to less than 10% of the parental level. The loss of PGM activity in the insertion mutants also caused growth defects and a strong selection for isolates containing second-site suppressor mutations. These results demonstrate that most of the PGM activity required for type 3 capsule biosynthesis is derived from the cellular PGM. PMID:10714989

  15. Annexin A1 sustains tumor metabolism and cellular proliferation upon stable loss of HIF1A

    PubMed Central

    Grimm, Christina; Lin, Suling J.; Wappler, Jessica; Klinger, Bertram; Blüthgen, Nils; Du Bois, Ilona; Schmeck, Bernd; Lehrach, Hans; de Graauw, Marjo; Goncalves, Emanuel; Saez-Rodriguez, Julio; Tan, Patrick; Grabsch, Heike I.; Prigione, Alessandro; Kempa, Stefan; Cramer, Thorsten

    2016-01-01

    Despite the approval of numerous molecular targeted drugs, long-term antiproliferative efficacy is rarely achieved and therapy resistance remains a central obstacle of cancer care. Combined inhibition of multiple cancer-driving pathways promises to improve antiproliferative efficacy. HIF-1 is a driver of gastric cancer and considered to be an attractive target for therapy. We noted that gastric cancer cells are able to functionally compensate the stable loss of HIF-1α. Via transcriptomics we identified a group of upregulated genes in HIF-1α-deficient cells and hypothesized that these genes confer survival upon HIF-1α loss. Strikingly, simultaneous knock-down of HIF-1α and Annexin A1 (ANXA1), one of the identified genes, resulted in complete cessation of proliferation. Using stable isotope-resolved metabolomics, oxidative and reductive glutamine metabolism was found to be significantly impaired in HIF-1α/ANXA1-deficient cells, potentially explaining the proliferation defect. In summary, we present a conceptually novel application of stable gene inactivation enabling in-depth deconstruction of resistance mechanisms. In theory, this experimental approach is applicable to any cancer-driving gene or pathway and promises to identify various new targets for combination therapies. PMID:26760764

  16. Annexin A1 sustains tumor metabolism and cellular proliferation upon stable loss of HIF1A.

    PubMed

    Rohwer, Nadine; Bindel, Fabian; Grimm, Christina; Lin, Suling J; Wappler, Jessica; Klinger, Bertram; Blüthgen, Nils; Du Bois, Ilona; Schmeck, Bernd; Lehrach, Hans; de Graauw, Marjo; Goncalves, Emanuel; Saez-Rodriguez, Julio; Tan, Patrick; Grabsch, Heike I; Prigione, Alessandro; Kempa, Stefan; Cramer, Thorsten

    2016-02-01

    Despite the approval of numerous molecular targeted drugs, long-term antiproliferative efficacy is rarely achieved and therapy resistance remains a central obstacle of cancer care. Combined inhibition of multiple cancer-driving pathways promises to improve antiproliferative efficacy. HIF-1 is a driver of gastric cancer and considered to be an attractive target for therapy. We noted that gastric cancer cells are able to functionally compensate the stable loss of HIF-1α. Via transcriptomics we identified a group of upregulated genes in HIF-1α-deficient cells and hypothesized that these genes confer survival upon HIF-1α loss. Strikingly, simultaneous knock-down of HIF-1α and Annexin A1 (ANXA1), one of the identified genes, resulted in complete cessation of proliferation. Using stable isotope-resolved metabolomics, oxidative and reductive glutamine metabolism was found to be significantly impaired in HIF-1α/ANXA1-deficient cells, potentially explaining the proliferation defect. In summary, we present a conceptually novel application of stable gene inactivation enabling in-depth deconstruction of resistance mechanisms. In theory, this experimental approach is applicable to any cancer-driving gene or pathway and promises to identify various new targets for combination therapies. PMID:26760764

  17. Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney.

    PubMed Central

    Dhanakoti, S N; Brosnan, M E; Herzberg, G R; Brosnan, J T

    1992-01-01

    Rat kidneys extract citrulline derived from the intestinal metabolism of glutamine and convert it stoichiometrically into arginine. This pathway constitutes the major endogenous source of arginine. We investigated the localization of enzymes of arginine synthesis, argininosuccinate synthase and lyase, and of breakdown, arginase and ornithine aminotransferase, in five regions of rat kidney, in cortical tubule fractions and in subcellular fractions of cortex. Argininosuccinate synthase and lyase were found almost exclusively in cortex. Arginase and ornithine aminotransferase were found in inner cortex and outer medulla. Since cortical tissue primarily consists of proximal convoluted and straight tubules, distal tubules and glomeruli, we prepared cortical tubule fragments by collagenase digestion of cortices and fractionated them on a Percoll gradient. Argininosuccinate synthase and lyase were found to be markedly enriched in proximal convoluted tubules, whereas less than 10% of arginase and ornithine aminotransferase, were recovered in this fraction. Arginine production from citrulline was also enriched in proximal convoluted tubules. Subcellular fractionation of kidney cortex revealed that argininosuccinate synthase and lyase are cytosolic. We therefore conclude that arginine synthesis occurs in the cytoplasm of the cells of the proximal convoluted tubule. Images Fig. 1. Fig. 2. PMID:1312326

  18. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2004-05-18

    Disclosed is a mutant adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have significantly weakened binding affinity for CARD1 relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type. In the method, residues of the adenovirus fiber protein knob domain which are predicted to alter D1 binding when mutated, are identified from the crystal structure coordinates of the AD12knob:CAR-D1 complex. A mutation which alters one or more of the identified residues is introduced into the genome of the adenovirus to generate a mutant adenovirus. Whether or not the mutant produced exhibits altered adenovirus-CAR binding properties is then determined.

  19. Cellular Structure and Oscillating Behavior of PBX Detonations

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Mendes, Ricardo

    2013-03-01

    Efforts are aimed on bridging experimental and theoretical studies of localizations/instabilities manifested in detonation reaction zone (DRZ) at micro-, meso-, and macro-scale. In molecular level, the theoretical/computational studies of detonation (RDX, HMX) show: reaction localizations onset/growth is caused by kinetic nonequilibrium stimulated by different levels of activation barriers/reaction energies at bonds dissociation processes (C-NH2, C-NO2, C =C). At micro- and meso-scale levels, leading role of kinetic nonequilibrium in reaction localizations onset was established in experiments with single beta-HMX crystals-in-binder subjected to 20 GPa-shock and PBX detonation. Reaction localizations and further ejecta formation were spatially resolved by 96-channel optical analyzer at simultaneous recording reaction light and stress field around crystal. Spatially-resolved measurements reveal fundamental role of shear-strain in triggering initiation chemistry. At macro-scale level, formation of the cell-structures and oscillating detonation regimes revealed in HMX- and RDX-based PBXs at wide variation of grain-sizes, wt. % filler/binder, residual micro-voids and binder nature. Emphasizes placed on effect of DRZ-induced radiation upon oscillating regimes of detonation front motion. This work was supported by the Office of Naval Research under the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and Shawn Thorne Program Managers.

  20. Cellular Structure and Oscillating Behavior of PBX Detonations

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Rodrigues, Luis; Mendes, Ricardo; Plaksin, Svyatoslav; Ferreira, Claudia; Fernandes, Eduardo

    2015-06-01

    Efforts are aimed on experimental study of reaction localization/instabilities manifested in detonation reaction zone (DRZ) of PBXs at micro-, meso- and macro-scale. At micro- and meso-scale levels, leading role of kinetic nonequilibrium in reaction localizations onset was established in experiments with single beta-HMX crystals-in-binder subjected to 20 GPa-shock and PBX detonation. Reaction localizations and further ejecta formation were spatially resolved by 96-channel optical analyzer at simultaneous recording reaction light and stress field around crystal. Spatially resolved measurements reveal fundamental role of shear-strain in triggering initiation chemistry. At macro-scale level, formation of the cell-structures and oscillating detonation regimes revealed in HMX- and RDX-based PBXs at wide variation of grain-sizes, wt. % filler/binder, residual micro-voids and binder nature. Emphasizes placed on effect of DRZ-induced radiation upon oscillating regimes of detonation front motion. Work was supported by the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and John Zimmerman Program Managers.

  1. Second harmonic generation imaging microscopy of cellular structure and function

    NASA Astrophysics Data System (ADS)

    Millard, Andrew C.; Jin, Lei; Loew, Leslie M.

    2005-03-01

    Second harmonic generation (SHG) imaging microscopy is an important emerging technique for biological research, with many advantages over existing one- or two-photon fluorescence techniques. A non-linear phenomenon employing mode-locked Ti:sapphire or fiber-based lasers, SHG results in intrinsic optical sectioning without the need for a confocal aperture. Furthermore, as a second-order process SHG is confined to loci lacking a center of symmetry. Many important structural proteins such as collagen and cellulose show intrinsic SHG, thus providing access to sub-resolution information on symmetry. However, we are particularly interested here in "resonance-enhanced" SHG from styryl dyes. In general SHG is a combination of a true second-order process and a third-order process dependent on a static electric field, such that SHG from membrane-bound dyes depends on a cell's trans-membrane potential. With simultaneous patch-clamping and non-linear imaging of cells, we have found that SHG is a sensitive probe of trans-membrane potential with sensitivities that are up to four times better than those obtained under optimal conditions using one-photon fluorescence imaging. With the sensitivity of SHG to local electric fields from other sources such as the membrane dipole potential as well as the quadratic dependence of SHG on concentration, we have found that SHG imaging of styryl dyes is also a powerful technique for the investigation of lipid phases and rafts and for the visualization of the dynamics of membrane-vesicle fusion following fertilization of an ovum.

  2. Adaptive cellular structures and devices with internal features for enhanced structural performance

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Michael Eugene

    This dissertation aims to develop a family of cellular and repeatable devices that exhibit a variety of force-displacement behaviors. It is envisioned that these cellular structures might be used either as stand-alone elements, or combined and repeated to create multiple types of structures (i.e. buildings, ship hulls, vehicle subfloors, etc.) with the ability to passively or actively perform multiple functions (harmonic energy dissipation, impact mitigation, modulus change) over a range of loading types, amplitudes, and frequencies. To accomplish this goal, this work combines repeatable structural frameworks, such as that provided by a hexagonal cellular structure, with internal structural elements such as springs, viscous dampers, buckling plates, bi-stable von Mises trusses (VMTs), and pneumatic artificial muscles (PAMs). The repeatable framework serves to position damping and load carrying elements throughout the structure, and the configuration of the internal elements allow each cell to be tuned to exhibit a desired force-displacement response. Therefore, gradient structures or structures with variable load paths can be created for an optimal global response to a range of loads. This dissertation focuses on the development of cellular structures for three functions: combined load-carrying capability with harmonic energy dissipation, impact mitigation, and cell modulus variation. One or more conceptual designs are presented for devices that can perform each of these functions, and both experimental measurements and simulations are used to gain a fundamental understanding of each device. Chapter 2 begins with a presentation of a VMT model that is the basis for many of the elements. The equations of motion for the VMT are derived and the static and dynamic behavior of the VMT are discussed in detail. Next, two metrics for the energy dissipation of the VMT - hysteresis loop area and loss factor - are presented. The responses of the VMT to harmonic displacement

  3. Molecular, cellular, and tissue impact of depleted uranium on xenobiotic-metabolizing enzymes.

    PubMed

    Gueguen, Yann; Rouas, Caroline; Monin, Audrey; Manens, Line; Stefani, Johanna; Delissen, Olivia; Grison, Stéphane; Dublineau, Isabelle

    2014-02-01

    Enzymes that metabolize xenobiotics (XME) are well recognized in experimental models as representative indicators of organ detoxification functions and of exposure to toxicants. As several in vivo studies have shown, uranium can alter XME in the rat liver or kidneys after either acute or chronic exposure. To determine how length or level of exposure affects these changes in XME, we continued our investigation of chronic rat exposure to depleted uranium (DU, uranyl nitrate). The first study examined the effect of duration (1-18 months) of chronic exposure to DU, the second evaluated dose dependence, from a level close to that found in the environment near mining sites (0.2 mg/L) to a supra-environmental dose (120 mg/L, 10 times the highest level naturally found in the environment), and the third was an in vitro assessment of whether DU exposure directly affects XME and, in particular, CYP3A. The experimental in vivo models used here demonstrated that CYP3A is the enzyme modified to the greatest extent: high gene expression changed after 6 and 9 months. The most substantial effects were observed in the liver of rats after 9 months of exposure to 120 mg/L of DU: CYP3A gene and protein expression and enzyme activity all decreased by more than 40 %. Nonetheless, no direct effect of DU by itself was observed after in vitro exposure of rat microsomal preparations, HepG2 cells, or human primary hepatocytes. Overall, these results probably indicate the occurrence of regulatory or adaptive mechanisms that could explain the indirect effect observed in vivo after chronic exposure. PMID:24146111

  4. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect

    PubMed Central

    Witkiewicz, Halina

    2013-01-01

    Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of

  5. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand

    PubMed Central

    Patten, David A; Wong, Jacob; Khacho, Mireille; Soubannier, Vincent; Mailloux, Ryan J; Pilon-Larose, Karine; MacLaurin, Jason G; Park, David S; McBride, Heidi M; Trinkle-Mulcahy, Laura; Harper, Mary-Ellen; Germain, Marc; Slack, Ruth S

    2014-01-01

    Cristae, the organized invaginations of the mitochondrial inner membrane, respond structurally to the energetic demands of the cell. The mechanism by which these dynamic changes are regulated and the consequences thereof are largely unknown. Optic atrophy 1 (OPA1) is the mitochondrial GTPase responsible for inner membrane fusion and maintenance of cristae structure. Here, we report that OPA1 responds dynamically to changes in energetic conditions to regulate cristae structure. This cristae regulation is independent of OPA1's role in mitochondrial fusion, since an OPA1 mutant that can still oligomerize but has no fusion activity was able to maintain cristae structure. Importantly, OPA1 was required for resistance to starvation-induced cell death, for mitochondrial respiration, for growth in galactose media and for maintenance of ATP synthase assembly, independently of its fusion activity. We identified mitochondrial solute carriers (SLC25A) as OPA1 interactors and show that their pharmacological and genetic blockade inhibited OPA1 oligomerization and function. Thus, we propose a novel way in which OPA1 senses energy substrate availability, which modulates its function in the regulation of mitochondrial architecture in a SLC25A protein-dependent manner. PMID:25298396

  6. SERCA2a upregulation ameliorates cellular alternans induced by metabolic inhibition.

    PubMed

    Stary, Victoria; Puppala, Dheeraj; Scherrer-Crosbie, Marielle; Dillmann, Wolfgang H; Armoundas, Antonis A

    2016-04-15

    Cardiac alternans has been associated with the incidence of ventricular tachyarrhythmias and sudden cardiac death. The aim of this study was to investigate the effect of impaired mitochondrial function in the genesis of cellular alternans and to examine whether modulating the sarcoplasmic reticulum (SR) Ca(2+)ameliorates the level of alternans. Cardiomyocytes isolated from control and doxycyline-induced sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a)-upregulated mice were loaded with two different Ca(2+)indicators to selectively measure mitochondrial and cytosolic Ca(2+)using a custom-made fluorescence photometry system. The degree of alternans was defined as the alternans ratio (AR) [1 - (small Ca(2+)intensity)/(large Ca(2+)intensity)]. Blocking of complex I and II, cytochrome-coxidase, F0F1synthase, α-ketoglutarate dehydrogenase of the electron transport chain, increased alternans in both control and SERCA2a mice (P< 0.01). Changes in AR in SERCA2a-upregulated mice were significantly less pronounced than those observed in control in seven of nine tested conditions (P< 0.04).N-acetyl-l-cysteine (NAC), rescued alternans in myocytes that were previously exposed to an oxidizing agent (P< 0.001). CGP, an antagonist of the mitochondrial Na(+)-Ca(2+)exchanger, had the most severe effect on AR. Exposure to cyclosporin A, a blocker of the mitochondrial permeability transition pore reduced CGP-induced alternans (P< 0.0001). The major findings of this study are that impairment of mitochondrial Ca(2+)cycling and energy production leads to a higher amplitude of alternans in both control and SERCA2a-upregulated mice, but changes in SERCA2a-upregulated mice are less severe, indicating that SERCA2a mice are more capable of sustaining electrical stability during stress. This suggests a relationship between sarcoplasmic Ca(2+)content and mitochondrial dysfunction during alternans, which may potentially help to understand changes in Ca(2+)signaling in myocytes from

  7. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    PubMed

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-07-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8-fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27417115

  8. Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies

    PubMed Central

    Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.

    2015-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P < 0·01) whilst increasing ACE expression within a physiological range (<1·8‐fold at 48 h; P < 0·01). Our findings suggest novel hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role.

  9. The trophic and metabolic pathways of foraminifera in the Arabian Sea: evidence from cellular stable isotopes

    NASA Astrophysics Data System (ADS)

    Jeffreys, R. M.; Fisher, E. H.; Gooday, A. J.; Larkin, K. E.; Billett, D. S. M.; Wolff, G. A.

    2015-03-01

    provided an organic-rich food source for foraminifera at these sites. Our data suggest that foraminifera in OMZ settings can utilise a variety of food sources and metabolic pathways to meet their energetic demands.

  10. The trophic and metabolic pathways of foraminifera in the Arabian Sea: evidence from cellular stable isotopes

    NASA Astrophysics Data System (ADS)

    Jeffreys, R. M.; Fisher, E. H.; Gooday, A. J.; Larkin, K. E.; Wolff, G. A.; Billett, D. S. M.

    2014-12-01

    suggest that foraminifera in OMZ settings can utilise a variety of food sources and metabolic pathways to meet their energetic demands.

  11. Processing and modeling of cellular solids for light-weight structures

    SciTech Connect

    Nieh, T.G.

    1997-12-01

    Cellular solids (also known as porous solids) comprise a special class of materials. Such materials are common in nature; wood, cork, sponge and coral are examples. Recently man has also made his own cellular solids. For example, many honeycomb-like materials, made up of parallel, prismatic cells, are used for lightweight aerospace structural components. Polymeric foams have been used in everything from disposable coffee cups, packaging materials, to the crash padding of an aircraft cockpit. Advanced techniques now exist for foaming not only polymers, but metals and ceramics as well. These newer foams are increasingly used for catalysts (chemical), preforms for metal-matrix composites, thermal insulators and thermal shock resistant materials (thermal), acoustic dampers (acoustic), cushions, vibration reducers, and systems for absorbing the kinetic energy from impacts (mechanical). Their uses exploit the special combination of properties offered by cellular solids, properties which, ultimately, derive from their cellular structure. The objective of this proposed research is to develop processing techniques to produce metallic foams with controlled cellular structures and to understand and model the mechanical behavior of this special class of materials.

  12. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    PubMed

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. PMID:26350218

  13. Muscle microvasculature's structural and functional specializations facilitate muscle metabolism.

    PubMed

    Kusters, Yvo H A M; Barrett, Eugene J

    2016-03-15

    We review the evolving findings from studies that examine the relationship between the structural and functional properties of skeletal muscle's vasculature and muscle metabolism. Unique aspects of the organization of the muscle microvasculature are highlighted. We discuss the role of vasomotion at the microscopic level and of flowmotion at the tissue level as modulators of perfusion distribution in muscle. We then consider in some detail how insulin and exercise each modulate muscle perfusion at both the microvascular and whole tissue level. The central role of the vascular endothelial cell in modulating both perfusion and transendothelial insulin and nutrient transport is also reviewed. The relationship between muscle metabolic insulin resistance and the vascular action of insulin in muscle continues to indicate an important role for the microvasculature as a target for insulin action and that impairing insulin's microvascular action significantly affects body glucose metabolism. PMID:26714849

  14. Synaptoproteomic Analysis of a Rat Gene-Environment Model of Depression Reveals Involvement of Energy Metabolism and Cellular Remodeling Pathways

    PubMed Central

    Failler, Marion; Corna, Stefano; Racagni, Giorgio; Mathé, Aleksander A.; Popoli, Maurizio

    2015-01-01

    Background: Major depression is a severe mental illness that causes heavy social and economic burdens worldwide. A number of studies have shown that interaction between individual genetic vulnerability and environmental risk factors, such as stress, is crucial in psychiatric pathophysiology. In particular, the experience of stressful events in childhood, such as neglect, abuse, or parental loss, was found to increase the risk for development of depression in adult life. Here, to reproduce the gene x environment interaction, we employed an animal model that combines genetic vulnerability with early-life stress. Methods: The Flinders Sensitive Line rats (FSL), a validated genetic animal model of depression, and the Flinders Resistant Line (FRL) rats, their controls, were subjected to a standard protocol of maternal separation (MS) from postnatal days 2 to 14. A basal comparison between the two lines for the outcome of the environmental manipulation was performed at postnatal day 73, when the rats were into adulthood. We carried out a global proteomic analysis of purified synaptic terminals (synaptosomes), in order to study a subcellular compartment enriched in proteins involved in synaptic function. Two-dimensional gel electrophoresis (2-DE), mass spectrometry, and bioinformatic analysis were used to analyze proteins and related functional networks that were modulated by genetic susceptibility (FSL vs. FRL) or by exposure to early-life stress (FRL + MS vs. FRL and FSL + MS vs. FSL). Results: We found that, at a synaptic level, mainly proteins and molecular pathways related to energy metabolism and cellular remodeling were dysregulated. Conclusions: The present results, in line with previous works, suggest that dysfunction of energy metabolism and cytoskeleton dynamics at a synaptic level could be features of stress-related pathologies, in particular major depression. PMID:25522407

  15. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq

    PubMed Central

    Watters, Kyle E.; Abbott, Timothy R.; Lucks, Julius B.

    2016-01-01

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure–function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA–RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA–RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. PMID:26350218

  16. Biosorption and degradation of decabromodiphenyl ether by Brevibacillus brevis and the influence of decabromodiphenyl ether on cellular metabolic responses.

    PubMed

    Wang, Linlin; Tang, Litao; Wang, Ran; Wang, Xiaoya; Ye, Jinshao; Long, Yan

    2016-03-01

    There is global concern about the effects of decabromodiphenyl ether (BDE209) on environmental and public health. The molecular properties, biosorption, degradation, accumulation, and cellular metabolic effects of BDE209 were investigated in this study to identify the mechanisms involved in the aerobic biodegradation of BDE209. BDE209 is initially absorbed by wall teichoic acid and N-acetylglucosamine side chains in peptidoglycan, and then, BDE209 is transported and debrominated through three pathways, giving tri-, hepta-, octa-, and nona-bromodiphenyl ethers. The C-C bond energies decrease as the number of bromine atoms on the diphenyl decreases. Polybrominated diphenyl ethers (PBDEs) inhibit protein expression or accelerate protein degradation and increase membrane permeability and the release of Cl(-), Na(+), NH4 (+), arabinose, proteins, acetic acid, and oxalic acid. However, PBDEs increase the amounts of K(+), Mg(2+), PO4 (3-), SO4 (2-), and NO3 (-) assimilated. The biosorption, degradation, accumulation, and removal efficiencies when Brevibacillus brevis (1 g L(-1)) was exposed to BDE209 (0.5 mg L(-1)) for 7 days were 7.4, 69.5, 16.3, and 94.6 %, respectively. PMID:26555880

  17. Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis.

    PubMed

    Barger, Sarah R; Hoefler, B Chris; Cubillos-Ruiz, Andrés; Russell, William K; Russell, David H; Straight, Paul D

    2012-10-01

    Soil streptomycetes are saprotrophic bacteria that secrete numerous secondary metabolites and enzymes for extracellular functions. Many streptomycetes produce antibiotics thought to protect vegetative mycelia from competing organisms. Here we report that an organism isolated from soil, Streptomyces sp. Mg1, actively degrades colonies and causes cellular lysis of Bacillus subtilis when the organisms are cultured together. We predicted that the inhibition and degradation of B. subtilis colonies in this competition depends upon a combination of secreted factors, including small molecule metabolites and enzymes. To begin to unravel this complex competitive phenomenon, we use a MALDI imaging mass spectrometry strategy to map the positions of metabolites secreted by both organisms. In this report, we show that Streptomyces sp. Mg1 produces the macrolide antibiotic chalcomycin A, which contributes to inhibition of B. subtilis growth in combination with other, as yet unidentified factors. We suggest that efforts to understand competitive and cooperative interactions between bacterial species benefit from assays that pair living organisms and probe the complexity of metabolic exchanges between them. PMID:22777252

  18. Aryl hydrocarbon receptor deficiency causes dysregulated cellular matrix metabolism and age-related macular degeneration-like pathology

    PubMed Central

    Hu, Peng; Herrmann, Rolf; Bednar, Amanda; Saloupis, Peter; Dwyer, Mary A.; Yang, Ping; Qi, Xiaoping; Thomas, Russell S.; Jaffe, Glenn J.; Boulton, Michael E.; McDonnell, Donald P.; Malek, Goldis

    2013-01-01

    The aryl hydrocarbon receptor (AhR) is a nuclear receptor that regulates xenobiotic metabolism and detoxification. Herein, we report a previously undescribed role for the AhR signaling pathway as an essential defense mechanism in the pathogenesis of early dry age-related macular degeneration (AMD), the leading cause of vision loss in the elderly. We found that AhR activity and protein levels in human retinal pigment epithelial (RPE) cells, cells vulnerable in AMD, decrease with age. This finding is significant given that age is the most established risk factor for development of AMD. Moreover, AhR−/− mice exhibit decreased visual function and develop dry AMD-like pathology, including disrupted RPE cell tight junctions, accumulation of RPE cell lipofuscin, basal laminar and linear-like deposit material, Bruch’s membrane thickening, and progressive RPE and choroidal atrophy. High-serum low-density lipoprotein levels were also observed in AhR−/− mice. In its oxidized form, this lipoprotein can stimulate increased secretion of extracellular matrix molecules commonly found in deposits from RPE cells, in an AhR-dependent manner. This study demonstrates the importance of cellular clearance via the AhR signaling pathway in dry AMD pathogenesis, implicating AhR as a potential target, and the mouse model as a useful platform for validating future therapies. PMID:24106308

  19. The Crystalline Structure of Escherichia Coli Derived, - and Holo-Rat Cellular Retinol Binding Protein II

    NASA Astrophysics Data System (ADS)

    Winter, Nathan Shoup

    1993-01-01

    Crystal of apo- and holo-rat cellular retinol binding protein II from the recombinant protein isolated from E. coli were grown. X-ray data to about 2A resolution for both crystal forms were collected. The phases for both data sets were determined by the molecular replacement technique using cellular retinol binding protein. The structures were then refined. The electron density from bound retinol was observed in the holo-form. Other than the presence or absence of bound retinol, little difference was noted in the structures of the apo- and holo-protein. The retinol was bound in a interior cavity with the hydroxyl group in the center of the protein, and the ionone ring near the surface. The hydroxyl group of the retinol made a hydrogen bond to glutamine 108, and the amine group of lysine 40 came into Van der Waals contact with the isoprene chain. The structure of cellular retinol binding protein II was then compared with the structures of five other intracellular lipid binding proteins: adipocyte lipid binding protein, cellular retinol binding protein, intestinal fatty acid binding protein, p2 protein from myelin sheaths, and a midgut fatty acid binding protein.

  20. Point process models for localization and interdependence of punctate cellular structures.

    PubMed

    Li, Ying; Majarian, Timothy D; Naik, Armaghan W; Johnson, Gregory R; Murphy, Robert F

    2016-07-01

    Accurate representations of cellular organization for multiple eukaryotic cell types are required for creating predictive models of dynamic cellular function. To this end, we have previously developed the CellOrganizer platform, an open source system for generative modeling of cellular components from microscopy images. CellOrganizer models capture the inherent heterogeneity in the spatial distribution, size, and quantity of different components among a cell population. Furthermore, CellOrganizer can generate quantitatively realistic synthetic images that reflect the underlying cell population. A current focus of the project is to model the complex, interdependent nature of organelle localization. We built upon previous work on developing multiple non-parametric models of organelles or structures that show punctate patterns. The previous models described the relationships between the subcellular localization of puncta and the positions of cell and nuclear membranes and microtubules. We extend these models to consider the relationship to the endoplasmic reticulum (ER), and to consider the relationship between the positions of different puncta of the same type. Our results do not suggest that the punctate patterns we examined are dependent on ER position or inter- and intra-class proximity. With these results, we built classifiers to update previous assignments of proteins to one of 11 patterns in three distinct cell lines. Our generative models demonstrate the ability to construct statistically accurate representations of puncta localization from simple cellular markers in distinct cell types, capturing the complex phenomena of cellular structure interaction with little human input. This protocol represents a novel approach to vesicular protein annotation, a field that is often neglected in high-throughput microscopy. These results suggest that spatial point process models provide useful insight with respect to the spatial dependence between cellular structures.

  1. Quantitative structure-activity relationships for cellular uptake of surface-modified nanoparticles.

    PubMed

    Liu, Rong; Rallo, Robert; Bilal, Muhammad; Cohen, Yoram

    2015-01-01

    Quantitative structure-activity relationships (QSARs) were developed, for cellular uptake of nanoparticles (NPs) of the same iron oxide core but with different surface-modifying organic molecules, based on linear and non-linear (epsilon support vector regression (ε-SVR)). A linear QSAR provided high prediction accuracy of R2=0.751 (coefficient of determination) using 11 descriptors selected from an initial pool of 184 descriptors calculated for the NP surfacemodifying molecules, while a ε-SVR based QSAR with only 6 descriptors improved prediction accuracy to R2=0.806. The linear and ε-SVR based QSARs both demonstrated good robustness and well spanned applicability domains. It is suggested that the approach of evaluating pertinent descriptors and their significance, via QSAR analysis, to cellular NP uptake could support planning and interpretation of toxicity studies as well as provide guidance for the tailor-design NPs with respect to targeted cellular uptake for various applications. PMID:25747434

  2. Physiological enzymology: The next frontier in understanding protein structure and function at the cellular level.

    PubMed

    Lee, Irene; Berdis, Anthony J

    2016-01-01

    Historically, the study of proteins has relied heavily on characterizing the activity of a single purified protein isolated from other cellular components. This classic approach allowed scientists to unambiguously define the intrinsic kinetic and chemical properties of that protein. The ultimate hope was to extrapolate this information toward understanding how the enzyme or receptor behaves within its native cellular context. These types of detailed in vitro analyses were necessary to reduce the innate complexities of measuring the singular activity and biochemical properties of a specific enzyme without interference from other enzymes and potential competing substrates. However, recent developments in fields encompassing cell biology, molecular imaging, and chemical biology now provide the unique chemical tools and instrumentation to study protein structure, function, and regulation in their native cellular environment. These advancements provide the foundation for a new field, coined physiological enzymology, which quantifies the function and regulation of enzymes and proteins at the cellular level. In this Special Edition, we explore the area of Physiological Enzymology and Protein Function through a series of review articles that focus on the tools and techniques used to measure the cellular activity of proteins inside living cells. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:26277093

  3. Use of Lightweight Cellular Mats to Reduce the Settlement of Structure on Soft Soil

    NASA Astrophysics Data System (ADS)

    Ganasan, R.; Lim, A. J. M. S.; Wijeyesekera, D. C.

    2016-07-01

    Construction of structures on soft soils gives rise to some difficulties in Malaysia and other country especially in settlement both in short and long term. The focus of this research is to minimize the differential and non-uniform settlement on peat soil with the use of an innovative cellular mat. The behaviour and performance of the lightweight geo-material (in block form) is critically investigated and in particular the use as a fill in embankment on soft ground. Hemic peat soil, sponge and innovative cellular mat will be used as the main material in this study. The monitoring in settlement behavior from this part of research will be done as laboratory testing only. The uneven settlement in this problem was uniquely monitored photographically using spot markers. In the end of the research, it is seen that the innovative cellular mat has reduce the excessive and differential settlement up to 50% compare to flexible and rigid foundations. This had improve the stiffness of soils as well as the porous contain in cellular structure which help in allowing water/moisture to flow through in or out thus resulting in prevent the condition of floating.

  4. Bridging Between Proline Structure, Functions, Metabolism, and Involvement in Organism Physiology.

    PubMed

    Saibi, Walid; Feki, Kaouthar; Yacoubi, Ines; Brini, Faiçal

    2015-08-01

    Much is now known about proline multifunctionality and metabolism; some aspects of its biological functions are still unclear. Here, we discuss some cases in the proline, structure, definition, metabolism, compartmentalization, accumulation, plausible functions and also its implication in homeostasis and organism physiology. Indeed, we report the role of proline in cellular homeostasis, including redox balance and energy status and their implication as biocatalyst for aldolase activity. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death, and trigger specific gene expression, which can be essential for plant recovery from stresses. Although, the regulation and the function of proline accumulation, during abiotic stresses, are not yet completely understood. The engineering of proline metabolism could lead to new opportunities to improve plant tolerance against environmental stresses. This atypical amino acid has a potential role in the toxicity during growth of some microorganism, vegetal, and mammalian species. Furthermore, we note that the purpose through the work is to provide a rich, concise, and mostly cohesive source on proline, considered as a platform and an anchor between several disciplines and biological functions. PMID:26100388

  5. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum.

    PubMed

    Kind, Stefanie; Kreye, Steffen; Wittmann, Christoph

    2011-09-01

    The present work describes the development of a superior strain of Corynebacterium glutamicum for diaminopentane (cadaverine) production via metabolic engineering of cellular transport processes. In C. glutamicum DAP-3c, a tailor-made producer, the diaminopentane forming enzyme, lysine decarboxylase, was inhibited in vivo by its end-product, suggesting a potential bottleneck at the level of the export. The previously proposed lysine exporter lysE was shown not to be involved in diaminopentane export. Its deletion did not reduce diaminopentane secretion and could therefore be exploited to completely eliminate the export of lysine, an undesired by-product. Genome-wide transcription profiling revealed the up-regulation of 35 candidate genes as response to diaminopentane overproduction, including several transporters. The highest expression increase (2.6-fold) was observed for a permease, encoded by cg2893. Targeted gene deletion in the producer resulted in a 90% reduced diaminopentane secretion. Genome-based overexpression of the exporter, however, revealed a 20% increased yield, a 75% reduced formation of the undesired by-product N-acetyl-diaminopentane and a substantially higher viability, reflected by increased specific rates for growth, glucose uptake and product formation. Similarly, deletion of cg2894, TetR type repressor neighboring the permease gene, resulted in improved production properties. The discovery and amplification of the permease, as presented here, displays a key contribution towards superior C. glutamicum strains for production of the platform chemical diaminopentane. The exact function of the permease remained unclear. Its genetic modification had pronounced effects on various intracellular pools of the biosynthetic pathway, which did not allow a final conclusion on its physiological role, although a direct contribution to diaminopentane export appears possible. PMID:21821142

  6. Synaptoproteomics of learned helpless rats involve energy metabolism and cellular remodeling pathways in depressive-like behavior and antidepressant response.

    PubMed

    Mallei, Alessandra; Giambelli, Roberto; Gass, Peter; Racagni, Giorgio; Mathé, Aleksander A; Vollmayr, Barbara; Popoli, Maurizio

    2011-06-01

    Although depression is a severe and life-threatening psychiatric illness, its pathogenesis still is essentially unknown. Recent studies highlighted the influence of environmental stress factors on an individual's genetic predisposition to develop mood disorders. In the present study, we employed a well-validated stress-induced animal model of depression, Learned Helplessness paradigm, in rats. Learned helpless (LH) and non-learned helpless (NLH) rats were treated with nortriptyline, a tricyclic antidepressant. The resulting 4 groups (LH vs. NLH, treated vs. non-treated), were subjected to global analysis of protein expression, a powerful approach to gain insight into the molecular mechanisms underlying vulnerability to psychiatric disorders and the long-term action of drug treatments. Many of the biological targets of antidepressant drugs are localized at synapses. Thus, to reduce the complexity of the proteome analyzed and to enrich for less abundant synaptic proteins, purified nerve terminals (synaptosomes) from prefrontal/frontal cortex (P/FC) and hippocampus (HPC) of LH-NLH rats were used. Synaptosomes were purified by differential centrifugation on Percoll gradients and analyzed by two-dimensional polyacrylamide gel electrophoresis (2-DE). Protein spots differently regulated in the various comparisons were excised from gels and identified by mass spectrometry. Proteins involved in energy metabolism and cellular remodeling were primarily dysregulated, when LH and NLH rats were compared. Moreover, several proteins (aconitate hydratase, pyruvate dehydrogenase E1, dihydropyrimidinase-related protein-2 and stathmin) were found to be regulated in opposite directions by stress and drug treatment. These proteins could represent new molecular correlates of both vulnerability to stress and response to drugs, and putative targets for the development of novel drugs with antidepressant action. This article is part of a Special Issue entitled 'Trends in neuropharmacology

  7. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    SciTech Connect

    Han, Wenhu; Gao, Yang; Wang, Cheng; Law, Chung K.

    2015-10-15

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.

  8. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    NASA Astrophysics Data System (ADS)

    Han, Wenhu; Gao, Yang; Wang, Cheng; Law, Chung K.

    2015-10-01

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.

  9. Structure, Affinity, and Availability of Estrogen Receptor Complexes in the Cellular Environment*

    PubMed Central

    Kofoed, Eric M.; Guerbadot, Martin; Schaufele, Fred

    2010-01-01

    An ability to measure the biochemical parameters and structures of protein complexes at defined locations within the cellular environment would improve our understanding of cellular function. We describe widely applicable, calibrated Förster resonance energy transfer methods that quantify structural and biochemical parameters for interaction of the human estrogen receptor α-isoform (ERα) with the receptor interacting domains (RIDs) of three cofactors (SRC1, SRC2, SRC3) in living cells. The interactions of ERα with all three SRC-RIDs, measured throughout the cell nucleus, transitioned from structurally similar, high affinity complexes containing two ERαs at low free SRC-RID concentrations (<2 nm) to lower affinity complexes with an ERα monomer at higher SRC-RID concentrations (∼10 nm). The methods also showed that only a subpopulation of ERα was available to form complexes with the SRC-RIDs in the cell. These methods represent a template for extracting unprecedented details of the biochemistry and structure of any complex that is capable of being measured by Förster resonance energy transfer in the cellular environment. PMID:19926790

  10. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes.

    PubMed

    Fleischer, Candace C; Payne, Christine K

    2014-08-19

    The use of nanoparticles (NPs) in biology and medicine requires a molecular-level understanding of how NPs interact with cells in a physiological environment. A critical difference between well-controlled in vitro experiments and in vivo applications is the presence of a complex mixture of extracellular proteins. It has been established that extracellular serum proteins present in blood will adsorb onto the surface of NPs, forming a "protein corona". Our goal was to understand how this protein layer affected cellular-level events, including NP binding, internalization, and transport. A combination of microscopy, which provides spatial resolution, and spectroscopy, which provides molecular information, is necessary to probe protein-NP-cell interactions. Initial experiments used a model system composed of polystyrene NPs functionalized with either amine or carboxylate groups to provide a cationic or anionic surface, respectively. Serum proteins adsorb onto the surface of both cationic and anionic NPs, forming a net anionic protein-NP complex. Although these protein-NP complexes have similar diameters and effective surface charges, they show the exact opposite behavior in terms of cellular binding. In the presence of bovine serum albumin (BSA), the cellular binding of BSA-NP complexes formed from cationic NPs is enhanced, whereas the cellular binding of BSA-NP complexes formed from anionic NPs is inhibited. These trends are independent of NP diameter or cell type. Similar results were obtained for anionic quantum dots and colloidal gold nanospheres. Using competition assays, we determined that BSA-NP complexes formed from anionic NPs bind to albumin receptors on the cell surface. BSA-NP complexes formed from cationic NPs are redirected to scavenger receptors. The observation that similar NPs with identical protein corona compositions bind to different cellular receptors suggested that a difference in the structure of the adsorbed protein may be responsible for the

  11. Deletion or Overexpression of Mitochondrial NAD+ Carriers in Saccharomyces cerevisiae Alters Cellular NAD and ATP Contents and Affects Mitochondrial Metabolism and the Rate of Glycolysis ▿

    PubMed Central

    Agrimi, Gennaro; Brambilla, Luca; Frascotti, Gianni; Pisano, Isabella; Porro, Danilo; Vai, Marina; Palmieri, Luigi

    2011-01-01

    The modification of enzyme cofactor concentrations can be used as a method for both studying and engineering metabolism. We varied Saccharomyces cerevisiae mitochondrial NAD levels by altering expression of its specific mitochondrial carriers. Changes in mitochondrial NAD levels affected the overall cellular concentration of this coenzyme and the cellular metabolism. In batch culture, a strain with a severe NAD depletion in mitochondria succeeded in growing, albeit at a low rate, on fully respiratory media. Although the strain increased the efficiency of its oxidative phosphorylation, the ATP concentration was low. Under the same growth conditions, a strain with a mitochondrial NAD concentration higher than that of the wild type similarly displayed a low cellular ATP level, but its growth rate was not affected. In chemostat cultures, when cellular metabolism was fully respiratory, both mutants showed low biomass yields, indicative of impaired energetic efficiency. The two mutants increased their glycolytic fluxes, and as a consequence, the Crabtree effect was triggered at lower dilution rates. Strikingly, the mutants switched from a fully respiratory metabolism to a respirofermentative one at the same specific glucose flux as that of the wild type. This result seems to indicate that the specific glucose uptake rate and/or glycolytic flux should be considered one of the most important independent variables for establishing the long-term Crabtree effect. In cells growing under oxidative conditions, bioenergetic efficiency was affected by both low and high mitochondrial NAD availability, which suggests the existence of a critical mitochondrial NAD concentration in order to achieve optimal mitochondrial functionality. PMID:21335394

  12. Association of p60src with Triton X-100-Resistant Cellular Structure Correlates with Morphological Transformation

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Michinari; Hanafusa, Hidesaburo

    1987-04-01

    More than 70% of wild-type Rous sarcoma virus p60v-src was found to be associated with a cellular structure resistant to nonionic detergent extraction that consists primarily of cytoskeletal proteins. On the other hand, nontransforming src proteins, including cellular p60c-src, nonmyristoylated forms, and those inactive in protein kinase, were found in the fraction solubilized by the detergent extraction. p60c-src was detergent-soluble even in transformed cells, suggesting that the association of p60v-src is not a result of cell transformation. Analyses with a variety of Rous sarcoma virus mutants showed a good correlation between the degree of association with the detergent-resistant structure and the extent of cell transformation caused by mutant src proteins, suggesting that this association may be significant for the process of cell transformation by Rous sarcoma virus.

  13. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii.

    PubMed

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  14. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii

    PubMed Central

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E.; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  15. Simulation Based Optimization of Complex Monolithic Composite Structures Using Cellular Core Technology

    NASA Astrophysics Data System (ADS)

    Hickmott, Curtis W.

    Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional

  16. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting.

    PubMed

    Carson, James A; Hardee, Justin P; VanderVeen, Brandon N

    2016-06-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  17. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites.

    PubMed

    Schlattner, Uwe; Klaus, Anna; Ramirez Rios, Sacnicte; Guzun, Rita; Kay, Laurence; Tokarska-Schlattner, Malgorzata

    2016-08-01

    There is an increasing body of evidence for local circuits of ATP generation and consumption that are largely independent of global cellular ATP levels. These are mostly based on the formation of multiprotein(-lipid) complexes and diffusion limitations existing in cells at different levels of organization, e.g., due to the viscosity of the cytosolic medium, macromolecular crowding, multiple and bulky intracellular structures, or controlled permeability across membranes. Enzymes generating ATP or GTP are found associated with ATPases and GTPases enabling the direct fueling of these energy-dependent processes, and thereby implying that it is the local and not the global concentration of high-energy metabolites that is functionally relevant. A paradigm for such microcompartmentation is creatine kinase (CK). Cytosolic and mitochondrial isoforms of CK constitute a well established energy buffering and shuttling system whose functions are very much based on local association of CK isoforms with ATP-providing and ATP-consuming processes. Here we review current knowledge on the subcellular localization and direct protein and lipid interactions of CK isoforms, in particular about cytosolic brain-type CK (BCK) much less is known compared to muscle-type CK (MCK). We further present novel data on BCK, based on three different experimental approaches: (1) co-purification experiments, suggesting association of BCK with membrane structures such as synaptic vesicles and mitochondria, involving hydrophobic and electrostatic interactions, respectively; (2) yeast-two-hybrid analysis using cytosolic split-protein assays and the identifying membrane proteins VAMP2, VAMP3 and JWA as putative BCK interaction partners; and (3) phosphorylation experiments, showing that the cellular energy sensor AMP-activated protein kinase (AMPK) is able to phosphorylate BCK at serine 6 to trigger BCK localization at the ER, in close vicinity of the highly energy-demanding Ca(2+) ATPase pump. Thus

  18. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  19. Cessation of physical exercise changes metabolism and modifies the adipocyte cellularity of the periepididymal white adipose tissue in rats.

    PubMed

    Sertie, Rogerio A L; Andreotti, Sandra; Proença, André R G; Campana, Amanda B; Lima-Salgado, Thais M; Batista, Miguél L; Seelaender, Marilia C L; Curi, Rui; Oliveira, Ariclecio C; Lima, Fabio B

    2013-08-01

    All of the adaptations acquired through physical training are reversible with inactivity. Although significant reductions in maximal oxygen uptake (Vo2max) can be observed within 2 to 4 wk of detraining, the consequences of detraining on the physiology of adipose tissue are poorly known. Our aim was therefore to investigate the effects of discontinuing training (physical detraining) on the metabolism and adipocyte cellularity of rat periepididymal (PE) adipose tissue. Male Wistar rats, aged 6 wk, were divided into three groups and studied for 12 wk under the following conditions: 1) trained (T) throughout the period; 2) detrained (D), trained during the first 8 wk and detrained during the remaining 4 wk; and 3) age-matched sedentary (S). Training consisted of treadmill running sessions (1 h/day, 5 days/wk, 50-60% Vo2max). The PE adipocyte size analysis revealed significant differences between the groups. The adipocyte cross-sectional area (in μm(2)) was significantly larger in D than in the T and S groups (3,474 ± 68.8; 1,945.7 ± 45.6; 2,492.4 ± 49.08, respectively, P < 0.05). Compared with T, the isolated adipose cells (of the D rats) showed a 48% increase in the ability to perform lipogenesis (both basal and maximally insulin-stimulated) and isoproterenol-stimulated lipolysis. No changes were observed with respect to unstimulated lipolysis. A 15% reduction in the proportion of apoptotic adipocytes was observed in groups T and D compared with group S. The gene expression levels of adiponectin and PPAR-gamma were upregulated by factors of 3 and 2 in D vs. S, respectively. PREF-1 gene expression was 3-fold higher in T vs. S. From these results, we hypothesize that adipogenesis was stimulated in group D and accompanied by significant adipocyte hypertrophy and an increase in the lipogenic capacity of the adipocytes. The occurrence of apoptotic nuclei in PE fat cells was reduced in the D and T rats; these results raise the possibility that the adipose tissue

  20. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes.

    PubMed Central

    Dougherty, W G; Semler, B L

    1993-01-01

    Many viruses express their genome, or part of their genome, initially as a polyprotein precursor that undergoes proteolytic processing. Molecular genetic analyses of viral gene expression have revealed that many of these processing events are mediated by virus-encoded proteinases. Biochemical activity studies and structural analyses of these viral enzymes reveal that they have remarkable similarities to cellular proteinases. However, the viral proteinases have evolved unique features that permit them to function in a cellular environment. In this article, the current status of plant and animal virus proteinases is described along with their role in the viral replication cycle. The reactions catalyzed by viral proteinases are not simple enzyme-substrate interactions; rather, the processing steps are highly regulated, are coordinated with other viral processes, and frequently involve the participation of other factors. Images PMID:8302216

  1. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  2. Assessing the effects of microbial metabolism and metabolities on reservoir pore structure

    USGS Publications Warehouse

    Udegbunam, E.O.; Adkins, J.P.; Knapp, R.M.; McInerney, M.J.; Tanner, R.S.

    1991-01-01

    The effect of microbial treatment on pore structure of sandstone and carbonatereservoirs was determined. Understanding how different bacterial strains and their metabolic bioproducts affect reservoir pore structure will permit the prudent application of microorganisms for enhanced oil recovery. The microbial strains tested included Clostridium acetobutylicum, a polymer-producing Bacillus strain, and an unidentified halophilic anaerobe that mainly produced acids and gases. Electrical conductivity, absolute permeability, porosity and centrifuge capillary pressure were used to examine rock pore structures. Modifications of the pore structure observed in the laboratory cores included pore enlargement due to acid dissolution of carbonates and poare throat reduction due to biomass plugging. This paper shows that careful selection of microbes based on proper understanding of the reservoir petrophysical characteristics is necessary for applications of microbially enhanced oil recovery. These methods and results can be useful to field operators and laboratory researchers involved in design and screening of reservoirs for MEOR. The methods are also applicable in evaluation of formation damage caused by drilling, injection or completion fluids or stimulation caused by acids.

  3. Effects of sub-lethal high-pressure homogenization treatment on the outermost cellular structures and the volatile-molecule profiles of two strains of probiotic lactobacilli

    PubMed Central

    Tabanelli, Giulia; Vernocchi, Pamela; Patrignani, Francesca; Del Chierico, Federica; Putignani, Lorenza; Vinderola, Gabriel; Reinheimer, Jorge A.; Gardini, Fausto; Lanciotti, Rosalba

    2015-01-01

    Applying sub-lethal levels of high-pressure homogenization (HPH) to lactic acid bacteria has been proposed as a method of enhancing some of their functional properties. Because the principal targets of HPH are the cell-surface structures, the aim of this study was to examine the effect of sub-lethal HPH treatment on the outermost cellular structures and the proteomic profiles of two known probiotic bacterial strains. Moreover, the effect of HPH treatment on the metabolism of probiotic cells within a dairy product during its refrigerated storage was investigated using SPME-GC-MS. Transmission electron microscopy was used to examine the microstructural changes in the outermost cellular structures due to HPH treatment. These alterations may be involved in the changes in some of the technological and functional properties of the strains that were observed after pressure treatment. Moreover, the proteomic profiles of the probiotic strains treated with HPH and incubated at 37°C for various periods showed different peptide patterns compared with those of the untreated cells. In addition, there were differences in the peaks that were observed in the low-mass spectral region (2000–3000 Da) of the spectral profiles of the control and treated samples. Due to pressure treatment, the volatile-molecule profiles of buttermilk inoculated with treated or control cells and stored at 4°C for 30 days exhibited overall changes in the aroma profile and in the production of molecules that improved its sensory profile, although the two different species imparted specific fingerprints to the product. The results of this study will contribute to understanding the changes that occur in the outermost cellular structures and the metabolism of LAB in response to HPH treatment. The findings of this investigation may contribute to elucidating the relationships between these changes and the alterations of the technological and functional properties of LAB induced by pressure treatment. PMID

  4. Effects of sub-lethal high-pressure homogenization treatment on the outermost cellular structures and the volatile-molecule profiles of two strains of probiotic lactobacilli.

    PubMed

    Tabanelli, Giulia; Vernocchi, Pamela; Patrignani, Francesca; Del Chierico, Federica; Putignani, Lorenza; Vinderola, Gabriel; Reinheimer, Jorge A; Gardini, Fausto; Lanciotti, Rosalba

    2015-01-01

    Applying sub-lethal levels of high-pressure homogenization (HPH) to lactic acid bacteria has been proposed as a method of enhancing some of their functional properties. Because the principal targets of HPH are the cell-surface structures, the aim of this study was to examine the effect of sub-lethal HPH treatment on the outermost cellular structures and the proteomic profiles of two known probiotic bacterial strains. Moreover, the effect of HPH treatment on the metabolism of probiotic cells within a dairy product during its refrigerated storage was investigated using SPME-GC-MS. Transmission electron microscopy was used to examine the microstructural changes in the outermost cellular structures due to HPH treatment. These alterations may be involved in the changes in some of the technological and functional properties of the strains that were observed after pressure treatment. Moreover, the proteomic profiles of the probiotic strains treated with HPH and incubated at 37°C for various periods showed different peptide patterns compared with those of the untreated cells. In addition, there were differences in the peaks that were observed in the low-mass spectral region (2000-3000 Da) of the spectral profiles of the control and treated samples. Due to pressure treatment, the volatile-molecule profiles of buttermilk inoculated with treated or control cells and stored at 4°C for 30 days exhibited overall changes in the aroma profile and in the production of molecules that improved its sensory profile, although the two different species imparted specific fingerprints to the product. The results of this study will contribute to understanding the changes that occur in the outermost cellular structures and the metabolism of LAB in response to HPH treatment. The findings of this investigation may contribute to elucidating the relationships between these changes and the alterations of the technological and functional properties of LAB induced by pressure treatment. PMID

  5. Dielectric properties modelling of cellular structures with PDMS for micro-sensor applications

    NASA Astrophysics Data System (ADS)

    Kachroudi, Achraf; Basrour, Skandar; Rufer, Libor; Sylvestre, Alain; Jomni, Fathi

    2015-12-01

    Electro-active polymers are emerging in the fields of actuators and micro-sensors because their good dielectric and mechanical properties makes them suitable for such applications. In this work, we focus on micro-structured (cellular) polymer materials (referred as piezoelectrets or ferroelectrets) that need prior charging to attain piezoelectric behaviour. The development of such applications requires an in-depth knowledge of the intrinsic dielectric properties of such structures and models to enable the accurate prediction of a given micro-structured material’s dielectric properties. Various polymers including polypropylene, polytetrafluoroethylene, fluoroethylenepropylene, cyclo-olefines and poly(ethylene terephthalate) in a cellular form have been studied by researchers over the last fifteen years. However, there is still a lack of information on the intrinsic dielectric properties of the most recently used dielectric polymer (polydimethylsiloxane, PDMS) over wide frequency and temperature ranges. In this work, we shall propose an exhaustive equivalent electrical circuit model and explain how it can be used to predict the micro-structured PDMS complex permittivity versus frequency and temperature. The results obtained from the model were found to be in good agreement with experimental data for various micro-structured PDMS materials. Typically, for micro-sensor applications, the dielectric constant and dielectric losses are key factors which need to be minimized. We have developed a configuration which enables both to be strongly reduced with a reduction of 16% in the dielectric constant of a micro-structured PDMS compared with the bulk material. In addition, the phenomena responsible for dielectric losses variations with frequency and temperature are discussed and correlated with the theoretical model. Our model is thus proved to be a powerful tool for the control of the dielectric properties of micro-structured PDMS material for micro-sensor applications.

  6. Visualizing Escherichia coli sub-cellular structure using sparse deconvolution Spatial Light Interference Tomography.

    PubMed

    Mir, Mustafa; Babacan, S Derin; Bednarz, Michael; Do, Minh N; Golding, Ido; Popescu, Gabriel

    2012-01-01

    Studying the 3D sub-cellular structure of living cells is essential to our understanding of biological function. However, tomographic imaging of live cells is challenging mainly because they are transparent, i.e., weakly scattering structures. Therefore, this type of imaging has been implemented largely using fluorescence techniques. While confocal fluorescence imaging is a common approach to achieve sectioning, it requires fluorescence probes that are often harmful to the living specimen. On the other hand, by using the intrinsic contrast of the structures it is possible to study living cells in a non-invasive manner. One method that provides high-resolution quantitative information about nanoscale structures is a broadband interferometric technique known as Spatial Light Interference Microscopy (SLIM). In addition to rendering quantitative phase information, when combined with a high numerical aperture objective, SLIM also provides excellent depth sectioning capabilities. However, like in all linear optical systems, SLIM's resolution is limited by diffraction. Here we present a novel 3D field deconvolution algorithm that exploits the sparsity of phase images and renders images with resolution beyond the diffraction limit. We employ this label-free method, called deconvolution Spatial Light Interference Tomography (dSLIT), to visualize coiled sub-cellular structures in E. coli cells which are most likely the cytoskeletal MreB protein and the division site regulating MinCDE proteins. Previously these structures have only been observed using specialized strains and plasmids and fluorescence techniques. Our results indicate that dSLIT can be employed to study such structures in a practical and non-invasive manner. PMID:22761910

  7. Simple and Flexible Self-Reproducing Structures in Asynchronous Cellular Automata and Their Dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Lee, Jia; Yang, Rui-Long; Zhu, Qing-Sheng

    2013-03-01

    Self-reproduction on asynchronous cellular automata (ACAs) has attracted wide attention due to the evident artifacts induced by synchronous updating. Asynchronous updating, which allows cells to undergo transitions independently at random times, might be more compatible with the natural processes occurring at micro-scale, but the dark side of the coin is the increment in the complexity of an ACA in order to accomplish stable self-reproduction. This paper proposes a novel model of self-timed cellular automata (STCAs), a special type of ACAs, where unsheathed loops are able to duplicate themselves reliably in parallel. The removal of sheath cannot only allow various loops with more flexible and compact structures to replicate themselves, but also reduce the number of cell states of the STCA as compared to the previous model adopting sheathed loops [Y. Takada, T. Isokawa, F. Peper and N. Matsui, Physica D227, 26 (2007)]. The lack of sheath, on the other hand, often tends to cause much more complicated interactions among loops, when all of them struggle independently to stretch out their constructing arms at the same time. In particular, such intense collisions may even cause the emergence of a mess of twisted constructing arms in the cellular space. By using a simple and natural method, our self-reproducing loops (SRLs) are able to retract their arms successively, thereby disentangling from the mess successfully.

  8. A Computationally Efficient Modeling Approach for Predicting Mechanical Behavior of Cellular Lattice Structures

    NASA Astrophysics Data System (ADS)

    Karamooz Ravari, M. R.; Kadkhodaei, M.

    2015-01-01

    As the fabrication and characterization of cellular lattice structures are time consuming and expensive, development of simple models is vital. In this paper, a new approach is presented to model the mechanical stress-strain curve of cellular lattices with low computational efforts. To do so, first, a single strut of the lattice is modeled with its imperfections and defects. The stress-strain of a specimen fabricated with the same processing parameters as those used for the lattice is used as the base material. Then, this strut is simulated in simple tension, and its stress-strain curve is obtained. After that, a unit cell of the lattice is simulated without any imperfections, and the material parameters of the single strut are attributed to the bulk material. Using this method, the stress-strain behavior of the lattice is obtained and shown to be in a good agreement with the experimental result. Accordingly, this paper presents a computationally efficient method for modeling the mechanical properties of cellular lattices with a reasonable accuracy using the material parameters of simple tension tests. The effects of the single strut's length and its micropores on its mechanical properties are also assessed.

  9. On the effects of geometry, defects, and material asymmetry on the mechanical response of shape memory alloy cellular lattice structures

    NASA Astrophysics Data System (ADS)

    Karamooz Ravari, M. R.; Nasr Esfahani, S.; Taheri Andani, M.; Kadkhodaei, M.; Ghaei, A.; Karaca, H.; Elahinia, M.

    2016-02-01

    Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced materials with many potential applications. The cost of fabrication of these structures however is high. It is therefore necessary to develop modeling methods to predict the functional behavior of these alloys before fabrication. The main aim of the present study is to assess the effects of geometry, microstructural imperfections and material asymmetric response of dense shape memory alloys on the mechanical response of cellular structures. To this end, several cellular and dense NiTi samples are fabricated using a selective laser melting process. Both cellular and dense specimens were tested in compression in order to obtain their stress-strain response. For modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory which is able to describe the material asymmetry was employed. Five finite element models based on unit cell and multi-cell methods were generated to predict the mechanical response of cellular lattices. The results show the considerable effects of the microstructural imperfections on the mechanical response of the cellular lattice structures. The asymmetric material response of the bulk material also affects the mechanical response of the corresponding cellular structure.

  10. Turbulence effects on cellular burning structures in lean premixed hydrogen flames

    SciTech Connect

    Day, Marc; Bell, John; Beckner, Vince; Lijewski, Michael; Bremer, Peer-Timo; Pascucci, Valerio

    2009-05-15

    We present numerical simulations of lean hydrogen flames interacting with turbulence. The simulations are performed in an idealized setting using an adaptive low Mach number model with a numerical feedback control algorithm to stabilize the flame. At the conditions considered here, hydrogen flames are thermodiffusively unstable, and burn in cellular structures. For that reason, we consider two levels of turbulence intensity and a case without turbulence whose dynamics is driven by the natural flame instability. An overview of the flame structure shows that the burning in the cellular structures is quite intense, with the burning patches separated by regions in which the flame is effectively extinguished. We explore the geometry of the flame surface in detail, quantifying the mean and Gaussian curvature distributions and the distribution of the cell sizes. We next characterize the local flame speed to quantify the effect of flame intensification on local propagation speed. We then introduce several diagnostics aimed at quantifying both the level of intensification and diffusive mechanisms that lead to the intensification. (author)

  11. Structural basis of lentiviral subversion of a cellular protein degradation pathway

    NASA Astrophysics Data System (ADS)

    Schwefel, David; Groom, Harriet C. T.; Boucherit, Virginie C.; Christodoulou, Evangelos; Walker, Philip A.; Stoye, Jonathan P.; Bishop, Kate N.; Taylor, Ian A.

    2014-01-01

    Lentiviruses contain accessory genes that have evolved to counteract the effects of host cellular defence proteins that inhibit productive infection. One such restriction factor, SAMHD1, inhibits human immunodeficiency virus (HIV)-1 infection of myeloid-lineage cells as well as resting CD4+ T cells by reducing the cellular deoxynucleoside 5'-triphosphate (dNTP) concentration to a level at which the viral reverse transcriptase cannot function. In other lentiviruses, including HIV-2 and related simian immunodeficiency viruses (SIVs), SAMHD1 restriction is overcome by the action of viral accessory protein x (Vpx) or the related viral protein r (Vpr) that target and recruit SAMHD1 for proteasomal degradation. The molecular mechanism by which these viral proteins are able to usurp the host cell's ubiquitination machinery to destroy the cell's protection against these viruses has not been defined. Here we present the crystal structure of a ternary complex of Vpx with the human E3 ligase substrate adaptor DCAF1 and the carboxy-terminal region of human SAMHD1. Vpx is made up of a three-helical bundle stabilized by a zinc finger motif, and wraps tightly around the disc-shaped DCAF1 molecule to present a new molecular surface. This adapted surface is then able to recruit SAMHD1 via its C terminus, making it a competent substrate for the E3 ligase to mark for proteasomal degradation. The structure reported here provides a molecular description of how a lentiviral accessory protein is able to subvert the cell's normal protein degradation pathway to inactivate the cellular viral defence system.

  12. Structural basis of lentiviral subversion of a cellular protein degradation pathway

    PubMed Central

    Schwefel, David; Groom, Harriet C. T.; Boucherit, Virginie C.; Christodoulou, Evangelos; Walker, Philip A.; Stoye, Jonathan P.; Bishop, Kate N.; Taylor, Ian A.

    2013-01-01

    Lentiviruses contain accessory genes that have evolved to counteract the effects of host cellular defence proteins that inhibit productive infection. One such restriction factor, SAMHD1, inhibits HIV-1 infection of myeloid-lineage cells 1,2 as well as resting CD4+ T cells 3,4 by reducing the cellular dNTP concentration to a level where the viral reverse transcriptase cannot function 5,6. In other lentiviruses, including HIV-2 and related SIVs, SAMHD1 restriction is overcome by the action of viral accessory protein x (Vpx) or the related viral protein r (Vpr) that target and recruit SAMHD1 for proteasomal degradation 7,8. The molecular mechanism by which these viral proteins are able to usurp the host cell’s ubiquitination machinery to destroy the cell’s protection against these viruses has not been defined. We present here the crystal structure of a ternary complex of Vpx with the host cell’s E3 ligase substrate adaptor DCAF1 and the C-terminal region of SAMHD1. Vpx is made up of a three-helical bundle, stabilised by a zinc finger motif and wraps tightly around the disc-shaped DCAF1 molecule to present a new molecular surface. This adapted surface is then able to recruit SAMHD1 via its C-terminus making it a competent substrate for the E3 ligase to mark for proteasomal degradation. The structure provides the first description of how a lentiviral accessory protein is able to subvert the cell’s normal protein degradation pathway to inactivate the cellular viral defence system. PMID:24336198

  13. Effects of nitrogen monoxide and carbon monoxide on molecular and cellular iron metabolism: mirror-image effector molecules that target iron.

    PubMed Central

    Watts, Ralph N; Ponka, Prem; Richardson, Des R

    2003-01-01

    Many effector functions of nitrogen monoxide (NO) and carbon monoxide (CO) are mediated through their high-affinity for iron (Fe). In this review, the roles of NO and CO are examined in terms of their effects on the molecular and cellular mechanisms involved in Fe metabolism. Both NO and CO avidly form complexes with a plethora of Fe-containing molecules. The generation of NO and CO is mediated by the nitric oxide synthase and haem oxygenase (HO) families of enzymes respectively. The effects of NO on Fe metabolism have been well characterized, whereas knowledge of the effects of CO remains within its infancy. In terms of the role of NO in Fe metabolism, one of the best characterized interactions includes its effect on the iron regulatory proteins. These molecules are mRNA-binding proteins that control the expression of the transferrin receptor 1 and ferritin, molecules that are involved in Fe uptake and storage respectively. Apart from this, activated macrophages impart their cytotoxic activity by generating NO, which results in marked Fe mobilization from tumour-cell targets. This deprives the cell of the Fe that is required for DNA synthesis and energy production. Considering that HO degrades haem, resulting in the release of CO, Fe(II) and biliverdin, it is suggested that a CO-Fe complex will form. This may account for the rapid Fe mobilization observed from macrophages after haemoglobin catabolism. Intriguingly, overexpression of HO results in cellular Fe mobilization, suggesting that CO has a similar effect to NO on Fe trafficking. Preliminary evidence suggests that, like NO, CO plays important roles in Fe metabolism. PMID:12423201

  14. Cellular Oxygen Sensing: Crystal Structure of Hypoxia-Inducible Factor Prolyl Hydroxylase (PHD2)

    SciTech Connect

    McDonough,M.; Li, V.; Flashman, E.; Chowdhury, R.; Mohr, C.; Lienard, B.; Zondlo, J.; Oldham, N.; Clifton, I.; et al.

    2006-01-01

    Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-{alpha} subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response. We describe crystal structures of the catalytic domain of human PHD2, an important prolyl-4-hydroxylase in the human hypoxic response in normal cells, in complex with Fe(II) and an inhibitor to 1.7 Angstroms resolution. PHD2 crystallizes as a homotrimer and contains a double-stranded {beta}-helix core fold common to the Fe(II) and 2-oxoglutarate-dependant dioxygenase family, the residues of which are well conserved in the three human PHD enzymes (PHD 1-3). The structure provides insights into the hypoxic response, helps to rationalize a clinically observed mutation leading to familial erythrocytosis, and will aid in the design of PHD selective inhibitors for the treatment of anemia and ischemic disease.

  15. Enzyme oscillation can enhance the thermodynamic efficiency of cellular metabolism: consequence of anti-phase coupling between reaction flux and affinity

    NASA Astrophysics Data System (ADS)

    Himeoka, Yusuke; Kaneko, Kunihiko

    2016-04-01

    Cells generally convert nutrient resources to products via energy transduction. Accordingly, the thermodynamic efficiency of this conversion process is one of the most essential characteristics of living organisms. However, although these processes occur under conditions of dynamic metabolism, most studies of cellular thermodynamic efficiency have been restricted to examining steady states; thus, the relevance of dynamics to this efficiency has not yet been elucidated. Here, we develop a simple model of metabolic reactions with anabolism–catabolism coupling catalyzed by enzymes. Through application of external oscillation in the enzyme abundances, the thermodynamic efficiency of metabolism was found to be improved. This result is in strong contrast with that observed in the oscillatory input, in which the efficiency always decreased with oscillation. This improvement was effectively achieved by separating the anabolic and catabolic reactions, which tend to disequilibrate each other, and taking advantage of the temporal oscillations so that each of the antagonistic reactions could progress near equilibrium. In this case, anti-phase oscillation between the reaction flux and chemical affinity through oscillation of enzyme abundances is essential. This improvement was also confirmed in a model capable of generating autonomous oscillations in enzyme abundances. Finally, the possible relevance of the improvement in thermodynamic efficiency is discussed with respect to the potential for manipulation of metabolic oscillations in microorganisms.

  16. The Feasibility of Assessing Branched-Chain Amino Acid Metabolism in Cellular Models of Prostate Cancer with Hyperpolarized [1-13C]-Ketoisocaproate

    PubMed Central

    Billingsley, Kelvin L.; Park, Jae Mo; Josan, Sonal; Hurd, Ralph; Mayer, Dirk; Spielman-Sun, Eleanor; Nishimura, Dwight G.; Brooks, James D.; Spielman, Daniel

    2014-01-01

    Recent advancements in the field of hyperpolarized 13C magnetic resonance spectroscopy (MRS) have yielded powerful techniques capable of real-time analysis of metabolic pathways. These non-invasive methods have increasingly shown application in impacting disease diagnosis and have further been employed in mechanistic studies of disease onset and progression. Our goals were to investigate branched-chain aminotransferase (BCAT) activity in prostate cancer with a novel molecular probe, hyperpolarized [1-13C]-2-ketoisocaproate ([1-13C]-KIC), and explore the potential of branched-chain amino acid (BCAA) metabolism to serve as a biomarker. Using traditional spectrophotometric assays, BCAT enzymatic activities were determined in vitro for various sources of prostate cancer (human, transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse and human cell lines). These preliminary studies indicated that low levels of BCAT activity were present in all models of prostate cancer but enzymatic levels are altered significantly in prostate cancer relative to healthy tissue. The MR spectroscopic studies were conducted with two cellular models (PC-3 and DU-145) that exhibited levels of BCAA metabolism comparable to the human disease state. Hyperpolarized [1-13C]-KIC was administered to prostate cancer cell lines, and the conversion of [1-13C]-KIC to the metabolic product, [1-13C]-leucine ([1-13C]-Leu), could be monitored via hyperpolarized 13C MRS. PMID:24907854

  17. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology . 14th ed. Hoboken, NJ: John H Wiley and Sons; 2013: ...

  18. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    SciTech Connect

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G.

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.

  19. The extracellular matrix of Volvox carteri: molecular structure of the cellular compartment.

    PubMed

    Ertl, H; Mengele, R; Wenzl, S; Engel, J; Sumper, M

    1989-12-01

    The extracellular matrix (ECM) of Volvox contains insoluble fibrous layers that surround individual cells at a distance to form contiguous cellular compartments. Using immunological techniques, we identified a sulfated surface glycoprotein (SSG 185) as the monomeric precursor of this substructure within the ECM. The primary structure of the SSG 185 poly-peptide chain has been derived from cDNA and genomic DNA. A central domain of the protein, 80 amino acid residues long, consists almost exclusively of hydroxyproline residues. The chemical structure of the highly sulfated polysaccharide covalently attached to SSG 185 has been determined by permethylation analysis. As revealed by EM, SSG 185 is a rod-shaped molecule with a 21-nm-long polysaccharide strand protruding from its central region. The chemical nature of the cross-links between SSG 185 monomers is discussed. PMID:2689458

  20. Topometry optimization of sheet metal structures for crashworthiness design using hybrid cellular automata

    NASA Astrophysics Data System (ADS)

    Mozumder, Chandan K.

    The objective in crashworthiness design is to generate plastically deformable energy absorbing structures which can satisfy the prescribed force-displacement (FD) response. The FD behavior determines the reaction force, displacement and the internal energy that the structure should withstand. However, attempts to include this requirement in structural optimization problems remain scarce. The existing commercial optimization tools utilize models under static loading conditions because of the complexities associated with dynamic/impact loading. Due to the complexity of a crash event and the consequent time required to numerically analyze the dynamic response of the structure, classical methods (i.e., gradient-based and direct) are not well developed to solve this undertaking. This work presents an approach under the framework of the hybrid cellular automaton (HCA) method to solve the above challenge. The HCA method has been successfully applied to nonlinear transient topology optimization for crashworthiness design. In this work, the HCA algorithm has been utilized to develop an efficient methodology for synthesizing shell-based sheet metal structures with optimal material thickness distribution under a dynamic loading event using topometry optimization. This method utilizes the cellular automata (CA) computing paradigm and nonlinear transient finite element analysis (FEA) via ls-dyna. In this method, a set field variables is driven to their target states by changing a convenient set of design variables (e.g., thickness). These rules operate locally in cells within a lattice that only know local conditions. The field variables associated with the cells are driven to a setpoint to obtain the desired structure. This methodology is used to design for structures with controlled energy absorption with specified buckling zones. The peak reaction force and the maximum displacement are also constrained to meet the desired safety level according to passenger safety

  1. Structural-mechanical model of wax crystal networks—a mesoscale cellular solid approach

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yukihiro; Marangoni, Alejandro G.

    2014-04-01

    Mineral waxes are widely used materials in industrial applications; however, the relationship between structure and mechanical properties is poorly understood. In this work, mineral wax-oil networks were characterized as closed-cell cellular solids, and differences in their mechanical response predicted from structural data. The systems studied included straight-chain paraffin wax (SW)-oil mixtures and polyethylene wax (PW)-oil mixtures. Analysis of cryogenic-SEM images of wax-oil networks allowed for the determination of the length (l) and thickness (t) of the wax cell walls as a function of wax mass fraction (Φ). A linear relationship between t/l and Φ (t/l ˜ Φ 0.89) suggested that wax-oil networks were cellular solids of the closed-cell type. However, the scaling behavior of the elastic modulus with the volume fraction of solids did not agree with theoretical predictions, yielding the same scaling exponent, μ = 0.84, for both waxes. This scaling exponent obtained from mechanical measurements could be predicted from the scaling behavior of the effective wax cell size as a function of wax mass fraction in oil obtained by cryogenic scanning electron microscopy. Microscopy studies allowed us to propose that wax-oil networks are structured as an ensemble of close-packed spherical cells filled with oil, and that it is the links between cells that yield under simple uniaxial compression. Thus, the Young’s moduli for the links between cells in SW and PW wax systems could be estimated as E L (SW) = 2.76 × 109 Pa and E L (PW) = 1.64 × 109 Pa, respectively. The structural parameter responsible for the observed differences in the mechanical strength between the two wax-oil systems is the size of the cells. Polyethylene wax has much smaller cell sizes than the straight chain wax and thus displays a higher Young’s modulus and yield stress.

  2. Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization.

    PubMed

    Cherchi, Carla; Chernenko, Tatyana; Diem, Max; Gu, April Z

    2011-04-01

    The present study investigated the impact of nano titanium dioxide (nTiO(2) ) exposure on the cellular structures of the nitrogen-fixing cyanobacteria Anabaena variabilis. Results of the present study showed that nTiO(2) exposure led to observable alteration in various intracellular structures and induced a series of recognized stress responses, including production of reactive oxygen species (ROS), appearance and increase in the abundance of membrane crystalline inclusions, membrane mucilage layer formation, opening of intrathylakoidal spaces, and internal plasma membrane disruption. The production of total ROS in A. variabilis cells increased with increasing nTiO(2) doses and exposure time, and the intracellular ROS contributed to only a small fraction (<10%) of the total ROS measured. The percentage of cells with loss of thylakoids and growth of membrane crystalline inclusions increased as the nTiO(2) dose and exposure time increased compared with controls, suggesting their possible roles in stress response to nTiO(2) , as previously shown for metals. Algal cell surface morphology and mechanical properties were modified by nTiO(2) exposure, as indicated by the increase in cell surface roughness and shifts in cell spring constant determined by atomic force microscopy analysis. The change in cell surface structure and increase in the cellular turgor pressure likely resulted from the structural membrane damage mediated by the ROS production. Transmission electron microscopy (TEM) analysis of nTiO(2) aggregates size distribution seems to suggest possible disaggregation of nTiO(2) aggregates when in close contact with microbial cells, potentially as a result of biomolecules such as DNA excreted by organisms that may serve as a biodispersant. The present study also showed, for the first time, with both TEM and Raman imaging that internalization of nTiO(2) particles through multilayered membranes in algal cells is possible. Environ. Toxicol. Chem. 2011; 30:861-869.

  3. Structural and Metabolic Specificity of Methylthiocoformycin for Malarial Adenosine Deaminases

    SciTech Connect

    Ho, M.; Cassera, M; Madrid, D; Ting, L; Tyler, P; Kim, K; Almo, S; Schramm, V

    2009-01-01

    Plasmodium falciparum is a purine auxotroph requiring hypoxanthine as a key metabolic precursor. Erythrocyte adenine nucleotides are the source of the purine precursors, making adenosine deaminase (ADA) a key enzyme in the pathway of hypoxanthine formation. Methylthioadenosine (MTA) is a substrate for most malarial ADAs, but not for human ADA. The catalytic site specificity of malarial ADAs permits methylthiocoformycin (MT-coformycin) to act as a Plasmodium-specific transition state analogue with low affinity for human ADA. The structural basis for MTA and MT-coformycin specificity in malarial ADAs is the subject of speculation. Here, the crystal structure of ADA from Plasmodium vivax (PvADA) in a complex with MT-coformycin reveals an unprecedented binding geometry for 5?-methylthioribosyl groups in the malarial ADAs. Compared to malarial ADA complexes with adenosine or deoxycoformycin, 5?-methylthioribosyl groups are rotated 130 degrees. A hydrogen bonding network between Asp172 and the 3?-hydroxyl of MT-coformycin is essential for recognition of the 5?-methylthioribosyl group. Water occupies the 5?-hydroxyl binding site when MT-coformycin is bound. Mutagenesis of Asp172 destroys the substrate specificity for MTA and MT-coformycin. Kinetic, mutagenic, and structural analyses of PvADA and kinetic analysis of five other Plasmodium ADAs establish the unique structural basis for its specificity for MTA and MT-coformycin. Plasmodium gallinaceum ADA does not use MTA as a substrate, is not inhibited by MT-coformycin, and is missing Asp172. Treatment of P. falciparum cultures with coformycin or MT-coformycin in the presence of MTA is effective in inhibiting parasite growth.

  4. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.

    PubMed

    Jin, Yifei; Compaan, Ashley; Bhattacharjee, Tapomoy; Huang, Yong

    2016-06-01

    Freeform fabrication of soft structures has been of great interest in recent years. In particular, it is viewed as a critical step toward the grand vision of organ printing--the on-demand design and fabrication of three-dimensional (3D) human organ constructs for implantation and regenerative medicine. The objective of this study is to develop a novel granular gel support material-enabled, two-step gelation-based 'printing-then-gelation' approach to fabricate 3D alginate structures using filament extrusion. Specifically, a granular Carbopol microgel bath holds the ungelled alginate structure being extruded, avoiding the instantaneous gelation of each printed layer as well as resultant surface tension-induced nozzle clogging. Since Carbopol microgels react with multivalent cations, which are needed for alginate crosslinking, gelatin is introduced as a sacrificial material to make an alginate and gelatin bioink for extrusion, which gels thermally (step-one gelation) to initially stabilize the printed structure for removal from Carbopol. Then gelatin is melted and diffused away while alginate is ionically crosslinked in a 37 °C calcium chloride bath (step-two gelation), resulting in an alginate structure. The proposed 'printing-then-gelation' approach works for alginate structure fabrication, and it is also applicable for the printing of cellular constructs and other similar homogeneous soft structures using a two-step or even multi-step approach. The main conclusions are: (1) 0.8% (w/v) Carbopol bath with a neutral pH value may be most suitable for soft structure printing; (2) it is most effective to use a 0.9% (w/v) NaCl solution to facilitate the removal of residual Carbopol; and (3) alginate structures fabricated using the proposed approach demonstrate better mechanical properties than those fabricated using the conventional 'gelation-while-printing' approach. PMID:27257095

  5. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    PubMed Central

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-01-01

    Abstract. Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs. PMID:25688541

  6. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  7. PACS—Realization of an adaptive concept using pressure actuated cellular structures

    NASA Astrophysics Data System (ADS)

    Gramüller, B.; Boblenz, J.; Hühne, C.

    2014-10-01

    A biologically inspired concept is investigated which can be utilized to develop energy efficient, lightweight and applicational flexible adaptive structures. Building a real life morphing unit is an ambitious task as the numerous works in the particular field show. Summarizing fundamental demands and barriers regarding shape changing structures, the basic challenges of designing morphing structures are listed. The concept of Pressure Actuated Cellular Structures (PACS) is arranged within the recent morphing activities and it is shown that it complies with the underlying demands. Systematically divided into energy-related and structural subcomponents the working principle is illuminated and relationships between basic design parameters are expressed. The analytical background describing the physical mechanisms of PACS is presented in concentrated manner. This work focuses on the procedure of dimensioning, realizing and experimental testing of a single cell and a single row cantilever made of PACS. The experimental outcomes as well as the results from the FEM computations are used for evaluating the analytical methods. The functionality of the basic principle is thus validated and open issues are determined pointing the way ahead.

  8. Powder Removal from Ti-6Al-4V Cellular Structures Fabricated via Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Hasib, Hazman; Harrysson, Ola L. A.; West, Harvey A.

    2015-03-01

    Direct metal fabrication systems like electron beam melting (EBM) and direct metal laser sintering (also called selective laser melting) are gaining popularity. One reason is the design and fabrication freedom that these technologies offer over traditional processes. One specific feature that is of interest is mesh or lattice structures that can be produced using these powder-bed systems. One issue with the EBM process is that the powder trapped within the structure during the fabrication process is sintered and can be hard to remove as the mesh density increases. This is usually not an issue for the laser-based systems since most of them work at a low temperature and the sintering of the powder is less of an issue. Within the scope of this project, a chemical etching process was evaluated for sintered powder removal using three different cellular structures with varying mesh densities. All meshes were fabricated via EBM using Ti6Al4V powder. The results are promising, but the larger the structures, the more difficult it is to completely remove the sintered powder without affecting the integrity of the mesh structure.

  9. From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations

    PubMed Central

    Green, Charlotte J.; Pramfalk, Camilla; Morten, Karl J.

    2014-01-01

    The liver is a main metabolic organ in the human body and carries out a vital role in lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, encompassing a spectrum of conditions from simple fatty liver (hepatic steatosis) through to cirrhosis. Although obesity is a known risk factor for hepatic steatosis, it remains unclear what factor(s) is/are responsible for the primary event leading to retention of intrahepatocellular fat. Studying hepatic processes and the etiology and progression of disease in vivo in humans is challenging, not least as NAFLD may take years to develop. We present here a review of experimental models and approaches that have been used to assess liver triglyceride metabolism and discuss their usefulness in helping to understand the aetiology and development of NAFLD. PMID:25352434

  10. Increase in cellular pool of low-molecular-weight iron during ethanol metabolism in rat hepatocyte cultures. Relationship with lipid peroxidation.

    PubMed

    Sergent, O; Morel, I; Cogrel, P; Chevanne, M; Pasdeloup, N; Brissot, P; Lescoat, G; Cillard, P; Cillard, J

    1995-01-01

    Ethanol-induced lipid peroxidation was studied in primary rat hepatocyte cultures supplemented with ethanol at the concentration of 50 mM. Lipid peroxidation was assessed by two indices: (1) conjugated dienes by second-derivative UV spectroscopy in lipid extract of hepatocytes (intracellular content), and (2) free malondialdehyde (MDA) by HPLC-UV detection and quantitation for the incubation medium (extracellular content). In cultures supplemented with ethanol, free MDA increased significantly in culture media, whereas no elevation of conjugated diene level was observed in the corresponding hepatocytes. The cellular pool of low-mol-wt (LMW) iron was also evaluated in the hepatocytes using an electron spin resonance procedure. An early increase of intracellular LMW iron (< or = 1 hr) was observed in ethanol-supplemented cultures; it was inhibited by 4-methylpyrazole, an inhibitor of alcohol dehydrogenase, whereas alpha-tocopherol, which prevented lipid peroxidation, did not inhibit the increase of LMW iron. Therefore, the LMW iron elevation was the result of ethanol metabolism and was not secondarily induced by lipid hydroperoxides. Thus, ethanol caused lipid peroxidation in rat hepatocytes as shown by the increase of free MDA, although no conjugated diene elevation was detected. During ethanol metabolism, an increase in cellular LMW iron was observed that could enhance conjugated diene degradation. PMID:7779546

  11. Monitoring changes of cellular metabolism and microviscosity in vitro based on time-resolved endogenous fluorescence and its anisotropy decay dynamics

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Li, Dong; Qu, Jianan Y.

    2010-05-01

    Reduced nicotinamide adenine dinucleotide (NADH) is a well-known metabolic coenzyme and endogenous fluorophore. In this study, we develop a system that simultaneously measures time- and wavelength-resolved fluorescence to extract free and protein-bound NADH signals from total cellular fluorescence. We analyze temporal characteristics of NADH fluorescence in a mixture of NADH and lactate dehydrogenase (LDH) as well as in living cell samples. The results show that in both the NADH/LDH mixture and cell samples, a fraction of free NADH and protein-bound components can be identified. The extracted free and bound NADH signals are confirmed by time-resolved measurement of anisotropy decay of NADH fluorescence, based on the fact that free NADH is a small fluorescent molecule with much shorter rotational diffusion time than bound NADH. The ratio of free NADH signal to bound NADH signal is very different between normal and cancer cervical epithelial cells. In addition, the ratio changes significantly when the cell samples are treated with a mitochondrial inhibitor or uncoupler, demonstrating that the method is sensitive to monitor cellular metabolic activity. Finally, we demonstrate that the microviscosity for relatively small molecules such as NADH in cells could be extracted from wavelength- and time-resolved NADH fluorescence of living cell samples.

  12. Global Analysis of the Role of Autophagy in Cellular Metabolism and Energy Homeostasis in Arabidopsis Seedlings under Carbon Starvation[OPEN

    PubMed Central

    Avin-Wittenberg, Tamar; Bajdzienko, Krzysztof; Wittenberg, Gal; Alseekh, Saleh; Tohge, Takayuki; Bock, Ralph; Giavalisco, Patrick; Fernie, Alisdair R.

    2015-01-01

    Germination and early seedling establishment are developmental stages in which plants face limited nutrient supply as their photosynthesis mechanism is not yet active. For this reason, the plant must mobilize the nutrient reserves provided by the mother plant in order to facilitate growth. Autophagy is a catabolic process enabling the bulk degradation of cellular constituents in the vacuole. The autophagy mechanism is conserved among eukaryotes, and homologs of many autophagy-related (ATG) genes have been found in Arabidopsis thaliana. T-DNA insertion mutants (atg mutants) of these genes display higher sensitivity to various stresses, particularly nutrient starvation. However, the direct impact of autophagy on cellular metabolism has not been well studied. In this work, we used etiolated Arabidopsis seedlings as a model system for carbon starvation. atg mutant seedlings display delayed growth in response to carbon starvation compared with wild-type seedlings. High-throughput metabolomic, lipidomic, and proteomic analyses were performed, as well as extensive flux analyses, in order to decipher the underlying causes of the phenotype. Significant differences between atg mutants and wild-type plants have been demonstrated, suggesting global effects of autophagy on central metabolism during carbon starvation as well as severe energy deprivation, resulting in a morphological phenotype. PMID:25649436

  13. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting

    NASA Astrophysics Data System (ADS)

    Zhong, Yuan; Liu, Leifeng; Wikman, Stefan; Cui, Daqing; Shen, Zhijian

    2016-03-01

    A feasibility study was performed to fabricate ITER In-Vessel components by Selective Laser Melting (SLM) supported by Fusion for Energy (F4E). Almost fully dense 316L stainless steel (SS316L) components were prepared from gas-atomized powder and with optimized SLM processing parameters. Tensile tests and Charpy-V tests were carried out at 22 °C and 250 °C and the results showed that SLM SS316L fulfill the RCC-MR code. Microstructure characterization reveals the presence of hierarchical macro-, micro- and nano-structures in as-built samples that were very different from SS316L microstructures prepared by other established methods. The formation of a characteristic intragranular cellular segregation network microstructure appears to contribute to the increase of yield strength without losing ductility. Silicon oxide nano-inclusions were formed during the SLM process that generated a micro-hardness fluctuation in the building direction. The combined influence of a cellular microstructure and the nano-inclusions constraints the size of ductile dimples to nano-scale. The crack propagation is hindered by a pinning effect that improves the defect-tolerance of the SLM SS316L. This work proves that it was possible to manufacture SS316L with properties suitable for ITER First Wall panels. Further studies on irradiation properties of SLM SS316L and manufacturing of larger real-size components are needed.

  14. Physical principles of genomic regulation through cellular nanoscale structure and implications for initiation of carcinogenesis

    NASA Astrophysics Data System (ADS)

    Backman, Vadim

    2011-03-01

    Although compelling evidence suggests that cellular nanoarchitecture and nanoscale environment where molecular interactions take place would be expected to significantly affect macromolecular processes, biological ramifications of cellular nanoscale organization have been largely unexplored. This understanding has been hampered in part by the diffraction limited resolution of optical microscopy. The talk will discuss a novel optical microscopy technique, partial wave spectroscopic (PWS) microscopy, that is capable of quantifying statistical properties of cell structure at the nanoscale. Animal and human studies demonstrated that an alteration in the statistical properties of the nanoscale mass density distribution in the cell nucleus (e.g. nuclear nanoarchitecture) is one of the earliest and ubiquitous events in carcinogenesis and precedes any other known morphological changes at larger length scales (e.g. microarchitecture). The talk will also discuss the physical principles of how the alteration in nuclear nanoarchitecture may modulate genomic processes and, in particular, gene transcription. Work done in collaboration with Hariharan Subramanian, Prabhakar Pradhan, Dhwanil Damania, Lusik Cherkezyan, Yolanda Stypula, Jun Soo Kim, Igal Szleifer, Northwestern University, Evanston, IL, Hemant K. Roy, Northshore University HealthSystems, Evanston, IL

  15. A study on the cellular structure during stress solicitation induced by BioMEMS.

    PubMed

    Fior, Raffaella; Maggiolino, Stefano; Codan, Barbara; Lazzarino, Marco; Sbaizero, Orfeo

    2011-01-01

    The investigation of single cells is a topic in continuous evolution. The complexity of the cellular matrix, the huge variety of cells, the interaction of one cell with the other are all factors that must be taken into consideration in the study of the cellular structure and mechanics. In this project, we developed different types of bioMEMS for cell's stretching, both transparent devices based on silicon nitride and non-transparent silicon based. While the use of silicon devices is limited to reflection microscopes, transparent bioMEMS can be used with transmission and reflection microscopes but can also be easily coupled with other tools such as patch clamp analyzers or atomic force microscope. This improvement will open brand new possibilities in the biological investigation field. We used these two BioMEMS to stretch a single cell in a controlled way and, as a first investigation, we focused on its morphology. We noticed that during a controlled stretch, cells react to the applied deformation. A hysteretic behavior on the ratio between area and perimeter has been highlighted. PMID:22254838

  16. Development of High-Pressure Structural and Cellular Biophysics at Miami University

    NASA Astrophysics Data System (ADS)

    Urayama, Paul

    2004-04-01

    Pressures found in the biosphere (up to 1200 atm) have large effects on enzyme specificity and activity, molecular associations, protein folding, viral infectivity, and cellular morphology. The importance of pressure in pharmaceuticals, medical, and biomaterials sciences is beginning to be appreciated. Enzyme reactions under high pressure or in supercritical fluids may be promising in the synthesis of pharmaceuticals. High pressure processing of biopolymer networks may be important in producing matrices for biomaterials applications. In medicine, herpes, immunodeficiency viruses, and certain prion proteins are inactivated by pressure, which may be useful in the ex vivo treatment of blood. Even physiologically generated pressures, such as during colon peristalsis, have biological effects, for example, on the adhesion properties of epithelial cells in colon cancer. This presentation describes a new high-pressure structural and cellular biophysics laboratory under development at Miami University. Applications of specific methods, including high-pressure time-resolved fluorescence spectroscopy; high-pressure fluorescence microscopy; and high-pressure x-ray macromolecular crystallography will be discussed.

  17. Fluidic origami cellular structure -- combining the plant nastic movements with paper folding art

    NASA Astrophysics Data System (ADS)

    Li, Suyi; Wang, K. W.

    2015-04-01

    By combining the physical principles behind the nastic plant movements and the rich designs of paper folding art, we propose a new class of multi-functional adaptive structure called fluidic origami cellular structure. The basic elements of this structure are fluid filled origami "cells", made by connecting two compatible Miura-Ori stripes along their crease lines. These cells are assembled seamlessly into a three dimensional topology, and their internal fluid pressure or volume are strategically controlled just like in plants for nastic movements. Because of the unique geometry of the Miura-Ori, the relationships among origami folding, internal fluid properties, and the crease bending are intricate and highly nonlinear. Fluidic origami can exploit such relationships to provide multiple adaptive functions concurrently and effectively. For example, it can achieve actuation or morphing by actively changing the internal fluid volume, and stillness tuning by constraining the fluid volume. Fluidic origami can also be bistable because of the nonlinear correlation between folding and crease material bending, and such bistable character can be altered significantly by fluid pressurization. These functions are natural and essential companions with respect to each other, so that fluidic origami can holistically exhibit many attractive characteristics of plants and deliver rapid and efficient actuation/morphing while maintaining a high structural stillness. The purpose of this paper is to introduce the design and working principles of the fluidic origami, as well as to explore and demonstrate its performance potential.

  18. Ligand binding PAS domains in a genomic, cellular, and structural context

    PubMed Central

    Henry, Jonathan T.; Crosson, Sean

    2012-01-01

    Per-Arnt-Sim (PAS) domains occur in proteins from all kingdoms of life. In the bacterial kingdom, PAS domains are commonly positioned at the amino terminus of signaling proteins such as sensor histidine kinases, cyclic-di-GMP synthases/hydrolases, and methyl-accepting chemotaxis proteins. Although these domains are highly divergent at the primary sequence level, the structures of dozens of PAS domains across a broad section of sequence space have been solved, revealing a conserved three-dimensional architecture. An all-versus-all alignment of 63 PAS structures demonstrates that the PAS domain family forms structural clades on the basis of two principal variables: (a) topological location inside or outside the plasma membrane and (b) the class of small molecule that they bind. The binding of a chemically diverse range of small-molecule metabolites is a hallmark of the PAS domain family. PAS ligand binding either functions as a primary cue to initiate a cellular signaling response or provides the domain with the capacity to respond to secondary physical or chemical signals such as gas molecules, redox potential, or photons. This review synthesizes the current state of knowledge of the structural foundations and evolution of ligand recognition and binding by PAS domains. PMID:21663441

  19. Detection of Structural and Metabolic Changes in Traumatically Injured Hippocampus by Quantitative Differential Proteomics

    PubMed Central

    Wu, Ping; Zhao, Yingxin; Haidacher, Sigmund J.; Wang, Enyin; Parsley, Margaret O.; Gao, Junling; Sadygov, Rovshan G.; Starkey, Jonathan M.; Luxon, Bruce A.; Spratt, Heidi; DeWitt, Douglas S.; Prough, Donald S.

    2013-01-01

    Abstract Traumatic brain injury (TBI) is a complex and common problem resulting in the loss of cognitive function. In order to build a comprehensive knowledge base of the proteins that underlie these cognitive deficits, we employed unbiased quantitative mass spectrometry, proteomics, and bioinformatics to identify and quantify dysregulated proteins in the CA3 subregion of the hippocampus in the fluid percussion model of TBI in rats. Using stable isotope 18O-water differential labeling and multidimensional tandem liquid chromatography (LC)-MS/MS with high stringency statistical analyses and filtering, we identified and quantified 1002 common proteins, with 124 increased and 76 decreased. The Ingenuity Pathway Analysis (IPA) bioinformatics tool identified that TBI had profound effects on downregulating global energy metabolism, including glycolysis, the Krebs cycle, and oxidative phosphorylation, as well as cellular structure and function. Widespread upregulation of actin-related cytoskeletal dynamics was also found. IPA indicated a common integrative signaling node, calcineurin B1 (CANB1, CaNBα, or PPP3R1), which was downregulated by TBI. Western blotting confirmed that the calcineurin regulatory subunit, CANB1, and its catalytic binding partner PP2BA, were decreased without changes in other calcineurin subunits. CANB1 plays a critical role in downregulated networks of calcium signaling and homeostasis through calmodulin and calmodulin-dependent kinase II to highly interconnected structural networks dominated by tubulins. This large-scale knowledge base lays the foundation for the identification of novel therapeutic targets for cognitive rescue in TBI. PMID:22757692

  20. The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism.

    PubMed

    Freitas, Fernanda Zanolli; Virgilio, Stela; Cupertino, Fernanda Barbosa; Kowbel, David John; Fioramonte, Mariana; Gozzo, Fabio Cesar; Glass, N Louise; Bertolini, Maria Célia

    2016-01-01

    When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms. PMID:26994287

  1. The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism

    PubMed Central

    Freitas, Fernanda Zanolli; Virgilio, Stela; Cupertino, Fernanda Barbosa; Kowbel, David John; Fioramonte, Mariana; Gozzo, Fabio Cesar; Glass, N. Louise; Bertolini, Maria Célia

    2016-01-01

    When exposed to stress conditions, all cells induce mechanisms resulting in an attempt to adapt to stress that involve proteins which, once activated, trigger cell responses by modulating specific signaling pathways. In this work, using a combination of pulldown assays and mass spectrometry analyses, we identified the Neurospora crassa SEB-1 transcription factor that binds to the Stress Response Element (STRE) under heat stress. Orthologs of SEB-1 have been functionally characterized in a few filamentous fungi as being involved in stress responses; however, the molecular mechanisms mediated by this transcription factor may not be conserved. Here, we provide evidences for the involvement of N. crassa SEB-1 in multiple cellular processes, including response to heat, as well as osmotic and oxidative stress. The Δseb-1 strain displayed reduced growth under these conditions, and genes encoding stress-responsive proteins were differentially regulated in the Δseb-1 strain grown under the same conditions. In addition, the SEB-1-GFP protein translocated from the cytosol to the nucleus under heat, osmotic, and oxidative stress conditions. SEB-1 also regulates the metabolism of the reserve carbohydrates glycogen and trehalose under heat stress, suggesting an interconnection between metabolism control and this environmental condition. We demonstrated that SEB-1 binds in vivo to the promoters of genes encoding glycogen metabolism enzymes and regulates their expression. A genome-wide transcriptional profile of the Δseb-1 strain under heat stress was determined by RNA-seq, and a broad range of cellular processes was identified that suggests a role for SEB-1 as a protein interconnecting these mechanisms. PMID:26994287

  2. A cellular automaton model for the ventricular myocardium considering the layer structure

    NASA Astrophysics Data System (ADS)

    Deng, Min-Yi; Dai, Jing-Yu; Zhang, Xue-Liang

    2015-09-01

    A cellular automaton model for the ventricular myocardium considering the layer structure has been established. The three types of cells in this model differ principally in the repolarization characteristics. For the normal travelling waves in this model, the computer simulation results show the R, S, and T waves and they are qualitatively in agreement with the standard electrocardiograph. Phenomena such as the potential decline of point J and segment ST and the rise of the potential line after the T wave appear when the ischemia occurs in the endocardium. The spiral wave has also been simulated, and the corresponding potential has a lower amplitude, higher frequency, and wider R wave, which accords with the distinguishing feature of the clinical electrocardiograph. Mechanisms underlying the above phenomena are analyzed briefly. Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003 and 11165004).

  3. Amplitude and phase images of cellular structures with a scanning surface plasmon microscope.

    PubMed

    Berguiga, L; Roland, T; Monier, K; Elezgaray, J; Argoul, F

    2011-03-28

    Imaging cellular internal structure at nanometer scale axial resolution with non invasive microscopy techniques has been a major technical challenge since the nineties. We propose here a complement to fluorescence based microscopies with no need of staining the biological samples, based on a Scanning Surface Plasmon Microscope (SSPM). We describe the advantages of this microscope, namely the possibility of both amplitude and phase imaging and, due to evanescent field enhancement by the surface plasmon resonance, a very high resolution in Z scanning (Z being the axis normal to the sample). We show for fibroblast cells (IMR90) that SSPM offers an enhanced detection of index gradient regions, and we conclude it is very well suited to discriminate regions of variable density in biological media such as cell compartments, nucleus, nucleoli and membranes. PMID:21451685

  4. Functional cellular analyses reveal energy metabolism defect and mitochondrial DNA depletion in a case of mitochondrial aconitase deficiency.

    PubMed

    Sadat, Roa; Barca, Emanuele; Masand, Ruchi; Donti, Taraka R; Naini, Ali; De Vivo, Darryl C; DiMauro, Salvatore; Hanchard, Neil A; Graham, Brett H

    2016-05-01

    Defects in the tricarboxylic acid cycle (TCA) are associated with a spectrum of neurological phenotypes that are often difficult to diagnose and manage. Whole-exome sequencing (WES) led to a rapid expansion of diagnostic capabilities in such disorders and facilitated a better understanding of disease pathogenesis, although functional characterization remains a bottleneck to the interpretation of potential pathological variants. We report a 2-year-old boy of Afro-Caribbean ancestry, who presented with neuromuscular symptoms without significant abnormalities on routine diagnostic evaluation. WES revealed compound heterozygous missense variants of uncertain significance in mitochondrial aconitase (ACO2), which encodes the TCA enzyme ACO2. Pathogenic variants in ACO2 have been described in a handful of families as the cause of infantile cerebellar-retinal degeneration syndrome. Using biochemical and cellular assays in patient fibroblasts, we found that ACO2 expression was quantitatively normal, but ACO2 enzyme activity was <20% of that observed in control cells. We also observed a deficiency in cellular respiration and, for the first time, demonstrate evidence of mitochondrial DNA depletion and altered expression of some TCA components and electron transport chain subunits. The observed cellular defects were completely restored with ACO2 gene rescue. Our findings demonstrate the pathogenicity of two VUS in ACO2, provide novel mechanistic insights to TCA disturbances in ACO2 deficiency, and implicate mitochondrial DNA depletion in the pathogenesis of this recently described disorder. PMID:26992325

  5. EFFECTS OF STRUCTURALLY DIVERSE CHEMICALS ON METABOLIC COOPERATION IN VITRO

    EPA Science Inventory

    The discovery that phorbol ester tumor promoters inhibit metabolic cooperation between cultured cells in proportion to their promoting activity in vivo suggests that such inhibition may be a mechanism in tumor promotion. Because metabolic cooperation appears to be essential for n...

  6. Structural analysis of metabolic networks based on flux centrality.

    PubMed

    Koschützki, Dirk; Junker, Björn H; Schwender, Jörg; Schreiber, Falk

    2010-08-01

    Metabolic reactions are fundamental to living organisms, and a large number of reactions simultaneously occur at a given time in living cells transforming diverse metabolites into each other. There has been an ongoing debate on how to classify metabolites with respect to their importance for metabolic performance, usually based on the analysis of topological properties of genome scale metabolic networks. However, none of these studies have accounted quantitatively for flux in metabolic networks, thus lacking an important component of a cell's biochemistry. We therefore analyzed a genome scale metabolic network of Escherichia coli by comparing growth under 19 different growth conditions, using flux balance analysis and weighted network centrality investigation. With this novel concept of flux centrality we generated metabolite rankings for each particular growth condition. In contrast to the results of conventional analysis of genome scale metabolic networks, different metabolites were top-ranking dependent on the growth condition. At the same time, several metabolites were consistently among the high ranking ones. Those are associated with pathways that have been described by biochemists as the most central part of metabolism, such as glycolysis, tricarboxylic acid cycle and pentose phosphate pathway. The values for the average path length of the analyzed metabolite networks were between 10.5 and 12.6, supporting recent findings that the metabolic network of E. coli is not a small-world network. PMID:20471988

  7. Regulation of Mitochondrial Function and Cellular Energy Metabolism by Protein Kinase C-λ/ι: A Novel Mode of Balancing Pluripotency

    PubMed Central

    Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H.; Paul, Soumen

    2014-01-01

    Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis is key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing vs. differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-HIF1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. PMID:25142417

  8. Ligand Binding Induces Conformational Changes in Human Cellular Retinol-binding Protein 1 (CRBP1) Revealed by Atomic Resolution Crystal Structures.

    PubMed

    Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin

    2016-04-15

    Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. PMID:26900151

  9. Perturbations of Amino Acid Metabolism Associated with Glyphosate-Dependent Inhibition of Shikimic Acid Metabolism Affect Cellular Redox Homeostasis and Alter the Abundance of Proteins Involved in Photosynthesis and Photorespiration1[W][OA

    PubMed Central

    Vivancos, Pedro Diaz; Driscoll, Simon P.; Bulman, Christopher A.; Ying, Liu; Emami, Kaveh; Treumann, Achim; Mauve, Caroline; Noctor, Graham; Foyer, Christine H.

    2011-01-01

    The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway. PMID:21757634

  10. Critical evaluation on structural stiffness of porous cellular structure of cobalt chromium alloy

    NASA Astrophysics Data System (ADS)

    Abd Malek, N. M. S.; Mohamed, S. R.; Che Ghani, S. A.; Harun, W. S. Wan

    2015-12-01

    In order to improve the stiffness characteristics of orthopedic devices implants that mimic the mechanical behavior of bone need to be considered. With the capability of Additive layer manufacturing processes to produce orthopedic implants with tailored mechanical properties are needed. This paper discusses finite element (FE) analysis and mechanical characterization of porous medical grade cobalt chromium (CoCr) alloy in cubical structures with volume based porosity ranging between 60% to 80% produced using direct metal laser sintering (DMLS) process. ANSYS 14.0 FE modelling software was used to predict the effective elastic modulus of the samples and comparisons were made with the experimental data. The effective mechanical properties of porous samples that were determined by uniaxial compression testing show exponential decreasing trend with the increase in porosity. Finite element model shows good agreement with experimentally obtained stress-strain curve in the elastic regions. The models prove that numerical analysis of actual prosthesis implant can be computed particularly in load bearing condition

  11. Amide-Modified Prenylcysteine based Icmt Inhibitors: Structure Activity Relationships, Kinetic Analysis and Cellular Characterization

    PubMed Central

    Majmudar, Jaimeen D.; Hodges-Loaiza, Heather B.; Hahne, Kalub; Donelson, James L.; Song, Jiao; Shrestha, Liza; Harrison, Marietta L.; Hrycyna, Christine A.; Gibbs, Richard A.

    2012-01-01

    Human protein isoprenylcysteine carboxyl methyltransferase (hIcmt) is the enzyme responsible for the α-carboxyl methylation of the C-termimal isoprenylated cysteine of CaaX proteins, including Ras proteins. This specific posttranslational methylation event has been shown to be important for cellular transformation by oncogenic Ras isoforms. This finding led to interest in hIcmt inhibitors as potential anti-cancer agents. Previous analog studies based on N-acetyl-S-farnesylcysteine identified two prenylcysteine-based low micromolar inhibitors (1a and 1b) of hIcmt, each bearing a phenoxyphenyl amide modification. In this study, a focused library of analogs of 1a and 1b was synthesized and screened versus hIcmt, delineating structural features important for inhibition. Kinetic characterization of the most potent analogs 1a and 1b established that both inhibitors exhibited mixed-mode inhibition and that the competitive component predominated. Using the Cheng – Prusoff method, the Ki values were determined from the IC50 values. Analog 1a has a KIC of 1.4 ± 0.2 μM and a KIU of 4.8 ± 0.5 μM while 1b has a KIC of 0.5 ± 0.07 μM and a KIU of 1.9 ± 0.2 μM. Cellular evaluation of 1b revealed that it alters the subcellular localization of GFP-KRas, and also inhibits both Ras activation and Erk phosphorylation in Jurkat cells. PMID:22142613

  12. Overexpression of p49/STRAP alters cellular cytoskeletal structure and gross anatomy in mice

    PubMed Central

    2014-01-01

    Background The protein p49/STRAP (SRFBP1) is a transcription cofactor of serum response factor (SRF) which regulates cytoskeletal and muscle-specific genes. Results Two conserved domains were found in the p49/STRAP protein. The SRF-binding domain was at its N-terminus and was highly conserved among mammalian species, xenopus and zebrafish. A BUD22 domain was found at its C-terminus in three sequence databases. The BUD22 domain was conserved among mammalian p49/STRAP proteins, and yeast cellular morphogenesis proteins, which is involved in ribosome biogenesis that affects growth rate and cell size. The endogenous p49/SRAP protein was localized mainly in the nucleus but also widely distributed in the cytoplasm, and was in close proximity to the actin. Transfected GFP-p49/STRAP protein co-localized with nucleolin within the nucleolus. Overexpression of p49/STRAP reduced actin content in cultured cells and resulted in smaller cell size versus control cells. Increased expression of p49/STRAP in transgenic mice resulted in newborns with malformations, which included asymmetric abdominal and thoracic cavities, and substantial changes in cardiac morphology. p49/STRAP altered the expression of certain muscle-specific genes, including that of the SRF gene, which is a key regulator of cardiac genes at the developmental, structural and maintenance level and has two SRE binding sites. Conclusions Since p49/STRAP is a co-factor of SRF, our data suggest that p49/STRAP likely regulates cell size and morphology through SRF target genes. The function of its BUD22 domain warrants further investigation. The observed increase in p49/STRAP expression during cellular aging may contribute to observed morphological changes in senescence. PMID:25183317

  13. [Basic mechanisms: structure, function and metabolism of plasma lipoproteins].

    PubMed

    Errico, Teresa L; Chen, Xiangyu; Martin Campos, Jesús M; Julve, Josep; Escolà-Gil, Joan Carles; Blanco-Vaca, Francisco

    2013-01-01

    The aim of this work is to present basic information on the lipoprotein physiology. The protein fraction of lipoproteins consists of several apolipoproteins and enzymes whose functions are lipid transport and metabolism. Classification of lipoproteins is based on their density. Chylomicrons, VLDL, IDL, LDL and HDL can be isolated by ultracentrifugation. Both chylomicrons- and VLDL-triglycerides are transported from the intestine and liver, respectively, to the peripheral tissues. The metabolism of VLDL originates IDL and LDL. LDL is the main transporter of cholesterol to extrahepatic tissues. HDL mobilizes cholesterol from peripheral tissues to the liver where it is secreted to bile as free cholesterol or bile salts, a process termed reverse cholesterol transport. Lipoprotein metabolism can be regulated by nuclear receptors that regulate the expression of genes involved in triglyceride and apolipoprotein metabolism. PMID:23769508

  14. High resolution simulations of energy absorption in dynamically loaded cellular structures

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Eakins, D. E.; McShane, G.

    2016-04-01

    Cellular materials have potential application as absorbers of energy generated by high velocity impact. CTH, a Sandia National Laboratories Code which allows very severe strains to be simulated, has been used to perform very high resolution simulations showing the dynamic crushing of a series of two-dimensional, stainless steel metal structures with varying architectures. The structures are positioned to provide a cushion between a solid stainless steel flyer plate with velocities ranging from 300 to 900 m/s, and an initially stationary stainless steel target. Each of the alternative architectures under consideration was formed by an array of identical cells each of which had a constant volume and a constant density. The resolution of the simulations was maximised by choosing a configuration in which one-dimensional conditions persisted for the full period over which the specimen densified, a condition which is most readily met by impacting high density specimens at high velocity. It was found that the total plastic flow and, therefore, the irreversible energy dissipated in the fully densified energy absorbing cell, increase (a) as the structure becomes more rodlike and less platelike and (b) as the impact velocity increases. Sequential CTH images of the deformation processes show that the flow of the cell material may be broadly divided into macroscopic flow perpendicular to the compression direction and jetting-type processes (microkinetic flow) which tend to predominate in rod and rodlike configurations and also tend to play an increasing role at increased strain rates. A very simple analysis of a configuration in which a solid flyer impacts a solid target provides a baseline against which to compare and explain features seen in the simulations. The work provides a basis for the development of energy absorbing structures for application in the 200-1000 m/s impact regime.

  15. [Motivation and Emotional States: Structural Systemic, Neurochemical, Molecular and Cellular Mechanisms].

    PubMed

    Bazyan, A S

    2016-01-01

    The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron. PMID:27149821

  16. Leaf Rolling and Stem Fasciation in Grass Pea (Lathyrus sativus L.) Mutant Are Mediated through Glutathione-Dependent Cellular and Metabolic Changes and Associated with a Metabolic Diversion through Cysteine during Phenotypic Reversal

    PubMed Central

    Talukdar, Dibyendu; Talukdar, Tulika

    2014-01-01

    A Lathyrus sativus L. mutant isolated in ethylmethane sulfonate-treated M2 progeny of mother variety BioL-212 and designated as rlfL-1 was characterized by inwardly rolled-leaf and stem and bud fasciations. The mutant exhibited karyomorphological peculiarities in both mitosis and meiosis with origin of aneuploidy. The mitosis was vigorous with high frequency of divisional cells and their quick turnover presumably steered cell proliferations. Significant transcriptional upregulations of cysteine and glutathione synthesis and concomitant stimulations of glutathione-mediated antioxidant defense helped rlfL-1 mutant to maintain balanced reactive oxygen species (ROS) metabolisms, as deduced by ROS-imaging study. Glutathione synthesis was shut down in buthionine sulfoximine- (BSO-) treated mother plant and mutant, and leaf-rolling and stems/buds fasciations in the mutant were reversed, accompanied by normalization of mitotic cell division process. Antioxidant defense was downregulated under low glutathione-redox but cysteine-desulfurations and photorespiratory glycolate oxidase transcripts were markedly overexpressed, preventing cysteine overaccumulation but resulted in excess H2O2 in BSO-treated mutant. This led to oxidative damage in proliferating cells, manifested by severe necrosis in rolled-leaf and fasciated stems. Results indicated vital role of glutathione in maintaining abnormal proliferations in plant organs, and its deficiency triggered phenotypic reversal through metabolic diversions of cysteine and concomitant cellular and metabolic modulations. PMID:24987684

  17. Working memory dysfunction associated with brain functional deficits and cellular metabolic changes in patients with generalized anxiety disorder.

    PubMed

    Moon, Chung-Man; Sundaram, Thirunavukkarasu; Choi, Nam-Gil; Jeong, Gwang-Woo

    2016-08-30

    Generalized anxiety disorder (GAD) is associated with brain functional and morphological changes in connected with emotional dysregulation and cognitive deficit. This study dealt with the neural functional deficits and metabolic abnormalities in working memory (WM) task with emotion-inducing distractors in patients with GAD. Fourteen patients with GAD and 14 healthy controls underwent functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy ((1)H-MRS) at 3T. In response to the emotional distractors in WM tasks, the patients concurrently showed higher activity in the hippocampus and lower activities in the superior occipital gyrus, superior parietal gyrus, dorsolateral prefrontal cortex (DLPFC) and precentral gyrus compared to the controls. MRS revealed significantly lower choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC. In particular, the Cho ratios were positively correlated with the brain activities based on blood oxygenation level-dependent signal change in the DLPFC. This study provides the first evidence for the association between the metabolic alterations and functional deficit in WM processing with emotion-inducing distractors in GAD. These findings will be helpful to understand the neural dysfunction in connection with WM impairment in GAD. PMID:27442922

  18. Smokeless tobacco consumption impedes metabolic, cellular, apoptotic and systemic stress pattern: A study on Government employees in Kolkata, India

    PubMed Central

    Biswas, Sushobhan; Manna, Krishnendu; Das, Ujjal; Khan, Amitava; Pradhan, Anirban; Sengupta, Aaveri; Bose, Surajit; Ghosh, Saurabh; Dey, Sanjit

    2015-01-01

    Smokeless tobacco (SLT) remains a threat amongst a large population across the globe and particularly in India. The oral use of tobacco has been implicated to cause physiological stress leading to extreme toxicological challenge. The study included 47 SLT-users and 44 non-users providing a spectrum of pathophysiological, clinico-biochemical, antioxidant parameters, cell cycle progression study of PBMC and morphological changes of red blood cells (RBC). The expressions of p53, p21, Bax, Bcl-2, IL-6, TNF- α, Cox-2, iNOS were analyzed from thirteen representative SLT-users and twelve non-users. Difference in CRP, random glucose, serum cholesterol, TG, HLDL-C, LDL-C, VLDL-C, neutrophil count, monocyte count, ESR, SOD (PBMC) and TBARS (RBC membrane) were found to be statistically significant (p < 0.05) between the studied groups. The current study confers crucial insight into SLT mediated effects on systemic toxicity and stress. This has challenged the metabolic condition leading to a rise in the inflammatory status, increased apoptosis and RBC membrane damage. The above findings were substantiated with metabolic, clinical and biochemical parameters. This is possibly the first ever in-depth report and remains an invaluable document on the fatal effects of SLT. PMID:26669667

  19. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0.

    PubMed

    Schellenberger, Jan; Que, Richard; Fleming, Ronan M T; Thiele, Ines; Orth, Jeffrey D; Feist, Adam M; Zielinski, Daniel C; Bordbar, Aarash; Lewis, Nathan E; Rahmanian, Sorena; Kang, Joseph; Hyduke, Daniel R; Palsson, Bernhard Ø

    2011-09-01

    Over the past decade, a growing community of researchers has emerged around the use of constraint-based reconstruction and analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a substantial update of this in silico toolbox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include (i) network gap filling, (ii) (13)C analysis, (iii) metabolic engineering, (iv) omics-guided analysis and (v) visualization. As with the first version, the COBRA Toolbox reads and writes systems biology markup language-formatted models. In version 2.0, we improved performance, usability and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the toolbox and validate results. This toolbox lowers the barrier of entry to use powerful COBRA methods. PMID:21886097

  20. Structural and Functional Study of Yer067w, a New Protein Involved in Yeast Metabolism Control and Drug Resistance

    PubMed Central

    Domitrovic, Tatiana; Kozlov, Guennadi; Freire, João Claudio Gonçalves; Masuda, Claudio Akio; da Silva Almeida, Marcius; Montero-Lomeli, Mónica; Atella, Georgia Correa; Matta-Camacho, Edna; Gehring, Kalle; Kurtenbach, Eleonora

    2010-01-01

    The genome of Saccharomyces cerevisiae is arguably the best studied eukaryotic genome, and yet, it contains approximately 1000 genes that are still relatively uncharacterized. As the majority of these ORFs have no homologs with characterized sequence or protein structure, traditional sequence-based approaches cannot be applied to deduce their biological function. Here, we characterize YER067W, a conserved gene of unknown function that is strongly induced in response to many stress conditions and repressed in drug resistant yeast strains. Gene expression patterns of YER067W and its paralog YIL057C suggest an involvement in energy metabolism. We show that yeast lacking YER067W display altered levels of reserve carbohydrates and a growth deficiency in media that requires aerobic metabolism. Impaired mitochondrial function and overall reduction of ergosterol content in the YER067W deleted strain explained the observed 2- and 4-fold increase in resistance to the drugs fluconazole and amphotericin B, respectively. Cell fractionation and immunofluorescence microscopy revealed that Yer067w is associated with cellular membranes despite the absence of a transmembrane domain in the protein. Finally, the 1.7 Å resolution crystal structure of Yer067w shows an alpha-beta fold with low similarity to known structures and a putative functional site. YER067W's involvement with aerobic energetic metabolism suggests the assignment of the gene name RGI1, standing for respiratory growth induced 1. Altogether, the results shed light on a previously uncharacterized protein family and provide basis for further studies of its apparent role in energy metabolism control and drug resistance. PMID:20567505

  1. Cellular imaging of deep organ using two-photon Bessel light-sheet nonlinear structured illumination microscopy

    PubMed Central

    Zhao, Ming; Zhang, Han; Li, Yu; Ashok, Amit; Liang, Rongguang; Zhou, Weibin; Peng, Leilei

    2014-01-01

    In vivo fluorescent cellular imaging of deep internal organs is highly challenging, because the excitation needs to penetrate through strong scattering tissue and the emission signal is degraded significantly by photon diffusion induced by tissue-scattering. We report that by combining two-photon Bessel light-sheet microscopy with nonlinear structured illumination microscopy (SIM), live samples up to 600 microns wide can be imaged by light-sheet microscopy with 500 microns penetration depth, and diffused background in deep tissue light-sheet imaging can be reduced to obtain clear images at cellular resolution in depth beyond 200 microns. We demonstrate in vivo two-color imaging of pronephric glomeruli and vasculature of zebrafish kidney, whose cellular structures located at the center of the fish body are revealed in high clarity by two-color two-photon Bessel light-sheet SIM. PMID:24876996

  2. Modulating Cellular Recombination Potential through Alterations in RecA Structure and Regulation

    PubMed Central

    Bakhlanova, Irina V.; Dudkina, Alexandra V.; Baitin, Dima M.; Knight, Kendall L.; Cox, Michael M.; Lanzov, Vladislav A.

    2010-01-01

    The wild type E. coli RecA protein is a recombinase platform with unrealized recombination potential. We have explored the factors affecting recombination during conjugation with a quantitative assay. Regulatory proteins that affect RecA function have the capacity to increase or decrease recombination frequencies by factors up to 6 fold. Autoinhibition by the RecA C-terminus can affect recombination frequency by factors up to 4 fold. The greatest changes in recombination frequency measured here are brought about by point mutations in the recA gene. RecA variants can increase recombination frequencies by more than 50 fold. The RecA protein thus possesses an inherently broad functional range. The RecA protein of Escherichia coli (EcRecA) is not optimized for recombination function. Instead, much of the recombination potential of EcRecA is structurally suppressed, probably reflecting cellular requirements. One point mutation in EcRecA with a particularly dramatic effect on recombination frequency, D112R, exhibits an enhanced capacity to load onto SSB-coated ssDNA, overcome the effects of regulatory proteins such as PsiB and RecX, and to pair homologous DNAs. Comparisons of key RecA protein mutants reveal two components to RecA recombination function – filament formation and the inherent DNA pairing activity of the formed filaments. PMID:21143322

  3. Effects of Ionizing Radiation on Cellular Structures, Induced Instability, and Carcinogenesis

    SciTech Connect

    Resat, Marianne S.; Arthurs, Benjamin J.; Estes, Brian J.; Morgan, William F.

    2006-03-01

    According to the American Cancer Society, the United States can expect 1,368,030 new cases of cancer in 2004 [1]. Among the many carcinogens Americans are exposed to, ionizing radiation will contribute to this statistic. Humans live in a radiation environment. Ionizing radiation is in the air we breathe, the earth we live on, and the food we eat. Man-made radiation adds to this naturally occurring radiation level thereby increasing the chance for human exposure. For many decades the scientific community, governmental regulatory bodies, and concerned citizens have struggled to estimate health risks associated with radiation exposures, particularly at low doses. While cancer induction is the primary concern and the most important somatic effect of exposure to ionizing radiation, potential health risks do not involve neoplastic diseases exclusively but also include somatic mutations that might contribute to birth defects and ocular maladies, and heritable mutations that might impact on disease risks in future generations. Consequently it is important we understand the effect of ionizingradiation on cellular structures and the subsequent long-term health risks associated with exposure to ionizing radiation.

  4. Cellular automata segmentation of the boundary between the compacta of vertebral bodies and surrounding structures

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Nimsky, Christopher

    2016-03-01

    Due to the aging population, spinal diseases get more and more common nowadays; e.g., lifetime risk of osteoporotic fracture is 40% for white women and 13% for white men in the United States. Thus the numbers of surgical spinal procedures are also increasing with the aging population and precise diagnosis plays a vital role in reducing complication and recurrence of symptoms. Spinal imaging of vertebral column is a tedious process subjected to interpretation errors. In this contribution, we aim to reduce time and error for vertebral interpretation by applying and studying the GrowCut - algorithm for boundary segmentation between vertebral body compacta and surrounding structures. GrowCut is a competitive region growing algorithm using cellular automata. For our study, vertebral T2-weighted Magnetic Resonance Imaging (MRI) scans were first manually outlined by neurosurgeons. Then, the vertebral bodies were segmented in the medical images by a GrowCut-trained physician using the semi-automated GrowCut-algorithm. Afterwards, results of both segmentation processes were compared using the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD) which yielded to a DSC of 82.99+/-5.03% and a HD of 18.91+/-7.2 voxel, respectively. In addition, the times have been measured during the manual and the GrowCut segmentations, showing that a GrowCutsegmentation - with an average time of less than six minutes (5.77+/-0.73) - is significantly shorter than a pure manual outlining.

  5. An assessment of galactic cosmic radiation quality considering heavy ion track structures within the cellular environment.

    PubMed

    Craven, P A; Rycroft, M J

    1996-01-01

    Beyond the magnetic influence of the Earth, the flux of galactic cosmic radiation (GCR) represents a radiological concern for long-term manned space missions. Current concepts of radiation quality and equivalent dose are inadequate for accurately specifying the relative biological "efficiency" of low doses of such heavily ionising radiations, based as they are on the single parameter of Linear Energy Transfer (LET). Such methods take no account of the mechanisms, nor of the highly inhomogeneous spatial structure, of energy deposition in radiation tracks. DNA damage in the cell nucleus, which ultimately leads to the death or transformation of the cell, is usually initiated by electrons liberated from surrounding molecules by the incident projectile ion. The characteristics of these emitted "delta-rays", dependent primarily upon the charge and velocity of the ion, are considered in relation to an idealised representation of the cellular environment. Theoretically calculated delta-ray energy spectra are multiplied by a series of weighting algorithms designed to represent the potential for DNA insult in this environment, both in terms of the quantity and quality of damage. By evaluating the resulting curves, and taking into account the energy spectra of heavy ions in space, a relative measure of the biological relevance of the most abundant GCR species is obtained, behind several shielding configurations. It is hoped that this method of assessing the radiation quality of galactic cosmic rays will be of value when considering the safety of long-term manned space missions. PMID:11538985

  6. Metabolic biotransformation of copper-benzo[a]pyrene combined pollutant on the cellular interface of Stenotrophomonas maltophilia.

    PubMed

    Chen, Shuona; Yin, Hua; Tang, Shaoyu; Peng, Hui; Liu, Zehua; Dang, Zhi

    2016-03-01

    Previous studies have confirmed that Stenotrophomonas maltophilia can bind an appreciable amount of Cu(II) and degrade BaP. However, the removal mechanisms of Cu(II) coexisted with BaP by S. maltophilia are still unclear. In this study, the micro-interaction of contaminants on the cellular surface was investigated. The results indicated that carboxyl groups played an important role in the binding of copper to the thallus and that the cell walls were the main adsorption sites. Nevertheless, these reactive groups had no obvious effect on the uptake of BaP. Instead, the disruption and modification of cell walls accelerated transportation of BaP across the membrane into cells. The observation of SEM-EDS confirmed that Cu(II) would be adsorbed and precipitated onto the cell surface but would also be removed by extracellular precipitation when BaP coexisted. And the XPS analysis reflected that part of Cu(II) bound onto biosorbents changed into Cu(I) and Cu. PMID:26771922

  7. Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye

    PubMed Central

    Sharma, Robin; Williams, David R.; Palczewska, Grazyna; Palczewski, Krzysztof; Hunter, Jennifer J.

    2016-01-01

    Purpose Although extrinsic fluorophores can be introduced to label specific cell types in the retina, endogenous fluorophores, such as NAD(P)H, FAD, collagen, and others, are present in all retinal layers. These molecules are a potential source of optical contrast and can enable noninvasive visualization of all cellular layers. We used a two-photon fluorescence adaptive optics scanning light ophthalmoscope (TPF-AOSLO) to explore the native autofluorescence of various cell classes spanning several layers in the unlabeled retina of a living primate eye. Methods Three macaques were imaged on separate occasions using a custom TPF-AOSLO. Two-photon fluorescence was evoked by pulsed light at 730 and 920 nm excitation wavelengths, while fluorescence emission was collected in the visible range from several retinal layers and different locations. Backscattered light was recorded simultaneously in confocal modality and images were postprocessed to remove eye motion. Results All retinal layers yielded two-photon signals and the heterogeneous distribution of fluorophores provided optical contrast. Several structural features were observed, such as autofluorescence from vessel walls, Müller cell processes in the nerve fibers, mosaics of cells in the ganglion cell and other nuclear layers of the inner retina, as well as photoreceptor and RPE layers in the outer retina. Conclusions This in vivo survey of two-photon autofluorescence throughout the primate retina demonstrates a wider variety of structural detail in the living eye than is available through conventional imaging methods, and broadens the use of two-photon imaging of normal and diseased eyes. PMID:26903224

  8. Photosynthetic Characteristics of Portulaca grandiflora, a Succulent C(4) Dicot : CELLULAR COMPARTMENTATION OF ENZYMES AND ACID METABOLISM.

    PubMed

    Ku, S B; Shieh, Y J; Reger, B J; Black, C C

    1981-11-01

    on enzyme localization, a scheme of C(4) photosynthesis in P. grandiflora is proposed.Well-watered plants of P. grandiflora exhibit a diurnal fluctuation of total titratable acidity, with an amplitude of 61 and 54 microequivalent per gram fresh weight for the leaves and stems, respectively. These changes were in parallel with changes in malic acid concentration in these tissues. Under severe drought conditions, diurnal changes in both titratable acidity and malic acid concentration in both leaves and stems were much reduced. However, another C(4) dicot Amaranthus graecizans (nonsucculent) did not show any diurnal acid fluctuation under the same conditions. These results confirm the suggestion made by Koch and Kennedy (Plant Physiol. 65: 193-197, 1980) that succulent C(4) dicots can exhibit an acid metabolism similar to Crassulacean acid metabolism plants in certain environments. PMID:16662054

  9. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis

    PubMed Central

    Schröder, Torsten; Kucharczyk, David; Bär, Florian; Pagel, René; Derer, Stefanie; Jendrek, Sebastian Torben; Sünderhauf, Annika; Brethack, Ann-Kathrin; Hirose, Misa; Möller, Steffen; Künstner, Axel; Bischof, Julia; Weyers, Imke; Heeren, Jörg; Koczan, Dirk; Schmid, Sebastian Michael; Divanovic, Senad; Giles, Daniel Aaron; Adamski, Jerzy; Fellermann, Klaus; Lehnert, Hendrik; Köhl, Jörg; Ibrahim, Saleh; Sina, Christian

    2016-01-01

    Objective Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH). However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T) of the mitochondrial ATP synthase protein 8 (mt-ATP8). Results At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS). Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a

  10. Free-fatty acid receptor-4 (GPR120): Cellular and molecular function and its role in metabolic disorders.

    PubMed

    Moniri, Nader H

    2016-06-15

    Over the last decade, a subfamily of G protein-coupled receptors that are agonized by endogenous and dietary free-fatty acids (FFA) has been discovered. These free-fatty acid receptors include FFA2 and FFA3, which are agonized by short-chained FFA, as well as FFA1 and FFA4, which are agonized by medium-to-long chained FFA. Ligands for FFA1 and FFA4 comprise the family of long chain polyunsaturated omega-3 fatty acids including α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), suggesting that many of the long-known beneficial effects of these fats may be receptor mediated. In this regard, FFA4 has gathered considerable interest due to its role in ameliorating inflammation, promoting insulin sensitization, and regulating energy metabolism in response to FFA ligands. The goal of this review is to summarize the body of evidence in regard to FFA4 signal transduction, its mechanisms of regulation, and its functional role in a variety of tissues. In addition, recent endeavors toward discovery of small molecules that modulate FFA4 activity are also presented. PMID:26827942

  11. PEG-induced osmotic stress in Mentha x piperita L.: Structural features and metabolic responses.

    PubMed

    Búfalo, Jennifer; Rodrigues, Tatiane Maria; de Almeida, Luiz Fernando Rolim; Tozin, Luiz Ricardo Dos Santos; Marques, Marcia Ortiz Mayo; Boaro, Carmen Silvia Fernandes

    2016-08-01

    The present study investigated whether osmotic stress induced by the exposure of peppermint (Mentha x piperita L.) to moderate and severe stress for short periods of time changes the plant's physiological parameters, leaf anatomy and ultrastructure and essential oil. Plants were exposed to two levels of polyethyleneglycol (50 g L(-1) and 100 g L(-1) of PEG) in a hydroponic experiment. The plants exposed to 50 g L(-1) maintained metabolic functions similar to those of the control group (0 g L(-1)) without changes in gas exchange or structural characteristics. The increase in antioxidant enzyme activity reduced the presence of free radicals and protected membranes, including chloroplasts and mitochondria. In contrast, the osmotic stress caused by 100 g L(-1) of PEG inhibited leaf gas exchange, reduced the essential oil content and changed the oil composition, including a decrease in menthone and an increase in menthofuran. These plants also showed an increase in peroxidase activity, but this increase was not sufficient to decrease the lipid peroxidation level responsible for damaging the membranes of organelles. Morphological changes were correlated with the evaluated physiological features: plants exposed to 100 g L(-1) of PEG showed areas with collapsed cells, increases in mesophyll thickness and the area of the intercellular space, cuticle shrinkage, morphological changes in plastids, and lysis of mitochondria. In summary, our results revealed that PEG-induced osmotic stress in M. x piperita depends on the intensity level of the osmotic stress applied; severe osmotic stress changed the structural characteristics, caused damage at the cellular level, and reduced the essential oil content and quality. PMID:27107175

  12. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells.

    PubMed

    Han, Anna; Bennett, Natalie; MacDonald, Amber; Johnstone, Megan; Whelan, Jay; Donohoe, Dallas R

    2016-08-01

    Dietary fiber has been suggested to suppress colorectal cancer development, although the mechanisms contributing to this beneficial effect remain elusive. Butyrate, a fermentation product of fiber, has been shown to have anti-proliferative and pro-apoptotic effects on colorectal cancer cells. The metabolic fate of butyrate in the cell is important in determining whether, it acts as an HDAC inhibitor or is consumed as a short-chain fatty acid. Non-cancerous colonocytes utilize butyrate as the primary energy source whereas cancerous colonocytes increase glucose utilization through the Warburg effect. In this study, we show that butyrate oxidation is decreased in cancerous colonocytes compared to non-cancerous colonocytes. We demonstrate that colorectal cancer cells utilize both a carnitine-dependent and carnitine-independent mechanism that contributes to butyrate oxidation. The carnitine-dependent mechanism is contingent on butyrate concentration. Knockdown of CPT1A in colorectal cancer cells abolishes butyrate oxidation. In terms of selectivity, the carnitine-dependent mechanism only regulated butyrate oxidation, as acetate and propionate oxidation were carnitine-independent. Carnitine decreased the action of butyrate as an HDAC inhibitor and suppressed induction of H3 acetylation by butyrate in colorectal cancer cells. Thus, diminished oxidation of butyrate is associated with decreased HDAC inhibition and histone acetylation. In relation to the mechanism, we find that dichloroacetate, which decreases phosphorylation of pyruvate dehydrogenase, increased butyrate oxidation and that this effect was carnitine-dependent. In conclusion, these data suggest that colorectal cancer cells decrease butyrate oxidation through inhibition of pyruvate dehydrogenase, which is carnitine-dependent, and provide insight into why butyrate shows selective effects toward colorectal cancer cells. J. Cell. Physiol. 231: 1804-1813, 2016. © 2015 Wiley Periodicals, Inc. PMID:26661480

  13. Metabolic labeling of cellular glycoproteins with glucosamine: potential for erroneous interpretations due to nonenzymatic radiolabeling of proteins

    SciTech Connect

    Briles, E.I.B.; Updyke, T.V.

    1986-05-01

    Proteins, including serum proteins of culture media, become nonenzymatically radiolabeled under conditions used for metabolic labeling of cultured cells with glucosamine. This occurs even under sterile conditions in the absence of cells. Various commercial lots of /sup 3/H or /sup 14/C glcN gave similar results: approx. 0.7% of total label was incorporated into 20% serum (14 mg/ml protein) in 48 h at 37/sup 0/C. By SDS-PAGE fluorography, labeled serum bands correspond to Coomassie stained bands. Incorporation is linear with protein concentration and label input, shows biphasic kinetics (initial rapid rate within first 3 hr, followed by slower linear rate with no sign of saturation through 120 hr), and is temperature-dependent (no reaction at 0/sup 0/C; incorporation at 20/sup 0/C is approx. 45% of that at 37/sup 0/C). Poly-D-lysine is a better acceptor than protein: 0.5 mg/ml PL accepts as much label as 7 mg/ml protein. Incorporation is inhibited by excess unlabeled glcN and ethanolamine, but not by man, gal or glucose. However, when proteins were incubated with 160 mM glcN, SDS-PAGE bands were yellow-brown, suggesting the occurrence of Maillard-type reactions. Although the chemical mechanism(s) responsible for nonmetabolic radiolabeling by glcN are not clear at this point, the fact that it occurs represents a serious artifact which may lead to erroneous interpretation of data.

  14. Structure-activity relations of leucine derivatives reveal critical moieties for cellular uptake and activation of mTORC1-mediated signaling.

    PubMed

    Nagamori, Shushi; Wiriyasermkul, Pattama; Okuda, Suguru; Kojima, Naoto; Hari, Yoshiyuki; Kiyonaka, Shigeki; Mori, Yasuo; Tominaga, Hideyuki; Ohgaki, Ryuichi; Kanai, Yoshikatsu

    2016-04-01

    Among amino acids, leucine is a potential signaling molecule to regulate cell growth and metabolism by activating mechanistic target of rapamycin complex 1 (mTORC1). To reveal the critical structures of leucine molecule to activate mTORC1, we examined the structure-activity relationships of leucine derivatives in HeLa S3 cells for cellular uptake and for the induction of phosphorylation of p70 ribosomal S6 kinase 1 (p70S6K), a downstream effector of mTORC1. The activation of mTORC1 by leucine and its derivatives was the consequence of two successive events: the cellular uptake by L-type amino acid transporter 1 (LAT1) responsible for leucine uptake in HeLa S3 cells and the activation of mTORC1 following the transport. The structural requirement for the recognition by LAT1 was to have carbonyl oxygen, alkoxy oxygen of carboxyl group, amino group and hydrophobic side chain. In contrast, the requirement for mTORC1 activation was more rigorous. It additionally required fixed distance between carbonyl oxygen and alkoxy oxygen of carboxyl group, and amino group positioned at α-carbon. L-Configuration in chirality and appropriate length of side chain with a terminal isopropyl group were also important. This confirmed that LAT1 itself is not a leucine sensor. Some specialized leucine sensing mechanism with rigorous requirement for agonistic structures should exist inside the cells because leucine derivatives not transported by LAT1 did not activate mTORC1. Because LAT1-mTOR axis is involved in the regulation of cell growth and cancer progression, the results from this study may provide a new insight into therapeutics targeting both LAT1 and leucine sensor. PMID:26724922

  15. Cellular resilience.

    PubMed

    Smirnova, Lena; Harris, Georgina; Leist, Marcel; Hartung, Thomas

    2015-01-01

    Cellular resilience describes the ability of a cell to cope with environmental changes such as toxicant exposure. If cellular metabolism does not collapse directly after the hit or end in programmed cell death, the ensuing stress responses promote a new homeostasis under stress. The processes of reverting "back to normal" and reversal of apoptosis ("anastasis") have been studied little at the cellular level. Cell types show astonishingly similar vulnerability to most toxicants, except for those that require a very specific target, metabolism or mechanism present only in specific cell types. The majority of chemicals triggers "general cytotoxicity" in any cell at similar concentrations. We hypothesize that cells differ less in their vulnerability to a given toxicant than in their resilience (coping with the "hit"). In many cases, cells do not return to the naive state after a toxic insult. The phenomena of "pre-conditioning", "tolerance" and "hormesis" describe this for low-dose exposures to toxicants that render the cell more resistant to subsequent hits. The defense and resilience programs include epigenetic changes that leave a "memory/scar" - an alteration as a consequence of the stress the cell has experienced. These memories might have long-term consequences, both positive (resistance) and negative, that contribute to chronic and delayed manifestations of hazard and, ultimately, disease. This article calls for more systematic analyses of how cells cope with toxic perturbations in the long-term after stressor withdrawal. A technical prerequisite for these are stable (organotypic) cultures and a characterization of stress response molecular networks. PMID:26536287

  16. Three-dimensional cellular structure of detonations in suspensions of aluminium particles

    NASA Astrophysics Data System (ADS)

    Khasainov, B.; Virot, F.; Veyssière, B.

    2013-05-01

    Recently, we have used scarce available data on the detonation cell size in suspensions of aluminium particles in air and oxygen to adjust the kinetic parameters of our two-phase model of detonations in these mixtures. The calculated detonation cell width was derived by means of two-dimensional (2D) unsteady simulations using an assumption of cylindrical symmetry of the flow in the tube. However, in reality, the detonation cells are three-dimensional (3D). In this work, we have applied the same detonation model which is based on the continuous mechanics of two-phase flows, for 3D numerical simulations of cellular detonation structures in aluminium particle suspensions in oxygen. Reasonable agreement on the detonation cell width was obtained with the aforementioned 2D results. The range of tube diameters where detonations in { Al/O}_2 mixture at a given particle size and concentration would propagate in the spinning mode has been estimated (these results make a complement to our previous analysis of spinning detonations in Al/air mixtures). Coupling these results with the dependencies of detonation cell size on the mean particle diameter is of great interest for the understanding of fundamental mechanisms of detonation propagation in solid particle suspensions in gas and can help to better guide the experimental studies of detonations in aluminium suspensions. It is shown that the part of detonation wave energy used for transverse kinetic energy of both gas and particles is quite small, which explains why the propagation velocity of spinning and multi-headed detonations reasonably agrees with the ideal CJ values.

  17. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    PubMed

    Mathieu, Cécile; de la Sierra-Gallay, Ines Li; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. PMID:27402852

  18. Trabecular bone structural parameters evaluated using dental cone-beam computed tomography: cellular synthetic bones

    PubMed Central

    2013-01-01

    Objective This study compared the adequacy of dental cone beam computed tomography (CBCT) and micro computed tomography (micro-CT) in evaluating the structural parameters of trabecular bones. Methods The cellular synthetic bones in 4 density groups (Groups 1–4: 0.12, 0.16, 0.20, and 0.32 g/cm3) were used in this study. Each group comprised 8 experimental specimens that were approximately 1 cm3. Dental CBCT and micro-CT scans were conducted on each specimen to obtain independent measurements of the following 4 trabecular bone structural parameters: bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th.), and trabecular separation (Tb.Sp.). Wilcoxon signed ranks tests were used to compare the measurement variations between the dental CBCT and micro-CT scans. A Spearman analysis was conducted to calculate the correlation coefficients (r) of the dental CBCT and micro-CT measurements. Results and Conclusion Of the 4 groups, the BV/TV and Tb.Th. measured using dental CBCT were larger compared with those measured using micro-CT. By contrast, the BS/BV measured using dental CBCT was significantly less compared with those measured using micro-CT. Furthermore, in the low-density groups (Groups 1 and 2), the Tb.Sp. measured using dental CBCT was smaller compared with those measured using micro-CT. However, the Tb.Sp. measured using dental CBCT was slightly larger in the high-density groups (Groups 3 and 4) than it was in the low density groups. The correlation coefficients between the BV/TV, BS/BV, Tb.Th., and Tb.Sp. values measured using dental CBCT and micro-CT were 0.9296 (p < .001), 0.8061 (p < .001), 0.9390 (p < .001), and 0.9583 (p < .001), respectively. Although the dental CBCT and micro-CT approaches exhibited high correlations, the absolute values of BV/TV, BS/BV, Tb.Th., Tb.Sp. differed significantly between these measurements. Additional studies must be conducted to evaluate using dental CBCT in clinical practice. PMID

  19. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function

    PubMed Central

    Edmunds, Lia R.; Sharma, Lokendra; Wang, Huabo; Kang, Audry; d’Souza, Sonia; Lu, Jie; McLaughlin, Michael; Dolezal, James M.; Gao, Xiaoli; Weintraub, Susan T.; Ding, Ying; Zeng, Xuemei; Yates, Nathan; Prochownik, Edward V.

    2015-01-01

    The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions. PMID:26230505

  20. Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase

    SciTech Connect

    Gao Hong; Coyle, Donna L.; Meyer-Ficca, Mirella L.; Meyer, Ralph G.; Jacobson, Elaine L.; Wang, Zhao-Qi; Jacobson, Myron K. . E-mail: mjacobson@pharmacy.arizona.edu

    2007-03-10

    Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-{delta}2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-{delta}2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-{delta}2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain.

  1. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    PubMed Central

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  2. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding

    PubMed Central

    2013-01-01

    Background A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. Results A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. Conclusions The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis. PMID:23627990

  3. Nanoscale Cellular Structures at Phase Boundaries of Ni-Cr-Al-Ti and Ni-Cr-Mo-Al-Ti Superalloys

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Dunand, David C.

    2015-06-01

    The microstructural evolution of Ni-20 pct Cr wires was studied during pack cementation where Al and Ti, with and without prior cementation with Mo, are deposited to the surface of the Ni-Cr wires and subsequently homogenized in their volumes. Mo deposition promotes the formation of Kirkendall pores and subsequent co-deposition of Al and Ti creates a triple-layered diffusional coating on the wire surface. Subsequent homogenization drives the alloying element to distribute evenly in the wires which upon further heat treatment exhibit the γ + γ' superalloy structure. Unexpectedly, formation of cellular structures is observed at some of the boundaries between primary γ' grains and γ matrix grains. Based on additional features ( i.e., ordered but not perfectly periodic structure, confinement at γ + γ' phase boundaries as a cellular film with ~100 nm width, as well as lack of topologically close-packed phases), and considering that similar, but much larger, microstructures were reported in commercial superalloys, it is concluded that the present cellular structure solidified as a thin film, composed of eutectic γ + γ' and from which the γ' phase was subsequently etched, which was created by incipient melting of a region near the phase boundary with high solute segregation.

  4. Transition from a planar interface to cellular and dendritic structures during rapid solidification processing

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1986-01-01

    The development of theoretical models which characterize the planar-cellular and cell-dendrite transitions is described. The transitions are analyzed in terms of the Chalmers number, the solute Peclet number, and the tip stability parameter, which correlate microstructural features and processing conditions. The planar-cellular transition is examined using the constitutional supercooling theory of Chalmers et al., (1953) and it is observed that the Chalmers number is between 0 and 1 during dendritic and cellular growth. Analysis of cell-dendrite transition data reveal that the transition occurs when the solute Peclet number goes through a minimum, the primary arm spacings go through a maximum, and the Chalmers number is equal to 1/2. The relation between the tip stability parameter and the solute Peclet number is investigated and it is noted that the tip stability parameter is useful for studying dendritic growth in alloys.

  5. Tuning of the electro-mechanical behavior of the cellular carbon nanotube structures with nanoparticle dispersions

    SciTech Connect

    Gowda, Prarthana; Misra, Abha; Ramamurty, Upadrasta

    2014-03-10

    The mechanical and electrical characteristics of cellular network of the carbon nanotubes (CNT) impregnated with metallic and nonmetallic nanoparticles were examined simultaneously by employing the nanoindentation technique. Experimental results show that the nanoparticle dispersion not only enhances the mechanical strength of the cellular CNT by two orders of magnitude but also imparts variable nonlinear electrical characteristics; the latter depends on the contact resistance between nanoparticles and CNT, which is shown to depend on the applied load while indentation. Impregnation with silver nanoparticles enhances the electrical conductance, the dispersion with copper oxide and zinc oxide nanoparticles reduces the conductance of CNT network. In all cases, a power law behavior with suppression in the differential conductivity at zero bias was noted, indicating electron tunneling through the channels formed at the CNT-nanoparticle interfaces. These results open avenues for designing cellular CNT foams with desired electro-mechanical properties and coupling.

  6. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models

    PubMed Central

    Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv; Berger, Bonnie

    2014-01-01

    Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations. PMID:25291352

  7. An exact arithmetic toolbox for a consistent and reproducible structural analysis of metabolic network models.

    PubMed

    Chindelevitch, Leonid; Trigg, Jason; Regev, Aviv; Berger, Bonnie

    2014-01-01

    Constraint-based models are currently the only methodology that allows the study of metabolism at the whole-genome scale. Flux balance analysis is commonly used to analyse constraint-based models. Curiously, the results of this analysis vary with the software being run, a situation that we show can be remedied by using exact rather than floating-point arithmetic. Here we introduce MONGOOSE, a toolbox for analysing the structure of constraint-based metabolic models in exact arithmetic. We apply MONGOOSE to the analysis of 98 existing metabolic network models and find that the biomass reaction is surprisingly blocked (unable to sustain non-zero flux) in nearly half of them. We propose a principled approach for unblocking these reactions and extend it to the problems of identifying essential and synthetic lethal reactions and minimal media. Our structural insights enable a systematic study of constraint-based metabolic models, yielding a deeper understanding of their possibilities and limitations. PMID:25291352

  8. Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling

    PubMed Central

    Pauly, Barbara; Lasi, Margherita; MacKintosh, Carol; Morrice, Nick; Imhof, Axel; Regula, Jörg; Rudd, Stephen; David, Charles N; Böttger, Angelika

    2007-01-01

    Background 14-3-3 proteins have been implicated in many signalling mechanisms due to their interaction with Ser/Thr phosphorylated target proteins. They are evolutionarily well conserved in eukaryotic organisms from single celled protozoans and unicellular algae to plants and humans. A diverse array of target proteins has been found in higher plants and in human cell lines including proteins involved in cellular metabolism, apoptosis, cytoskeletal organisation, secretion and Ca2+ signalling. Results We found that the simple metazoan Hydra has four 14-3-3 isoforms. In order to investigate whether the diversity of 14-3-3 target proteins is also conserved over the whole animal kingdom we isolated 14-3-3 binding proteins from Hydra vulgaris using a 14-3-3-affinity column. We identified 23 proteins that covered most of the above-mentioned groups. We also isolated several novel 14-3-3 binding proteins and the Hydra specific secreted fascin-domain-containing protein PPOD. In addition, we demonstrated that one of the 14-3-3 isoforms, 14-3-3 HyA, interacts with one Hydra-Bcl-2 like protein in vitro. Conclusion Our results indicate that 14-3-3 proteins have been ubiquitous signalling components since the start of metazoan evolution. We also discuss the possibility that they are involved in the regulation of cell numbers in response to food supply in Hydra. PMID:17651497

  9. Comparative genomic analysis of a neurotoxigenic Clostridium species using partial genome sequence: Phylogenetic analysis of a few conserved proteins involved in cellular processes and metabolism.

    PubMed

    Alam, Syed Imteyaz; Dixit, Aparna; Tomar, Arvind; Singh, Lokendra

    2010-04-01

    Clostridial organisms produce neurotoxins, which are generally regarded as the most potent toxic substances of biological origin and potential biological warfare agents. Clostridium tetani produces tetanus neurotoxin and is responsible for the fatal tetanus disease. In spite of the extensive immunization regimen, the disease is an important cause of death especially among neonates. Strains of C. tetani have not been genetically characterized except the complete genome sequencing of strain E88. The present study reports the genetic makeup and phylogenetic affiliations of an environmental strain of this bacterium with respect to C. tetani E88 and other clostridia. A shot gun library was constructed from the genomic DNA of C. tetani drde, isolated from decaying fish sample. Unique clones were sequenced and sequences compared with its closest relative C. tetani E88. A total of 275 clones were obtained and 32,457 bases of non-redundant sequence were generated. A total of 150 base changes were observed over the entire length of sequence obtained, including, additions, deletions and base substitutions. Of the total 120 ORFs detected, 48 exhibited closest similarity to E88 proteins of which three are hypothetical proteins. Eight of the ORFs exhibited similarity with hypothetical proteins from other organisms and 10 aligned with other proteins from unrelated organisms. There is an overall conservation of protein sequences among the two strains of C. tetani and. Selected ORFs involved in cellular processes and metabolism were subjected to phylogenetic analysis. PMID:19527791

  10. Cholesterol stimulation of HDL binding to human endothelial cells EAhy 926 and skin fibroblasts: evidence for a mechanism independent of cellular metabolism.

    PubMed

    Bernini, F; Bellosta, S; Corsini, A; Maggi, F M; Fumagalli, R; Catapano, A L

    1991-04-24

    The properties of the HDL binding site on the permanent human cell line EAhy 926 were studied. This cell line presents with highly differentiated functions of vascular endothelium. EAhy 926 cells possess HDL3 saturable binding sites with a Kd of about 20 micrograms/ml, which were up-regulated by cholesterol and were pronase- and EDTA-insensitive. Furthermore, HDL3 promoted cholesterol efflux from EAhy 926 cells in a dose-dependent manner. Thus, the HDL-binding site in EAhy 926 cells is similar to that present in fibroblasts, smooth muscle cells and endothelial cells. Up-regulation of HDL binding by cholesterol did not require de novo synthesis of HDL 'receptor' protein, as shown by the lack of effect of cycloheximide and alpha-amanitin and also occurred in fixed, non-living cells. Similar results were obtained using human skin fibroblasts. From these data we conclude that: (a) EAhy 926 cells are a good model for studying the HDL interaction with endothelial cells; (b) a mechanism independent of cellular metabolism is involved in the cholesterol-mediated up-regulation of HDL binding sites in EAhy 926 cells and human skin fibroblasts. PMID:1851638

  11. Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks

    PubMed Central

    Chokkathukalam, Achuthanunni; Kim, Dong-Hyun; Barrett, Michael P; Breitling, Rainer; Creek, Darren J

    2014-01-01

    The rapid emergence of metabolomics has enabled system-wide measurements of metabolites in various organisms. However, advances in the mechanistic understanding of metabolic networks remain limited, as most metabolomics studies cannot routinely provide accurate metabolite identification, absolute quantification and flux measurement. Stable isotope labeling offers opportunities to overcome these limitations. Here we describe some current approaches to stable isotope-labeled metabolomics and provide examples of the significant impact that these studies have had on our understanding of cellular metabolism. Furthermore, we discuss recently developed software solutions for the analysis of stable isotope-labeled metabolomics data and propose the bioinformatics solutions that will pave the way for the broader application and optimal interpretation of system-scale labeling studies in metabolomics. PMID:24568354

  12. Development of a chemical structure comparison method for integrated analysis of chemical and genomic information in the metabolic pathways.

    PubMed

    Hattori, Masahiro; Okuno, Yasushi; Goto, Susumu; Kanehisa, Minoru

    2003-10-01

    Cellular functions result from intricate networks of molecular interactions, which involve not only proteins and nucleic acids but also small chemical compounds. Here we present an efficient algorithm for comparing two chemical structures of compounds, where the chemical structure is treated as a graph consisting of atoms as nodes and covalent bonds as edges. On the basis of the concept of functional groups, 68 atom types (node types) are defined for carbon, nitrogen, oxygen, and other atomic species with different environments, which has enabled detection of biochemically meaningful features. Maximal common subgraphs of two graphs can be found by searching for maximal cliques in the association graph, and we have introduced heuristics to accelerate the clique finding and to detect optimal local matches (simply connected common subgraphs). Our procedure was applied to the comparison and clustering of 9383 compounds, mostly metabolic compounds, in the KEGG/LIGAND database. The largest clusters of similar compounds were related to carbohydrates, and the clusters corresponded well to the categorization of pathways as represented by the KEGG pathway map numbers. When each pathway map was examined in more detail, finer clusters could be identified corresponding to subpathways or pathway modules containing continuous sets of reaction steps. Furthermore, it was found that the pathway modules identified by similar compound structures sometimes overlap with the pathway modules identified by genomic contexts, namely, by operon structures of enzyme genes. PMID:14505407

  13. Predicting Performance and Plasticity in the Development of Respiratory Structures and Metabolic Systems

    PubMed Central

    Montooth, Kristi L.; Helm, Bryan R.

    2014-01-01

    The scaling laws governing metabolism suggest that we can predict metabolic rates across taxonomic scales that span large differences in mass. Yet, scaling relationships can vary with development, body region, and environment. Within species, there is variation in metabolic rate that is independent of mass and which may be explained by genetic variation, the environment or their interaction (i.e., metabolic plasticity). Additionally, some structures, such as the insect tracheal respiratory system, change throughout development and in response to the environment to match the changing functional requirements of the organism. We discuss how study of the development of respiratory function meets multiple challenges set forth by the NSF Grand Challenges Workshop. Development of the structure and function of respiratory and metabolic systems (1) is inherently stable and yet can respond dynamically to change, (2) is plastic and exhibits sensitivity to environments, and (3) can be examined across multiple scales in time and space. Predicting respiratory performance and plasticity requires quantitative models that integrate information across scales of function from the expression of metabolic genes and mitochondrial biogenesis to the building of respiratory structures. We present insect models where data are available on the development of the tracheal respiratory system and of metabolic physiology and suggest what is needed to develop predictive models. Incorporating quantitative genetic data will enable mapping of genetic and genetic-by-environment variation onto phenotypes, which is necessary to understand the evolution of respiratory and metabolic systems and their ability to enable respiratory homeostasis as organisms walk the tightrope between stability and change. PMID:24812329

  14. Immunogold Localization of Key Metabolic Enzymes in the Anammoxosome and on the Tubule-Like Structures of Kuenenia stuttgartiensis

    PubMed Central

    de Almeida, Naomi M.; Neumann, Sarah; Mesman, Rob J.; Ferousi, Christina; Keltjens, Jan T.; Jetten, Mike S. M.; van Niftrik, Laura

    2015-01-01

    ABSTRACT Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite as the terminal electron acceptor to form dinitrogen gas in the absence of oxygen. Anammox bacteria have a compartmentalized cell plan with a central membrane-bound “prokaryotic organelle” called the anammoxosome. The anammoxosome occupies most of the cell volume, has a curved membrane, and contains conspicuous tubule-like structures of unknown identity and function. It was suggested previously that the catalytic reactions of the anammox pathway occur in the anammoxosome, and that proton motive force was established across its membrane. Here, we used antibodies raised against five key enzymes of the anammox catabolism to determine their cellular location. The antibodies were raised against purified native hydroxylamine oxidoreductase-like protein kustc0458 with its redox partner kustc0457, hydrazine dehydrogenase (HDH; kustc0694), hydroxylamine oxidase (HOX; kustc1061), nitrite oxidoreductase (NXR; kustd1700/03/04), and hydrazine synthase (HZS; kuste2859-61) of the anammox bacterium Kuenenia stuttgartiensis. We determined that all five protein complexes were exclusively located inside the anammoxosome matrix. Four of the protein complexes did not appear to form higher-order protein organizations. However, the present data indicated for the first time that NXR is part of the tubule-like structures, which may stretch the whole length of the anammoxosome. These findings support the anammoxosome as the locus of catabolic reactions of the anammox pathway. IMPORTANCE Anammox bacteria are environmentally relevant microorganisms that contribute significantly to the release of fixed nitrogen in nature. Furthermore, the anammox process is applied for nitrogen removal from wastewater as an environment-friendly and cost-effective technology. These microorganisms feature a unique cellular organelle, the anammoxosome, which was proposed to contain the energy metabolism of the cell and

  15. Metabolic regulation via enzyme filamentation

    PubMed Central

    Aughey, Gabriel N.; Liu, Ji-Long

    2016-01-01

    Abstract Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease. PMID:27098510

  16. Cellular porous anodic alumina grown in neutral organic electrolyte. 1. Structure, composition, and properties of the films

    SciTech Connect

    Liu, Y.; Alwitt, R.S.; Shimizu, K.

    2000-04-01

    Anodic alumina films with cellular porous structure grow in neutral organic electrolytes with low water content and containing ethylene glycol and a large dicarboxylic acid. An Al carboxylate precipitates in the pore and is extruded from the coating. The porous structure develops even though the current efficiency for film formation is near 95%. The coating matrix contains substantial organic material, 15 wt % by thermal analysis. It is an oxide/organic composite with higher field strength and lower dielectric constant than pure anodic alumina.

  17. Macrophyte disturbance alters aquatic surface microlayer structure, metabolism, and fate.

    PubMed

    Seliskar, Denise M; Gallagher, John L

    2014-03-01

    Macrophytes drive the functioning of many salt marsh ecosystem components. We questioned how temporary clearing of the macrophyte community, during restoration, would impact processes at the scale of the aquatic surface microlayer. Development, deposition, and breakup of the tidal creek surface microlayer were followed over tidal cycles seasonally in a cleared "former" Phragmites marsh and an adjacent restored Spartina marsh. Metabolic and physical processes of the mobile surface microlayers and underlying water were compared, along with distribution of organic and inorganic components onto simulated plant stems. In July and October, chlorophyll-a quantities were less on simulated stems in the cleared site than in the restored site. The aquatic microlayer in the cleared site creek exhibited lower photosynthesis and respiration rates, fewer diatoms and green algae, and less chlorophyll-a. There was a lower concentration (250 times) and reduced diversity of fatty acids in the surface microlayer of the cleared site, reflecting a smaller and less diverse microbial community and reduced food resources. Fiddler crab activity was an order of magnitude higher where macrophytes had been cleared. Their consumption of edaphic algae on the mud surface may account for the reduced algae and other organics in the creek surface microlayer, thus representing a redirection of this food resource from creek consumers. Overall, there were less total particulates in the creek surface microlayer at the cleared site, and they dropped out of the surface microlayer sooner in the tidal cycle, resulting in a lower sediment load available for deposit onto marsh surfaces. PMID:24135995

  18. Coxsackievirus B3-Induced Cellular Protrusions: Structural Characteristics and Functional Competence▿†

    PubMed Central

    Paloheimo, Outi; Ihalainen, Teemu O.; Tauriainen, Sisko; Välilehto, Outi; Kirjavainen, Sanna; Niskanen, Einari A.; Laakkonen, Johanna P.; Hyöty, Heikki; Vihinen-Ranta, Maija

    2011-01-01

    Virus-induced alterations in cell morphology play important roles in the viral life cycle. To examine the intracellular events of coxsackievirus B3 (CVB3) infection, green monkey kidney (GMK) cells were either inoculated with the virus or transfected with the viral RNA. Various microscopic and flow cytometric approaches demonstrated the emergence of CVB3 capsid proteins at 8 h posttransfection, followed by morphological transformation of the cells. The morphological changes included formation of membranous protrusions containing viral capsids, together with microtubules and actin. Translocation of viral capsids into these protrusions was sensitive to cytochalasin D, suggesting the importance of actin in the process. Three-dimensional (3D) live-cell imaging demonstrated frequent contacts between cellular protrusions and adjacent cells. Markedly, in spite of an increase in the cellular viral protein content starting 8 h postinfection, no significant decrease in cell viability or increase in the amount of early apoptotic markers was observed by flow cytometry by 28 h postinfection. Comicroinjection of viral RNA and fluorescent dextran in the presence of neutralizing virus antibody suggested that these protrusions mediated the spread of infection from one cell to another prior to virus-induced cell lysis. Altogether, the CVB3-induced cellular protrusions could function as a hitherto-unknown nonlytic mechanism of cell-to-cell transmission exploited by enteroviruses. PMID:21525342

  19. Algorithm for repairing the damaged images of grain structures obtained from the cellular automata and measurement of grain size

    NASA Astrophysics Data System (ADS)

    Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.

    2012-10-01

    Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.

  20. The role of cellular structure on increasing the detonability limits of three-step chain-branching detonations

    SciTech Connect

    Short, Mark; Kiyanda, Charles B; Quirk, James J; Sharpe, Gary J

    2011-01-27

    In [1], the dynamics of a pulsating three-step chain-branching detonation were studied. The reaction model consists of, sequentially, chain-initiation, chain-branching and chain-termination steps. The chain-initiation and chain-branching steps are taken to be thermally neutral, with chemical energy release occuring in the chain-termination stage. The purpose of the present study is to examine whether cellular detonation structure can increase the value of the chain-branching cross-over temperature T{sub b} at which fully coupled detonation solutions are observed over those in 1 D. The basic concept is straightforward and has been discussed in [1] and [3]; if T{sub s} drops below T{sub b} at the lead shock, the passage of a transverse shock can increase both the lead shock temperature and the temperature behind the transverse wave back above T{sub b}, thus sustaining an unstable cellular detonation for values of T{sub b} for which a one-dimensional pulsating detonation will fail. Experiments potentially supporting this hypothesis with irregular detonations have been shown in [3] in a shock tube with acoustically absorbing walls. Removal of the transverse waves results in detonation failure, giving way to a decoupled shock-flame complex. A number of questions remain to be addressed regarding the possibility of such a mechanism, and, if so, about the precise mechanisms driving the cellular structure for large T{sub b}. For instance, one might ask what sets the cell size in a chain-branching detonation, particularly could the characteristic cell size be set by the chain-branching cross-over temperature T{sub b}: after a transverse wave shock collision, the strength of the transverse wave weakens as it propagates along the front. If the spacing between shock collisions is too large (cell size), then the transverse shocks may weaken to the extent that the lead shock temperature or that behind the transverse waves is not raised above T{sub b}, losing chemical energy to

  1. From structural biology to designing therapy for inborn errors of metabolism.

    PubMed

    Yue, Wyatt W

    2016-07-01

    At the SSIEM Symposium in Istanbul 2010, I presented an overview of protein structural approaches in the study of inborn errors of metabolism (Yue and Oppermann 2011). Five years on, the field is going strong with new protein structures, uncovered catalytic functions and novel chemical matters for metabolic enzymes, setting the stage for the next generation of drug discovery. This article aims to update on recent advances and lessons learnt on inborn errors of metabolism via the protein-centric approach, citing examples of work from my group, collaborators and co-workers that cover diverse pathways of transsulfuration, cobalamin and glycogen metabolism. Taking into consideration that many inborn errors of metabolism result in the loss of enzyme function, this presentation aims to outline three key principles that guide the design of small molecule therapy in this technically challenging field: (1) integrating structural, biochemical and cell-based data to evaluate the wide spectrum of mutation-driven enzyme defects in stability, catalysis and protein-protein interaction; (2) studying multi-domain proteins and multi-protein complexes as examples from nature, to learn how enzymes are activated by small molecules; (3) surveying different regions of the enzyme, away from its active site, that can be targeted for the design of allosteric activators and inhibitors. PMID:27240455

  2. Atmospheric Reaction Systems as Null-Models to Identify Structural Traces of Evolution in Metabolism

    PubMed Central

    Holme, Petter; Huss, Mikael; Lee, Sang Hoon

    2011-01-01

    The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species). For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection. PMID:21573072

  3. Genome-wide functional annotation and structural verification of metabolic ORFeome of Chlamydomonas reinhardtii

    PubMed Central

    2011-01-01

    Background Recent advances in the field of metabolic engineering have been expedited by the availability of genome sequences and metabolic modelling approaches. The complete sequencing of the C. reinhardtii genome has made this unicellular alga a good candidate for metabolic engineering studies; however, the annotation of the relevant genes has not been validated and the much-needed metabolic ORFeome is currently unavailable. We describe our efforts on the functional annotation of the ORF models released by the Joint Genome Institute (JGI), prediction of their subcellular localizations, and experimental verification of their structural annotation at the genome scale. Results We assigned enzymatic functions to the translated JGI ORF models of C. reinhardtii by reciprocal BLAST searches of the putative proteome against the UniProt and AraCyc enzyme databases. The best match for each translated ORF was identified and the EC numbers were transferred onto the ORF models. Enzymatic functional assignment was extended to the paralogs of the ORFs by clustering ORFs using BLASTCLUST. In total, we assigned 911 enzymatic functions, including 886 EC numbers, to 1,427 transcripts. We further annotated the enzymatic ORFs by prediction of their subcellular localization. The majority of the ORFs are predicted to be compartmentalized in the cytosol and chloroplast. We verified the structure of the metabolism-related ORF models by reverse transcription-PCR of the functionally annotated ORFs. Following amplification and cloning, we carried out 454FLX and Sanger sequencing of the ORFs. Based on alignment of the 454FLX reads to the ORF predicted sequences, we obtained more than 90% coverage for more than 80% of the ORFs. In total, 1,087 ORF models were verified by 454 and Sanger sequencing methods. We obtained expression evidence for 98% of the metabolic ORFs in the algal cells grown under constant light in the presence of acetate. Conclusions We functionally annotated approximately 1

  4. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  5. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  6. CELLULAR MAGNESIUM HOMEOSTASIS

    PubMed Central

    Romani, Andrea M.P.

    2011-01-01

    Magnesium, the second most abundant cellular cation after potassium, is essential to regulate numerous cellular functions and enzymes, including ion channels, metabolic cycles, and signaling pathways, as attested by more than 1000 entries in the literature. Despite significant recent progress, however, our understanding of how cells regulate Mg2+ homeostasis and transport still remains incomplete. For example, the occurrence of major fluxes of Mg2+ in either direction across the plasma membrane of mammalian cells following metabolic or hormonal stimuli has been extensively documented. Yet, the mechanisms ultimately responsible for magnesium extrusion across the cell membrane have not been cloned. Even less is known about the regulation in cellular organelles. The present review is aimed at providing the reader with a comprehensive and up-to-date understanding of the mechanisms enacted by eukaryotic cells to regulate cellular Mg2+ homeostasis and how these mechanisms are altered under specific pathological conditions. PMID:21640700

  7. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    PubMed Central

    2010-01-01

    Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD), Alzheimer's disease (AD), and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4) and plasmalogen sufficient (HEK293) cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA)-containing ethanolamine plasmalogen (PlsEtn) present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1) levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells. PMID:20546600

  8. Influenza A virus non-structural protein 1 (NS1) interacts with cellular multifunctional protein nucleolin during infection.

    PubMed

    Murayama, Rikinori; Harada, Yuichi; Shibata, Toshikatsu; Kuroda, Kazumichi; Hayakawa, Satoshi; Shimizu, Kazufumi; Tanaka, Torahiko

    2007-11-01

    Influenza A virus non-structural protein 1 (NS1) is the most important viral regulatory factor that controls cellular processes to facilitate viral replication. To gain further insight into the role of NS1, we tried to find novel cellular factors that interact with NS1. The complexes of NS1 and target proteins were pulled down from an infected cell lysate using anti-NS1 (A/Udorn/72) single-chain Fv and identified by peptide mass fingerprinting analysis. We identified nucleolin, a multifunctional major nucleolar protein, as a novel NS1-binding protein. The RNA-binding domain of NS1 was responsible for this binding, as judged by a GST (glutathione S-transferase) pull-down assay with the GST-fused functional domains of NS1. By laser confocal microscopy, we observed the co-localization of NS1 with nucleolin most clearly in the nucleoli, indicating that NS1 is interacting with nucleolin during infection. Our results suggest a novel function of NS1, namely, affecting cellular events via interaction with nucleolin. PMID:17767916

  9. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective

    PubMed Central

    Wallace, Bret D.; Redinbo, Matthew R.

    2016-01-01

    Xenobiotic compounds undergo a critical range of biotransformations performed by the phase I, II, and III drug-metabolizing enzymes. The oxidation, conjugation, and transportation of potentially harmful xenobiotic and endobiotic compounds achieved by these catalytic systems are significantly regulated, at the gene expression level, by members of the nuclear receptor (NR) family of ligand-modulated transcription factors. Activation of NRs by a variety of endo- and exogenous chemicals are elemental to induction and repression of drug-metabolism pathways. The master xenobiotic sensing NRs, the promiscuous pregnane X receptor and less-promiscuous constitutive androstane receptor are crucial to initial ligand recognition, jump-starting the metabolic process. Other receptors, including farnesoid X receptor, vitamin D receptor, hepatocyte nuclear factor 4 alpha, peroxisome proliferator activated receptor, glucocorticoid receptor, liver X receptor, and RAR-related orphan receptor, are not directly linked to promiscuous xenobiotic binding, but clearly play important roles in the modulation of metabolic gene expression. Crystallographic studies of the ligand-binding domains of nine NRs involved in drug metabolism provide key insights into ligand-based and constitutive activity, coregulator recruitment, and gene regulation. Structures of other, noncanonical transcription factors also shed light on secondary, but important, pathways of control. Pharmacological targeting of some of these nuclear and atypical receptors has been instituted as a means to treat metabolic and developmental disorders and provides a future avenue to be explored for other members of the xenobiotic-sensing NRs. PMID:23210723

  10. Relation of Murine Thoracic Aortic Structural and Cellular Changes With Aging to Passive and Active Mechanical Properties

    PubMed Central

    Wheeler, Jason B.; Mukherjee, Rupak; Stroud, Robert E.; Jones, Jeffrey A.; Ikonomidis, John S.

    2015-01-01

    Background Maintenance of the structure and mechanical properties of the thoracic aorta contributes to aortic function and is dependent on the composition of the extracellular matrix and the cellular content within the aortic wall. Age‐related alterations in the aorta include changes in cellular content and composition of the extracellular matrix; however, the precise roles of these age‐related changes in altering aortic mechanical function are not well understood. Methods and Results Thoracic aortic rings from the descending segment were harvested from C57BL/6 mice aged 6 and 21 months. Thoracic aortic diameter and wall thickness were higher in the old mice. Cellular density was reduced in the medial layer of aortas from the old mice; concomitantly, collagen content was higher in old mice, but elastin content was similar between young and old mice. Stress relaxation, an index of compliance, was reduced in aortas from old mice and correlated with collagen fraction. Contractility of the aortic rings following potassium stimulation was reduced in old versus young mice. Furthermore, collagen gel contraction by aortic smooth muscle cells was reduced with age. Conclusions These results demonstrate that numerous age‐related structural changes occurred in the thoracic aorta and were related to alterations in mechanical properties. Aortic contractility decreased with age, likely because of a reduction in medial cell number in addition to a smooth muscle contractile deficit. Together, these unique findings provide evidence that the age‐related changes in structure and mechanical function coalesce to provide an aortic substrate that may be predisposed to aortopathies. PMID:25716945

  11. Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment.

    PubMed

    Yamashita, Hiroko; Kato, Takuma; Oba, Makoto; Misawa, Takashi; Hattori, Takayuki; Ohoka, Nobumichi; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2016-01-01

    Cell-penetrating peptides (CPP) are received a lot of attention as an intracellular delivery tool for hydrophilic molecules such as drugs, proteins, and DNAs. We designed and synthesized nona-arginine analogues 1-5 [FAM-β-Ala-(l-Arg-l-Arg-l-Pro)3-(Gly)3-NH2 (1), FAM-β-Ala-(l-Arg-l-Arg-l-Pro(NH2))3-(Gly)3-NH2 (2), FAM-β-Ala-(l-Arg-l-Arg-l-Pro(Gu))3-(Gly)3-NH2 (3), FAM-β-Ala-(l-Arg)2-(l-Pro(Gu))2-(l-Arg)4-l-Pro(Gu)-(Gly)3-NH2 (4), and FAM-β-Ala-(l-Arg)6-(l-Pro(Gu))3-(Gly)3-NH2 (5)] containing l-proline (l-Pro) or cationic proline derivatives (l-Pro(NH2) and l-Pro(Gu)), and investigated their cell-penetrating abilities. Interestingly, only peptide 3 having the side-chain guanidinyl l-Pro(Gu) exhibited a secondary structural change in cellular environment. Specifically, peptide 3 formed a random structure in hydrophilic conditions, whereas it formed a helical structure under amphipathic conditions. Furthermore, during cellular permeability tests, peptide 3 demonstrated greater cell-penetrating activity than other peptides and effectively transported plasmid DNA into HeLa cells. Thus, l-Pro(Gu)-containing peptide 3 may be a useful candidate as a gene delivery carrier. PMID:27609319

  12. Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment

    PubMed Central

    Yamashita, Hiroko; Kato, Takuma; Oba, Makoto; Misawa, Takashi; Hattori, Takayuki; Ohoka, Nobumichi; Tanaka, Masakazu; Naito, Mikihiko; Kurihara, Masaaki; Demizu, Yosuke

    2016-01-01

    Cell-penetrating peptides (CPP) are received a lot of attention as an intracellular delivery tool for hydrophilic molecules such as drugs, proteins, and DNAs. We designed and synthesized nona-arginine analogues 1–5 [FAM-β-Ala-(l-Arg-l-Arg-l-Pro)3-(Gly)3-NH2 (1), FAM-β-Ala-(l-Arg-l-Arg-l-ProNH2)3-(Gly)3-NH2 (2), FAM-β-Ala-(l-Arg-l-Arg-l-ProGu)3-(Gly)3-NH2 (3), FAM-β-Ala-(l-Arg)2-(l-ProGu)2-(l-Arg)4-l-ProGu-(Gly)3-NH2 (4), and FAM-β-Ala-(l-Arg)6-(l-ProGu)3-(Gly)3-NH2 (5)] containing l-proline (l-Pro) or cationic proline derivatives (l-ProNH2 and l-ProGu), and investigated their cell-penetrating abilities. Interestingly, only peptide 3 having the side-chain guanidinyl l-ProGu exhibited a secondary structural change in cellular environment. Specifically, peptide 3 formed a random structure in hydrophilic conditions, whereas it formed a helical structure under amphipathic conditions. Furthermore, during cellular permeability tests, peptide 3 demonstrated greater cell-penetrating activity than other peptides and effectively transported plasmid DNA into HeLa cells. Thus, l-ProGu-containing peptide 3 may be a useful candidate as a gene delivery carrier. PMID:27609319

  13. Elucidation and Structural Analysis of Conserved Pools for Genome-Scale Metabolic Reconstructions

    PubMed Central

    Nikolaev, Evgeni V.; Burgard, Anthony P.; Maranas, Costas D.

    2005-01-01

    In this article, we introduce metabolite concentration coupling analysis (MCCA) to study conservation relationships for metabolite concentrations in genome-scale metabolic networks. The analysis allows the global identification of subsets of metabolites whose concentrations are always coupled within common conserved pools. Also, the minimal conserved pool identification (MCPI) procedure is developed for elucidating conserved pools for targeted metabolites without computing the entire basis conservation relationships. The approaches are demonstrated on genome-scale metabolic reconstructions of Helicobacter pylori, Escherichia coli, and Saccharomyces cerevisiae. Despite significant differences in the size and complexity of the examined organism's models, we find that the concentrations of nearly all metabolites are coupled within a relatively small number of subsets. These correspond to the overall exchange of carbon molecules into and out of the networks, interconversion of energy and redox cofactors, and the transfer of nitrogen, sulfur, phosphate, coenzyme A, and acyl carrier protein moieties among metabolites. The presence of large conserved pools can be viewed as global biophysical barriers protecting cellular systems from stresses, maintaining coordinated interconversions between key metabolites, and providing an additional mode of global metabolic regulation. The developed approaches thus provide novel and versatile tools for elucidating coupling relationships between metabolite concentrations with implications in biotechnological and medical applications. PMID:15489308

  14. Cellular ageing mechanisms in osteoarthritis.

    PubMed

    Sacitharan, P K; Vincent, T L

    2016-08-01

    Age is the strongest independent risk factor for the development of osteoarthritis (OA) and for many years this was assumed to be due to repetitive microtrauma of the joint surface over time, the so-called 'wear and tear' arthritis. As our understanding of OA pathogenesis has become more refined, it has changed our appreciation of the role of ageing on disease. Cartilage breakdown in disease is not a passive process but one involving induction and activation of specific matrix-degrading enzymes; chondrocytes are exquisitely sensitive to changes in the mechanical, inflammatory and metabolic environment of the joint; cartilage is continuously adapting to these changes by altering its matrix. Ageing influences all of these processes. In this review, we will discuss how ageing affects tissue structure, joint use and the cellular metabolism. We describe what is known about pathways implicated in ageing in other model systems and discuss the potential value of targeting these pathways in OA. PMID:27215642

  15. Cystathionine γ-lyase: clinical, metabolic, genetic, and structural studies

    PubMed Central

    Kraus, Jan P.; Hašek, Jindrich; Kožich, Viktor; Collard, Renata; Venezia, Sarah; Janošíková, Bohumila; Wang, Jian; Stabler, Sally P.; Allen, Robert H.; Jakobs, Cornelis; Finn, Christine T.; Chien, Yin-Hsiu; Hwu, Wuh-Liang; Hegele, Robert A.; Mudd, S. Harvey

    2009-01-01

    We report studies of six individuals with marked elevations of cystathionine in plasma and/or urine. Studies of CTH, the gene that encodes cystathionine γ-lyase, revealed the presence among these individuals of either homozygous or compound heterozygous forms of a novel large deletion, p.Gly57_Gln196del, two novel missense mutations, c.589C>T (p.Arg197Cys) and c.932C>T (p.Thr311Ile), and one previously reported alteration, c.200C>T (p.Thr67Ile). Another novel missense mutation, c.185G>T (p.Arg62His), was found in heterozygous form in three mildly hypercystathioninemic members of a Taiwanese family. In one severely hypercystathioninemic individual no CTH mutation was found. Brief clinical histories of the cystathioninemic/cystathioninuric patients are presented. Most of the novel mutations were expressed and the CTH activities of the mutant proteins determined. The crystal structure of the human enzyme, hCTH, and the evidence available as to the effects of the mutations in question, as well as those of the previously reported p.Gln240Glu, on protein structure, enzymatic activity, and responsiveness to vitamin B6 administration are discussed. Among healthy Czech controls, 9.3% were homozygous for CTH c.1208G>T (p.Ser403Ile), previously found homozygously in 7.5% of Canadians for whom plasma total homocysteine (tHcy) had been measured. Compared to wild-type homozygotes, among the 55 Czech c.1208G>T (p.Ser403Ile) homozygotes a greater level of plasma cystathionine was found only after methionine loading. Three of the four individuals homozygous or compound heterozygous for inactivating CTH mutations had mild plasma tHcy elevations, perhaps indicating a cause-and-effect relationship. The experience with the present patients provides no evidence that severe loss of CTH activity is accompanied by adverse clinical effects. PMID:19428278

  16. Ocean acidification affects competition for space: projections of community structure using cellular automata.

    PubMed

    McCoy, Sophie J; Allesina, Stefano; Pfister, Catherine A

    2016-03-16

    Historical ecological datasets from a coastal marine community of crustose coralline algae (CCA) enabled the documentation of ecological changes in this community over 30 years in the Northeast Pacific. Data on competitive interactions obtained from field surveys showed concordance between the 1980s and 2013, yet also revealed a reduction in how strongly species interact. Here, we extend these empirical findings with a cellular automaton model to forecast ecological dynamics. Our model suggests the emergence of a new dominant competitor in a global change scenario, with a reduced role of herbivory pressure, or trophic control, in regulating competition among CCA. Ocean acidification, due to its energetic demands, may now instead play this role in mediating competitive interactions and thereby promote species diversity within this guild. PMID:26936244

  17. Universality in two-dimensional cellular structures evolving by cell division and disappearance

    NASA Astrophysics Data System (ADS)

    Miri, Mirfaez; Rivier, Nicolas

    2006-03-01

    The dynamics of two-dimensional cellular networks is written in terms of coupled population equations, which describe how the population of s -sided cells is affected by cell division and disappearance. In these equations the effect of the rest of the foam on the disappearing or dividing cell is treated as a local mean field. Under not too restrictive conditions, the equilibrium distribution P(s) of cells satisfies a linear difference equation of order two or higher. The population equations are asymptotically integrable. The asymptotic integrability implies a “universal” distribution P(s)˜Cs-κzs for large values of s , which is also the Boltzmann distribution associated with the maximum entropy inference. Asymptotic integrability of the population equations is absent in a global mean-field approximation. The importance of short-range topological information to control the evolution of foams is thus confirmed.

  18. Characterization of a Trypanosoma cruzi acetyltransferase: cellular location, activity and structure.

    PubMed

    Ochaya, Stephen; Respuela, Patricia; Simonsson, Maria; Saraswathi, Abhiman; Branche, Carole; Lee, Jennifer; Búa, Jacqueline; Nilsson, Daniel; Aslund, Lena; Bontempi, Esteban J; Andersson, Björn

    2007-04-01

    Trypanosomatids are widespread parasites that cause three major tropical diseases. In trypanosomatids, as in most other organisms, acetylation is a common protein modification that is important in multiple, diverse processes. This paper describes a new member of the Trypanosoma cruzi acetyltransferase family. The gene is single copy and orthologs are also present in the other two sequenced trypanosomatids, Trypanosoma brucei and Leishmania major. This protein (TcAT-1) has the essential motifs present in members of the GCN5-related acetyltransferase (GNAT) family, as well as an additional motif also found in some enzymes from plant and animal species. The protein is evolutionarily more closely related to this group of enzymes than to histone acetyltransferases. The native protein has a cytosolic cellular location and is present in all three life-cycle stages of the parasite. The recombinant protein was shown to have autoacetylation enzymatic activity. PMID:17270289

  19. Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus.

    PubMed

    Frederick, Kendra K; Michaelis, Vladimir K; Corzilius, Björn; Ong, Ta-Chung; Jacavone, Angela C; Griffin, Robert G; Lindquist, Susan

    2015-10-22

    Biological processes occur in complex environments containing a myriad of potential interactors. Unfortunately, limitations on the sensitivity of biophysical techniques normally restrict structural investigations to purified systems, at concentrations that are orders of magnitude above endogenous levels. Dynamic nuclear polarization (DNP) can dramatically enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and enable structural studies in biologically complex environments. Here, we applied DNP NMR to investigate the structure of a protein containing both an environmentally sensitive folding pathway and an intrinsically disordered region, the yeast prion protein Sup35. We added an exogenously prepared isotopically labeled protein to deuterated lysates, rendering the biological environment "invisible" and enabling highly efficient polarization transfer for DNP. In this environment, structural changes occurred in a region known to influence biological activity but intrinsically disordered in purified samples. Thus, DNP makes structural studies of proteins at endogenous levels in biological contexts possible, and such contexts can influence protein structure. PMID:26456111

  20. Simultaneous imaging of 13C metabolism and 1H structure: technical considerations and potential applications.

    PubMed

    Gordon, Jeremy W; Fain, Sean B; Niles, David J; Ludwig, Kai D; Johnson, Kevin M; Peterson, Eric T

    2015-05-01

    Real-time imaging of (13)C metabolism in vivo has been enabled by recent advances in hyperpolarization. As a result of the inherently low natural abundance of endogenous (13)C nuclei, hyperpolarized (13)C images lack structural information that could be used to aid in motion detection and anatomical registration. Motion before or during the (13)C acquisition can therefore result in artifacts and misregistration that may obscure measures of metabolism. In this work, we demonstrate a method to simultaneously image both (1)H and (13)C nuclei using a dual-nucleus spectral-spatial radiofrequency excitation and a fully coincident readout for rapid multinuclear spectroscopic imaging. With the appropriate multinuclear hardware, and the means to simultaneously excite and receive on both channels, this technique is straightforward to implement requiring little to no increase in scan time. Phantom and in vivo experiments were performed with both Cartesian and spiral trajectories to validate and illustrate the utility of simultaneous acquisitions. Motion compensation of dynamic metabolic measurements acquired during free breathing was demonstrated using motion tracking derived from (1)H data. Simultaneous multinuclear imaging provides structural (1)H and metabolic (13)C images that are correlated both spatially and temporally, and are therefore amenable to joint (1)H and (13)C analysis and correction of structure-function images. PMID:25810146

  1. Activation of the oncogenic potential of the avian cellular src protein by specific structural alteration of the carboxy terminus.

    PubMed Central

    Reynolds, A B; Vila, J; Lansing, T J; Potts, W M; Weber, M J; Parsons, J T

    1987-01-01

    The role of tyrosine phosphorylation in the regulation of tyrosine protein kinase activity was investigated using site-directed mutagenesis to alter the structure and environment of the three tyrosine residues present in the C terminus of avian pp60c-src. Mutations that change Tyr 527 to Phe or Ser activate in vivo tyrosine protein kinase activity and induce cellular transformation of chicken cells in culture. In contrast, alterations of tyrosine residues present at positions 511 or 519 in c-src do not induce transformation or in vivo tyrosine protein kinase activity. Amber mutations, which alter the structure of the pp60c-src C terminus by inducing premature termination of the c-src protein at either residue 518 or 523 also induce morphological transformation and increase in vivo tyrosine phosphorylation, whereas removal of the last four residues of c-src by chain termination at residue 530 does not alter the kinase activity or the biological activity of the resultant c-src protein. We conclude from these studies that C-terminal alterations which either remove or replace Tyr 527 serve to activate the c-src protein resulting in cellular transformation and increased in vivo tyrosine protein kinase activity. Images Fig. 2. Fig. 3. Fig. 4. PMID:2822389

  2. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds.

    PubMed

    Laukkanen, Hanna; Rautiainen, Lea; Taulavuori, Erja; Hohtola, Anja

    2000-04-01

    Visible browning is a typical feature of callus cultures derived from shoot tips of mature Scots pine (Pinus sylvestris L.). Because the ability of callus to regenerate is low, we determined the effect of browning on growth and changes in cellular structure during culture. Striking alterations in cellular structure were detected by LM (light microscopy), EM (electron microscopy) and SEM (scanning electron microscopy). Accumulation of phenolic substances was shown by histochemical staining. Staining for beta-glucosidase activity of soluble proteins that had been subjected to polyacrylamide gel electrophoresis indicated lignification of cells. The measured growth rate of callus was low compared with a hypothetical growth curve. Peroxidase activity increased rapidly soon after the start of the culture period, but especially between the second and third weeks of culture. At this time, the degradation of cell membranes and browning began coincident with the loss of chlorophyll. We conclude that browning is associated with cell disorganization and eventual cell death, making tissue culture of mature pine especially difficult. PMID:12651442

  3. Effect of structural modification on the gastrointestinal stability and hepatic metabolism of α-aminoxy peptides.

    PubMed

    Ma, Bin; Yin, Chun; Yang, Dan; Lin, Ge

    2012-11-01

    α-Aminoxy peptide AxyP1 has been reported to form synthetic chloride channel in living cells, thus it may have therapeutic potential for the treatment of diseases associated with chloride channel dysfunction. However, this study revealed significant gastrointestinal (GI) instability and extensive hepatic metabolism of AxyP1. To improve its GI and metabolic stability, structural modifications were conducted by replacing the isobutyl side chains of AxyP1 with methyl group (AxyP2), hydroxymethyl group (AxyP3), 4-aminobutyl group (AxyP4) and 3-carboxyl propyl group (AxyP5). Compared with AxyP1 (41 and 47 % degradation), GI stability of the modified peptides was significantly improved by 8-fold (AxyP2), 9-fold (AxyP3) and 12-fold (AxyP5) with no degradation for AxyP4 in simulated gastric fluid within 1 h, and by 12-fold (AxyP2) and 9-fold (AxyP3) with no degradation for AxyP4 and AxyP5 in simulated intestinal fluid within 3 h, respectively. The hepatic metabolic stability of the four modified peptides within 30 min in rat liver S9 preparation was also improved significantly with no metabolism of AxyP5 and threefold (AxyP2 and AxyP4) and eightfold (AxyP3) less metabolism compared with AxyP1 (39 % metabolism). Unlike hydrolysis as the major metabolism of peptides of natural α-amino acids, oxidation mediated by the cytochrome P450 enzymes, especially CYP3A subfamily, to form the corresponding mono-hydroxyl metabolites was the predominant hepatic metabolism of the five α-aminoxy peptides tested. The present findings demonstrate that structural modification can significantly improve the GI and metabolic stability of α-aminoxy peptides and thus increase their potential for therapeutic use in the treatment of chloride channel related diseases. PMID:22526242

  4. On the synthesis of a bio-inspired dual-cellular fluidic flexible matrix composite adaptive structure based on a non-dimensional dynamics model

    NASA Astrophysics Data System (ADS)

    Li, Suyi; Wang, K. W.

    2013-01-01

    A recent study investigated the dynamic characteristics of an adaptive structure concept featuring dual fluidic flexible matrix composite (F2MC) cells inspired by the configuration of plant cells and cell walls. This novel bio-inspired system consists of two F2MC cells with different fiber angles connected through internal fluid circuits. It was discovered that the dual F2MC cellular structure can be characterized as a two degree of freedom damped mass-spring oscillator, and can be utilized as a vibration absorber or an enhanced actuator under different operation conditions. These results demonstrated that the concept is promising and further investigations are needed to develop methodologies for synthesizing future multi-cellular F2MC structural systems. While interesting, the previous study focused on specific case studies and analysis. That is, the outcome did not provide insight that could be generalized, or tools for synthesizing a multiple F2MC cellular structure. This paper attempts to address this important issue by developing a non-dimensional dynamic model, which reveals good physical insights as well as identifying crucial constitutive parameters for F2MC cellular design. Working with these parameters, rather than physical variables, can greatly simplify the mathematics involved in the study. A synthesis tool is then developed for the dual-cellular structure, and it is found that for each set of achievable target poles and zero, there exist multiple F2MC cellular designs, forming a design space. The presented physical insights and synthesis tool for the dual-cellular structure will be the building blocks for future investigation on cellular structures with a larger number of cells.

  5. Predicting effects of structural stress in a genome-reduced model bacterial metabolism

    NASA Astrophysics Data System (ADS)

    Güell, Oriol; Sagués, Francesc; Serrano, M. Ángeles

    2012-08-01

    Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network architecture as robust as that of other model bacteria regarding multiple failures, although less robust against individual reaction inactivation. Interestingly, metabolite motifs associated to reactions can predict the propagation of inactivation cascades and damage amplification effects arising in double knockouts. We also detect a significant correlation between gene essentiality and damages produced by single gene knockouts, and find that genes controlling high-damage reactions tend to be expressed independently of each other, a functional switch mechanism that, simultaneously, acts as a genetic firewall to protect metabolism. Prediction of failure propagation is crucial for metabolic engineering or disease treatment.

  6. Cellular fine structures and histochemical reactions in the tissue of a cypress twig preserved in Baltic amber

    PubMed Central

    Koller, Barbara; Schmitt, Jürgen M.; Tischendorf, Gilbert

    2005-01-01

    A twig of a cypress plant preserved for ca. 45Myr in Baltic amber was analysed by light and electron microscopy. Cross-sections of the whole plant showed an almost intact tissue of the entire stem and leaves, revealing, to our knowledge, the oldest and most highly preserved tissue from an amber inclusion reported so far. The preparations are based on a new technique of internal imbedding, whereby the hollow spaces within the inclusion are filled with synthetic resin which stabilizes the cellular structures during the sectioning procedure. Cytological stains applied to the sections reacted with cell walls and nuclei. A strong green auto-fluorescence of the cuticle and the resin canals in the leaves was observed. Transmission electron micrographs revealed highly preserved fine structures of cell walls, membranes and organelles. The results were compared with taxonomically related recent Glyptostrobus and Juniperus plants. PMID:15695201

  7. Identification of large-scale cellular structures on the Sun based on the SDO and PSPT data

    NASA Astrophysics Data System (ADS)

    Efremov, V. I.; Parfinenko, L. D.; Solov'ev, A. A.

    2015-03-01

    Three independent sets of data: (i) series of filtergrams obtained in line CaII K (393.416 nm) with the ground-based telescope Precision Solar Photometric Telescope (PSPT) of Mauna Loa Solar Observatory; (ii) series of filtergrams of Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) in λ160 nm and (iii) series of magnetograms of Helioseismic and Magnetic Imager (HMI) of SDO have been processed to reveal reliably the existence of spatial cellular structures on the solar photosphere at scale about of 300 arcsec. This scale is intermediate between supergranules and giant cells (˜30,000 and ˜300,000 km across, respectively). To identify the different spatial structures the tens of two-dimensional power spectra ( 2DFFT) have been averaged. For one-dimensional photometric cross sections of frames, the Fourier power spectra ( FFT) and wavelet transforms (Morlet 5-th order) have been calculated.

  8. [The structure of cellular vaults, their role in the normal cell and in the multidrug resistance of cancer].

    PubMed

    Szaflarski, Witold; Nowicki, Michał; Zabel, Maciej

    2011-01-01

    The cellular vaults have been described for the first time in 1986 as ribonucleoprotein complexes composed of three proteins, MVP, TEP1 and vPARP and several vRNA strains. Biochemical and structural studies revealed their ubiquitous existence in the cytoplasm of many eukaryotic cells and their barrel-like structure indicating their engagement in the intracellular transport. Furthermore, the high homology between MVP and LRP which was already known to be involved in multidrug resistance mechanism opened a discussion about the role of vaults in both normal and cancer cells. The histopathology research demonstrated an increased amount of MVP/LRP proteins in the cancer as well as showed translocation possibility between cytoplasm and nuclear envelope, which can be of crucial point in the prevention of nucleus against anticancer drugs. PMID:22235652

  9. Numerical Simulation of Solidification Structure of ESR Ingot Using Cellular Automaton Method

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua; Li, Ying

    2015-04-01

    The electroslag remelting (ESR) process is a widely used secondary remelting process for the production of high-value-added alloys and steels. The grain structure of ESR ingot has a great effect on the final properties of products. A multiscale mathematical model combining the macroscopic heat transport with the mesoscopic nucleation and grain growth was developed to predict the grain structure evolution of solidification ingot during the ESR process. A moving cell frame, which dynamically defines the calculation domain for grain structure simulation, was proposed to save the computation resources and time. The thermophysical properties of steel related to the solidification of rotor steel 30Cr1Mo1V were adopted in present model and the nucleation parameters, which were suitable for the ESR process, were determined using the trial and error method in numerical simulation. The multiscale mathematical model was validated by the comparison between predicted and experimentally observed grain structure, and the results showed that the model was capable of simulating the grain structure evolution during the ESR process. Finally, the preliminary investigation on the effect of industrial process parameters on the grain structure was carried out and the results showed that increasing melting rate caused finer columnar grain structure and changed the growth direction of columnar grain structure from the axial-radial growth into the radial growth at very high melting rate. Meanwhile, increasing the molten slag temperature made the columnar grain structure finer and reduced the thickness of the refined equiaxed grain layer both at the surface and bottom of the ESR ingot.

  10. Cellular automata-based modelling and simulation of biofilm structure on multi-core computers.

    PubMed

    Skoneczny, Szymon

    2015-01-01

    The article presents a mathematical model of biofilm growth for aerobic biodegradation of a toxic carbonaceous substrate. Modelling of biofilm growth has fundamental significance in numerous processes of biotechnology and mathematical modelling of bioreactors. The process following double-substrate kinetics with substrate inhibition proceeding in a biofilm has not been modelled so far by means of cellular automata. Each process in the model proposed, i.e. diffusion of substrates, uptake of substrates, growth and decay of microorganisms and biofilm detachment, is simulated in a discrete manner. It was shown that for flat biofilm of constant thickness, the results of the presented model agree with those of a continuous model. The primary outcome of the study was to propose a mathematical model of biofilm growth; however a considerable amount of focus was also placed on the development of efficient algorithms for its solution. Two parallel algorithms were created, differing in the way computations are distributed. Computer programs were created using OpenMP Application Programming Interface for C++ programming language. Simulations of biofilm growth were performed on three high-performance computers. Speed-up coefficients of computer programs were compared. Both algorithms enabled a significant reduction of computation time. It is important, inter alia, in modelling and simulation of bioreactor dynamics. PMID:26606102

  11. Ru(ii)-polypyridyl surface functionalised gold nanoparticles as DNA targeting supramolecular structures and luminescent cellular imaging agents

    NASA Astrophysics Data System (ADS)

    Martínez-Calvo, Miguel; Orange, Kim N.; Elmes, Robert B. P.; La Cour Poulsen, Bjørn; Williams, D. Clive; Gunnlaugsson, Thorfinnur

    2015-12-01

    The development of Ru(ii) functionalized gold nanoparticles 1-3.AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1-3.AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1-3.AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics.The development of Ru(ii) functionalized gold nanoparticles 1-3.AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1-3.AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1-3.AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05598a

  12. Fibres and cellular structures preserved in 75-million–year-old dinosaur specimens

    PubMed Central

    Bertazzo, Sergio; Maidment, Susannah C. R.; Kallepitis, Charalambos; Fearn, Sarah; Stevens, Molly M.; Xie, Hai-nan

    2015-01-01

    Exceptionally preserved organic remains are known throughout the vertebrate fossil record, and recently, evidence has emerged that such soft tissue might contain original components. We examined samples from eight Cretaceous dinosaur bones using nano-analytical techniques; the bones are not exceptionally preserved and show no external indication of soft tissue. In one sample, we observe structures consistent with endogenous collagen fibre remains displaying ∼67 nm banding, indicating the possible preservation of the original quaternary structure. Using ToF-SIMS, we identify amino-acid fragments typical of collagen fibrils. Furthermore, we observe structures consistent with putative erythrocyte remains that exhibit mass spectra similar to emu whole blood. Using advanced material characterization approaches, we find that these putative biological structures can be well preserved over geological timescales, and their preservation is more common than previously thought. The preservation of protein over geological timescales offers the opportunity to investigate relationships, physiology and behaviour of long extinct animals. PMID:26056764

  13. 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.

    PubMed

    Hong, Sungmin; Sycks, Dalton; Chan, Hon Fai; Lin, Shaoting; Lopez, Gabriel P; Guilak, Farshid; Leong, Kam W; Zhao, Xuanhe

    2015-07-15

    X. Zhao and co-workers develop on page 4035 a new biocompatible hydrogel system that is extremely tough and stretchable and can be 3D printed into complex structures, such as the multilayer mesh shown. Cells encapsulated in the tough and printable hydrogel maintain high viability. 3D-printed structures of the tough hydrogel can sustain high mechanical loads and deformations. PMID:26172844

  14. Molecular recognition of CYP26A1 binding pockets and structure-activity relationship studies for design of potent and selective retinoic acid metabolism blocking agents.

    PubMed

    Sun, Bin; Song, Shuai; Hao, Chen-Zhou; Huang, Wan-Xu; Liu, Chun-Chi; Xie, Hong-Lei; Lin, Bin; Cheng, Mao-Sheng; Zhao, Dong-Mei

    2015-03-01

    All-trans-retinoic acid (ATRA), the biologically most active metabolite of vitamin A, plays a major role in the regulation of cellular differentiation and proliferation, and it is also an important pharmacological agent particularly used in the treatment of cancer, skin, neurodegenerative and autoimmune diseases. However, ATRA is very easy to be metabolized into 4-hydroxyl-RA in vivo by CYP26A1, an inducible cytochrome P450 enzyme, eventually into more polar metabolites. Therefore, it is vital to develop specific retinoic acid metabolism blocking agents (RAMBAs) to inhibit the metabolic enzyme CYP26A1 in the treatment of relevant diseases aforementioned. In this study, CYP26A1 and its interactions with retinoic acid-competitive metabolism blocking agents were investigated by a combined ligand- and structure-based approach. First, since the crystal structure of CYP26A1 protein has not been determined, we constructed the 3D structure of CYP26A1 using homology modeling. In order to achieve a deeper insight into the mode of action of RAMBAs in the active site, the molecular superimposition model and the common feature pharmacophore model were constructed, and molecular docking was performed. The molecular superimposition model is composed of three features: the main chain groups, side chain groups, and azole groups. The common feature pharmacophore model consists of five chemical features: four hydrophobic groups and one hydrogen acceptor (HHHHA). The results of molecular docking show that the characteristic groups of RAMBAs were mapped into three different active pockets, respectively. A structure-activity relationship (SAR) was obtained by a combination of the molecular superimposition and docking results with the pharmacophore model. This study gives more insight into the interaction model inside the CYP26A1 active site and provides guidance for the design of more potent and possibly more selective RAMBAs. PMID:25541526

  15. Genetic Dominance & Cellular Processes

    ERIC Educational Resources Information Center

    Seager, Robert D.

    2014-01-01

    In learning genetics, many students misunderstand and misinterpret what "dominance" means. Understanding is easier if students realize that dominance is not a mechanism, but rather a consequence of underlying cellular processes. For example, metabolic pathways are often little affected by changes in enzyme concentration. This means that…

  16. Mitochondrial Division and Fusion in Metabolism

    PubMed Central

    Roy, Madhuparna; Reddy, P. Hemachandra; Iijima, Miho; Sesaki, Hiromi

    2015-01-01

    Mitochondria govern many metabolic processes. In addition, mitochondria sense the status of metabolism and change their functions to regulate energy production, cell death, and thermogenesis. Recent studies have revealed that mitochondrial structural remodeling through division and fusion is critical to the organelle’s function. It has also become clear that abnormalities in mitochondrial division and fusion are linked to the pathophysiology of metabolic diseases such as diabetes and obesity. Here, we discuss the current understanding of the mechanisms of mitochondrial dynamics and their role in cellular and organismal metabolism. PMID:25703628

  17. Molecular, Cellular, and Structural Mechanisms of Cocaine Addiction: A Key Role for MicroRNAs

    PubMed Central

    Jonkman, Sietse; Kenny, Paul J

    2013-01-01

    The rewarding properties of cocaine play a key role in establishing and maintaining the drug-taking habit. However, as exposure to cocaine increases, drug use can transition from controlled to compulsive. Importantly, very little is known about the neurobiological mechanisms that control this switch in drug use that defines addiction. MicroRNAs (miRNAs) are small non-protein coding RNA transcripts that can regulate the expression of messenger RNAs that code for proteins. Because of their highly pleiotropic nature, each miRNA has the potential to regulate hundreds or even thousands of protein-coding RNA transcripts. This property of miRNAs has generated considerable interest in their potential involvement in complex psychiatric disorders such as addiction, as each miRNA could potentially influence the many different molecular and cellular adaptations that arise in response to drug use that are hypothesized to drive the emergence of addiction. Here, we review recent evidence supporting a key role for miRNAs in the ventral striatum in regulating the rewarding and reinforcing properties of cocaine in animals with limited exposure to the drug. Moreover, we discuss evidence suggesting that miRNAs in the dorsal striatum control the escalation of drug intake in rats with extended cocaine access. These findings highlight the central role for miRNAs in drug-induced neuroplasticity in brain reward systems that drive the emergence of compulsive-like drug use in animals, and suggest that a better understanding of how miRNAs control drug intake will provide new insights into the neurobiology of drug addiction. PMID:22968819

  18. Cellular Dynamics Drives the Emergence of Supracellular Structure in the Cyanobacterium, Phormidium sp. KS

    PubMed Central

    Sato, Naoki; Katsumata, Yutaro; Sato, Kaoru; Tajima, Naoyuki

    2014-01-01

    Motile filamentous cyanobacteria, such as Oscillatoria, Phormidium and Arthrospira, are ubiquitous in terrestrial and aquatic environments. As noted by Nägeli in 1860, many of them form complex three-dimensional or two-dimensional structures, such as biofilm, weed-like thalli, bundles of filaments and spirals, which we call supracellular structures. In all of these structures, individual filaments incessantly move back and forth. The structures are, therefore, macroscopic, dynamic structures that are continuously changing their microscopic arrangement of filaments. In the present study, we analyzed quantitatively the movement of individual filaments of Phormidium sp. KS grown on agar plates. Junctional pores, which have been proposed to drive cell movement by mucilage/slime secretion, were found to align on both sides of each septum. The velocity of movement was highest just after the reversal of direction and, then, attenuated exponentially to a final value before the next reversal of direction. This kinetics is compatible with the “slime gun” model. A higher agar concentration restricts the movement more severely and, thus, resulted in more spiral formation. The spiral is a robust form compatible with non-homogeneous movements of different parts of a long filament. We propose a model of spiral formation based on the microscopic movement of filaments. PMID:25460162

  19. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.

    PubMed

    Olami, Hilla; Zilberman, Meital

    2016-02-01

    Interest in the development of new bioresorbable structures for various tissue engineering applications is on the rise. In the current study, we developed and studied novel soy protein-based porous blends as potential new scaffolds for such applications. Soy protein has several advantages over the various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the present study, blends of soy protein with other polymers (gelatin, pectin and alginate) were added and chemically cross-linked using the cross-linking agents carbodiimide or glyoxal, and the porous structure was obtained through lyophilization. The resulting blend porous structures were characterized using environmental scanning microscopy, and the cytotoxicity of these scaffolds was examined in vitro. The biocompatibility of the scaffolds was also evaluated in vitro by seeding and culturing human fibroblasts on these scaffolds. Cell growth morphology and adhesion were examined histologically. The results show that these blends can be assembled into porous three-dimensional structures by combining chemical cross-linking with freeze-drying. The achieved blend structures combine suitable porosity with a large pore size (100-300 µm). The pore structure in the soy-alginate scaffolds possesses adequate interconnectivity compared to that of the soy-gelatin scaffolds. However, porous structure was not observed for the soy-pectin blend, which presented a different structure with significantly lower porosities than all other groups. The in vitro evaluation of these porous soy blends demonstrated that soy-alginate blends are advantageous over soy-gelatin blends and exhibited adequate cytocompatibility along with better cell infiltration and stability. These soy protein scaffolds may be potentially useful as a cellular/acellular platform for skin regeneration applications. PMID:26526932

  20. Visualizing chemical structure-subcellular localization relationships using fluorescent small molecules as probes of cellular transport

    PubMed Central

    2013-01-01

    Background To study the chemical determinants of small molecule transport inside cells, it is crucial to visualize relationships between the chemical structure of small molecules and their associated subcellular distribution patterns. For this purpose, we experimented with cells incubated with a synthetic combinatorial library of fluorescent, membrane-permeant small molecule chemical agents. With an automated high content screening instrument, the intracellular distribution patterns of these chemical agents were microscopically captured in image data sets, and analyzed off-line with machine vision and cheminformatics algorithms. Nevertheless, it remained challenging to interpret correlations linking the structure and properties of chemical agents to their subcellular localization patterns in large numbers of cells, captured across large number of images. Results To address this challenge, we constructed a Multidimensional Online Virtual Image Display (MOVID) visualization platform using off-the-shelf hardware and software components. For analysis, the image data set acquired from cells incubated with a combinatorial library of fluorescent molecular probes was sorted based on quantitative relationships between the chemical structures, physicochemical properties or predicted subcellular distribution patterns. MOVID enabled visual inspection of the sorted, multidimensional image arrays: Using a multipanel desktop liquid crystal display (LCD) and an avatar as a graphical user interface, the resolution of the images was automatically adjusted to the avatar’s distance, allowing the viewer to rapidly navigate through high resolution image arrays, zooming in and out of the images to inspect and annotate individual cells exhibiting interesting staining patterns. In this manner, MOVID facilitated visualization and interpretation of quantitative structure-localization relationship studies. MOVID also facilitated direct, intuitive exploration of the relationship between the

  1. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism

    PubMed Central

    Krueger, Sharon K.; Williams, David E.

    2005-01-01

    Flavin-containing monooxygenase (FMO) oxygenates drugs and xenobiotics containing a “soft-nucleophile”, usually nitrogen or sulfur. FMO, like cytochrome P450 (CYP), is a monooxygenase, utilizing the reducing equivalents of NADPH to reduce 1 atom of molecular oxygen to water, while the other atom is used to oxidize the substrate. FMO and CYP also exhibit similar tissue and cellular location, molecular weight, substrate specificity, and exist as multiple enzymes under developmental control. The human FMO functional gene family is much smaller (5 families each with a single member) than CYP. FMO does not require a reductase to transfer electrons from NADPH and the catalytic cycle of the 2 monooxygenases is strikingly different. Another distinction is the lack of induction of FMOs by xenobiotics. In general, CYP is the major contributor to oxidative xenobiotic metabolism. However, FMO activity may be of significance in a number of cases and should not be overlooked. FMO and CYP have overlapping substrate specificities, but often yield distinct metabolites with potentially significant toxicological/pharmacological consequences. The physiological function(s) of FMO are poorly understood. Three of the 5 expressed human FMO genes, FMO1, FMO2 and FMO3, exhibit genetic polymorphisms. The most studied of these is FMO3 (adult human liver) in which mutant alleles contribute to the disease known as trimethylaminuria. The consequences of these FMO genetic polymorphisms in drug metabolism and human health are areas of research requiring further exploration. PMID:15922018

  2. Application of biospeckles for assessment of structural and cellular changes in muscle tissue

    NASA Astrophysics Data System (ADS)

    Maksymenko, Oleksandr P.; Muravsky, Leonid I.; Berezyuk, Mykola I.

    2015-09-01

    A modified spatial-temporal speckle correlation technique for operational assessment of structural changes in muscle tissues after slaughtering is considered. Coefficient of biological activity as a quantitative indicator of structural changes of biochemical processes in biological tissues is proposed. The experimental results have shown that this coefficient properly evaluates the biological activity of pig and chicken muscle tissue samples. Studying the degradation processes in muscle tissue during long-time storage in a refrigerator by measuring the spatial-temporal dynamics of biospeckle patterns is carried out. The reduction of the bioactivity level of refrigerated muscle tissue samples connected with the initiation of muscle fiber cracks and ruptures, reduction of sarcomeres, nuclei deformation, nuclear chromatin diminishing, and destruction of mitochondria is analyzed.

  3. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison

    PubMed Central

    Wegel, Eva; Göhler, Antonia; Lagerholm, B. Christoffer; Wainman, Alan; Uphoff, Stephan; Kaufmann, Rainer; Dobbie, Ian M.

    2016-01-01

    Many biological questions require fluorescence microscopy with a resolution beyond the diffraction limit of light. Super-resolution methods such as Structured Illumination Microscopy (SIM), STimulated Emission Depletion (STED) microscopy and Single Molecule Localisation Microscopy (SMLM) enable an increase in image resolution beyond the classical diffraction-limit. Here, we compare the individual strengths and weaknesses of each technique by imaging a variety of different subcellular structures in fixed cells. We chose examples ranging from well separated vesicles to densely packed three dimensional filaments. We used quantitative and correlative analyses to assess the performance of SIM, STED and SMLM with the aim of establishing a rough guideline regarding the suitability for typical applications and to highlight pitfalls associated with the different techniques. PMID:27264341

  4. The effect of collagen ageing on its structure and cellular behaviour

    NASA Astrophysics Data System (ADS)

    Wilson, Samantha L.; Guilbert, Marie; Sulé-Suso, Josep; Torbet, James; Jeannesson, Pierre; Sockalingum, Ganesh D.; Yang, Ying

    2012-03-01

    Collagen is the most important component in extracellular matrix (ECM) and plays a pivotal role in individual tissue function in mammals. During ageing, collagen structure changes, which can detrimentally affect its biophysical and biomechanical properties due to an accumulation of advanced glycation end-products (AGEs). AGEs have been linked to non-enzymatic cross-linking of proteins resulting in the alteration of mechanical properties of the tissue. In this study we investigate the influence of different aged collagens on the mechanical and contractile properties of reconstituted hydrogel constructs seeded with corneal stromal fibroblasts. A non-destructive indentation technique and optical coherence tomography (OCT) are used to determine the elastic modulus and dimensional changes respectively. It is revealed that the youngest collagen constructs have a higher elastic modulus and increased contraction compared to the older collagen. These results provide new insights into the relationship between collagen molecular structures and their biomechanical properties.

  5. Application of biospeckles for assessment of structural and cellular changes in muscle tissue.

    PubMed

    Maksymenko, Oleksandr P; Muravsky, Leonid I; Berezyuk, Mykola I

    2015-09-01

    A modified spatial-temporal speckle correlation technique for operational assessment of structural changes in muscle tissues after slaughtering is considered. Coefficient of biological activity as a quantitative indicator of structural changes of biochemical processes in biological tissues is proposed. The experimental results have shown that this coefficient properly evaluates the biological activity of pig and chicken muscle tissue samples. Studying the degradation processes in muscle tissue during long-time storage in a refrigerator by measuring the spatial-temporal dynamics of biospeckle patterns is carried out. The reduction of the bioactivity level of refrigerated muscle tissue samples connected with the initiation of muscle fiber cracks and ruptures, reduction of sarcomeres, nuclei deformation, nuclear chromatin diminishing, and destruction of mitochondria is analyzed. PMID:26359810

  6. A new tubular graphene form of a tetrahedrally connected cellular structure.

    PubMed

    Bi, Hui; Chen, I-Wei; Lin, Tianquan; Huang, Fuqiang

    2015-10-21

    3D architectures constructed from a tubular graphene network can withstand repeated >95% compression cycling without damage. Aided by intertubular covalent bonding, this material takes full advantage of the graphene tube's unique attributes, including complete pre- and post-buckling elasticity, outstanding electrical conductivity, and extraordinary physicochemical stability. A highly connected tubular graphene will thus be the ultimate, structurally robust, ultrastrong, ultralight material. PMID:26305918

  7. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates.

    PubMed

    Lavrov, Andrey I; Kosevich, Igor A

    2016-02-01

    Sponges (phylum Porifera) are one of the most ancient extant multicellular animals and can provide valuable insights into origin and early evolution of Metazoa. High plasticity of cell differentiations and anatomical structure is characteristic feature of sponges. Present study deals with sponge cell reaggregation after dissociation as the most outstanding case of sponge plasticity. Dynamic of cell reaggregation and structure of multicellular aggregates of three demosponge species (Halichondria panicea (Pallas, 1766), Haliclona aquaeductus (Sсhmidt, 1862), and Halisarca dujardinii Johnston, 1842) were studied. Sponge tissue dissociation was performed mechanically. Resulting cell suspensions were cultured at 8-10°C for at least 5 days. Structure of multicellular aggregates was studied by light, transmission and scanning electron microscopy. Studied species share common stages of cell reaggregation-primary multicellular aggregates, early-stage primmorphs and primmorphs, but the rate of reaggregation varies considerably among species. Only cells of H. dujardinii are able to reconstruct functional and viable sponge after primmorphs formation. Sponge reconstruction in this species occurs due to active cell locomotion. Development of H. aquaeductus and H. panicea cells ceases at the stages of early primmorphs and primmorphs, respectively. Development of aggregates of these species is most likely arrested due to immobility of the majority of cells inside them. However, the inability of certain sponge species to reconstruct functional and viable individuals during cell reaggregation may be not a permanent species-specific characteristic, but depends on various factors, including the stage of the life cycle and experimental conditions. PMID:26863993

  8. Cellular and molecular mechanisms activating the cell death processes by chalcones: Critical structural effects.

    PubMed

    Champelovier, Pierre; Chauchet, Xavier; Hazane-Puch, Florence; Vergnaud, Sabrina; Garrel, Catherine; Laporte, François; Boutonnat, Jean; Boumendjel, Ahcène

    2013-12-01

    Chalcones are naturally occurring compounds with diverse pharmacological activities. Chalcones derive from the common structure: 1,3-diphenylpropenone. The present study aims to better understand the mechanistic pathways triggering chalcones anticancer effects and providing evidences that minor structural difference could lead to important difference in mechanistic effect. We selected two recently investigated chalcones (A and B) and investigated them on glioblastoma cell lines. It was found that chalcone A induced an apoptotic process (type I PCD), via the activation of caspase-3, -8 and -9. Chalcone A also increased CDK1/cyclin B ratios and decreased the mitochondrial transmembrane potential (ΔΨm). Chalcone B induced an autophagic cell death process (type II PCD), ROS-related but independent of both caspases and protein synthesis. Both chalcones increased Bax/Bcl2 ratios and decreased Ki67 and CD71 antigen expressions. The present investigation reveals that despite the close structure of chalcones A and B, significant differences in mechanism of effect were found. PMID:24134853

  9. Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures

    NASA Astrophysics Data System (ADS)

    Chandrasekharan, N.; Thompson, L. L.

    2016-04-01

    The limitations posed by batteries have compelled the need to investigate energy harvesting methods to power small electronic devices that require very low operational power. Vibration based energy harvesting methods with piezoelectric transduction in particular has been shown to possess potential towards energy harvesters replacing batteries. Current piezoelectric energy harvesters exhibit considerably lower power to weight ratio or specific power when compared to batteries the harvesters seek to replace. To attain the goal of battery-less self-sustainable device operation the power to weight ratio gap between piezoelectric energy harvesters and batteries need to be bridged. In this paper the potential of integrating lightweight honeycomb structures with existing piezoelectric device configurations (bimorph) towards achieving higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of conventional bimorph with honeycomb structures of the same material results in a significant increase in power to weight ratio of the piezoelectric harvester. At higher driving frequency ranges it is shown that unlike the traditional piezoelectric bimorph with solid continuous substrate, the honeycomb substrate bimorph can preserve optimum global design parameters through manipulation of honeycomb unit cell parameters. Increased operating lifetime and design flexibility of the honeycomb core piezoelectric bimorph is demonstrated as unit cell parameters of the honeycomb structures can be manipulated to alter mass and stiffness properties of the substrate, resulting in unit cell parameter significantly influencing power generation.

  10. Investigation of mechanical properties for open cellular structure CoCrMo alloy fabricated by selective laser melting process

    NASA Astrophysics Data System (ADS)

    Azidin, A.; Taib, Z. A. M.; Harun, W. S. W.; Che Ghani, S. A.; Faisae, M. F.; Omar, M. A.; Ramli, H.

    2015-12-01

    Orthodontic implants have been a major focus through mechanical and biological performance in advance to fabricate shape of complex anatomical. Designing the part with a complex mechanism is one of the challenging process and addition to achieve the balance and desired mechanical performance brought to the right manufacture technique to fabricate. Metal additive manufacturing (MAM) is brought forward to the newest fabrication technology in this field. In this study, selective laser melting (SLM) process was utilized on a medical grade cobalt-chrome molybdenum (CoCrMo) alloy. The work has focused on mechanical properties of the CoCrMo open cellular structures samples with 60%, 70%, and 80% designed volume porosity that could potentially emulate the properties of human bone. It was observed that hardness values decreased as the soaking time increases except for bottom face. For compression test, 60% designed volume porosity demonstrated highest ultimate compressive strength compared to 70% and 80%.

  11. From thermodynamic cell models to partitioning cellular automata for diffusion in zeolites. I. Structure of the algorithm

    NASA Astrophysics Data System (ADS)

    Pazzona, Federico G.; Demontis, Pierfranco; Suffritti, Giuseppe B.

    2009-12-01

    In the study of adsorption of simple adsorbates in microporous materials like zeolites, thermodynamic models of small grand-canonical cells with very local interactions [e.g., see K. G. Ayappa, J. Chem. Phys. 111, 4736 (1999)] have been proven to be able to produce thermodynamic properties in very good agreement with the results of experiments and atomistic simulations. In this paper we present in details the structure and implementation of a thermodynamic partitioning cellular automaton (PCA) devised as a dynamical version of thermodynamic cell models and proposed as an easy environment to perform coarse-grained simulations of adsorption/diffusion of simple interacting molecules in microporous materials. Local evolution rules and memory effects are introduced to make our PCA able to complete the static picture provided by thermodynamic cell models with the simulation of transport properties.

  12. Interactions of Pedestrians Interlaced in T-Shaped Structure Using a Modified Multi-Field Cellular Automaton

    NASA Astrophysics Data System (ADS)

    Fu, Zhijian; Yang, Lizhong; Rao, Ping; Zhang, Taolin

    2013-04-01

    Little work has been done before in the study of separating pedestrian flow interlaced. Under open boundaries, the interaction of separating pedestrian flow interlaced in a T-shaped structure was simulated, using a modified multi-field cellular automaton updating synchronously. The free-jammed phase transition diagram of pedestrian flow and principles of the pedestrian interference were obtained. The movement of pedestrians is free flow in the low entrance density. While it is a complete jammed flow with the entrance density increasing to a certain level and little difference existing between the left moving probability and the right moving probability. Thus, the dominant factor influencing pedestrian flow is the interference of opposite pedestrian flows due to changing movement directions. And it is changing to an incomplete jammed flow with this difference increasing. Thus, the dominant factor is changing to the interference of the coincident pedestrian flow and the limitation of the bottleneck.

  13. Imaging the fine-scale structure of the cellular actin cytoskeleton by Single Particle Tracking and Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Mustata, Gina-Mirela

    It has been proposed that diffusion in the plasma membrane of eukaryotic cells it is compartmentalized due to the interaction with the underlying actin-based membrane skeleton that comes into close proximity to the lipid bilayer. The cytoskeleton is a dynamic structure that maintains cell shape, enables cell motion, and plays important roles in both intra-cellular transport and cellular division. We show here the evidence of plasma membrane compartmentalization using Single Particle Tracking (SPT) and Atomic Force Microscopy (AFM) imaging. SPT of Quantum dot labeled lipid in the plasma membrane of live normal rat kidney cells show compartments ranging from 325 nm to 391 nm depending on the sampling time. Using AFM imaging of live NRK cell in the presence of phalloidin, the membrane compartmentalization it is visible with the average size of the compartments of 325 +/- 10 nm (the main peak is centered at 260 nm). Further, the underlying membrane skeleton in fixed cells was directly imaged after partial removal of the plasma membrane to reveal size of the membrane skeleton meshwork of 339 +/- 10 nm. A new method of measuring the characteristics of the actin meshwork was proposed. Probing the local compliance of the plasma membrane through the deflection of a soft AFM cantilever we can expect that the stiffness of the membrane will be higher at locations directly above a cortical actin. This new method provided information about the structure of the skeletal meshwork of neuronal cell body predicting an average compartment size of about 132 nm. This was confirmed through SPT of QD-lipid incorporated into the neuronal cell membrane.

  14. Interplay between cellular activity and three-dimensional scaffold-cell constructs with different foam structure processed by electron beam melting.

    PubMed

    Nune, Krishna C; Misra, R Devesh K; Gaytan, Sara M; Murr, Lawrence E

    2015-05-01

    The cellular activity, biological response, and consequent integration of scaffold-cell construct in the physiological system are governed by the ability of cells to adhere, proliferate, and biomineralize. In this regard, we combine cellular biology and materials science and engineering to fundamentally elucidate the interplay between cellular activity and interconnected three-dimensional foamed architecture obtained by a novel process of electron beam melting and computational tools. Furthermore, the organization of key proteins, notably, actin, vinclulin, and fibronectin, involved in cellular activity and biological functions and relationship with the structure was explored. The interconnected foamed structure with ligaments was favorable to cellular activity that includes cell attachment, proliferation, and differentiation. The primary rationale for favorable modulation of cellular functions is that the foamed structure provided a channel for migration and communication between cells leading to highly mineralized extracellular matrix (ECM) by the differentiating osteoblasts. The filopodial interaction amongst cells on the ligaments was a governing factor in the secretion of ECM, with consequent influence on maturation and mineralization. PMID:25111154

  15. Microbial structures, functions, and metabolic pathways in wastewater treatment bioreactors revealed using high-throughput sequencing.

    PubMed

    Ye, Lin; Zhang, Tong; Wang, Taitao; Fang, Zhiwei

    2012-12-18

    The objective of this study was to explore microbial community structures, functional profiles, and metabolic pathways in a lab-scale and a full-scale wastewater treatment bioreactors. In order to do this, over 12 gigabases of metagenomic sequence data and 600,000 paired-end sequences of bacterial 16S rRNA gene were generated with the Illumina HiSeq 2000 platform, using DNA extracted from activated sludge in the two bioreactors. Three kinds of sequences (16S rRNA gene amplicons, 16S rRNA gene sequences obtained from metagenomic sequencing, and predicted proteins) were used to conduct taxonomic assignments. Specially, relative abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were analyzed. Compared with quantitative real-time PCR (qPCR), metagenomic sequencing was demonstrated to be a better approach to quantify AOA and AOB in activated sludge samples. It was found that AOB were more abundant than AOA in both reactors. Furthermore, the analysis of the metabolic profiles indicated that the overall patterns of metabolic pathways in the two reactors were quite similar (73.3% of functions shared). However, for some pathways (such as carbohydrate metabolism and membrane transport), the two reactors differed in the number of pathway-specific genes. PMID:23151157

  16. 2009 Plant Lipids: Structure, Metabolism & Function Gordon Research Conference - February 1- 6 ,2009

    SciTech Connect

    Kent D. Chapman

    2009-02-06

    The Gordon Research Conference on 'Plant Lipids: Structure, Metabolism and Function' has been instituted to accelerate research productivity in the field of plant lipids. This conference will facilitate wide dissemination of research breakthroughs, support recruitment of young scientists to the field of plant lipid metabolism and encourage broad participation of the plant lipid community in guiding future directions for research in plant lipids. This conference will build upon the strengths of the successful, previous biannual meetings of the National Plant Lipid Cooperative (www.plantlipids.org) that began in 1993, but will reflect a broader scope of topics to include the biochemistry, cell biology, metabolic regulation, and signaling functions of plant acyl lipids. Most importantly, this conference also will serve as a physical focal point for the interaction of the plant lipid research community. Applications to attend this conference will be open to all researchers interested in plant lipids and will provide a venue for the presentation of the latest research results, networking opportunities for young scientists, and a forum for the development and exchange of useful lipid resources and new ideas. By bringing together senior- and junior-level scientists involved in plant lipid metabolism, a broad range of insights will be shared and the community of plant lipid researchers will function more as a network of vested partners. This is important for the vitality of the research community and for the perceived value that will encourage conference attendance into the future.

  17. Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity.

    PubMed

    Chételat, Gaël; Landeau, Brigitte; Salmon, Eric; Yakushev, Igor; Bahri, Mohamed Ali; Mézenge, Florence; Perrotin, Audrey; Bastin, Christine; Manrique, Alain; Scheurich, Armin; Scheckenberger, Mathias; Desgranges, Béatrice; Eustache, Francis; Fellgiebel, Andreas

    2013-08-01

    Normal aging is characterized by brain glucose metabolism decline predominantly in the prefrontal cortex. The goal of the present study was to assess whether this change was associated with age-related alteration of white matter (WM) structural integrity and/or functional connectivity. FDG-PET data from 40 young and 57 elderly healthy participants from two research centers (n=49/48 in Center 1/2) were analyzed. WM volume from T1-weighted MRI (Center 1), fractional anisotropy from diffusion-tensor imaging (Center 2), and resting-state fMRI data (Center 1) were also obtained. Group comparisons were performed within each imaging modality. Then, positive correlations were assessed, within the elderly, between metabolism in the most affected region and the other neuroimaging modalities. Metabolism decline in the elderly predominated in the left inferior frontal junction (LIFJ). LIFJ hypometabolism was significantly associated with macrostructural and microstructural WM disturbances in long association fronto-temporo-occipital fibers, while no relationship was found with functional connectivity. The findings offer new perspectives to understand normal aging processes and open avenues for future studies to explore causality between age-related metabolism and connectivity changes. PMID:23518010

  18. Cellular Structural Changes in Candida albicans Caused by the Hydroalcoholic Extract from Sapindus saponaria L.

    PubMed

    Shinobu-Mesquita, Cristiane S; Bonfim-Mendonça, Patricia S; Moreira, Amanda L; Ferreira, Izabel C P; Donatti, Lucelia; Fiorini, Adriana; Svidzinski, Terezinha I E

    2015-01-01

    Vulvovaginal candidiasis (VVC) is a disease caused by the abnormal growth of yeast-like fungi in the mucosa of the female genital tract. Candida albicans is the principal etiological agent involved in VVC, but reports have shown an increase in the prevalence of Candida non-C. albicans (CNCA) cases, which complicates VVC treatment because CNCA does not respond well to antifungal therapy. Our group has reported the in vitro antifungal activity of extracts from Sapindus saponaria L. The present study used scanning electron microscopy and transmission electron microscopy to further evaluate the antifungal activity of hydroalcoholic extract from S. saponaria (HE) against yeast obtained from VVC and structural changes induced by HE. We observed the antifungal activity of HE against 125 vaginal yeasts that belonged to four different species of the Candida genus and S. cerevisae. The results suggest that saponins that are present in HE act on the cell wall or membrane of yeast at the first moments after contact, causing damage to these structures and cell lysis. PMID:26007191

  19. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef

    SciTech Connect

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong

    2012-10-24

    The HIV-1 protein Nef inhibits antigen presentation by class I major histocompatibility complex (MHC-I). We determined the mechanism of this activity by solving the crystal structure of a protein complex comprising Nef, the MHC-I cytoplasmic domain (MHC-I CD) and the {mu}1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-{mu}1 interface, which encompasses the cargo-recognition site of {mu}1 and the proline-rich strand of Nef. The Nef C terminus induces a previously unobserved conformational change in {mu}1, whereas the N terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on {mu}1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity.

  20. Structural Basis of Evasion of Cellular Adaptive Immunity by HIV-1 Nef

    PubMed Central

    Jia, Xiaofei; Singh, Rajendra; Homann, Stefanie; Yang, Haitao; Guatelli, John; Xiong, Yong

    2012-01-01

    The HIV-1 protein Nef inhibits antigen presentation by class I MHC (MHC-I). Here the mechanism of this activity is revealed by the crystal structure of a protein complex consisting of Nef, the MHC-I cytoplasmic domain (MHC-I CD), and the μ1 subunit of the clathrin adaptor protein complex 1. A ternary, cooperative interaction clamps the MHC-I CD into a narrow binding groove at the Nef-μ1 interface encompassing the cargo-recognition site of μ1 and the proline rich strand of Nef. The Nef C-terminus induces a novel conformational change in μ1, while the N-terminus binds the Nef core to position it optimally for complex formation. Positively charged patches on μ1 recognize acidic clusters in Nef and MHC-I. The structure shows how Nef functions as a clathrin-associated sorting protein to alter the specificity of host membrane trafficking and enable viral evasion of adaptive immunity. PMID:22705789

  1. Time lapse microscopy observation of cellular structural changes and image analysis of drug treated cancer cells to characterize the cellular heterogeneity.

    PubMed

    Vaiyapuri, Periasamy S; Ali, Alshatwi A; Mohammad, Akbarsha A; Kandhavelu, Jeyalakshmi; Kandhavelu, Meenakshisundaram

    2015-01-01

    The effect of Calotropis gigantea latex (CGLX) on human mammary carcinoma cells is not well established. We present the results of this drug activity at total population and single cell level. CGLX inhibited the growth of MCF7 cancer cells at lower IC50 concentration (17 µL/mL). Microscopy of IC50 drug treated cells at 24 hr confirming the appearance of morphological characteristics of apoptotic and necrotic cells, associated with 70% of DNA damage. FACS analysis confirmed that, 10 and 20% of the disruption of cellular mitochondrial nature by at 24 and 48 h, respectively. Microscopic image analysis of total population level proved that MMP changes were statistically significant with P values. The cell to cell variation was confirmed by functional heterogeneity analysis which proves that CGLX was able to induce the apoptosis without the contribution of mitochondria. We conclude that CGLX inhibits cell proliferation, survival, and heterogeneity of pathways in human mammary carcinoma cells. PMID:24446218

  2. Design, Synthesis, Biochemical Studies, Cellular Characterization, and Structure-Based Computational Studies of Small Molecules Targeting the Urokinase Receptor

    PubMed Central

    Wang, Fang; Knabe, W. Eric; Li, Liwei; Jo, Inha; Mani, Timmy; Roehm, Hartmut; Oh, Kyungsoo; Li, Jing; Khanna, May; Meroueh, Samy O.

    2012-01-01

    The urokinase receptor (uPAR) serves as a docking site to the serine protease urokinase-type plasminogen activator (uPA) to promote extracellular matrix (ECM) degradation and tumor invasion and metastasis. Previously, we had reported a small molecule inhibitor of the uPAR•uPA interaction that emerged from structure-based virtual screening. Here, we measure the affinity of a large number of derivatives from commercial sources. Synthesis of additional compounds was carried out to probe the role of various groups on the parent compound. Extensive structure-based computational studies suggested a binding mode for these compounds that led to a structure-activity relationship study. Cellular studies in non-small cell lung cancer (NSCLC) cell lines that include A549, H460 and H1299 showed that compounds blocked invasion, migration and adhesion. The effects on invasion of active compounds were consistent with their inhibition of uPA and MMP proteolytic activity. These compounds showed weak cytotoxicity consistent with the confined role of uPAR to metastasis. PMID:22771232

  3. Cellular Functions and X-ray Structure of Anthrolysin O, a Cholesterol-dependent Cytolysin Secreted by Bacillus anthracis

    SciTech Connect

    Bourdeau, Raymond W.; Malito, Enrico; Chenal, Alexandre; Bishop, Brian L.; Musch, Mark W.; Villereal, Mitch L.; Chang, Eugene B.; Mosser, Elise M.; Rest, Richard F.; Tang, Wei-Jen

    2009-06-02

    Anthrolysin O (ALO) is a pore-forming, cholesterol-dependent cytolysin (CDC) secreted by Bacillus anthracis, the etiologic agent for anthrax. Growing evidence suggests the involvement of ALO in anthrax pathogenesis. Here, we show that the apical application of ALO decreases the barrier function of human polarized epithelial cells as well as increases intracellular calcium and the internalization of the tight junction protein occludin. Using pharmacological agents, we also found that barrier function disruption requires increased intracellular calcium and protein degradation. We also report a crystal structure of the soluble state of ALO. Based on our analytical ultracentrifugation and light scattering studies, ALO exists as a monomer. Our ALO structure provides the molecular basis as to how ALO is locked in a monomeric state, in contrast to other CDCs that undergo antiparallel dimerization or higher order oligomerization in solution. ALO has four domains and is globally similar to perfringolysin O (PFO) and intermedilysin (ILY), yet the highly conserved undecapeptide region in domain 4 (D4) adopts a completely different conformation in all three CDCs. Consistent with the differences within D4 and at the D2-D4 interface, we found that ALO D4 plays a key role in affecting the barrier function of C2BBE cells, whereas PFO domain 4 cannot substitute for this role. Novel structural elements and unique cellular functions of ALO revealed by our studies provide new insight into the molecular basis for the diverse nature of the CDC family.

  4. Evaluation of Cancer Dependence and Druggability of PRP4 Kinase Using Cellular, Biochemical, and Structural Approaches

    PubMed Central

    Gao, Qiang; Mechin, Ingrid; Kothari, Nayantara; Guo, Zhuyan; Deng, Gejing; Haas, Kimberly; McManus, Jessica; Hoffmann, Dietmar; Wang, Anlai; Wiederschain, Dmitri; Rocnik, Jennifer; Czechtizky, Werngard; Chen, Xin; McLean, Larry; Arlt, Heike; Harper, David; Liu, Feng; Majid, Tahir; Patel, Vinod; Lengauer, Christoph; Garcia-Echeverria, Carlos; Zhang, Bailin; Cheng, Hong; Dorsch, Marion; Huang, Shih-Min A.

    2013-01-01

    PRP4 kinase is known for its roles in regulating pre-mRNA splicing and beyond. Therefore, a wider spectrum of PRP4 kinase substrates could be expected. The role of PRP4 kinase in cancer is also yet to be fully elucidated. Attaining specific and potent PRP4 inhibitors would greatly facilitate the study of PRP4 biological function and its validation as a credible cancer target. In this report, we verified the requirement of enzymatic activity of PRP4 in regulating cancer cell growth and identified an array of potential novel substrates through orthogonal proteomics approaches. The ensuing effort in structural biology unveiled for the first time unique features of PRP4 kinase domain and its potential mode of interaction with a low molecular weight inhibitor. These results provide new and important information for further exploration of PRP4 kinase function in cancer. PMID:24003220

  5. Centromere protein B of African green monkey cells: gene structure, cellular expression, and centromeric localization.

    PubMed Central

    Yoda, K; Nakamura, T; Masumoto, H; Suzuki, N; Kitagawa, K; Nakano, M; Shinjo, A; Okazaki, T

    1996-01-01

    Centromere protein B (CENP-B) is a centromeric DNA-binding protein which recognizes a 17-bp sequence (CENP-B box) in human and mouse centromeric satellite DNA. The African green monkey (AGM) is phylogenetically closer to humans than mice and is known to contain large amounts of alpha-satellite DNA, but there has been no report of CENP-B boxes or CENP-B in the centromere domains of its chromosomes. To elucidate the AGM CENP-B-CENP-B box interaction, we have analyzed the gene structure, expression, biochemical properties, and centromeric localization of its CENP-B. The amino acid sequence deduced from the cloned AGM CENP-B gene was established to be highly homologous to that of human and mouse CENP-B. In particular, the DNA binding and homodimer formation domains demonstrated 100% identity to their human and mouse counterparts. Immunoblotting and DNA mobility shift analyses revealed CENP-B to be expressed in AGM cell lines. As predicted from the gene structure, the AGM CENP-B in the cell extracts exhibited the same DNA binding specificity and homodimer forming activity as human CENP-B. By indirect immunofluorescent staining of AGM mitotic cells with anti-CENP-B antibodies, a centromere-specific localization of AGM CENP-B could be demonstrated. We also isolated AGM alpha-satellite DNA with a CENP-B box-like sequence with CENP-B affinity. These results not only prove that CENP-B functionally persists in AGM cells but also suggest that the AGM genome contains the recognition sequences for CENP-B (CENP-B boxes with the core recognition sequence or CENP-B box variants) in centromeric satellite DNA. PMID:8756674

  6. Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations.

    PubMed

    Matveev, Vladimir V

    2010-01-01

    According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity."One of the principal objects of theoretical research in any department of knowledge is to find the point of view from which the subject appears in its greatest simplicity."Josiah Willard Gibbs (1839-1903). PMID:20534114

  7. Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations

    PubMed Central

    2010-01-01

    According to the hypothesis explored in this paper, native aggregation is genetically controlled (programmed) reversible aggregation that occurs when interacting proteins form new temporary structures through highly specific interactions. It is assumed that Anfinsen's dogma may be extended to protein aggregation: composition and amino acid sequence determine not only the secondary and tertiary structure of single protein, but also the structure of protein aggregates (associates). Cell function is considered as a transition between two states (two states model), the resting state and state of activity (this applies to the cell as a whole and to its individual structures). In the resting state, the key proteins are found in the following inactive forms: natively unfolded and globular. When the cell is activated, secondary structures appear in natively unfolded proteins (including unfolded regions in other proteins), and globular proteins begin to melt and their secondary structures become available for interaction with the secondary structures of other proteins. These temporary secondary structures provide a means for highly specific interactions between proteins. As a result, native aggregation creates temporary structures necessary for cell activity. "One of the principal objects of theoretical research in any department of knowledge is to find the point of view from which the subject appears in its greatest simplicity." Josiah Willard Gibbs (1839-1903) PMID:20534114

  8. Binding of cationized and native ferritin to cellular structures of the electric organ of Torpedo marmorata.

    PubMed

    Gerbracht, U; Zimmermann, H

    1983-01-01

    The distribution of polycationic and polyanionic binding sites in the electric organ of Torpedo marmorata was investigated by incubation of tissue with native (NF) ferritin. 1) Collagen fibrils from the electric organ carry rosettes of polyanionic sites on their surface with a periodicity of 60 nm, corresponding to the pattern of crossbanding in collagen fibrils. The CF-binding sites are abut 30 nm in size and project 20 nm beyond the surface of the fibril. 2) As revealed by incubation of tissue homogenates, CF heavily stains the intraperiod line of the axonal myelin and also tubular structures in the axonal cytoplasm. 3) Neither the extracellular aspects of the pre- nor the postsynaptic membrane became labeled with either NF or CF. After incubation of tissue homogenates. labeling of the electron-dense material of the cytoplasmic aspect of the postsynaptic membrane was observed with NF and, in particular, with CF. The ventral basal lamina of the electroplaque cell revealed uniform labeling with NF. In contrast, CF-binding sites were distributed in the lamina densa of the basal lamina as a lattice of discrete binding sites, approximately 45 nm in diameter. The presence of polyanionic sites in the basal lamina, which also proceeds through the synaptic cleft, suggests the existence of a diffusion barrier for the released neurotransmitter acetylcholine. It is proposed that this facilitates hydrolysis of acetylcholine in the synaptic cleft and recirculation of the products of hydrolysis to the axon terminal. PMID:6850761

  9. Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments.

    PubMed

    Shah, Furqan A

    2016-01-01

    Bioactive glasses (BGs) are known to bond to both hard and soft tissues. Upon exposure to an aqueous environment, BG undergoes ion exchange, hydrolysis, selective dissolution and precipitation of an apatite layer on their surface, which elicits an interfacial biological response resulting in bioactive fixation, inhibiting further dissolution of the glass, and preventing complete resorption of the material. Fluorine is considered one of the most effective in-vivo bone anabolic factors. In low concentrations, fluoride ions (F(-)) increase bone mass and mineral density, improve the resistance of the apatite structure to acid attack, and have well documented antibacterial properties. F(-) ions may be incorporated into the glass in the form of calcium fluoride (CaF2) either by part-substitution of network modifier oxides, or by maintaining the ratios of the other constituents relatively constant. Fluoride-containing bioactive glasses (FBGs) enhance and control osteoblast proliferation, differentiation and mineralisation. And with their ability to release fluoride locally, FBGs make interesting candidates for various clinical applications, dentinal tubule occlusion in the treatment of dentin hypersensitivity. This paper reviews the chemistry of FBGs and the influence of F(-) incorporation on the thermal properties, bioactivity, and cytotoxicity; and novel glass compositions for improved mechanical properties, processing, and bioactive potential. PMID:26478431

  10. Experimental study on detonation parameters and cellular structures of fuel cloud

    NASA Astrophysics Data System (ADS)

    Xie, Li-Feng; Li, Bin; Zhang, Yu-Lei

    2012-04-01

    In this paper, detonation parameters of fuel cloud, such as propylene oxide (PO), isopropyl nitrate (IPN), hexane, 90# oil and decane were measured in a self-designed and constructed vertical shock tube. Results show that the detonation pressure and velocity of PO increase to a peak value and then decrease smoothly with increasing equivalence ratio. Several nitrate sensitizers were added into PO to make fuel mixtures, and test results indicated that the additives can efficiently enhance detonation velocity and pressure of fuel cloud and one type of additive n-propyl nitrate (NPN) played the best in the improvement. The critical initiation energy that directly initiated detonation of all the test liquid fuel clouds showed a U-shape curve relationship with equivalence ratios. The optimum concentration lies on the rich-fuel side ( ϕ > 1). The critical initiation energy is closely related to molecular structure and volatility of fuels. IPN and PO have similar critical values while that of alkanes are larger. Detonation cell sizes of PO were respectively investigated at 25°C, 35°C and 50°C with smoked foil technique. The cell width shows a U-shape curve relationship with equivalence ratios at all temperatures. The minimal cell width also lies on the rich-fuel side ( ϕ > 1). The cell width of PO vapor is slightly larger than that of PO cloud. Therefore, the detonation reaction of PO at normal temperature is controlled by gas phase reaction.

  11. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study

    PubMed Central

    Raethong, Nachon; Wong-ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction. PMID:27274991

  12. Deoxyribonucleoprotein structure and radiation injury: cellular radiosensitivity is determined by LET infinity -dependent DNA damage in hydrated deoxyribonucleoproteins and the extent of its repair.

    PubMed

    Lett, J T; Peters, E L

    1992-01-01

    For decades, theories of cellular radiosensitivity relied upon the initial patterns of energy deposition to explain radiation lethality. Such theories are unsound: cellular (DNA) repair also underlies cellular radiosensitivity. For the charged particles encountered in deep space, both the types of DNA damage caused in cellular deoxyribonucleoproteins and the efficacies of their repair are dependent on linear energy transfer (LET infinity), and repair efficiency is also influenced by cell and tissue type, i.e., the actual recovery processes involved. Therefore, quality factors derived from radiation quality alone are inadequate parameters for assessing the radiation risks of space flight. Until recently, OH radicals formed in bulk nuclear water were believed to be the major causes of DNA damage that results in cell death, especially for sparsely ionizing radiations. That hypothesis has now been challenged, if not refuted. Lethal genomic DNA damage is determined mainly by energy deposition in deoxyribonucleoproteins, and their hydration shells, and charge (energy) transfer processes within those structures. PMID:11537046

  13. An Integrated Study to Analyze Soil Microbial Community Structure and Metabolic Potential in Two Forest Types

    PubMed Central

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Yang, Caiyun; Yang, Yunfeng; Zhou, Jizhong; Li, Diqiang

    2014-01-01

    Soil microbial metabolic potential and ecosystem function have received little attention owing to difficulties in methodology. In this study, we selected natural mature forest and natural secondary forest and analyzed the soil microbial community and metabolic potential combing the high-throughput sequencing and GeoChip technologies. Phylogenetic analysis based on 16S rRNA sequencing showed that one known archaeal phylum and 15 known bacterial phyla as well as unclassified phylotypes were presented in these forest soils, and Acidobacteria, Protecobacteria, and Actinobacteria were three of most abundant phyla. The detected microbial functional gene groups were related to different biogeochemical processes, including carbon degradation, carbon fixation, methane metabolism, nitrogen cycling, phosphorus utilization, sulfur cycling, etc. The Shannon index for detected functional gene probes was significantly higher (P<0.05) at natural secondary forest site. The regression analysis showed that a strong positive (P<0.05) correlation was existed between the soil microbial functional gene diversity and phylogenetic diversity. Mantel test showed that soil oxidizable organic carbon, soil total nitrogen and cellulose, glucanase, and amylase activities were significantly linked (P<0.05) to the relative abundance of corresponded functional gene groups. Variance partitioning analysis showed that a total of 81.58% of the variation in community structure was explained by soil chemical factors, soil temperature, and plant diversity. Therefore, the positive link of soil microbial structure and composition to functional activity related to ecosystem functioning was existed, and the natural secondary forest soil may occur the high microbial metabolic potential. Although the results can't directly reflect the actual microbial populations and functional activities, this study provides insight into the potential activity of the microbial community and associated feedback responses of the

  14. Structure and Function of Human Xylulokinase, an Enzyme with Important Roles in Carbohydrate Metabolism*

    PubMed Central

    Bunker, Richard D.; Bulloch, Esther M. M.; Dickson, James M. J.; Loomes, Kerry M.; Baker, Edward N.

    2013-01-01

    d-Xylulokinase (XK; EC 2.7.1.17) catalyzes the ATP-dependent phosphorylation of d-xylulose (Xu) to produce xylulose 5-phosphate (Xu5P). In mammals, XK is the last enzyme in the glucuronate-xylulose pathway, active in the liver and kidneys, and is linked through its product Xu5P to the pentose-phosphate pathway. XK may play an important role in metabolic disease, given that Xu5P is a key regulator of glucose metabolism and lipogenesis. We have expressed the product of a putative human XK gene and identified it as the authentic human d-xylulokinase (hXK). NMR studies with a variety of sugars showed that hXK acts only on d-xylulose, and a coupled photometric assay established its key kinetic parameters as Km(Xu) = 24 ± 3 μm and kcat = 35 ± 5 s−1. Crystal structures were determined for hXK, on its own and in complexes with Xu, ADP, and a fluorinated inhibitor. These reveal that hXK has a two-domain fold characteristic of the sugar kinase/hsp70/actin superfamily, with glycerol kinase as its closest relative. Xu binds to domain-I and ADP to domain-II, but in this open form of hXK they are 10 Å apart, implying that a large scale conformational change is required for catalysis. Xu binds in its linear keto-form, sandwiched between a Trp side chain and polar side chains that provide exquisite hydrogen bonding recognition. The hXK structure provides a basis for the design of specific inhibitors with which to probe its roles in sugar metabolism and metabolic disease. PMID:23179721

  15. Identifying the structural requirements for chromosomal aberration by incorporating molecular flexibility and metabolic activation of chemicals.

    PubMed

    Mekenyan, Ovanes; Todorov, Milen; Serafimova, Rossitsa; Stoeva, Stoyanka; Aptula, Aynur; Finking, Robert; Jacob, Elard

    2007-12-01

    Modeling the potential of chemicals to induce chromosomal damage has been hampered by the diversity of mechanisms which condition this biological effect. The direct binding of a chemical to DNA is one of the underlying mechanisms that is also responsible for bacterial mutagenicity. Disturbance of DNA synthesis due to inhibition of topoisomerases and interaction of chemicals with nuclear proteins associated with DNA (e.g., histone proteins) were identified as additional mechanisms leading to chromosomal aberrations (CA). A comparative analysis of in vitro genotoxic data for a large number of chemicals revealed that more than 80% of chemicals that elicit bacterial mutagenicity (as indicated by the Ames test) also induce CA; alternatively, only 60% of chemicals that induce CA have been found to be active in the Ames test. In agreement with this relationship, a battery of models is developed for modeling CA. It combines the Ames model for bacterial mutagenicity, which has already been derived and integrated into the Optimized Approach Based on Structural Indices Set (OASIS) tissue metabolic simulator (TIMES) platform, and a newly derived model accounting for additional mechanisms leading to CA. Both models are based on the classical concept of reactive alerts. Some of the specified alerts interact directly with DNA or nuclear proteins, whereas others are applied in a combination of two- or three-dimensional quantitative structure-activity relationship models assessing the degree of activation of the alerts from the rest of the molecules. The use of each of the alerts has been justified by a mechanistic interpretation of the interaction. In combination with a rat liver S9 metabolism simulator, the model explained the CA induced by metabolically activated chemicals that do not elicit activity in the parent form. The model can be applied in two ways: with and without metabolic activation of chemicals. PMID:18052113

  16. The Landscape of Evolution: Reconciling Structural and Dynamic Properties of Metabolic Networks in Adaptive Diversifications.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-01

    The network of the interactions among genes, proteins, and metabolites delineates a range of potential phenotypic diversifications in a lineage, and realized phenotypic changes are the result of differences in the dynamics of the expression of the elements and interactions in this deterministic network. Regulatory mechanisms, such as hormones, mediate the relationship between the structural and dynamic properties of networks by determining how and when the elements are expressed and form a functional unit or state. Changes in regulatory mechanisms lead to variable expression of functional states of a network within and among generations. Functional properties of network elements, and the magnitude and direction of evolutionary change they determine, depend on their location within a network. Here, we examine the relationship between network structure and the dynamic mechanisms that regulate flux through a metabolic network. We review the mechanisms that control metabolic flux in enzymatic reactions and examine structural properties of the network locations that are targets of flux control. We aim to establish a predictive framework to test the contributions of structural and dynamic properties of deterministic networks to evolutionary diversifications. PMID:27252203

  17. Correlating Structure and Function of Drug-Metabolizing Enzymes: Progress and Ongoing Challenges

    PubMed Central

    Johnson, Eric F.; Connick, J. Patrick; Reed, James R.; Backes, Wayne L.; Desai, Manoj C.; Xu, Lianhong; Estrada, D. Fernando; Laurence, Jennifer S.

    2014-01-01

    This report summarizes a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics at Experimental Biology held April 20-24 in Boston, MA. Presentations discussed the status of cytochrome P450 (P450) knowledge, emphasizing advances and challenges in relating structure with function and in applying this information to drug design. First, at least one structure of most major human drug-metabolizing P450 enzymes is known. However, the flexibility of these active sites can limit the predictive value of one structure for other ligands. A second limitation is our coarse-grain understanding of P450 interactions with membranes, other P450 enzymes, NADPH–cytochrome P450 reductase, and cytochrome b5. Recent work has examined differential P450 interactions with reductase in mixed P450 systems and P450:P450 complexes in reconstituted systems and cells, suggesting another level of functional control. In addition, protein nuclear magnetic resonance is a new approach to probe these protein/protein interactions, identifying interacting b5 and P450 surfaces, showing that b5 and reductase binding are mutually exclusive, and demonstrating ligand modulation of CYP17A1/b5 interactions. One desired outcome is the application of such information to control drug metabolism and/or design selective P450 inhibitors. A final presentation highlighted development of a CYP3A4 inhibitor that slows clearance of human immunodeficiency virus drugs otherwise rapidly metabolized by CYP3A4. Although understanding P450 structure/function relationships is an ongoing challenge, translational advances will benefit from continued integration of existing and new biophysical approaches. PMID:24130370

  18. Modeling and Simulation of the Impact Response of Filled and Unfilled Linear Cellular Alloys for Structural Energetic Material Applications

    NASA Astrophysics Data System (ADS)

    Jakus, Adam; Fredenburg, Anthony; Thadhani, Naresh

    2008-04-01

    We are investigating the mechanics of impact-induced stress transfer between a linear cellular alloy (LCA) and a reactive filler to determine the effect of cell geometry on deformation and fragmentation. LCAs are honeycomb structures made of maraging steel, and provide structural integrity for the reactive filler such as a powder mixture of Ta+Fe2O3. 3-D computations are used to determine stress and strain distributions in both filled and unfilled LCAs during impact. The strength and failure models used for maraging steel and the response of Ta+Fe2O3 are validated through experiment. The failure response of three different geometries: 9-cell, pie, and reinforced pie, are compared with the response of a hollow cylinder, for impact velocities of 100, 200, and 300 m/s. Unfilled, the cylindrical geometry provides the least resistance to deformation and fragmentation, while the reinforced pie LCA provides the most resistance. Understanding of the mechanics of deformation and failure is used to determine the most effective geometry for stress transfer to the filler.

  19. High-to-Low CO2 Acclimation Reveals Plasticity of the Photorespiratory Pathway and Indicates Regulatory Links to Cellular Metabolism of Arabidopsis

    PubMed Central

    Frankenbach, Silja; Dreissen, Anne; Hocken, Nadine; Fernie, Alisdair R.; Walter, Achim; Bauwe, Hermann

    2012-01-01

    Background Photorespiratory carbon metabolism was long considered as an essentially closed and nonregulated pathway with little interaction to other metabolic routes except nitrogen metabolism and respiration. Most mutants of this pathway cannot survive in ambient air and require CO2-enriched air for normal growth. Several studies indicate that this CO2 requirement is very different for individual mutants, suggesting a higher plasticity and more interaction of photorespiratory metabolism as generally thought. To understand this better, we examined a variety of high- and low-level parameters at 1% CO2 and their alteration during acclimation of wild-type plants and selected photorespiratory mutants to ambient air. Methodology and Principal Findings The wild type and four photorespiratory mutants of Arabidopsis thaliana (Arabidopsis) were grown to a defined stadium at 1% CO2 and then transferred to normal air (0.038% CO2). All other conditions remained unchanged. This approach allowed unbiased side-by-side monitoring of acclimation processes on several levels. For all lines, diel (24 h) leaf growth, photosynthetic gas exchange, and PSII fluorescence were monitored. Metabolite profiling was performed for the wild type and two mutants. During acclimation, considerable variation between the individual genotypes was detected in many of the examined parameters, which correlated with the position of the impaired reaction in the photorespiratory pathway. Conclusions Photorespiratory carbon metabolism does not operate as a fully closed pathway. Acclimation from high to low CO2 was typically steady and consistent for a number of features over several days, but we also found unexpected short-term events, such as an intermittent very massive rise of glycine levels after transition of one particular mutant to ambient air. We conclude that photorespiration is possibly exposed to redox regulation beyond known substrate-level effects. Additionally, our data support the view that 2

  20. Structural Phylogenomics Reveals Gradual Evolutionary Replacement of Abiotic Chemistries by Protein Enzymes in Purine Metabolism

    PubMed Central

    Caetano-Anollés, Kelsey; Caetano-Anollés, Gustavo

    2013-01-01

    The origin of metabolism has been linked to abiotic chemistries that existed in our planet at the beginning of life. While plausible chemical pathways have been proposed, including the synthesis of nucleobases, ribose and ribonucleotides, the cooption of these reactions by modern enzymes remains shrouded in mystery. Here we study the emergence of purine metabolism. The ages of protein domains derived from a census of fold family structure in hundreds of genomes were mapped onto enzymes in metabolic diagrams. We find that the origin of the nucleotide interconversion pathway benefited most parsimoniously from the prebiotic formation of adenine nucleosides. In turn, pathways of nucleotide biosynthesis, catabolism and salvage originated ∼300 million years later by concerted enzymatic recruitments and gradual replacement of abiotic chemistries. Remarkably, this process led to the emergence of the fully enzymatic biosynthetic pathway ∼3 billion years ago, concurrently with the appearance of a functional ribosome. The simultaneous appearance of purine biosynthesis and the ribosome probably fulfilled the expanding matter-energy and processing needs of genomic information. PMID:23516625

  1. APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls

    PubMed Central

    de Leon, Mony J; Alcolea, Daniel; Pegueroles, Jordi; Montal, Victor; Carmona-Iragui, María; Sala, Isabel; Sánchez-Saudinos, María-Belén; Antón-Aguirre, Sofía; Morenas-Rodríguez, Estrella; Camacho, Valle; Falcón, Carles; Pavía, Javier; Ros, Domènec; Clarimón, Jordi; Blesa, Rafael; Lleó, Alberto; Fortea, Juan

    2015-01-01

    Background The APOE effect on Alzheimer Disease (AD) risk is stronger in women than in men but its mechanisms have not been established. We assessed the APOE-by-sex interaction on core CSF biomarkers, brain metabolism and structure in healthy elderly control individuals (HC). Methods Cross-sectional study. HC from the Alzheimer’s Disease Neuroimaging Initiative with available CSF (n = 274) and/or 3T-MRI (n = 168) and/or a FDG-PET analyses (n = 328) were selected. CSF amyloid-β1–42 (Aβ1–42), total-tau (t-tau) and phospho-tau (p-tau181p) levels were measured by Luminex assays. We analyzed the APOE-by-sex interaction on the CSF biomarkers in an analysis of covariance (ANCOVA). FDG uptake was analyzed by SPM8 and cortical thickness (CTh) was measured by FreeSurfer. FDG and CTh difference maps were derived from interaction and group analyses. Results APOE4 carriers had lower CSF Aβ1–42 and higher CSF p-tau181p values than non-carriers, but there was no APOE-by-sex interaction on CSF biomarkers. The APOE-by-sex interaction on brain metabolism and brain structure was significant. Sex stratification showed that female APOE4 carriers presented widespread brain hypometabolism and cortical thinning compared to female non-carriers whereas male APOE4 carriers showed only a small cluster of hypometabolism and regions of cortical thickening compared to male non-carriers. Conclusions The impact of APOE4 on brain metabolism and structure is modified by sex. Female APOE4 carriers show greater hypometabolism and atrophy than male carriers. This APOE-by-sex interaction should be considered in clinical trials in preclinical AD where APOE4 status is a selection criterion. PMID:26397226

  2. Investigations of Structure and Metabolism within Shewanella oneidensis MR-1 Biofilms

    SciTech Connect

    Mclean, Jeffrey S.; Majors, Paul D.; Reardon, Catherine L.; Bilskis, Christina L.; Reed, Samantha B.; Romine, Margaret F.; Fredrickson, Jim K.

    2008-07-01

    Biofilms are known to possess spatially and temporally varying metabolite concentration profiles at the macroscopic and microscopic scales. This results in varying growth environments within that may ultimately drive species diversity, determine biofilm structure and also the spatial arrangement of the community members. Using noninvasive nuclear magnetic resonance (NMR) microscopic imaging/spectroscopy and confocal imaging, we investigated anaerobic reduction kinetics, structural variation, and the stratification of metabolism within live biofilms of the facultative anaerobic dissimilatory metal-reducing Shewanella oneidensis strain MR-1. Biofilms were pregrown using a defined minimal media in a homebuilt constant depth film fermenter and subsequently transferred to an in-magnet sample chamber under laminar flow for NMR measurements. The sample was subjected to various, rapidly switched substrate/ anaerobic electron acceptor combinations (fumarate, dimethyl sulfoxide, and nitrate electron acceptors). Localized NMR spectroscopy was used to non-invasively monitored the spectra of hydrogen-containing metabolites at high temporal resolution (4.5 min) under oxygen-limited conditions. Anaerobic reduction was immediately observed upon switching feed solutions indicate that no gene induction (transcriptional response) was needed for MR-1 to switch between fumarate, dimethyl sulfoxide (DMSO) and nitrate electron acceptors. In parallel experiments, confocal microscopy was used with constitutively expressed fluorescent reporters to independently investigate structural changes in response to the availability of electron acceptor and also the outcome of metabolic competition under oxygen-limited conditions. A clearer understanding of the metabolic diversity and plasticity of the biofilm mode of growth as well as how this possibly translates to the environmental fitness is made possible through the use of non-invasive and non-destructive techniques such as described here.

  3. Structural insights into the metabolism of 2-chlorodibenzofuran by an evolved biphenyl dioxygenase

    SciTech Connect

    Kumar, Pravindra; Mohammadi, Mahmood; Dhindwal, Sonali; Pham, Thi Thanh My; Bolin, Jeffrey T.; Sylvestre, Michel

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Regiospecificity of BphAE{sub RR41} toward dibenzofuran and 2-chlorodibenzofuran differs. Black-Right-Pointing-Pointer We compared the structures of the substrate-bound forms of the enzyme with both substrates. Black-Right-Pointing-Pointer Dibenzofuran is compelled to move during the catalytic reaction. Black-Right-Pointing-Pointer Ser283 contact with 2-chlorodibenzofuran helps prevent substrate movement during the reaction. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE{sub LB400}) is a Rieske-type oxygenase that catalyzes the stereospecific oxygenation of many heterocyclic aromatics including dibenzofuran. In a previous work, we evolved BphAE{sub LB400} and obtained BphAE{sub RR41}. This variant metabolizes dibenzofuran and 2-chlorodibenzofuran more efficiently than BphAE{sub LB400}. However, the regiospecificity of BphAE{sub RR41} toward these substrates differs. Dibenzofuran is metabolized principally through a lateral dioxygenation whereas 2-chlorodibenzofuran is metabolized principally through an angular dioxygenation. In order to explain this difference, we examined the crystal structures of both substrate-bound forms of BphAE{sub RR41} obtained under anaerobic conditions. This structure analysis, in combination with biochemical data for a Ser283Gly mutant provided evidences that the substrate is compelled to move after oxygen-binding in BphAE{sub RR41}:dibenzofuran. In BphAE{sub RR41}:2-chlorodibenzofuran, the chlorine atom is close to the side chain of Ser283. This contact is missing in the BphAE{sub RR41}:dibenzofuran, and strong enough in the BphAE{sub RR41}:2-chlorodibenzofuran to help prevent substrate movement during the catalytic reaction.

  4. Brain morphological alterations and cellular metabolic changes in patients with generalized anxiety disorder: A combined DARTEL-based VBM and (1)H-MRS study.

    PubMed

    Moon, Chung-Man; Jeong, Gwang-Woo

    2016-05-01

    Generalized anxiety disorder (GAD) is characterized by emotional dysregulation and cognitive deficit in conjunction with brain morphometric and metabolic alterations. This study assessed the combined neural morphological deficits and metabolic abnormality in patients with GAD. Thirteen patients with GAD and 13 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted MRI and proton magnetic resonance spectroscopy ((1)H-MRS) at 3Tesla. In this study, the combination of voxel-based morphometry (VBM) and (1)H-MRS was used to assess the brain morphometric and metabolic alterations in GAD. The patients showed significantly reduced white matter (WM) volumes in the midbrain (MB), precentral gyrus (PrG), dorsolateral prefrontal cortex (DLPFC) and anterior limb of the internal capsule (ALIC) compared to the controls. In MRS study, the choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) ratios in the DLPFC were significantly lower in the patients. Particularly, the WM volume variation of the DLPFC was positively correlated with both of the Cho/Cr and Cho/NAA ratios in patients with GAD. This study provides an evidence for the association between the morphometric deficit and metabolic changes in GAD. This finding would be helpful to understand the neural dysfunction and pathogenesis in connection with cognitive impairments in GAD. PMID:26708039

  5. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    PubMed Central

    Mueller, Karsten; Möller, Harald E.; Horstmann, Annette; Busse, Franziska; Lepsien, Jöran; Blüher, Matthias; Stumvoll, Michael; Villringer, Arno; Pleger, Burkhard

    2015-01-01

    Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing. PMID:26190989

  6. Molecular Signatures of Microbial Metabolism in an Actively Growing, Silicified, Microbial Structure from Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Ferreira, M.; Creveling, J.; Hilburn, I.; Karlsson, E.; Pepe-Ranney, C.; Spear, J.; Dawson, S.; Geobio2008, I.

    2008-12-01

    Silicified structures that exhibit a putative biologic component in their formation permeate the rock record as stromatolites. We have studied a silicified microbial structure from a hot spring in Yellowstone National Park using phenotypic, phylogenetic, and metagenomic analyses to determine microbial carbon metabolic pathways and the phylogenetic affiliations of microbes present in this unique structure. In this multi-faceted approach, dominant physiologies, specifically with regards to anaerobic and aerobic metabolisms, were inferred from 16S rRNA gene sequences and 454 sequencing data from bulk DNA samples of the structure. Carbon utilization as indicated by ECO Biolog plates showed abundant heterotrophy and heterotrophic diversity throughout the microbial structure. Microbes within the structure are able to utilize all tested sources of carbohydrates, lipids/fatty acids, and protein/amino acids as carbon sources. ECO plate testing of the hot spring water yielded considerable less carbohydrate consumption (only 4 out of 13 tested carbohydrates) and similar lipids/fatty acids and protein/amino acids consumption (2 out of 3 and 5 out of 5 tested sources respectively). Full length 16S rRNA gene sequences and metagenomic 454 pyrosequencing of community DNA showed limited diversity among primary producers. From the 16S data, the majority of the autotrophs are inferred to utilize the Calvin cycle for CO2 fixation, followed by 3-hydroxypropionate/4- hydroxybutyrate CO2 fixation. However, an analysis of the metagenomic data compared to the KEGG database does not show genes directly involved with Calvin cycle carbon fixation. Further BLAST searches of our data failed to find significant matches within our 6514 metagenomic sequences to known RuBisCo sequences taken from the NCBI database. This is likely due to a far under-sampled dataset of metagenomic sequences, and the low number (958) that had matches to the KEGG pathways database. Anaerobic versus aerobic physiology

  7. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.

    PubMed

    Zhao, Yuzheng; Wang, Aoxue; Zou, Yejun; Su, Ni; Loscalzo, Joseph; Yang, Yi

    2016-08-01

    NADH and its oxidized form NAD(+) have a central role in energy metabolism, and their concentrations are often considered to be among the most important readouts of metabolic state. Here, we present a detailed protocol to image and monitor NAD(+)/NADH redox state in living cells and in vivo using a highly responsive, genetically encoded fluorescent sensor known as SoNar (sensor of NAD(H) redox). The chimeric SoNar protein was initially developed by inserting circularly permuted yellow fluorescent protein (cpYFP) into the NADH-binding domain of Rex protein from Thermus aquaticus (T-Rex). It functions by binding to either NAD(+) or NADH, thus inducing protein conformational changes that affect its fluorescent properties. We first describe steps for how to establish SoNar-expressing cells, and then discuss how to use the system to quantify the intracellular redox state. This approach is sensitive, accurate, simple and able to report subtle perturbations of various pathways of energy metabolism in real time. We also detail the application of SoNar to high-throughput chemical screening of candidate compounds targeting cell metabolism in a microplate-reader-based assay, along with in vivo fluorescence imaging of tumor xenografts expressing SoNar in mice. Typically, the approximate time frame for fluorescence imaging of SoNar is 30 min for living cells and 60 min for living mice. For high-throughput chemical screening in a 384-well-plate assay, the whole procedure generally takes no longer than 60 min to assess the effects of 380 compounds on cell metabolism. PMID:27362337

  8. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism.

    PubMed

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N; Bibby, Kyle J; Stolz, Donna B; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L; Barchowsky, Aaron; Stolz, John F

    2015-12-15

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. PMID:26529668

  9. Nuclear Sphingolipid Metabolism

    PubMed Central

    Lucki, Natasha C.; Sewer, Marion B.

    2014-01-01

    Nuclear lipid metabolism is implicated in various processes, including transcription, splicing, and DNA repair. Sphingolipids play roles in numerous cellular functions, and an emerging body of literature has identified roles for these lipid mediators in distinct nuclear processes. Different sphingolipid species are localized in various subnuclear domains, including chromatin, the nuclear matrix, and the nuclear envelope, where sphingolipids exert specific regulatory and structural functions. Sphingomyelin, the most abundant nuclear sphingolipid, plays both structural and regulatory roles in chromatin assembly and dynamics in addition to being an integral component of the nuclear matrix. Sphingosine-1-phosphate modulates histone acetylation, sphingosine is a ligand for steroidogenic factor 1, and nuclear accumulation of ceramide has been implicated in apoptosis. Finally, nuclear membrane–associated ganglioside GM1 plays a pivotal role in Ca2+ homeostasis. This review highlights research on the factors that control nuclear sphingolipid metabolism and summarizes the roles of these lipids in various nuclear processes. PMID:21888508

  10. Cellular dysfunction in sepsis.

    PubMed

    Singer, Mervyn

    2008-12-01

    Cellular dysfunction is a commonplace sequelum of sepsis and other systemic inflammatory conditions. Impaired energy production (related to mitochondrial inhibition, damage, and reduced protein turnover) appears to be a core mechanism underlying the development of organ dysfunction. The reduction in energy availability appears to trigger a metabolic shutdown that impairs normal functioning of the cell. This may well represent an adaptive mechanism analogous to hibernation that prevents a massive degree of cell death and thus enables eventual recovery in survivors. PMID:18954700

  11. Magnesium metabolism: a brief review.

    PubMed Central

    Paymaster, N. J.

    1976-01-01

    The important role played by the magnesium ion in the body is not generally recognized. The action of numerous enzyme systems critical to cellular metabolism is regulated by it and it contributes importantly to macromolecular structure. Magnesium defiency occurs more often than is generally suspected; magnesium excess, though uncommon, is of special interest to the anaesthetist because it produces a curare-like effect on neuromuscular transmission. It is hoped that this brief review of magnesium metabolism will draw attention to its importance and relevance in everyday practice. PMID:942168

  12. Structure of modified [epsilon]-polylysine micelles and their application in improving cellular antioxidant activity of curcuminoids

    SciTech Connect

    Yu, Hailong; Li, Ji; Shi, Ke; Huang, Qingrong

    2015-10-15

    The micelle structure of octenyl succinic anhydride modified {var_epsilon}-polylysine (M-EPL), an anti-microbial surfactant prepared from natural peptide {var_epsilon}-polylysine in aqueous solution has been studied using synchrotron small-angle X-ray scattering (SAXS). Our results revealed that M-EPLs formed spherical micelles with individual size of 24-26 {angstrom} in aqueous solution which could further aggregate to form a larger dimension with averaged radius of 268-308 {angstrom}. Furthermore, M-EPL micelle was able to encapsulate curcuminoids, a group of poorly-soluble bioactive compounds from turmeric with poor oral bioavailability, and improve their water solubility. Three loading methods, including solvent evaporation, dialysis, and high-speed homogenization were compared. The results indicated that the dialysis method generated the highest loading capacity and curcuminoids water solubility. The micelle encapsulation was confirmed as there were no free curcuminoid crystals detected in the differential scanning calorimetry analysis. It was also demonstrated that M-EPL encapsulation stabilized curcuminoids against hydrolysis at pH 7.4 and the encapsulated curcuminoids showed elevated cellular antioxidant activity compared with free curcuminoids. This work suggested that M-EPL could be used as new biopolymer micelles for delivering poorly soluble drugs/phytochemicals and improving their bioactivities.

  13. Structure of modified ε-polylysine micelles and their application in improving cellular antioxidant activity of curcuminoids

    PubMed Central

    Yu, Hailong; Li, Ji; Shi, Ke; Huang, Qingrong

    2011-01-01

    The micelle structure of octenyl succinic anhydride modified ε-polylysine (M-EPL), an anti-microbial surfactant prepared from natural peptide ε-polylysine in aqueous solution has been studied using synchrotron small-angle X-ray scattering (SAXS). Our results revealed that M-EPLs formed spherical micelles with individual size of 24–26 Å in aqueous solution which could further aggregate to form a larger dimension with averaged radius of 268–308 Å. Furthermore, M-EPL micelle was able to encapsulate curcuminoids, a group of poorly-soluble bioactive compounds from turmeric with poor oral bioavailability, and improve their water solubility. Three loading methods, including solvent evaporation, dialysis, and high-speed homogenization were compared. The results indicated that the dialysis method generated the highest loading capacity and curcuminoids water solubility. The micelle encapsulation was confirmed as there were no free curcuminoid crystals detected in the differential scanning calorimetry analysis. It was also demonstrated that M-EPL encapsulation stabilized curcuminoids against hydrolysis at pH 7.4 and the encapsulated curcuminoids showed elevated cellular antioxidant activity compared with free curcuminoids. This work suggested that M-EPL could be used as new biopolymer micelles for delivering poorly soluble drugs/phytochemicals and improving their bioactivities. PMID:21894323

  14. An exploratory study of high school students' conceptions of atomic and cellular structure and the relationship between atoms and cells

    NASA Astrophysics Data System (ADS)

    Roland, Elizabeth Anne Edwards

    . Many limitations related to this study suggest that results should not be generalized beyond the targeted population. KEYWORDS: Interdisciplinary, Non-scientific Conceptions, Atomic Structure, Cellular Structure, High School Science Education