Science.gov

Sample records for cellular synthesis growth

  1. Synthesis of cellular organelles containing nano-magnets stunts growth of magnetotactic bacteria.

    PubMed

    Naresh, Mohit; Hasija, Vivek; Sharma, Megha; Mittal, Aditya

    2010-07-01

    Magnetotactic bacteria are unique prokaryotes possessing the feature of cellular organelles called magnetosomes (membrane bound 40-50 nm vesicles entrapping a magnetic nano-crystal of magnetite or greigite). The obvious energetic impact of sophisticated eukaryotic-like membrane-bound organelle assembly on a presumably simpler prokaryotic system is not addressed in literature. In this work, while presenting evidence of direct coupling of carbon source consumption to synthesis of magnetosomes, we provide the first experimentally derived estimate of energy for organelle synthesis by Magnetospirillum gryphiswaldense as approximately 5 nJoules per magnetosome. Considering our estimate of approximately 0.2 microJoules per bacterial cell as the energy required for growth, we show that the energetic load of organelle synthesis results in stunting of cell growth. We also show that removal of soluble iron or sequestration by exogenous compounds in the bacterial cell cultures reverses the impact of the excess metabolic load exerted during magnetosomal synthesis. Thus, by taking advantage of the magnetotactic bacterial system we present the first experimental evidence for the presumed energy consumption during assembly of naturally occurring sub-100 nm intra-cellular organelles. PMID:21128392

  2. Cellular growth in biofilms

    SciTech Connect

    Wood, B.D.; Whitaker, S.

    1999-09-20

    In this paper the authors develop a macroscopic evolutionary equation for the growth of the cellular phase starting from a microscopic description of mass transport and a simple structured model for product formation. The methods of continuum mechanics and volume averaging are used to develop the macroscopic representation by carefully considering the fluxes of chemical species that pertain to cell growth. The concept of structured models is extended to include the transport of reacting chemical species at the microscopic scale. The resulting macroscopic growth model is similar in form to previously published models for the transport of a single substrate and electron donor and for the production of cellular mass and exopolymer. The method of volume averaging indicated under what conditions the developed growth model is valid and provides an explicit connection between the relevant microscopic model parameters and their corresponding macroscopic counterparts.

  3. Targeted Nanogel Conjugate for Improved Stability and Cellular Permeability of Curcumin: Synthesis, Pharmacokinetics, and Tumor Growth Inhibition

    PubMed Central

    2015-01-01

    Curcumin (CUR) is a unique natural compound with promising anticancer and anti-inflammatory activities. However, the therapeutic efficacy of curcumin was challenged in clinical trials, mostly due to its low bioavailability, rapid metabolism, and elimination. We designed a nanodrug form of curcumin, which makes it stable and substantially enhances cellular permeability and anticancer activity at standard oral administration. Curcumin was conjugated as an ester to cholesteryl-hyaluronic acid (CHA) nanogel that is capable of targeted delivery to CD44-expressing drug-resistant cancer cells. CHA-CUR nanogels demonstrated excellent solubility and sustained drug release in physiological conditions. It induced apoptosis in cancer cells, suppressing the expression of NF-κB, TNF-α, and COX-2 cellular targets similar to free curcumin. Pharmacokinetic/pharmacodynamic (PK/PD) studies also revealed improved circulation parameters of CHA-CUR at oral, i.p. and i.v. administration routes. CHA-CUR showed targeted tumor accumulation and effective tumor growth inhibition in human pancreatic adenocarcinoma MiaPaCa-2 and aggressive orthotropic murine mammary carcinoma 4T1 animal models. CHA-CUR treatment was well-tolerated and resulted in up to 13-fold tumor suppression, making this nanodrug a potential candidate for cancer prevention and therapeutic treatment. PMID:25072100

  4. Vesicular stomatitis virus P function depends on cellular growth cycle.

    PubMed

    Stanners, C P; Kennedy, S; Poliquin, L

    1987-09-01

    The P function of vesicular stomatitis virus (VSV) is defined as the viral function which results in a reduced rate of total protein synthesis (viral plus cellular) arising from a nonspecific reduction in the efficiency of the translational machinery in infected cells. The existence of P function has been challenged by Lodish and Porter who were unable to detect it in L-strain mouse cells infected with wild-type VSV (HR) or, as expected, with the P- mutant, T1026-R1. Although other groups have subsequently confirmed the existence of P function and the difference between HR and T1026-R1, we have sought an explanation for the difference between Lodish and Porter's results and those of other laboratories. We show that the VSV P function depends on the phase of the growth cycle of infected L-cell cultures. In very early exponential phase, as used by Lodish and Porter, HR has very little demonstrable P function; as the growth cycle proceeds toward stationary phase, P function becomes more and more manifest. Under the same conditions, T1026-R1 shows no P function throughout the growth cycle. Furthermore we show that the VSV M protein mutant tsG31 has a P++ phenotype reducing total protein synthesis below that seen with wild-type HR. P function can be observed in cells infected with tsG31, even early in the exponential phase of the cellular growth cycle. PMID:2820132

  5. Stochasticity in plant cellular growth and patterning

    PubMed Central

    Meyer, Heather M.; Roeder, Adrienne H. K.

    2014-01-01

    Plants, along with other multicellular organisms, have evolved specialized regulatory mechanisms to achieve proper tissue growth and morphogenesis. During development, growing tissues generate specialized cell types and complex patterns necessary for establishing the function of the organ. Tissue growth is a tightly regulated process that yields highly reproducible outcomes. Nevertheless, the underlying cellular and molecular behaviors are often stochastic. Thus, how does stochasticity, together with strict genetic regulation, give rise to reproducible tissue development? This review draws examples from plants as well as other systems to explore stochasticity in plant cell division, growth, and patterning. We conclude that stochasticity is often needed to create small differences between identical cells, which are amplified and stabilized by genetic and mechanical feedback loops to begin cell differentiation. These first few differentiating cells initiate traditional patterning mechanisms to ensure regular development. PMID:25250034

  6. Additive Cellular Automata and Volume Growth

    NASA Astrophysics Data System (ADS)

    Ward, Thomas B.

    2000-09-01

    A class of dynamical systems associated to rings of S-integers in rational function fields is described. General results about these systems give a rather complete description of the well-known dynamics in one-dimensional additive cellular automata with prime alphabet, including simple formulæ for the topological entropy and the number of periodic configurations. For these systems the periodic points are uniformly distributed along some subsequence with respect to the maximal measure, and in particular are dense. Periodic points may be constructed arbitrarily close to a given configuration, and rationality of the dynamical zeta function is characterized. Throughout the emphasis is to place this particular family of cellular automata into the wider context of S-integer dynamical systems, and to show how the arithmetic of rational function fields determines their behaviour. Using a covering space the dynamics of additive cellular automata are related to a form of hyperbolicity in completions of rational function fields. This expresses the topological entropy of the automata directly in terms of volume growth in the covering space.

  7. Unstable vicinal crystal growth from cellular automata

    NASA Astrophysics Data System (ADS)

    Krasteva, A.; Popova, H.; KrzyŻewski, F.; Załuska-Kotur, M.; Tonchev, V.

    2016-03-01

    In order to study the unstable step motion on vicinal crystal surfaces we devise vicinal Cellular Automata. Each cell from the colony has value equal to its height in the vicinal, initially the steps are regularly distributed. Another array keeps the adatoms, initially distributed randomly over the surface. The growth rule defines that each adatom at right nearest neighbor position to a (multi-) step attaches to it. The update of whole colony is performed at once and then time increases. This execution of the growth rule is followed by compensation of the consumed particles and by diffusional update(s) of the adatom population. Two principal sources of instability are employed - biased diffusion and infinite inverse Ehrlich-Schwoebel barrier (iiSE). Since these factors are not opposed by step-step repulsion the formation of multi-steps is observed but in general the step bunches preserve a finite width. We monitor the developing surface patterns and quantify the observations by scaling laws with focus on the eventual transition from diffusion-limited to kinetics-limited phenomenon. The time-scaling exponent of the bunch size N is 1/2 for the case of biased diffusion and 1/3 for the case of iiSE. Additional distinction is possible based on the time-scaling exponents of the sizes of multi-step Nmulti, these are 0.36÷0.4 (for biased diffusion) and 1/4 (iiSE).

  8. Synthesis and cellular localization of porphyrinic pigments

    NASA Astrophysics Data System (ADS)

    Sareh, Sarah; Kong, Sarah; Parrales, Lenin; Jung, Anna; Cross, Kara; Röder, Beate; Isaac, Meden; Simonis, Ursula

    2009-06-01

    To determine factors that govern the uptake preference of photosensitizers in cellular organelles of human adenocarcinoma cells, diarginyl-dialkoxy- and diarginyl-dimethoxyphenylporphyrins (TPPs) and two of their corresponding indium(III) complexes were synthesized, characterized and incubated in androgen-sensitive human prostate adenocarcinoma cells LNCaP. The porphyrins revealed properties that are of importance for phototherapy. They are water-soluble, have their fourth Q-band absorbing at ~ 650 nm, are taken up in relatively high concentrations in LNCaP cells, and are phototoxic. Colocalization and phototoxicity studies revealed that all porphyrins localized preferentially to the lysosomes and invoked cell death when excited with 650 nm light. Compared to the corresponding methoxy-substituted TPPs, the diargininyl-dialkoxy-substituted porphyrins localized to a small extent in the mitochondria. The corresponding In(III) chloride complexes that are slightly less water-soluble were also taken up in the lysosomes of LnCaP cells. When the TPPs were compared to a pheophorbide derivative recently synthesized in our laboratory, it was determined that the TPPs have a preference for lysosomal localization, whereas the pheophorbide derivative co-localized to the mitochondria. Phototoxicity studies revealed that the longer chain dialkoxyTPPs were more effective in cell killing and induced greater morphological changes typical of apoptotic cell death than the shorter chain methoxy substituted porphyrins. The In(III) complexes seemed to be the most phototoxic. These results highlight that the type, nature, and substitution pattern of the chromophore modulate the extent of apoptotic cell death and influence cellular targeting.

  9. Synthesis of New Styrylquinoline Cellular Dyes, Fluorescent Properties, Cellular Localization and Cytotoxic Behavior

    PubMed Central

    Dulski, Mateusz; Mrozek-Wilczkiewicz, Anna; Cieslik, Wioleta; Spaczyńska, Ewelina; Bartczak, Piotr; Ratuszna, Alicja; Polanski, Jaroslaw; Musiol, Robert

    2015-01-01

    New styrylquinoline derivatives with their photophysical constants are described. The synthesis was achieved via Sonogashira coupling using the newly developed heterogeneous nano-Pd/Cu catalyst system, which provides an efficient synthesis of high purity products. The compounds were tested in preliminary fluorescent microscopy studies to in order to identify their preferable cellular localization, which appeared to be in the lipid cellular organelles. The spectroscopic properties of the compounds were measured and theoretical TD-DFT calculations were performed. A biological analysis of the quinolines that were tested consisted of cytotoxicity assays against normal human fibroblasts and colon adenocarcinoma cells. All of the compounds that were studied appeared to be safe and indifferent to cells in a high concentration range. The presented results suggest that the quinoline compounds that were investigated in this study may be valuable structures for development as fluorescent dyes that could have biological applications. PMID:26114446

  10. Combinatorial effects of continuous protein synthesis, ERK-signaling, and reactive oxygen species on induction of cellular senescence.

    PubMed

    Takauji, Yuki; En, Atsuki; Miki, Kensuke; Ayusawa, Dai; Fujii, Michihiko

    2016-07-15

    Mammalian cells, when treated with sub-lethal doses of genotoxic stresses, slow down DNA synthesis but continue protein synthesis. Thus, these cells show an accumulation of proteins and undergo unbalanced growth. In the previous studies, we have shown that HeLa cells treated with excess thymidine or camptothecin undergo unbalanced growth, and prolonged unbalanced growth causes induction of cellular senescence, which is suppressed by restriction of protein synthesis or inhibition of ERK-signaling. In this study, we found that restriction of protein synthesis, inhibition of ERK-signaling, and elimination of reactive oxygen species showed a combinatorial effect on suppression of cellular senescence induced by excess thymidine or camptothecin. Of these, restriction of protein synthesis most effectively suppressed cellular senescence. Importantly, a similar combinatorial effect was observed in replicative senescence in normal human diploid fibroblasts. Our findings suggested that various stresses were cumulatively involved in cellular senescence, and suppression of cellular senescence was improved by combining the treatments that reduce the stresses. PMID:27339653

  11. Cellular integrity is required for inhibition of initiation of cellular DNA synthesis by reovirus type 3.

    PubMed Central

    Roner, M R; Cox, D C

    1985-01-01

    Synchronized HeLa cells, primed for entry into the synthesis phase by amethopterin, were prevented from initiating DNA synthesis 9 h after infection with reovirus type 3. However, nuclei isolated from synchronized cells infected with reovirus for 9 or 16 h demonstrated a restored ability to synthesize DNA. The addition of enucleated cytoplasmic extracts from infected or uninfected cells did not affect this restored capacity for synthesis. The addition of ribonucleotide triphosphates to nuclei isolated from infected cells stimulated additional DNA synthesis, suggesting that these nuclei were competent to initiate new rounds of DNA replication. Permeabilization of infected cells did not restore the ability of these cells to synthesize DNA. Nucleoids isolated from intact or permeabilized cells, infected for 9 or 16 h displayed an increased rate of sedimentation when compared with nucleoids isolated from uninfected cells. Nucleoids isolated from the nuclei of infected cells demonstrated a rate of sedimentation similar to that of nucleoids isolated from the nuclei of uninfected cells. The inhibition of initiation of cellular DNA synthesis by reovirus type 3 appears not to have been due to a permanent alteration of the replication complex, but this inhibition could be reversed by the removal of that complex from factors unique to the structural or metabolic integrity of the infected cell. Images PMID:3968718

  12. The adenovirus E1A protein overrides the requirement for cellular ras in initiating DNA synthesis.

    PubMed Central

    Stacey, D W; Dobrowolski, S F; Piotrkowski, A; Harter, M L

    1994-01-01

    The adenovirus E1A protein can induce cellular DNA synthesis in growth-arrested cells by interacting with the cellular protein p300 or pRb. In addition, serum- and growth factor-dependent cells require ras activity to initiate DNA synthesis and recently we have shown that Balb/c 3T3 cells can be blocked in either early or late G1 following microinjection of an anti-ras antibody. In this study, the E1A 243 amino acid protein is shown through microinjection not only to shorten the G0 to S phase interval but, what is more important, to override the inhibitory effects exerted by the anti-ras antibody in either early or late G1. Specifically, whether E1A is co-injected with anti-ras into quiescent cells or injected 18 h following a separate injection of anti-ras after serum stimulation, it efficiently induces cellular DNA synthesis in cells that would otherwise be blocked in G0/G1. Moreover, injection of a mutant form of E1A that can no longer associate with p300 is just as efficient as wild-type E1A in stimulating DNA synthesis in cells whose ras activity has been neutralized by anti-ras. The results presented here show that E1A is capable of overriding the requirement of cellular ras activity in promoting the entry of cells into S phase. Moreover, the results suggest the possibility that pRb and/or pRb-related proteins may function in a ras-dependent pathway that enables E1A to achieve this activity. Images PMID:7813447

  13. Cellular mechanisms underlying growth asymmetry during stem gravitropism

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1997-01-01

    Plant stems respond to gravitropic stimulation with a rapid, local and reversible change in cell growth rate (elongation), generally on both the upper and lower sides of the stem. The cellular and biochemical mechanisms for this differential growth are reviewed. Considerable evidence implicates an asymmetry in wall pH in the growth response. The strengths and weaknesses of the wall "loosening enzyme" concept are reviewed and the possibility of expansin involvement in the bending response of stems is considered. Also discussed is the possibility that wall stiffening processes, e.g. phenolic coupling driven by oxidative bursts or altered orientation of newly deposited cellulose, might mediate the growth responses during gravitropism.

  14. RNA Polymerase I Stability Couples Cellular Growth to Metal Availability

    PubMed Central

    Lee, Yueh-Jung; Lee, Chrissie Young; Grzechnik, Agnieszka; Gonzales-Zubiate, Fernando; Vashisht, Ajay A.; Lee, Albert; Wohlschlegel, James; Chanfreau, Guillaume

    2013-01-01

    Summary Zinc is an essential cofactor of all major eukaryotic RNA polymerases. How the activity of these enzymes is coordinated or regulated according to cellular zinc levels is largely unknown. Here we show that the stability of RNA Polymerase I (RNAPI) is tightly coupled to zinc availability in vivo. In zinc deficiency, RNAPI is specifically degraded by proteolysis in the vacuole in a pathway dependent on the exportin Xpo1p and deubiquitination of the RNAPI large subunit Rpa190p by Ubp2p and Ubp4p. RNAPII is unaffected, which allows for expression of genes required in zinc deficiency. RNAPI export to the vacuole is required for survival during zinc starvation, suggesting that degradation of zinc-binding subunits might provide a last resort zinc reservoir. These results reveal a hierarchy of cellular transcriptional activities during zinc starvation, and show that degradation of the most active cellular transcriptional machinery couples cellular growth and proliferation to zinc availability. PMID:23747013

  15. Survival of Phenotypic Information during Cellular Growth Transitions.

    PubMed

    Ray, J Christian J

    2016-08-19

    Phenotypic memory can predispose cells to physiological outcomes, contribute to heterogeneity in cellular populations, and allow computation of environmental features, such as nutrient gradients. In bacteria and synthetic circuits in general, memory can often be set by protein concentrations: because of the relative stability of proteins, the degradation rate is often dominated by the growth rate, and inheritance is a significant factor. Cells can then be primed to respond to events that recur with frequencies faster than the time to eliminate proteins. Protein memory can be extended if cells reach extremely low growth rates or no growth. Here we characterize the necessary time scales for different quantities of protein memory, measured as relative entropy (Kullback-Leibler divergence), for a variety of cellular growth arrest transition dynamics. We identify a critical manifold in relative protein degradation/growth arrest time scales where information is, in principle, preserved indefinitely because proteins are trapped at a concentration determined by the competing time scales as long as nongrowth-mediated protein degradation is negligible. We next asked what characteristics of growth arrest dynamics and initial protein distributions best preserve or eliminate information about previous environments. We identified that sharp growth arrest transitions with skewed initial protein distributions optimize flexibility, with information preservation and minimal cost of residual protein. As a result, a nearly memoryless regime, corresponding to a form of bet-hedging, may be an optimal strategy for storage of information by protein concentrations in growth-arrested cells. PMID:26910476

  16. Survival of Phenotypic Information during Cellular Growth Transitions

    PubMed Central

    2016-01-01

    Phenotypic memory can predispose cells to physiological outcomes, contribute to heterogeneity in cellular populations, and allow computation of environmental features, such as nutrient gradients. In bacteria and synthetic circuits in general, memory can often be set by protein concentrations: because of the relative stability of proteins, the degradation rate is often dominated by the growth rate, and inheritance is a significant factor. Cells can then be primed to respond to events that recur with frequencies faster than the time to eliminate proteins. Protein memory can be extended if cells reach extremely low growth rates or no growth. Here we characterize the necessary time scales for different quantities of protein memory, measured as relative entropy (Kullback–Leibler divergence), for a variety of cellular growth arrest transition dynamics. We identify a critical manifold in relative protein degradation/growth arrest time scales where information is, in principle, preserved indefinitely because proteins are trapped at a concentration determined by the competing time scales as long as nongrowth-mediated protein degradation is negligible. We next asked what characteristics of growth arrest dynamics and initial protein distributions best preserve or eliminate information about previous environments. We identified that sharp growth arrest transitions with skewed initial protein distributions optimize flexibility, with information preservation and minimal cost of residual protein. As a result, a nearly memoryless regime, corresponding to a form of bet-hedging, may be an optimal strategy for storage of information by protein concentrations in growth-arrested cells. PMID:26910476

  17. Defective Ca2+ metabolism in Duchenne muscular dystrophy: effects on cellular and viral growth.

    PubMed Central

    Fingerman, E; Campisi, J; Pardee, A B

    1984-01-01

    Normal fibroblasts in medium containing 0.02 mM CaCl2 arrested growth within 24 hr, whereas Duchenne muscular dystrophy fibroblasts continued to grow for 5 days, albeit at 40% of their rate in standard medium (1.8 mM CaCl2). Moreover, Duchenne cells in calcium-deficient medium showed an enhanced rate of protein synthesis (60% over the rate in standard medium), whereas normal cells were unaffected. Previously we described a general assay for detection of mutant cells by using herpes simplex virus I replication as a probe of cellular function. By altering the growth medium, one can elicit changes in viral DNA replication that depend upon cellular differences. Duchenne fibroblasts in calcium-deficient low-serum (0.5%) medium supported viral replication at a rate 7- to 10-fold greater than did normal cells infected under the same conditions. Using this viral assay, we have successfully identified all 10 samples of a blind coded set of Duchenne muscular dystrophy, normal, and heterozygote cells. In addition, differences of a lower magnitude were found between these cell strains as measured by cellular growth or protein synthesis. Therefore, a cell's ability to grow and support viral replication in calcium-deficient medium can be used to readily distinguish Duchenne muscular dystrophy fibroblasts from normal ones. These results suggest that the viral assay could be used as a prenatal diagnostic test. A defect related to calcium metabolism may be fundamental to this disease. PMID:6095311

  18. A cellular automaton model for tumor growth in heterogeneous environment

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Torquato, Sal

    2011-03-01

    Cancer is not a single disease: it exhibits heterogeneity on different spatial and temporal scales and strongly interacts with its host environment. Most mathematical modeling of malignant tumor growth has assumed a homogeneous host environment. We have developed a cellular automaton model for tumor growth that explicitly incorporates the structural heterogeneity of the host environment such as tumor stroma. We show that these structural heterogeneities have non-trivial effects on the tumor growth dynamics and prognosis. Y. J. is supported by PSOC, NCI.

  19. Cellular Growth Arrest and Persistence from Enzyme Saturation

    PubMed Central

    Ray, J. Christian J.; Wickersheim, Michelle L.; Jalihal, Ameya P.; Adeshina, Yusuf O.; Cooper, Tim F.; Balázsi, Gábor

    2016-01-01

    Metabolic efficiency depends on the balance between supply and demand of metabolites, which is sensitive to environmental and physiological fluctuations, or noise, causing shortages or surpluses in the metabolic pipeline. How cells can reliably optimize biomass production in the presence of metabolic fluctuations is a fundamental question that has not been fully answered. Here we use mathematical models to predict that enzyme saturation creates distinct regimes of cellular growth, including a phase of growth arrest resulting from toxicity of the metabolic process. Noise can drive entry of single cells into growth arrest while a fast-growing majority sustains the population. We confirmed these predictions by measuring the growth dynamics of Escherichia coli utilizing lactose as a sole carbon source. The predicted heterogeneous growth emerged at high lactose concentrations, and was associated with cell death and production of antibiotic-tolerant persister cells. These results suggest how metabolic networks may balance costs and benefits, with important implications for drug tolerance. PMID:27010473

  20. Slowdown of growth controls cellular differentiation.

    PubMed

    Narula, Jatin; Kuchina, Anna; Zhang, Fang; Fujita, Masaya; Süel, Gürol M; Igoshin, Oleg A

    2016-01-01

    How can changes in growth rate affect the regulatory networks behavior and the outcomes of cellular differentiation? We address this question by focusing on starvation response in sporulating Bacillus subtilis We show that the activity of sporulation master regulator Spo0A increases with decreasing cellular growth rate. Using a mathematical model of the phosphorelay-the network controlling Spo0A-we predict that this increase in Spo0A activity can be explained by the phosphorelay protein accumulation and lengthening of the period between chromosomal replication events caused by growth slowdown. As a result, only cells growing slower than a certain rate reach threshold Spo0A activity necessary for sporulation. This growth threshold model accurately predicts cell fates and explains the distribution of sporulation deferral times. We confirm our predictions experimentally and show that the concentration rather than activity of phosphorelay proteins is affected by the growth slowdown. We conclude that sensing the growth rates enables cells to indirectly detect starvation without the need for evaluating specific stress signals. PMID:27216630

  1. Transferrin synthesis by small cell lung cancer cells acts as an autocrine regulator of cellular proliferation.

    PubMed Central

    Vostrejs, M; Moran, P L; Seligman, P A

    1988-01-01

    Since transferrin is required for cellular proliferation, we investigated transferrin synthesis by a small cell lung cancer line (NCI-H510) that survives in serum-free media without added transferrin. Immunoassays for human transferrin demonstrated that these cells contained immunoreactive human transferrin. Immunofluorescence studies showed that the protein is expressed on the surface of cells, presumably bound to transferrin receptor. Media conditioned by NCI-H510 cells support proliferation of human leukemic cells that would not survive in media lacking transferrin. [35S]Methionine incorporation documented transferrin synthesis by NCI-H510 cells as well as three other small cell lines. Transferrin synthesis by NCI-H510 cells increased more than 10-fold when cells entered active phases of the cell cycle, and this increase was seen before large increases in transferrin-receptor expression. Further experiments examining the effects of agents that affect iron metabolism show that the addition of transferrin-iron or hemin to the media is associated with a more rapid initial rate of proliferation and lower rates of transferrin synthesis than control cells. Gallium salts, which inhibit iron uptake, inhibited proliferation of these cells. If the cells recovered from this effect, transferrin synthesis remained greatly increased compared to control. We conclude that transferrin synthesis by these malignant cells is ultimately related to an iron requirement for cellular proliferation. It appears that this synthesized transferrin acts as part of an important autocrine mechanism permitting proliferation of these cells, and perhaps permitting tumor cell growth in vivo in areas not well vascularized. Images PMID:2839550

  2. Cellular Actions of Insulin-Like Growth Factor Binding Proteins

    PubMed Central

    Ferry, R. J.; Katz, L. E. L.; Grimberg, Adda; Cohen, P.; Weinzimer, S. A.

    2014-01-01

    The insulin-like growth factors (IGFs), insulin-like growth factor binding proteins (IGFBPs), and the IGFBP proteases are involved in the regulation of somatic growth and cellular proliferation both in vivo and in vitro. IGFs are potent mitogenic agents whose actions are determined by the availability of free IGFs to interact with the IGF receptors. IGFBPs comprise a family of proteins that bind IGFs with high affinity and specificity and thereby regulate IGF-dependent actions. IGFBPs have recently emerged as IGF-independent regulators of cell growth. Various IGFBP association proteins as well as cleavage of IGFBPs by specific proteases modulate levels of free IGFs and IGFBPs. The ubiquity and complexity of the IGF axis promise exciting discoveries and applications for the future. PMID:10226802

  3. Axl as a mediator of cellular growth and survival

    PubMed Central

    Axelrod, Haley; Pienta, Kenneth J.

    2014-01-01

    The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context. PMID:25344858

  4. Mouse cellular cementum is highly dependent on growth hormone status.

    PubMed

    Smid, J R; Rowland, J E; Young, W G; Daley, T J; Coschigano, K T; Kopchick, J J; Waters, M J

    2004-01-01

    Cementum is known to be growth-hormone (GH)-responsive, but to what extent is unclear. This study examines the effects of extremes of GH status on cementogenesis in three lines of genetically modified mice; GH excess (giant), GH antagonist excess (dwarf), and GH receptor-deleted (GHR-KO) (dwarf). Age-matched mandibular molar tissues were processed for light microscope histology. Digital images of sections of first molar teeth were captured for morphometric analysis of lingual root cementum. Cross-sectional area of the cellular cementum was a sensitive guide to GH status, being reduced nearly 10-fold in GHR-KO mice, three-fold in GH antagonist mice, and increased almost two-fold in giant mice (p < 0.001). Cellular cementum length was similarly influenced by GH status, but to a lesser extent. Acellular cementum was generally unaffected. This study reveals cellular cementum to be a highly responsive GH target tissue, which may have therapeutic applications in assisting regeneration of the periodontium. PMID:14691110

  5. An Evolutionary Hybrid Cellular Automaton Model of Solid Tumour Growth

    PubMed Central

    Gerlee, P.; Anderson, A.R.A.

    2007-01-01

    We propose a cellular automaton model of solid tumour growth, in which each cell is equipped with a micro-environment response network. This network is modelled using a feed-forward artificial neural network, that takes environmental variables as an input and from these determines the cellular behaviour as the output. The response of the network is determined by connection weights and thresholds in the network, which are subject to mutations when the cells divide. As both available space and nutrients are limited resources for the tumour this gives rise to clonal evolution where only the fittest cells survive. Using this approach we have investigated the impact of the tissue oxygen concentration on the growth and evolutionary dynamics of the tumour. The results show that the oxygen concentration affects the selection pressure, cell population diversity and morphology of the tumour. A low oxygen concentration in the tissue gives rise to a tumour with a fingered morphology that contains aggressive phenotypes with a small apoptotic potential, while a high oxygen concentration in the tissue gives rise to a tumour with a round morphology containing less evolved phenotypes. The tissue oxygen concentration thus affects the tumour at both the morphological level and on the phenotype level. PMID:17374383

  6. Protein turnover and cellular autophagy in growing and growth-inhibited 3T3 cells

    SciTech Connect

    Papadopoulos, T.; Pfeifer, U. )

    1987-07-01

    The relationship between growth, protein degradation, and cellular autophagy was tested in growing and in growth-inhibited 3T3 cell monolayers. For the biochemical evaluation of DNA and protein metabolism, growth-inhibited 3T3 cell monolayers with high cell density and growing 3T3 cell monolayers with low cell density were labeled simultaneously with ({sup 14}C)thymidine and ({sup 3}H)leucine. The evaluation of the DNA turnover and additional ({sup 3}H)thymidine autoradiography showed that 24 to 5% of 3T3 cells continue to replicate even in the growth-inhibited state, where no accumulation of protein and DNA can be observed. Cell loss, therefore, has to be assumed to compensate for the ongoing cell proliferation. When the data of protein turnover were corrected for cell loss, it was found that the rate constant of protein synthesis in nongrowing monolayers was reduced to half the value found in growing monolayers. Simultaneously, the rate constant of protein degradation in nongrowing monolayers was increased to about 1.5-fold the value of growing monolayers. These data are in agreement with the assumption that cellular autophagy represents a major pathway of regulating protein degradation in 3T3 cells and that the regulation of autophagic protein degradation is of relevance for the transition from a growing to a nongrowing state.

  7. Synthesis of marmycin A and investigation into its cellular activity

    NASA Astrophysics Data System (ADS)

    Cañeque, Tatiana; Gomes, Filipe; Mai, Trang Thi; Maestri, Giovanni; Malacria, Max; Rodriguez, Raphaël

    2015-09-01

    Anthracyclines such as doxorubicin are used extensively in the treatment of cancers. Anthraquinone-related angucyclines also exhibit antiproliferative properties and have been proposed to operate via similar mechanisms, including direct genome targeting. Here, we report the chemical synthesis of marmycin A and the study of its cellular activity. The aromatic core was constructed by means of a one-pot multistep reaction comprising a regioselective Diels-Alder cycloaddition, and the complex sugar backbone was introduced through a copper-catalysed Ullmann cross-coupling, followed by a challenging Friedel-Crafts cyclization. Remarkably, fluorescence microscopy revealed that marmycin A does not target the nucleus but instead accumulates in lysosomes, thereby promoting cell death independently of genome targeting. Furthermore, a synthetic dimer of marmycin A and the lysosome-targeting agent artesunate exhibited a synergistic activity against the invasive MDA-MB-231 cancer cell line. These findings shed light on the elusive pathways through which anthraquinone derivatives act in cells, pointing towards unanticipated biological and therapeutic applications.

  8. Protein synthesis in distal axons is not required for growth cone responses to guidance cues

    PubMed Central

    Roche, Florence K.; Marsick, Bonnie M.; Letourneau, Paul C.

    2009-01-01

    Recent evidence suggests growth cone responses to guidance cues require local protein synthesis. Using chick neurons, we investigated whether protein synthesis is required for growth cones of several types to respond to guidance cues. First, we found that global inhibition of protein synthesis stops axonal elongation after two hr. When protein synthesis inhibitors were added 15 min before adding guidance cues, we found no changes in the typical responses of retinal, sensory and sympathetic growth cones. In the presence of cycloheximide or anisomycin, ephrin-A2, slit-3, and semaphorin3A still induced growth cone collapse and loss of actin filaments, NGF and NT-3 still induced growth cone protrusion and increased F-actin, and sensory growth cones turned toward an NGF source. In compartmented chambers that separated perikarya from axons, axons grew for 24-48 hr in the presence of cycloheximide and responded to negative and positive cues. Our results indicate that protein synthesis is not strictly required in the mechanisms for growth cone responses to many guidance cues. Differences between our results and other studies may exist because of different cellular metabolic levels in in vitro conditions, and a difference in when axonal functions become dependent on local protein synthesis. PMID:19158291

  9. Effect of anisotropy on deep cellular crystal growth in directional solidification

    NASA Astrophysics Data System (ADS)

    Jiang, Han; Chen, Ming-Wen; Shi, Guo-Dong; Wang, Tao; Wang, Zi-Dong

    2016-06-01

    The effect of anisotropic surface tension and anisotropic interface kinetics on deep cellular crystal growth is studied. An asymptotic solution of deep cellular crystal growth in directional solidification is obtained by using the matched asymptotic expansion method and the multiple variable expansion method. The results show that as the anisotropic parameters increase, the total length of deep cellular crystal increases and the root depth increases, whereas the curvature of the interface near the root increases or the curvature radius decreases.

  10. Pyridalyl inhibits cellular protein synthesis in insect, but not mammalian, cell lines.

    PubMed

    Moriya, Koko; Hirakura, Setsuko; Kobayashi, Jun; Ozoe, Yoshihisa; Saito, Shigeru; Utsumi, Toshihiko

    2008-09-01

    To gain insight into the mechanism of action and selectivity of the insecticidal activity of pyridalyl, the cytotoxicity of pyridalyl against various insect and mammalian cell lines was characterized by measuring the inhibition of cellular protein synthesis. When the effect of pyridalyl on the cellular protein synthesis in Sf9 cells was evaluated by measuring the incorporation of [(3)H]leucine, rapid and significant inhibition of protein synthesis was observed. However, pyridalyl did not inhibit protein synthesis in a cell-free protein synthesis system, indicating that pyridalyl does not directly inhibit protein synthesis. No obvious cytotoxicity was observed against any of the mammalian cell lines tested. In the case of insect cell lines, remarkable differences in the cytotoxicity of pyridalyl were observed: the highest cytotoxicity (IC50 mM) was found against Sf9 cells derived from Spodoptera frugiperda, whereas no obvious cytotoxicity was observed against BmN4 cells derived from Bombyx mori. Measurements of the insecticidal activity of pyridalyl against Spodoptera litura and B. mori revealed a correlation between the cytotoxicity against cultured cell lines and the insecticidal activity. From these observations, it was concluded that the selective inhibition of cellular protein synthesis by pyridalyl might contribute significantly to the insecticidal activity and the selectivity of this compound. PMID:18454491

  11. Divergent synthesis and identification of the cellular targets of deoxyelephantopins.

    PubMed

    Lagoutte, Roman; Serba, Christelle; Abegg, Daniel; Hoch, Dominic G; Adibekian, Alexander; Winssinger, Nicolas

    2016-01-01

    Herbal extracts containing sesquiterpene lactones have been extensively used in traditional medicine and are known to be rich in α,β-unsaturated functionalities that can covalently engage target proteins. Here we report synthetic methodologies to access analogues of deoxyelephantopin, a sesquiterpene lactone with anticancer properties. Using alkyne-tagged cellular probes and quantitative proteomics analysis, we identified several cellular targets of deoxyelephantopin. We further demonstrate that deoxyelephantopin antagonizes PPARγ activity in situ via covalent engagement of a cysteine residue in the zinc-finger motif of this nuclear receptor. PMID:27539788

  12. Divergent synthesis and identification of the cellular targets of deoxyelephantopins

    PubMed Central

    Lagoutte, Roman; Serba, Christelle; Abegg, Daniel; Hoch, Dominic G.; Adibekian, Alexander; Winssinger, Nicolas

    2016-01-01

    Herbal extracts containing sesquiterpene lactones have been extensively used in traditional medicine and are known to be rich in α,β-unsaturated functionalities that can covalently engage target proteins. Here we report synthetic methodologies to access analogues of deoxyelephantopin, a sesquiterpene lactone with anticancer properties. Using alkyne-tagged cellular probes and quantitative proteomics analysis, we identified several cellular targets of deoxyelephantopin. We further demonstrate that deoxyelephantopin antagonizes PPARγ activity in situ via covalent engagement of a cysteine residue in the zinc-finger motif of this nuclear receptor. PMID:27539788

  13. Inhibition of Cellular DNA Synthesis in Cells Infected with Infectious Pancreatic Necrosis Virus

    PubMed Central

    Lothrop, David; Nicholson, Bruce L.

    1974-01-01

    In asynchronous RTG-2 cell cultures infected with infectious pancreatic necrosis (IPN) virus, inhibition of cellular DNA synthesis, but not protein synthesis, was detected 5 to 6 h postinfection and was 80 to 90% complete by 7 to 8 h. Inhibition of DNA synthesis was largely abolished by UV irradiation of the virus. Sedimentation analyses of phenol-extracted DNA indicated that native cellular DNA was not degraded during infection. Sedimentation on alkaline sucrose gradients of DNA from cells pulsed with radioactive thymidine for varying periods indicated that elongation of nascent DNA chains proceeded normally in infected cells. These and previous results suggest that IPN virus infection results in a reduction of the number of chromosomal sites active in DNA synthesis but does not affect the rate of polymerization at active sites. Cells synchronized with excess thymidine and hydroxyurea and infected with virus at the time of release from the block demonstrated an inhibition of DNA synthesis 3 h postinfection. Cells infected 4 h prior to release continued to synthesize normal amounts of DNA for 1 to 2 h after release. These results indicated that DNA synthesis in early synthetic phase is relatively insensitive to inhibition by IPN virus. PMID:4852469

  14. The physics of cellular synthesis, growth and division

    NASA Technical Reports Server (NTRS)

    Pollard, E. C.

    1974-01-01

    Three areas of research in NASA'S University Program are described. Primitive terrestrial living cells were studied as a guide to the kind of cells to look for in extraterrestrial life. Experiments in zero gravity conditions are described with emphasis upon effects on small organisms. The effects of ionizing radiation on cells are studied so that it will be possible to predict dosages which can be tolerated by humans with no permanent damage.

  15. Cellular response to micropatterned growth promoting and inhibitory substrates

    PubMed Central

    2013-01-01

    Background Normal development and the response to injury both require cell growth, migration and morphological remodeling, guided by a complex local landscape of permissive and inhibitory cues. A standard approach for studying by such cues is to culture cells on uniform substrates containing known concentrations of these molecules, however this method fails to represent the molecular complexity of the natural growth environment. Results To mimic the local complexity of environmental conditions in vitro, we used a contact micropatterning technique to examine cell growth and differentiation on patterned substrates printed with the commonly studied growth permissive and inhibitory substrates, poly-L-lysine (PLL) and myelin, respectively. We show that micropatterning of PLL can be used to direct adherence and axonal outgrowth of hippocampal and cortical neurons as well as other cells with diverse morphologies like Oli-neu oligodendrocyte progenitor cell lines and fibroblast-like COS7 cells in culture. Surprisingly, COS7 cells exhibited a preference for low concentration (1 pg/mL) PLL zones over adjacent zones printed with high concentrations (1 mg/mL). We demonstrate that micropatterning is also useful for studying factors that inhibit growth as it can direct cells to grow along straight lines that are easy to quantify. Furthermore, we provide the first demonstration of microcontact printing of myelin-associated proteins and show that they impair process outgrowth from Oli-neu oligodendrocyte precursor cells. Conclusion We conclude that microcontact printing is an efficient and reproducible method for patterning proteins and brain-derived myelin on glass surfaces in order to study the effects of the microenvironment on cell growth and morphogenesis. PMID:24119185

  16. Polyamines regulate cell growth and cellular methylglyoxal in high-glucose medium independently of intracellular glutathione.

    PubMed

    Kwak, Min-Kyu; Lee, Mun-Hyoung; Park, Seong-Jun; Shin, Sang-Min; Liu, Rui; Kang, Sa-Ouk

    2016-03-01

    Polyamines can presumably inhibit protein glycation, when associated with the methylglyoxal inevitably produced during glycolysis. Herein, we hypothesized a nonenzymatic interaction between putrescine and methylglyoxal in putrescine-deficient or -overexpressing Dictyostelium cells in high-glucose medium, which can control methylglyoxal production. Putrescine was essentially required for growth rescue accompanying methylglyoxal detoxification when cells underwent growth defect and cell cycle G1-arrest when supplemented with high glucose. Furthermore, methylglyoxal regulation by putrescine seemed to be a parallel pathway independent of the changes in cellular glutathione content in high-glucose medium. Consequently, we suggest that Dictyostelium cells need polyamines for normal growth and cellular methylglyoxal regulation. PMID:26898161

  17. Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division

    PubMed Central

    Hanczyc, Martin M.; Fujikawa, Shelly M.; Szostak, Jack W.

    2015-01-01

    The clay montmorillonite is known to catalyze the polymerization of RNA from activated ribonucleotides. Here we report that montmorillonite accelerates the spontaneous conversion of fatty acid micelles into vesicles. Clay particles often become encapsulated in these vesicles, thus providing a pathway for the prebiotic encapsulation of catalytically active surfaces within membrane vesicles. In addition, RNA adsorbed to clay can be encapsulated within vesicles. Once formed, such vesicles can grow by incorporating fatty acid supplied as micelles and can divide without dilution of their contents by extrusion through small pores. These processes mediate vesicle replication through cycles of growth and division. The formation, growth, and division of the earliest cells may have occurred in response to similar interactions with mineral particles and inputs of material and energy. PMID:14576428

  18. Perfect cellular eutectic growth in directionally solidified NiAl-Cr(Mo) hypereutectic alloy

    NASA Astrophysics Data System (ADS)

    Shang, Zhao; Shen, Jun; Zhang, Jianfei; Wang, Lei; Fu, Hengzhi

    2012-09-01

    Cellular eutectic microstructures with fully lamellar morphology were observed in the directionally solidified Ni-31Al-32Cr-6Mo (at%) hypereutectic alloy at withdrawal rates of 15, 25 and 50 μm/s, but the morphologies of cellular microstructures did not change consecutively with increasing withdrawal rate. The growth interfaces were deep cellular at withdrawal rates of 15 and 50 μm/s, but it changed to be shallow cellular at rate of 25 μm/s. The reason is that the interface undercooling comes to minimum at the middle rate of 25 μm/s. If the interface undercooling decreases, the tendency of constitutional undercooling will be weaken. The small constitutional undercooling will increase the interface stability, so that the interface morphology changes from deep cellular to shallow cellular. The shallow cellular growth interface led to a perfect cellular eutectic microstructure, which was analogous to the planar eutectic microstructure. In this case, the widths of the intercellular regions were narrowest, no coarse or irregular plates existed at the cell boundaries, and the thicknesses of the lamellae were almost uniform. The properties of the alloy may be markedly improved.

  19. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance.

    PubMed

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses. PMID:27338359

  20. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance

    PubMed Central

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses. PMID:27338359

  1. Using cellzilla for plant growth simulations at the cellular level

    PubMed Central

    Shapiro, Bruce E.; Meyerowitz, Elliot M.; Mjolsness, Eric

    2013-01-01

    Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing Cellerator arrows. Cellerator describes biochemical interactions with a simplified arrow-based notation; all interactions are input as reactions and are automatically translated to the appropriate differential equations using a computer algebra system. Cells are represented by a polygonal mesh of well-mixed compartments. Cell constituents can interact intercellularly via Cellerator reactions utilizing diffusion, transport, and action at a distance, as well as amongst themselves within a cell. The mesh data structure consists of vertices, edges (vertex pairs), and cells (and optional intercellular wall compartments) as ordered collections of edges. Simulations may be either static, in which cell constituents change with time but cell size and shape remain fixed; or dynamic, where cells can also grow. Growth is controlled by Hookean springs associated with each mesh edge and an outward pointing pressure force. Spring rest length grows at a rate proportional to the extension beyond equilibrium. Cell division occurs when a specified constituent (or cell mass) passes a (random, normally distributed) threshold. The orientation of new cell walls is determined either by Errera's rule, or by a potential model that weighs contributions due to equalizing daughter areas, minimizing wall length, alignment perpendicular to cell extension, and alignment perpendicular to actual growth direction. PMID:24137172

  2. Induction of cellular deoxyribonucleic acid synthesis in butyrate-treated cells by simian virus 40 deoxyribonucleic acid

    SciTech Connect

    Kawasaki, S.; Diamond, L.; Baserga, R.

    1981-11-01

    Sodium butyrate (3mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G/sub 1/ and S-phase 3T3 cells. Butyrate inhibited the induction of deoxyribonucleic acid synthesis that usually occurs in G/sub 1/ nuclei when G/sub 1/ cells are fused with S-phase cells. However, when G/sub 1/ 3T3 cells were fused with exponentially growing NGI cells, the 3T3 nuclei were induced to enter deoxyribonucleic acid synthesis. In tsAF8 cells, a ribonucleic acid polymerase II mutant that stops in the G/sub 1/ phase of the cell cycle, no temporal sequence was demonstrated between the butyrate block and the temperature-sensitive block. These results confirm previous reports that certain virally coded proteins can induce cell deoxyribonucleic acid synthesis in the absence of cellular functions that are required by serum-stimulated cells. The author's interpretation of these data is that butyrate inhibited cell growth by inhibiting the expression of genes required for the G/sub o/ ..-->.. G/sub 1/ ..-->.. S transition and that the product of the simian virus 40 A gene overrode this inhibition by providing all of the necessary functions for the entry into the S phase.

  3. Structural and cellular changes during bone growth in healthy children.

    PubMed

    Parfitt, A M; Travers, R; Rauch, F; Glorieux, F H

    2000-10-01

    Normal postnatal bone growth is essential for the health of adults as well as children but has never been studied histologically in human subjects. Accordingly, we analyzed iliac bone histomorphometric data from 58 healthy white subjects, aged 1.5-23 years, 33 females and 25 males, of whom 48 had undergone double tetracycline labeling. The results were compared with similar data from 109 healthy white women, aged 20-76 years, including both young adult reference ranges and regressions on age. There was a significant increase with age in core width, with corresponding increases in both cortical width and cancellous width. In cancellous bone there were increases in bone volume and trabecular thickness, but not trabecular number, wall thickness, interstitial thickness, and inferred erosion depth. Mineral apposition rates declined on the periosteal envelope and on all subdivisions of the endosteal envelope. Because of the concomitant increase in wall thickness, active osteoblast lifespan increased substantially. Bone formation rate was almost eight times higher on the outer than on the inner periosteum, and more than four times higher on the inner than on the outer endocortical surface. On the cancellous surface, bone formation rate and activation frequency declined in accordance with a fifth order polynomial that matched previously published biochemical indices of bone turnover. The analysis suggested the following conclusions: (1) Between 2 and 20 years the ilium grows in width by periosteal apposition (3.8 mm) and endocortical resorption (3.2 mm) on the outer cortex, and net periosteal resorption (0.4 mm) and net endocortical formation (1.0 mm) on the inner cortex. (2) Cortical width increases from 0.52 mm at age 2 years to 1.14 mm by age 20 years. To attain adult values there must be further endocortical apposition of 0.25 mm by age 30 years, at a time when cancellous bone mass is declining. (3) Lateral modeling drift of the outer cortex enlarges the marrow cavity

  4. Cellular and molecular drivers of differential organ growth: insights from the limbs of Monodelphis domestica.

    PubMed

    Dowling, Anna; Doroba, Carolyn; Maier, Jennifer A; Cohen, Lorna; VandeBerg, John; Sears, Karen E

    2016-06-01

    A fundamental question in biology is "how is growth differentially regulated during development to produce organs of particular sizes?" We used a new model system for the study of differential organ growth, the limbs of the opossum (Monodelphis domestica), to investigate the cellular and molecular basis of differential organ growth in mammals. Opossum forelimbs grow much faster than hindlimbs, making opossum limbs an exceptional system with which to study differential growth. We first used the great differences in opossum forelimb and hindlimb growth to identify cellular processes and molecular signals that underlie differential limb growth. We then used organ culture and pharmacological addition of FGF ligands and inhibitors to test the role of the Fgf/Mitogen-activated protein kinases (MAPK) signaling pathway in driving these cellular processes. We found that molecular signals from within the limb drive differences in cell proliferation that contribute to the differential growth of the forelimb and hindlimbs of opossums. We also found that alterations in the Fgf/MAPK pathway can generate differences in cell proliferation that mirror those observed between wild-type forelimb and hindlimbs of opossums and that manipulation of Fgf/MAPK signaling affects downstream focal adhesion-extracellular matrix (FA-ECM) and Wnt signaling in opossum limbs. Taken together, these findings suggest that evolutionary changes in the Fgf/MAPK pathway could help drive the observed differences in cell behaviors and growth in opossum forelimb and hindlimbs. PMID:27194412

  5. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies

    PubMed Central

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc

    2016-01-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858

  6. Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane

    PubMed Central

    Vitriol, Eric A; Zheng, James Q

    2012-01-01

    Growth cones, found at the tip of axonal projections, are the sensory and motile organelles of developing neurons that enable axon pathfinding and target recognition for precise wiring of neural circuitry. To date, many families of conserved guidance molecules and their corresponding receptors have been identified that work in space and time to ensure billions of axons to their targets. Research in the past two decades has also gained significant insight into the mechanisms by which growth cones translate extracellular signals into directional migration. This review aims to examine new progress towards understanding the cellular mechanisms underlying directional motility of the growth cone and to discuss questions that remain to be addressed. Specifically we will focus on the cellular ensemble of cytoskeleton, adhesion, and membrane and examine how the intricate interplay between these processes orchestrates the directed movement of growth cones. PMID:22445336

  7. Growth Hormone Effects in Immune Stress: AKT/eNOS Signaling Module in the Cellular Response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activation of the constitutive endothelial nitric-oxide synthase (eNOS) and expression of inducible NOS (iNOS) with subsequent nitric oxide production are among the early cellular responses that follow in a systemic exposure of animals to lipopolysaccharide (LPS). Growth hormone (GH) has been sh...

  8. Highly enantioselective synthesis and cellular evaluation of spirooxindoles inspired by natural products

    NASA Astrophysics Data System (ADS)

    Antonchick, Andrey P.; Gerding-Reimers, Claas; Catarinella, Mario; Schürmann, Markus; Preut, Hans; Ziegler, Slava; Rauh, Daniel; Waldmann, Herbert

    2010-09-01

    In biology-oriented synthesis the underlying scaffold classes of natural products selected in evolution are used to define biologically relevant starting points in chemical structure space for the synthesis of compound collections with focused structural diversity. Here we describe a highly enantioselective synthesis of natural-product-inspired 3,3'-pyrrolidinyl spirooxindoles-which contain an all-carbon quaternary centre and three tertiary stereocentres. This synthesis takes place by means of an asymmetric Lewis acid-catalysed 1,3-dipolar cycloaddition of an azomethine ylide to a substituted 3-methylene-2-oxindole using 1-3 mol% of a chiral catalyst formed from a N,P-ferrocenyl ligand and CuPF6(CH3CN)4. Cellular evaluation has identified a molecule that arrests mitosis, induces multiple microtubule organizing centres and multipolar spindles, causes chromosome congression defects during mitosis and inhibits tubulin regrowth in cells. Our findings support the concept that compound collections based on natural-product-inspired scaffolds constructed with complex stereochemistry will be a rich source of compounds with diverse bioactivity.

  9. De novo fatty acid synthesis at the mitotic exit is required to complete cellular division

    PubMed Central

    Scaglia, Natalia; Tyekucheva, Svitlana; Zadra, Giorgia; Photopoulos, Cornelia; Loda, Massimo

    2014-01-01

    Although the regulation of the cell cycle has been extensively studied, much less is known about its coordination with the cellular metabolism. Using mass spectrometry we found that lysophospholipid levels decreased drastically from G2/M to G1 phase, while de novo phosphatidylcholine synthesis, the main phospholipid in mammalian cells, increased, suggesting that enhanced membrane production was concomitant to a decrease in its turnover. In addition, fatty acid synthesis and incorporation into membranes was increased upon cell division. The rate-limiting reaction for de novo fatty acid synthesis is catalyzed by acetyl-CoA carboxylase. As expected, its inhibiting phosphorylation decreased prior to cytokinesis initiation. Importantly, the inhibition of fatty acid synthesis arrested the cells at G2/M despite the presence of abundant fatty acids in the media. Our results suggest that de novo lipogenesis is essential for cell cycle completion. This “lipogenic checkpoint” at G2/M may be therapeutically exploited for hyperproliferative diseases such as cancer. PMID:24418822

  10. Stimulation of MC38 tumor growth by insulin analog X10 involves the serine synthesis pathway.

    PubMed

    Hvid, Henning; Fendt, Sarah-Maria; Blouin, Marie-José; Birman, Elena; Voisin, Gregory; Svendsen, Angela Manegold; Frank, Russell; Vander Heiden, Matthew G; Stephanopoulos, Gregory; Hansen, Bo Falck; Pollak, Michael

    2012-08-01

    Recent evidence suggests that type II diabetes is associated with increased risk and/or aggressive behavior of several cancers, including those arising from the colon. Concerns have been raised that endogenous hyperinsulinemia and/or exogenous insulin and insulin analogs might stimulate proliferation of neoplastic cells. However, the mechanisms underlying possible growth-promoting effects of insulin and insulin analogs in cancer cells in vivo, such as changes in gene expression, are incompletely described. We observed that administration of the insulin analog X10 significantly increased tumor growth and proliferation in a murine colon cancer model (MC38 cell allografts). Insulin and X10 altered gene expression in MC38 tumors in a similar fashion, but X10 was more potent in terms of the number of genes influenced and the magnitude of changes in gene expression. Many of the affected genes were annotated to metabolism, nutrient uptake, and protein synthesis. Strikingly, expression of genes encoding enzymes in the serine synthesis pathway, recently shown to be critical for neoplastic proliferation, was increased following treatment with insulin and X10. Using stable isotopic tracers and mass spectrometry, we confirmed that insulin and X10 increased glucose contribution to serine synthesis in MC38 cells. The data demonstrate that the tumor growth-promoting effects of insulin and X10 are associated with changes in expression of genes involved in cellular energy metabolism and reveal previously unrecognized effects of insulin and X10 on serine synthesis. PMID:22685267

  11. Cellular localization and expression of insulin-like growth factors (IGFs) and IGF binding proteins within the epiphyseal growth plate of the ovine fetus: possible functional implications.

    PubMed

    de los Rios, P; Hill, D J

    1999-04-01

    The insulin-like growth factors (IGFs) are important in the regulation of normal fetal musculoskeletal growth and development, and their actions have been shown to be modulated by IGF binding proteins (IGFBPs). Because the anatomical distribution of IGFBPs is likely to dictate IGF bioavailability, we determined the cellular distribution and expression of IGF-I, IGF-II, and IGFBP-1 to IGFBP-6 in epiphyseal growth plates of the fetal sheep, using immunocytochemistry and in situ hybridization. Little mRNA for IGF-I was detectable within the growth plates, but mRNA for IGF-II was abundant in germinal and proliferative chondrocytes, although absent from some differentiating chondrocytes and hypertrophic cells. Immunohistochemistry for IGF-I and IGF-II showed a presence of both peptides in all chondrocyte zones, including hypertrophic cells. Immunoreactive IGFBP-2 to -5 were localized within the germinal and proliferative zones of chondrocytes, but little immunoreactivity was present within the columns of differentiating cells. IGFBP immunoreactivity again appeared in hypertrophic chondrocytes. IGFBP mRNA in chondrocytes of the epiphyseal growth plate was below the detectable limit of in situ hybridization. However, low levels of mRNAs for IGFBP-2 to -6 were detected by the reverse transcriptase polymerase chain reaction. A co-localization of IGFBPs with IGF peptides in intact cartilage suggests that they may regulate IGF bioavailability and action locally. To test this hypothesis, monolayer cultures of chondrocytes were established from the proliferative zone of the growth plate, and were found to release immunoreactive IGF-II and to express mRNAs encoding IGFBP-2 to -6. Exogenous IGFBP-3, -4, and -5 had an inhibitory action on IGF-II-dependent DNA synthesis. IGFBP-2 had a biphasic effect, potentiating IGF-II action at low concentrations but inhibiting DNA synthesis at equimolar or greater concentrations relative to IGF-II. Long R3 IGF-I, which has a reduced binding

  12. Transparent metal model study of the use of a cellular growth front to form aligned monotectic composite materials

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1988-01-01

    The purpose of this work was to resolve a scientific controversy in the understanding of how second phase particles become aligned during unidirectional growth of a monotectic alloy. A second aspect was to make the first systematic observations of the solidification behavior of a monotectic alloy during cellular growth in-situ. This research provides the first systematic transparent model study of cellular solidification. An interface stability diagram was developed for the planar to cellular transition of the succinonitrile glycerol (SNG) system. A method was developed utilizing Fourier Transform Infrared Spectroscopy which allows quantitative compositional analysis of directionally solidified SNG along the growth axis. To determine the influence of cellular growth front on alignment for directionally solidified monotectic alloys, the planar and cellular growth morphology was observed in-situ for SNG between 8 and 17 percent glycerol and for a range of over two orders of magnitude G/R.

  13. Effects of nicotine on cellular proliferation, macromolecular synthesis and cell cycle phase distribution in human and murine cells

    SciTech Connect

    Konno, S.; Chiao, J.; Rossi, J.; Wang, C.H.; Wu, J.M.

    1986-05-01

    Addition of nicotine causes a dose- and time-dependent inhibition of cell growth in established human and murine cells. In the human promyelocytic HL-60 leukemic cells, 3 mM nicotine results in a 50% inhibition of cellular proliferation after 80 h. Nicotine was also found to affect the cell cycle distribution of HL-60 cells. Treatment with 4 mM nicotine for 20 h causes an increase in proportion of Gl-phase cells (from 49% to 57%) and a significant decrease in the proportion of S-phase cells (from 41% to 32%). These results suggest that nicotine causes cell arrest in the Gl-phase which may in part account for its effects on cell growth. To determine whether nicotine has a primary effect on the uptake/transport of macromolecular precursors into cells, HL-60 cells were treated with 2-6 mM nicotine for 30 h/sub 3/ at the end of which time cells were labeled with (/sup 3/H)thymidine, (/sup 3/H)uridine, (/sup 14/C)lysine and (/sup 35/S)methionine, the trichloroacetic acid (TCA) soluble and insoluble radioactivities from each of the labeling conditions were determined. These studies show that nicotine primarily affect the synthesis of proteins.

  14. Assimilatory sulfur metabolism in marine microorganisms: sulfur metabolism, protein synthesis, and growth of Alteromonas luteo - violaceus and Pseudomonas halodurans during perturbed batch growth

    SciTech Connect

    Cuhel, R.L.; Taylor, C.D.; Jannasch, H.W.

    1982-01-01

    The antibiotic protein synthesis inhibitor chloramphenicol specifically blocked the incorporation of (35 S) sulfate into the residue protein of two marine bacteria, Pseudomonas halodurans and Alteromonas luteo-violaceus. Simultaneous inhibition of total protein synthesis occurred, but incorporation of 35 S into low-molecular-weight organic compounds continued. A. luteo-violaceus rapidly autolyzed, with similar reduction in cell counts, total culture protein and cellular sulfur, whereas P. halodurans remained viable. Treatment with chloramphenicol, growth during nitrogen and carbon limitation, and the carbon and energy sources used for growth did not alter the sulfur content of P. halodurans protein. The mean value (1.09%, by weight), representing a wide variety of environmentally relevant growth conditions, was in agreement with model protein composition. The variability of cellular composition of P. halodurnas and A. luteo-violaceus is discussed with respect to the measurement of bacterial growth in natural environments. Total carbon and nitrogen per cell varied greatly (coefficient of variation, ca. 100%) depending on growth conditions. Variation in total sulfur and protein per cell was much less (coefficient of variation, less than 50%), but the least variation was found for sulfate incorporation into residue protein (coefficient of variation, ca. 15%). Thus, sulfate incorporation into residue protein can be used as an accurate measurement of de novo protein synthesis in these bacteria. (Refs. 26).

  15. Cellular Neural Network Models of Growth and Immune of Effector Cells Response to Cancer

    NASA Astrophysics Data System (ADS)

    Su, Yongmei; Min, Lequan

    Four reaction-diffusion cellular neural network (R-D CNN) models are set up based on the differential equation models for the growths of effector cells and cancer cells, and the model of the immune response to cancer proposed by Allison et al. The CNN models have different reaction-diffusion coefficients and coupling parameters. The R-D CNN models may provide possible quantitative interpretations, and are good in agreement with the in vitro experiment data reported by Allison et al.

  16. Cellular and dendritic growth in rapidly solidified Al-Fe and Al-Cu alloys

    SciTech Connect

    Lu, Shu Zu; Hunt, J.D. . Dept. of Materials); Gilgien, P.; Kurz, W. )

    1994-05-01

    A recent numerical model of cellular and dendritic growth has been extended into the high velocity region where the distribution coefficient, liquids slope and diffusion coefficients depend on the growth velocity. The primary spacing selection mechanism is modeled so that no a priori assumptions need be made about a spacing selection condition. The results are compared with experimental primary spacing measurements obtained using rapid laser resolidification and good agreement is found. The numerical results for undercooling and tip radii are compared with those predicted for dendrites using marginal stability arguments, showing the potential and limits of the analytical models. The effect of high velocity on microsegregation is examined and microsegregation profiles are predicted.

  17. Spinophilin expression determines cellular growth, cancer stemness and 5-flourouracil resistance in colorectal cancer

    PubMed Central

    Schwarzenbacher, Daniela; Deutsch, Alexander; Perakis, Samantha; Ling, Hui; Ivan, Cristina; Calin, George Adrian; Rinner, Beate; Gerger, Armin; Pichler, Martin

    2014-01-01

    The putative tumor suppressor gene spinophilin has been involved in cancer progression in several types of cancer. In this study, we explored the prognostic value of spinophilin expression in 162 colon adenocarcinoma patients. In addition, we generated stably expressing spinophilin-directed shRNA CRC cell lines and studied the influence of spinophilin expression on cellular phenotypes and molecular interactions. We independently confirmed that low spinophilin expression levels are associated with poor prognosis in CRC patients (p = 0.038). A reduction of spinophilin levels in p53 wild-type HCT116 and p53-mutated Caco-2 cells led to increased cellular growth rates and anchorage-independent growth (p<0.05). At molecular level, reduced spinophilin levels increased the expression of the transcription factor E2F-1. In addition, we observed an increased formation of tumor spheres, increased number of CD133 positive cells and an increased resistance to 5-flourouracil (p<0.05). Finally, treatment with the de-methylating agent 5-aza-dC increased spinophilin expression in CRC cells (p<0.05), corroborated by a correlation of spinophilin expression and extent of methylated CpG sites in the gene promoter region (p<0.001). In conclusion, gain of aggressive biological properties of CRC cells including cellular growth, cancer stem cell features and 5-flourouracil resistance partly explains the role of spinophilin in CRC. PMID:25261368

  18. Inhibition of host protein synthesis and degradation of cellular mRNAs during infection by influenza and herpes simplex virus

    SciTech Connect

    Inglis, S.C.

    1982-12-01

    Cloned DNA copies of two cellular genes were used to monitor, by blot hybridization, the stability of particular cell mRNAs after infection by influenza virus and herpes virus. The results indicated that the inhibition of host cell protein synthesis that accompanied infection by each virus could be explained by a reduction in the amounts of cellular mRN As in the cytoplasm, and they suggested that this decrease was due to virus-mediated mRNA degradation.

  19. Cross Talk between Nucleotide Synthesis Pathways with Cellular Immunity in Constraining Hepatitis E Virus Replication.

    PubMed

    Wang, Yijin; Wang, Wenshi; Xu, Lei; Zhou, Xinying; Shokrollahi, Ehsan; Felczak, Krzysztof; van der Laan, Luc J W; Pankiewicz, Krzysztof W; Sprengers, Dave; Raat, Nicolaas J H; Metselaar, Herold J; Peppelenbosch, Maikel P; Pan, Qiuwei

    2016-05-01

    Viruses are solely dependent on host cells to propagate; therefore, understanding virus-host interaction is important for antiviral drug development. Since de novo nucleotide biosynthesis is essentially required for both host cell metabolism and viral replication, specific catalytic enzymes of these pathways have been explored as potential antiviral targets. In this study, we investigated the role of different enzymatic cascades of nucleotide biosynthesis in hepatitis E virus (HEV) replication. By profiling various pharmacological inhibitors of nucleotide biosynthesis, we found that targeting the early steps of the purine biosynthesis pathway led to the enhancement of HEV replication, whereas targeting the later step resulted in potent antiviral activity via the depletion of purine nucleotide. Furthermore, the inhibition of the pyrimidine pathway resulted in potent anti-HEV activity. Interestingly, all of these inhibitors with anti-HEV activity concurrently triggered the induction of antiviral interferon-stimulated genes (ISGs). Although ISGs are commonly induced by interferons via the JAK-STAT pathway, their induction by nucleotide synthesis inhibitors is completely independent of this classical mechanism. In conclusion, this study revealed an unconventional novel mechanism of cross talk between nucleotide biosynthesis pathways and cellular antiviral immunity in constraining HEV infection. Targeting particular enzymes in nucleotide biosynthesis represents a viable option for antiviral drug development against HEV. HEV is the most common cause of acute viral hepatitis worldwide and is also associated with chronic hepatitis, especially in immunocompromised patients. Although often an acute and self-limiting infection in the general population, HEV can cause severe morbidity and mortality in certain patients, a problem compounded by the lack of FDA-approved anti-HEV medication available. In this study, we have investigated the role of the nucleotide synthesis pathway

  20. 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3

    SciTech Connect

    Kultti, Anne; Pasonen-Seppaenen, Sanna; Jauhiainen, Marjo; Rilla, Kirsi J.; Kaernae, Riikka; Pyoeriae, Emma; Tammi, Raija H.; Tammi, Markku I.

    2009-07-01

    Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.

  1. Cellular Potts Modeling of Tumor Growth, Tumor Invasion, and Tumor Evolution

    PubMed Central

    Szabó, András; Merks, Roeland M. H.

    2013-01-01

    Despite a growing wealth of available molecular data, the growth of tumors, invasion of tumors into healthy tissue, and response of tumors to therapies are still poorly understood. Although genetic mutations are in general the first step in the development of a cancer, for the mutated cell to persist in a tissue, it must compete against the other, healthy or diseased cells, for example by becoming more motile, adhesive, or multiplying faster. Thus, the cellular phenotype determines the success of a cancer cell in competition with its neighbors, irrespective of the genetic mutations or physiological alterations that gave rise to the altered phenotype. What phenotypes can make a cell “successful” in an environment of healthy and cancerous cells, and how? A widely used tool for getting more insight into that question is cell-based modeling. Cell-based models constitute a class of computational, agent-based models that mimic biophysical and molecular interactions between cells. One of the most widely used cell-based modeling formalisms is the cellular Potts model (CPM), a lattice-based, multi particle cell-based modeling approach. The CPM has become a popular and accessible method for modeling mechanisms of multicellular processes including cell sorting, gastrulation, or angiogenesis. The CPM accounts for biophysical cellular properties, including cell proliferation, cell motility, and cell adhesion, which play a key role in cancer. Multiscale models are constructed by extending the agents with intracellular processes including metabolism, growth, and signaling. Here we review the use of the CPM for modeling tumor growth, tumor invasion, and tumor progression. We argue that the accessibility and flexibility of the CPM, and its accurate, yet coarse-grained and computationally efficient representation of cell and tissue biophysics, make the CPM the method of choice for modeling cellular processes in tumor development. PMID:23596570

  2. Sprouty gain of function disrupts lens cellular processes and growth by restricting RTK signaling.

    PubMed

    Shin, Eun Hae; Zhao, Guannan; Wang, Qian; Lovicu, Frank J

    2015-10-15

    Sprouty proteins function as negative regulators of the receptor tyrosine kinase (RTK)-mediated Ras/Raf/MAPK pathway in many varied physiological and developmental processes, inhibiting growth factor-induced cellular proliferation, migration and differentiation. Like other negative regulators, Sprouty proteins are expressed in various organs during development, including the eye; ubiquitously expressed in the optic vesicle, lens pit, optic cup and lens vesicle. Given the synexpression of different antagonists (e.g, Sprouty, Sef, Spred) in the developing lens, to gain a better understanding of their specific role, in particular, their ability to regulate ocular growth factor signaling in lens cells, we characterized transgenic mice overexpressing Sprouty1 or Sprouty2 in the eye. Overexpression of Sprouty in the lens resulted in reduced lens and eye size during ocular morphogenesis, influenced by changes to the lens epithelium, aberrant fiber cell differentiation and compromised de novo maintenance of the lens capsule. Here we demonstrate an important inhibitory role for Sprouty in the regulation of lens cell proliferation and fiber differentiation in situ, potentially through its ability to modulate FGF- (and even EGF-) mediated MAPK/ERK1/2 signaling in lens cells. Whilst growth factor regulation of lens cell proliferation and fiber differentiation are required for orchestrating lens morphogenesis and growth, in turn, antagonists such as Sprouty are just as important for regulating the intracellular signaling pathways driving lens cellular processes. PMID:26375880

  3. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting.

    PubMed

    Dong, Shuping; Cho, Hyung Joon; Lee, Yong Woo; Roman, Maren

    2014-05-12

    Elongated nanoparticles have recently been shown to have distinct advantages over spherical ones in targeted drug delivery applications. In addition to their oblong geometry, their lack of cytotoxicity and numerous surface hydroxyl groups make cellulose nanocrystals (CNCs) promising drug delivery vectors. Herein we report the synthesis of folic acid-conjugated CNCs for the targeted delivery of chemotherapeutic agents to folate receptor-positive cancer cells. Folate receptor-mediated cellular binding/uptake of the conjugate was demonstrated on human (DBTRG-05MG, H4) and rat (C6) brain tumor cells. Folate receptor expression of the cells was verified by immunofluorescence staining. Cellular binding/uptake of the conjugate by DBTRG-05MG, H4, and C6 cells was 1452, 975, and 46 times higher, respectively, than that of nontargeted CNCs. The uptake mechanism was determined by preincubation of the cells with the uptake inhibitors chlorpromazine or genistein. DBTRG-05MG and C6 cells internalized the conjugate primarily via caveolae-mediated endocytosis, whereas H4 cells internalized the conjugate primarily via clathrin-mediated endocytosis. PMID:24716601

  4. Luminescent pentafluorophenyl-cycloplatinated complexes: synthesis, characterization, photophysics, cytotoxicity and cellular imaging.

    PubMed

    Berenguer, J R; Pichel, J G; Giménez, N; Lalinde, E; Moreno, M T; Piñeiro-Hermida, S

    2015-11-21

    Luminescent mono(pentafluorophenyl) cycloplatinated complexes [Pt(C^N-κC,N)(HC^N-κN)(C6F5)] [HC^N = Hthpy (2-(2-thienyl)pyridine) 2a, Hbt (2-phenylbenzothiazole) 2b, Hpq (2-phenylquinoline) 2c] have been prepared by C–H activation of a HC^N ligand in the corresponding [Pt(HC^N-κN)2(C6F5)2] (1a, 1b, 1c) complexes. Complexes 2 evolve in DMSO solution into solvate complexes and we present here successful routes for the synthesis of [Pt(C^N)(C6F5)(DMSO)] (C^N = thpy 3a, bt 3b). They have been fully characterized (X-ray for 1a, 1c, 2b, 3a and 3b), their electronic absorption and emission properties have been investigated and DFT and TD-DFT calculations for 1a, 1c, 2b and 3a have been carried out. Complexes 3a, 3b and [Pt(ppy)(C6F5)(DMSO)] 4 (Hppy = 2-phenylpyridine) show remarkable stability in a mixed DMSO-cellular medium and their cytotoxicity towards the human lung tumor (A549) and bronchial epithelial non-tumorigenic (NL20) cell lines has been evaluated by MTS assays. Their cellular localization in A549 and NL20 human cells and in mouse embryonic fibroblasts obtained from lungs (LMEFs) has also been investigated by fluorescence microscopy. PMID:26462143

  5. Reconstructing the emergence of cellular life through the synthesis of model protocells.

    PubMed

    Mansy, S S; Szostak, J W

    2009-01-01

    The complexity of modern biological life has long made it difficult to understand how life could emerge spontaneously from the chemistry of the early earth. The key to resolving this mystery lies in the simplicity of the earliest living cells, together with the ability of the appropriate molecular building blocks to spontaneously self-assemble into larger structures. In our view, the two key components of a primitive cell are not only self-assembling, but also self-replicating, structures: the nucleic acid genome and the cell membrane. Here, we summarize recent experimental progress toward the synthesis of efficient self-replicating nucleic acid and membrane vesicle systems and discuss some of the issues that arise during efforts to integrate these two subsystems into a coherent whole. We have shown that spontaneous nucleic-acid-copying chemistry can take place within membrane vesicles, using externally supplied activated nucleotides as substrates. Thus, membranes need not be a barrier to the uptake of environmentally supplied nutrients. We examine some of the remaining obstacles that must be overcome to enable the synthesis of a complete self-replicating protocell, and we discuss the implications of these experiments for our understanding of the emergence of Darwinian evolution and the origin and early evolution of cellular life. PMID:19734203

  6. Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy

    PubMed Central

    Ciucis, Chiara De

    2016-01-01

    Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy. PMID:27418953

  7. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  8. Inhibition of cellular proliferation and modulation of insulin-like growth factor binding proteins by retinoids in a bovine mammary epithelial cell line.

    PubMed

    Woodward, T L; Turner, J D; Hung, H T; Zhao, X

    1996-06-01

    Retinoids are potent inhibitors of growth and tumor progression in many mammary carcinoma cell lines, though regulation of growth in nontumorigenic mammary epithelial cells by retinoids is less clear. Here, we have characterized the inhibition of MAC-T (a nontransformed bovine mammary epithelial cell line) cellular proliferation by retinoids and their role in regulating insulin-like growth factor binding proteins (IGFBPs). Retinoic acid (RA) (100 nM) was a potent inhibitor of MAC-T cell proliferation. Retinol was 10-100 times less effective. Neither retinoid could completely arrest growth at noncytotoxic concentrations. Retinoic acid inhibited cellular proliferation by 1 h (P < .05), but inhibition was fivefold greater by 24 h (P < .01). This second stage of growth inhibition (after 12 h) was dependent upon protein synthesis. However, RA-induced inhibition of cellular proliferation did not persist, with thymidine incorporation increasing toward control levels by 4 days in culture. Retinoic acid was less effective in inhibiting thymidine incorporation when cells were stimulated with insulin, des(1-3) IGF-I, or Long(R3) IGF-I when compared to cells stimulated with native IGF-I or serum. Inhibition of proliferation by RA was associated with increased levels of IGFBP-2 in conditioned media and in plasma membrane preparations. Treatment with insulin or des(1-3) IGF-I resulted in the appearance of IGFBP-3 in conditioned media and on the cell surface. However, RA significantly reduced IGFBP-3 levels in conditioned media and eliminated IGFBP-3 associated with the plasma membrane. Thus, RA is a potent but transient inhibitor of bovine mammary epithelial cell proliferation, and this growth inhibition is correlated with increased IGFBP-2 accumulation and inhibition of IGF-I stimulated IGFBP-3 protein secretion. PMID:8655603

  9. Cellular automata simulation of grain growth in three dimensions based on the lowest-energy principle

    NASA Astrophysics Data System (ADS)

    Ding, H. L.; He, Y. Z.; Liu, L. F.; Ding, W. J.

    2006-08-01

    The microstructure and morphology evolution of grain growth were studied by 3D simulation using the cellular automata (CA) model based on the lowest-energy principle. In the present CA model, the transition of cells during the grain growth has a typical physical meaning due to the application of the lowest-energy principle. The results show that the kinetics of grain growth follows Burke equation with the growth exponent as 2. The average number of grain faces is 13.6 and the highest frequency of grain faces is 10 faces. The grain size distribution follows Weibull function. The relationship between the number of faces of a grain and the average number of faces of its adjacent grains follows the Aboav-Weaire law. There is a correlation between the topologies of the simulated 2D and 3D grain growth. The average number of sides per face for all grains is 5.65 and the average number of sides per face is about equal to 6 when the grain aces is larger than 35.

  10. Multiscale Systems Analysis of Root Growth and Development: Modeling Beyond the Network and Cellular Scales

    PubMed Central

    Band, Leah R.; Fozard, John A.; Godin, Christophe; Jensen, Oliver E.; Pridmore, Tony; Bennett, Malcolm J.; King, John R.

    2012-01-01

    Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties. PMID:23110897

  11. Time Dependence of Tip Morphology during Cellular/Dendritic Arrayed Growth

    NASA Technical Reports Server (NTRS)

    Song, H.; Tewari, S. N.

    1996-01-01

    Succinonitrile-1.9 wt pct acetone has been directionally solidified in 0.7 X 0.7-cm-square cross section pyrex ampoules in order to observe the cell/dendrite tip morphologies, not influenced by the 'wall effects', which are present during growth in the generally used thin (about 200 gm) crucibles. The tips do not maintain a steady-state shape, as is generally assumed. Instead, they fluctuate within a shape envelope. The extent of fluctuation increases with decreasing growth speed, as the micro structure changes from the dendritic to cellular. The influence of natural convection has been examined by comparing these morphologies with those grown, without convection, in the thin ampoules.

  12. A cellular and molecular mosaic establishes growth and differentiation states for cranial sensory neurons.

    PubMed

    Karpinski, Beverly A; A Bryan, Corey; Paronett, Elizabeth M; Baker, Jennifer L; Fernandez, Alejandra; Horvath, Anelia; Maynard, Thomas M; Moody, Sally A; LaMantia, Anthony-S

    2016-07-15

    We compared apparent origins, cellular diversity and regulation of initial axon growth for differentiating cranial sensory neurons. We assessed the molecular and cellular composition of the developing olfactory and otic placodes, and cranial sensory ganglia to evaluate contributions of ectodermal placode versus neural crest at each site. Special sensory neuron populations-the olfactory and otic placodes, as well as those in vestibulo-acoustic ganglion- are entirely populated with cells expressing cranial placode-associated, rather than neural crest-associated markers. The remaining cranial sensory ganglia are a mosaic of cells that express placode-associated as well as neural crest-associated markers. We found two distinct populations of neural crest in the cranial ganglia: the first, as expected, is labeled by Wnt1:Cre mediated recombination. The second is not labeled by Wnt1:Cre recombination, and expresses both Sox10 and FoxD3. These populations-Wnt1:Cre recombined, and Sox10/Foxd3-expressing- are proliferatively distinct from one another. Together, the two neural crest-associated populations are substantially more proliferative than their placode-associated counterparts. Nevertheless, the apparently placode- and neural crest-associated populations are similarly sensitive to altered signaling that compromises cranial morphogenesis and differentiation. Acute disruption of either Fibroblast growth factor (Fgf) or Retinoic acid (RA) signaling alters axon growth and cell death, but does not preferentially target any of the three distinct populations. Apparently, mosaic derivation and diversity of precursors and early differentiating neurons, modulated uniformly by local signals, supports early cranial sensory neuron differentiation and growth. PMID:26988119

  13. Effects of sound exposure on the growth and intracellular macromolecular synthesis of E. coli k-12.

    PubMed

    Gu, Shaobin; Zhang, Yongzhu; Wu, Ying

    2016-01-01

    Microbes, as one of the primary producers of the biosphere, play an important role in ecosystems. Exploring the mechanism of adaptation and resistance of microbial population to various environmental factors has come into focus in the fields of modern microbial ecology and molecular ecology. However, facing the increasingly serious problem of acoustic pollution, very few efforts have been put forth into studying the relation of single cell organisms and sound field exposure. Herein, we studied the biological effects of sound exposure on the growth of E. coli K-12 with different acoustic parameters. The effects of sound exposure on the intracellular macromolecular synthesis and cellular morphology of E. coli K-12 were also analyzed and discussed. Experimental results indicated that E. coli K-12 exposed to sound waves owned a higher biomass and a faster specific growth rate compared to the control group. Also, the average length of E. coli K-12 cells increased more than 27.26%. The maximum biomass and maximum specific growth rate of the stimulation group by 8000 Hz, 80dB sound wave was about 1.7 times and 2.5 times that of the control group, respectively. Moreover, it was observed that E. coli K-12 can respond rapidly to sound stress at both the transcriptional and posttranscriptional levels by promoting the synthesis of intracellular RNA and total protein. Some potential mechanisms may be involved in the responses of bacterial cells to sound stress. PMID:27077011

  14. Effects of sound exposure on the growth and intracellular macromolecular synthesis of E. coli k-12

    PubMed Central

    Zhang, Yongzhu; Wu, Ying

    2016-01-01

    Microbes, as one of the primary producers of the biosphere, play an important role in ecosystems. Exploring the mechanism of adaptation and resistance of microbial population to various environmental factors has come into focus in the fields of modern microbial ecology and molecular ecology. However, facing the increasingly serious problem of acoustic pollution, very few efforts have been put forth into studying the relation of single cell organisms and sound field exposure. Herein, we studied the biological effects of sound exposure on the growth of E. coli K-12 with different acoustic parameters. The effects of sound exposure on the intracellular macromolecular synthesis and cellular morphology of E. coli K-12 were also analyzed and discussed. Experimental results indicated that E. coli K-12 exposed to sound waves owned a higher biomass and a faster specific growth rate compared to the control group. Also, the average length of E. coli K-12 cells increased more than 27.26%. The maximum biomass and maximum specific growth rate of the stimulation group by 8000 Hz, 80dB sound wave was about 1.7 times and 2.5 times that of the control group, respectively. Moreover, it was observed that E. coli K-12 can respond rapidly to sound stress at both the transcriptional and posttranscriptional levels by promoting the synthesis of intracellular RNA and total protein. Some potential mechanisms may be involved in the responses of bacterial cells to sound stress. PMID:27077011

  15. Phase transition in the economically modeled growth of a cellular nervous system

    PubMed Central

    Nicosia, Vincenzo; Vértes, Petra E.; Schafer, William R.; Latora, Vito; Bullmore, Edward T.

    2013-01-01

    Spatially embedded complex networks, such as nervous systems, the Internet, and transportation networks, generally have nontrivial topological patterns of connections combined with nearly minimal wiring costs. However, the growth rules shaping these economical tradeoffs between cost and topology are not well understood. Here, we study the cellular nervous system of the nematode worm Caenorhabditis elegans, together with information on the birth times of neurons and on their spatial locations. We find that the growth of this network undergoes a transition from an accelerated to a constant increase in the number of links (synaptic connections) as a function of the number of nodes (neurons). The time of this phase transition coincides closely with the observed moment of hatching, when development switches metamorphically from oval to larval stages. We use graph analysis and generative modeling to show that the transition between different growth regimes, as well as its coincidence with the moment of hatching, may be explained by a dynamic economical model that incorporates a tradeoff between topology and cost that is continuously negotiated and renegotiated over developmental time. As the body of the animal progressively elongates, the cost of longer-distance connections is increasingly penalized. This growth process regenerates many aspects of the adult nervous system’s organization, including the neuronal membership of anatomically predefined ganglia. We expect that similar economical principles may be found in the development of other biological or manmade spatially embedded complex systems. PMID:23610428

  16. Synthesis of hydroxyeicosatetraenoic acids (HETE's) by adrenal glomerulosa cells and incorporation into cellular lipids

    SciTech Connect

    Campbell, W.B.; Richards, C.F.; Brady, M.T.; Falck, J.R.

    1986-03-05

    The role of lipoxygenase metabolites of arachidonic acid (AA) in the regulation of aldosterone secretion was studied in isolated rat adrenal glomerulosa cells. Cells were incubated with /sup 14/C-AA in the presence of angiotensin (AII). The media was extracted, metabolites isolated by HPLC, and structures of the metabolites determined by UV absorbance and mass spectrometry. The major products were 12- and 15-HETE with lesser amounts of 11- and 5-HETE. When adrenal cells were incubated with 15-, 12- or 5-HPETE or their respective HETE's (0.03-300nM), there was no significant change in basal or AII-stimulated aldosterone release. Cells were incubated with (/sup 3/H)-AA, -5-HETE, -15-HETE, -12-HETE or -LTB. The cellular lipids were extracted and analyzed by TLC. AA was incorporated into phospholipids (22%), cholesterol esters (50%) and triglycerides (21%). Neither the HETE's or LTB/sub 4/ were incorporated into phospholipids. 5-HETE was taken up into di- and mono-glycerides. The rates of incorporation of AA and 5-HETE were similar (+ 1/2 = 10 min). The incorporation of 5-HETE into glycerol esters did not modify the release of aldosterone by the cells. Thus, while adrenal cells synthesize HETE's, these eicosanoids do not appear to alter the synthesis of aldosterone.

  17. Biocompatible transferrin-conjugated sodium hexametaphosphate-stabilized gold nanoparticles: synthesis, characterization, cytotoxicity and cellular uptake

    NASA Astrophysics Data System (ADS)

    Parab, Harshala J.; Huang, Jing-Hong; Lai, Tsung-Ching; Jan, Yi-Hua; Liu, Ru-Shi; Wang, Jui-Ling; Hsiao, Michael; Chen, Chung-Hsuan; Hwu, Yeu-Kuang; Tsai, Din Ping; Chuang, Shih-Yi; Pang, Jong-Hwei S.

    2011-09-01

    The feasibility of using gold nanoparticles (AuNPs) for biomedical applications has led to considerable interest in the development of novel synthetic protocols and surface modification strategies for AuNPs to produce biocompatible molecular probes. This investigation is, to our knowledge, the first to elucidate the synthesis and characterization of sodium hexametaphosphate (HMP)-stabilized gold nanoparticles (Au-HMP) in an aqueous medium. The role of HMP, a food additive, as a polymeric stabilizing and protecting agent for AuNPs is elucidated. The surface modification of Au-HMP nanoparticles was carried out using polyethylene glycol and transferrin to produce molecular probes for possible clinical applications. In vitro cell viability studies performed using as-synthesized Au-HMP nanoparticles and their surface-modified counterparts reveal the biocompatibility of the nanoparticles. The transferrin-conjugated nanoparticles have significantly higher cellular uptake in J5 cells (liver cancer cells) than control cells (oral mucosa fibroblast cells), as determined by inductively coupled plasma mass spectrometry. This study demonstrates the possibility of using an inexpensive and non-toxic food additive, HMP, as a stabilizer in the large-scale generation of biocompatible and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  18. Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations

    PubMed Central

    2013-01-01

    Yarrowia lipolytica is an attractive host for sustainable bioprocesses due to its ability to utilize a variety of carbon substrates and convert them to a range of different product types (including lipids, organic acids and polyols) under specific conditions. Despite an increasing number of applications for this yeast, relatively few studies have focused on uptake and metabolism of carbon sources, and the metabolic basis for carbon flow to the different products. The focus of this work was quantification of the cellular performance of Y. lipolytica during growth on glycerol, glucose or a mixture of the two. Carbon substrate uptake rate, growth rate, oxygen utilisation (requirement and uptake rate) and polyol yields were estimated in batch cultivations at 1 litre scale. When glucose was used as the sole carbon and energy source, the growth rate was 0.24 h-1 and biomass and CO2 were the only products. Growth on glycerol proceeded at approximately 0.30 h-1, and the substrate uptake rate was 0.02 mol L-1 h-1 regardless of the starting glycerol concentration (10, 20 or 45 g L-1). Utilisation of glycerol was accompanied by higher oxygen uptake rates compared to glucose growth, indicating import of glycerol occurred initially via phosphorylation of glycerol into glycerol-3-phosphate. Based on these results it could be speculated that once oxygen limitation was reached, additional production of NADH created imbalance in the cofactor pools and the polyol formation observed could be a result of cofactor recycling to restore the balance in metabolism. PMID:24088397

  19. A cellular automata model for avascular solid tumor growth under the effect of therapy

    NASA Astrophysics Data System (ADS)

    Reis, E. A.; Santos, L. B. L.; Pinho, S. T. R.

    2009-04-01

    Tumor growth has long been a target of investigation within the context of mathematical and computer modeling. The objective of this study is to propose and analyze a two-dimensional stochastic cellular automata model to describe avascular solid tumor growth, taking into account both the competition between cancer cells and normal cells for nutrients and/or space and a time-dependent proliferation of cancer cells. Gompertzian growth, characteristic of some tumors, is described and some of the features of the time-spatial pattern of solid tumors, such as compact morphology with irregular borders, are captured. The parameter space is studied in order to analyze the occurrence of necrosis and the response to therapy. Our findings suggest that transitions exist between necrotic and non-necrotic phases (no-therapy cases), and between the states of cure and non-cure (therapy cases). To analyze cure, the control and order parameters are, respectively, the highest probability of cancer cell proliferation and the probability of the therapeutic effect on cancer cells. With respect to patterns, it is possible to observe the inner necrotic core and the effect of the therapy destroying the tumor from its outer borders inwards.

  20. Growth model of binary alloy nanopowders for thermal plasma synthesis

    SciTech Connect

    Shigeta, Masaya; Watanabe, Takayuki

    2010-08-15

    A new model is developed for numerical analysis of the entire growth process of binary alloy nanopowders in thermal plasma synthesis. The model can express any nanopowder profile in the particle size-composition distribution (PSCD). Moreover, its numerical solution algorithm is arithmetic and straightforward so that the model is easy to use. By virtue of these features, the model effectively simulates the collective and simultaneous combined process of binary homogeneous nucleation, binary heterogeneous cocondensation, and coagulation among nanoparticles. The effect of the freezing point depression due to nanoscale particle diameters is also considered in the model. In this study, the metal-silicon systems are particularly chosen as representative binary systems involving cocondensation processes. In consequence, the numerical calculation with the present model reveals the growth mechanisms of the Mo-Si and Ti-Si nanopowders by exhibiting their PSCD evolutions. The difference of the materials' saturation pressures strongly affects the growth behaviors and mature states of the binary alloy nanopowder.

  1. [In vitro study over statins effects on cellular growth curves and its reversibility with mevalonate].

    PubMed

    Millan Núñez-Cortés, Jesús; Alvarez Rodriguez, Ysmael; Alvarez Novés, Granada; Recarte Garcia-Andrade, Carlos; Alvarez-Sala Walther, Luis

    2014-01-01

    HMG-CoA-Reductase inhibitors, also known as statins, are currently the most powerful cholesterol-lowering drugs available on the market. Clinical trials and experimental evidence suggest that statins have heavy anti-atherosclerotic effects. These are in part consequence of lipid lowering but also result from pleiotropic actions of the drugs. These so-called pleiotropic properties affect various aspects of cell function, inflammation, coagulation, and vasomotor activity. These effects are mediated either indirectly through LDL-c reduction or via a direct effect on cellular functions. Although many of the pleiotropic properties of statins may be a class effect, some may be unique to certain agents and account for differences in their pharmacological activity. So, although statins typically have similar effects on LDL-c levels, differences in chemical structure and pharmacokinetic profile can lead to variations in pleiotropic effects. In this paper we analize the in vitro effects of different statins over different cell lines from cells implicated in atherosclerotic process: endothelial cells, fibroblasts, and vascular muscular cells. In relation with our results we can proof that the effects of different dosis of different statins provides singular effects over growth curves of different cellular lines, a despite of a class-dependent effects. So, pleiotropic effects and its reversibility with mevalonate are different according with the molecule and the dosis. PMID:24126321

  2. Transforming growth factor-beta 1 in experimental autoimmune neuritis. Cellular localization and time course.

    PubMed Central

    Kiefer, R.; Funa, K.; Schweitzer, T.; Jung, S.; Bourde, O.; Toyka, K. V.; Hartung, H. P.

    1996-01-01

    Experimental autoimmune neuritis (EAN) is a monophasic inflammatory disorder of the peripheral nervous system that resolves spontaneously by molecular mechanisms as yet unknown. We have investigated whether the immunosuppressive cytokine transforming growth factor-beta 1 (TGF-beta 1) might be endogenously expressed in the peripheral nervous system of Lewis rats with actively induced and adoptive transfer EAN. TGF-beta 1 mRNA was upregulated to high levels in sensory and motor roots, spinal ganglia, and sciatic nerve as revealed by quantitative Northern blot analysis and in situ hybridization histochemistry, with peak levels just preceding the first signs of clinical recovery. TGF-beta 1 mRNA was localized to scattered round cells and dense cellular infiltrates, but only rarely to Schwann cell profiles. Double labeling studies revealed macrophages and subpopulations of T cells as the major cellular source of TGF-beta 1 mRNA. TGF-beta 1 protein was visualized immunocytochemically and localized to infiltrating mononuclear cells with peak expression around the same time as mRNA, in addition to some constitutive expression in axons and Schwann cells. Our studies suggest that the spontaneous recovery observed in Lewis rat EAN might be mediated by the endogenous elaboration of TGF-beta 1 within the peripheral nerve, and that macrophages might control their own cytotoxicity by expressing TGF-beta 1. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8546208

  3. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  4. Graphene Enhances Cellular Proliferation through Activating the Epidermal Growth Factor Receptor.

    PubMed

    Liu, Wei; Sun, Cheng; Liao, Chunyang; Cui, Lin; Li, Haishan; Qu, Guangbo; Yu, Wenlian; Song, Naining; Cui, Yuan; Wang, Zheng; Xie, Wenping; Chen, Huiming; Zhou, Qunfang

    2016-07-27

    Graphene has promising applications in food packaging, water purification, and detective sensors for contamination monitoring. However, the biological effects of graphene are not fully understood. It is necessary to clarify the potential risks of graphene exposure to humans through diverse routes, such as foods. In the present study, graphene, as the model nanomaterial, was used to test its potential effects on the cell proliferation based on multiple representative cell lines, including HepG2, A549, MCF-7, and HeLa cells. Graphene was characterized by Raman spectroscopy, particle size analysis, atomic force microscopy, and transmission electron microscopy. The cellular responses to graphene exposure were evaluated using flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and alamarBlue assays. Rat cerebral astrocyte cultures, as the non-cancer cells, were used to assess the potential cytotoxicity of graphene as well. The results showed that graphene stimulation enhanced cell proliferation in all tested cell cultures and the highest elevation in cell growth was up to 60%. A western blot assay showed that the expression of epidermal growth factor (EGF) was upregulated upon graphene treatment. The phosphorylation of EGF receptor (EGFR) and the downstream proteins, ShC and extracellular regulating kinase (ERK), were remarkably induced, indicating that the activation of the mitogen-activated protein kinase (MAPK)/ERK signaling pathway was triggered. The activation of PI3 kinase p85 and AKT showed that the PI3K/AKT signaling pathway was also involved in graphene-induced cell proliferation, causing the increase of cell ratios in the G2/M phase. No influences on cell apoptosis were observed in graphene-treated cells when compared to the negative controls, proving the low cytotoxicity of this emerging nanomaterial. The findings in this study revealed the potential cellular biological effect of graphene, which may give useful hints on its biosafety

  5. Growth hormone in vascular pathology: neovascularization and expression of receptors is associated with cellular proliferation.

    PubMed

    Lincoln, D T; Singal, P K; Al-Banaw, A

    2007-01-01

    Vascular tumours are common lesions of the skin and subcutaneous tissue, but also occur in many other tissues and internal organs. The well-differentiated tumours consist of irregular anastomosing, blood-filled vascular channels that are lined by variably atypical endothelial cells. The less differentiated tumours may show solid strands and sheets, resembling carcinoma or lymphoma. Several growth factors, including basic fibroblast growth factor, transforming growth factors and vascular endothelial growth factor, play a role in tumour angiogenesis. Growth hormone (GH) is mitogenic for a variety of vascular tissue cells, including smooth muscle cells, fibroblasts and endothelial cells and exerts its regulatory functions in controlling metabolism, balanced growth and differentiated cell expression by acting on specific membrane-bound receptors, which trigger a phosphorylation cascade resulting in the modulation of numerous signalling pathways and of gene expression. Essential to the initiation of a cellular response to GH, the presence of receptors for this hormone may predict the adaptation of tumour cells resulting from GH exposure. To address the site/mode of action through which GH exerts its effects, a well characterized monoclonal antibody, obtained by hybridoma technology from Balb/c mice immunized with purified rabbit and rat liver GH-receptor (GHR) and directed against the hormone binding site of the receptor, was applied, using the ABC technique to determine GHR expression in a panel of vascular tumours. The GHR was cloned from a rabbit liver cDNA library with the aid of an oligonucleotide probe based on a 19 residue tryptic peptide sequence derived from 5900 fold purified rabbit liver receptor. A total of 64 benign and malignant vascular tumours were obtained from different human organ sites, including the chest wall, skin, axillary contents, duodenum, female breast, abdomen, stomach, colon, lymph node, bladder, body flank and neck regions. The tumours

  6. A novel calcium-independent cellular PLA2 acts in insect immunity and larval growth.

    PubMed

    Park, Youngjin; Kumar, Sunil; Kanumuri, Rahul; Stanley, David; Kim, Yonggyun

    2015-11-01

    Phospholipase A2 (PLA2) catalyzes the position-specific hydrolysis of fatty acids linked to the sn-2 position of phospholipids (PLs). PLA2s make up a very large superfamily, with more than known 15 groups, classified into secretory PLA2 (sPLA2), Ca(2+)-dependent cellular PLA2 (sPLA2) and Ca(2+)-independent cellular PLA2 (iPLA2). Only a few insect sPLA2s, expressed in venom glands and immune tissues, have been characterized at the molecular level. This study aimed to test our hypothesis that insects express iPLA2, using the beet armyworm, Spodoptera exigua, our model insect. Substantial PLA2 activities under calcium-free condition were recorded in several larval tissue preparations. The PLA2 activity was significantly reduced in reactions conducted in the presence of a specific iPLA2 inhibitor, bromoenol lactone (BEL). Analysis of a S. exigua hemocyte transcriptome identified a candidate iPLA2 gene (SeiPLA2-A). The open reading frame encoded 816 amino acid residues with a predicted molecular weight of 90.5 kDa and 6.15 pI value. Our phylogenetic analysis clustered SeiPLA2-A with the other vertebrate iPLA2s. SeiPLA2-A was expressed in all tissues we examined, including hemocytes, fat body, midgut, salivary glands, Malpighian tubules and epidermis. Heterologous expression in Sf9 cells indicated that SeiPLA2-A was localized in cytoplasm and exhibited significant PLA2 activity, which was independent of Ca(2+) and inhibited by BEL. RNA interference (RNAi) of SeiPLA2-A using its specific dsRNA in the fifth instar larvae significantly suppressed iPLA2 expression and enzyme activity. dsSeiPLA2-A-treated larvae exhibited significant loss of cellular immune response, measured as nodule formation in response to bacterial challenge, and extended larval-to-pupal developmental time. These results support our hypothesis, showing that SeiPLA2-A predicted from the transcriptome analysis catalyzes hydrolysis of fatty acids from cellular PLs and plays crucial physiological roles in

  7. Chemical synthesis of human papillomavirus type 16 E7 oncoprotein: autonomous protein domains for induction of cellular DNA synthesis and for trans activation.

    PubMed

    Rawls, J A; Pusztai, R; Green, M

    1990-12-01

    The human papillomavirus type 16 E7 protein belongs to a family of nuclear oncoproteins that share amino acid sequences and functional homology. To localize biochemical activities associated with E7, we chemically synthesized the full-length 98-amino-acid polypeptide and several deletion mutant peptides. We show that the E7 polypeptide is biologically active and possesses at least two functional domains; the first induces cellular DNA synthesis in quiescent rodent cells, and the second trans activates the adenovirus E1A-inducible early E2 promoter and binds zinc. Further, each domain is autonomous and can function on separate peptides. DNA synthesis induction activity maps within the N-terminal portion of the molecule, which contains sequences related to adenovirus E1A conserved domains 1 and 2 required for cell transformation and binding of the retinoblastoma gene product. trans-Activation and Zn-binding activities map within the C-terminal portion of the molecule, a region which contains Cys-X-X-Cys motifs. trans Activation does not require protein synthesis, implying a mechanism that involves interaction with a preexisting cellular factor(s). E7 trans activates the adenovirus E2 promoter but not other E1A-inducible viral promoters, suggesting the possibility that E7 trans activation involves interaction, directly or indirectly, with cellular transcription factor E2F. PMID:2173783

  8. Mechanism for differential sensitivity of the chromosome and growth cycles of mammalian cells to the rate of protein synthesis.

    PubMed Central

    Wu, R S; Bonner, W M

    1985-01-01

    It has been documented widely that when the generation times of eucaryotic cells are lengthened by slowing the rate of protein synthesis, the duration of the chromosome cycle (S, G2, and M phases) remains relatively invariant. Paradoxically, when the growth of exponentially growing cultures of CHO cells is partially inhibited with inhibitors of protein synthesis, the immediate effect is a proportionate reduction in the rate of total protein, histone protein, and DNA synthesis. However, on further investigation it was found that over the next 2 h the rates of histone protein and DNA synthesis recover, in some cases completely to the uninhibited rate, while the synthesis rates of other proteins do not recover. We called this process chromosome cycle compensation. The amount of compensation seen in CHO cell cultures can account quantitatively for the relative invariance in the length of the chromosome cycle (S, G2, and M phases) reported for these cells. The mechanism for this compensation involves a specific increase in the levels of histone mRNAs. An invariant chromosome cycle coupled with a lengthening growth cycle must result in a disproportionate lengthening of the G1 phase. Thus, these results suggest that chromosome cycle invariance may be due more to specific cellular compensation mechanisms rather than to the more usual interpretation involving a rate-limiting step for cell cycle progression in the G1 phase. Images PMID:3837839

  9. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

    PubMed Central

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A.; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E.

    2016-01-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay. The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. PMID:26717982

  10. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons.

    PubMed

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E

    2016-05-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. PMID:26717982

  11. Evolutionary Growth of Genome Representations on Artificial Cellular Organisms with Indirect Encodings.

    PubMed

    Nichele, Stefano; Giskeødegård, Andreas; Tufte, Gunnar

    2016-01-01

    Evolutionary design targets systems of continuously increasing complexity. Thus, indirect developmental mappings are often a necessity. Varying the amount of genotype information changes the cardinality of the mapping, which in turn affects the developmental process. An open question is how to find the genotype size and representation in which a developmental solution would fit. A restricted pool of genes may not be large enough to encode a solution or may need complex heuristics to find a realistic size. On the other hand, using the whole set of possible regulatory combinations may be intractable. In nature, the genomes of biological organisms are not fixed in size; they slowly evolve and acquire new genes by random gene duplications. Such incremental growth of genome information can be beneficial also in the artificial domain. For an evolutionary and developmental (evo-devo) system based on cellular automata, we investigate an incremental evolutionary growth of genomes without any a priori knowledge on the necessary genotype size. Evolution starts with simple solutions in a low-dimensional space and incrementally increases the genotype complexity by means of gene duplication, allowing the evolution of scalable genomes that are able to adapt genetic information content while compactness and efficiency are retained. The results are consistent when the target phenotypic complexity, the geometry size, and the number of cell states are scaled up. PMID:26606469

  12. Cellular and dendritic growth in a binary melt - A marginal stability approach

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1986-01-01

    A simple model for the constrained growth of an array of cells or dendrites in a binary alloy in the presence of an imposed positive temperature gradient in the liquid is proposed, with the dendritic or cell tip radius calculated using the marginal stability criterion of Langer and Muller-Krumbhaar (1977). This approach, an approach adopting the ad hoc assumption of minimum undercooling at the cell or dendrite tip, and an approach based on the stability criterion of Trivedi (1980) all predict tip radii to within 30 percent of each other, and yield a simple relationship between the tip radius and the growth conditions. Good agreement is found between predictions and data obtained in a succinonitrile-acetone system, and under the present experimental conditions, the dendritic tip stability parameter value is found to be twice that obtained previously, possibly due to a transition in morphology from a cellular structure with just a few side branches, to a more fully developed dendritic structure.

  13. TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions

    PubMed Central

    Brandao, Katherine; Deason-Towne, Francina; Zhao, Xiaoyun; Perraud, Anne-Laure; Schmitz, Carsten

    2014-01-01

    The channel kinases TRPM6 and TRPM7 are both members of the melastatin related transient receptor potential (TRPM) subfamily of ion channels and the only known fusions of an ion channel pore with a kinase domain. TRPM6 and TRPM7 form functional, tetrameric channel complexes at the plasma membrane by heteromerization. TRPM6 was previously shown to cross-phosphorylate TRPM7 on threonine residues, but not vice versa. Genetic studies demonstrated that TRPM6 and TRPM7 fulfill non-redundant functions, and that each channel contributes uniquely to the regulation of Mg2+ homeostasis. Although there are indications that TRPM6 and TRPM7 can influence each other’s cellular distribution and activity, little is known about the functional relationship between these two channel-kinases. In the present study, we examined how TRPM6 kinase activity influences TRPM7 serine phosphorylation, intracellular trafficking, and cell surface expression of TRPM7, as well as Mg2+-dependent cellular growth. We found TRPM7 serine phosphorylation via the TRPM6 kinase, but no TRPM6 serine phosphorylation via the TRPM7 kinase. Intracellular trafficking of TRPM7 was altered in HEK-293 epithelial kidney cells and DT40 B cells in the presence of TRPM6 with intact kinase activity, independently of the availability of extracellular Mg2+, but TRPM6/7 surface labeling experiments indicate comparable levels of the TRPM6/7 channels at the plasma membrane. Furthermore, using a complementation approach in TRPM7-deficient DT40 B-cells, we demonstrated that wildtype TRPM6 inhibited cell growth under hypomagnesic cell culture conditions in cells co-expressing TRPM6 and TRPM7, however co-expression of a TRPM6 kinase dead mutant had no effect – a similar phenotype was also observed in TRPM6/7 co-expressing HEK-293 cells. Our results provide first clues about how heteromer formation between TRPM6 and TRPM7 influences the biological activity of these ion channels. We show that TRPM6 regulates TRPM7 intracellular

  14. Cloning and characterization of a novel RNA involved in cellular growth regulation.

    PubMed Central

    Moats-Staats, B M; Jarvis, H W; D'Ercole, A J; Stiles, A D

    1994-01-01

    During the course of antisense oligodeoxynucleotide (oligo) inhibition experiments investigating the role of insulin-like growth factor I (IGF-I) in the WI-38 cell cycle, we found that a sense-strand oligo (S oligo), used as a control, inhibited DNA synthesis 90 to 95%. S1 nuclease protection assays demonstrated that this S oligo formed intracellular duplexes with WI-38 RNA, and Northern (RNA) hybridization analyses demonstrated specific hybridization of this 32P-labeled S oligo to 1.8-, 2.3-, and 3.2-kb RNAs. We have cloned and sequenced a 2,251-bp cDNA, designated BB1, corresponding to the 2.3-kb RNA. Decoding of the BB1 cDNA sequence reveals several open reading frames arranged in a motif similar to that seen in proteins subject to translational control mechanisms. Homology searches of nucleic acid and protein data bases reveal no significant homology of BB1 with known sequences other than a 234-bp region in the BB1 5' untranslated region that shared 97% homology with a region in the 3' untranslated region of the human cdc42 mRNA. S1 nuclease protection analyses performed with IGF-I gene fragments and computer homology searches demonstrated that the BB1 RNA does not derive from transcription from the opposite strand of the IGF-I gene. Northern hybridization analyses of RNA extracted from serum-starved HeLa S3 cells demonstrated that steady-state BB1 RNA levels increased upon serum growth stimulation, with steady-state levels peaking 4 h after release from the block induced by serum starvation. Antisense oligo inhibition experiments using specific BB1 antisense oligos targeted to the putative open reading frames of the BB1 RNA reduce DNA synthesis of HeLa S3 cells to 15% of control levels, indicating that the BB1 RNA is essential for cell cycle traversal and, as such, encodes a growth-reguLating gene product. Images PMID:7513047

  15. Large-scale parallel lattice Boltzmann-cellular automaton model of two-dimensional dendritic growth

    NASA Astrophysics Data System (ADS)

    Jelinek, Bohumir; Eshraghi, Mohsen; Felicelli, Sergio; Peters, John F.

    2014-03-01

    An extremely scalable lattice Boltzmann (LB)-cellular automaton (CA) model for simulations of two-dimensional (2D) dendritic solidification under forced convection is presented. The model incorporates effects of phase change, solute diffusion, melt convection, and heat transport. The LB model represents the diffusion, convection, and heat transfer phenomena. The dendrite growth is driven by a difference between actual and equilibrium liquid composition at the solid-liquid interface. The CA technique is deployed to track the new interface cells. The computer program was parallelized using the Message Passing Interface (MPI) technique. Parallel scaling of the algorithm was studied and major scalability bottlenecks were identified. Efficiency loss attributable to the high memory bandwidth requirement of the algorithm was observed when using multiple cores per processor. Parallel writing of the output variables of interest was implemented in the binary Hierarchical Data Format 5 (HDF5) to improve the output performance, and to simplify visualization. Calculations were carried out in single precision arithmetic without significant loss in accuracy, resulting in 50% reduction of memory and computational time requirements. The presented solidification model shows a very good scalability up to centimeter size domains, including more than ten million of dendrites. Catalogue identifier: AEQZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEQZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, UK Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 29,767 No. of bytes in distributed program, including test data, etc.: 3131,367 Distribution format: tar.gz Programming language: Fortran 90. Computer: Linux PC and clusters. Operating system: Linux. Has the code been vectorized or parallelized?: Yes. Program is parallelized using MPI

  16. Poly(4-hydroxybutyrate) (P4HB) production in recombinant Escherichia coli: P4HB synthesis is uncoupled with cell growth

    PubMed Central

    2013-01-01

    Background Poly(4-hydroxybutyrate) (P4HB), belonging to the family of bacterial polyhydroxyalkanoates (PHAs), is a strong, flexible and absorbable material which has a large variety of medical applications like tissue engineering and drug delivery. For efficient production of P4HB recombinant Escherichia coli has been employed. It was previously found that the P4HB synthesis is co-related with the cell growth. In this study, we aimed to investigate the physiology of P4HB synthesis, and to reduce the total production cost by using cheap and widely available xylose as the growth substrate and sodium 4-hydroxybutyrate (Na-4HB) as the precursor for P4HB synthesis. Results Six different E. coli strains which are able to utilize xylose as carbon source were compared for their ability to accumulate P4HB. E. coli JM109 was found to be the best strain regarding the specific growth rate and the P4HB content. The effect of growth conditions such as temperature and physiological stage of Na-4HB addition on P4HB synthesis was also studied in E. coli JM109 recombinant in batch culture. Under the tested conditions, a cellular P4HB content in the range of 58 to 70% (w w-1) and P4HB concentrations in the range of 2.76 to 4.33 g L-1 were obtained with a conversion yield (YP4HB/Na-4HB) of 92% w w-1 in single stage batch cultures. Interestingly, three phases were identified during P4HB production: the “growth phase”, in which the cells grew exponentially, the “accumulation phase”, in which the exponential cell growth stopped while P4HB was accumulated exponentially, and the “stagnation phase”, in which the P4HB accumulation stopped and the total biomass remained constant. Conclusions P4HB synthesis was found to be separated from the cell growth, i.e. P4HB synthesis mainly took place after the end of the exponential cell growth. High conversion rate and P4HB contents from xylose and precursor were achieved here by simple batch culture, which was only possible previously

  17. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    PubMed Central

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  18. Application of GA in optimization of pore network models generated by multi-cellular growth algorithms

    NASA Astrophysics Data System (ADS)

    Jamshidi, Saeid; Boozarjomehry, Ramin Bozorgmehry; Pishvaie, Mahmoud Reza

    2009-10-01

    In pore network modeling, the void space of a rock sample is represented at the microscopic scale by a network of pores connected by throats. Construction of a reasonable representation of the geometry and topology of the pore space will lead to a reliable prediction of the properties of porous media. Recently, the theory of multi-cellular growth (or L-systems) has been used as a flexible tool for generation of pore network models which do not require any special information such as 2D SEM or 3D pore space images. In general, the networks generated by this method are irregular pore network models which are inherently closer to the complicated nature of the porous media rather than regular lattice networks. In this approach, the construction process is controlled only by the production rules that govern the development process of the network. In this study, genetic algorithm has been used to obtain the optimum values of the uncertain parameters of these production rules to build an appropriate irregular lattice network capable of the prediction of both static and hydraulic information of the target porous medium.

  19. Cellular kinetics in growth anomalies of the scleractinian corals Porites australiensis and Montipora informis .

    PubMed

    Yasuda, Naoko; Hidaka, Michio

    2012-12-01

    Growth anomalies (GAs) in corals are characterized by morphological abnormalities of the skeleton as well as polyps and coenosarcs. GAs commonly appear as protuberances with fewer polyps and are paler in color due to decreased zooxanthellae density. To test the hypothesis that morphological anomalies in GAs may be caused by unregulated cellular kinetics, the relative abundances of apoptotic cells and proliferating cells were compared between GAs and apparently healthy regions in 2 corals, Porites australiensis and Montipora informis. Apoptotic cells and proliferating cells were detected using TUNEL assays and BrdU incorporation assays, respectively. The labeling indices for apoptotic nuclei and BrdU-labeled nuclei were measured in the epidermis, oral gastrodermis, aboral gastrodermis, and calicodermis. The labeling index for apoptotic nuclei in the oral gastrodermis and the calicodermis was significantly lower in GAs than in healthy regions in both coral species. The index for BrdU-labeled cells in the calicodermis was significantly higher in GAs than in healthy regions in both coral species. When GA regions partially died, the GA tissues directly adjacent to the dead areas exhibited signs of necrosis, although some apoptotic cells were also present. Healthy oral gastrodermis adjacent to the border between the healthy and GA regions exhibited higher frequencies of apoptotic cells. These results suggest that apoptotic pathways were suppressed and cell proliferation was promoted in GA regions, although cells in GAs may die through both necrosis and apoptosis. PMID:23209073

  20. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    PubMed

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  1. Cellular Signaling by Fibroblast Growth Factors (FGFs) and Their Receptors (FGFRs) in Male Reproduction

    PubMed Central

    Cotton, Leanne M.; O’Bryan, Moira K.; Hinton, Barry T.

    2008-01-01

    The major function of the reproductive system is to ensure the survival of the species by passing on hereditary traits from one generation to the next. This is accomplished through the production of gametes and the generation of hormones that function in the maturation and regulation of the reproductive system. It is well established that normal development and function of the male reproductive system is mediated by endocrine and paracrine signaling pathways. Fibroblast growth factors (FGFs), their receptors (FGFRs), and signaling cascades have been implicated in a diverse range of cellular processes including: proliferation, apoptosis, cell survival, chemotaxis, cell adhesion, motility, and differentiation. The maintenance and regulation of correct FGF signaling is evident from human and mouse genetic studies which demonstrate that mutations leading to disruption of FGF signaling cause a variety of developmental disorders including dominant skeletal diseases, infertility, and cancer. Over the course of this review, we will provide evidence for differential expression of FGFs/FGFRs in the testis, male germ cells, the epididymis, the seminal vesicle, and the prostate. We will show that this signaling cascade has an important role in sperm development and maturation. Furthermore, we will demonstrate that FGF/FGFR signaling is essential for normal epididymal function and prostate development. To this end, we will provide evidence for the involvement of the FGF signaling system in the regulation and maintenance of the male reproductive system. PMID:18216218

  2. Enamel matrix proteins exhibit growth factor activity: A review of evidence at the cellular and molecular levels

    PubMed Central

    WYGANOWSKA-ŚWIĄTKOWSKA, MARZENA; URBANIAK, PAULINA; NOHAWICA, MICHAŁ MAREK; KOTWICKA, MAŁGORZATA; JANKUN, JERZY

    2015-01-01

    Enamel matrix derivative (EMD) is a commercially available protein extract, mainly comprising amelogenins. A number of other polypeptides have been identified in EMD, mostly growth factors, which promote cementogenesis and osteogenesis during the regeneration processes through the regulation of cell proliferation, differentiation and activity; however, not all of their functions are clear. Enamel extracts have been proposed to have numerous activities such as bone morphogenetic protein- and transforming growth factor β (TGF-β)-like activity, and activities similar to those of insulin-like growth factor, fibroblast growth factor, platelet-derived growth factor, vascular endothelial growth factor and epidermal growth factor. These activities have been observed at the molecular and cellular levels and in numerous animal models. Furthermore, it has been suggested that EMD contains an unidentified biologically active factor that acts in combination with TGF-β1, and several studies have reported functional similarities between growth factors and TGF-β in cellular processes. The effects of enamel extracts on the cell cycle and biology are summarized and discussed in this review. PMID:26161150

  3. A cellular automaton model of the steady-state free'' growth of a non-isothermal dendrite

    SciTech Connect

    Brown, S.G.R.; Williams, T.; Spittle, J.A. . Dept. of Materials Engineering)

    1994-08-01

    A 2D cellular automaton model has been developed to study the steady-state free'' growth of a non-isothermal dendrite. The model incorporates rules to account for heat diffusion, the influence of curvature on the equilibrium freezing temperature and latent heat evolution. The model predicts a V [proportional to] [Delta]T[sup b] growth rate-undercooling relationship for the various dendrite tip growth temperatures selected. The prediction of the values of b accords reasonably with analytical models and reported experimental observations.

  4. Menaquinone Synthesis is Critical for Maintaining Mycobacterial Viability During Exponential Growth and Recovery from Non-Replicating Persistence

    PubMed Central

    Dhiman, Rakesh K.; Mahapatra, Sebabrata; Slayden, Richard A.; Boyne, Melissa E.; Lenaerts, Anne; Hinshaw, Jerald C.; Angala, Shiva K.; Chatterjee, Delphi; Biswas, Kallolmay; Narayanasamy, Prabagaran; Kurosu, Michio; Crick, Dean C.

    2016-01-01

    Summary Understanding the basis of bacterial persistence in latent infections is critical for eradication of tuberculosis. Analysis of Mycobacterium tuberculosis mRNA expression in an in vitro model of non-replicating persistence indicated that the bacilli require electron transport chain components and ATP synthesis for survival. Additionally, low μM concentrations of aminoalkoxydiphenylmethane derivatives inhibited both the aerobic growth and survival of non-replicating, persistent M. tuberculosis. Metabolic labeling studies and quantitation of cellular menaquinone levels suggested that menaquinone synthesis, and consequently electron transport, is the target of the aminoalkoxydiphenylmethane derivatives. This hypothesis is strongly supported by the observations that treatment with these compounds inhibits oxygen consumption and that supplementation of growth medium with exogenous menaquinone rescued both growth and oxygen consumption of treated bacilli. In vitro assays indicate that the aminoalkoxydiphenylmethane derivatives specifically inhibit MenA, an enzyme involved in the synthesis of menaquinone. Thus, the results provide insight into the physiology of mycobacterial persistence and a basis for the development of novel drugs that enhance eradication of persistent bacilli and latent tuberculosis. PMID:19220750

  5. Assessing uncertainty in a stand growth model by Bayesian synthesis

    SciTech Connect

    Green, E.J.; MacFarlane, D.W.; Valentine, H.T.; Strawderman, W.E.

    1999-11-01

    The Bayesian synthesis method (BSYN) was used to bound the uncertainty in projections calculated with PIPESTEM, a mechanistic model of forest growth. The application furnished posterior distributions of (a) the values of the model's parameters, and (b) the values of three of the model's output variables--basal area per unit land area, average tree height, and tree density--at different points in time. Confidence or credible intervals for the output variables were obtained directly from the posterior distributions. The application also provides estimates of correlation among the parameters and output variables. BSYN, which originally was applied to a population dynamics model for bowhead whales, is generally applicable to deterministic models. Extension to two or more linked models is discussed. A simple worked example is included in an appendix.

  6. Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Zhang, K.; Flanders, K. C.; Phan, S. H.

    1995-01-01

    Bleomycin-induced pulmonary fibrosis is associated with increased lung transforming growth factor-beta (TGF-beta) gene expression, but cellular localization of the source of this expression has not been unequivocally established. In this study, lung fibrosis was induced in rats by endotracheal bleomycin injection on day 0 and, on selected days afterwards, lungs were harvested for in situ hybridization, immunohistochemical and histochemical analyses for TGF-beta 1 mRNA and protein expression, and cell identification. The results show that control lungs express essentially no detectable TGF-beta 1 mRNA or protein in the parenchyma. Before day 3 after bleomycin treatment, scattered bronchiolar epithelial cells, mononuclear cells, and eosinophils expressed elevated levels of TGF-beta 1. Between days 3 and 14, there was a major increase in the number of eosinophils, myofibroblasts, and fibroblasts strongly expressing TGF-beta 1 mRNA and protein. TGF-beta 1-producing cells were predominantly localized within areas of injury and active fibrosis. After day 14, the intensity and number of TGF-beta 1-expressing cells significantly declined and were predominantly found in fibroblasts in fibrotic areas. The expression of TGF-beta 1 protein was generally coincident with that for mRNA with the exception of bronchiolar epithelial cells in which strong protein expression was unaccompanied by a commensurate increase in mRNA. The study demonstrates that myofibroblasts, fibroblasts, and eosinophils represent the major sources of increased lung TGF-beta 1 expression in this model of pulmonary fibrosis. Images Figure 2 Figure 3 Figure 4 PMID:7543734

  7. Internalization and cellular pools of never growth factor in pheochromocytoma (PC12) cells

    SciTech Connect

    Neet, K.E.; Kasaian, M.

    1987-05-01

    Nerve Growth Factor (NGF) binds to a cell surface receptor on responsive neuronal cells to initiate cell maintenance and/or differentiation regimes. The purpose of these studies was to define quantitatively the fate of NGF in PC12 cells with respect to various cellular compartments in a single series of biochemical experiments. Different binding methodologies were evaluated in suspension and on plates. 50 pM SVI-NGF was bound to rat PC12 cells in suspension for 30 min at 37, followed by various methods and combinations of methods to remove subsets of bound ligand. Distinction could be made between NGF bound to fast vs. slow cell surface receptors, NGF bound to slow receptors at the cell surface vs. cell interior, and detergent-soluble vs. cytoskeletally-attached NGF. These treatments defined the relative size of five pools, including the fast receptor (65%), two intracellular compartments (12% and 3%) susceptible to nonionic detergent, and a detergent-stable intracellular pool of ligand (16%). At 37 the cold chase stable and the acid stable pools were about the same size because of rapid internalization, but the slow receptor was measurable at 4. Inhibitors were used to define the route of NGF through the cell from the plasma membrane to degradation. Chloroquine caused accumulation of NGF only in pools that were not associated with the cytoskeleton, implicating this compartment in supplying ligand to the lysosome. Results with cytochalasin B and colchicine and suggested both microfilament and microtubule pathways in NGF degradation. A model for the movement of NGF through the cell was developed based on these observations.

  8. Synthesis and characterization of dual-functionalized core-shell fluorescent microspheres for bioconjugation and cellular delivery.

    PubMed

    Behrendt, Jonathan M; Nagel, David; Chundoo, Evita; Alexander, Lois M; Dupin, Damien; Hine, Anna V; Bradley, Mark; Sutherland, Andrew J

    2013-01-01

    The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins

  9. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    SciTech Connect

    Cameron, Jennifer E. Fewell, Claire Yin, Qinyan McBride, Jane Wang Xia Lin Zhen

    2008-12-20

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lower in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers.

  10. One-step Melt Synthesis of Water Soluble, Photoluminescent, Surface-Oxidized Silicon Nanoparticles for Cellular Imaging Applications

    PubMed Central

    Manhat, Beth A.; Brown, Anna L.; Black, Labe A.; Ross, J.B. Alexander; Fichter, Katye; Vu, Tania; Richman, Erik

    2012-01-01

    We have developed a versatile, one-step melt synthesis of water-soluble, highly emissive silicon nanoparticles using bi-functional, low-melting solids (such as glutaric acid) as reaction media. Characterization through transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy shows that the one-step melt synthesis produces nanoscale Si cores surrounded by a silicon oxide shell. Analysis of the nanoparticle surface using FT-IR, zeta potential, and gel electrophoresis indicates that the bi-functional ligand used in the one-step synthesis is grafted onto the nanoparticle, which allows for tuning of the particle surface charge, solubility, and functionality. Photoluminescence spectra of the as-prepared glutaric acid-synthesized silicon nanoparticles show an intense blue-green emission with a short (ns) lifetime suitable for biological imaging. These nanoparticles are found to be stable in biological media and have been used to examine cellular uptake and distribution in live N2a cells. PMID:23139440

  11. FLI1 expression is correlated with breast cancer cellular growth, migration, and invasion and altered gene expression.

    PubMed

    Scheiber, Melissa N; Watson, Patricia M; Rumboldt, Tihana; Stanley, Connor; Wilson, Robert C; Findlay, Victoria J; Anderson, Paul E; Watson, Dennis K

    2014-10-01

    ETS factors have been shown to be dysregulated in breast cancer. ETS factors control the expression of genes involved in many biological processes, such as cellular proliferation, differentiation, and apoptosis. FLI1 is an ETS protein aberrantly expressed in retrovirus-induced hematological tumors, but limited attention has been directed towards elucidating the role of FLI1 in epithelial-derived cancers. Using data mining, we show that loss of FLI1 expression is associated with shorter survival and more aggressive phenotypes of breast cancer. Gain and loss of function cellular studies indicate the inhibitory effect of FLI1 expression on cellular growth, migration, and invasion. Using Fli1 mutant mice and both a transgenic murine breast cancer model and an orthotopic injection of syngeneic tumor cells indicates that reduced Fli1 contributes to accelerated tumor growth. Global expression analysis and RNA-Seq data from an invasive human breast cancer cell line with over expression of either FLI1 and another ETS gene, PDEF, shows changes in several cellular pathways associated with cancer, such as the cytokine-cytokine receptor interaction and PI3K-Akt signaling pathways. This study demonstrates a novel role for FLI1 in epithelial cells. In addition, these results reveal that FLI1 down-regulation in breast cancer may promote tumor progression. PMID:25379017

  12. FLI1 Expression is Correlated with Breast Cancer Cellular Growth, Migration, and Invasion and Altered Gene Expression

    PubMed Central

    Scheiber, Melissa N.; Watson, Patricia M.; Rumboldt, Tihana; Stanley, Connor; Wilson, Robert C.; Findlay, Victoria J.; Anderson, Paul E.; Watson, Dennis K.

    2014-01-01

    ETS factors have been shown to be dysregulated in breast cancer. ETS factors control the expression of genes involved in many biological processes, such as cellular proliferation, differentiation, and apoptosis. FLI1 is an ETS protein aberrantly expressed in retrovirus-induced hematological tumors, but limited attention has been directed towards elucidating the role of FLI1 in epithelial-derived cancers. Using data mining, we show that loss of FLI1 expression is associated with shorter survival and more aggressive phenotypes of breast cancer. Gain and loss of function cellular studies indicate the inhibitory effect of FLI1 expression on cellular growth, migration, and invasion. Using Fli1 mutant mice and both a transgenic murine breast cancer model and an orthotopic injection of syngeneic tumor cells indicates that reduced Fli1 contributes to accelerated tumor growth. Global expression analysis and RNA-Seq data from an invasive human breast cancer cell line with over expression of either FLI1 and another ETS gene, PDEF, shows changes in several cellular pathways associated with cancer, such as the cytokine-cytokine receptor interaction and PI3K-Akt signaling pathways. This study demonstrates a novel role for FLI1 in epithelial cells. In addition, these results reveal that FLI1 down-regulation in breast cancer may promote tumor progression. PMID:25379017

  13. Growth factor-rich plasma increases tendon cell proliferation and matrix synthesis on a synthetic scaffold: an in vitro study.

    PubMed

    Visser, Lance C; Arnoczky, Steven P; Caballero, Oscar; Kern, Andreas; Ratcliffe, Anthony; Gardner, Keri L

    2010-03-01

    Numerous scaffolds have been proposed for use in connective tissue engineering. Although these scaffolds direct cell migration and attachment, many are biologically inert and thus lack the physiological stimulus to attract cells and induce mitogenesis and matrix synthesis. In the current study, a bioactive scaffold was created by combining a synthetic scaffold with growth factor-rich plasma (GFRP), an autologous concentration of growth factors derived from a platelet-rich plasma preparation. In vitro tendon cell proliferation and matrix synthesis on autologous GFRP-enriched scaffolds, autologous serum-enriched scaffolds, and scaffolds alone were compared. The GFRP preparation was found to have a 4.7-fold greater concentration of a sentinel growth factor (transforming growth factor-beta1) compared with serum. When combined with media containing calcium, the GFRP produced a thin fibrin matrix over and within the GFRP-enriched scaffolds. Cell proliferation assays demonstrated that GFRP-enriched scaffolds significantly enhanced cell proliferation over autologous serum and control groups at both 48 and 72 h. Analysis of the scaffolds at 14, 21, and 28 days revealed that GFRP-enriched scaffolds significantly increased the deposition of a collagen-rich extracellular matrix when compared with the other groups. These results indicate that GFRP can be used to enhance in vitro cellular population and matrix deposition of tissue-engineered scaffolds. PMID:19839921

  14. Fibrillarin, a nucleolar protein, is required for normal nuclear morphology and cellular growth in HeLa cells

    SciTech Connect

    Amin, Mohammed Abdullahel; Matsunaga, Sachihiro; Ma, Nan; Takata, Hideaki; Yokoyama, Masami; Uchiyama, Susumu; Fukui, Kiichi . E-mail: kfukui@bio.eng.osaka-u.ac.jp

    2007-08-24

    Fibrillarin is a key small nucleolar protein in eukaryotes, which has an important role in pre-rRNA processing during ribosomal biogenesis. Though several functions of fibrillarin are known, its function during the cell cycle is still unknown. In this study, we confirmed the dynamic localization of fibrillarin during the cell cycle of HeLa cells and also performed functional studies by using a combination of immunofluorescence microscopy and RNAi technique. We observed that depletion of fibrillarin has almost no effect on the nucleolar structure. However, fibrillarin-depleted cells showed abnormal nuclear morphology. Moreover, fibrillarin depletion resulted in the reduction of the cellular growth and modest accumulation of cells with 4n DNA content. Our data suggest that fibrillarin would play a critical role in the maintenance of nuclear shape and cellular growth.

  15. Synthesis of heterocycles: Indolo (2,1-a) isoquinolines, renewables, and aptamer ligands for cellular imaging

    SciTech Connect

    Beasley, Jonathan

    2013-01-01

    In this thesis, we explore both total syntheses and methodologies of several aromatic heterocyclic molecules. Extensions of the Kraus indole synthesis toward 2-substituted and 2,3-disubstituted indoles, as well as biologically attractive indolo[2,1-a]isoquinolines are described. Recent renewable efforts directed to commodity maleic acid and the first reported furan-based ionic liquids are described. Our total synthesis of mRNA aptamer ligand PDC-Gly, and its dye coupled forms, plus aminoglycoside dye coupled ligands used in molecular imaging, are described.

  16. H2 -Fueled ATP Synthesis on an Electrode: Mimicking Cellular Respiration.

    PubMed

    Gutiérrez-Sanz, Óscar; Natale, Paolo; Márquez, Ileana; Marques, Marta C; Zacarias, Sonia; Pita, Marcos; Pereira, Inês A C; López-Montero, Iván; De Lacey, Antonio L; Vélez, Marisela

    2016-05-17

    ATP, the molecule used by living organisms to supply energy to many different metabolic processes, is synthesized mostly by the ATPase synthase using a proton or sodium gradient generated across a lipid membrane. We present evidence that a modified electrode surface integrating a NiFeSe hydrogenase and a F1 F0 -ATPase in a lipid membrane can couple the electrochemical oxidation of H2 to the synthesis of ATP. This electrode-assisted conversion of H2 gas into ATP could serve to generate this biochemical fuel locally when required in biomedical devices or enzymatic synthesis of valuable products. PMID:26991333

  17. Modeling of time dependent localized flow shear stress and its impact on cellular growth within additive manufactured titanium implants

    PubMed Central

    Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R

    2014-01-01

    Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier–Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. PMID:24664988

  18. Characterization of the cell growth analysis for detection of immortal cellular impurities in human mesenchymal stem cells.

    PubMed

    Kono, Ken; Takada, Nozomi; Yasuda, Satoshi; Sawada, Rumi; Niimi, Shingo; Matsuyama, Akifumi; Sato, Yoji

    2015-03-01

    The analysis of in vitro cell senescence/growth after serial passaging can be one of ways to show the absence of immortalized cells, which are frequently tumorigenic, in human cell-processed therapeutic products (hCTPs). However, the performance of the cell growth analysis for detection of the immortalized cellular impurities has never been evaluated. In the present study, we examined the growth rates of human mesenchymal stem cells (hMSCs, passage 5 (P = 5)) contaminated with various doses of HeLa cells, and compared with that of hMSCs alone. The growth rates of the contaminated hMSCs were comparable to that of hMSCs alone at P = 5, but significantly increased at P = 6 (0.1% and 0.01% HeLa) or P = 7 (0.001% HeLa) within 30 days. These findings suggest that the cell growth analysis is a simple and sensitive method to detect immortalized cellular impurities in hCTPs derived from human somatic cells. PMID:25523786

  19. Insulin-like synergistic stimulation of DNA synthesis in Swiss 3T3 cells by the BSC-1 cell-derived growth inhibitor related to transforming growth factor type beta.

    PubMed Central

    Brown, K D; Holley, R W

    1987-01-01

    A cell growth inhibitor (GI), purified from BSC-1 cell-conditioned medium, has little if any effect on DNA synthesis when added alone to monolayer cultures of quiescent Swiss mouse 3T3 cells in serum-free medium. However, the inhibitor, which is closely related to transforming growth factor type beta (TGF-beta), exhibits a pronounced synergistic stimulation of DNA synthesis in combination with certain peptide (bombesin, vasopressin) or polypeptide (platelet-derived growth factor) mitogens. A similar synergistic response has been demonstrated for TGF-beta purified from human platelets. In the presence of 3 nM bombesin, a half-maximal stimulation of DNA synthesis was obtained at a GI concentration of approximately 60 pg/ml, with a maximal response at approximately 600 pg/ml. The synergistic interactions demonstrated by GI or TGF-beta in stimulating Swiss 3T3 cells closely resemble those previously shown for insulin, and we have observed that GI does not synergize with insulin to stimulate DNA synthesis in these cells. Like insulin, and in contrast to bombesin, vasopressin, and platelet-derived growth factor, GI does not activate cellular inositolphospholipid hydrolysis, calcium mobilization, or cross-regulation of epidermal growth factor receptor affinity. These results raise the possibility that the biochemical pathways activated by GI/TGF-beta and insulin converge at a post-receptor stage. PMID:3295869

  20. Inter-cellular nanovesicle mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth

    PubMed Central

    Kogure, Takayuki; Lin, Wen-Lang; Yan, Irene K.; Braconi, Chiara; Patel, Tushar

    2011-01-01

    Hepatocellular carcinoma (HCC) is characterized by a propensity for multifocality, growth by local spread, and dysregulation of multiple signaling pathways. These features may be determined by the tumoral microenvironment. The potential of tumor cells to modulate HCC growth and behavior by secreted proteins has been extensively studied. In contrast the potential for genetic modulation is poorly understood. We investigated the role and involvement of tumor derived nanovesicles capable of altering gene expression, and characterized their ability to modulate cell signaling and biological effects in other cells. We show that HCC cells can produce nanovesicles, exosomes, that differ in both RNA and protein content from their cells of origin. These can be taken up and internalized by other cells, and can transmit a functional transgene. The microRNA content of these exosomes was examined, and a subset that is highly enriched within exosomes was identified. A combinatorial approach to identify potential targets identified transforming growth factor β activated kinase-1 (TAK1) as the most likely candidate pathway that could be modulated by these miRNA. Loss of TAK1 has been implicated in hepatocarcinogenesis and is a biologically plausible target for inter-cellular modulation. We showed that HCC cell derived exosomes can modulate TAK1 expression and associated signaling and enhance transformed cell growth in recipient cells. Conclusion: Exosome mediated miRNA transfer is an important mechanism of inter-cellular communication in HCC cells. These observations identify a unique inter-cellular mechanism that could potentially contribute to local spread, intrahepatic metastases or multifocal growth in HCC. PMID:21721029

  1. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    SciTech Connect

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-15

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor {alpha} (TNF{alpha})-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNF{alpha}-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect.

  2. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells

    SciTech Connect

    Thangima Zannat, Mst.; Bhattacharjee, Rumpa B.; Bag, Jnanankur

    2011-05-13

    Highlights: {yields} Depletion of cellular PABP level arrests mRNA translation in HeLa cells. {yields} PABP knock down leads to apoptotic cell death. {yields} PABP depletion does not affect transcription. {yields} PABP depletion does not lead to nuclear accumulation of mRNA. -- Abstract: The cytoplasmic poly (A) binding protein (PABP) is important in mRNA translation and stability. In yeast, depletion of PABP leads to translation arrest. Similarly, the PABP gene in Drosophila is important for proper development. It is however uncertain, whether mammalian PABP is essential for mRNA translation. Here we showed the effect of PABP depletion on mRNA metabolism in HeLa cells by using a small interfering RNA. Our results suggest that depletion of PABP prevents protein synthesis and consequently leads to cell death through apoptosis. Interestingly, no detectable effect of PABP depletion on transcription, transport and stability of mRNA was observed.

  3. Pithecellobium dulce mediated extra-cellular green synthesis of larvicidal silver nanoparticles.

    PubMed

    Raman, N; Sudharsan, S; Veerakumar, V; Pravin, N; Vithiya, K

    2012-10-01

    Present study reports a green chemistry approach for the biological synthesis of silver nanoparticles using the aqueous leaf extract of Pithecellobium dulce, which acts as a reducing and capping agent. It is observed that use of P. dulce leaf extract makes a fast, environmentally benign and convenient method for the synthesis of silver nanoparticles and can reduce silver ions into silver nanoparticles. Silver nanoparticles so prepared have been characterized by UV-Vis, FT-IR, X-ray diffraction, atomic force microscopy and scanning electron microscope studies. Furthermore, these nanoparticles show effective larvicidal activity against Culex quinquefasciatus (LC(50)=21.56 mg/L and r(2)=0.995) due to high surface to volume ratio. PMID:22947646

  4. Alterations in cellular differentiation, mitogenesis, cytoskeleton and growth characteristics during Syrian hamster embryo cell multistep in vitro transformation.

    PubMed

    Isfort, R J; Cody, D B; Doersen, C J; Kerckaert, G A; Leboeuf, R A

    1994-10-01

    In vitro Syrian hamster embryo (SHE) cell transformation is a neoplastic process that proceeds through several identifiable consecutive stages including in vitro morphological transformation (mt), acquisition of immortality (I+), acquisition of tumorigenicity (T+) and tumor-derived cells (I'TD). Eight transformed lineages consisting of cells at the mt, I+, T+ and I'TD stages were assayed for alterations in general markers of cell differentiation, mitogenic signaling pathways, cytoskeleton and cellular growth in 3D matrix. Alterations in cellular differentiation markers included a decrease in H19 gene expression and placental alkaline phosphatase enzymatic activity at the mt stage in all lineages examined with a complete absence of H19 gene expression and placental alkaline phosphatase enzymatic activity by the I'TD stage in a majority of transformed lineages. Changes in mitogenic signaling pathways included the production of autocrine growth factors and alterations in growth factor-induced immediate early gene expression by the I'TD stage of transformation in the majority of transformed lineages investigated. By the I'TD stage of transformation in most lineages, changes in both the cytoskeleton (including a decrease in tropomyosin-I gene expression) and the Matrigel growth characteristics of SHE cells were observed. PMID:7927892

  5. Systematic screen for mutants resistant to TORC1 inhibition in fission yeast reveals genes involved in cellular ageing and growth

    PubMed Central

    Rallis, Charalampos; López-Maury, Luis; Georgescu, Teodora; Pancaldi, Vera; Bähler, Jürg

    2014-01-01

    Summary Target of rapamycin complex 1 (TORC1), which controls growth in response to nutrients, promotes ageing in multiple organisms. The fission yeast Schizosaccharomyces pombe emerges as a valuable genetic model system to study TORC1 function and cellular ageing. Here we exploited the combinatorial action of rapamycin and caffeine, which inhibit fission yeast growth in a TORC1-dependent manner. We screened a deletion library, comprising ∼84% of all non-essential fission yeast genes, for drug-resistant mutants. This screen identified 33 genes encoding functions such as transcription, kinases, mitochondrial respiration, biosynthesis, intra-cellular trafficking, and stress response. Among the corresponding mutants, 5 showed shortened and 21 showed increased maximal chronological lifespans; 15 of the latter mutants showed no further lifespan increase with rapamycin and might thus represent key targets downstream of TORC1. We pursued the long-lived sck2 mutant with additional functional analyses, revealing that the Sck2p kinase functions within the TORC1 network and is required for normal cell growth, global protein translation, and ribosomal S6 protein phosphorylation in a nutrient-dependent manner. Notably, slow cell growth was associated with all long-lived mutants while oxidative-stress resistance was not. PMID:24463365

  6. Chain growth in the Fischer-Tropsch synthesis

    SciTech Connect

    Stockwell, D.M.

    1987-01-01

    Methanation and hydrocarbon synthesis from CO and H/sub 2/ was studied using 10 wt% Ni/Al/sub 2/O/sub 3/ and 10 wt% Fe/Al/sub 2/O/sub 3/ catalysts at 1 atm. Transient responses to the switches between various feed mixtures, especially isotopically labeled feeds, to a gradientless microreactor were used to obtain information on the amounts and reactivities of intermediates on and in the catalysts. On Ni/Al/sub 2/O/sub 3/, about 0.5 monolayer of adsorbed CO and smaller amounts of C are present during reaction. Infrared and CO/D/sub 2/ suggest that significant amounts of CH/sub x/ (x = 1-3) are not present. Chain growth experiments with /sup 13/CO/H/sub 2/ indicate that the hydrocarbons are formed primarily from C, but the results also indicate that the process is not fully understood. All steps in methanation and chain growth appear to be fast, except for the limiting steps CO ..-->.. C and C ..-->.. CH. On Fe/Al/sub 2/O/sub 3/, methanation and chain growth occur via CH, with all steps except the initial conversion of CH apparently being fast. Bulk iron carbides and an inactive form of carbon, different from C on Ni/Al/sub 2/O/sub 3/, do not participate significantly. The CH deactivates slowly with time on stream; only a small portion produces most of the products after 2 h on stream. Other work concerned H/sub 2/ chemisorption on various supported metal catalysts. Using TPD, an unusual spike was found after low temperature adsorption on Ru/SiO/sub 2/. The activated adsorption of H/sub 2/ on Fe/SiO/sub 2/, Fe/Al/sub 2/O/sub 3/, Ni/AlO/sub 3/, and Rh/TiO/sub 2/ was compared. It was suggested that, by analogy to titania-supported metals, the origin of the activation barrier may lie in a decoration phenomenon. It was proposed that SiO/sub x/ and AlO/sub x/ species may have been derived from small amounts of support which dissolved in the impregnating solution.

  7. A cellular automata model of land cover change to integrate urban growth with open space conservation

    EPA Science Inventory

    The preservation of riparian zones and other environmentally sensitive areas has long been recognized as one of the most cost-effective methods of managing stormwater and providing a broad range of ecosystem services. In this research, a cellular automata (CA)—Markov chain model ...

  8. Cellular growth defects triggered by an overload of protein localization processes

    PubMed Central

    Kintaka, Reiko; Makanae, Koji; Moriya, Hisao

    2016-01-01

    High-level expression of a protein localized to an intracellular compartment is expected to cause cellular defects because it overloads localization processes. However, overloads of localization processes have never been studied systematically. Here, we show that the expression levels of green fluorescent proteins (GFPs) with localization signals were limited to the same degree as a toxic misfolded GFP in budding yeast cells, and that their high-level expression caused cellular defects associated with localization processes. We further show that limitation of the exportin Crm1 determined the expression limit of GFP with a nuclear export signal. Although misfolding of GFP with a vesicle-mediated transport signal triggered endoplasmic reticulum stress, it was not the primary determinant of its expression limit. The precursor of GFP with a mitochondrial targeting signal caused a cellular defect. Finally, we estimated the residual capacities of localization processes. High-level expression of a localized protein thus causes cellular defects by overloading the capacities of localization processes. PMID:27538565

  9. Cellular growth defects triggered by an overload of protein localization processes.

    PubMed

    Kintaka, Reiko; Makanae, Koji; Moriya, Hisao

    2016-01-01

    High-level expression of a protein localized to an intracellular compartment is expected to cause cellular defects because it overloads localization processes. However, overloads of localization processes have never been studied systematically. Here, we show that the expression levels of green fluorescent proteins (GFPs) with localization signals were limited to the same degree as a toxic misfolded GFP in budding yeast cells, and that their high-level expression caused cellular defects associated with localization processes. We further show that limitation of the exportin Crm1 determined the expression limit of GFP with a nuclear export signal. Although misfolding of GFP with a vesicle-mediated transport signal triggered endoplasmic reticulum stress, it was not the primary determinant of its expression limit. The precursor of GFP with a mitochondrial targeting signal caused a cellular defect. Finally, we estimated the residual capacities of localization processes. High-level expression of a localized protein thus causes cellular defects by overloading the capacities of localization processes. PMID:27538565

  10. A novel calcium-independent cellular PLA2 acts in insect immunity and larval growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phospholipase A2 (PLA2) catalyzes the position-specific hydrolysis of fatty acids linked to the sn-2 position of phospholipids (PLs). PLA2s make up a very large superfamily, with more than known 15 groups, classified into secretory PLA2 (sPLA2), Ca2+-dependent cellular PLA2 (sPLA2), and Ca2+-indepen...

  11. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials.

    PubMed

    Cervantes, Eric Reyes; Torres, Maykel González; Muñoz, Susana Vargas; Rosas, Efraín Rubio; Vázquez, Candelario; Talavera, Rogelio Rodríguez

    2016-01-01

    This study aimed to grow hydroxyapatite (HAp) crystals on the cellular wall of the Gram-positive bacterium Bacillus thuringiensis using a bio-mimetic method. Several strains were phenotypically and genotypically characterized using multilocus sequence typing (MLST) gene markers to differentiate the strains and confirm the identity of the isolated species to guarantee that the selected species was not harmful to human health or the environment. Three of the analyzed strains were selected because they exhibited the best nucleation and growth of HAp on the bacterial surface. This innovative method to grow HAp crystals on a cellular membrane helps to elucidate the mechanisms by which osseous tissue is formed in nature. The optimum concentration for the simulated physiological fluid (SPF) was 1.5×. The hybrid materials were characterized by optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). PMID:26478352

  12. Green Synthesis of Bifunctional Fluorescent Carbon Dots from Garlic for Cellular Imaging and Free Radical Scavenging.

    PubMed

    Zhao, Shaojing; Lan, Minhuan; Zhu, Xiaoyue; Xue, Hongtao; Ng, Tsz-Wai; Meng, Xiangmin; Lee, Chun-Sing; Wang, Pengfei; Zhang, Wenjun

    2015-08-12

    Nitrogen and sulfur codoped carbon dots (CDs) were prepared from garlic by a hydrothermal method. The as-prepared CDs possess good water dispersibility, strong blue fluorescence emission with a fluorescent quantum yield of 17.5%, and excellent photo and pH stabilities. It is also demonstrated that the fluorescence of CDs are resistant to the interference of metal ions, biomolecules, and high ionic strength environments. Combining with low cytotoxicity properties, CDs could be used as an excellent fluorescent probe for cellular multicolor imaging. Moreover, the CDs were also demonstrated to exhibit favorable radical scavenging activity. PMID:26193082

  13. The assembly and properties of protobiological structures - The beginnings of cellular peptide synthesis

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.

    1980-01-01

    New data indicate that lysine-rich proteinoids have the ability to catalyze the synthesis of peptide bonds from a variety of amino acids and ATP. This capacity is evident in aqueous solution, in suspension of phase-separated complexes of lysine-rich proteinoid with acidic proteinoids, and in suspension of phase-separated particles composed of lysine-rich proteinoids with polynucleotides. Since the proteinoid complexes can contain other catalytic activities, including ability to catalyze internucleotide bond formation, it is inferred that the first protocells on earth already had a number of biological types of activity.

  14. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer's Disease.

    PubMed

    McGinley, Lisa M; Sims, Erika; Lunn, J Simon; Kashlan, Osama N; Chen, Kevin S; Bruno, Elizabeth S; Pacut, Crystal M; Hazel, Tom; Johe, Karl; Sakowski, Stacey A; Feldman, Eva L

    2016-03-01

    Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD. PMID:26744412

  15. Biomimetic hybrid porous scaffolds immobilized with platelet derived growth factor-BB promote cellularization and vascularization in tissue engineering.

    PubMed

    Murali, Ragothaman; Ponrasu, Thangavel; Cheirmadurai, Kalirajan; Thanikaivelan, Palanisamy

    2016-02-01

    Development of hybrid scaffolds with synergistic combination of growth factor is a promising approach to promote early in vivo wound repair and tissue regeneration. Here, we show the rapid wound healing in Wistar albino rats using biomimetic collagen-poly(dialdehyde) guar gum based hybrid porous scaffolds covalently immobilized with platelet derived growth factor-BB. The immobilized platelet derived growth factor in the hybrid scaffolds not only enhance the total protein, collagen, hexosamine, and uronic acid contents in the granulation tissue but also provide stronger tissues. The wound closure analysis reveal that the complete epithelialization period is 15.4 ± 0.9 days for collagen-poly(dialdehyde) guar gum-platelet derived growth factor hybrid scaffolds, whereas it is significantly higher for control, collagen, collagen- poly(dialdehyde) guar gum and povidine-iodine treated groups. Further, the histological evaluation shows that the immobilized platelet derived growth factor in the hybrid scaffolds induced a more robust cellular and vascular response in the implanted site. Hence, we demonstrate that the collagen-poly(dialdehyde) guar gum hybrid scaffolds loaded with platelet derived growth factor stimulates chemotactic effects in the implanted site to promote rapid tissue regeneration and wound repair without the assistance of antibacterial agents. PMID:26414915

  16. Regulatory Nexus of Synthesis and Degradation Deciphers Cellular Nrf2 Expression Levels

    PubMed Central

    Suzuki, Takafumi; Shibata, Tatsuhiro; Takaya, Kai; Shiraishi, Kouya; Kohno, Takashi; Kunitoh, Hideo; Tsuta, Koji; Furuta, Koh; Goto, Koichi; Hosoda, Fumie; Sakamoto, Hiromi; Motohashi, Hozumi

    2013-01-01

    Transcription factor Nrf2 (NF-E2-related factor 2) is essential for oxidative and electrophilic stress responses. While it has been well characterized that Nrf2 activity is tightly regulated at the protein level through proteasomal degradation via Keap1 (Kelch-like ECH-associated protein 1)-mediated ubiquitination, not much attention has been paid to the supply side of Nrf2, especially regulation of Nrf2 gene transcription. Here we report that manipulation of Nrf2 transcription is effective in changing the final Nrf2 protein level and activity of cellular defense against oxidative stress even in the presence of Keap1 and under efficient Nrf2 degradation, determined using genetically engineered mouse models. In excellent agreement with this finding, we found that minor A/A homozygotes of a single nucleotide polymorphism (SNP) in the human NRF2 upstream promoter region (rs6721961) exhibited significantly diminished NRF2 gene expression and, consequently, an increased risk of lung cancer, especially those who had ever smoked. Our results support the notion that in addition to control over proteasomal degradation and derepression from degradation/repression, the transcriptional level of the Nrf2 gene acts as another important regulatory point to define cellular Nrf2 levels. These results thus verify the critical importance of human SNPs that influence the levels of transcription of the NRF2 gene for future personalized medicine. PMID:23572560

  17. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels.

    PubMed

    Suzuki, Takafumi; Shibata, Tatsuhiro; Takaya, Kai; Shiraishi, Kouya; Kohno, Takashi; Kunitoh, Hideo; Tsuta, Koji; Furuta, Koh; Goto, Koichi; Hosoda, Fumie; Sakamoto, Hiromi; Motohashi, Hozumi; Yamamoto, Masayuki

    2013-06-01

    Transcription factor Nrf2 (NF-E2-related factor 2) is essential for oxidative and electrophilic stress responses. While it has been well characterized that Nrf2 activity is tightly regulated at the protein level through proteasomal degradation via Keap1 (Kelch-like ECH-associated protein 1)-mediated ubiquitination, not much attention has been paid to the supply side of Nrf2, especially regulation of Nrf2 gene transcription. Here we report that manipulation of Nrf2 transcription is effective in changing the final Nrf2 protein level and activity of cellular defense against oxidative stress even in the presence of Keap1 and under efficient Nrf2 degradation, determined using genetically engineered mouse models. In excellent agreement with this finding, we found that minor A/A homozygotes of a single nucleotide polymorphism (SNP) in the human NRF2 upstream promoter region (rs6721961) exhibited significantly diminished NRF2 gene expression and, consequently, an increased risk of lung cancer, especially those who had ever smoked. Our results support the notion that in addition to control over proteasomal degradation and derepression from degradation/repression, the transcriptional level of the Nrf2 gene acts as another important regulatory point to define cellular Nrf2 levels. These results thus verify the critical importance of human SNPs that influence the levels of transcription of the NRF2 gene for future personalized medicine. PMID:23572560

  18. Flame synthesis and in vitro biocompatibility assessment of superparamagnetic iron oxide nanoparticles: cellular uptake, toxicity and proliferation studies.

    PubMed

    Buyukhatipoglu, K; Miller, T A; Clyne, A Morss

    2009-12-01

    Superparamagnetic iron oxide nanoparticles are used in diverse applications, such as targeted drug delivery, magnetic resonance imaging and hyperthermic malignant cell therapy. In the current work, superparamagnetic iron oxide nanoparticles were produced by flame synthesis, which has improved nanoparticle property control and is capable of commercial production rates with minimal post-processing. The iron oxide nanoparticle material characteristics were analyzed by electron microscopy and Raman spectroscopy. Finally, flame synthesized iron oxide nanoparticle interaction with endothelial cells was compared to commercially available iron oxide nanoparticles. Flame synthesis produced a heterogeneous mixture of 6-12 nm diameter hematite and magnetite nanoparticles with superparamagnetic properties. Endothelial cell scanning electron microscopy, confirmed by energy dispersive spectroscopy, demonstrated that flame synthesized nanoparticles are ingested into cells in a similar manner to commercially available nanoparticles. The flame synthesized particles showed no statistically significant toxicity difference from commercially available nanoparticles, as measured by Live/Dead assay, Alamar blue, and lactase dehydrogenase release. Neither type of nanoparticle affected cell proliferation induced by fibroblast growth factor-2. These data suggest that combustion synthesized iron oxide nanoparticles are comparable to commercially available nanoparticles for biological applications, yet flame synthesis is a simpler process with higher purity products and lower manufacturing costs. Future work will include functionalizing nanoparticles for specific cell targeting and bioactive factor delivery. PMID:19908687

  19. Measurements of prolactin and growth hormone synthesis and secretion by rat pituitary cells in culture.

    PubMed

    Gautvik, K M; Kriz, M

    1976-02-01

    A specific and sensitive immunoprecipitation method for measurements of biosynthesized radioactive prolactin and growth hormone is described. Antisera to rat prolactin and growth hormone were developed in the rabbit and monkey, respectively. The specificity of the immune sera was assessed by polyacylamide gel electrophoresis of the dissolved immunoprecipitates. The two antisera showed cross-reactions with the nonhomologous hormone of less than 1%. Separation of tritium-labelled prolactin and growth hormone by immunoprecipitation, followed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate was shown to be 95-57% complete. When both hormones were measured in the same microsample by sequential immunoprecipitation, the reaction was 97% complete for determination of intra- and extracellular prolactin and extracellular growth hormone, but 85% complete for determination of intracellular growth hormone. This method has been used to characterize the basal synthesis and secretion of prolactin and growth hormone in three different but related, pituitary cell strains. Radioactive prolactin and growth hormone was obtained from monolayer cultures when the cells were grown in the presence of [3H]L-leucine. The rate of prolactin synthesis and extracellular accumulation was higher than that of growth hormone in a cell strain which produced both hormones. In these cells prolactin synthesis represents 1-5%, and growth hormone 0.1-0.6% of total protein synthesis. PMID:942913

  20. A model for electrical tree growth in solid insulating materials using cellular automata

    SciTech Connect

    Danikas, M.G.; Karafyllidis, I.; Thanailakis, A.; Bruning, A.M.

    1996-12-31

    Models proposed to explain the breakdown mechanisms of the solid insulating materials are based, among others, on electromagnetic theory, avalanche theory and fractals. In this paper the breakdown of insulating materials is simulated using von Neumann`s Cellular Automata (CAs). An algorithm for solid dielectric breakdown simulation based on CAs is presented with a point/plane electrode arrangement. The algorithm is also used to simulate breakdown in a solid dielectric having a spherical void.

  1. Synthesis of amphiphilic seleninic acid derivatives with considerable activity against cellular membranes and certain pathogenic microbes.

    PubMed

    Du, Peng; Viswanathan, Uma M; Xu, Zhanjie; Ebrahimnejad, Hadi; Hanf, Benjamin; Burkholz, Torsten; Schneider, Marc; Bernhardt, Ingolf; Kirsch, Gilbert; Jacob, Claus

    2014-03-30

    Selenium compounds play a major role in Biology, where they are often associated with pronounced antioxidant activity or toxicity. Whilst most selenium compounds are not necessarily hazardous, their often selective cytotoxicity is interesting from a biochemical and pharmaceutical perspective. We have synthesized a series of amphiphilic molecules which combine a hydrophilic seleninic acid head group - which at the same time serves as thiol-specific warhead - with a hydrophobic tail. These molecules possess a surface activity similar to the one of SDS, yet their biological activity seems to exceed by far the one of a simple surfactant (e.g. SDS) or seleninic acid (e.g. phenyl seleninic acid). Such compounds effectively haemolyse Red Blood Cells and exhibit pronounced activity against Saccharomyces cerevisiae. From a chemical perspective, the seleninic warheads are likely to attack crucial cysteine proteins of the cellular thiolstat. PMID:24491370

  2. Equiaxed and columnar dendrite growth simulation in Al-7Si- Mg ternary alloys using cellular automaton method

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Xu, Qingyan; Liu, Baicheng

    2015-06-01

    In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy.

  3. Spatiotemporal chaos near the onset of cellular growth during thin-film solidification of a binary alloy

    NASA Technical Reports Server (NTRS)

    Lee, J. T. C.; Tsiveriotis, K.; Brown, R. A.

    1992-01-01

    Thin-film solidification experiments with a succinonitrile-acetone alloy are used to observe the long time-scale dynamics of cellular crystal growth at growth rates only slightly above the critical value VC = Vc(lambda sub c) for the onset of morphological instability. Under these conditions only very small amplitude cells are observed with wavelengths near the value predicted by linear stability theory lambda = lambda sub c. At long times, microstructures with wavelengths significantly finer than lambda suc c form by nucleation at defects across the interface. These interfaces do not have a unique microstructure, but seem to exhibit spatiotemporal chaos on a long time scale caused by the continual birth and death of cells by tip splitting and cell annihilation in grooves.

  4. Overexpression of Wnt-1 in thyrocytes enhances cellular growth but suppresses transcription of the thyroperoxidase gene via different signaling mechanisms.

    PubMed

    Kim, Won Bae; Lewis, Christopher J; McCall, Kelly D; Malgor, Ramiro; Kohn, Aimee D; Moon, Randall T; Kohn, Leonard D

    2007-04-01

    Wnt binding to cell surface receptors can activate a 'canonical' pathway that increases cellular beta-catenin or a 'noncanonical' Ca(++) pathway which can increase protein kinase C (PKC) activity. Although components of both Wnt/beta-catenin-signaling pathways exist in thyrocytes, their biological role is largely unknown. In evaluating the biological role of Wnt signaling in differentiated FRTL-5 thyroid cells, we showed that TSH increased canonical Wnt-1 but, surprisingly, decreased the active form of beta-catenin. Transient overexpression of Wnt-1 or beta-catenin in FRTL-5 cells increased active beta-catenin (ABC), decreased thyroperoxidase (TPO) mRNA, and suppressed TPO-promoter activity. The target of beta-catenin suppressive action was a consensus T cell factor/lymphoid enhancing factor (TCF/LEF)-binding site 5'-A/T A/T CAAAG-3', -137 to -129 bp on the rat TPO promoter. beta-Catenin overexpression significantly increased complex formation between beta-catenin/TCF-1 and an oligonucleotide containing the TCF/LEF sequence, suggesting that the beta-catenin/TCF-1 complex acts as a transcriptional repressor of the TPO gene. Stable over-expression of Wnt-1 in FRTL-5 cells significantly increased the growth rate without increasing beta-catenin levels. Increased growth was blunted by a PKC inhibitor, staurosporin. Wnt-1 overexpression increased serine phosphorylation, without affecting tyrosine phosphorylation, of signal transducers and activators of transcription 3 (STAT3) protein. In addition, these final results suggest that TSH-induced increase in Wnt-1 levels in thyrocytes contributes to enhanced cellular growth via a PKC pathway that increases STAT3 serine phosphorylation and activation, whereas TSH-induced decrease in activation of beta-catenin simultaneously relieves transcriptional suppression of TPO. We hypothesize that Wnt signaling contributes to the ability of TSH to simultaneously increase cell growth and functional, thyroid-specific, gene expression

  5. Video texture synthesis with multi-frame LBP-TOP and diffeomorphic growth model.

    PubMed

    Guo, Yimo; Zhao, Guoying; Zhou, Ziheng; Pietikainen, Matti

    2013-10-01

    Video texture synthesis is the process of providing a continuous and infinitely varying stream of frames, which plays an important role in computer vision and graphics. However, it still remains a challenging problem to generate high-quality synthesis results. Considering the two key factors that affect the synthesis performance, frame representation and blending artifacts, we improve the synthesis performance from two aspects: 1) Effective frame representation is designed to capture both the image appearance information in spatial domain and the longitudinal information in temporal domain. 2) Artifacts that degrade the synthesis quality are significantly suppressed on the basis of a diffeomorphic growth model. The proposed video texture synthesis approach has two major stages: video stitching stage and transition smoothing stage. In the first stage, a video texture synthesis model is proposed to generate an infinite video flow. To find similar frames for stitching video clips, we present a new spatial-temporal descriptor to provide an effective representation for different types of dynamic textures. In the second stage, a smoothing method is proposed to improve synthesis quality, especially in the aspect of temporal continuity. It aims to establish a diffeomorphic growth model to emulate local dynamics around stitched frames. The proposed approach is thoroughly tested on public databases and videos from the Internet, and is evaluated in both qualitative and quantitative ways. PMID:23686952

  6. Cellular lesion responsible for exaggerated IgE synthesis accompanying allergic breakthrough

    SciTech Connect

    Marcelletti, J.F.; Katz, D.H.

    1989-05-01

    Appropriate levels of IgE are maintained by a cellular and molecular network composed of (1) a suppressive, Ly-1+, CD4+ T cell-dependent arm that is activated by inappropriate high levels of IgE and (2) an enhancing, CD8+ T cell-dependent arm that controls this suppression in a feedback regulatory manner. Ly-1+ T cells also function to counterbalance (inhibit) the activity of these latter CD8+ T cells. It has been previously shown that Ly-1+ T cells can reverse low-dose irradiation-induced enhancement of IgE antibody responses (i.e., allergic breakthrough). We have analyzed lymphocytes isolated from mice subjected to low-dose irradiation to determine which component of this network is defective in such animals. Stimulation of normal lymphocytes with IgE in vitro resulted in the release of lymphokines that suppress IgE antibody responses. In contrast, similar stimulation of lymphocytes from irradiated mice did not elicit secretion of such suppressive lymphokines, unless the cells were depleted of CD8+ T cells or reconstituted with normal Ly-1+ T cells. Because Ly-1+ T cells of irradiated mice could not reconstitute the response, we conclude that this functional subset of CD4+ T cells, which normally controls CD8+ T cell activity in this network, is defective in animals that exhibit irradiation-induced allergic breakthrough.

  7. Synthesis of Carbohydrate Capped Silicon Nanoparticles and their Reduced Cytotoxicity, In Vivo Toxicity, and Cellular Uptake.

    PubMed

    Ahire, Jayshree H; Behray, Mehrnaz; Webster, Carl A; Wang, Qi; Sherwood, Victoria; Saengkrit, Nattika; Ruktanonchai, Uracha; Woramongkolchai, Noppawan; Chao, Yimin

    2015-08-26

    The development of smart targeted nanoparticles (NPs) that can identify and deliver drugs at a sustained rate directly to cancer cells may provide better efficacy and lower toxicity for treating primary and advanced metastatic tumors. Obtaining knowledge of the diseases at the molecular level can facilitate the identification of biological targets. In particular, carbohydrate-mediated molecular recognitions using nano-vehicles are likely to increasingly affect cancer treatment methods, opening a new area in biomedical applications. Here, silicon NPs (SiNPs) capped with carbohydrates including galactose, glucose, mannose, and lactose are successfully synthesized from amine terminated SiNPs. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] analysis shows an extensive reduction in toxicity of SiNPs by functionalizing with carbohydrate moiety both in vitro and in vivo. Cellular uptake is investigated with flow cytometry and confocal fluorescence microscope. The results show the carbohydrate capped SiNPs can be internalized in the cells within 24 h of incubation, and can be taken up more readily by cancer cells than noncancerous cells. Moreover, these results reinforce the use of carbohydrates for the internalization of a variety of similar compounds into cancer cells. PMID:26121084

  8. Synthesis and Molecular-cellular Mechanistic Study of Pyridine Derivative of Dacarbazine

    PubMed Central

    Amirmostofian, Marzieh; Pourahmad Jaktaji, Jalal; Soleimani, Zohreh; Tabib, Kimia; Tanbakosazan, Farahnaz; Omrani, Mirdavood; Kobarfard, Farzad

    2013-01-01

    Dacarbazine is an antitumor prodrug which is used for the treatment of malignant metastatic melanoma and Hodgkin’s disease. It requires initial activation in liver through an N-demethylationreaction. The active metabolite prevents the progress of disease via alkylation of guanine bases in DNA strands. In order to investigate the importance of imidazole ring and its dynamictautomerization in anticancer activity of dacarbazine, a pyridine analog of this drug was synthesized and the cytotoxic activity and cellular-molecular mechanisms of action for this compound were compared with those of dacarbazine. EC50 values for dacarbazine and the pyridine analog were found to be 56 μM and 33 μM respectively. Both dacarbazine and the pyridine analog resulted in formation of reactive oxygen species (ROS) upon their addition to the isolated rat hepatocytes. They also decreased the mitochondrial membrane potential and causedlysosomal membrane rupture. Cytotoxicity was prevented by ROS scavengers and antioxidants. Cytotoxicity wasalso prevented by CYP450 inhibitors, lysosomalinactivators and MPT (Mitochondrial Permeability Transition Pore) blockers. PMID:24250631

  9. Synthesis and in vitro cellular interactions of superparamagnetic iron nanoparticles with a crystalline gold shell

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sulalit; Singh, Gurvinder; Sandvig, Ioanna; Sandvig, Axel; Mathieu, Roland; Anil Kumar, P.; Glomm, Wilhelm Robert

    2014-10-01

    Fe@Au core-shell nanoparticles (NPs) exhibit multiple functionalities enabling their effective use in applications such as medical imaging and drug delivery. In this work, a novel synthetic method was developed and optimized for the synthesis of highly stable, monodisperse Fe@Au NPs of average diameter ∼24 nm exhibiting magneto-plasmonic characteristics. Fe@Au NPs were characterized by a wide range of experimental techniques, including scanning (transmission) electron microscopy (S(T)EM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) and UV-vis spectroscopy. The formed particles comprise an amorphous iron core with a crystalline Au shell of tunable thickness, and retain the superparamagnetic properties at room temperature after formation of a crystalline Au shell. After surface modification, PEGylated Fe@Au NPs were used for in vitro studies on olfactory ensheathing cells (OECs) and human neural stem cells (hNSCs). No adverse effects of the Fe@Au particles were observed post-labeling, both cell types retaining normal morphology, viability, proliferation, and motility. It can be concluded that no appreciable toxic effects on both cell types, coupled with multifunctionality and chemical stability make them ideal candidates for therapeutic as well as diagnostic applications.

  10. Cellular Adherence, Glucosyltransferase Adsorption, and Glucan Synthesis of Streptococcus mutans AHT Mutants

    PubMed Central

    Koga, Toshihiko; Inoue, Masakazu

    1978-01-01

    Streptococcus mutans AHT mutants M1, M2, and M13 failed to adhere to a glass surface, whereas mutants M9 and M35 exhibited decreased and increased adherence, respectively, as compared with the parent strain, when grown in sucrose broth. Extracellular glucosyltransferase prepared from glucose-grown cultures of the adherent strains (wild type, M9, and M35) induced adherence of heat-killed cells of the homologous and heterologous streptococcal strains as well as of Escherichia coli K-12 and uncoated resin particles. The glucosyltransferase was adsorbed on all the streptococcal cells and glucan-coated resins, but not on E. coli cells and the uncoated resins. Glucosyltransferase from the nonadhering mutants (M1, M2, M13) neither was significantly adsorbed on nor induced adherence of any of the cells and resins. Cell-free enzymes from the glucose-grown adherent strains produced water-soluble and water-insoluble glucans, whereas those from the nonadhering mutants produced only water-soluble glucans. Small amounts of alkali-soluble, cell-associated glucan were recovered from the sucrose-grown nonadhering mutants. Thus, the relative proportions of glucosyltransferase isozymes elaborated by the S. mutans mutants, insofar as they affect the physico-chemical properties of the glucans produced, seem to determine the adherence abilities of the cells. The adsorption of glucosyltransferase on glucan molecules on the cell surface is not required for the adherence of S. mutans, but de novo glucan synthesis is important in the adherence process. PMID:631879

  11. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields.

    PubMed

    Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A

    2015-03-01

    Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species. PMID:25721476

  12. On the synthesis of a bio-inspired dual-cellular fluidic flexible matrix composite adaptive structure based on a non-dimensional dynamics model

    NASA Astrophysics Data System (ADS)

    Li, Suyi; Wang, K. W.

    2013-01-01

    A recent study investigated the dynamic characteristics of an adaptive structure concept featuring dual fluidic flexible matrix composite (F2MC) cells inspired by the configuration of plant cells and cell walls. This novel bio-inspired system consists of two F2MC cells with different fiber angles connected through internal fluid circuits. It was discovered that the dual F2MC cellular structure can be characterized as a two degree of freedom damped mass-spring oscillator, and can be utilized as a vibration absorber or an enhanced actuator under different operation conditions. These results demonstrated that the concept is promising and further investigations are needed to develop methodologies for synthesizing future multi-cellular F2MC structural systems. While interesting, the previous study focused on specific case studies and analysis. That is, the outcome did not provide insight that could be generalized, or tools for synthesizing a multiple F2MC cellular structure. This paper attempts to address this important issue by developing a non-dimensional dynamic model, which reveals good physical insights as well as identifying crucial constitutive parameters for F2MC cellular design. Working with these parameters, rather than physical variables, can greatly simplify the mathematics involved in the study. A synthesis tool is then developed for the dual-cellular structure, and it is found that for each set of achievable target poles and zero, there exist multiple F2MC cellular designs, forming a design space. The presented physical insights and synthesis tool for the dual-cellular structure will be the building blocks for future investigation on cellular structures with a larger number of cells.

  13. MiR-96-5p influences cellular growth and is associated with poor survival in colorectal cancer patients.

    PubMed

    Ress, Anna Lena; Stiegelbauer, Verena; Winter, Elke; Schwarzenbacher, Daniela; Kiesslich, Tobias; Lax, Sigurd; Jahn, Stefan; Deutsch, Alexander; Bauernhofer, Thomas; Ling, Hui; Samonigg, Hellmut; Gerger, Armin; Hoefler, Gerald; Pichler, Martin

    2015-11-01

    Expression of miR-96-5p is frequently altered in various types of cancer and the KRAS oncogene has been identified as one of its potential targets. However, the biological role of miR-96-5p expression in colorectal cancer (CRC) and its ability to predict the clinical course of patients have not been investigated yet. In this study, we explored miR-96-5p expression in 80 CRC patients and evaluated the impact on clinical outcome by Kaplan-Meier curves and multivariate Cox proportional models. In vitro miR-96-5p inhibition and overexpression were performed in CRC cells and the effects on cellular growth, anchorage-independent growth, apoptosis, and epithelial-mesenchymal transition (EMT)-related gene expression were explored. Low miR-96-5p expression levels in tumor tissue were associated with distant metastasis (P = 0.025) and multivariate Cox regression analysis identified low levels of miR-96-5p as an independent prognostic factor with respect to cancer-specific survival (hazard ratio = 1.78, 95%CI = 1.03-3.03, P < 0.038). In vitro overexpression of miR-96-5p led to a reduced cellular growth rate (P < 0.05), reduced colonies in soft agar (P < 0.05), corroborated by a decreased cyclin D1 and increased p27-CDKN1A expression (P < 0.05). Forced expression of miR-96-5p in CRC cells entailed no effects on apoptosis or EMT-related genes but decreased the expression levels of the KRAS oncogene (P < 0.05). Despite regulating KRAS expression, there was no significant association in miR-96-5p expression levels and response rates to EGFR-targeting agents. In conclusion, our data suggest that miR-96-5p influences cellular growth of CRC cells and low expression of miR-96-5p seems to be associated with poor clinical outcome in CRC patients. PMID:25256312

  14. Glycosaminoglycan-functionalized poly-lactide-co-glycolide nanoparticles: synthesis, characterization, cytocompatibility, and cellular uptake

    PubMed Central

    Lamichhane, Surya P; Arya, Neha; Ojha, Nirdesh; Kohler, Esther; Shastri, V Prasad

    2015-01-01

    The efficient delivery of chemotherapeutics to the tumor via nanoparticle (NP)-based delivery systems remains a significant challenge. This is compounded by the fact that the tumor is highly dynamic and complex environment composed of a plurality of cell types and extracellular matrix. Since glycosaminoglycan (GAG) production is altered in many diseases (or pathologies), NPs bearing GAG moieties on the surface may confer some unique advantages in interrogating the tumor microenvironment. In order to explore this premise, in the study reported here poly-lactide-co-glycolide (PLGA) NPs in the range of 100–150 nm bearing various proteoglycans were synthesized by a single-step nanoprecipitation and characterized. The surface functionalization of the NPs with GAG moieties was verified using zeta potential measurements and X-ray photoelectron spectroscopy. To establish these GAG-bearing NPs as carriers of therapeutics, cellular toxicity assays were undertaken in lung epithelial adenocarcinoma (A549) cells, human pulmonary microvascular endothelial cells (HPMEC), and renal proximal tubular epithelial cells. In general NPs were well tolerated over a wide concentration range (100–600 μg/mL) by all cell types and were taken up to appreciable extents without any adverse cell response in A549 cells and HPMEC. Further, GAG-functionalized PLGA NPs were taken up to different extents in A459 cells and HPMEC. In both cell systems, the uptake of heparin-modified NPs was diminished by 50%–65% in comparison to that of unmodified PLGA. Interestingly, the uptake of chondroitin sulfate NPs was the highest in both cell systems with 40%–60% higher uptake when compared with that of PLGA, and this represented an almost twofold difference over heparin-modified NPs. These findings suggest that GAG modification can be explored as means of changing the uptake behavior of PLGA NPs and these NP systems have potential in cancer therapy. PMID:25632234

  15. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth

    PubMed Central

    Hardy, Michael D.; Yang, Jun; Selimkhanov, Jangir; Cole, Christian M.; Tsimring, Lev S.; Devaraj, Neal K.

    2015-01-01

    Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks. PMID:26100914

  16. Acquisition of thermotolerance in soybean seedlings: synthesis and accumulation of heat shock proteins and their cellular localization

    SciTech Connect

    Lin, C.Y.; Roberts, J.K.; Key, J.L.

    1984-01-01

    When soybean Glycine max var Wayne seedlings are shifted from a normal growth temperature of 28/sup 0/C up to 40/sup 0/C (heat shock or HS), there is a dramatic change in protein synthesis. A new set of proteins known as shock proteins (HSPs) is produced and normal protein synthesis is greatly reduced. However, a pretreatmemt at 40/sup 0/C or a brief (10 minute) pulse treatment at 45/sup 0/C followed by a 28/sup 0/C incubation provide protection (thermal tolerance) to a subsequent exposure at 45/sup 0/C. During 40/sup 0/C HS, some HSPs become localized and stably associated with purified organelle fractions while others do not. A chase at 28/sup 0/C results in the gradual loss over a 4-hour period of the HSPs from the organelle fractions, but the HSPs remain selectively localized during a 40/sup 0/C chase period. The relative amount of HSPs which relocalize during a second HS increases with higher temperatures from 40/sup 0/C to 45/sup 0/C. Proteins induced by arsenite treatment are not selectively localized with organelle fractions at 28/sup 0/C but become organelle-associated during a subsequent HS at 40/sup 0/C.

  17. Transferrin conjugates of doxorubicin: synthesis, characterization, cellular uptake, and in vitro efficacy.

    PubMed

    Kratz, F; Beyer, U; Roth, T; Tarasova, N; Collery, P; Lechenault, F; Cazabat, A; Schumacher, P; Unger, C; Falken, U

    1998-03-01

    in the cytoplasm. The differences in the intracellular distribution between transferrin-doxorubicin conjugates and doxorubicin were confirmed by laser scanning confocal microscopy in LXFL 529 cells after a 24 h incubation that revealed an uptake and mode of action other than intercalation with DNA. The relationship between stability, cellular uptake, and cytotoxicity of the conjugates is discussed. PMID:9523988

  18. Skeletal muscle ATP synthesis and cellular H+ handling measured by localized 31P-MRS during exercise and recovery

    PubMed Central

    Fiedler, Georg B.; Schmid, Albrecht I.; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Mirzahosseini, Arash; Kemp, Graham J.; Moser, Ewald; Meyerspeer, Martin

    2016-01-01

    31P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H+) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60–75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism. PMID:27562396

  19. Design, Synthesis, Biochemical Studies, Cellular Characterization, and Structure-Based Computational Studies of Small Molecules Targeting the Urokinase Receptor

    PubMed Central

    Wang, Fang; Knabe, W. Eric; Li, Liwei; Jo, Inha; Mani, Timmy; Roehm, Hartmut; Oh, Kyungsoo; Li, Jing; Khanna, May; Meroueh, Samy O.

    2012-01-01

    The urokinase receptor (uPAR) serves as a docking site to the serine protease urokinase-type plasminogen activator (uPA) to promote extracellular matrix (ECM) degradation and tumor invasion and metastasis. Previously, we had reported a small molecule inhibitor of the uPAR•uPA interaction that emerged from structure-based virtual screening. Here, we measure the affinity of a large number of derivatives from commercial sources. Synthesis of additional compounds was carried out to probe the role of various groups on the parent compound. Extensive structure-based computational studies suggested a binding mode for these compounds that led to a structure-activity relationship study. Cellular studies in non-small cell lung cancer (NSCLC) cell lines that include A549, H460 and H1299 showed that compounds blocked invasion, migration and adhesion. The effects on invasion of active compounds were consistent with their inhibition of uPA and MMP proteolytic activity. These compounds showed weak cytotoxicity consistent with the confined role of uPAR to metastasis. PMID:22771232

  20. Skeletal muscle ATP synthesis and cellular H(+) handling measured by localized (31)P-MRS during exercise and recovery.

    PubMed

    Fiedler, Georg B; Schmid, Albrecht I; Goluch, Sigrun; Schewzow, Kiril; Laistler, Elmar; Niess, Fabian; Unger, Ewald; Wolzt, Michael; Mirzahosseini, Arash; Kemp, Graham J; Moser, Ewald; Meyerspeer, Martin

    2016-01-01

    (31)P magnetic resonance spectroscopy (MRS) is widely used for non-invasive investigation of muscle metabolism dynamics. This study aims to extend knowledge on parameters derived from these measurements in detail and comprehensiveness: proton (H(+)) efflux, buffer capacity and the contributions of glycolytic (L) and oxidative (Q) rates to ATP synthesis were calculated from the evolutions of phosphocreatine (PCr) and pH. Data are reported for two muscles in the human calf, for each subject and over a wide range of exercise intensities. 22 subjects performed plantar flexions in a 7T MR-scanner, leading to PCr changes ranging from barely noticeable to almost complete depletion, depending on exercise protocol and muscle studied by localized MRS. Cytosolic buffer capacity was quantified for the first time non-invasively and individually, as was proton efflux evolution in early recovery. Acidification started once PCr depletion reached 60-75%. Initial and end-exercise L correlated with end-exercise levels of PCr and approximately linear with pH. Q calculated directly from PCr and pH derivatives was plausible, requiring fewer assumptions than the commonly used ADP-model. In conclusion, the evolution of parameters describing cellular energy metabolism was measured over a wide range of exercise intensities, revealing a relatively complete picture of muscle metabolism. PMID:27562396

  1. Solid-phase synthesis, thermal denaturation studies, nuclease resistance, and cellular uptake of (oligodeoxyribonucleoside)methylborane phosphine-DNA chimeras.

    PubMed

    Krishna, Heera; Caruthers, Marvin H

    2011-06-29

    The major hurdle associated with utilizing oligodeoxyribonucleotides for therapeutic purposes is their poor delivery into cells coupled with high nuclease susceptibility. In an attempt to combine the nonionic nature and high nuclease stability of the P-C bond of methylphosphonates with the high membrane permeability, low toxicity, and improved gene silencing ability of borane phosphonates, we have focused our research on the relatively unexplored methylborane phosphine (Me-P-BH(3)) modification. This Article describes the automated solid-phase synthesis of mixed-backbone oligodeoxynucleotides (ODNs) consisting of methylborane phosphine and phosphate or thiophosphate linkages (16-mers). Nuclease stability assays show that methylborane phosphine ODNs are highly resistant to 5' and 3' exonucleases. When hybridized to a complementary strand, the ODN:RNA duplex was more stable than its corresponding ODN:DNA duplex. The binding affinity of ODN:RNA duplex increased at lower salt concentration and approached that of a native DNA:RNA duplex under conditions close to physiological saline, indicating that the Me-P-BH(3) linkage is positively charged. Cellular uptake measurements indicate that these ODNs are efficiently taken up by cells even when the strand is 13% modified. Treatment of HeLa cells and WM-239A cells with fluorescently labeled ODNs shows significant cytoplasmic fluorescence when viewed under a microscope. Our results suggest that methylborane phosphine ODNs may prove very valuable as potential candidates in antisense research and RNAi. PMID:21585202

  2. Cellular Microcystin Content in N-Limited Microcystis aeruginosa Can Be Predicted from Growth Rate

    PubMed Central

    Long, Benedict M.; Jones, Gary J.; Orr, Philip T.

    2001-01-01

    Cell quotas of microcystin (QMCYST; femtomoles of MCYST per cell), protein, and chlorophyll a (Chl a), cell dry weight, and cell volume were measured over a range of growth rates in N-limited chemostat cultures of the toxic cyanobacterium Microcystis aeruginosa MASH 01-A19. There was a positive linear relationship between QMCYST and specific growth rate (μ), from which we propose a generalized model that enables QMCYST at any nutrient-limited growth rate to be predicted based on a single batch culture experiment. The model predicts QMCYST from μ, μmax (maximum specific growth rate), QMCYSTmax (maximum cell quota), and QMCYSTmin (minimum cell quota). Under the conditions examined in this study, we predict a QMCYSTmax of 0.129 fmol cell−1 at μmax and a QMCYSTmin of 0.050 fmol cell−1 at μ = 0. Net MCYST production rate (RMCYST) asymptotes to zero at μ = 0 and reaches a maximum of 0.155 fmol cell−1 day−1 at μmax. MCYST/dry weight ratio (milligrams per gram [dry weight]) increased linearly with μ, whereas the MCYST/protein ratio reached a maximum at intermediate μ. In contrast, the MCYST/Chl a ratio remained constant. Cell volume correlated negatively with μ, leading to an increase in intracellular MCYST concentration at high μ. Taken together, our results show that fast-growing cells of N-limited M. aeruginosa are smaller, are of lower mass, and have a higher intracellular MCYST quota and concentration than slow-growing cells. The data also highlight the importance of determining cell MCYST quotas, as potentially confusing interpretations can arise from determining MCYST content as a ratio to other cell components. PMID:11133456

  3. Synthesis, solubilization, and surface functionalization of highly fluorescent quantum dots for cellular targeting through a small molecule

    NASA Astrophysics Data System (ADS)

    Galloway, Justin F.

    To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically

  4. Synthesis and characterization of xanthan-hydroxyapatite nanocomposites for cellular uptake.

    PubMed

    Bueno, Vania Blasques; Bentini, Ricardo; Catalani, Luiz Henrique; Barbosa, Leandro R S; Petri, Denise Freitas Siqueira

    2014-04-01

    In this work xanthan-nanohydroxyapatite (XnHAp) and its equivalent strontium substituted (XnHApSr) were synthesized by the precipitation of nanohydroxyapatite in xanthan aqueous solution, characterized and compared to conventional hydroxyapatite particles (HAp). XnHAp and XnHApSr were less crystalline than HAp, as revealed by X-ray diffraction. Xanthan chains enriched the surface of XnHAp and XnHApSr particles, increasing the zeta potential values from -(7±1)mV, determined for HAp, to -(17±3)mV and -(25±3)mV, respectively. This effect led to high colloidal stability of XnHAp and XnHApSr dispersions and acicular particles (140±10)nm long and (8±2)nm wide, as determined by scanning electron microscopy and atomic force microscopy. XnHAp and XnHApSr particles were added to xanthan hydrogels to produce compatible nanocomposites (XCA/XnHAp and XCA/XnHApSr). Dried nanocomposites presented surface energy, Young's modulus and stress at break values comparable to those determined for bare xanthan matrix. Moreover, adding XnHAp or XnHApSr nanoparticles to xanthan hydrogel did not influence its porous morphology, gel content and swelling ratio. XCA/XnHAp and XCA/XnHApSr composites proved to be suitable for osteoblast growth and particularly XCA/XnHapSr composites induced higher alkaline phosphatase activity. PMID:24582240

  5. Emergence of robust growth laws from optimal regulation of ribosome synthesis

    PubMed Central

    Scott, Matthew; Klumpp, Stefan; Mateescu, Eduard M; Hwa, Terence

    2014-01-01

    Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large-scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome-wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms. PMID:25149558

  6. Platelet-derived growth factor-BB-mediated glycosaminoglycan synthesis is transduced through Akt.

    PubMed

    Cartel, Nicholas J; Wang, Jinxia; Post, Martin

    2002-04-01

    Previously we have demonstrated that the phosphoinositide 3-kinase (PI-3K) signal-transduction pathway mediates platelet-derived growth factor (PDGF)-BB-induced glycosaminoglycan (GAG) synthesis in fetal lung fibroblasts. In the present study we further investigated the signal-transduction pathway(s) that results in PDGF-BB-induced GAG synthesis. Over-expression of a soluble PDGF beta-receptor as well as a mutated form of the beta-receptor, unable to bind PI-3K, diminished GAG synthesis in fetal lung fibroblasts subsequent to PDGF-BB stimulation. The PI-3K inhibitor wortmannin blocked PDGF-BB-induced Akt activity as well as significantly diminishing PDGF-BB-mediated GAG synthesis. Expression of dominant-negative PI-3K also abrogated Akt activity and GAG synthesis. Furthermore, expression of dominant-negative Akt abrogated endogenous Akt activity, Rab3D phosphorylation and GAG synthesis, whereas expression of constitutively activated Akt stimulated Rab3D phosphorylation and GAG synthesis in the absence of PDGF-BB. Over-expression of wild-type PTEN (phosphatase and tensin homologue deleted in chromosome 10) inhibited Akt activity and concomitantly attenuated GAG synthesis in fibroblasts stimulated with PDGF-BB. These data suggest that Akt is an integral protein involved in PDGF-BB-mediated GAG regulation in fetal lung fibroblasts. PMID:11903042

  7. Direct cellular effects of some mediators, hormones and growth factor-like agents on denervated (isolated) rat gastric mucosal cells.

    PubMed

    Bódis, B; Karádi, O; Nagy, L; Dohoczky, C; Kolega, M; Mózsik, G

    1997-01-01

    The brain-gut axis has an important role in the mechanism of gastric cytoprotection in vivo. The aim of this study was to evaluate the in vitro effect of protective agents without any central and peripheral innervation. A mixed population of rat gastric mucosal cells was isolated by the method of Nagy et al (Gastroenterology (1994) 77, 433-443). Cells were incubated for 60 min with cytoprotective drugs such as prostacyclin, histamine, pentagastrin and PL-10 substances (synthesized parts of BPC). At the end of this incubation cells were treated by 15% ethanol for 5 min. Cell viability was tested by trypan blue exclusion test and succinic dehydrogenase activity. The following results were obtained: 1) prostacyclin, histamine and pentagastrin had no direct cytoprotective effect on isolated cells; and 2) PL-10 substances significantly protected the cells against ethanol-induced cellular damage. This led to the following conclusions: 1) in the phenomenon of gastric cytoprotection only the growth factor-like agents have a direct cellular effect; and 2) the intact peripheral innervation is basically necessary for the development of mediators and hormone-induced gastric cytoprotection. PMID:9403792

  8. Cytoplasmic domains determine signal specificity, cellular routing characteristics and influence ligand binding of epidermal growth factor and insulin receptors.

    PubMed Central

    Riedel, H; Dull, T J; Honegger, A M; Schlessinger, J; Ullrich, A

    1989-01-01

    The cell surface receptors for insulin and epidermal growth factor (EGF) both employ a tyrosine-specific protein kinase activity to fulfil their distinct biological roles. To identify the structural domains responsible for various receptor activities, we have generated chimeric receptor polypeptides consisting of major EGF and insulin receptor structural domains and examined their biochemical properties and cellular signalling activities. The EGF-insulin receptor hybrids are properly synthesized and transported to the cell surface, where they form binding competent structures that are defined by the origin of their extracellular domains. While their ligand binding affinities are altered, we find that these chimeric receptors are fully functional in transmitting signals across the plasma membrane and into the cell. Thus, EGF receptor and insulin receptor cytoplasmic domain signalling capabilities are independent of their new heterotetrameric or monomeric environments respectively. Furthermore, the cytoplasmic domains carry the structural determinants that define kinase specificity, mitogenic and transforming potential, and receptor routing. Images PMID:2583088

  9. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis

    PubMed Central

    de Pretis, Stefano; Gorski, Marcin M.; Tesi, Alessandra; Morelli, Marco J.; Bora, Pranami; Doni, Mirko; Verrecchia, Alessandro; Tonelli, Claudia; Fagà, Giovanni; Bianchi, Valerio; Ronchi, Alberto; Low, Diana; Müller, Heiko; Guccione, Ernesto; Campaner, Stefano; Amati, Bruno

    2014-01-01

    The c-myc proto-oncogene product, Myc, is a transcription factor that binds thousands of genomic loci1. Recent work suggested that rather than up- and down-regulating selected groups of genes1-3, Myc targets all active promoters and enhancers in the genome (a phenomenon termed “invasion”) and acts as a general amplifier of transcription4,5. However, the available data did not readily discriminate between direct and indirect effects of Myc on RNA biogenesis. We addressed this issue with genome-wide chromatin immunoprecipitation and RNA expression profiles during B-cell lymphomagenesis in mice, in cultured B-cells and fibroblasts. Consistent with long-standing observations6, we detected general increases in total RNA or mRNA copies per cell (hereby termed “amplification”)4,5 when comparing actively proliferating cells with control quiescent cells: this was true whether cells were stimulated by mitogens (requiring endogenous Myc for a proliferative response)7,8 or by deregulated, oncogenic Myc activity. RNA amplification and promoter/enhancer invasion by Myc were separable phenomena that could occur without one another. Moreover, whether or not associated with RNA amplification, Myc drove the differential expression of distinct subsets of target genes. Hence, while having the potential to interact with all active/poised regulatory elements in the genome4,5,9-11, Myc does not directly act as a global transcriptional amplifier4,5. Instead, our results imply that Myc activates and represses transcription of discrete gene sets, leading to changes in cellular state that can in turn feed back on global RNA production and turnover. PMID:25043028

  10. Differential expression of growth factors at the cellular level in virus-infected brain.

    PubMed

    Prosniak, Mikhail; Zborek, Anna; Scott, Gwen S; Roy, Anirban; Phares, Timothy W; Koprowski, Hilary; Hooper, D Craig

    2003-05-27

    The contribution of host factors to rabies virus (RV) transcription/replication and axonal/transsynaptic spread is largely unknown. We previously identified several host genes that are up-regulated in the mouse brain during RV infection, including neuroleukin, which is involved in neuronal growth and survival, cell motility, and differentiation, and fibroblast growth factor homologous factor 4 (FHF4), which has been implicated in limb and nervous system development. In this study, we used real-time quantitative RT-PCR to assess the expression of mRNAs specific for neuroleukin, the two isoforms of FHF4 (FHF4-1a and -1b) encoded by the FHF4 gene, and N protein of RV in neurons and astrocytes isolated by laser capture microdissection from mouse brains infected with the laboratory-adapted RV strain CVS-N2c or with a street RV of silver-haired bat origin. Differences in the gene expression patterns suggest that the capacity of RV strains to infect nonneuronal cells and differentially modulate host gene expression may be important in virus replication and spread in the CNS. PMID:12736376

  11. Differential expression of growth factors at the cellular level in virus-infected brain

    PubMed Central

    Prosniak, Mikhail; Zborek, Anna; Scott, Gwen S.; Roy, Anirban; Phares, Timothy W.; Koprowski, Hilary; Hooper, D. Craig

    2003-01-01

    The contribution of host factors to rabies virus (RV) transcription/replication and axonal/transsynaptic spread is largely unknown. We previously identified several host genes that are up-regulated in the mouse brain during RV infection, including neuroleukin, which is involved in neuronal growth and survival, cell motility, and differentiation, and fibroblast growth factor homologous factor 4 (FHF4), which has been implicated in limb and nervous system development. In this study, we used real-time quantitative RT-PCR to assess the expression of mRNAs specific for neuroleukin, the two isoforms of FHF4 (FHF4-1a and -1b) encoded by the FHF4 gene, and N protein of RV in neurons and astrocytes isolated by laser capture microdissection from mouse brains infected with the laboratory-adapted RV strain CVS-N2c or with a street RV of silver-haired bat origin. Differences in the gene expression patterns suggest that the capacity of RV strains to infect nonneuronal cells and differentially modulate host gene expression may be important in virus replication and spread in the CNS. PMID:12736376

  12. Effect of 2,4-Dichlorophenoxyacetic acid herbicide Escherichia coli growth, chemical, composition, and cellular envelope

    USGS Publications Warehouse

    Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.

    2001-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide widely used in the world and mainly excreted by the renal route in exposed humans and animals. Herbicides can affect other nontarget organisms, such as Escherichia coli. We observed that a single exposure to 1 mM 2,4-D diminished growth and total protein content in all E. coli strains tested in vitro. In addition, successive exposures to 0.01 mM 2,4-D had a toxic effect decreasing growth up to early stationary phase. Uropathogenic E. coli adhere to epithelial cells mediated by fimbriae, adhesins, and hydrophobic properties. 2,4-D exposure of uropathogenic E. coli demonstrated altered hydrophobicity and fimbriation. Hydrophobicity index values obtained by partition in p-xylene/water were 300-420% higher in exposed cells than in control ones. Furthermore, values of hemagglutination titer, protein contents in fimbrial crude extract, and electron microscopy demonstrated a significant diminution of fimbriation in treated cells. Other envelope alterations could be detected, such as lipoperoxidation, evidenced by decreased polyunsaturated fatty acids and increased lipid degradation products (malonaldehyde), and motility diminution. These alterations decreased cell adherence to erythrocytes, indicating a diminished pathogenic capacity of the 2,4-D-exposed E. coli. ?? 2001 by John Wiley & Sons, Inc.

  13. Bacillus anthracis tagO Is Required for Vegetative Growth and Secondary Cell Wall Polysaccharide Synthesis

    PubMed Central

    Lunderberg, J. Mark; Liszewski Zilla, Megan; Missiakas, Dominique

    2015-01-01

    ABSTRACT Bacillus anthracis elaborates a linear secondary cell wall polysaccharide (SCWP) that retains surface (S)-layer and associated proteins via their S-layer homology (SLH) domains. The SCWP is comprised of trisaccharide repeats [→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→] and tethered via acid-labile phosphodiester bonds to peptidoglycan. Earlier work identified UDP-GlcNAc 2-epimerases GneY (BAS5048) and GneZ (BAS5117), which act as catalysts of ManNAc synthesis, as well as a polysaccharide deacetylase (BAS5051), as factors contributing to SCWP synthesis. Here, we show that tagO (BAS5050), which encodes a UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme that initiates the synthesis of murein linkage units, is required for B. anthracis SCWP synthesis and S-layer assembly. Similar to gneY-gneZ mutants, B. anthracis strains lacking tagO cannot maintain cell shape or support vegetative growth. In contrast, mutations in BAS5051 do not affect B. anthracis cell shape, vegetative growth, SCWP synthesis, or S-layer assembly. These data suggest that TagO-mediated murein linkage unit assembly supports SCWP synthesis and attachment to the peptidoglycan via acid-labile phosphodiester bonds. Further, B. anthracis variants unable to synthesize SCWP trisaccharide repeats cannot sustain cell shape and vegetative growth. IMPORTANCE Bacillus anthracis elaborates an SCWP to support vegetative growth and envelope assembly. Here, we show that some, but not all, SCWP synthesis is dependent on tagO-derived murein linkage units and subsequent attachment of SCWP to peptidoglycan. The data implicate secondary polymer modifications of peptidoglycan and subcellular distributions as a key feature of the cell cycle in Gram-positive bacteria and establish foundations for work on the molecular functions of the SCWP and on inhibitors with antibiotic attributes. PMID:26324447

  14. Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data

    PubMed Central

    Müller, Margareta; Vignon-Clementel, Irene E.; Drasdo, Dirk

    2016-01-01

    We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We start with a simple model capturing part of the experimental observations. We then show, by performing a sensitivity analysis at each development stage of the model that its complexity needs to be stepwise increased to account for further experimental growth conditions. We thus ultimately arrive at a model that mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final model, is a minimal model capable of explaining all data simultaneously in the sense, that the number of mechanisms it contains is sufficient to explain the data and missing out any of its mechanisms did not permit fit between all data and the model within physiological parameter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a wide range of mechanisms discussed in biological literature. In this model, the cells lacking oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentrations of lactate or too low concentrations of ATP promote cell death. Only if the extracellular matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying cells produce a diffusive growth inhibitor. Missing out the spatial information would not permit to infer the mechanisms at work. Our findings suggest that this iterative data integration together with intermediate model sensitivity analysis at each model development stage, provide a promising strategy to infer predictive yet minimal (in the above sense) quantitative models of tumor growth, as prospectively of other tissue

  15. Inferring Growth Control Mechanisms in Growing Multi-cellular Spheroids of NSCLC Cells from Spatial-Temporal Image Data.

    PubMed

    Jagiella, Nick; Müller, Benedikt; Müller, Margareta; Vignon-Clementel, Irene E; Drasdo, Dirk

    2016-02-01

    We develop a quantitative single cell-based mathematical model for multi-cellular tumor spheroids (MCTS) of SK-MES-1 cells, a non-small cell lung cancer (NSCLC) cell line, growing under various nutrient conditions: we confront the simulations performed with this model with data on the growth kinetics and spatial labeling patterns for cell proliferation, extracellular matrix (ECM), cell distribution and cell death. We start with a simple model capturing part of the experimental observations. We then show, by performing a sensitivity analysis at each development stage of the model that its complexity needs to be stepwise increased to account for further experimental growth conditions. We thus ultimately arrive at a model that mimics the MCTS growth under multiple conditions to a great extent. Interestingly, the final model, is a minimal model capable of explaining all data simultaneously in the sense, that the number of mechanisms it contains is sufficient to explain the data and missing out any of its mechanisms did not permit fit between all data and the model within physiological parameter ranges. Nevertheless, compared to earlier models it is quite complex i.e., it includes a wide range of mechanisms discussed in biological literature. In this model, the cells lacking oxygen switch from aerobe to anaerobe glycolysis and produce lactate. Too high concentrations of lactate or too low concentrations of ATP promote cell death. Only if the extracellular matrix density overcomes a certain threshold, cells are able to enter the cell cycle. Dying cells produce a diffusive growth inhibitor. Missing out the spatial information would not permit to infer the mechanisms at work. Our findings suggest that this iterative data integration together with intermediate model sensitivity analysis at each model development stage, provide a promising strategy to infer predictive yet minimal (in the above sense) quantitative models of tumor growth, as prospectively of other tissue

  16. ROLE OF CELLULAR BIOENERGETICS IN SMOOTH MUSCLE CELL PROLIFERATION INDUCED BY PLATELET-DERIVED GROWTH FACTOR

    PubMed Central

    Perez, Jessica; Hill, Bradford G.; Benavides, Gloria A.; Dranka, Brian P.; Darley-Usmar, Victor M.

    2013-01-01

    SYNOPSIS Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that platelet-derived growth factor (PDGF) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux, and mitochondrial oxygen consumption were measured after treatment of primary rat aortic smooth muscle cells with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, lactate dehydrogenase protein levels and activity were significantly increased after PDGF treatment. Moreover, L-lactate substitution for D-glucose was sufficient for increasing the mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the lactate dehydrogenase inhibitor, oxamate. These data suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMC in the diseased vasculature. PMID:20331438

  17. Testicular disorders induced by plant growth regulators: cellular protection with proanthocyanidins grape seeds extract.

    PubMed

    Hassan, Hanaa A; Isa, Ahmed M; El-Kholy, Wafaa M; Nour, Samar E

    2013-10-01

    The present study aims to investigate the adverse effects of plant growth regulators : gibberellic acid (GA3) and indoleacetic acid (IAA) on testicular functions in rats, and extends to investigate the possible protective role of grape seed extract, proanthocyanidin (PAC). Male rats were divided into six groups; control group, PAC, GA3, IAA, GA3 + PAC and IAA + PAC groups. The data showed that GA3 and IAA caused significant increase in total lipids, total cholesterol, triglycerides, phospholipids and low-density-lipoprotein cholesterol in the serum, concomitant with a significant decrease in high-density-lipoprotein cholesterol, total protein, and testosterone levels. In addition, there was significant decrease in the activity of alkaline phosphatase, acid phosphatase, and gamma-glutamyl transferase. A significant decrease was detected also in epididymyal fructose along with a significant reduction in sperm count. Testicular lipid peroxidation product and hydrogen peroxide (H2O2) levels were significantly increased. Meanwhile, the total antioxidant capacity, glutathione, sulphahydryl group content, as well as superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase activity were significantly decreased. Moreover, there were a number of histopathological testicular changes including Leydig's cell degeneration, reduction in seminiferous tubule and necrotic symptoms and sperm degeneration in both GA3- and IAA-treated rats. However, an obvious recovery of all the above biochemical and histological testicular disorders was detected when PAC seed extract was supplemented to rats administered with GA3 or IAA indicating its protective effect. Therefore it was concluded that supplementation with PAC had ameliorative effects on those adverse effects of the mentioned plant growth regulators through its natural antioxidant properties. PMID:23292365

  18. Insulin-like synergistic stimulation of DNA synthesis in Swiss 3T3 cells by the BSC-1 cell-derived growth inhibitor related to transforming growth factor type. beta

    SciTech Connect

    Brown, K.D.; Holley, R.W.

    1987-06-01

    A cell growth inhibitor (GI), purified from BSC-1 cell-conditioned medium, has little if any effect on DNA synthesis when added alone to monolayer cultures of quiescent Swiss mouse 3T3 cells in serum-free medium. However, the inhibitor, which is closely related to transforming growth factor type ..beta.. (TGF-..beta..), exhibits a pronounced synergistic stimulation of DNA synthesis in combination with certain peptide (bombesin, vasopressin) or polypeptide (platelet-derived growth factor) mitogens. /sup 125/I-EGF binding was measured and the efflux of /sup 45/Ca/sup 2 +/ was measured in response to mitogen stimulation. A similar synergistic response has been demonstrated for TGF-..beta.. purified from human platelets. In the presence of 3 nM bombesin, a half-maximal stimulation of DNA synthesis was obtained at a GI concentration of approximately 60 pg/ml, with a maximal response at approximately 600 pg/ml. The synergistic interactions demonstrated by GI or TGF-..beta.. in stimulating Swiss 3T3 cells closely resemble those previously shown for insulin, and the authors have observed that GI does not synergize with insulin to stimulate DNA synthesis in these cells. Like insulin, and in contrast to bombesin, vasopressin, and platelet-derived growth factor, GI does not activate cellular inositolphospholipid hydrolysis, calcium mobilization, or cross-regulation of epidermal growth factor receptor affinity. These results raise the possibility that the biochemical pathways activated by GI/TGF-..beta.. and insulin converge at a post-receptor stage.

  19. Peptidoglycan Synthesis Machinery in Agrobacterium tumefaciens During Unipolar Growth and Cell Division

    PubMed Central

    Cameron, Todd A.; Anderson-Furgeson, James; Zupan, John R.; Zik, Justin J.

    2014-01-01

    ABSTRACT The synthesis of peptidoglycan (PG) in bacteria is a crucial process controlling cell shape and vitality. In contrast to bacteria such as Escherichia coli that grow by dispersed lateral insertion of PG, little is known of the processes that direct polar PG synthesis in other bacteria such as the Rhizobiales. To better understand polar growth in the Rhizobiales Agrobacterium tumefaciens, we first surveyed its genome to identify homologs of (~70) well-known PG synthesis components. Since most of the canonical cell elongation components are absent from A. tumefaciens, we made fluorescent protein fusions to other putative PG synthesis components to assay their subcellular localization patterns. The cell division scaffolds FtsZ and FtsA, PBP1a, and a Rhizobiales- and Rhodobacterales-specific l,d-transpeptidase (LDT) all associate with the elongating cell pole. All four proteins also localize to the septum during cell division. Examination of the dimensions of growing cells revealed that new cell compartments gradually increase in width as they grow in length. This increase in cell width is coincident with an expanded region of LDT-mediated PG synthesis activity, as measured directly through incorporation of exogenous d-amino acids. Thus, unipolar growth in the Rhizobiales is surprisingly dynamic and represents a significant departure from the canonical growth mechanism of E. coli and other well-studied bacilli. PMID:24865559

  20. Mathematical Modeling of Cellular Metabolism.

    PubMed

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    2016-01-01

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research. PMID:27557541

  1. Effect of photo-immobilization of epidermal growth factor on the cellular behaviors

    SciTech Connect

    Ogiwara, Kazutaka; Nagaoka, Masato; Cho, Chong-Su; Akaike, Toshihiro . E-mail: takaike@bio.titech.ac.jp

    2006-06-23

    We constructed photo-reactive epidermal growth factor (EGF) bearing p-azido phenylalanine at the C-terminal (HEGFP) by genetic engineering to investigate the possibility of immobilized EGF as a novel artificial extracellular matrix (ECM). The constructed recombinant protein was immobilized to glass surface by ultraviolet irradiation. A431 cells adhered both to HEGFP-immobilized and collagen-coated surfaces. Interaction between immobilized HEGFP and EGF receptors in the A431 cells was independent of Mg{sup 2+} although integrin-mediated cell adhesion to natural ECMs is dependent on Mg{sup 2+}. Phosphorylation of EGF receptors in A431 cells was induced by immobilized HEGFP as same as soluble EGF. DNA uptake of hepatocytes decreased by immobilized HEGFP whereas it increased by soluble EGF. Liver-specific functions of hepatocytes were maintained for 3 days by immobilized HEGFP whereas they were not maintained by soluble EGF, indicating that immobilized HEGFP follows different signal transduction pathway from soluble EGF.

  2. Modification of the cellular heat sensitivity of cucumber by growth under supplemental ultraviolet-B radiation

    SciTech Connect

    Caldwell, C.R.

    1994-02-01

    The effect of ultraviolet B (UV-B) radiation on the thermal sensitivity of cucumber (Cucumis sativus L.) was studied using UV-B-sensitive cv Poinsett 76 and UV-B-resistant cv Ashley grown under control and elevated (300 mW m{sup -2}) UV-B radiation levels. Using both cotyledon and leaf discs, the ability of the tissue to reduce triphenyl tetrazolium chloride (TTC) was determined after treatment at 50{degrees}C for various times. Semilogarithmic plots of TTC reduction as a function of time at 50{degrees}were curvilinear. They were monophasic for the control cucumber and biphasic for cucumber grown in the presence of elevated UV-B. Treatment of cucumber plants at 37{degrees}C for 24 h or of tissue discs at acute UV-B levels for 1 h further modified their response to elevated temperature. These results suggest that growth of cucumber under enhanced UV-B radiation levels increased its ability to withstand elevated temperatures. 19 refs., 2 figs., 2 tabs.

  3. The multiple myeloma–associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity

    PubMed Central

    Abukhdeir, Abde M.; Konishi, Hiroyuki; Garay, Joseph P.; Gustin, John P.; Wang, Qiuju; Arceci, Robert J.; Matsui, William

    2008-01-01

    Multiple myeloma (MM) is an incurable hematologic malignancy characterized by recurrent chromosomal translocations. Patients with t(4;14)(p16;q32) are the worst prognostic subgroup in MM, although the basis for this poor prognosis is unknown. The t(4;14) is unusual in that it involves 2 potential target genes: fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET). MMSET is universally overexpressed in t(4;14) MM, whereas FGFR3 expression is lost in one-third of cases. Nonetheless, the role of MMSET in t(4;14) MM has remained unclear. Here we demonstrate a role for MMSET in t(4;14) MM cells. Down-regulation of MMSET expression in MM cell lines by RNA interference and by selective disruption of the translocated MMSET allele using gene targeting dramatically reduced colony formation in methylcellulose but had only modest effects in liquid culture. In addition, MMSET knockdown led to cell-cycle arrest of adherent MM cells and reduced the ability of MM cells to adhere to extracellular matrix. Finally, MMSET knockdown and knockout reduced tumor formation by MM xenografts. These results provide the first direct evidence that MMSET plays a significant role in t(4;14) MM and suggest that therapies targeting this gene could impact this particular subset of poor-prognosis patients. PMID:17942756

  4. Knockdown of EphB1 receptor decreases medulloblastoma cell growth and migration and increases cellular radiosensitization

    PubMed Central

    Timofeeva, Olga; Pasquale, Elena B.; Hirsch, Kellen; MacDonald, Tobey J.; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel

    2015-01-01

    The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target. PMID:25879388

  5. Knockdown of EphB1 receptor decreases medulloblastoma cell growth and migration and increases cellular radiosensitization.

    PubMed

    Bhatia, Shilpa; Baig, Nimrah A; Timofeeva, Olga; Pasquale, Elena B; Hirsch, Kellen; MacDonald, Tobey J; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel; Rodriguez, Olga; Albanese, Chris; Karam, Sana D

    2015-04-20

    The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target. PMID:25879388

  6. Complex, multi-scale small intestinal topography replicated in cellular growth substrates fabricated via chemical vapor deposition of Parylene C.

    PubMed

    Koppes, Abigail N; Kamath, Megha; Pfluger, Courtney A; Burkey, Daniel D; Dokmeci, Mehmet; Wang, Lin; Carrier, Rebecca L

    2016-01-01

    Native small intestine possesses distinct multi-scale structures (e.g., crypts, villi) not included in traditional 2D intestinal culture models for drug delivery and regenerative medicine. The known impact of structure on cell function motivates exploration of the influence of intestinal topography on the phenotype of cultured epithelial cells, but the irregular, macro- to submicron-scale features of native intestine are challenging to precisely replicate in cellular growth substrates. Herein, we utilized chemical vapor deposition of Parylene C on decellularized porcine small intestine to create polymeric intestinal replicas containing biomimetic irregular, multi-scale structures. These replicas were used as molds for polydimethylsiloxane (PDMS) growth substrates with macro to submicron intestinal topographical features. Resultant PDMS replicas exhibit multiscale resolution including macro- to micro-scale folds, crypt and villus structures, and submicron-scale features of the underlying basement membrane. After 10 d of human epithelial colorectal cell culture on PDMS substrates, the inclusion of biomimetic topographical features enhanced alkaline phosphatase expression 2.3-fold compared to flat controls, suggesting biomimetic topography is important in induced epithelial differentiation. This work presents a facile, inexpensive method for precisely replicating complex hierarchal features of native tissue, towards a new model for regenerative medicine and drug delivery for intestinal disorders and diseases. PMID:27550930

  7. The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis

    PubMed Central

    Smith, Gina A.; Fearnley, Gareth W.; Tomlinson, Darren C.; Harrison, Michael A.; Ponnambalam, Sreenivasan

    2015-01-01

    VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR–VEGF complexes with membrane trafficking along the endosome–lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR–VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments. PMID:26285805

  8. NONEQUILIBRIUM LASER SYNTHESIS AND REAL-TIME DIAGNOSTICS OF CARBON NANOMATERIAL GROWTH

    SciTech Connect

    Geohegan, David B; Puretzky, Alexander A; Rouleau, Christopher M; Regmi, Murari; Jackson, Jeremy Joseph; Readle, Jason D; More, Karren Leslie; Eres, Gyula; Duscher, Gerd J M

    2013-01-01

    Lasers provide unique growth conditions for the synthesis of novel nanomaterials. In addition, they can serve as remote spectroscopic probes of the growth environment. Ultimately, through the process understanding they provide, real-time laser diagnostics that can be used to control the nanomanufacturing of nanomaterials. Here, progress in the laser-based synthesis and investigations of carbon nanomaterial growth kinetics will be reviewed with an emphasis on single-wall carbon nanotubes (SWNTs), single-wall carbon nanohorns (SWNHs), and graphene. Two synthesis methods will be compared. First, the unique high-temperature growth environment of a laser plasma will be examined using time-resolved imaging and laser spectroscopy to understand how pure carbon can self-assemble rapidly into a variety of forms including SWNHs and graphene flakes, and with catalyst-assistance, SWNTs. Atomic resolution images of SWNTs, SWNHs, and graphene reveals that graphene flakes are likely building blocks for the growth of these materials. Second, lower-temperature, chemical vapor deposition (CVD) methods suitable for mass production of nanomaterials will be examined. Pulsed-CVD and pulsed laser deposition (PLD) are described to investigate the catalyst-assisted growth kinetics of graphene and SWNTs. Time-resolved laser reflectivity and Raman spectroscopy studies show that autocatalytic kinetics imply the existence of intermediates crucial to the efficient nanomanufacturing of these materials for energy applications.

  9. Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism

    NASA Astrophysics Data System (ADS)

    Mary, I. Reeta; Sonia, S.; Viji, S.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N.

    2016-01-01

    Morphological evolution of materials becomes a prodigious challenge due to their key role in defining their functional properties and desired applications. Herein, we report the synthesis of hydroxyapatite (HAp) microstructures with multiform morphologies, such as spheres, cubes, hexagonal rods and nested bundles constructed from their respective nanoscale building blocks via a simple cost effective hydro/solvothermal method. A possible formation mechanism of diverse morphologies of HAp has been presented. Structural analysis based on X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirms the purity of the HAp microstructures. The multiform morphologies of HAp were corroborated by using Field emission scanning electron microscope (FESEM).

  10. Cellular Growth and Mitochondrial Ultrastructure of Leishmania (Viannia) braziliensis Promastigotes Are Affected by the Iron Chelator 2,2-Dipyridyl

    PubMed Central

    Mesquita-Rodrigues, Camila; Menna-Barreto, Rubem F. S.; Sabóia-Vahia, Leonardo; Da-Silva, Silvia A. G.; de Souza, Elen M.; Waghabi, Mariana C.; Cuervo, Patrícia; De Jesus, José B.

    2013-01-01

    Background Iron is an essential element for the survival of microorganisms in vitro and in vivo, acting as a cofactor of several enzymes and playing a critical role in host-parasite relationships. Leishmania (Viannia) braziliensis is a parasite that is widespread in the new world and considered the major etiological agent of American tegumentary leishmaniasis. Although iron depletion leads to promastigote and amastigote growth inhibition, little is known about the role of iron in the biology of Leishmania. Furthermore, there are no reports regarding the importance of iron for L. (V.) braziliensis. Methodology/Principal Findings In this study, the effect of iron on the growth, ultrastructure and protein expression of L. (V.) braziliensis was analyzed by the use of the chelator 2,2-dipyridyl. Treatment with 2,2-dipyridyl affected parasites' growth in a dose- and time-dependent manner. Multiplication of the parasites was recovered after reinoculation in fresh culture medium. Ultrastructural analysis of treated promastigotes revealed marked mitochondrial swelling with loss of cristae and matrix and the presence of concentric membranar structures inside the organelle. Iron depletion also induced Golgi disruption and intense cytoplasmic vacuolization. Fluorescence-activated cell sorting analysis of tetramethylrhodamine ester-stained parasites showed that 2,2-dipyridyl collapsed the mitochondrial membrane potential. The incubation of parasites with propidium iodide demonstrated that disruption of mitochondrial membrane potential was not associated with plasma membrane permeabilization. TUNEL assays indicated no DNA fragmentation in chelator-treated promastigotes. In addition, two-dimensional electrophoresis showed that treatment with the iron chelator induced up- or down-regulation of proteins involved in metabolism of nucleic acids and coordination of post-translational modifications, without altering their mRNA levels. Conclusions Iron chelation leads to a

  11. Dispersion fraction enhances cellular growth of carbon nanotube and aluminum oxide reinforced ultrahigh molecular weight polyethylene biocomposites.

    PubMed

    Patel, Anup Kumar; Balani, Kantesh

    2015-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al2O3) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al2O3 has shown to alter the wettability (from contact angle of ~88°±2° to ~118°±4°) and surface energy (from ~23.20 to ~17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT-Al2O3 reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT-Al2O3 reinforced UHMWPE biopolymer composites. PMID:25492015

  12. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    SciTech Connect

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black

  13. Synthesis and growth mechanism of long ultrafine gold nanowires with uniform diameter

    NASA Astrophysics Data System (ADS)

    Kura, Hiroaki; Ogawa, Tomoyuki

    2010-04-01

    Homogeneous Au nanowires with 1.5 nm diameters and lengths of over 100 μm were synthesized in an oleylamine matrix via the simple reduction of aurichloride in a limited reaction temperature range around 85 °C. Oleylamine has multifunctional roles as solvent, surfactant, and reductant, and the surfactant induce anisotropic growth by adsorbing on the specific Au crystalline surface. As a result, Au nanowires were grown along the ⟨111⟩ direction of fcc-Au having many hcp atomic stacks. In this synthesis method, various shapes of Au nanostructures were produced simultaneously and this was strongly dependent on the reaction temperature. Au nanowires were provided by reconstruction from nanoparticles or their agglomeration. The growth mechanism of the Au nanowire in this synthesis was found to be quite unique and different from that for a conventional one-dimensional nanostructure which is obtained by anisotropical growth with supplying atoms from external resources.

  14. Total Chemical Synthesis of Biologically Active Vascular Endothelial Growth Factor

    SciTech Connect

    Mandal, Kalyaneswar; Kent, Stephen B.H.

    2011-09-15

    The 204-residue covalent-dimer vascular endothelial growth factor (VEGF, see picture) with full mitogenic activity was prepared from three unprotected peptide segments by one-pot native chemical ligations. The covalent structure of the synthetic VEGF was confirmed by precise mass measurement, and the three-dimensional structure of the synthetic protein was determined by high-resolution X-ray crystallography.

  15. Renal protein synthesis in diabetes mellitus: effects of insulin and insulin-like growth factor I

    SciTech Connect

    Barac-Nieto, M.; Lui, S.M.; Spitzer, A. )

    1991-06-01

    Is increased synthesis of proteins responsible for the hypertrophy of kidney cells in diabetes mellitus Does the lack of insulin, and/or the effect of insulin-like growth factor I (IGFI) on renal tubule protein synthesis play a role in diabetic renal hypertrophy To answer these questions, we determined the rates of 3H-valine incorporation into tubule proteins and the valine-tRNA specific activity, in the presence or absence of insulin and/or IGFI, in proximal tubule suspension isolated from kidneys of streptozotocin diabetic and control rats. The rate of protein synthesis increased, while the stimulatory effects of insulin and IGFI on tubule protein synthesis were reduced, early (96 hours) after induction of experimental diabetes. Thus, hypertrophy of the kidneys in experimental diabetes mellitus is associated with increases in protein synthesis, rather than with decreases in protein degradation. Factor(s) other than the lack of insulin, or the effects of IGFI, must be responsible for the high rate of protein synthesis present in the hypertrophying tubules of diabetic rats.

  16. Spontaneous Mesotheliomas in F344/N Rats are Characterized by Dysregulation of Cellular Growth and Immune Function Pathways

    PubMed Central

    Blackshear, Pamela E.; Pandiri, Arun R.; Ton, Thai-Vu T.; Clayton, Natasha P.; Shockley, Keith R.; Peddada, Shyamal D.; Gerrish, Kevin E.; Sills, Robert C.; Hoenerhoff, Mark J.

    2016-01-01

    Aged male Fischer 344/N rats are prone to developing spontaneous peritoneal mesotheliomas, which arise predominantly from the tunica vaginalis of the testes. A definitive cause for the predominance of this neoplasm in F344/N rats is unknown. Investigation of the molecular alterations that occur in spontaneous rat mesotheliomas may provide insight into their pathogenesis, as well enable a better understanding regarding the mechanisms underlying chemically induced mesothelioma in rodents. Mesothelial cell function represents a complex interplay of pathways related to host defense mechanisms and maintenance of cellular homeostasis. Global gene expression profiles of spontaneous mesotheliomas from vehicle control male F344/N rats from two-year National Toxicology Program carcinogenicity bioassays were analyzed to determine the molecular features of these tumors, and elucidate tumor-specific gene expression profiles. The resulting gene expression pattern showed that spontaneous mesotheliomas are associated with upregulation various growth factors, oncogenes, cytokines, pattern recognition response receptors (PRR) and pathogen associated molecular patterns (PAMP) receptors, and the production of reactive oxygen and nitrogen species, as well as downregulation of apoptosis pathways. Alterations in these pathways in turn trigger molecular responses that stimulate cell proliferation and promote tumor survival and progression. PMID:23980201

  17. The Effects of Imatinib Mesylate on Cellular Viability, Platelet Derived Growth Factor and Stem Cell Factor in Mouse Testicular Normal Leydig Cells

    PubMed Central

    Kheradmand, Fatemeh; Hashemnia, Seyyed Mohammad Reza; Valizadeh, Nasim; Roshan-Milani, Shiva

    2016-01-01

    Background: Growth factors play an essential role in the development of tumor and normal cells like testicular leydig cells. Treatment of cancer with anti-cancer agents like imatinib mesylate may interfere with normal leydig cell activity, growth and fertility through failure in growth factors’ production or their signaling pathways. The purpose of the study was to determine cellular viability and the levels of, platelet derived growth factor (PDGF) and stem cell factor (SCF) in normal mouse leydig cells exposed to imatinib, and addressing the effect of imatinib on fertility potential. Methods: The mouse TM3 leydig cells were treated with 0 (control), 2.5, 5, 10 and 20 μM imatinib for 2, 4 and 6 days. Each experiment was repeated three times (15 experiments in each day).The cellular viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, one-way ANOVA with Tukey’s post hoc and Kruskal-Wallis test were performed. A p-value less than 0.05 was considered statistically significant. Results: With increasing drug concentration, cellular viability decreased significantly (p<0.05) and in contrast, PDGF levels increased (p<0.05). Different imatinib concentrations had no significant effect on SCF level. Increasing the duration of treatment from 2 to 6 days had no obvious effect on cellular viability, PDGF and SCF levels. Conclusion: Imatinib may reduce fertility potential especially at higher concentrations in patients treated with this drug by decreasing cellular viability. The effect of imatinib on leydig cells is associated with PDGF stimulation. Of course future studies can be helpful in exploring the long term effects of this drug. PMID:27141462

  18. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis.

    PubMed

    Zhai, Yueming; DuChene, Joseph S; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C; You, Bo; Guo, Wenxiao; DiCiaccio, Benedetto; Qian, Kun; Zhao, Evan W; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A; Zhu, Zihua; Wei, Wei David

    2016-08-01

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms. PMID:27376686

  19. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth.

    PubMed

    Besseau, Sébastien; Hoffmann, Laurent; Geoffroy, Pierrette; Lapierre, Catherine; Pollet, Brigitte; Legrand, Michel

    2007-01-01

    In Arabidopsis thaliana, silencing of hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT), a lignin biosynthetic gene, results in a strong reduction of plant growth. We show that, in HCT-silenced plants, lignin synthesis repression leads to the redirection of the metabolic flux into flavonoids through chalcone synthase activity. Several flavonol glycosides and acylated anthocyanin were shown to accumulate in higher amounts in silenced plants. By contrast, sinapoylmalate levels were barely affected, suggesting that the synthesis of that phenylpropanoid compound might be HCT-independent. The growth phenotype of HCT-silenced plants was shown to be controlled by light and to depend on chalcone synthase expression. Histochemical analysis of silenced stem tissues demonstrated altered tracheary elements. The level of plant growth reduction of HCT-deficient plants was correlated with the inhibition of auxin transport. Suppression of flavonoid accumulation by chalcone synthase repression in HCT-deficient plants restored normal auxin transport and wild-type plant growth. By contrast, the lignin structure of the plants simultaneously repressed for HCT and chalcone synthase remained as severely altered as in HCT-silenced plants, with a large predominance of nonmethoxylated H units. These data demonstrate that the reduced size phenotype of HCT-silenced plants is not due to the alteration of lignin synthesis but to flavonoid accumulation. PMID:17237352

  20. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis

    NASA Astrophysics Data System (ADS)

    Zhai, Yueming; Duchene, Joseph S.; Wang, Yi-Chung; Qiu, Jingjing; Johnston-Peck, Aaron C.; You, Bo; Guo, Wenxiao; Diciaccio, Benedetto; Qian, Kun; Zhao, Evan W.; Ooi, Frances; Hu, Dehong; Su, Dong; Stach, Eric A.; Zhu, Zihua; Wei, Wei David

    2016-08-01

    After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

  1. Synthesis, growth and vibrational spectroscopic study of a novel coumarinoylthiazole.

    PubMed

    Reshmy, R; Sajan, D; Kurien Thomas, K; Sulekha, A; Rajasekharan, K N; Selvanayagam, S; Alver, O

    2012-11-01

    An efficient route was developed for the synthesis of novel 3-(2-morpholinyl-4-phenylthiazol-5-oyl)coumarin (MPTC). FT-IR spectrum of MPTC was recorded and analyzed. The crystal structure data are also described. The vibrational wavenumbers were computed theoretically using the Gaussian03 package of programs using HF/6-31G(d) and B3LYP/6-31G(d) levels of theory. The data obtained from vibrational wave number calculations are used to assign vibrational bands observed in the infrared spectra of MPTC. The first hyperpolarizability, infrared absorption band intensities and intensities of raman active bands are reported. The calculated first hyperpolarizability is comparable with the values reported for compounds of similar structure. The structural parameters of MPTC obtained from XRD studies are in agreement with the calculated values. The unit cell parameters of crystals of MPTC are: a=8.6017(10)Å, b=9.9735(5)Å, c=13.3870(13)Å, α=111.123(6)°, β=90.102(9)°, γ=110.246(6)°, and Z=2,1.397 Mg/m(3). PMID:22940047

  2. Spiro[pyrrolidine-3, 3´-oxindole] as potent anti-breast cancer compounds: Their design, synthesis, biological evaluation and cellular target identification.

    PubMed

    Hati, Santanu; Tripathy, Sayantan; Dutta, Pratip Kumar; Agarwal, Rahul; Srinivasan, Ramprasad; Singh, Ashutosh; Singh, Shailja; Sen, Subhabrata

    2016-01-01

    The spiro[pyrrolidine-3, 3´-oxindole] moiety is present as a core in number of alkaloids with substantial biological activities. Here in we report design and synthesis of a library of compounds bearing spiro[pyrrolidine-3, 3´-oxindole] motifs that demonstrated exceptional inhibitory activity against the proliferation of MCF-7 breast cancer cells. The synthesis involved a one pot Pictet Spengler-Oxidative ring contraction of tryptamine to the desired scaffolds and occurred in 1:1 THF and water with catalytic trifluoroacetic acid and stoichiometric N-bromosuccinimide as an oxidant. Phenotypic profiling indicated that these molecules induce apoptotic cell death in MCF-7 cells. Target deconvolution with most potent compound 5l from the library, using chemical proteomics indicated histone deacetylase 2 (HDAC2) and prohibitin 2 as the potential cellular binding partners. Molecular docking of 5l with HDAC2 provided insights pertinent to putative binding interactions. PMID:27573798

  3. Spiro[pyrrolidine-3, 3´-oxindole] as potent anti-breast cancer compounds: Their design, synthesis, biological evaluation and cellular target identification

    PubMed Central

    Hati, Santanu; Tripathy, Sayantan; Dutta, Pratip Kumar; Agarwal, Rahul; Srinivasan, Ramprasad; Singh, Ashutosh; Singh, Shailja; Sen, Subhabrata

    2016-01-01

    The spiro[pyrrolidine-3, 3´-oxindole] moiety is present as a core in number of alkaloids with substantial biological activities. Here in we report design and synthesis of a library of compounds bearing spiro[pyrrolidine-3, 3´-oxindole] motifs that demonstrated exceptional inhibitory activity against the proliferation of MCF-7 breast cancer cells. The synthesis involved a one pot Pictet Spengler-Oxidative ring contraction of tryptamine to the desired scaffolds and occurred in 1:1 THF and water with catalytic trifluoroacetic acid and stoichiometric N-bromosuccinimide as an oxidant. Phenotypic profiling indicated that these molecules induce apoptotic cell death in MCF-7 cells. Target deconvolution with most potent compound 5l from the library, using chemical proteomics indicated histone deacetylase 2 (HDAC2) and prohibitin 2 as the potential cellular binding partners. Molecular docking of 5l with HDAC2 provided insights pertinent to putative binding interactions. PMID:27573798

  4. Cellular growth and survival are mediated by beta 1 integrins in normal human breast epithelium but not in breast carcinoma

    SciTech Connect

    Howlett, Anthony R; Bailey, Nina; Damsky, Caroline; Petersen, Ole W; Bissell, Mina J

    1994-11-28

    capacity to form colonies. Thus under our culture conditions breast acinar formation is at least a two-step process involving {beta}1-integrin-dependent cellular growth followed by polarization of the cells into organized structures. The regulation of this pathway appears to be impaired or lost in the tumor cells, suggesting that tumor colony formation occurs by independent mechanisms and that loss of proper integrinmediated cell-ECM interaction may be critical to breast tumor formation.

  5. Effect of Growth Rate on Histidine Catabolism and Histidase Synthesis in Aerobacter aerogenes1

    PubMed Central

    Jensen, Donald E.; Neidhardt, Frederick C.

    1969-01-01

    A study was made of how the catabolism of a carbon and energy source is affected by the biosynthetic demands of growing bacterial cells. Cultures of Aerobacter aerogenes in l-histidine medium were grown in a chemostat at rates determined by the supply of either sulfate or a required amino acid, l-arginine. It was discovered that the rate at which these cells grow under a biosynthetic restriction determines both the rate and the pattern of histidine degradation. (i) Histidine catabolism is partially coupled to the growth rate. This coupling is achieved by catabolite repression of histidase (histidine ammonia lyase; EC 4.3.1.3.), and also by a slightly decreased in vivo function of this enzyme at low growth rates. (ii) The looseness of the coupling results in a direct relationship between growth rate and growth yield, and possibly is correlated with an altered pattern of carbon flow from histidine. (iii) Sudden decreases in growth rate cause total repression of histidase synthesis for substantial periods of time. (iv) Sudden release of biosynthetic restriction leads rapidly to an increase in the functioning of the cells' complement of histidase, an increase in the rate of synthesis of this enzyme, and an increase in the growth yield from histidine. PMID:5781570

  6. Cellular Internalization of Fibroblast Growth Factor-12 Exerts Radioprotective Effects on Intestinal Radiation Damage Independently of FGFR Signaling

    SciTech Connect

    Nakayama, Fumiaki; Umeda, Sachiko; Yasuda, Takeshi; Fujita, Mayumi; Asada, Masahiro; Meineke, Viktor; Imamura, Toru; Imai, Takashi

    2014-02-01

    Purpose: Several fibroblast growth factors (FGFs) were shown to inhibit radiation-induced tissue damage through FGF receptor (FGFR) signaling; however, this signaling was also found to be involved in the pathogenesis of several malignant tumors. In contrast, FGF12 cannot activate any FGFRs. Instead, FGF12 can be internalized readily into cells using 2 cell-penetrating peptide domains (CPP-M, CPP-C). Therefore, this study focused on clarifying the role of FGF12 internalization in protection against radiation-induced intestinal injury. Methods and Materials: Each FGF or peptide was administered intraperitoneally to BALB/c mice in the absence of heparin 24 hours before or after total body irradiation with γ rays at 9 to 12 Gy. Several radioprotective effects were examined in the jejunum. Results: Administration of FGF12 after radiation exposure was as effective as pretreatment in significantly promoting intestinal regeneration, proliferation of crypt cells, and epithelial differentiation. Two domains, comprising amino acid residues 80 to 109 and 140 to 169 of FGF12B, were identified as being responsible for the radioprotective activity, so that deletion of both domains from FGF12B resulted in a reduction in activity. Interestingly, these regions included the CPP-M and CPP-C domains, respectively; however, CPP-C by itself did not show an antiapoptotic effect. In addition, FGF1, prototypic FGF, possesses a domain corresponding to CPP-M, whereas it lacks CPP-C, so the fusion of FGF1 with CPP-C (FGF1/CPP-C) enhanced cellular internalization and increased radioprotective activity. However, FGF1/CPP-C reduced in vitro mitogenic activity through FGFRs compared with FGF1, implying that FGFR signaling might not be essential for promoting the radioprotective effect of FGF1/CPP-C. In addition, internalized FGF12 suppressed the activation of p38α after irradiation, resulting in reduced radiation-induced apoptosis. Conclusions: These findings indicate that FGF12 can protect the

  7. Microbial growth and macromolecular synthesis in the northwestern Atlantic Ocean

    SciTech Connect

    Cuhel, R.L.; Jannasch, H.W.; Taylor, C.D.

    1983-01-01

    Simultaneous time-course measurements of /sup 35/SO/sub 4//sup 2 -/, /sup 32/PO/sup 43 -/, /sup 15/NH/sub 4//sup +/, and (/sup 14/C)acetate, glucose, and glutamate uptake were made at three stations in the northwestern Atlantic Ocean, using water samples taken from well below the euphotic zone. Marked deviations from linearity were observed in 14 of the 15 cases. At the two most inshore stations uptake of /sup 15/NH/sub 4//sup +/ or incorporation of /sup 35/SO/sub 4//sup 2 -/ into protein was undetectable for 16-30 h, followed by very rapid increases in the rates of activity. The sudden burst of SO/sub 4//sup 2 -/and NH/sub 4//sup +/ uptake was accompanied by a major increase in the incorporation of /sup 32/P into RNA and lipid fractions of the microbial population at a continental slope station. At a station in Sargasso Sea, all substrates were taken up without lag. Extended incubations led to a growth plateau which may be a measure of the total biologically labile organic nutrient supply. In all cases tested, chloramphenicol severely restricted uptake. One of the inshore stations was revisited a year later with similar results. The combined data demonstrate the utility of using inorganic nutrient uptake and subcellular incorporation patterns to measure microbial growth and metabolism and stress the necessity of time-course rather than end-point incubations.

  8. Epitaxial growth and heterostructure synthesis by ion beam deposition (IBD)

    SciTech Connect

    Herbots, N.; Appleton, B.R.; Noggle, T.S.; Pennycook, S.J.; Zuhr, R.A.; Zehner, D.M.

    1986-01-01

    The synthesis of heterostructures and the possibility of low-temperature epitaxy by direct ion beam deposition at low energies (10 to 200 eV) were investigated both theoretically and experimentally. Monte-Carlo simulations of ion-solid interactions were used to study collision processes during IBD and have led to a qualitative understanding of the physical parameters involved in the deposition process. /sup 30/Si and /sup 74/Ge were deposited on Si(100) and Ge(100) directly from mass- and energy-analyzed ion beams. Ge/Si multilayers with interfaces as sharp as 0.35 nm were formed by IBD at 65 eV. Reactive ion etching with 20 eV /sup 37/Cl was used to clean Si surfaces in-situ at 625 and 870/sup 0/K. IBD epitaxy was then observed between 625 and 870/sup 0/K with ion energies ranging from 10 to 65 eV. /sup 30/Si films on Si(100) grown at 700/sup 0/K exhibited an ion channeling minimum yield of 4.8%. The dopant species in the substrate affected the occurrence of silicon epitaxy below 870/sup 0/K. Cross-section transmission electron microscopy (TEM) showed that dislocation loops were formed within the substrate during heated deposition, at a depth larger than 40 nm below the bombarded region. A uniaxial lattice expansion normal to the surface was measured in IBD crystals by x-ray Bragg reflection profiling and ion channeling. It is concluded that epitaxial layers and heterostructures can be formed at low temperature by IBD.

  9. Chemical synthesis of a gene for human epidermal growth factor urogastrone and its expression in yeast.

    PubMed Central

    Urdea, M S; Merryweather, J P; Mullenbach, G T; Coit, D; Heberlein, U; Valenzuela, P; Barr, P J

    1983-01-01

    We have chemically synthesized and expressed in yeast a gene coding for human epidermal growth factor (urogastrone), a 53-amino-acid polypeptide that has been shown to promote epithelial cell proliferation and to inhibit gastric acid secretion. The synthetic gene, consisting of 170 base pairs, was designed with yeast-preferred codons and assembled by enzymatic ligation of synthetic fragments produced by phosphoramidite chemistry. The DNA synthesis protocol used allows for facile synthesis of oligonucleotides larger than 50 bases. Yeast cells were transformed with plasmids containing the synthetic gene under control of a yeast glyceraldehyde-3-phosphate dehydrogenase gene promoter and were shown to synthesize a biologically active human epidermal growth factor. Images PMID:6369317

  10. Synthesis, growth and characterization of cadmium manganese thiocyanate (CMTC) crystal

    NASA Astrophysics Data System (ADS)

    Paramasivam, P.; Raja, C. Ramachandra

    2011-09-01

    Single crystals of cadmium manganese thiocyanate, CdMn(SCN)4 (CMTC) have been successfully synthesized and grown by slow evaporation solution growth technique using water as solvent at room temperature. The crystal was characterized by different techniques for finding its suitability for device fabrications. From the single crystal XRD the crystal system was identified as tetragonal. The functional groups were identified from FTIR analysis. The optical studies have been carried out and found that the tendency of transmission observed from the specimen with respect to the wavelength of light is practically more suitable for the present trends in communication engineering. From the thermal analysis the decomposing temperature of the grown crystal is more significant when compared with the studies performed earlier.

  11. Synthesis, growth and characterization of cadmium manganese thiocyanate (CMTC) crystal.

    PubMed

    Paramasivam, P; Raja, C Ramachandra

    2011-09-01

    Single crystals of cadmium manganese thiocyanate, CdMn(SCN)4 (CMTC) have been successfully synthesized and grown by slow evaporation solution growth technique using water as solvent at room temperature. The crystal was characterized by different techniques for finding its suitability for device fabrications. From the single crystal XRD the crystal system was identified as tetragonal. The functional groups were identified from FTIR analysis. The optical studies have been carried out and found that the tendency of transmission observed from the specimen with respect to the wavelength of light is practically more suitable for the present trends in communication engineering. From the thermal analysis the decomposing temperature of the grown crystal is more significant when compared with the studies performed earlier. PMID:21640636

  12. Single Crystal Growth of Nd-1111 Iron Pnictide Superconductors by High Pressure Synthesis

    NASA Astrophysics Data System (ADS)

    Takemori, Akira; Miyasaka, Shigeki; Tajima, Setsuko; Lee, Sergey; Adachi, Seiji; Chikumoto, Noriko; Tanabe, Keiichi

    To clarify the relationship of the crystal structure, the critical temperature (Tc) and the gap structure in iron pnictide superconductors, the studies on 1111-type iron pnictides with the highest Tc are important. However itis well known that the single crystal growth of 1111-compounds is difficult. In this work, we have established a method for reproducible growth of high quality crystals using high pressure synthesis technique and successfully obtained NdFeAs(O, F) singlecrystals (Tc = 43.5 K) with a typical size of 5002 × 30 µm3.

  13. Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties

    SciTech Connect

    Zhou, Liyan; Yan, Shancheng; Lu, Tao; Shi, Yi; Wang, Jianyu; Yang, Fan

    2014-03-15

    A convenient solvothermal approach was applied for the first time to synthesize In{sub 2}Te{sub 3} nanotubes. The morphology of the resultant nanotubes was studied by scanning electron microscopy and transmission electron microscopy. Nanotubes with a relatively uniform diameter of around 500 nm, tube wall thickness of 50–100 nm, and average length of tens of microns were obtained. X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy were used to study the crystal structures, composition, and optical properties of the products. To understand the growth mechanism of the In{sub 2}Te{sub 3} nanotubes, we studied the influences of temperature, reaction time, and polyvinylpyrrolidone (PVP) and ethylene diamine (EDA) dosages on the final products. Based on the experimental results, a possible growth mechanism of In{sub 2}Te{sub 3} nanotubes was proposed. In this mechanism, TeO{sub 3}{sup −2} is first reduced to allow nucleation. Circumferential edges of these nucleated molecules attract further deposition, and nanotubes finally grow rapidly along the c-axis and relatively slowly along the circumferential direction. The surface area of the products was determined by BET and found to be 137.85 m{sup 2} g{sup −1}. This large surface area indicates that the nanotubes may be suitable for gas sensing and hydrogen storage applications. The nanotubes also showed broad light detection ranging from 300 nm to 1100 nm, which covers the UV–visible–NIR regions. Such excellent optical properties indicate that In{sub 2}Te{sub 3} nanotubes may enable significant advancements in new photodetection and photosensing applications. -- Graphical abstract: A convenient solvothermal approach was applied to synthesize In{sub 2}Te{sub 3} nanotubes, which has not been reported in the literature for our knowledge. Surface area of this material is 137.85 m{sup 2} g{sup −1} from the BET testing, and such a high value makes it probably suitable for gas sensing and

  14. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells.

    PubMed Central

    Pinzani, M; Gesualdo, L; Sabbah, G M; Abboud, H E

    1989-01-01

    In vitro and in vivo studies suggest that liver fat-storing cells (FSC) may play an important role in the development of liver fibrosis. We explored the effects of platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor (TGF)-alpha and TGF-beta, and basic fibroblast growth factor (bFGF) on DNA synthesis and growth of rat liver FSC. PDGF, EGF, TGF-alpha, and bFGF induced a dose-dependent increase in DNA synthesis with a peak effect at 24 h. PDGF produced the most striking effect with a maximum 18-fold increase over control. EGF, TGF-alpha, and bFGF elicited a maximum three- to fourfold increase in DNA synthesis. Analysis of growth curves revealed a similar pattern of potency of the growth factors. TGF-beta did not affect DNA synthesis of FSC; however, TGF-beta markedly potentiated the stimulatory effects of both EGF and PDGF. FSC showed high specific binding of 125I-PDGF and Scatchard analysis revealed high affinity receptors with an apparent Kd of 2.3 x 10(-10) M. Our data suggest that PDGF is a key mitogen for FSC and that the coordinate release of other growth factors together with PDGF by inflammatory cells represents a potent potential stimulus for FSC proliferation in conditions of chronic self-perpetuating liver inflammation. Images PMID:2592560

  15. Growth-regulated synthesis and secretion of biologically active nerve growth factor by human keratinocytes.

    PubMed

    Di Marco, E; Marchisio, P C; Bondanza, S; Franzi, A T; Cancedda, R; De Luca, M

    1991-11-15

    Nerve growth factor (NGF) transcripts were identified in normal human keratinocytes in primary and secondary culture. The expression of the NGF mRNA was strongly down-regulated by corticosteroids and was maximal when keratinocytes were in the exponential phase of growth. Immunofluorescence studies on growing keratinocytes colonies and on elutriated keratinocytes obtained from growing colonies and mature stratified epithelium showed specific staining of the Golgi apparatus only in basal keratinocytes in the exponential phase of growth. The keratinocyte-derived NGF was secreted in a biologically active form as assessed by neurite induction in sensory neurons obtained from chick embryo dorsal root ganglia. Based on these data we suggest that the basal keratinocyte is the cell synthesizing and secreting NGF in the human adult epidermis. The paracrine secretion of NGF by keratinocytes might have a major role in regulating innervation, lymphocyte function, and melanocyte growth and differentiation in epidermal morphogenesis as well as during wound healing. PMID:1718982

  16. Mps1 (Monopolar Spindle 1) Protein Inhibition Affects Cellular Growth and Pro-Embryogenic Masses Morphology in Embryogenic Cultures of Araucaria angustifolia (Araucariaceae)

    PubMed Central

    Douétts-Peres, Jackellinne C.; Cruz, Marco Antônio L.; Reis, Ricardo S.; Heringer, Angelo S.; de Oliveira, Eduardo A. G.; Elbl, Paula M.; Floh, Eny I. S.; Silveira, Vanildo

    2016-01-01

    Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants. PMID:27064899

  17. The effect of platelet-derived growth factor on cell division and glycosaminoglycan synthesis by human skin and scar fibroblasts.

    PubMed

    Savage, K; Siebert, E; Swann, D

    1987-07-01

    The effect of platelet-derived growth factor (PDGF) on cell division and glycosaminoglycan (GAG) synthesis by fibroblasts isolated from skin and scar was measured. We found that PDGF stimulates cell division more efficiently in normal skin fibroblasts than in scar fibroblasts and decreases GAG synthesis in skin and scar fibroblasts. Using a 4-h pulse label with [3H]thymidine ([3H]Thd) following a 20-h incubation of confluent monolayer cultures with 0-5 units PDGF/ml Dulbecco's modified Eagle's medium, we found a concentration-dependent increase in [3H]Thd incorporation. After incubation of fibroblasts with [3H]glucosamine and 35SO4 in the presence or absence of PDGF, labeled constituents were isolated from the extracellular, pericellular, and cellular fractions by pronase digestion and column chromatography on Sepharose CL4B or DEAE-cellulose and analyzed by cellulose acetate electrophoresis. The presence of PDGF decreased the total amount of 35S incorporated into macromolecules by skin and scar fibroblasts and resulted in an altered distribution of labeled GAGs. Dermal fibroblasts exposed to PDGF for 24 h incorporated a greater percentage of radiolabeled 35S into dermatan sulfate prime (DS') and less into dermatan sulfate (DS) in the extracellular fractions and a greater percentage of 35S into heparan sulfate (HS) in the pericellular fractions than did parallel cultures grown in the absence of PDGF. It is thought than PDGF may have an effect on scar formation by increasing the fibroblast population in the wound tissue and by affecting the total amount and types of matrix components synthesized. PMID:3598205

  18. Effect of transforming growth factor beta on synthesis of glycosaminoglycans by human lung fibroblasts

    SciTech Connect

    Dubaybo, B.A.; Thet, L.A. )

    1990-09-01

    The processes of lung growth, injury, and repair are characterized by alterations in fibroblast synthesis and interstitial distribution of extracellular matrix components. Transforming growth factor beta (TGF-beta), which is postulated to play a role in modulating lung repair, alters the distribution of several matrix components such as collagen and fibronectin. We studied the effect of TGF-beta on the synthesis and distribution of the various glycosaminoglycans (GAGs) and whether these effects may explain its role in lung repair. Human diploid lung fibroblasts (IMR-90) were exposed to various concentrations of TGF-beta (0-5 nM) for variable periods of time (0-18 h). Newly synthesized GAGs were labeled with either (3H)glucosamine or (35S)sulfate. Individual GAGs were separated by size exclusion chromatography after serial enzymatic and chemical digestions and quantitated using scintillation counting. There was a dose-dependent increase in total GAG synthesis with maximal levels detected after 6 h of exposure. This increase was noted in all individual GAG types measured and was observed in both the cell associated GAGs (cell-matrix fraction) as well as the GAGs released into the medium (medium fraction). In the cell-matrix fraction, TGF-beta increased the proportion of heparan sulfate that was membrane bound as well as the proportion of dermatan sulfate in the intracellular compartment. In the medium fraction, TGF-beta increased the proportion of hyaluronic acid, chondroitin sulfate and dermatan sulfate released. We conclude that the role of TGF-beta in lung growth and repair may be related to increased synthesis of GAGs by human lung fibroblasts as well as alterations in the distribution of individual GAGs.

  19. Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis

    SciTech Connect

    Hollingsworth, Jennifer A.; Palaniappan, Kumaranand; Laocharoensuk, Rawiwan; Smith, Nickolaus A.; Dickerson, Robert M.; Casson, Joanna L.; Baldwin, Jon K.

    2012-06-07

    Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth rates as a

  20. Fast growth synthesis of GaAs nanowires with exceptional length.

    PubMed

    Ramdani, M R; Gil, E; Leroux, Ch; André, Y; Trassoudaine, A; Castelluci, D; Bideux, L; Monier, G; Robert-Goumet, C; Kupka, R

    2010-05-12

    We report the first synthesis of GaAs nanowires (NWs) by Au-assisted vapor-liquid-solid (VLS) growth in the novel hydride vapor phase epitaxy (HVPE) environment. Forty micrometer long rodlike <111> monocrystalline GaAs nanowires exhibiting a cubic zinc blende structure were grown in 15 min with a mean density of 10(6) cm(-2). The synthesis of such long figures in such a short duration could be explained by the growth physics of near-equilibrium HVPE. VLS-HVPE is mainly based on solidification after direct and continuous feeding of the arsenious and GaCl growth precursors through the Au-Ga liquid catalyst. Fast solidification (170 microm/h) is then assisted by the high decomposition frequency of GaCl. This predominant feeding through the liquid-solid interface with no mass and kinetic hindrance favors axial rather than radial growth, leading to twin-free nanowires with a constant cylinder shape over unusual length. The achievement of GaAs NWs several tens of micrometers long showing a high surface to volume ratio may open the field of III-V wires, as already addressed with ultralong Si nanowires. PMID:20380477

  1. Flow and Microwave-Assisted Synthesis of N-(Triethylene glycol)glycine Oligomers and Their Remarkable Cellular Transporter Activities.

    PubMed

    Jong, ThingSoon; Pérez-López, Ana M; Johansson, Emma M V; Lilienkampf, Annamaria; Bradley, Mark

    2015-08-19

    Peptidomimetics, such as oligo-N-alkylglycines (peptoids), are attractive alternatives to traditional cationic cell-penetrating peptides (such as R9) due to their robust proteolytic stability and reduced cellular toxicity. Here, monomeric N-alkylglycines, incorporating amino-functionalized hexyl or triethylene glycol (TEG) side chains, were synthesized via a three-step continuous-flow reaction sequence, giving the monomers N-Fmoc-(6-Boc-aminohexyl)glycine and N-Fmoc-((2-(2-Boc-aminoethoxy)ethoxy)ethyl)glycine in 49% and 41% overall yields, respectively. These were converted into oligomers (5, 7, and 9-mers) using an Fmoc-based solid-phase protocol and evaluated as cellular transporters. Hybrid oligomers, constructed of alternating units of the aminohexyl and amino-TEG monomers, were non-cytotoxic and exhibited remarkable cellular uptake activity compared to the analogous fully TEG or lysine-like compounds. PMID:26155805

  2. Synthesis of fluorescent D-amino acids (FDAAs) and their use for probing peptidoglycan synthesis and bacterial growth in situ

    PubMed Central

    Kuru, Erkin; Tekkam, Srinivas; Hall, Edward

    2015-01-01

    Fluorescent D-amino acids (FDAAs) are efficiently incorporated into the peptidoglycan of diverse bacterial species at the sites of active peptidoglycan biosynthesis, allowing specific and covalent probing of bacterial growth with minimal perturbation. Here, we provide a protocol for the synthesis of four FDAAs emitting light in blue, green or red and for their use in peptidoglycan labeling of live bacteria. Our modular synthesis protocol gives easy access to a library of different FDAAs made with commercially available fluorophores. FDAAs can be synthesized in a typical chemistry laboratory in 2–3 days. The simple labeling procedure involves addition of the FDAAs to the bacterial sample for the desired labeling duration and stopping further label incorporation by fixation or by washing away excess dye. We discuss several scenarios for the use of these labels including short or long labeling durations, and the combination of different labels in pure culture or complex environmental samples. Depending on the experiment, FDAA labeling can take as little as 30 s for a rapidly growing species such as Escherichia coli. PMID:25474031

  3. Automated synthesis of photovoltaic-quality colloidal quantum dots using separate nucleation and growth stages.

    PubMed

    Pan, Jun; El-Ballouli, Ala'a O; Rollny, Lisa; Voznyy, Oleksandr; Burlakov, Victor M; Goriely, Alain; Sargent, Edward H; Bakr, Osman M

    2013-11-26

    As colloidal quantum dot (CQD) optoelectronic devices continue to improve, interest grows in the scaled-up and automated synthesis of high-quality materials. Unfortunately, all reports of record-performance CQD photovoltaics have been based on small-scale batch syntheses. Here we report a strategy for flow reactor synthesis of PbS CQDs and prove that it leads to solar cells having performance similar to that of comparable batch-synthesized nanoparticles. Specifically, we find that, only when using a dual-temperature-stage flow reactor synthesis reported herein, are the CQDs of sufficient quality to achieve high performance. We use a kinetic model to explain and optimize the nucleation and growth processes in the reactor. Compared to conventional single-stage flow-synthesized CQDs, we achieve superior quality nanocrystals via the optimized dual-stage reactor, with high photoluminescence quantum yield (50%) and narrow full width-half-maximum. The dual-stage flow reactor approach, with its versatility and rapid screening of multiple parameters, combined with its efficient materials utilization, offers an attractive path to automated synthesis of CQDs for photovoltaics and, more broadly, active optoelectronics. PMID:24131473

  4. Growth promoting effect of hyaluronan synthesis promoting substances on Japanese eel leptocephali.

    PubMed

    Kawakami, Yutaka; Nomura, Kazuharu; Tanaka, Hideki

    2014-01-01

    Hyaluronans (HAs) are glycosaminoglycans produced in the bodies of Anguilliform and Elopiform leptocephali, and play a role in metabolic energy. In mammals, HA synthesis-promoting substances (HASPS) up-regulate the expression of HA synthase (HAS) and increase the amount of HA in the body. In this study, Japanese eel leptocephali were fed a HASPS containing diet. We analyzed HAS1s and HAS2 expression, HA content, and their influence on growth. HASPS extracted from Grifola frondosa promoted HAS1s and HAS2 mRNA and HA content. Other than mammals, these results are first reported in vertebrate. Moreover, HASPS extracted from G. frondosa promoted leptocephalus growth. The relationship between growth and HA in the leptocephali is not yet clear. However, based on our results we hypothesize that HA is involved in the storage of energy, which is metabolized to sugars when needed for metabolic energy. PMID:24896609

  5. Concentration Effect of Reducing Agents on Green Synthesis of Gold Nanoparticles: Size, Morphology, and Growth Mechanism.

    PubMed

    Kim, Hyun-Seok; Seo, Yu Seon; Kim, Kyeounghak; Han, Jeong Woo; Park, Youmie; Cho, Seonho

    2016-12-01

    Under various concentration conditions of reducing agents during the green synthesis of gold nanoparticles (AuNPs), we obtain the various geometry (morphology and size) of AuNPs that play a crucial role in their catalytic properties. Through both theoretical and experimental approaches, we studied the relationship between the concentration of reducing agent (caffeic acid) and the geometry of AuNPs. As the concentration of caffeic acid increases, the sizes of AuNPs were decreased due to the adsorption and stabilizing effect of oxidized caffeic acids (OXCAs). Thus, it turns out that optimal concentration exists for the desired geometry of AuNPs. Furthermore, we investigated the growth mechanism for the green synthesis of AuNPs. As the caffeic acid is added and adsorbed on the surface of AuNPs, the aggregation mechanism and surface free energy are changed and consequently resulted in the AuNPs of various geometry. PMID:27119158

  6. Concentration Effect of Reducing Agents on Green Synthesis of Gold Nanoparticles: Size, Morphology, and Growth Mechanism

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-seok; Seo, Yu Seon; Kim, Kyeounghak; Han, Jeong Woo; Park, Youmie; Cho, Seonho

    2016-04-01

    Under various concentration conditions of reducing agents during the green synthesis of gold nanoparticles (AuNPs), we obtain the various geometry (morphology and size) of AuNPs that play a crucial role in their catalytic properties. Through both theoretical and experimental approaches, we studied the relationship between the concentration of reducing agent (caffeic acid) and the geometry of AuNPs. As the concentration of caffeic acid increases, the sizes of AuNPs were decreased due to the adsorption and stabilizing effect of oxidized caffeic acids (OXCAs). Thus, it turns out that optimal concentration exists for the desired geometry of AuNPs. Furthermore, we investigated the growth mechanism for the green synthesis of AuNPs. As the caffeic acid is added and adsorbed on the surface of AuNPs, the aggregation mechanism and surface free energy are changed and consequently resulted in the AuNPs of various geometry.

  7. Growth, sporulation, delta-endotoxins synthesis, and toxicity during culture of bacillus thuringiensis H14.

    PubMed

    Sarrafzadeh, Mohammad H; Guiraud, Joseph P; Lagneau, Christophe; Gaven, Bruno; Carron, Alexandre; Navarro, Jean-Marie

    2005-08-01

    Growth, sporulation, synthesis of delta-endotoxins, and toxicity against the larvae of Aedes aegypti and Culex pipiens were studied during fermentation of Bacillus thuringiensis H14 in a 20-L fermentor. Measurements of optical density and dielectric permittivity for biomass determination suggest a highly promising technique for on-line evaluation of sporulation. The synthesis of 65-, 25- and 130-kDa proteins started at 16, 18, and 23 h, respectively. These proteins were enriched in different ways until the end of culture (48 h). Toxicity in the course of sporulation was significantly different for the larvae of both mosquito species. Maximal activity against Ae. aegypti was obtained at the end of culture, whereas for Cx. pipiens, the sample at 38 h was the most active. PMID:16059772

  8. Decoding Cellular Dynamics in Epidermal Growth Factor Signaling Using a New Pathway-Based Integration Approach for Proteomics and Transcriptomics Data

    PubMed Central

    Wachter, Astrid; Beißbarth, Tim

    2016-01-01

    Identification of dynamic signaling mechanisms on different cellular layers is now facilitated as the increased usage of various high-throughput techniques goes along with decreasing costs for individual experiments. A lot of these signaling mechanisms are known to be coordinated by their dynamics, turning time-course data sets into valuable information sources for inference of regulatory mechanisms. However, the combined analysis of parallel time-course measurements from different high-throughput platforms still constitutes a major challenge requiring sophisticated bioinformatic tools in order to ease biological interpretation. We developed a new pathway-based integration approach for the analysis of coupled omics time-series data, which we implemented in the R package pwOmics. Unlike many other approaches, our approach acknowledges the role of the different cellular layers of measurement and infers consensus profiles and time profile clusters for further biological interpretation. We investigated a time-course data set on epidermal growth factor stimulation of human mammary epithelial cells generated on the two layers of RNA and proteins. The data was analyzed using our new approach with a focus on feedback signaling and pathway crosstalk. We could confirm known regulatory patterns relevant in the physiological cellular response to epidermal growth factor stimulation as well as identify interesting new interactions in this signaling context, such as the regulatory influence of the connective tissue growth factor on transferrin receptor or the influence of growth arrest and DNA-damage-inducible alpha on the connective tissue growth factor. Thus, we show that integrated cross-platform analysis provides a deeper understanding of regulatory signaling mechanisms. Combined with time-course information it enables the characterization of dynamic signaling processes and leads to the identification of important regulatory interactions which might be dysregulated in disease

  9. Ribonucleic acid synthesis in the renal cortex at the initiation of compensatory growth.

    PubMed Central

    Cortes, P; Levin, N W; Martin, P R

    1976-01-01

    The mechanisms responsible for the increase in RNA per cell during the first 48h of renal compensatory growth were studied in the renal cortex. Unilaterally nephrectomized, sham-operated or non-operated rats were used. Incorporation into RNA of labelled precursors was studied in vivo and in vitro. Sham-operation produced significant changes in precursor incorporation, absolute amounts of UTP and RNA, and the rate of RNA synthesis. At 6h after surgery, the amount of RNA decreased in sham-operated controls, whereas that in growing cortex remained unchanged. Incorporation into RNA in vivo was greater in the growing cortex, although the rate of RNA synthesis was not increased. At 24h, precursor incorporation into RNA and UTP and RNA synthesis were all increased in the growing cortex. In contrast with results obtained in vivo, slices of growing cortex incorporated less labelled precursor into RNA than did cortex slices from sham-operated controls, from 3 to 48h. Maximal differences were found from 6 to 24h. An attempt was made to equalize endogenous precursor pool sizes by increasing the concentration of unlabelled uridine in the media; incorporation differences were narrowed significantly. Serum from nephrectomized animals did not increase precursor incorporation into RNA in vitro. An increase in RNA synthesis is an important factor in RNA accretion in the renal cortex beyond 12h of compensatory growth. This is accompanied by increased UTP content and preceded by expansion of other pools. The amount of labelled precursor incorporated into RNA is greatly influenced by its delivery rate to the growing kidney in vivo and by intracellular dilution of expanded precursor pools in vitro. PMID:985437

  10. Gateway synthesis of daphnane congeners and their protein kinase C affinities and cell-growth activities

    NASA Astrophysics Data System (ADS)

    Wender, Paul A.; Buschmann, Nicole; Cardin, Nathan B.; Jones, Lisa R.; Kan, Cindy; Kee, Jung-Min; Kowalski, John A.; Longcore, Kate E.

    2011-08-01

    The daphnane diterpene orthoesters constitute a structurally fascinating family of natural products that exhibit a remarkable range of potent biological activities. Although partial activity information is available for some natural daphnanes, little information exists for non-natural congeners or on how changes in structure affect mode of action, function, potency or selectivity. A gateway strategy designed to provide general synthetic access to natural and non-natural daphnanes is described and utilized in the synthesis of two novel members of this class. In this study, a commercially available tartrate derivative was elaborated through a key late-stage diversification intermediate into B-ring yuanhuapin analogues to initiate exploration of the structure-function relationships of this class. Protein kinase C was identified as a cellular target for these agents, and their activity against human lung and leukaemia cell lines was evaluated. The natural product and a novel non-natural analogue exhibited significant potency, but the epimeric epoxide was essentially inactive.

  11. EFFECT OF FLUID SHEAR AND IRRADIANCE ON POPULATION GROWTH AND CELLULAR TOXIN CONTENT OF THE DINOFLAGELLATE ALEXANDRIUM FUNDYENSE.

    EPA Science Inventory

    The potential for in situ turbulence to inhibit dinoflagellate population growth has been demonstrated by experimentally exposing dinoflagellate cultures to quantified shear flow. However, despite interest in understanding environmental factors that affect the growth of toxic din...

  12. Protein accounting in the cellular economy

    PubMed Central

    Vázquez-Laslop, Nora; Mankin, Alexander S.

    2014-01-01

    Knowing the copy number of cellular proteins is critical for understanding cell physiology. By being able to measure the absolute synthesis rates of the majority of cellular proteins, Li et al. (2014) gain insights into key aspects of translation regulation and fundamental principles of cellular strategies to adjust protein synthesis according to the needs. PMID:24766801

  13. Protein accounting in the cellular economy.

    PubMed

    Vázquez-Laslop, Nora; Mankin, Alexander S

    2014-04-24

    Knowing the copy number of cellular proteins is critical for understanding cell physiology. By being able to measure the absolute synthesis rates of the majority of cellular proteins, Li et al. gain insights into key aspects of translation regulation and fundamental principles of cellular strategies to adjust protein synthesis according to the functional needs. PMID:24766801

  14. Endogenous Synthesis of Amino Acids Limits Growth, Lactation, and Reproduction in Animals.

    PubMed

    Hou, Yongqing; Yao, Kang; Yin, Yulong; Wu, Guoyao

    2016-03-01

    Amino acids (AAs) are building blocks of protein. Eight AAs (Ala, Asn, Asp, Glu, Gln, Gly, Pro, and Ser) are formed by all animals, whereas de novo synthesis of Arg occurs in a species-specific manner in most mammals (e.g., humans, pigs, and rats). Synthesizable AAs were traditionally classified as nutritionally nonessential for animals, because they were thought to be formed in sufficient amounts. However, this assumption is not supported by evidence showing that 1) rats grow slowly when their diets do not contain Arg, Glu, or Gln despite adequate provision of all other proteinogenous AAs; 2) pigs cannot achieve maximum growth, lactation, or reproduction performance when fed corn- and soybean meal-based diets meeting National Research Council-recommended requirements of protein and AAs without supplemental Arg, Glu, Gln, Gly, or Pro; 3) chickens exhibit increases in lean tissue gain and feed efficiency when their diets are supplemented with Glu, Gln, Gly, and Pro; 4) lactating cows cannot obtain maximum milk protein production without a postruminal supply of Gln or Pro; 5) fish cannot achieve maximum growth when diets do not contain Gln or Pro; and 6) men fail to sustain spermatogenesis when fed an Arg-deficient diet. Quantitative analysis of nitrogen metabolism showed that AA synthesis in animals is constrained by both precursor availability and enzyme activity. Taken together, these findings support the conclusion that the endogenous synthesis of AAs limits growth, lactation, and reproduction in animals. This new knowledge can guide the optimization of human nutrition for improving health and well-being. PMID:26980816

  15. Hypobaric bacteriology: growth, cytoplasmic membrane polarization and total cellular fatty acids in Escherichia coli and Bacillus subtilis

    NASA Astrophysics Data System (ADS)

    Pokorny, N. J.; Boulter-Bitzer, J. I.; Hart, M. M.; Storey, L.; Lee, H.; Trevors, J. T.

    2005-10-01

    Escherichia coli JM109 (Gram-negative) and Bacillus subtilis (Gram-positive) were grown under hypobaric conditions for 19 days at 25 °C to study the effects of 33 and 67 kPa low pressures on selected physiological responses; growth, cytoplasmic membrane polarization (measure of cytoplasmic membrane fluidity) and total cellular fatty acids. In the first experiment, cytoplasmic membrane polarization in B. subtilis increased under both hypobaric conditions, indicating the membrane became more rigid or less fluid. This experiment was repeated and the effect of the hypobaric conditions was not evident as in the first experiment with B. subtilis. In addition, total cellular fatty acids analysis for B. subtilis showed that hypobaric conditions did not alter the ratio of saturated to unsaturated fatty acids. The cytoplasmic membrane remained in the same fluid state in hypobaric grown E. coli cell cultures as in the 101 kPa ambient control cells in both experiments. However, the saturated to unsaturated ratios were altered in E. coli under hypobaric conditions. It is important to note the ratios for E. coli were less than 1, while the ratios for Bacillus were in the 28 50 range. Growth of both species was also measured by colony forming units at the termination of the 19 day experiment. Both bacterial species were capable of growth under hypobaric conditions and no distinct trend emerged as to the effect of hypobaric pressure on bacterial growth and cytoplasmic membrane fluidity.

  16. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer’s Disease

    PubMed Central

    McGinley, Lisa M.; Sims, Erika; Lunn, J. Simon; Kashlan, Osama N.; Chen, Kevin S.; Bruno, Elizabeth S.; Pacut, Crystal M.; Hazel, Tom; Johe, Karl; Sakowski, Stacey A.

    2016-01-01

    Alzheimer’s disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar “best in class” cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD. Significance There is no cure for Alzheimer’s disease (AD) and

  17. A Customizable Quantum-Dot Cellular Automata Building Block for the Synthesis of Classical and Reversible Circuits

    PubMed Central

    Moustafa, Ahmed; Younes, Ahmed; Hassan, Yasser F.

    2015-01-01

    Quantum-dot cellular automata (QCA) are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs. PMID:26345412

  18. A Customizable Quantum-Dot Cellular Automata Building Block for the Synthesis of Classical and Reversible Circuits.

    PubMed

    Moustafa, Ahmed; Younes, Ahmed; Hassan, Yasser F

    2015-01-01

    Quantum-dot cellular automata (QCA) are nanoscale digital logic constructs that use electrons in arrays of quantum dots to carry out binary operations. In this paper, a basic building block for QCA will be proposed. The proposed basic building block can be customized to implement classical gates, such as XOR and XNOR gates, and reversible gates, such as CNOT and Toffoli gates, with less cell count and/or better latency than other proposed designs. PMID:26345412

  19. An increase in galectin-3 causes cellular unresponsiveness to IFN-γ-induced signal transduction and growth inhibition in gastric cancer cells

    PubMed Central

    Tseng, Po-Chun; Chen, Chia-Ling; Shan, Yan-Shen; Lin, Chiou-Feng

    2016-01-01

    Glycogen synthase kinase (GSK)-3β facilitates interferon (IFN)-γ signaling by inhibiting Src homology-2 domain-containing phosphatase (SHP) 2. Mutated phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN) cause AKT activation and GSK-3β inactivation to induce SHP2-activated cellular unresponsiveness to IFN-γ in human gastric cancer AGS cells. This study investigated the potential role of galectin-3, which acts upstream of AKT/GSK-3β/SHP2, in gastric cancer cells. Increasing or decreasing galectin-3 altered IFN-γ signaling. Following cisplatin-induced galectin-3 upregulation, surviving cells showed cellular unresponsiveness to IFN-γ. Galectin-3 induced IFN-γ resistance independent of its extracellular β-galactoside-binding activity. Galectin-3 expression was not regulated by PI3K activation or by a decrease in PTEN. Increased galectin-3 may cause GSK-3β inactivation and SHP2 activation by promoting PDK1-induced AKT phosphorylation at a threonine residue. Overexpression of AKT, inactive GSK-3βR96A, SHP2, or active SHP2D61A caused cellular unresponsiveness to IFN-γ in IFN-γ-sensitive MKN45 cells. IFN-γ-induced growth inhibition and apoptosis in AGS cells were observed until galectin-3 expression was downregulated. These results demonstrate that an increase in galectin-3 facilitates AKT/GSK-3β/SHP2 signaling, causing cellular unresponsiveness to IFN-γ. PMID:26934444

  20. Synthesis and physicochemical characterization of a series of hemoglobin-based oxygen carriers: objective comparison between cellular and acellular types.

    PubMed

    Sakai, H; Yuasa, M; Onuma, H; Takeoka, S; Tsuchida, E

    2000-01-01

    A series of hemoglobin (Hb)-based O(2) carriers, acellular and cellular types, were synthesized and their physicochemical characteristics were compared. The acellular type includes intramolecularly cross-linked Hb (XLHb), polyoxyethylene (POE)-conjugated pyridoxalated Hb (POE-PLP-Hb), hydroxyethylstarch-conjugated Hb (HES-XLHb), and glutaraldehyde-polymerized XLHb (Poly-XLHb). The cellular type is Hb-vesicles (HbV) of which the surface is modified with POE (POE-HbV). Their particle diameters are 7 +/- 2, 22 +/- 2, 47 +/- 17, 68 +/- 24, and 224 +/- 76 nm, respectively, thus all the materials penetrate across membrane filters with 0.4 microm pore size, though only the POE-HbV cannot penetrate across the filter with 0.2 microm pore size. These characteristics of permeability are important to consider an optimal particle size in microcirculation in vivo. POE-PLP-Hb ([Hb] = 5 g/dL) showed viscosity of 6.1 cP at 332 s(-1) and colloid osmotic pressure (COP) of 70.2 Torr, which are beyond the physiological conditions (human blood, viscosity = 3-4 cP, COP = ca. 25 Torr). XLHb and Poly-XLHb showed viscosities of 1.0 and 1.5 cp, respectively, which are significantly lower than that of blood. COP of POE-HbV is regulated to 20 Torr in 5% human serum albumin (HSA). HES-XLHb and POE-HbV/HSA showed comparable viscosity with human blood. Microscopic observation of human red blood cells (RBC) after mixing blood with POE-PLP-Hb or HES-XLHb disclosed aggregates of RBC, a kind of sludge, indicating a strong interaction with RBC, which is anticipated to modify peripheral blood flow in vivo. On the other hand, XLHb and POE-HbV showed no rouleaux or aggregates of RBC. The acellular Hbs (P(50) = 14-32 Torr) have their specific O(2) affinities determined by their structures, while that of the cellular POE-HbV is regulated by coencapsulating an appropriate amount of an allosteric effector (e.g., P(50) = 18, 32 Torr). These differences in physicochemical characteristics between the acellular

  1. The controlled growth of perovskite thin films: Opportunities, challenges, and synthesis

    SciTech Connect

    Schlom, D.G.; Theis, C.D.; Hawley, M.E.

    1997-10-01

    The broad spectrum of electronic and optical properties exhibited by perovskites offers tremendous opportunities for microelectronic devices, especially when a combination of properties in a single device is desired. Molecular beam epitaxy (MBE) has achieved unparalleled control in the integration of semiconductors at the monolayer-level; its use for the integration of perovskites with similar nanoscale customization appears promising. Composition control and oxidation are often significant challenges to the growth of perovskites by MBE, but we show that these can be met through the use of purified ozone as an oxidant and real-time atomic absorption composition control. The opportunities, challenges, and synthesis of oxide heterostructures by reactive MBE are described, with examples taken from the growth of oxide superconductors and oxide ferroelectrics.

  2. Shape-Controlled Synthesis of Ni-Based Nanoparticles and Patterning for Carbon Nanofiber Growth

    NASA Astrophysics Data System (ADS)

    Sarac, Mehmet Fahri

    This dissertation reviews a comprehensive set of research results comprised of three studies, which includes the synthesis of nickel (Ni) nanoparticles (NPs) and their conversion chemistry, methods for depositing them onto substrates, and catalysis of carbon nanofiber growth. The first part of the work is concerned with the synthesis of Ni NPs, dropcasting and growing them in alignment with carbon nanofibers along a silicon (Si) substrate. Following observed success of this step, Ni NPs were airbrushed across different substrates, attempting to observe differences while reporting the results of an extensive comparative analysis of the different substrates used. Here, it was observed that the Ni NPs had a tendency to have dendritic rather than spherical shapes, motivating an additional study of the cause of branching and how it can be controlled. All three portions of this study are presented and discussed in detail. In the first set of experiments, vertically aligned carbon nanofibers (VACNFs) were created through ligand-stabilized Ni nanoparticle (NP) catalysts and plasma enhanced chemical vapor deposition; these NPs were used to allow growth of VACNFs in dense arrays. In the pregrowth heating process, the ligands are converted into graphitic shells that prevent agglomeration and coalescence of the catalyst NPs, resulting in a monodisperse VACNF size distribution. Meanwhile, VACNFs were grown from Ni NPs that had been airbrushed onto various substrates (silicon (Si), aluminum (Al), copper (Cu), and titanium (Ti)). Si micropowder was also used as a precursor for Si coatings formed in situ on VACNFs, causing rigidity. Growth of VACNFs on metal foils will facilitate applications that require thermal or electrical contact to the VACNFs, such as anode materials for Li-ion batteries and thermal interface materials. A related study focused on the synthesis of Ni3C1-x NPs, the control of branching in dendritic Ni3C1-x NPs and the effect of branching on the conversion into

  3. Synthesis, growth, structure determination and optical properties of chalcone derivative single crystal

    SciTech Connect

    Karthi, S. Girija, E. K.

    2014-04-24

    Acquiring large nonlinear optical (NLO) efficient organic material is essential for the development of optoelectronics and photonic devices. Chalcone is the donor - Π - acceptor - Π - donor (D-Π-A-Π-D) type conjugated molecule with appreciable hyperpolarizability of potential interest in NLO applications. The addition of vinyl and electron donor groups in the chalcone molecule may enhance the second harmonic generation (SHG) efficiency. Here we report the synthesis, crystal growth and characterization of a chalcone derivative 1-(4-methylphenyl)-5-(4-methoxyphenyl)-penta-2,4-dien-1-one (MPMPP). The MPMPP crystal was grown by slow evaporation solution growth technique from acetone. The grown crystal structure was studied by single crystal X-ray diffraction. The SHG efficiency of the grown crystal was determined by Kurtz and Perry method.

  4. Synthesis, growth, structure determination and optical properties of chalcone derivative single crystal

    NASA Astrophysics Data System (ADS)

    Karthi, S.; Girija, E. K.

    2014-04-01

    Acquiring large nonlinear optical (NLO) efficient organic material is essential for the development of optoelectronics and photonic devices. Chalcone is the donor - Π - acceptor - Π - donor (D-Π-A-Π-D) type conjugated molecule with appreciable hyperpolarizability of potential interest in NLO applications. The addition of vinyl and electron donor groups in the chalcone molecule may enhance the second harmonic generation (SHG) efficiency. Here we report the synthesis, crystal growth and characterization of a chalcone derivative 1-(4-methylphenyl)-5-(4-methoxyphenyl)-penta-2,4-dien-1-one (MPMPP). The MPMPP crystal was grown by slow evaporation solution growth technique from acetone. The grown crystal structure was studied by single crystal X-ray diffraction. The SHG efficiency of the grown crystal was determined by Kurtz and Perry method.

  5. Synthesis of magnetic resonance–, X-ray– and ultrasound-visible alginate microcapsules for immunoisolation and noninvasive imaging of cellular therapeutics

    PubMed Central

    Barnett, Brad P; Arepally, Aravind; Stuber, Matthias; Arifin, Dian R; Kraitchman, Dara L; Bulte, Jeff W M

    2011-01-01

    Cell therapy has the potential to treat or cure a wide variety of diseases. Non-invasive cell tracking techniques are, however, necessary to translate this approach to the clinical setting. This protocol details methods to create microcapsules that are visible by X-ray, ultrasound (US ) or magnetic resonance (MR) for the encapsulation and immunoisolation of cellular therapeutics. Three steps are generally used to encapsulate cellular therapeutics in an alginate matrix: (i) droplets of cell-containing liquid alginate are extruded, using an electrostatic generator, through a needle tip into a solution containing a dissolved divalent cation salt to form a solid gel; (ii) the resulting gelled spheres are coated with polycations as a cross-linker; and (iii) these complexes are then incubated in a second solution of alginate to form a semipermeable membrane composed of an inner and an outer layer of alginate. The microcapsules can be rendered visible during the first step by adding contrast agents to the primary alginate layer. Such contrast agents include superparamagnetic iron oxide for detection by 1H MR imaging (MRI); the radiopaque agents barium or bismuth sulfate for detection by X-ray modalities; or perfluorocarbon emulsions for multimodal detection by 19F MRI, X-ray and US imaging. The entire synthesis can be completed within 2 h. PMID:21799484

  6. Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis.

    PubMed

    Momose, F; Basler, C F; O'Neill, R E; Iwamatsu, A; Palese, P; Nagata, K

    2001-02-01

    Previous biochemical data identified a host cell fraction, designated RAF-2, which stimulated influenza virus RNA synthesis. A 48-kDa polypeptide (RAF-2p48), a cellular splicing factor belonging to the DEAD-box family of RNA-dependent ATPases previously designated BAT1 (also UAP56), has now been identified as essential for RAF-2 stimulatory activity. Additionally, RAF-2p48 was independently identified as an influenza virus nucleoprotein (NP)-interacting protein, NPI-5, in a yeast two-hybrid screen of a mammalian cDNA library. In vitro, RAF-2p48 interacted with free NP but not with NP bound to RNA, and the RAF-2p48-NP complex was dissociated following addition of free RNA. Furthermore, RAF-2p48 facilitated formation of the NP-RNA complexes that likely serve as templates for the viral RNA polymerase. RAF-2p48 was shown, in both in vitro binding assays and the yeast two-hybrid system, to bind to the amino-terminal region of NP, a domain essential for RNA binding. Together, these observations suggest that RAF-2p48 facilitates NP-RNA interaction, thus leading to enhanced influenza virus RNA synthesis. PMID:11160689

  7. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    SciTech Connect

    Reuther, Sebastian; Metzke, Elisabeth; Bonin, Michael; Petersen, Cordula; Dikomey, Ekkehard; Raabe, Annette

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  8. Cell density modulates growth, extracellular matrix, and protein synthesis of cultured rat mesangial cells.

    PubMed

    Wolthuis, A; Boes, A; Grond, J

    1993-10-01

    Mesangial cell (MC) hyperplasia and accumulation of extracellular matrix are hallmarks of chronic glomerular disease. The present in vitro study examined the effects of cell density on growth, extracellular matrix formation, and protein synthesis of cultured rat MCs. A negative linear relationship was found between initial plating density and DNA synthesis per cell after 24 hours incubation in medium with 10% fetal calf serum (range: 1 x 10(3) to 7 x 10(5) MCs/2cm2, r = 0.996, P < 0.001). Enzyme-linked immunosorbent assay of the amount of fibronectin in the conditioned medium after 72 hours showed a negative relationship with increasing cell density. In contrast, the amount of cell-associated fibronectin increased to maximal values in confluent cultures, and no further increase was seen at supraconfluency. The relative collagen synthesis in the conditioned medium and cell layer--assessed by collagenase digestion after 5 hours [3H]proline pulse labeling--showed a similar pattern. Secreted collagen decreased with increasing cell density from 3.4% to 0.2% of total protein synthesis. In contrast, cell-associated collagen increased from 1.1% to 11.8% of newly synthesized protein until confluency followed by a decrease to 4.2% at supraconfluency. Specific immunoprecipitation of collagen types I, III, and IV revealed a significant (twofold) increase in collagen I synthesis per cell at confluency. Collagen III and IV synthesis was not affected by cell density. Specific protein expression in both the medium and cell layer were analyzed by two-dimensional polyacrylamide gel electrophoresis (150 to 20 kd, pI 5.0 to 7.0) after 20 hours steady-state metabolic labeling with [35S]methionine. Supraconfluent MCs displayed overexpression of 10, underexpression of four, new expression of five, and changed mobility of three different intracellular proteins. Of interest was the overexpression of two proteins (89 kd, pI 5.31 and 72 kd, pI 5.32) that were identified by immunoblotting as

  9. Scalable flame synthesis of SiO2 nanowires: dynamics of growth

    PubMed Central

    Tricoli, Antonio; Righettoni, Marco; Krumeich, Frank; Stark, Wendelin J; Pratsinis, Sotiris E

    2013-01-01

    Silica nanowire arrays were grown directly onto plain glass substrates by scalable flame spray pyrolysis of organometallic solutions (hexamethyldisiloxane or tetraethyl orthosilicate). The silicon dioxide films consisted of a network of interwoven nanowires from a few to several hundred nanometres long (depending on the process conditions) and about 20 nm in diameter, as determined by scanning electron microscopy. These films were formed rapidly (within 10–20 s) at high growth rates (ca 11–30 nm s−1) by chemical vapour deposition (surface growth) at ambient conditions on the glass substrate as determined by thermophoretic sampling of the flame aerosol and microscopy. In contrast, on high purity quartz nearly no nanowires were grown while on steel substrates porous SiO2 films were formed. Functionalization with perfluorooctyl triethoxysilane converted the nanowire surface from super-hydrophilic to hydrophobic. Additionally, their hermetic coating by thin carbon layers was demonstrated also revealing their potential as substrates for synthesis of other functional 1D composite structures. This approach is a significant step towards large scale synthesis of SiO2 nanowires facilitating their utilization in several applications. PMID:20972311

  10. Submergence-Induced Ethylene Synthesis, Entrapment, and Growth in Two Plant Species with Contrasting Flooding Resistances.

    PubMed

    Voesenek, LACJ.; Banga, M.; Thier, R. H.; Mudde, C. M.; Harren, FJM.; Barendse, GWM.; Blom, CWPM.

    1993-11-01

    Submergence-induced ethylene synthesis and entrapment were studied in two contrasting Rumex species, one flood-resistant (Rumex palustris) and the other flood-sensitive (Rumex acetosa). The application of a photoacoustic method to determine internal ethylene concentrations in submerged plants is discussed. A comparison with an older technique (vacuum extraction) is described. For the first time ethylene production before, during, and after submergence and the endogenous concentration during submergence were continuously measured on a single intact plant without physical perturbation. Both Rumex species were characterized by enhanced ethylene concentrations in the shoot after 24 h of submergence. This was not related to enhanced synthesis but to continued production and physical entrapment. In R. palustris, high endogenous ethylene levels correlated with enhanced petiole and lamina elongation. No dramatic change in leaf growth rate was observed in submerged R. acetosa shoots. After desubmergence both species showed an increase in ethylene production, the response being more pronounced in R. palustris. This increase was linked to the enhanced postsubmergence growth rate of leaves of R. palustris. Due to the very rapid escape of ethylene out of desubmerged plants to the atmosphere (90% disappeared within 1 min), substantial underestimation of internal ethylene concentrations can be expected using more conventional vacuum extraction techniques. PMID:12231979

  11. Scalable flame synthesis of SiO2 nanowires: dynamics of growth.

    PubMed

    Tricoli, Antonio; Righettoni, Marco; Krumeich, Frank; Stark, Wendelin J; Pratsinis, Sotiris E

    2010-11-19

    Silica nanowire arrays were grown directly onto plain glass substrates by scalable flame spray pyrolysis of organometallic solutions (hexamethyldisiloxane or tetraethyl orthosilicate). The silicon dioxide films consisted of a network of interwoven nanowires from a few to several hundred nanometres long (depending on the process conditions) and about 20 nm in diameter, as determined by scanning electron microscopy. These films were formed rapidly (within 10-20 s) at high growth rates (ca 11-30 nm s(-1)) by chemical vapour deposition (surface growth) at ambient conditions on the glass substrate as determined by thermophoretic sampling of the flame aerosol and microscopy. In contrast, on high purity quartz nearly no nanowires were grown while on steel substrates porous SiO(2) films were formed. Functionalization with perfluorooctyl triethoxysilane converted the nanowire surface from super-hydrophilic to hydrophobic. Additionally, their hermetic coating by thin carbon layers was demonstrated also revealing their potential as substrates for synthesis of other functional 1D composite structures. This approach is a significant step towards large scale synthesis of SiO(2) nanowires facilitating their utilization in several applications. PMID:20972311

  12. PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties.

    PubMed

    Morber, Jenny Ruth; Ding, Yong; Haluska, Michael Stephan; Li, Yang; Liu, J Ping; Wang, Zhong Lin; Snyder, Robert L

    2006-11-01

    We report here a systematic synthesis and characterization of aligned alpha-Fe2O3 (hematite), epsilon-Fe2O3, and Fe3O4 (magnetite) nanorods, nanobelts, and nanowires on alumina substrates using a pulsed laser deposition (PLD) method. The presence of spherical gold catalyst particles at the tips of the nanostructures indicates selective growth via the vapor-liquid-solid (VLS) mechanism. Through a series of experiments, we have produced a primitive "phase diagram" for growing these structures based on several designed pressure and temperature parameters. Transmission electron microscopy (TEM) analysis has shown that the rods, wires, and belts are single-crystalline and grow along <111>m or <110>h directions. X-ray diffraction (XRD) measurements confirm phase and structural analysis. Superconducting quantum interference device (SQUID) measurements show that the iron oxide structures exhibit interesting magnetic behavior, particularly at room temperature. This work is the first known report of magnetite 1D nanostructure growth via the vapor-liquid-solid (VLS) mechanism without using a template, as well as the first known synthesis of long epsilon-Fe2O3 nanobelts and nanowires. PMID:17064124

  13. Long-term exposure of proximal tubular epithelial cells to glucose induces transforming growth factor-beta 1 synthesis via an autocrine PDGF loop.

    PubMed

    Fraser, Donald; Brunskill, Nigel; Ito, Takafumi; Phillips, Aled

    2003-12-01

    We have recently reported increased transforming growth factor (TGF)-beta1 gene transcription in proximal tubular cells within 12 hours of exposure to 25 mmol/L D-glucose, with a requirement for a second stimulus such as platelet-derived growth factor (PDGF) to increase its translation in short-term experiments. In the current study we investigated the effect on TGF-beta 1 production of prolonged exposure of proximal tubular cells to high glucose concentrations. Enzyme-linked immunosorbent assay of cell culture supernatant showed significant increase in latent TGF-beta 1 only after 7 days exposure to high glucose. Radiolabeling of glucose-stimulated cells with (3)H amino acids and subsequent immunoprecipitation of TGF-beta 1 demonstrated de novo synthesis from day 5 of high glucose exposure onwards. Similarly, polysome analysis showed enhanced translation of TGF-beta mRNA after 4 or more days of high glucose exposure. TGF-beta 1 synthesis, following addition of glucose, was inhibited by blockade of the PDGF-alpha receptor subunit. Glucose did not alter PDGF expression, nor expression of PDGF alpha-receptors. Activation of the receptor following addition of 25 mm D-glucose could be demonstrated suggesting increased sensitivity to endogenous PDGF. Exposure to glucose activated p38MAP kinase, and inhibition of this activation abrogated both glucose induced TGF-beta 1 transcriptional activation and TGF-beta 1 synthesis. Inhibition of p38MAP kinase did not influence the effect of exogenous PDGF when cells were stimulated sequentially by glucose and PDGF. We postulate that glucose induces an early increase in TGF-beta 1 transcription via activation of p38MAP kinase. In addition, glucose causes a late increase in PDGF-dependent TGF-beta 1 translation by enhancing cellular sensitivity to PDGF. This provides a potential explanation for the clinical observation that prolonged poor glycemic control may contribute to progression of diabetic nephropathy. PMID:14633628

  14. Cellular proliferation and infiltration following interstitial irradiation of normal dog brain is altered by an inhibitor of polyamine synthesis

    SciTech Connect

    Fike, J.R.; Gobbel, G.T.; Chou, D.

    1995-07-15

    The objectives of this study were to quantitatively define proliferative and infiltrative cell responses after focal {sup 125}I irradiation of normal brain, and to determine the effects of an intravenous infusion of {alpha}-defluoromethylornithine (DFMO) on those responses. Adult beagle dogs were irradiated using high activity {sup 125}I sources. Cellular responses were quantified using a histomorphometric analysis. After radiation alone, cellular events included a substantial acute inflammatory response followed by increased BrdU labeling and progressive increases in numbers of capillaries and astrocytes. {alpha}-Difluoromethylornithine treatment significantly affected the measured cell responses. As in controls, an early inflammatory response was measured, but after 2 weeks there were more PMNs/unit area than in controls. The onset of measurable BrdU labeling was delayed in DFMO-treated animals, and the magnitude of labeling was significantly reduced. Increases in astrocyte and vessel numbers/mm{sup 2} were observed after a 2-week delay. At the site of implant, astrocytes from DFMO-treated dogs were significantly smaller than those from controls. There is substantial cell proliferation and infiltration in response to interstitial irradiation of normal brain, and these responses are significantly altered by DFMO treatment. Although the precise mechanisms by which DFMO exerts its effects in this model are not known, the results from this study suggest that modification of radiation injury may be possible by manipulating the response of normal cells to injury. 57 refs., 6 figs.

  15. Targeting (cellular) lysosomal acid ceramidase by B13: Design, synthesis and evaluation of novel DMG-B13 ester prodrugs

    PubMed Central

    Bai, Aiping; Szulc, Zdzislaw, M.; Bielawski, Jacek; Pierce, Jason S.; Rembisa, Barbara; Terzieva, Silva; Mao, Cungui; Xu, Ruijuan; Wu, Bill; Clarke, Christopher J.; Newcomb, Benjamin; Liu, Xiang; Norris, James; Hannun, Yusuf A.; Bielawska, Alicja

    2015-01-01

    Acid ceramidase (ACDase) is being recognized as a therapeutic target for cancer. B13 represents a moderate inhibitor of ACDase. The present study concentrates on the lysosomal targeting of B13 via its N, N-dimethylglycine (DMG) esters (DMG-B13 prodrugs). Novel analogs, the isomeric mono-DMG-B13, LCL522 (3-O-DMG-B13•HCl) and LCL596 (1-O-DMG-B13•HCl) and di-DMG-B13, LCL521 (1,3-O, O-DMG-B13•2HCl) conjugates, were designed and synthesized through N, N-dimethyl glycine (DMG) esterification of the hydroxyl groups of B13. In MCF7 cells, DMG-B13 prodrugs were efficiently metabolized to B13. The early inhibitory effect of DMG-B13 prodrugs on cellular ceramidases was ACDase specific by their lysosomal targeting. The corresponding dramatic decrease of cellular Sph (80-97% Control/1h) by DMG-B13 prodrugs was mainly from the inhibition of the lysosomal ACDase. PMID:25456083

  16. In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response

    PubMed Central

    Rebnegger, Corinna; Graf, Alexandra B; Valli, Minoska; Steiger, Matthias G; Gasser, Brigitte; Maurer, Michael; Mattanovich, Diethard

    2014-01-01

    Protein production in yeasts is related to the specific growth rate μ. To elucidate on this correlation, we studied the transcriptome of Pichia pastoris at different specific growth rates by cultivating a strain secreting human serum albumin at μ = 0.015 to 0.15 h–1 in glucose-limited chemostats. Genome-wide regulation revealed that translation-related as well as mitochondrial genes were upregulated with increasing μ, while autophagy and other proteolytic processes, carbon source-responsive genes and other targets of the TOR pathway as well as many transcriptional regulators were downregulated at higher μ. Mating and sporulation genes were most active at intermediate μ of 0.05 and 0.075 h–1. At very slow growth (μ = 0.015 h–1) gene regulation differs significantly, affecting many transporters and glucose sensing. Analysis of a subset of genes related to protein folding and secretion reveals that unfolded protein response targets such as translocation, endoplasmic reticulum genes, and cytosolic chaperones are upregulated with increasing growth rate while proteolytic degradation of secretory proteins is downregulated. We conclude that a high μ positively affects specific protein secretion rates by acting on multiple cellular processes. PMID:24323948

  17. Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging

    NASA Astrophysics Data System (ADS)

    Ananthanarayanan, Arundithi; Wang, Yue; Routh, Parimal; Sk, Mahasin Alam; Than, Aung; Lin, Ming; Zhang, Jie; Chen, Jie; Sun, Handong; Chen, Peng

    2015-04-01

    Graphene quantum dots (GQDs) are emerging zero-dimensional materials promising a wide spectrum of applications, particularly, as superior fluorescent reporters for bio-imaging and optical sensing. Heteroatom doping can endow GQDs with new or improved photoluminescence properties. Here, we demonstrate a simple strategy for the synthesis of nitrogen and phosphorus co-doped GQDs from a single biomolecule precursor (adenosine triphosphate - ATP). Such ATP-GQDs exhibit high fluorescence quantum yield, strong two-photon upconversion, small molecular weight, high photostability, and good biocompatibility. Furthermore, transferrin conjugated ATP-GQDs have been used for imaging and real-time tracking of transferrin receptors in live cells.Graphene quantum dots (GQDs) are emerging zero-dimensional materials promising a wide spectrum of applications, particularly, as superior fluorescent reporters for bio-imaging and optical sensing. Heteroatom doping can endow GQDs with new or improved photoluminescence properties. Here, we demonstrate a simple strategy for the synthesis of nitrogen and phosphorus co-doped GQDs from a single biomolecule precursor (adenosine triphosphate - ATP). Such ATP-GQDs exhibit high fluorescence quantum yield, strong two-photon upconversion, small molecular weight, high photostability, and good biocompatibility. Furthermore, transferrin conjugated ATP-GQDs have been used for imaging and real-time tracking of transferrin receptors in live cells. Electronic supplementary information (ESI) available: Supplementary figures related to characterization, computational studies and protein conjugation. See DOI: 10.1039/c5nr01519g

  18. Time course of increased cellular proliferation in collateral arteries after administration of vascular endothelial growth factor in a rabbit model of lower limb vascular insufficiency.

    PubMed Central

    Takeshita, S.; Rossow, S. T.; Kearney, M.; Zheng, L. P.; Bauters, C.; Bunting, S.; Ferrara, N.; Symes, J. F.; Isner, J. M.

    1995-01-01

    Proliferation of vascular cells has been previously shown to contribute to spontaneous development of coronary collaterals. Recent studies from several laboratories have established that collateral artery growth in both the heart and limb can be enhanced by administration of angiogenic growth factors, or therapeutic angiogenesis. In this study, we sought (1) to define the extent and time course of endothelial cell (EC) and smooth muscle cell (SMC) proliferation accompanying spontaneous collateral development during limb ischemia and (2) to determine the extent to which proliferative activity of ECs and SMCs is augmented during therapeutic angiogenesis with vascular endothelial growth factor (VEGF), a heparin-binding EC-specific mitogen. Ten days after induction of limb ischemia by surgically excising the femoral artery of rabbits, either VEGF (500 to 1000 micrograms) or saline was administered as a bolus into the iliac artery of the ischemic limb. Cellular proliferation was evaluated by bromodeoxyuridine labeling for 24 hours at day 0 (immediately before VEGF administration) and at days 3, 5, and 7 after VEGF, EC proliferation in the midzone collaterals of VEGF-treated animals increased 2.8-fold at day 5 (P < 0.05 versus control), and returned to baseline levels by day 7. SMC proliferation in midzone collaterals also increased 2.7-fold in response to VEGF (P < 0.05). No significant increase in EC or SMC proliferation was observed in either the stem or re-entry collaterals of VEGF-treated animals compared with untreated ischemic control animals. Reduction of hemodynamic deficit in the ischemic limb measured by lower limb blood pressure was documented at day 7 after VEGF (P < 0.01 versus untreated, ischemic control). These data thus (1) establish the contribution of cellular proliferation to collateral vessel development in limb ischemia and (2) support the concept that augmented cellular proliferation contributes to the enhanced formation of collateral vessels after

  19. Synthesis and Characterization of High-Purity Tellurium Nanowires via Self-seed-Assisted Growth Approach

    NASA Astrophysics Data System (ADS)

    Li, Ying; Zhao, Wen-yu; Mu, Xin; Liu, Xing; He, Dan-qi; Zhu, Wan-ting; Zhang, Qing-jie

    2016-03-01

    Nanowires have attracted intense attention in recent years due to their novel physical properties. In this work, we prepare high-purity tellurium nanowires through the self-seed-assisted growth method previously developed by us. The tellurium seeds were firstly synthesized by reducing Na2TeO3 in the ice water with NaBH4. The high-purity tellurium nanowires with a diameter of 40-50 nm and a length of several tens of micrometers were then grown on tellurium seeds by reducing Na2TeO3 with hydrazine hydrate. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were employed to characterize the crystal structure, microstructure, and growth direction of tellurium seeds and nanowires. The effects of temperature, time, surfactant and tellurium seeds on microstructures of tellurium nanowires has also been investigated. The synthesis conditions of tellurium seeds and nanowires was optimized. The selected area electron diffraction pattern confirms that the growth direction of tellurium nanowires is parallel to [0001] direction. It was discovered that high-purity tellurium nanowires with high aspect ratio can be synthesized by precisely controlling the temperature to adjust the nucleation rate of the tellurium nuclei, selecting the appropriate surfactant to induce the coordination along the macromolecular chain, and using tellurium seeds as the templates of the epitaxial growth of tellurium nuclei.

  20. Synthesis and Characterization of High-Purity Bismuth Nanowires via Seed-Assisted Growth Approach

    NASA Astrophysics Data System (ADS)

    Mu, Xin; Zhao, Wen-Yu; He, Dan-Qi; Zhou, Hong-Yu; Zhu, Wan-Ting; Zhang, Qing-Jie

    2015-06-01

    Nanowires are considered as high-performance thermoelectric materials with large Seebeck coefficients due to quantum confinement and low thermal conductivity because of enhanced boundary scattering of phonons. In this work, a seed-assisted growth method has been developed to synthesize high-purity bismuth nanowires. The bismuth seeds were first synthesized by reducing BiCl3 in the ice water with NaBH4. The high-purity bismuth nanowires about 40-50 nm in diameter and several tens of micrometers in length were then grown on bismuth seeds by reducing NaBiO3 with ethylene glycol. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were employed to characterize the crystal structure, microstructure, and growth direction of the bismuth seeds and nanowires. The effects of temperature, reductant, and bismuth seeds template on the microstructures of the bismuth nanowires were also investigated. The synthesis conditions of bismuth seeds and nanowires were optimized. The selected area electron diffraction pattern confirms that the growth direction of bismuth nanowires is parallel to [] direction. It was discovered that high-purity bismuth nanowires with high aspect ratio can be synthesized by precisely controlling the temperature to adjust the nucleation rate of the bismuth nuclei, selecting the appropriate reductant to maintain a low nucleation rate, and using bismuth seeds as the template of the epitaxial growth of the bismuth nuclei.

  1. Polyamines in chemiosmosis in vivo: A cunning mechanism for the regulation of ATP synthesis during growth and stress.

    PubMed

    Ioannidis, Nikolaos E; Kotzabasis, Kiriakos

    2014-01-01

    Polyamines (PAs) are low molecular weight amines that occur in every living organism. The three main PAs (putrescine, spermidine, and spermine) are involved in several important biochemical processes covered in recent reviews. As rule of thumb, increase of the cellular titer of PAs in plants is related to cell growth and cell tolerance to abiotic and biotic stress. In the present contribution, we describe recent findings from plant bioenergetics that bring to light a previously unrecognized dynamic behavior of the PA pool. Traditionally, PAs are described by many authors as organic polycations, when in fact they are bases that can be found in a charged or uncharged form. Although uncharged forms represent less than 0.1% of the total pool, we propose that their physiological role could be crucial in chemiosmosis. This process describes the formation of a PA gradient across membranes within seconds and is difficult to be tested in vivo in plants due to the relatively small molecular weight of PAs and the speed of the process. We tested the hypothesis that PAs act as permeable buffers in intact leaves by using recent advances in vivo probing. We found that an increase of PAs increases the electric component (Δψ) and decreases the ΔpH component of the proton motive force. These findings reveal an important modulation of the energy production process and photoprotection of the chloroplast by PAs. We explain in detail the theory behind PA pumping and ion trapping in acidic compartments (such as the lumen in chloroplasts) and how this regulatory process could improve either the photochemical efficiency of the photosynthetic apparatus and increase the synthesis of ATP or fine tune antenna regulation and make the plant more tolerant to stress. PMID:24592272

  2. In vitro growth of four individual human gut bacteria on oligosaccharides produced by chemoenzymatic synthesis.

    PubMed

    Vigsnaes, Louise K; Nakai, Hiroyuki; Hemmingsen, Lene; Andersen, Joakim M; Lahtinen, Sampo J; Rasmussen, Louise E; Hachem, Maher Abou; Petersen, Bent O; Duus, Jens Ø; Meyer, Anne S; Licht, Tine R; Svensson, Birte

    2013-04-30

    The present study aimed at examining oligosaccharides (OS) for potential stimulation of probiotic bacteria. Nineteen structurally well-defined candidate OS covering groups of β-glucosides, α-glucosides and α-galactosides with degree of polymerization 2-4 were prepared in >100 mg amounts by chemoenzymatic synthesis (i.e. reverse phosphorolysis or transglycosylation). Fourteen of the OS are not naturally occurring and five (β-D-glucosyl-fructose, β-D-glucosyl-xylitol, α-glucosyl-(1,4)-D-mannose, α-glucosyl-(1,4)-D-xylose; α-glucosyl-(1,4)-L-fucose) have recently been synthesized for the first time. These OS have not been previously tested for effects of bacterial growth and here the ability of all 19 OS to support growth of four gastrointestinal bacteria: three probiotic bacteria Bifidobacterium lactis, Bifidobacterium longum, and Lactobacillus acidophilus, and one commensal bacterium, Bacteroides vulgatus has been evaluated in monocultures. The disaccharides β-D-glucosyl-xylitol and β-D-glucosyl-(1,4)-xylose noticeably stimulated growth yields of L. acidophilus NCFM, and additionally, β-D-glucosyl-(1,4)-xylose stimulated B. longum Bl-05. α-Glucosyl-(1,4)-glucosamine and α-glucosyl-(1,4)-N-acetyl-glucosamine enhanced the growth rate of B. animalis subsp. lactis and B. longum Bl-05, whereas L. acidophilus NCFM and Bac. vulgatus did not grow on these OS. α-Galactosyl-(1,6)-α-galactosyl-(1,6)-glucose advanced the growth rate of B. animalis subsp. lactis and L. acidophilus NCFM. Thus several of the structurally well-defined OS supported growth of beneficial gut bacteria. This reflects a broad specificity of their sugar transporters for OS, including specificity for non-naturally occurring OS, hence showing promise for design of novel prebiotics. PMID:23580006

  3. Synthesis of Ag nanoplates on GaAs wafers : evidence for growth mechanism.

    SciTech Connect

    Sun, Y.; Center for Nanoscale Materials

    2010-01-21

    Direct synthesis of Ag nanoplates on GaAs wafers has been developed in our group through a simple solution/solid interfacial reaction (SSIR) strategy, in which aqueous solutions of pure AgNO{sub 3} react with the GaAs wafers at room temperature [J. Phys. Chem. C 2009, 113, 6061; 2008, 112, 8928; Chem. Mater. 2007, 19, 5845]. However, a number of questions are still not clear yet regarding the roles of different possible pathways for reducing Ag{sup +} ions in the growth of Ag nanoplates. In this article, we try to answer these remaining questions by specifically designing experiments and extracting direct evidence from systematic characterizations of different samples. It is conclusive that growth of high-quality Ag nanoplates on GaAs wafers is ascribed to the good separation between nucleation and growth steps, which are driven by two different reduction pathways. At the nucleation step, fast reduction of Ag{sup +} ions with a high concentration of surface electrons is crucial for the formation of Ag nuclei with multiple (111) twin planes parallel to each other, and remaining the environment of a high concentration of surface electrons for a period long enough is also important to develop the Ag nuclei into stable seeds. At the growth step, a hole injection process is mainly responsible for reduction of Ag{sup +} ions to enlarge the stable seeds into Ag nanoplates with controlled sizes by tuning the growth time. The paralleled multiple (111) twin planes provide a crystalline confinement to guide the growth of the seeds into nanoplates.

  4. Synthesis of a Neutral Mixed-Valence Diferrocenyl Carborane for Molecular Quantum-Dot Cellular Automata Applications.

    PubMed

    Christie, John A; Forrest, Ryan P; Corcelli, Steven A; Wasio, Natalie A; Quardokus, Rebecca C; Brown, Ryan; Kandel, S Alex; Lu, Yuhui; Lent, Craig S; Henderson, Kenneth W

    2015-12-14

    The preparation of 7-Fc(+) -8-Fc-7,8-nido-[C2 B9 H10 ](-) (Fc(+) FcC2 B9 (-) ) demonstrates the successful incorporation of a carborane cage as an internal counteranion bridging between ferrocene and ferrocenium units. This neutral mixed-valence Fe(II) /Fe(III) complex overcomes the proximal electronic bias imposed by external counterions, a practical limitation in the use of molecular switches. A combination of UV/Vis-NIR spectroscopic and TD-DFT computational studies indicate that electron transfer within Fc(+) FcC2 B9 (-) is achieved through a bridge-mediated mechanism. This electronic framework therefore provides the possibility of an all-neutral null state, a key requirement for the implementation of quantum-dot cellular automata (QCA) molecular computing. The adhesion, ordering, and characterization of Fc(+) FcC2 B9 (-) on Au(111) has been observed by scanning tunneling microscopy. PMID:26516063

  5. Cellular compartmentalization of secondary metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors sh...

  6. Depletion of tumour glutathione in vivo by buthionine sulphoximine: modulation by the rate of cellular proliferation and inhibition of cancer growth.

    PubMed Central

    Terradez, P; Asensi, M; Lasso de la Vega, M C; Puertes, I R; Viña, J; Estrela, J M

    1993-01-01

    We have investigated in Ehrlich-ascites-tumour-bearing mice the effect of buthionine sulphoximine (BSO), a selective inhibitor of GSH synthesis, on the rate of GSH depletion of tumour versus normal tissues and its relation to tumour cell proliferation. In normal tissues, GSH and GSSG remain unchanged or close to normal values during tumour growth, even at the last stage of growth when the animal is close to death. After administration of a single dose of BSO (4 mmol/kg), the rates of GSH depletion and recovery in the tumour and in several normal tissues are very different. BSO depletes GSH in cancer cells to a level of 0.3-0.4 mumol/g. The fall in GSH levels is faster when tumour cells do not proliferate actively. Four treatments of 4 mmol of BSO/kg at 48 h intervals induce a significant decrease (about 44%) in tumour growth. Our data show that the rate of BSO-induced GSH depletion in cancer cells depends on the stage of tumour growth, and that BSO administration also inhibits cancer-cell proliferation. A mechanism involving changes in protein kinase C activity and intracellular pH is proposed to explain the inhibition of cancer growth elicited by BSO. PMID:8503882

  7. Blockage by gibberellic Acid of phytochrome effects on growth, auxin responses, and flavonoid synthesis in etiolated pea internodes.

    PubMed

    Russell, D W; Galston, A W

    1969-09-01

    Red light inhibits the growth of etiolated pea internodes, causes a shift toward higher indoleacetic acid (IAA) concentrations in the IAA dose-response curve of excised sections, and promotes the synthesis in intact internodes of kaempferol-3-triglucoside. Gibberellic acid (GA(3)) prevents all 3 effects, the first effect substantially and the last 2 completely. This suggests GA(3) blockage of an early or basic event initiated by the active form of phytochrome. The red light-induced shift in the IAA dose-response curve of excised sections is consistent with a light-induced increase in the activity of an IAA destruction system, since the magnitude of the red light inhibition varied with IAA concentration. The red light and GA(3) effects on growth and on flavonoid synthesis are consistent with the view that phytochrome may control growth by regulating the synthesis of phenolic compounds which act as cofactors in an IAA-oxidase system. GA(3) reversal of the red light-induced shift in the IAA dose-response curve involves both growth promotion and inhibition by GA(3) at different IAA concentrations and this, together with the GA(3) reversal of light-induced flavonoid synthesis, supports the suggested regulatory role of phenolic compounds in growth. PMID:16657193

  8. Growth inhibition of human prostate cells in vitro by novel inhibitors of androgen synthesis.

    PubMed

    Klus, G T; Nakamura, J; Li, J S; Ling, Y Z; Son, C; Kemppainen, J A; Wilson, E M; Brodie, A M

    1996-11-01

    The long-standing strategy for the treatment of metastatic prostate cancer has been to reduce androgenic stimulation of tumor growth by removal of the testes, the primary site of testosterone synthesis. However, a low level of androgenic stimulation may continue, even after castration, by the conversion of adrenal androgens to 5alpha-dihydrotestosterone (DHT) in the prostate tumor cells. Two important enzymes of the androgen biosynthetic pathway are 17alpha-hydroxylase/C17,20-lyase, which regulates an early step in the synthesis of testosterone and other androgens in both the testes and adrenal glands, and 5alpha-reductase, which converts testosterone to the more potent androgen, DHT, in the prostate. We have identified new inhibitors of these enzymes that may be of use in achieving a more complete ablation of androgens in the treatment of metastatic prostate cancer. Three derivatives of androstene were shown to inhibit 17alpha-hydroxylase/C17,20-lyase with potencies 2-20-fold greater than that of ketoconazole, a previously established inhibitor of this enzyme. Derivatives of pregnane and pregnene displayed activities against 5alpha-reductase that were comparable to that of N-(1,1-dimethyl-ethyl)-3-oxo-4-aza-5alpha-androst-1-ene-17beta-car boxamide. All of the 5alpha-reductase inhibitors were able to at least partially inhibit the mitogenic effect of testosterone in either histocultures of human benign prostatic hypertrophic tissue or in cultures of the LNCaP human prostatic tumor cell line. For these compounds, it appears that this inhibition can be attributed to a reduction of DHT synthesis in these cultures, because no inhibitory effect was observed in DHT-treated cultures, and none of the compounds had a cytotoxic effect. Surprisingly, one of the inhibitors of 17alpha-hydroxylase/C17,20-lyase, 17beta-(4-imidazolyl)-5-pregnen-3beta-ol, was also able to inhibit the mitogenic effect of testosterone in both the histoculture and cell culture assays and had an effect

  9. Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria

    PubMed Central

    Burnap, Robert L.

    2014-01-01

    Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular synthesis, most importantly, protein expression. The “proteomic constraint” is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity) in conjunction with cell surface-to-volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded this space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light-harvesting antennae, and the

  10. [Induction of Hsp104 synthesis in Saccharomyces cerevisiae is inhibited by the petite mutation in the stationary growth phase].

    PubMed

    Fedoseeva, I V; Rikhanov, E G; Varakina, N N; Rusaleva, T M; Pyatrikas, D V; Stepanov, A V; Fedyaeva, A V

    2014-03-01

    The elevation of Hsp104 (heat shock protein) content under heat shock plays a key role in yeast (Saccharomyces cerevisiae) cells. Hsp104 synthesis is increased under heat stress in the stationary growth phase. As shown, the loss of mitochondrial DNA (petite mutation) inhibited the induction of the Hsp104 synthesis under heat stress (39 degrees C) during the transition to the stationary growth phase. Also, the petite mutation suppressed the activity of antioxidant enzymes in the same phase, which led to lower thermotolerance. At the same time, the mutation inhibited production of the reactive oxygen species and prevented cell death under heat shock in the logarithmic growth phase. The results of this study suggest that disruption of the mitochondrial functional state suppresses the expression level of yeast nuclear genes upon transitioning to the stationary growth phase. PMID:25438547

  11. [Induction of Hsp104 synthesis in Saccharomyces cerevisiae is inhibited by the petite mutation in the stationary growth phase].

    PubMed

    2014-03-01

    The elevation of Hsp104 (heat shock protein) content under heat shock plays a key role in yeast (Saccharomyces cerevisiae) cells. Hsp104 synthesis is increased under heat stress in the stationary growth phase. As shown, the loss of mitochondrial DNA (petite mutation) inhibited the induction of the Hsp104 synthesis under heat stress (39 degrees C) during the transition to the stationary growth phase. Also, the petite mutation suppressed the activity of antioxidant enzymes in the same phase, which led to lower thermotolerance. At the same time, the mutation inhibited production of the reactive oxygen species and prevented cell death under heat shock in the logarithmic growth phase. The results of this study suggest that disruption of the mitochondrial functional state suppresses the expression level of yeast nuclear genes upon transitioning to the stationary growth phase. PMID:25508078

  12. Inhibition of cellular proliferation by the Wilms' tumor suppressor WT1 is associated with suppression of insulin-like growth factor I receptor gene expression.

    PubMed Central

    Werner, H; Shen-Orr, Z; Rauscher, F J; Morris, J F; Roberts, C T; LeRoith, D

    1995-01-01

    We have investigated the regulation of the insulin-like growth factor I receptor (IGF-I-R) gene promoter by the Wilms' tumor suppressor WT1 in intact cells. The levels of endogenous IGF-I-R mRNA and the activity of IGF-I-R gene promoter fragments in luciferase reporter constructs were found to be significantly higher in G401 cells (a Wilms' tumor-derived cell line lacking detectable WT1 mRNA) than in 293 cells (a human embryonic kidney cell line which expresses significant levels of WT1 mRNA). To study whether WT1 could suppress the expression of the endogenous IGF-I-R gene, WT1-negative G401 cells were stably transfected with a WT1 expression vector. Expression of WT1 mRNA in G401 cells resulted in a significant decrease in the rate of cellular proliferation, which was associated with a reduction in the levels of IGF-I-R mRNA, promoter activity, and ligand binding and with a reduction in IGF-I-stimulated cellular proliferation, thymidine incorporation, and anchorage-independent growth. These data suggest that a major aspect of the action of the WT1 tumor suppressor is the repression of IGF-I-R gene expression. PMID:7791758

  13. Influence of chromium compounds on microbial growth and nucleic acid synthesis

    SciTech Connect

    Ogawa, Toshihiko; Usui, Masauji; Yatome, Chizuko; Idaka, Eiichi )

    1989-08-01

    The wastewaters of the dyeing and the tanning industry contain often various chromium compounds, e.g. K{sub 2}Cr{sub 2}O{sub 7} and CrCl{sub 3}, with a large quantity of organic substances. Biological treatments have generally been employed in these industrial factories for the biodegradation of organic substances. The toxicity of the chromium compounds have been studied regarding mutagenicity and carcinogenicity from the medical view point. This is also of interest from the view point of wastewater biological treatments. The inhibitory effects of the compounds on the cell growth and the respiration in activated sludge have been reported in detail, but mechanisms have not been sufficiently elucidated. Therefore, the influence of K{sub 2}Cr{sub 2}O{sub 7} and CrCl{sub 3} on the cell growth and on the nucleic acid content was measured. Both compounds were the inhibitors of DNA synthesis. These action resulted in increased generation time a decrease in cell division. Chromium compounds and dyes coexist often in the wastewaters of the dyeing industries. The growth inhibitions of the mixed solution were measured.

  14. Synthesis and characterization of phosphocitric acid, a potent inhibitor of hydroxylapatite crystal growth.

    PubMed

    Tew, W P; Mahle, C; Benavides, J; Howard, J E; Lehninger, A L

    1980-04-29

    Human urine and extracts of rat liver mitochondria contain apparently identical agents capable of inhibiting the precipitation or crystallization of calcium phosphate. Its general properties, as well as 1H NMR and mass spectra, have suggested that the agent is phosphocitric acid. This paper reports the synthesis of phosphocitric acid via the phosphorylation of triethyl citrate with o-phenylene phosphochloridate, hydrogenolysis of the product to yield triethyl phosphocitrate, hydrolytic removal of the blocking ethyl groups and also chromatographic purification. An enzymatic assay of phosphocitrate is described. Synthetic phosphocitrate was found to be an exceedingly potent inhibitor of the growth of hydroxylapatite seed crystals in a medium supersaturated with respect to Ca2+ and phosphate. Comparative assays showed phosphocitrate to be much more potent than the most active precipitation-crystallization inhibitors previously reported, which include pyrophosphate and ATP. 14C-Labeled phosphocitrate was bound very tightly to hydroxylapatite crystals. Such binding appeared to be essential for its inhibitory activity on crystal growth. Citrate added before but not after, phosphocitrate greatly enhanced the inhibitory potency of the latter. This enhancement effect was not given by other tricarboxylic acids. The monoethyl ester of phosphocitrate had no inhibitory effect on hydroxylapatite crystal growth. PMID:7378389

  15. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis

    NASA Astrophysics Data System (ADS)

    Wang, Chan; Wang, Chuanxi; Xu, Lin; Cheng, Hao; Lin, Quan; Zhang, Chi

    2014-01-01

    The development of functional copper nanoclusters (Cu NCs) is becoming increasingly widespread in consumer technologies due to their applications in cellular imaging and catalysis. Herein, we report a simple protein-directed synthesis of stable, water-soluble and fluorescent Cu NCs, using BSA as the stabilising agent. Meanwhile, in this study, hydrazine hydrate (N2H4.2H2O) was used as the reducing agent. N2H4.2H2O was a mild reducing agent suggesting that all processes could be operated at room temperature. The as-prepared Cu NCs showed red fluorescence with a peaking center at 620 nm (quantum yield 4.1%). The fluorescence of the as-prepared BSA-Cu NCs was responsive to pH in that the intensity of fluorescence increased rapidly by decreasing the pH from 12 to 6. Besides, with an arresting set of features including water-dispersibility, red fluorescence, good biocompatibility, surface-bioactivity and small size, the resultant BSA-Cu NCs could be used as probes for cellular imaging and catalysis. In this study, CAL-27 cells and the reaction of oxidation of styrene are used as models to achieve fluorescence imaging and elucidate the catalytic activity of the as-prepared BSA-Cu NCs.The development of functional copper nanoclusters (Cu NCs) is becoming increasingly widespread in consumer technologies due to their applications in cellular imaging and catalysis. Herein, we report a simple protein-directed synthesis of stable, water-soluble and fluorescent Cu NCs, using BSA as the stabilising agent. Meanwhile, in this study, hydrazine hydrate (N2H4.2H2O) was used as the reducing agent. N2H4.2H2O was a mild reducing agent suggesting that all processes could be operated at room temperature. The as-prepared Cu NCs showed red fluorescence with a peaking center at 620 nm (quantum yield 4.1%). The fluorescence of the as-prepared BSA-Cu NCs was responsive to pH in that the intensity of fluorescence increased rapidly by decreasing the pH from 12 to 6. Besides, with an arresting

  16. The extracellular matrix of plants: Molecular, cellular and developmental biology

    SciTech Connect

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  17. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types. PMID:26568031

  18. Sleep, Plasticity and the Pathophysiology of Neurodevelopmental Disorders: The Potential Roles of Protein Synthesis and Other Cellular Processes

    PubMed Central

    Picchioni, Dante; Reith, R. Michelle; Nadel, Jeffrey L.; Smith, Carolyn B.

    2014-01-01

    Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders. PMID:24839550

  19. Surface Structure Characterization of Aspergillus fumigatus Conidia Mutated in the Melanin Synthesis Pathway and Their Human Cellular Immune Response

    PubMed Central

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F.; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A.; Kaveri, Srini V.; Kwon-Chung, Kyung J.

    2014-01-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. PMID:24818666

  20. Synthesis and crystal growth of Mg2Si by the liquid encapsulated vertical gradient freezing method

    NASA Astrophysics Data System (ADS)

    Nakagawa, Reo; Katsumata, Hiroshi; Hashimoto, Satoshi; Sakuragi, Shiro

    2015-08-01

    The synthesis of Mg2Si bulk crystals was performed by the vertical gradient freezing method using a KCl-MgCl2 eutectic liquid encapsulant. Stoichiometric polycrystalline Mg2Si bulk crystals were successfully grown by changing the composition ratio of starting Mg and Si powders (Mg/Si) from 2.0 to 3.5. A chemical reaction between Mg2Si and the crucible materials was inhibited using encapsulant materials, and the contamination by K or Cl originating from the encapsulant materials was not detected in almost all the samples. However, Mg evaporation could not be prevented completely during the synthesis and crystal growth. The optical band-gap energy of Mg2Si bulk crystals became minimal (0.79 eV) at a Mg/Si ratio of 2.5, at which the maximum electron mobility of 202 cm2·V-1·s-1 was obtained. These results indicate that the composition ratio of Mg/Si = 2.5 for starting Mg and Si powders was optimal for synthesizing Mg2Si bulk crystals with high crystalline quality.

  1. Low-temperature synthesis and growth mechanism of uniform nanorods of bismuth sulfide

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoping; Xu, Dan; Liang, Jianbo; Lin, Wanjuan; Yu, Weichao; Qian, Yitai

    2005-03-01

    A low-temperature solution-phase method has been demonstrated for the synthesis of uniform nanorods of Bi 2S 3 with diameter of 18 nm and length of below 200 nm. Transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and X-ray diffraction (XRD) studies revealed that these nanorods were grown from a colloidal dispersion of amorphous Bi 2S 3 particles, which was first formed through a thermal reaction between Bi-thiol complexes Bi(SC 12) 3 and thioacetamide (TAA) in a pure dodecanethiol (C 12SH) solvent at a temperature of 95 °C. Based on these studies, the growth mechanism of Bi 2S 3 nanorods was properly proposed.

  2. Further developments in the controlled growth approach for optimal structural synthesis

    NASA Technical Reports Server (NTRS)

    Hajela, P.

    1982-01-01

    It is pointed out that the use of nonlinear programming methods in conjunction with finite element and other discrete analysis techniques have provided a powerful tool in the domain of optimal structural synthesis. The present investigation is concerned with new strategies which comprise an extension to the controlled growth method considered by Hajela and Sobieski-Sobieszczanski (1981). This method proposed an approach wherein the standard nonlinear programming (NLP) methodology of working with a very large number of design variables was replaced by a sequence of smaller optimization cycles, each involving a single 'dominant' variable. The current investigation outlines some new features. Attention is given to a modified cumulative constraint representation which is defined in both the feasible and infeasible domain of the design space. Other new features are related to the evaluation of the 'effectiveness measure' on which the choice of the dominant variable and the linking strategy is based.

  3. Total synthesis of biotinylated N domain of human hepatocyte growth factor.

    PubMed

    Raibaut, Laurent; Vicogne, Jérome; Leclercq, Bérénice; Drobecq, Hervé; Desmet, Rémi; Melnyk, Oleg

    2013-06-15

    Hepatocyte growth factor/scatter factor (HGF/SF) is the high affinity ligand of MET tyrosine kinase receptor. We report here the total synthesis of a biotinylated analogue of human HGF/SF N domain. Functionally, N domain is part of the HGF/SF high affinity binding site for MET and also the main HGF/SF binding site for heparin. The 97 Aa linear chain featuring a C-terminal biotin group was assembled in high yield using an N-to-C one-pot three segments assembly strategy relying on a sequential Native Chemical Ligation (NCL)/bis(2-sulfanylethyl)amido (SEA) native peptide ligation process. The folded protein displayed the native disulfide bond pattern and showed the ability to bind heparin. PMID:23523386

  4. Tunable synthesis and in situ growth of silicon-carbon mesostructures using impermeable plasma

    PubMed Central

    Yaghoubi, Alireza; Mélinon, Patrice

    2013-01-01

    In recent years, plasma-assisted synthesis has been extensively used in large scale production of functional nano- and micro-scale materials for numerous applications in optoelectronics, photonics, plasmonics, magnetism and drug delivery, however systematic formation of these minuscule structures has remained a challenge. Here we demonstrate a new method to closely manipulate mesostructures in terms of size, composition and morphology by controlling permeability at the boundaries of an impermeable plasma surrounded by a blanket of neutrals. In situ and rapid growth of thin films in the core region due to ion screening is among other benefits of our method. Similarly we can take advantage of exceptional properties of plasma to control the morphology of the as deposited nanostructures. Probing the plasma at boundaries by means of observing the nanostructures, further provides interesting insights into the behaviour of gas-insulated plasmas with possible implications on efficacy of viscous heating and non-magnetic confinement. PMID:23330064

  5. Synthesis, crystal growth and studies on non-linear optical property of new chalcones

    NASA Astrophysics Data System (ADS)

    Sarojini, B. K.; Narayana, B.; Ashalatha, B. V.; Indira, J.; Lobo, K. G.

    2006-09-01

    The synthesis, crystal growth and non-linear optical (NLO) property of new chalcone derivatives are reported. 4-Propyloxy and 4-butoxy benzaldehydes were made to under go Claisen-Schmidt condensation with 4-methoxy, 4-nitro and 4-phenoxy acetophenones to form corresponding chalcones. The newly synthesized compounds were characterized by analytical and spectral data. The Second harmonic generation (SHG) efficiency of these compounds was measured by powder technique using Nd:YAG laser. Among tested compounds three chalcones showed NLO property. The chalcone 1-(4-methoxyphenyl)-3-(4-propyloxy phenyl)-2-propen-1-one exhibited SHG conversion efficiency 2.7 times that of urea. The bulk crystal of 1-(4-methoxyphenyl)-3-(4-butoxyphenyl)-2-propen-1-one (crystal size 65×28×15 mm 3) was grown by slow-evaporation technique from acetone. Microhardness of the crystal was tested by Vicker's microhardness method.

  6. PROLINE IS REQUIRED FOR THE STIMULATION OF DNA SYNTHESIS IN HEPATOCYTE CULTURES BY EGF (EPIDERMAL GROWTH FACTOR)

    EPA Science Inventory

    Epidermal growth factor (EGF) has been shown to stimulate DNA synthesis in rat parenchymal hepatocytes both in vivo and in vitro (4,9). The authors report here that this response in vitro is dependent on the amino acids present in the media. Of all the amino acids, proline has th...

  7. Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs.

    PubMed

    Columbus, Daniel A; Steinhoff-Wagner, Julia; Suryawan, Agus; Nguyen, Hanh V; Hernandez-Garcia, Adriana; Fiorotto, Marta L; Davis, Teresa A

    2015-09-15

    Most low-birth weight infants experience extrauterine growth failure due to reduced nutrient intake as a result of feeding intolerance. The objective of this study was to determine whether prolonged enteral leucine supplementation improves lean growth in neonatal pigs fed a restricted protein diet. Neonatal pigs (n = 14-16/diet, 5 days old, 1.8 ± 0.3 kg) were fed by gastric catheter a whey-based milk replacement diet with either a high protein (HP) or restricted protein (RP) content or RP supplemented with leucine to the same level as in the HP diet (RPL). Pigs were fed 40 ml·kg body wt(-1)·meal(-1) every 4 h for 21 days. Feeding the HP diet resulted in greater total body weight and lean body mass compared with RP-fed pigs (P < 0.05). Masses of the longissimus dorsi muscle, heart, and kidneys were greater in the HP- than RP-fed pigs (P < 0.05). Body weight, lean body mass, and masses of the longissimus dorsi, heart, and kidneys in pigs fed the RPL diet were intermediate to RP- and HP-fed pigs. Protein synthesis and mTOR signaling were increased in all muscles with feeding (P < 0.05); leucine supplementation increased mTOR signaling and protein synthesis rate in the longissimus dorsi (P < 0.05). There was no effect of diet on indices of protein degradation signaling in any tissue (P > 0.05). Thus, when protein intake is chronically restricted, the capacity for leucine supplementation to enhance muscle protein accretion in neonatal pigs that are meal-fed milk protein-based diets is limited. PMID:26374843

  8. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines

    SciTech Connect

    Bronzert, D.A.; Pantazis, P.; Antoniades, H.N.; Kasid, A.; Davidson, N.; Dickson, R.B.; Lippman, M.E.

    1987-08-01

    The authors report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or competence activity that is capable of inducing incorporation of (/sup 3/H) thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (95/sup 0/C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of approx. =30 kDa on NaDodSO/sub 4//polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO/sub 4//polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth.

  9. Auxin and Cellular Elongation.

    PubMed

    Velasquez, Silvia Melina; Barbez, Elke; Kleine-Vehn, Jürgen; Estevez, José M

    2016-03-01

    Auxin is a crucial growth regulator in plants. However, a comprehensive understanding of how auxin induces cell expansion is perplexing, because auxin acts in a concentration- and cell type-dependent manner. Consequently, it is desirable to focus on certain cell types to exemplify the underlying growth mechanisms. On the other hand, plant tissues display supracellular growth (beyond the level of single cells); hence, other cell types might compromise the growth of a certain tissue. Tip-growing cells do not display neighbor-induced growth constraints and, therefore, are a valuable source of information for growth-controlling mechanisms. Here, we focus on auxin-induced cellular elongation in root hairs, exposing a mechanistic view of plant growth regulation. We highlight a complex interplay between auxin metabolism and transport, steering root hair development in response to internal and external triggers. Auxin signaling modules and downstream cascades of transcription factors define a developmental program that appears rate limiting for cellular growth. With this knowledge in mind, the root hair cell is a very suitable model system in which to dissect cellular effectors required for cellular expansion. PMID:26787325

  10. Lack of stereospecificity of some cellular and viral enzymes involved in the synthesis of deoxyribonucleotides and DNA: molecular basis for the antiviral activity of unnatural L-beta-nucleosides.

    PubMed

    Spadari, S; Maga, G; Verri, A; Bendiscioli, A; Tondelli, L; Capobianco, M; Colonna, F; Garbesi, A; Focher, F

    1995-01-01

    Among enzymes involved in the synthesis of nucleotides and DNA, some exceptions have recently been found to the universal rule that enzymes act only on one enantiomer of a chiral substrate and that only one of the enantiomeric forms of chiral molecules may bind effectively at the catalytic site, displaying biological activity. The exceptions include: herpes virus thymidine kinases, cellular deoxycytidine kinase and deoxynucloside mono- and diphosphate kinases, cellular and viral DNA polymerases, such as DNA polymerase alpha, terminal transferase and HIV-1 reverse transcriptase. The ability of these enzymes to utilize unnatural L-beta-nucleosides or -nucleotides as substrate may be exploited from chemotherapeutic point of view. PMID:8824765

  11. Transition between graphene-film and carbon-nanotube growth on Nickel alloys in open-atmosphere flame synthesis

    NASA Astrophysics Data System (ADS)

    Memon, Nasir K.; Kear, Bernard H.; Tse, Stephen D.

    2013-05-01

    Using open-atmosphere flame synthesis, graphene films and carbon nanotubes (CNTs) are grown directly on nickel and nickel-alloy substrates. The gas-flow input CH4 to H2 ratio (1:10) is held constant. For nickel, copper-nickel, and Inconel, few-layer graphene (FLG) grows at 850 °C. Transitional growth from FLG to CNTs is observed on nickel, copper-nickel, and Inconel, as the substrate temperature is decreased to 500 °C. CNT growth is found for nitinol at 500 °C; however, graphene growth is not observed for nitinol at elevated temperatures for the examined experimental conditions.

  12. Anaerobiosis and ethanol effects on germination, growth, and protein synthesis of five Echinochloa species

    SciTech Connect

    Dybiec, L.D. ); Rumpho, M.E.; Kennedy, R.A. )

    1989-04-01

    Five Echinochloa species, encompassing a spectrum from flood tolerant to flood intolerant, were studied to determine the mechanisms of anaerobic germination and growth. Seeds were germinated in air or N{sub 2}, plus 0, 1 or 3% ethanol, and germination rates and growth measurements recorded for 7 days. In air or N{sub 2} increasing ethanol levels did not affect total germination per se, although the rate of germination was delayed in N{sub 2}. Shoot/root lengths in air were highest for tolerant species and increased with increasing ethanol, whereas, in intolerant species, shoot/root lengths decreased with increasing ethanol. Aerobic vs. anaerobic polypeptide profiles of each of the species were compared by SDS/PAGE. For all species, the number of polypeptides decreased under anaerobiosis and several quantitative differences were apparent relative to the aerobic profile. In addition, amino acid incorporation into protein was analyzed by ({sup 35}S)-Met labeling of 3 day old seedlings grown in air or N{sub 2}. Significant protein synthesis was measured in tolerant seedlings under N{sub 2} and several polypeptides were specifically induced. These results are being compared with labeling patterns of the other semi-tolerant and intolerant Echinochloa species to determine their importance in flooding tolerance.

  13. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis

    PubMed Central

    Konopacki, Filip A.; Dwivedy, Asha; Bellon, Anaïs; Blower, Michael D.

    2016-01-01

    Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo. These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS. PMID:27248654

  14. Improved synthesis and growth of graphene oxide for field effect transistor biosensors.

    PubMed

    Huang, Jingfeng; Chen, Hu; Jing, Lin; Fam, Derrick; Tok, Alfred Iing Yoong

    2016-08-01

    Reduced graphene oxide (RGO) has many advantages over graphene such as low-cost, aqueous processable and industrial-scalable. However, two main limitations that prevent the use of RGO in electronics are the high electrical resistance and large electrical resistance deviation between fabricated devices. This limits RGO's use in biosensors, capacitors and other electronic devices. Herein, we present (1) a modified Hummer's method to obtain large RGO flakes via in-situ size fractionation and (2) the novel growth of RGO which can bridge the gaps in-between existing RGO flakes. Together, these two processes reduced the electrical resistance drastically from 1.99E + 06 to 4.68E + 03 Ω/square and the standard deviation decreased from 80.5 % to 16.5 %. The RGO was then fabricated into a field-effect transistor biosensor. A 1 pmol to 100 nmol change in Cytochrome C protein corresponded to a 3 % change in electrical resistance. The reported improved RGO synthesis method and subsequent growth enable large-scale application of RGO in practical electronic devices such as biosensors. PMID:27379845

  15. Changes in gene expression and cellular localization of insulin-like growth factors 1 and 2 in the ovaries during ovary development of the yellowtail, Seriola quinqueradiata.

    PubMed

    Higuchi, Kentaro; Gen, Koichiro; Izumida, Daisuke; Kazeto, Yukinori; Hotta, Takuro; Takashi, Toshinori; Aono, Hideaki; Soyano, Kiyoshi

    2016-06-01

    A method of controlling the somatic growth and reproduction of yellowtail fish (Seriola quinqueradiata) is needed in order to establish methods for the efficient aquaculture production of the species. However, little information about the hormonal interactions between somatic growth and reproduction is available for marine teleosts. There is accumulating evidence that insulin-like growth factor (IGF), a major hormone related somatic growth, plays an important role in fish reproduction. As the first step toward understanding the physiological role of IGF in the development of yellowtail ovaries, we characterized the expression and cellular localization of IGF-1 and IGF-2 in the ovary during development. We histologically classified the maturity of two-year-old females with ovaries at various developmental stages into the perinucleolar (Pn), yolk vesicle (Yv), primary yolk (Py), secondary yolk and tertiary yolk (Ty) stages, according to the most advanced type of oocyte present. The IGF-1 gene expression showed constitutively high levels at the different developmental stages, although IGF-1 mRNA levels tended to increase from the Py to the Ty stage with vitellogenesis, reaching maximum levels during the Ty stage. The IGF-2 mRNA levels increased as ovarian development advanced. Using immunohistochemistry methods, immunoreactive IGF-1 was mainly detected in the theca cells of ovarian follicles during late secondary oocyte growth, and in part of the granulosa cells of Ty stage oocytes. IGF-2 immunoreactivity was observed in all granulosa cells in layer in Ty stage oocytes. These results indicate that follicular IGFs may be involved in yellowtail reproduction via autocrine/paracrine mechanisms. PMID:26764214

  16. A possible cellular explanation for the NMR-visible mobile lipid (ML) changes in cultured C6 glioma cells with growth.

    PubMed

    Quintero, MariaRosa; Cabañas, Miquel E; Arús, Carles

    2007-01-01

    The NMR-visible mobile lipid (ML) signals of C6 glioma cells have been monitored at 9.4 and 11.7 T (single pulse and 136 ms echo time) from cell pellets by (1)H NMR spectroscopy. A reproducible behavior with growth has been found. ML signals increase from log phase (4 days of culture) to postconfluence (7 days of culture). This ML behavior is paralleled by the percentage of cells containing epifluorescence detectable Nile Red stained cytosolic droplets (range 23%-60% of cells). The number of positive cells increases after seeding (days 0-1), decreases at log phase (days 2-4), increases again at confluence (day 5) and even further at post-confluence (day 7). C6 cells proliferation arrest induced by growth factors deprivation induces an even higher accumulation of cytosolic droplets (up to 100% of cells) and a large ML increase (up to 21-fold with respect to 4-day log phase cells). When neutral lipid content is quantified by thin-layer chromatography (TLC) on total lipid extracts of C6 cells, no statistically significant change can be detected (in microg/10(8) cells) with growth or growth arrest in major neutral lipid containing species (triacylglycerol, TAG, diacylglycerol, DAG, cholesteryl esters, ChoEst) except for DAG, which decreased in post-confluent, 7-day cells. The apparent discrepancy between NMR, optical microscopy and TLC results can be reconciled if possible biophysical changes in the neutral lipid pool with growth are taken into account. A cellular explanation for the observed results is proposed: the TAG-droplet-size-change hypothesis. PMID:17150408

  17. Responsiveness of muscle protein synthesis to growth hormone administration in HIV-infected individuals declines with severity of disease.

    PubMed

    McNurlan, M A; Garlick, P J; Steigbigel, R T; DeCristofaro, K A; Frost, R A; Lang, C H; Johnson, R W; Santasier, A M; Cabahug, C J; Fuhrer, J; Gelato, M C

    1997-10-15

    This study was undertaken to determine if human recombinant growth hormone (hrGH, 6 mg/d for 2 wk) would stimulate muscle protein synthesis in AIDS wasting. Healthy controls were compared with patients who were HIV+, had AIDS without weight loss, and had AIDS with > 10% weight loss. Before hrGH, rates of skeletal muscle protein synthesis, measured with l-[2H5]phenylalanine, were the same in controls and in all stages of disease. Rates of myofibrillar protein degradation, however, assessed from urinary excretion of 3-methyl histidine, were higher in AIDS and AIDS wasting than in HIV+ or healthy individuals. The group with weight loss had significantly higher TNFalpha levels but not higher HIV viral loads. Muscle function, as determined by isokinetic knee extension and shoulder flexion, was significantly higher in controls than all infected individuals. After GH, rates of protein synthesis were stimulated 27% in controls, with a smaller increase (11%) in HIV+, and a significant depression (42%) in AIDS with weight loss, despite fourfold elevation in insulin-like growth factor-I in all groups. There was a significant correlation of hrGH-induced changes in muscle protein synthesis with severity of disease (P = 0.002). The results indicate increased basal muscle protein degradation and decreased responsiveness of muscle protein synthesis to GH in the later stages of disease. PMID:9329979

  18. Responsiveness of muscle protein synthesis to growth hormone administration in HIV-infected individuals declines with severity of disease.

    PubMed Central

    McNurlan, M A; Garlick, P J; Steigbigel, R T; DeCristofaro, K A; Frost, R A; Lang, C H; Johnson, R W; Santasier, A M; Cabahug, C J; Fuhrer, J; Gelato, M C

    1997-01-01

    This study was undertaken to determine if human recombinant growth hormone (hrGH, 6 mg/d for 2 wk) would stimulate muscle protein synthesis in AIDS wasting. Healthy controls were compared with patients who were HIV+, had AIDS without weight loss, and had AIDS with > 10% weight loss. Before hrGH, rates of skeletal muscle protein synthesis, measured with l-[2H5]phenylalanine, were the same in controls and in all stages of disease. Rates of myofibrillar protein degradation, however, assessed from urinary excretion of 3-methyl histidine, were higher in AIDS and AIDS wasting than in HIV+ or healthy individuals. The group with weight loss had significantly higher TNFalpha levels but not higher HIV viral loads. Muscle function, as determined by isokinetic knee extension and shoulder flexion, was significantly higher in controls than all infected individuals. After GH, rates of protein synthesis were stimulated 27% in controls, with a smaller increase (11%) in HIV+, and a significant depression (42%) in AIDS with weight loss, despite fourfold elevation in insulin-like growth factor-I in all groups. There was a significant correlation of hrGH-induced changes in muscle protein synthesis with severity of disease (P = 0.002). The results indicate increased basal muscle protein degradation and decreased responsiveness of muscle protein synthesis to GH in the later stages of disease. PMID:9329979

  19. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line.

    PubMed

    Kobayashi, Y; Sakai, D; Iwashina, T; Iwabuchi, S; Mochida, J

    2009-01-01

    Low-intensity pulsed ultrasound (LIPUS) stimulation has been shown to effect differentiation and activation of human chondrocytes. A study involving stimulation of rabbit disc cells with LIPUS revealed upregulation of cell proliferation and proteoglycan (PG) synthesis. However, the effect of LIPUS on human nucleus pulposus cells has not been investigated. In the present study, therefore, we investigated whether LIPUS stimulation of a human nucleus pulposus cell line (HNPSV-1) exerted a positive effect on cellular activity. HNPSV-1 cells were encapsulated in 1.2% sodium alginate solution at 1x10(5) cells/ml and cultured at 10 beads/well in 6-well plates. The cells were stimulated for 20 min each day using a LIPUS generator, and the effects of LIPUS were evaluated by measuring DNA and PG synthesis. Furthermore, mRNA expression was analyzed by cDNA microarray using total RNA extracted from the cultured cells. Our study revealed no significant difference in cell proliferation between the control and the ultrasound treated groups. However, PG production was significantly upregulated in HNPSV cells stimulated at intensities of 15, 30, 60, and 120 mW/cm(2) compared with the control. The results of cDNA array showed that LIPUS significantly stimulated the gene expression of growth factors and their receptors (BMP2, FGF7, TGFbetaR1 EGFRF1, VEGF). These findings suggest that LIPUS stimulation upregulates PG production in human nucleus pulposus cells by the enhancement of several matrix-related genes including growth factor-related genes. Safe and non-invasive stimulation using LIPUS may be a useful treatment for delaying the progression of disc degeneration. PMID:19598131

  20. The BMI1 inhibitor PTC-209 is a potential compound to halt cellular growth in biliary tract cancer cells

    PubMed Central

    Mayr, Christian; Wagner, Andrej; Loeffelberger, Magdalena; Bruckner, Daniela; Jakab, Martin; Berr, Frieder; Di Fazio, Pietro; Ocker, Matthias; Neureiter, Daniel; Pichler, Martin; Kiesslich, Tobias

    2016-01-01

    BMI1 is a core component of the polycomb repressive complex 1 (PRC1) and is up-regulated in biliary tract cancer (BTC), contributing to aggressive clinical features. In this study we investigated the cytotoxic effects of PTC-209, a recently developed inhibitor of BMI1, in BTC cells. PTC-209 reduced overall viability in BTC cell lines in a dose-dependent fashion (0.04 - 20 μM). Treatment with PTC-209 led to slightly enhanced caspase activity and stop of cell proliferation. Cell cycle analysis revealed that PTC-209 caused cell cycle arrest at the G1/S checkpoint. A comprehensive investigation of expression changes of cell cycle-related genes showed that PTC-209 caused significant down-regulation of cell cycle-promoting genes as well as of genes that contribute to DNA synthesis initiation and DNA repair, respectively. This was accompanied by significantly elevated mRNA levels of cell cycle inhibitors. In addition, PTC-209 reduced sphere formation and, in a cell line-dependent manner, aldehyde dehydrogease-1 positive cells. We conclude that PTC-209 might be a promising drug for future in vitro and in vivo studies in BTC. PMID:26623561

  1. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    PubMed Central

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-01-01

    Trichoderma spp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced by Trichoderma. Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol from Trichoderma longibrachiatum SMF2, on Arabidopsis primary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened the Arabidopsis TK VI-resistant mutant tkr1. tkr1 harbors a point mutation in GORK, which encodes gated outwardly rectifying K+ channel proteins. This mutation alleviated TK VI-induced suppression of K+ efflux in roots, thereby stabilizing the auxin gradient. The tkr1 mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol–plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding of Trichoderma–plant interactions. PMID:26850879

  2. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    PubMed

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-04-01

    Trichodermaspp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced byTrichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol fromTrichoderma longibrachiatumSMF2, onArabidopsisprimary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened theArabidopsisTK VI-resistant mutanttkr1tkr1harbors a point mutation inGORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. Thetkr1mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding ofTrichoderma-plant interactions. PMID:26850879

  3. RpoS synthesis is growth rate regulated in Salmonella typhimurium, but its turnover is not dependent on acetyl phosphate synthesis or PTS function.

    PubMed

    Cunning, C; Elliott, T

    1999-08-01

    The RpoS sigma factor of enteric bacteria is either required for or augments the expression of a number of genes that are induced during nutrient limitation, growth into stationary phase, or in response to stresses, including high osmolarity. RpoS is regulated at multiple levels, including posttranscriptional control of its synthesis, protein turnover, and mechanisms that affect its activity directly. Here, the control of RpoS stability was investigated in Salmonella typhimurium by the isolation of a number of mutants specifically defective in RpoS turnover. These included 20 mutants defective in mviA, the ortholog of Escherichia coli rssB/sprE, and 13 mutants defective in either clpP or clpX which encode the protease active on RpoS. An hns mutant was also defective in RpoS turnover, thus confirming that S. typhimurium and E. coli have identical genetic requirements for this process. Some current models predict the existence of a kinase to phosphorylate the response regulator MviA, but no mutants affecting a kinase were recovered. An mviA mutant carrying the D58N substitution altering the predicted phosphorylation site is substantially defective, suggesting that phosphorylation of MviA on D58 is important for its function. No evidence was obtained to support models in which acetyl phosphate or the PTS system contributes to MviA phosphorylation. However, we did find a significant (fivefold) elevation of RpoS during exponential growth on acetate as the carbon and energy source. This behavior is due to growth rate-dependent regulation which increases RpoS synthesis at slower growth rates. Growth rate regulation operates at the level of RpoS synthesis and is mainly posttranscriptional but, surprisingly, is independent of hfq function. PMID:10438755

  4. Platelet-derived growth factor enhances proliferation and matrix synthesis of temporomandibular joint disc-derived cells.

    PubMed

    Hanaoka, Koichi; Tanaka, Eiji; Takata, Takashi; Miyauchi, Mutsumi; Aoyama, Junko; Kawai, Nobuhiko; Dalla-Bona, Diego A; Yamano, Eizo; Tanne, Kazuo

    2006-05-01

    Platelet-derived growth factor (PDGF) is an essential signaling molecule for wound healing and tissue repair. This study was aimed at evaluating the effect of PDGF on the proliferation of temporomandibular joint (TMJ) disc-derived cells and extracellular matrix synthesis. The number of cultured cells were counted by COULTER Z1. The assay for collagen synthesis was performed using a sircol soluble collagen assay. Hyaluronic acid (HA) synthesis was analyzed by a high performance liquid chromatography. The expression of collagens, matrix metalloproteinases (MMPs), and the tissue inhibitors of metalloproteinases (TIMPs) were examined using SYBR Green in terms of the RNA levels. PDGF treatment significantly (P < .01) increased the proliferation rate of the disc-derived cells as compared with the controls when the dose was 5 ng/ mL or greater. Treatment with more than 5 ng/mL PDGF resulted in an amount of collagen synthesis significantly (P < .01) higher than the controls. HA synthesis was maximal with 5 ng/mL PDGF treatment. Quantitative real-time polymerase chain reaction analyses showed that treatment with 5 ng/mL of PDGF-BB upregulated the mitochondrial RNA levels of type I and II collagens, MMPs, and TIMPs within 6 hours. It is concluded that PDGF, if its concentration is optimal, enhanced proliferation and matrix synthesis of TMJ disc-derived cells, indicating that PDGF may be effective for use in tissue engineering of the TMJ disc. PMID:16637732

  5. Antineoplastic Agents 579. Synthesis and Cancer Cell Growth Evaluation of E-Stilstatin 3: A Resveratrol Structural Modification⊥

    PubMed Central

    Pettit, George R.; Melody, Noeleen; Thornhill, Andrew; Knight, John C.; Groy, Thomas L.; Herald, Cherry L.

    2009-01-01

    As an extension of our earlier structure/activity investigation of resveratrol (1a) cancer cell growth inhibitory activity compared to the structurally related stilbene combretastatin series (e.g., 2a), an efficient synthesis of E-stilstatin 3 (3a) and its phosphate prodrug 3b was completed. The trans-stilbene 3a was obtained using a convergent synthesis employing a Wittig reaction with phosphonium bromide 9 as the key reaction step. Deprotection of the Z-silyl ether 13 gave E-stilstatin 3 (3a) as the exclusive product. The structure and stereochemistry of 3a was confirmed by X-ray crystal structure determination. PMID:19719153

  6. Synthesis of size-controlled monodisperse Pd nanoparticles via a non-aqueous seed-mediated growth

    PubMed Central

    2012-01-01

    We demonstrated that stepwise seed-mediated growth could be extended in non-aqueous solution (solvothermal synthesis) and improved as an effective method for controlling the uniform size of palladium nanoparticles (Pd NPs) in a wide range. The monodisperse Pd NPs with the size of about 5 nm were synthesized by simply reducing Pd(acac)2 with formaldehyde in different organic amine solvents. By an improved stepwise seed-mediated synthesis, the size of the monodisperse Pd NPs can be precisely controlled from approximately 5 to 10 nm. The as-prepared Pd NPs could self assemble to well-shaped superlattice crystal without size selection process. PMID:22713177

  7. Role of CO{sub 2} in the initiation of chain growth during the Fischer-Tropsch synthesis

    SciTech Connect

    Davis, B.H.; Xu, L.; Bao, S.; Tau, L.M.; Chawla, B.; Dabbagh, H.

    1994-12-31

    Data are presented to show that alcohols produce hydrocarbons during the Fischer-Tropsch Synthesis (FTS) that are not consistent with a simple initiation mechanism. The data is believed to be consistent with accumulation of hydrocarbon products in the reactor during the synthesis CO{sub 2} is produced directly from the alcohol, and not by the reverse carbonylation reaction. CO{sub 2} also initiates chain growth in the FTS, and the initiation intermediate is presumed to be the same intermediate as in the water-gas-shift reaction.

  8. Dynamic assembly of chromatin complexes during cellular senescence: implications for the growth arrest of human melanocytic nevi

    PubMed Central

    Bandyopadhyay, Debdutta; Curry, Jonathan L; Lin, Qiushi; Richards, Hunter W; Chen, Dahu; Hornsby, Peter J; Timchenko, Nikolai A; Medrano, Estela E

    2007-01-01

    The retinoblastoma (RB)/p16INK4a pathway regulates senescence of human melanocytes in culture and oncogene-induced senescence of melanocytic nevi in vivo. This senescence response is likely due to chromatin modifications because RB complexes from senescent melanocytes contain increased levels of histone deacetylase (HDAC) activity and tethered HDAC1. Here we show that HDAC1 is prominently detected in p16INK4a-positive, senescent intradermal melanocytic nevi but not in proliferating, recurrent nevus cells that localize to the epidermal/dermal junction. To assess the role of HDAC1 in the senescence of melanocytes and nevi, we used tetracycline-based inducible expression systems in cultured melanocytic cells. We found that HDAC1 drives a sequential and cooperative activity of chromatin remodeling effectors, including transient recruitment of Brahma (Brm1) into RB/HDAC1 mega-complexes, formation of heterochromatin protein 1β (HP1β)/SUV39H1 foci, methylation of H3-K9, stable association of RB with chromatin and significant global heterochromatinization. These chromatin changes coincide with expression of typical markers of senescence, including the senescent-associated β-galactosidase marker. Notably, formation of RB/HP1β foci and early tethering of RB to chromatin depends on intact Brm1 ATPase activity. As cells reached senescence, ejection of Brm1 from chromatin coincided with its dissociation from HP1β/RB and relocalization to protein complexes of lower molecular weight. These results provide new insights into the role of the RB pathway in regulating cellular senescence and implicate HDAC1 as a likely mediator of early chromatin remodeling events. PMID:17578512

  9. Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells

    SciTech Connect

    Hyatt, Dustin C.; Ceresa, Brian P.

    2008-11-01

    The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads can stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.

  10. Stimulation of Myofibrillar Protein Synthesis in Hindlimb Suspended Rats by Resistance Exercise and Growth Hormone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Whittall, Justen B.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Booth, Frank W.; Grindeland, Richard E.

    1995-01-01

    The objective of this study was to determine the ability of a single bout of resistance exercise alone or in combination with recombinant human growth hormone (rhGH) to stimulate myofibrillar protein synthesis (Ks) in hindlimb suspended (HLS) adult female rats. Plantar flexor muscles were stimulated with resistance exercise, consisting of 10 repetitions of ladder climbing on a 1 m grid (85 deg.), carrying an additional 50% of their body weight attached to their tails. Saline or rhGH (1 mg/kg) was administered 30' prior to exercise, and Ks was determined with a constant infusion of H-3-Leucine at 15', 60', 180', and 360' following exercise. Three days of HLS depressed Ks is approx. equal to 65% and 30-40% in the soleus and gastrocnemius muscles, respectively (p is less than or equal to 0.05). Exercise increased soleus Ks in saline-treated rats 149% 60' following exercise (p less than or equal to 0.05), decaying to that of non-exercised animals during the next 5 hours. Relative to suspended, non-exercised rats rhGH + exercise increased soleus Ks 84%, 108%, and 72% at 15', 60' and 360' following exercise (p is less than or equal to 0.05). Gastrocnemius Ks was not significantly increased by exercise or the combination of rhGH and exercise up to 360' post-exercise. Results from this study indicate that resistance exercise stimulated Ks 60' post-exercise in the soleus of HLS rats, with no apparent effect of rhGH to enhance or prolong exercise-induced stimulation. Results suggests that exercise frequency may be important to maintenance of the slow-twitch soleus during non-weightbearing, but that the ability of resistance exercise to maintain myofibrillar protein content in the gastrocnemius of hindlimb suspended rats cannot be explained by acute stimulation of synthesis.

  11. Effects of ethylene and gibberellic Acid on cellular growth and development in apical and subapical regions of etiolated pea seedling.

    PubMed

    Stewart, R N; Lieberman, M; Kunishi, A T

    1974-07-01

    Subhook swelling of 4-day-old etiolated pea seedlings (var. Alaska), caused by 0.5 microliter per liter ethylene, was prevented by preincubation and continued growth in 0.1 mm gibberellic acid (GA). The subhook region exhibited normal elongation and cell size and volume. However, inhibition of elongation and cessation of cell division caused by 0.5 microliter per liter ethylene in the apical hook region of the etiolated pea stem were not overcome by GA. Most of the arrested cells were in G(2). These data suggest a possible interaction of GA and ethylene in cell enlargement in the subhook region of the etiolated pea seedlings. They also suggest a different mode of action by ethylene in the apical hook region where the ethylene effect was not counteracted by GA. PMID:16658821

  12. Cellular mechanism of the insulin-like effect of growth hormone in adipocytes. Rapid translocation of the HepG2-type and adipocyte/muscle glucose transporters.

    PubMed Central

    Tanner, J W; Leingang, K A; Mueckler, M M; Glenn, K C

    1992-01-01

    The cellular mechanism whereby growth hormone (GH) acutely stimulates adipocyte glucose uptake was studied in cultures of primary rat adipocytes differentiated in vitro. Preadipocytes were isolated by collagenase digestion of inguinal fat-pads from young rats and were differentiated in the presence of 3-isobutyl-1-methylxanthine, insulin and dexamethasone. The development of an adipocyte morphology (i.e. lipid inclusions) was observed over 6 days after initiation of differentiation. Coincident with this phenotypic change was an increase in glyceraldehyde-3-phosphate dehydrogenase (GPDH) activity and in cellular content of the HepG2-type (Glut1) and adipocyte/muscle (Glut4) glucose transporter isoforms as determined by Western immunoblotting of total cellular protein. Age-matched undifferentiated cells expressed the Glut1 transporter and low levels of GPDH, but neither accumulated lipid nor exhibited measurable expression of the Glut4 protein. On day 6 after the initiation of differentiation, GH and insulin stimulated 2-deoxy[14C]glucose uptake in a dose- and time-dependent fashion in adipocytes cultured under serum-free conditions for at least 15 h. Western-blot analysis of subcellular fractions revealed that both GH and insulin rapidly (within 20 min) stimulated translocation of the Glut1 and Glut4 proteins from a low-density microsomal fraction to the plasma membrane. Confirmatory evidence was provided in immunocytochemical experiments utilizing antisera directed against the C-terminal region of the Glut4 protein and a fluorescein isothiocyanate-labelled second antibody. Observation of the cells via confocal laser microscopic imaging was consistent with glucose transporter redistribution from an intracellular region to the plasma membrane after treatment with GH or insulin. On the basis of these data, we suggest that the insulin-like effect of GH on adipocyte glucose transport involves translocation of the Glut1 and Glut4 proteins to the plasma membrane

  13. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death.

    PubMed

    Tatsukawa, H; Furutani, Y; Hitomi, K; Kojima, S

    2016-01-01

    Transglutaminase 2 (TG2) is primarily known as the most ubiquitously expressed member of the transglutaminase family with Ca(2+)-dependent protein crosslinking activity; however, this enzyme exhibits multiple additional functions through GTPase, cell adhesion, protein disulfide isomerase, kinase, and scaffold activities and is associated with cell growth, differentiation, and apoptosis. TG2 is found in the extracellular matrix, plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus, and its subcellular localization is an important determinant of its function. Depending upon the cell type and stimuli, TG2 changes its subcellular localization and biological activities, playing both anti- and pro-apoptotic roles. Increasing evidence indicates that the GTP-bound form of the enzyme (in its closed form) protects cells from apoptosis but that the transamidation activity of TG2 (in its open form) participates in both facilitating and inhibiting apoptosis. A difficulty in the study and understanding of this enigmatic protein is that opposing effects have been reported regarding its roles in the same physiological and/or pathological systems. These include neuroprotective or neurodegenerative effects, hepatic cell growth-promoting or hepatic cell death-inducing effects, exacerbating or having no effect on liver fibrosis, and anti- and pro-apoptotic effects on cancer cells. The reasons for these discrepancies have been ascribed to TG2's multifunctional activities, genetic variants, conformational changes induced by the immediate environment, and differences in the genetic background of the mice used in each of the experiments. In this article, we first report that TG2 has opposing roles like the protagonist in the novel Dr. Jekyll and Mr. Hyde, followed by a summary of the controversies reported, and finally discuss the possible reasons for these discrepancies. PMID:27253408

  14. Insulin-like growth factor binding protein-2 mediates the inhibition of DNA synthesis by transforming growth factor-beta in mink lung epithelial cells.

    PubMed

    Dong, Feng; Wu, Hai-Bin; Hong, Jiang; Rechler, Matthew M

    2002-01-01

    Insulin-like growth factor binding protein-3 (IGFBP-3) has been proposed to mediate the growth inhibitory effects of transforming growth factor (TGF)-beta in breast and prostate cancer cells. Both TGF-beta and exogenous IGFBP-3 inhibit DNA synthesis in Mv1 mink lung epithelial cells (CCL64). The present study asks whether IGFBPs synthesized by CCL64 cells mediate growth inhibition by TGF-beta. CCL64 cells synthesize and secrete a single 34-kDa IGFBP that was identified as IGFBP-2 by immunoprecipitation and immunodepletion. Recombinant bovine IGFBP-2 inhibited CCL64 DNA synthesis in serum-free media in an IGF-independent manner. Coincubation with Leu(60)-IGF-I, an IGF-I analog that binds to IGFBPs with higher affinity than to IGF-I receptors, decreased the inhibition by bIGFBP-2. Leu(60)-IGF-I also decreased the inhibition of CCL64 DNA synthesis by TGF-beta by up to 70%, whereas Long-R3-IGF-I, an IGF-I analog with higher affinity for IGF-I receptors than for IGFBPs, did not decrease inhibition, suggesting that the effect of Leu(60)-IGF-I resulted from its forming complexes with endogenous IGFBPs. Leu(60)-IGF-I did not decrease TGF-beta stimulation of a Smad3-dependent reporter gene. Following incubation of intact CCL64 cells with bIGFBP-2 at 0 degrees C, bIGFBP-2 was recovered in membrane fractions; membrane association was abolished by coincubation with Leu(60)-IGF-I. If exogenous and secreted IGFBP-2 must bind to CCL64 cells to inhibit DNA synthesis, Leu(60)-IGF-I might reduce the inhibition of DNA synthesis by bIGFBP-2 or TGF-beta by inhibiting the association of IGFBP-2 in the media with CCL64 cells. Since TGF-beta does not increase IGFBP-2 abundance, we propose that TGF-beta sensitizes CCL64 cells to the latent growth inhibitory activity of endogenous IGFBP-2 by potentiating an intracellular IGFBP-2 signaling pathway or by promoting the association of secreted IGFBP-2 with the plasma membrane. PMID:11807812

  15. Differential effects of carboxy-terminal sequence deletions on platelet-derived growth factor receptor signaling activities and interactions with cellular substrates.

    PubMed Central

    Seedorf, K; Millauer, B; Kostka, G; Schlessinger, J; Ullrich, A

    1992-01-01

    Chimeric receptors composed of the human epidermal growth factor receptor (EGF-R) extracellular domain fused to wild-type and truncated platelet-derived growth factor receptor (PDGF-R) intracellular sequences were stably expressed in NIH 3T3 cells devoid of endogenous EGF-Rs. This experimental system allowed us to investigate the biological activity of PDGF-R cytoplasmic-domain mutants in PDGF-R-responsive NIH 3T3 cells by activating PDGF-specific signaling pathways with EGF. Deletion of 74 carboxy-terminal amino acids severely impaired the ability of the PDGF-R cytoplasmic domain to associate with cellular substrates in vitro. This deletion also inhibited receptor and substrate phosphorylation, reduced the receptor's mitogenic activity, and completely abolished its oncogenic signaling potential. Surprisingly, removal of only six additional amino acids, including Tyr-989, restored substantial receptor and substrate phosphorylation capacity as well as transforming potential and yielded a receptor with wild-type levels of ligand-induced mitogenic activity. However, the ability of this chimera to bind phospholipase C gamma was severely impaired in comparison with the ability of the wild-type receptor, while the association with other cellular proteins was not affected. Further deletion of 35 residues, including Tyr-977, nearly abolished all PDGF-R cytoplasmic-domain biological signaling activities. None of the three C-terminal truncations completely abolished the mitogenic potential of the receptors or had any influence on ligand binding or receptor down regulation. Together, these data implicate the 80 C-terminal-most residues of the PDGF-R, and possibly Tyr-989, in phospholipase C gamma binding, while receptor sequences upstream from Asp-988 appear to be essential for specific interactions with other cellular polypeptides such as ras GTPase-activating protein and phosphatidylinositol 3-kinase. Thus, the mutants described here allow the separation of distinct PDGF

  16. Epidermal Growth Factor Receptor mediated cellular and subcellular targeted delivery of Iron oxide core-Titanium dioxide shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Ye

    TiO2 nanomaterials can carry a multitude of therapeutic and diagnostic agents and the semiconductor properties of TiO2 allow for the production of cytotoxic reactive oxygen species following photoactivation. However, the delivery of these nanomaterials to specific cancer cells and specific subcellular organelles within these cells can have a substantial impact on the efficacy and safety of TiO2 nanoparticle therapeutics. Targeting cell surface receptors that are overexpressed by cancer cells is one strategy to improve the specificity of nanoparticle delivery. Therefore we decided to target the Epidermal Growth Factor Receptor (EGFR) because ligand- binding induces rapid receptor endocytosis and ligand-bound EGFR can translocate to the nucleus of cancer cells. To create NPs that can bind EGFR, we identified a peptide derived from the B-loop of Epidermal Growth Factor (EGF) that has been shown to bind and activate EGFR and conjugated it to the surface of Fe3O4 core-TiO2 shell NPs to produce B-loop NCs. We then devised a pulldown assay to show that B-loop NCs, but not bare NPs or NCs carrying a scrambled B-loop peptide, can bind and extract EGFR from HeLa cell protein extracts. Interestingly, B-loop NCs can also pulldown importin-beta, a protein that can transport EGFR to the nucleus. Furthermore, we used flow cytometry and fluorescently labeled NPs to show that B-loop peptides can significantly improve the internalization of NPs by EGFR-expressing HeLa cells. We determined that B-loop NCs can bind EGFR on the membrane of HeLa cells and that these NCs can be transported to the nucleus, by using a combination of confocal microscopy and X-ray Fluorescence Microscopy (XFM) to indirectly and directly track the subcellular distribution of NCs. Finally, we demonstrate how the Bionanoprobe, a novel high-resolution XFM apparatus that can scan whole-mounted, frozen-hydrated cells at multiple angles can be used to verify the subcellular distribution of B-loop NCs.

  17. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    PubMed

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis. PMID:26621818

  18. The Viral Oncoprotein HBx of Hepatitis B virus Promotes the Growth of Hepatocellular Carcinoma through Cooperating with the Cellular Oncoprotein RMP

    PubMed Central

    Wang, Qi; Xu, Yi; Zhou, Wei; Zhong, Lei; Wen, Zengqing; Yu, Huijun; Chen, Shaomu; Shen, Jian; Chen, Han; She, Qinying; Jiang, Jingting; Miao, Jingcheng; Wei, Wenxiang

    2014-01-01

    The smallest gene HBx of Hepatitis B virus (HBV) is recognized as an important viral oncogene (V-oncogene) in the hepatocarcinogenesis. Our previous work demonstrated that RMP is a cellular oncogene (C-oncogene) required for the proliferation of hepatocellular carcinoma (HCC) cells. Here we presented the collaboration between V-oncogene HBx and C-oncogene RMP in the development of HCC. The coexpression of HBx and RMP resulted in the cooperative effect of antiapoptosis and proliferation of HCC cells. In vivo, overexpression of RMP accelerated the growth of HBx-induced xenograft tumors in nude mice and vice versa HBx promoted the growth of RMP-driven xenograft tumors. Although HBx didn't regulate the expression of RMP, HBx and RMP interact with each other and collocalized in the cytoplasm of HCC cells. HBx and RMP collaboratively inhibited the expression of apoptotic factors and promoted the expression of antiapoptotic factors. This finding suggests that HBV may induce, or at least partially contributes to the carcinogenesis of HCC, through its V-oncoprotein HBx interacting with the C-oncoprotein RMP. PMID:25516716

  19. Hybrid alginate-polyester bimodal network hydrogel for tissue engineering--Influence of structured water on long-term cellular growth.

    PubMed

    Finosh, G T; Jayabalan, M; Vandana, S; Raghu, K G

    2015-11-01

    The development of biodegradable scaffolds (which promote cell-binding, proliferation, long-term cell viability and required biomechanical stability) for cardiac tissue engineering is a challenge. In this study, biosynthetic amphiphilic hybrid hydrogels were prepared using a graft comacromer of natural polysaccharide alginate and synthetic polyester polypropylene fumarate (PPF). Monomodal network hydrogel (HPAS-NO) and bimodal network hydrogel (HPAS-AA) were prepared. Between the two hydrogels, HPAS-AA hydrogel excels over the HPAS-NO hydrogel. HPAS-AA hydrogel is mechanically more stable in the culture medium and undergoes gradual degradation in vitro in PBS (phosphate buffered saline). HPAS-AA contains nano-porous structure and acquires structured water (non-freezing-bound water) (53.457%) along with free water (11.773%). It absorbs more plasma proteins and prevents platelet adsorption and hemolysis when contacted with blood. HPAS-AA hydrogel is cytocompatible and promote 3D cell growth (≈ 70%) of L929 fibroblast even after 18 days and H9C2 cardiomyoblasts. The enhanced and long-term cellular growth of HPAS-AA hydrogel is attributed to the cell responsive features of structured water. HPAS-AA hydrogel can be a better candidate for cardiac tissue engineering applications. PMID:25843368

  20. Adjuvant Cationic Liposomes Presenting MPL and IL-12 Induce Cell Death, Suppress Tumor Growth, and Alter the Cellular Phenotype of Tumors in a Murine Model of Breast Cancer

    PubMed Central

    2015-01-01

    Dendritic cells (DC) process and present antigens to T lymphocytes, inducing potent immune responses when encountered in association with activating signals, such as pathogen-associated molecular patterns. Using the 4T1 murine model of breast cancer, cationic liposomes containing monophosphoryl lipid A (MPL) and interleukin (IL)-12 were administered by intratumoral injection. Combination multivalent presentation of the Toll-like receptor-4 ligand MPL and cytotoxic 1,2-dioleoyl-3-trmethylammonium-propane lipids induced cell death, decreased cellular proliferation, and increased serum levels of IL-1β and tumor necrosis factor (TNF)-α. The addition of recombinant IL-12 further suppressed tumor growth and increased expression of IL-1β, TNF-α, and interferon-γ. IL-12 also increased the percentage of cytolytic T cells, DC, and F4/80+ macrophages in the tumor. While single agent therapy elevated levels of nitric oxide synthase 3-fold above basal levels in the tumor, combination therapy with MPL cationic liposomes and IL-12 stimulated a 7-fold increase, supporting the observed cell cycle arrest (loss of Ki-67 expression) and apoptosis (TUNEL positive). In mice bearing dual tumors, the growth of distal, untreated tumors mirrored that of liposome-treated tumors, supporting the presence of a systemic immune response. PMID:25179345

  1. Synthesis and structure-activity study of myxoma virus growth factor

    SciTech Connect

    Lin, Yao-Zhong; Ke, Xiao-Hong; Tam, J.P. )

    1991-04-02

    Myxoma virus growth factor (MGF) is an 85-residue peptide derived from the gene product of a DNA tumor virus that infects rabbits. The carboxyl domain of MGF possesses about 40% sequence homology with the epidermal growth factor (EGF). This EGF-like domain covering residues 30-83 was synthesized and found to possess putative activities of EGF. It was, however, about 200-fold less active than EGF in the competitive binding of human EGF receptor in A431 cells and the stimulation of ({sup 3}H)thymidine uptake in NRK 49F cells. MGF(30-83) is a basic and a hydrophobic peptide rich in {beta}-sheet structure. These features in MGF tend to promote aggregation, leading to precipitation even in strongly denaturing solutions. Thus, the refolding of MGF was achieved with difficulty and resulted in low yield. To increase the synthetic yield of MGF(30-83), a cluster of acidic amino acids was added to the NH{sub 2}-terminus of MGF(30-83). This approach was found to be effective in minimizing the refolding difficulties and allowed accessibility to the synthesis of analogues in this class of compounds. The relationships of structure and function of MGF were studied by using analogues with point substitution by the corresponding D-amino acid or by Ala at position 44 or 52 and analogues with deletion of basic residues from the amino terminus. Modifications of both the receptor contact and the structural residues greatly reduced the potency of MGF(30-83), and the overall result correlated well with the known structure-activity of the EGF family.

  2. Systems proteomics of cardiac chromatin identifies nucleolin as a regulator of growth and cellular plasticity in cardiomyocytes.

    PubMed

    Monte, Emma; Mouillesseaux, Kevin; Chen, Haodong; Kimball, Todd; Ren, Shuxun; Wang, Yibin; Chen, Jau-Nian; Vondriska, Thomas M; Franklin, Sarah

    2013-12-01

    Myocyte hypertrophy antecedent to heart failure involves changes in global gene expression, although the preceding mechanisms to coordinate DNA accessibility on a genomic scale are unknown. Chromatin-associated proteins alter chromatin structure by changing their association with DNA, thereby altering the gene expression profile. Little is known about the global changes in chromatin subproteomes that accompany heart failure, and the mechanisms by which these proteins alter chromatin structure. The present study tests the fundamental hypothesis that cardiac growth and plasticity in the setting of disease recapitulates conserved developmental chromatin remodeling events. We used quantitative proteomics to identify chromatin-associated proteins extracted via detergent and to quantify changes in their abundance during disease. Our study identified 321 proteins in this subproteome, demonstrating it to have modest conservation (37%) with that revealed using strong acid. Of these proteins, 176 exhibited altered expression during cardiac hypertrophy and failure; we conducted extensive functional characterization of one of these proteins, Nucleolin. Morpholino-based knockdown of nucleolin nearly abolished protein expression but surprisingly had little impact on gross morphological development. However, hearts of fish lacking Nucleolin displayed severe developmental impairment, abnormal chamber patterning and functional deficits, ostensibly due to defects in cardiac looping and myocyte differentiation. The mechanisms underlying these defects involve perturbed bone morphogenetic protein 4 expression, decreased rRNA transcription, and a shift to more heterochromatic chromatin. This study reports the quantitative analysis of a new chromatin subproteome in the normal and diseased mouse heart. Validation studies in the complementary model system of zebrafish examine the role of Nucleolin to orchestrate genomic reprogramming events shared between development and disease. PMID

  3. A review on the synthesis, crystal growth, structure and physical properties of rare earth based quaternary intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Mumbaraddi, Dundappa; Sarkar, Sumanta; Peter, Sebastian C.

    2016-04-01

    This review highlights the synthesis and crystal growth of quaternary intermetallic compounds based on rare earth metals. In the first part of this review, we highlight briefly about intermetallics and their versatile properties in comparison to the constituent elements. In the next part, we have discussed about various synthesis techniques with more focus on the metal flux technique towards the well shaped crystal growth of novel compounds. In the subsequent parts, several disordered quaternary compounds have been reviewed and then outlined most known ordered quaternary compounds with their complex structure. A special attention has been given to the ordered compounds with structural description and relation to the parent binary and ternary compounds. The importance of electronic and structural feature is highlighted as the key roles in designing these materials for emerging applications.

  4. Role of CO{sub 2} in the initiation of chain growth during the Fischer-Tropsch Synthesis

    SciTech Connect

    Raje, A.P.; Davis, B.H.

    1996-10-01

    Data is presented to show that alcohols produce hydrocarbons during the Fischer-Tropsch Synthesis (FTS) that are not consistent with a simple initiation mechanism. The data is believed to be consistent with accumulation of hydrocarbon products in the reactor during the synthesis. CO{sub 2} is produced directly from the alcohol, and not by the reverse carbonylation reaction. CO{sub 2} also initiates chain growth in the FTS, and the initiation intermediate is presumed to be the same intermediate as in the water-gas-shift reaction. The data from the conversion with added {sup 14}CO{sub 2} are therefore inconsistent with the widely accepted carbide intermediate for FTS with an iron catalyst. The analysis of the heavier hydrocarbons indicate that it is likely that the chain growth involves two independent chains.

  5. Can oriented-attachment be an efficient growth mechanism for the synthesis of 1D nanocrystals via atomic layer deposition?

    NASA Astrophysics Data System (ADS)

    Wen, Kechun; He, Weidong

    2015-09-01

    One-dimensional (1D) nanocrystals, such as nanorods and nanowires, have received extensive attention in the nanomaterials field due to their large surface areas and 1D confined transport properties. Oriented attachment (OA) is now recognized as a major growth mechanism for efficiently synthesizing 1D nanocrystals. Recently, atomic layer deposition (ALD) has been modified to be a powerful vapor-phase technique with which to synthesize 1D OA nanorods/nanowires with high efficiency and quality by increasing the temperature and purging time. In this invited mini-review, we look into the advantages of OA and high-temperature ALD, and investigate the potential of employing the OA growth mechanism for the synthesis of 1D nanocrystals via modified ALD, aiming to provide guidance to researchers in the fields of both OA and ALD for efficient synthesis of 1D nanocrystals.

  6. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis.

    PubMed Central

    Englert, C; Hou, X; Maheswaran, S; Bennett, P; Ngwu, C; Re, G G; Garvin, A J; Rosner, M R; Haber, D A

    1995-01-01

    The Wilms tumor suppressor gene WT1 encodes a developmentally regulated transcription factor that is mutated in a subset of embryonal tumors. To test its functional properties, we developed osteosarcoma cell lines expressing WT1 under an inducible tetracycline-regulated promoter. Induction of WT1 resulted in programmed cell death. This effect, which was differentially mediated by the alternative splicing variants of WT1, was independent of p53. WT1-mediated apoptosis was associated with reduced synthesis of the epidermal growth factor receptor (EGFR), but not of other postulated WT1-target genes, and it was abrogated by constitutive expression of EGFR. WT1 repressed transcription from the EGFR promoter, binding to two TC-rich repeat sequences. In the developing kidney, EGFR expression in renal precursor cells declined with the onset of WT1 expression. Repression of EGFR and induction of apoptosis by mechanism that may contribute to its critical role in normal kidney development and to the immortalization of tumor cells with inactivated WT1 alleles. Images PMID:7588596

  7. Activin A-Smad Signaling Mediates Connective Tissue Growth Factor Synthesis in Liver Progenitor Cells

    PubMed Central

    Ding, Ze-Yang; Jin, Guan-Nan; Wang, Wei; Sun, Yi-Min; Chen, Wei-Xun; Chen, Lin; Liang, Hui-Fang; Datta, Pran K.; Zhang, Ming-Zhi; Zhang, Bixiang; Chen, Xiao-Ping

    2016-01-01

    Liver progenitor cells (LPCs) are activated in chronic liver damage and may contribute to liver fibrosis. Our previous investigation reported that LPCs produced connective tissue growth factor (CTGF/CCN2), an inducer of liver fibrosis, yet the regulatory mechanism of the production of CTGF/CCN2 in LPCs remains elusive. In this study, we report that Activin A is an inducer of CTGF/CCN2 in LPCs. Here we show that expression of both Activin A and CTGF/CCN2 were upregulated in the cirrhotic liver, and the expression of Activin A positively correlates with that of CTGF/CCN2 in liver tissues. We go on to show that Activin A induced de novo synthesis of CTGF/CCN2 in LPC cell lines LE/6 and WB-F344. Furthermore, Activin A contributed to autonomous production of CTGF/CCN2 in liver progenitor cells (LPCs) via activation of the Smad signaling pathway. Smad2, 3 and 4 were all required for this induction. Collectively, these results provide evidence for the fibrotic role of LPCs in the liver and suggest that the Activin A-Smad-CTGF/CCN2 signaling in LPCs may be a therapeutic target of liver fibrosis. PMID:27011166

  8. The Effects of Cell Compressibility, Motility and Contact Inhibition on the Growth of Tumor Cell Clusters using the Cellular Potts Model

    PubMed Central

    Li, Jonathan F.; Lowengrub, John

    2014-01-01

    There are numerous biological examples where genes associated with migratory ability of cells also confer the cells with an increased fitness even though these genes may not have any known effect on the cell mitosis rates. Here, we provide insight into these observations by analyzing the effects of cell migration, compression, and contact inhibition on the growth of tumor cell clusters using the Cellular Potts Model (CPM) in a monolayer geometry. This is a follow-up of a previous study (Thalhauser et al., Biol. Direct, 2010, 5:21) in which a Moran-type model was used to study the interaction of cell proliferation, migratory potential and death on the emergence of invasive phenotypes. Here, we extend the study to include the effects of cell size and shape. In particular, we investigate the interplay between cell motility and compressibility within the CPM and find that the CPM predicts that increased cell motility leads to smaller cells. This is an artifact in the CPM. An analysis of the CPM reveals an explicit inverse-relationship between the cell stiffness and motility parameters. We use this relationship to compensate for motility-induced changes in cell size in the CPM so that in the corrected CPM, cell size is independent of the cell motility. We find that subject to comparable levels of compression, clusters of motile cells grow faster than clusters of less motile cells, in qualitative agreement with biological observations and our previous study. Increasing compression tends to reduce growth rates. Contact inhibition penalizes clumped cells by halting their growth and gives motile cells an even greater advantage. Finally, our model predicts cell size distributions that are consistent with those observed in clusters of neuroblastoma cells cultured in low and high density conditions. PMID:24211749

  9. Cellular Uptake and Cytotoxic Effect of Epidermal Growth Factor Receptor Targeted and Plitidepsin Loaded Co-Polymeric Polymersomes on Colorectal Cancer Cell Lines.

    PubMed

    Goñi-de-Cerio, Felipe; Thevenot, Julie; Oliveira, Hugo; Pérez-Andrés, Encarnación; Berra, Edurne; Masa, Marc; Suárez-Merino, Blanca; Lecommandoux, Sébastien; Heredia, Pedro

    2015-11-01

    Encapsulating chemotherapy drugs in targeted nanodelivery systems is one of the most promising approaches to tackle cancer disease, avoiding side effects of common treatment. In the last decade, several nanocarriers with different nature have been tested, but polypeptide-based copolymers have attracted considerable attention for their biocompatibility, controlled and slow biodegradability as well as their low toxicity. In this work, we synthesized, characterized and evaluated poly(trimethylene carbonate)-bock-poly(L-glutamic acid) derived polymersomes, targeted to epidermal growth factor receptor (EGFR), loaded with plitidepsin and ultimately tested in HT29 and LS174T colorectal cancer cell lines for specificity and efficacy. Furthermore, morphology, physico-chemical properties and plitidepsin loading were carefully investigated. A thorough in vitro cytotoxicity analysis of the unloaded polymersomes was carried out for biocompatibility check, studying viability, cell membrane asymmetry and reactive oxygen species levels. Those cytotoxicity assays showed good biocompatibility for plitidepsin-unloaded polymersomes. Cellular uptake and cytotoxic effect of EGFR targeted and plitidepsin loaded polymersome indicated that colorectal cancer cell lines were.more sensitive to anti-EGFR-drug-loaded than untargeted drug-loaded polymersomes. Also, in both cell lines, the use of untargeted polymersomes greatly reduced plitidepsin cytotoxicity as well as the cellular uptake, indicating that the use of this targeted nanocarrier is a promising approach to tackle colorectal cancer disease and avoid the undesired effects of the usual treatment. Furthermore, in vivo assays support the in vitro conclusions that EGFR targeted polymersomes could be a good drug delivery system. This work provides a proof of concept for the use of encapsulated targeted drugs as future therapeutic treatments for cancer. PMID:26554161

  10. Synthesis, crystal growth and characterization of nonlinear optical organic crystal: p-Toluidinium p-toluenesulphonate

    SciTech Connect

    Vijayakumar, P.; Anandha Babu, G.; Ramasamy, P.

    2012-04-15

    Graphical abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. p-TTS single crystal belongs to negative birefringence crystal. Second harmonic conversion efficiency of p-TTS has been found to be 1.3 times higher than that of KDP. Multiple shot surface laser damage threshold is determined to be 0.30 GW/cm{sup 2} at 1064 nm laser radiation. Highlights: Black-Right-Pointing-Pointer It deals with the synthesis, growth and characterization of p-TTS an organic NLO crystal. Black-Right-Pointing-Pointer Wide optical transparency window between 280 nm and 1100 nm. Black-Right-Pointing-Pointer Negative birefringence crystal and dispersion of birefringence is negligibly small. Black-Right-Pointing-Pointer Thermal study reveals that the grown crystal is stable up to 210 Degree-Sign C. Black-Right-Pointing-Pointer Multiple shot surface laser damage threshold is 0.30 GW/cm{sup 2} at 1064 nm laser radiation. -- Abstract: p-Toluidinium p-toluenesulphonate (p-TTS) an organic nonlinear optical crystal has been grown from the aqueous solution by slow evaporation solution growth technique. Single crystal X-ray diffraction analysis reveals that p-TTS crystallizes in monoclinic crystal system. The structural perfection of the grown p-TTS single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. Fourier transform infrared spectral studies have been performed to identify the functional groups. The optical transmittance window and the lower cutoff wavelength of the grown crystals have been identified by UV-vis-IR studies. Birefringence of p-TTS crystal has been studied using channel spectrum measurement. The laser damage threshold value was measured using Nd:YAG laser. The second harmonic conversion efficiency of p-TTS has

  11. Study of the nucleation and growth of antibiotic labeled Au NPs and blue luminescent Au8 quantum clusters for Hg2+ ion sensing, cellular imaging and antibacterial applications

    NASA Astrophysics Data System (ADS)

    Khandelwal, Puneet; Singh, Dheeraj K.; Sadhu, Subha; Poddar, Pankaj

    2015-11-01

    Herein, we report a detailed experimental study supported by DFT calculations to understand the mechanism behind the synthesis of cefradine (CFD - an antibiotic) labeled gold nanoparticles (Au NPs) by employing CFD as both a mild reducing and capping agent. The analysis of the effect of growth conditions reveals that a higher concentration of HAuCl4 results in the formation of an increasing fraction of anisotropic structures, higher temperature leads to the formation of quasi-spherical particles instead of anisotropic ones, and larger pH leads to the formation of much smaller particles. The cyclic voltammetry (CV) results show that when the pH of the reaction medium increases from 4 to 6, the reduction potential of CFD increases which leads to the synthesis of nanoparticles (in a pH 4 reaction) to quantum clusters (in a pH 6 reaction). The MALDI-TOF mass spectrometry results of supernatant of the pH 6 reaction indicate the formation of [Au8(CFD)2S6] QCs which show fluorescence at ca. 432 nm with a Stokes shift of ca. 95 nm. The blue luminescence from Au8 QCs was applied for sensing of Hg2+ ions on the basis of an aggregation-induced fluorescence quenching mechanism and offers good selectivity and a high sensitivity with a limit of detection ca. 2 nM which is lower than the detection requirement of 10 nM by the U.S. EPA and 30 nM by WHO for drinking water. We have also applied the sensing probe to detect Hg2+ ions in bacterial samples. Further, we have investigated the antibacterial property of as-synthesized Au NPs using MIC, growth curve and cell survival assay. The results show that Au NPs could reduce the cell survival very efficiently rather than the cell growth in comparison to the antibiotic itself. The scanning electron microscopy study shows the degradation and blebbing of the bacterial cell wall upon exposure with Au NPs which was further supported by fluorescence microscopy results. These Au NPs did not show reactive oxygen species generation. We believe

  12. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    PubMed Central

    Ma, Ming-Guo

    2012-01-01

    Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of

  13. Differential effects of estrogen and medroxyprogesterone on basal and stress-induced growth hormone release, IGF-1 levels, and cellular immunity in postmenopausal women.

    PubMed

    Malarkey, W B; Burleson, M; Cacioppo, J T; Poehlmann, K; Glaser, R; Kiecolt-Glaser, J K

    1997-10-01

    We evaluated the influence of continual estrogen replacement therapy (ERT) as presently practiced by postmenopausal women with conjugated estrogens and medroxyprogesterone acetate (MPA) on the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and cellular immunity. Thirty-nine postmenopausal women were evaluated (12 on no replacement, 14 on estrogen only, and 13 on estrogen and MPA). In the women receiving only conjugated estrogens, increased GH levels and decreased IGF-1 levels were found, which replicated previous research and probably reflected estrogen inhibition of hepatic IGF-1 production with a secondary increase in GH release because of reduced feedback inhibition. In women taking both MPA and estrogen, GH was increased and the previously observed estrogen induced decrease in IGF-1 levels was inhibited. In order to determine the influence of ERT on psycho-social stress-induced GH release, math (mental stress) and speech (social stress) challenges were utilized, and they produced significant increases in heart rate in all three groups. The heart rate following stress was significantly enhanced by estrogen replacement. These stressors also led to increased GH secretion in the women taking estrogen and MPA, but not in the other two groups. Gonadal steroids and GH can influence cellular immunity. We observed that ERT in both groups was associated with significantly enhanced lymphocyte responsiveness to the T-cell mitogens phytohemaglutinin (PHA) and Conconavalin A (Con A), and basal GH levels were correlated with the PHA response in the estrogen only group. ERT did not influence natural killer (NK) cell activity. We also found significant differences in the steady-state expression of latent Epstein-Barr virus (EBV) with increased antibody titers in the women in the estrogen only group and lower antibody titers in the MPA plus estrogen group. GH levels were correlated with EBV antibody titers in the estrogen plus MPA group. This study supports the

  14. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification;Epidermal growth factor receptor; Radiotherapy; Squamous cell carcinoma; Biomarker; Local tumor control

    SciTech Connect

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-07-15

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  15. Evidence for RNA synthesis-dependent and -independent pathways in stimulation of neurite outgrowth by nerve growth factor

    PubMed Central

    Burstein, David E.; Greene, Lloyd A.

    1978-01-01

    Studies on the mechanism of action of nerve growth factor (NGF) were carried out with PC12 rat pheochromocytoma cells. PC12 cells are uniquely useful for such studies because they respond to, but (unlike normal neurons) do not require, NGF and may undergo either generation or regeneration of neurites in response to NGF. Regeneration is defined here as NGF-dependent regrowth of neurites within 24 hr after subculture of NGF-treated PC12 cells. As in cultures of normal NGF-responsive neurons, neurite regeneration by PC12 cells occurs even in the presence of high concentrations of RNA synthesis inhibitors. Generation of neurites is defined as the de novo initiation of outgrowth when PC12 cells are exposed to NGF for the first time. In contrast to regeneration, neurite generation takes place with a lag of at least 24 hr and is blocked by low concentrations of RNA synthesis inhibitors. Such findings suggest that there are both RNA synthesis-dependent and -independent pathways in the mechanism whereby NGF stimulates neurite outgrowth. In addition, NGF-treated PC12 cells undergo a time-dependent loss of the capacity for neurite regeneration after pretreatment with RNA synthesis inhibitors or withdrawal of NGF. Such findings suggest that (i) initiation of neurite outgrowth requires NGF-stimulated, RNA synthesis-dependent accumulation of intracellular material(s), (ii) once such accumulation occurs, RNA synthesis-independent regeneration can occur (but only in the presence of NGF), and (iii) the turnover of such material(s) in the absence of their replacement leads to loss of the capacity for regeneration. A tentative sequence is presented for the events whereby NGF may stimulate neurite outgrowth. PMID:310552

  16. Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents

    PubMed Central

    2014-01-01

    In the preparation of nanostructured materials, it is important to optimize synthesis parameters in order to obtain the desired material. This work investigates the role of complexing agents, oxalic acid and tartaric acid, in the production of MgO nanocrystals. Results from simultaneous thermogravimetric analysis (STA) show that the two different synthesis routes yield precursors with different thermal profiles. It is found that the thermal profiles of the precursors can reveal the effects of crystal growth during thermal annealing. X-ray diffraction confirms that the final products are pure, single phase and of cubic shape. It is also found that complexing agents can affect the rate of crystal growth. The structures of the oxalic acid and tartaric acid as well as the complexation sites play very important roles in the formation of the nanocrystals. The complexing agents influence the rate of growth which affects the final crystallite size of the materials. Surprisingly, it is also found that oxalic acid and tartaric acid act as surfactants inhibiting crystal growth even at a high temperature of 950°C and a long annealing time of 36 h. The crystallite formation routes are proposed to be via linear and branched polymer networks due to the different structures of the complexing agents. PMID:24650322

  17. Extracellular Signal-Regulated Kinase 7 (ERK7), a Novel ERK with a C-Terminal Domain That Regulates Its Activity, Its Cellular Localization, and Cell Growth

    PubMed Central

    Abe, Mark K.; Kuo, Wen-Liang; Hershenson, Marc B.; Rosner, Marsha Rich

    1999-01-01

    Mitogen-activated protein (MAP) kinases play distinct roles in a variety of cellular signaling pathways and are regulated through multiple mechanisms. In this study, a novel 61-kDa member of the MAP kinase family, termed extracellular signal-regulated kinase 7 (ERK7), has been cloned and characterized. Although it has the signature TEY activation motif of ERK1 and ERK2, ERK7 is not activated by extracellular stimuli that typically activate ERK1 and ERK2 or by common activators of c-Jun N-terminal kinase (JNK) and p38 kinase. Instead, ERK7 has appreciable constitutive activity in serum-starved cells that is dependent on the presence of its C-terminal domain. Interestingly, the C-terminal tail, not the kinase domain, of ERK7 regulates its nuclear localization and inhibition of growth. Taken together, these results elucidate a novel type of MAP kinase whereby interactions via its C-terminal tail, rather than extracellular signal-mediated activation cascades, regulate its activity, localization, and function. PMID:9891064

  18. Tumor Cellular Proteasome Inhibition and Growth Suppression by 8-Hydroxyquinoline and Clioquinol Requires Their Capabilities to Bind Copper and Transport Copper into Cells

    PubMed Central

    Zhai, Shumei; Yang, Lei; Cui, Qiuzhi Cindy; Sun, Ying; Dou, Q. Ping; Yan, Bing

    2009-01-01

    We have previously reported that when mixed with copper, 8-hydroxyquinoline (8-OHQ) and its analog clioquinol (CQ) inhibited the proteasomal activity and proliferation in cultured human cancer cells. CQ treatment of high copper-containing human tumor xenografts also caused cancer suppression, associated with proteasome inhibition in vivo. However, the nature of copper dependence of these events has not been elucidated experimentally. In the current study, by using chemical probe molecules that mimic structures of 8-OHQ and CQ, but have no copper binding capability, we dissected the complex cellular processes elicited by 8-OHQ-Cu or CQ-Cu mixture and revealed that copper-binding to 8-OHQ or CQ is required for transportation of copper complex into human breast cancer cells and the consequent proteasome-inhibitory, growth-suppressive and apoptosis-inducing activities. In contrast, the non-copper-binding analogs of 8-OHQ or CQ blocked the very first step – copper binding in this chain of events mediated by 8-OHQ-Cu or CQ-Cu. PMID:19809836

  19. Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore

    USGS Publications Warehouse

    Clarke, K.C.; Gaydos, L.J.

    1998-01-01

    Prior research developed a cellular automaton model, that was calibrated by using historical digital maps of urban areas and can be used to predict the future extent of an urban area. The model has now been applied to two rapidly growing, but remarkably different urban areas: the San Francisco Bay region in California and the Washington/Baltimore corridor in the Eastern United States. This paper presents the calibration and prediction results for both regions, reviews their data requirements, compares the differences in the initial configurations and control parameters for the model in the two settings, and discusses the role of GIS in the applications. The model has generated some long term predictions that appear useful for urban planning and are consistent with results from other models and observations of growth. Although the GIS was only loosely coupled with the model, the model's provision of future urban patterns as data layers for GIS description and analysis is an important outcome of this type of calculation.

  20. TIF-IA-Dependent Regulation of Ribosome Synthesis in Drosophila Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth

    PubMed Central

    Ghosh, Abhishek; Rideout, Elizabeth J.; Grewal, Savraj S.

    2014-01-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis. PMID:25356674

  1. Effects of inorganic iodide, epidermal growth factor and phorbol ester on hormone synthesis by porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Ichimura, Kenichi; Banba, Nobuyuki; Emoto, Tatsushi; Hiraiwa, Masaki; Hishinuma, Akira; Hattori, Yoshiyuki; Shimoda, Shinichi ); Yamaguchi, Fumihiko; Hosoya, Toichiro )

    1992-01-01

    Porcine thyroid follicles cultured in suspension for 96 h synthesized and secreted thyroid hormones in the presence of thyrotropin (TSH). The secretion of newly synthesized hormones was assessed by determining in the contents of thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) in the media and by paperchromatographic analysis of {sup 125}I-labeled hormones in the media where the follicles were cultured in the presence and absence of inhibitors of hormone synthesis. The hormone synthesis and secretion was modified by exogenously added NaI. The maximal response was obtained at 1 {mu}M. Thyroid peroxidase (TPO) activity in the cultured follicles with TSH for 96 h was dose-dependently inhibited by NaI. One hundred {mu}M and NaI completely inhibited TSH-induced TPO activity. Moreover, both epidermal growth factor and phorbol 12-myristate 13-acetate inhibited de novo hormone synthesis. An induction of TPO activity by TSH was also inhibited by either agent. These data provide direct evidences that thyroid hormone synthesis is regulated by NaI as well as TSH at least in part via regulation of TPO activity and also that both EGF and PMA are inhibitory on thyroid hormone formation.

  2. Synthesis and nanorod growth of n-type phthalocyanine on ultrathin metal films by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Koshiba, Yasuko; Nishimoto, Mihoko; Misawa, Asuka; Misaki, Masahiro; Ishida, Kenji

    2016-03-01

    The thermal behavior of 1,2,4,5-tetracyanobenzene (TCNB), the synthesis of metal-2,3,9,10,16,17,23,24-octacyanophthalocyanine-metal [MPc(CN)8-M] (M = Cu, Fe, Ni) complexes by the tetramerization of TCNB, and the growth of MPc(CN)8-M nanorods were investigated. By chemical vapor deposition (CVD) in vacuum, MPc(CN)8 molecules were synthesized and MPc(CN)8-M nanorods were formed on all substrates. Among them, CuPc(CN)8 molecules were synthesized in high yield, and CuPc(CN)8-Cu nanorods were deposited uniformly and in high density, with diameters and lengths of 70-110 and 200-700 nm, respectively. The differences in the growth of MPc(CN)8-M nanorods were mainly attributed to the stability of the MPc(CN)8-M complex, the oxidation of ultrathin metal films, and the diffusion of metal atoms. Additionally, the tetramerization of TCNB by CVD at atmospheric pressure was performed on ultrathin Cu films, and the synthesis of CuPc(CN)8 molecules was observed by in situ UV-vis spectroscopy. CVD under atmospheric pressure is also useful for the synthesis of CuPc(CN)8 molecules.

  3. Alterations of nuclear DNA synthesis after irradiation of the cellular slime mold Dictyostelium discoideum: studies performed in a mutant strain displaying enhanced thymidine uptake

    SciTech Connect

    Hurley, D.L.

    1986-01-01

    The auxotrophic Dictyostelium discoideum strain HPS 401 was studied. Thymidine at 8 ..mu..g/ml or thymidylate at 50 ..mu..g/ml supported growth to maximal cell densities. Thin layer chromatography of cell extracts showed rapid intracellular accumulation of thymidine in HPS 401 vs slightly detectable accumulation in wild-type cells. Measurements showed that methionine and thymidylate were taken into all strains at a low rate, but HPS 401 had enhanced uptake of thymidine and uridine compared to wild-type. The HPS 401 phenotype is due to the efficient utilization of thymidine as a result of increased nucleoside uptake. Rapid nuclear purification removed mitochondrial DNA without decreasing the single-strand molecular weight of the nuclear DNA. The nuclear DNA peaks on alkaline sucrose gradients were identified using filter hybridization to cloned probes. As measured by pulse-chase labelling, production of full-sized main band DNA required 45-50 minutes. Pulse labelling of the cells immediately after ultraviolet irradiation caused the single-strand molecular weight of the DNA synthesized to decrease from 8 x 10/sup 6/ daltons at O J/m/sup 2/ to 3.9 x 10/sup 6/ daltons at 50 J/m/sup 2/ to 2.6 x 10/sup 6/ daltons at 200 J/m/sup 2/. The time required for maturation into full-sized DNA increased from 1 hour at O J/m/sup 2/ to 4 hours at 20 J/m/sup 2/ and to 21 hours at 200 J/m/sup 2/. Measured amounts of DNA synthesis at times after ultraviolet irradiation showed a period of reduced incorporation, followed by the resumption of control levels. The lag period ended at the same time as the production of full-sized DNA resumed.

  4. Role of CO{sub 2} in the initiation of chain growth during the Fischer-Tropsch synthesis

    SciTech Connect

    DAvis, B.H.; Xu, L.; Bao, S.

    1995-12-01

    Data is presented to show that alcohols produce hydrocarbons during the Fischer-Tropsch Synthesis (FTS) that are not consistent with a simple initiation mechanism. The data is believed to be consistent with accumulation of hydrocarbon products in the reactor during the synthesis. CO{sub 2} is produced directly from the alcohol, and not by the reverse carbonylation reaction. CO{sub 2} also initiates chain growth in the FTS, and the initiation intermediate is presumed to be the same intermediate as in the water-gas-shift reaction. The data from the conversion with added {sup 14}CO{sub 2} are therefore inconsistent with the widely accepted carbide intermediate for FTS with an iron catalyst.

  5. Transforming growth factor-beta 1 stimulates glomerular mesangial cell synthesis of the 72-kd type IV collagenase.

    PubMed Central

    Marti, H. P.; Lee, L.; Kashgarian, M.; Lovett, D. H.

    1994-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) is generally considered to exert positive effects on the accumulation of extracellular matrices. These occur as the net result of enhanced matrix protein synthesis, diminished matrix metalloproteinase (MMP) synthesis, and augmented production of specific inhibitors, including the tissue inhibitor of metalloproteinases (TIMP-1). Given that glomerular TGF-beta 1 synthesis is induced by inflammation, the effects of this cytokine on synthesis of the 72-kd type IV collagenase and TIMP-1 by cultured human mesangial cells were evaluated. Concentrations of TGF-beta 1 of 5 ng/ml and above specifically stimulated the synthesis of the 72-kd type IV collagenase. This effect was independent of the stimulatory effect of TGF-beta 1 on TIMP-1 synthesis, which was maximal in a lower concentration range (0.1 to 1 ng/ml). Most significantly, the net effect at the higher concentrations of TGF-beta 1 was an excess of enzyme over the TIMP-1 inhibitor. Northern blot analysis of TGF-beta 1-stimulated human mesangial cells demonstrated a specific increase in the abundance of the 3.1 kb mRNA transcript encoding the 72-kd type IV collagenase, presumably mediated by a direct stimulation of 72-kd type IV collagenase mRNA transcription observed as early as 3 hours after exposure to TGF-beta 1. These studies were extended to an analysis of the expression of TGF-beta 1 and 72-kd type IV collagenase mRNAs in normal and nephritic rats. In normal animals, basal TGF-beta 1 and 72-kd type IV collagenase mRNA expression was observed in a strictly mesangial distribution. After induction of acute immune complex-mediated glomerulonephritis, there was a major increase in TGF-beta 1 and 72-kd type IV collagenase mRNA expression, which was strictly limited to the expanded, hypercellular mesangial compartment. Enhanced synthesis of the mesangial type IV collagenase in response to TGF-beta 1 released during glomerular inflammatory processes could have an important

  6. Oxidative stress enables Epstein-Barr virus-induced B-cell transformation by posttranscriptional regulation of viral and cellular growth-promoting factors.

    PubMed

    Chen, X; Kamranvar, S A; Masucci, M G

    2016-07-21

    Infection of human B lymphocytes by Epstein-Barr virus (EBV) leads to the establishment of immortalized lymphoblastoid cell lines (LCLs) that are widely used as a model of viral oncogenesis. An early consequence of infection is the induction of DNA damage and activation of the DNA damage response, which limits the efficiency of growth transformation. The cause of the DNA damage remains poorly understood. We have addressed this question by comparing the response of B lymphocytes infected with EBV or stimulated with a potent B-cell mitogen. We found that although the two stimuli induce comparable proliferation during the first 10 days of culture, the EBV-infected blasts showed significantly higher levels of DNA damage, which correlated with stronger and sustained accumulation of reactive oxygen species (ROS). Treatment with ROS scavengers decreased DNA damage in both mitogen-stimulated and EBV-infected cells. However, while mitogen-induced proliferation was slightly improved, the proliferation of EBV-infected cells and the establishment of LCLs were severely impaired. Quenching of ROS did not affect the kinetics and magnitude of viral gene expression but was associated with selective downregulation of the viral LMP1 and phosphorylated cellular transcription factor STAT3 that have key roles in transformation. Analysis of the mechanism by which high levels of ROS support LMP1 expression revealed selective inhibition of viral microRNAs that target the LMP1 transcript. Our study provides novel insights into the role of EBV-induced oxidative stress in promoting B-cell immortalization and malignant transformation. PMID:26592445

  7. Multiple site optical recording of transmembrane voltage (MSORTV) in patterned growth heart cell cultures: assessing electrical behavior, with microsecond resolution, on a cellular and subcellular scale.

    PubMed Central

    Rohr, S; Salzberg, B M

    1994-01-01

    We have applied multiple site optical recording of transmembrane voltage (MSORTV) to patterned growth cultures of heart cells to analyze the effect of geometry per se on impulse propagation in excitable tissue, with cellular and subcellular resolution. Extensive dye screening led to the choice of di-8-ANEPPS as the most suitable voltage-sensitive dye for this application; it is internalized slowly and permits optical recording with signal-to-noise ratios as high as 40:1 (measured peak-to-peak) and average fractional fluorescence changes of 15% per 100 mV. Using a x 100 objective and a fast data acquisition system, we could resolve impulse propagation on a microscopic scale (15 microns) with high temporal resolution (uncertainty of +/- 5 microseconds). We could observe the decrease in conduction velocity of an impulse propagating along a narrow cell strand as it enters a region of abrupt expansion, and we could explain this phenomenon in terms of the micro-architecture of the tissue. In contrast with the elongated and aligned cells forming the narrow strands, the cells forming the expansions were aligned at random and presented 2.5 times as many cell-to-cell appositions per unit length. If the decrease in conduction velocity results entirely from this increased number of cell-to-cell boundaries per unit length, the mean activation delay introduced by each boundary can be estimated to be 70 microseconds. Using this novel experimental system, we could also demonstrate the electrical coupling of fibroblasts and endotheloid cells to myocytes in culture. Images FIGURE 1 FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 7 FIGURE 8 PMID:7811945

  8. Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB

    PubMed Central

    Boer, Karin; Troost, Dirk; Spliet, Wim G. M.; van Rijen, Peter C.; Gorter, Jan A.

    2008-01-01

    Members of the vascular endothelial growth factor (VEGF) family are key signaling proteins in the induction and regulation of angiogenesis, both during development and in pathological conditions. However, signaling mediated through VEGF family proteins and their receptors has recently been shown to have direct effects on neurons and glial cells. In the present study, we immunocytochemically investigated the expression and cellular distribution of VEGFA, VEGFB, and their associated receptors (VEGFR-1 and VEGFR-2) in focal cortical dysplasia (FCD) type IIB from patients with medically intractable epilepsy. Histologically normal temporal cortex and perilesional regions displayed neuronal immunoreactivity (IR) for VEGFA, VEGFB, and VEGF receptors (VEGFR-1 and VEGFR-2), mainly in pyramidal neurons. Weak IR was observed in blood vessels and there was no notable glial IR within the grey and white matter. In all FCD specimens, VEGFA, VEGFB, and both VEGF receptors were highly expressed in dysplastic neurons. IR in astroglial and balloon cells was observed for VEGFA and its receptors. VEGFR-1 displayed strong endothelial staining in FCD. Double-labeling also showed expression of VEGFA, VEGFB and VEGFR-1 in cells of the microglia/macrophage lineage. The neuronal expression of both VEGFA and VEGFB, together with their specific receptors in FCD, suggests autocrine/paracrine effects on dysplastic neurons. These autocrine/paracrine effects could play a role in the development of FCD, preventing the death of abnormal neuronal cells. In addition, the expression of VEGFA and its receptors in glial cells within the dysplastic cortex indicates that VEGF-mediated signaling could contribute to astroglial activation and associated inflammatory reactions. PMID:18317782

  9. Cellular steatosis in ethanol oxidizing-HepG2 cells is partially controlled by the transcription factor, early growth response-1

    PubMed Central

    Thomes, Paul G.; Osna, Natalia A.; Davis, John S.; Donohue, Terrence M.

    2012-01-01

    Recent studies have shown that the transcription factor early growth response-1 (Egr-1) regulates ethanol-induced fatty liver. However, the mechanism(s) through which ethanol oxidation controls Egr-1 is unknown. Here, using recombinant hepatoma (HepG2; VL-17A) cells that metabolize ethanol, we show that alcohol dehydrogenase catalysis of ethanol oxidation and subsequent acetaldehyde production controls Egr-1 expression. Further, the induction of Egr-1 enhances expression of other steatosis-related genes, resulting in triglyceride accumulation. Ethanol exposure increased Egr-1 promoter activity, messenger RNA and Egr-1 protein levels in VL-17A cells. Elevated Egr-1 protein was sustained by an ethanol-induced decrease in proteasome activity, thereby stabilizing the Egr-1 protein. Egr-1 induction depended on ethanol oxidation, as it was prevented when ethanol oxidation was blocked. Ethanol exposure induced Egr-1 and triglyceride accumulation only in alcohol dehydrogenase-expressing cells that produced acetaldehyde. Such induction did not occur in parental, non-metabolizing HepG2 cells or in cells that express only cytochrome P450 2E1. However, direct exposure of HepG2 cells to acetaldehyde induced both Egr-1 protein and triglycerides. Egr-1 over-expression elevated triglyceride levels, which were augmented by ethanol exposure. However, these triglyceride levels did not exceed those in ethanol-exposed cells that had normal Egr-1 expression. Conversely, Egr-1 knockdown by siRNA only partially blocked ethanol-induced triglyceride accumulation and was associated not only with lower Egr-1 expression but also attenuation of SREBP1c and TNF-α mRNAs. Double knockdown of both Egr-1 and SREBP-1c abolished ethanol-elicited steatosis. Collectively, our findings provide important new insights into the temporal regulation by ethanol oxidation of Egr-1 and cellular steatosis. PMID:23103837

  10. Cellular apoptosis susceptibility (CAS) is overexpressed in thyroid carcinoma and maintains tumor cell growth: A potential link to the BRAFV600E mutation.

    PubMed

    Holzer, Kerstin; Drucker, Elisabeth; Oliver, Scott; Winkler, Juliane; Eiteneuer, Eva; Herpel, Esther; Breuhahn, Kai; Singer, Stephan

    2016-04-01

    Thyroid carcinoma is among the most common malignant endocrine neoplasms with a rising incidence. Genetic alterations occurring in thyroid cancer frequently affect the RAS/RAF/MEK/ERK-pathway such as the oncogenic, kinase-activating BRAF(V600E) mutation. Nuclear transport receptors including importins and exportins represent an important part of the nuclear transport machinery providing nucleo-cytoplasmic exchange of macromolecules. The role of nuclear transport receptors in the development and progression of thyroid carcinomas is largely unknown. Here, we studied the expression and function of the exportin cellular apoptosis susceptibility (CAS) in thyroid carcinogenesis and its link to the BRAF(V600E) mutation. By using immunohistochemistry (IHC) we found significantly increased IHC scores of CAS in primary papillary (PTC) and medullary (MTC), but not in follicular (FTC) thyroid carcinoma compared to non-tumorous (NT) thyroid tissue. Interestingly, metastases of the aforementioned subtypes including FTC showed a strong CAS positivity. Among PTCs we observed that CAS immunoreactivity was significantly higher in the tumors harboring the BRAF(V600E) mutation. Furthermore, depletion of CAS by RNAi in the BRAF(V600E)-positive PTC cell line B-CPAP led to reduced tumor cell growth measured by crystal violet assays. This phenotype could be attributed to reduced proliferation and increased cell death as assayed by BrdU ELISAs and immunoblotting for PARP-cleavage, respectively. Finally, we found additive effects of CAS siRNA and vemurafenib treatment in B-CPAP cells. Collectively, these data suggest that CAS overexpression in thyroid carcinoma depends on the subtype and the disease stage. Our findings also indicate that CAS maintains PTC cell proliferation and survival. Targeting CAS could represent a potential therapeutic approach particularly in combination with BRAF inhibitors such as vemurafenib in BRAF(V600E)-positive tumors. PMID:26892809

  11. The effect of pantothenic acid deficiency on keratinocyte proliferation and the synthesis of keratinocyte growth factor and collagen in fibroblasts.

    PubMed

    Kobayashi, Daisaku; Kusama, Miho; Onda, Masaaki; Nakahata, Norimichi

    2011-01-01

    It has been reported that pantothenic acid (vitamin B5) and panthenol, an alcohol derivative of pantothenic acid, have beneficial moisturizing effects on the skin. However, few studies have investigated the mechanism of action of pantothenic acid on skin tissues. We tried to clarify the role of pantothenic acid on skin function by using keratinocytes and fibroblasts. The depletion of pantothenic acid from the culture medium suppressed keratinocyte proliferation and promoted differentiation. Moreover, pantothenic acid depletion decreased the synthesis of keratinocyte growth factor and procollagen 4a2 in fibroblasts. These results suggest that pantothenic acid is essential for maintaining keratinocyte proliferation and differentiation. PMID:21258175

  12. From Exploratory Synthesis to Hard Radiation Detection: Crystal Growth and Characterization of Chalcogenide and Chalcohalide Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Sandy Linhsa

    In the first half of this thesis work, exploratory synthesis of materials using mixed polychalcogenide fluxes yielded four quaternary mixed Te/S compounds, with the respective chalcogen atoms residing in different crystallographic sites. Two-dimensional thiotellurite compounds (Ag2TeS3) 2·A2S6 (A = Rb, Cs), containing the trigonal pyramidal [TeS 3]2- unit, were synthesized and characterized. These structures are composed of layers of neutral [Ag2TeS3] alternating with charge-balanced salt layers containing the polysulfide chain [S6]2- and alkali metal ions. Using mixed Te/S polychalcogenide fluxes for compound discovery, we then investigated a new set of layered metal dichalcogenides, Ag2Te(MS2)3 (M = V, Nb) crystallizing in the P-62m space group. Ag2Te(MS2)3 contains layers of [Ag2Te] sandwiched between layers of [MS2] (M = V, Nb). The Ag and, more interestingly, Te atoms are linearly coordinated by S atoms in the [MS2] layers. This linear coordination of the Te atom by S atoms is unprecedented in the literature and stabilized by charge transfer within the [Ag2Te] layers. In the latter half, we report the bulk crystal growth and characterization of Tl-based chalcogenide and chalcohalide materials for hard radiation (X- and gamma-ray) detection, which requires high density, wide band gaps, and high resistivity. Lattice hybridization was applied to identify materials with optimal properties for hard radiation detection, resulting in the chalcohalide compound Tl6SI4. Tl6SI4 exhibits low effective mass of carriers, high resistivity, optimal band gap, and large hardness values. The figure of merit mutau products, (mutau) e = 2.1 x 10-3 cm2V-1 and (mutau)h = 2.3 x 10-5 cm2V -1, are comparable to state-of-the-art commercially used materials. Furthermore, high resolution detection of Ag X-rays by Tl6SI 4 was seen at 22 keV (2.6%). Dimensional reduction was used to identify Tl-based chalcogenide materials Tl2MS3 (M = Ge, Sn). Tl2MS3 show great potential for use as hard

  13. Changes in the Enzymes for Fatty Acid Synthesis and Desaturation during Acclimation of Developing Soybean Seeds to Altered Growth Temperature

    PubMed Central

    Cheesbrough, Thomas M.

    1989-01-01

    Temperature-induced changes in the enzymes for fatty acid synthesis and desaturation were studied in developing soybean seeds (Glycine max L. var Williams 82). Changes were induced by culture of the seed pods for 20 hours in liquid media at 20, 25, or 35°C. Linoleoyl and oleoyl desaturases were 94 and 10 times as active, respectively, in seeds cultured at 20°C as those cultured at 25°C. Both desaturases had negligible activity in seeds cultured at 35°C compared to seeds cultured at 20°C. Though less dramatic, other enzymes also showed differences in activity after 20 hours in culture at 20, 25, or 35°C. Stearoyl-acyl carrier protein (ACP) desaturase and CDP-choline:diacylglycerol phosphorylcholine transferase were most active in preparations from 20°C cultures. Activities were twofold lower at 25°C and a further threefold lower in 35°C cultures. Cultures from 25 and 35°C had 60 and 40%, respectively, of the phosphorylcholine:CTP cytidylyl transferase activity present in cultures grown at 20°C. Fatty acid synthetase, malonyl-coenzyme A:ACP transacylase, palmitoyl-ACP elongation, and choline kinase were not significantly altered by culture temperature. These data suggest that the enzymes for fatty acid desaturation and phosphatidylcholine synthesis can be rapidly modulated in response to altered growth temperatures, while the enzymes for fatty acid synthesis and elongation are not. PMID:16666840

  14. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man.

    PubMed

    Lundåsen, T; Gälman, C; Angelin, B; Rudling, M

    2006-12-01

    Bile acids (BAs) traversing the enterohepatic circulation exert several important metabolic effects. Their hepatic synthesis, controlled by the enzyme cholesterol 7alpha-hydroxylase (CYP7A1), has a unique diurnal variation in man. Here we provide evidence that the transintestinal flux of BAs regulates serum levels of intestinal fibroblast growth factor 19 (FGF19) that in turn modulate BA production in human liver. Basal FGF19 levels varied by 10-fold in normal subjects, and were reduced following treatment with a BA-binding resin and increased upon feeding the BA chenodeoxycholic acid. Serum FGF19 levels exhibited a pronounced diurnal rhythm with peaks occurring 90-120 min after the postprandial rise in serum BAs. The FGF19 peaks in turn preceded the declining phase of BA synthesis. The diurnal rhythm of serum FGF19 was abolished upon fasting. We conclude that, in humans, circulating FGF19 has a diurnal rhythm controlled by the transintestinal BA flux, and that FGF19 modulates hepatic BA synthesis. Through its systemic effects, circulating FGF19 may also mediate other known BA-dependent effects on lipid and carbohydrate metabolism. PMID:17116003

  15. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    SciTech Connect

    Morales, T.I. )

    1991-04-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated (35S)sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.

  16. Nicotine-induced retardation of chondrogenesis through down-regulation of IGF-1 signaling pathway to inhibit matrix synthesis of growth plate chondrocytes in fetal rats

    SciTech Connect

    Deng, Yu; Cao, Hong; Cu, Fenglong; Xu, Dan; Lei, Youying; Tan, Yang; Magdalou, Jacques; Wang, Hui; Chen, Liaobin

    2013-05-15

    Previous studies have confirmed that maternal tobacco smoking causes intrauterine growth retardation (IUGR) and skeletal growth retardation. Among a multitude of chemicals associated with cigarette smoking, nicotine is one of the leading candidates for causing low birth weights. However, the possible mechanism of delayed chondrogenesis by prenatal nicotine exposure remains unclear. We investigated the effects of nicotine on fetal growth plate chondrocytes in vivo and in vitro. Rats were given 2.0 mg/kg·d of nicotine subcutaneously from gestational days 11 to 20. Prenatal nicotine exposure increased the levels of fetal blood corticosterone and resulted in fetal skeletal growth retardation. Moreover, nicotine exposure induced the inhibition of matrix synthesis and down-regulation of insulin-like growth factor 1 (IGF-1) signaling in fetal growth plates. The effects of nicotine on growth plates were studied in vitro by exposing fetal growth plate chondrocytes to 0, 1, 10, or 100 μM of nicotine for 10 days. Nicotine inhibited matrix synthesis and down-regulated IGF-1 signaling in chondrocytes in a concentration-dependent manner. These results suggest that prenatal nicotine exposure induces delayed chondrogenesis and that the mechanism may involve the down-regulation of IGF-1 signaling and the inhibition of matrix synthesis by growth plate chondrocytes. The present study aids in the characterization of delayed chondrogenesis caused by prenatal nicotine exposure, which might suggest a candidate mechanism for intrauterine origins of osteoporosis and osteoarthritis. - Highlights: ► Prenatal nicotine-exposure could induce delayed chondrogenesis in fetal rats. ► Nicotine inhibits matrix synthesis of fetal growth plate chondrocytes. ► Nicotine inhibits IGF-1 signaling pathway in fetal growth plate chondrocytes.

  17. Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: comparison with silymarin.

    PubMed

    Bhatia, N; Zhao, J; Wolf, D M; Agarwal, R

    1999-12-01

    Several studies from our laboratory have shown the cancer chemopreventive and anti-carcinogenic effects of silymarin, a flavonoid antioxidant isolated from milk thistle, in long-term tumorigenesis models and in human prostate, breast and cervical carcinoma cells. Since silymarin is composed mainly of silibinin with small amounts of other stereoisomers of silibinin, in the present communication, studies were performed to assess whether the cancer preventive and anti-carcinogenic effects of silymarin are due to its major component silibinin. Treatment of different prostate, breast, and cervical human carcinoma cells with silibinin resulted in a highly significant inhibition of both cell growth and DNA synthesis in a time-dependent manner with large loss of cell viability only in case of cervical carcinoma cells. When compared with silymarin, these effects of silibinin were consistent and comparable in terms of cell growth and DNA synthesis inhibition, and loss of cell viability. Based on the comparable results of silibinin and silymarin, we suggest that the cancer chemopreventive and anti-carcinogenic effects of silymarin reported earlier are due to the main constituent silibinin. PMID:10660092

  18. Penta-Twinned Copper Nanorods: Facile Synthesis via Seed-Mediated Growth and Their Tunable Plasmonic Properties

    DOE PAGESBeta

    Luo, Ming; Ruditskiy, Aleksey; Peng, Hsin-Chieh; Tao, Jing; Figueroa-Cosme, Legna; He, Zhike; Xia, Younan

    2016-01-07

    When seed-mediated growth is used as a versatile approach to the synthesis of penta-twinned Cu nanorods with uniform diameters and controllable aspect ratios is reported. The success of this approach relies on our recent synthesis of uniform Pd decahedra, with sizes in the range of 6–20 nm. The Pd decahedral seeds can direct the heterogeneous nucleation and growth of Cu along the fivefold axis to produce nanorods with uniform diameters defined by the lateral dimension of the original seeds. Due to a large mismatch in the lattice constants between Cu and Pd (7.1%), the deposited Cu is forced to growmore » along one side of the Pd decahedral seed, generating a nanorod with an asymmetric distribution of Cu, with the Pd seed situated at one of the two ends. According to extinction spectra, the as-obtained Cu nanorods can be stored in water under the ambient conditions for at least six months without noticeable degradation. The resulting stability allows us to systematically investigate the size-dependent surface plasmon resonance properties of the penta-twinned Cu nanorods. With the nanorod transverse modes positioned at 560 nm, the longitudinal modes can be readily tuned from the visible to the near-infrared region by controlling the aspect ratio.« less

  19. 2, 6-Dichlorobenzonitrile causes multiple effects on pollen tube growth beyond altering cellulose synthesis in Pinus bungeana Zucc.

    PubMed

    Hao, Huaiqing; Chen, Tong; Fan, Lusheng; Li, Ruili; Wang, Xiaohua

    2013-01-01

    Cellulose is an important component of cell wall, yet its location and function in pollen tubes remain speculative. In this paper, we studied the role of cellulose synthesis in pollen tube elongation in Pinus bungeana Zucc. by using the specific inhibitor, 2, 6-dichlorobenzonitrile (DCB). In the presence of DCB, the growth rate and morphology of pollen tubes were distinctly changed. The organization of cytoskeleton and vesicle trafficking were also disturbed. Ultrastructure of pollen tubes treated with DCB was characterized by the loose tube wall and damaged organelles. DCB treatment induced distinct changes in tube wall components. Fluorescence labeling results showed that callose, and acidic pectin accumulated in the tip regions, whereas there was less cellulose when treated with DCB. These results were confirmed by FTIR microspectroscopic analysis. In summary, our findings showed that inhibition of cellulose synthesis by DCB affected the organization of cytoskeleton and vesicle trafficking in pollen tubes, and induced changes in the tube wall chemical composition in a dose-dependent manner. These results confirm that cellulose is involved in the establishment of growth direction of pollen tubes, and plays important role in the cell wall construction during pollen tube development despite its lower quantity. PMID:24146903

  20. Predictive modelling of growth and measurement of enzymatic synthesis and activity by a cocktail of selected Enterobacteriaceae and Aeromonas hydrophila.

    PubMed

    Braun, P; Sutherland, J P

    2005-11-25

    The possibility was examined of developing a predictive model that would predict food spoilage by combining microbial growth (increase in cellular number) with extracellular enzymatic activity of a cocktail of five strains of Enterobacteriaceae: Escherichia coli, Enterobacter agglomerans, Klebsiella oxytoca, Klebsiella pneumoniae and Proteus vulgaris and one Aeromonas hydrophila strain. Estimations of growth and enzyme activity were made within a three-dimensional matrix of conditions: temperature 2-20 degrees C, pH value 4.0-7.5 and water activity (a(w)) 0.95-0.995. A mathematical model was constructed which predicted growth based on increases in cell number. However, although notable effects of extracellular lipases and proteases were detected, it was not possible to model enzymatic activity and prepare a combined model because the data did not follow the characteristic profile that would allow curve-fitting. Nevertheless, the model for microbial growth and information relating to enzyme activity will be made freely available in a database on the internet. PMID:16154655

  1. Validity of the tritiated thymidine method for estimating bacterial growth rates: measurement of isotope dilution during DNA synthesis

    SciTech Connect

    Pollard, P.C.; Moriarty, D.J.W.

    1984-12-01

    The rate of tritiated thymidine incorporation into DNA was used to estimate bacterial growth rates in aquatic environments. To be accurate, the calculation of growth rates has to include a factor for the dilution of isotope before incorporation. The validity of an isotope dilution analysis to determine this factor was verified in experiments reported here with cultures of a marine bacterium growing in a chemostat. Growth rates calculated from data on chemostat dilution rates and cell density agreed well with rates calculated by tritiated thymidine incorporation into DNA and isotope dilution analysis. With sufficiently high concentrations of exogenous thymidine, de novo synthesis of deoxythymidine monophosphate was inhibited, thereby preventing the endogenous dilution of isoope. The thymidine technique was also shown to be useful for measuring growth rates of mixed suspensions of bacteria growing anaerobically. Thymidine was incorporated into the DNA of a range of marine pseudomonads that were investigated. Three species did not take up thymidine. The common marine cyanobacterium Synechococcus species did not incorporate thymidine into DNA.

  2. Growth-related variations in the glycosaminoglycan synthesis of ultraviolet light-induced murine cutaneous fibrosarcoma cells

    SciTech Connect

    Piepkorn, M.; Carney, H.; Linker, A.

    1985-08-01

    Glycosaminoglycan synthesis was studied in cell populations of ultraviolet light-induced murine cutaneous fibrosarcoma cells under conditions of varying growth rates in vitro. After labeling with the precursors, /sup 3/H-glucosamine and /sup 35/SO/sub 4/, sulfated glycosaminoglycans recoverable by direct proteolysis of the culture monolayers increased approximately 5-fold on a per cell basis from sparsely populated, exponential cell cultures (greater than 85% of cells in S, G2, or M phases) to stationary cultures inhibited by high cell density (greater than 50% of cells in G1). Within this cell surface-associated material, the relative ratio of heparan sulfate to the chondroitin sulfates was approximately 60/40% under conditions of exponential growth; in the growth-arrested cultures, the reverse ratio was found. The substratum attached material, obtained from the flask surface after ethyl glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA)-mediated detachment of the monolayers, contained relatively more hyaluronic acid, heparan sulfate, and chondroitin sulfates in the most actively proliferating cultures compared with the growth-inhibited cell populations. Furthermore, heparan sulfate and the chondroitin sulfates, which were enriched in the substratum material and in the cell pellet of exponential cultures, showed a relative shift to the cell surface-associated compartment (releasable by mild trypsinization after EGTA-mediated cell detachment) and to the compartment loosely associated with the pericellular matrix (i.e., released into the supernatant during detachment of the monolayers in the presence of EGTA).

  3. Triennial growth symposium: Leucine acts as a nutrient signal to stimulate protein synthesis in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The postprandial increases in AA and insulin independently stimulate protein synthesis in skeletal muscle of piglets. Leucine is an important mediator of the response to AA. We have shown that the postprandial increase in leucine, but not isoleucine or valine, acutely stimulates muscle protein synth...

  4. NOREPINEPHRINE AND EPIDERMAL GROWTH FACTOR: DYNAMICS OF THEIR INTERACTION IN THE STIMULATION OF HEPATOCYTE DNA SYNTHESIS

    EPA Science Inventory

    Primary cultures of adult rat hepatocytes are stimulated to enter DNA synthesis by norepinephrine (NE). This stimulation is maximal if the hepatocytes are incubated with NE for more than 12 hr, beginning no later than 2-4 hr after the cells are first plated. After 24 hr in cultur...

  5. The relationship between the growth rate and the lifetime in carbon nanotube synthesis

    NASA Astrophysics Data System (ADS)

    Chen, Guohai; Davis, Robert C.; Kimura, Hiroe; Sakurai, Shunsuke; Yumura, Motoo; Futaba, Don N.; Hata, Kenji

    2015-05-01

    We report an inverse relationship between the carbon nanotube (CNT) growth rate and the catalyst lifetime by investigating the dependence of growth kinetics for ~330 CNT forests on the carbon feedstock, carbon concentration, and growth temperature. We found that the increased growth temperature led to increased CNT growth rate and shortened catalyst lifetime for all carbon feedstocks, following an inverse relationship of a fairly constant maximum height. For the increased carbon concentration, the carbon feedstocks fell into two groups where ethylene/butane showed an increased/decreased growth rate and a decreased/increased lifetime indicating different rate-limiting growth processes. In addition, this inverse relationship held true for different types of CNTs synthesized by various chemical vapor deposition techniques and continuously spanned a 1000-times range in both the growth rate and catalyst lifetime, indicating the generality and fundamental nature of this behavior originating from the growth mechanism of CNTs itself. These results suggest that it would be fundamentally difficult to achieve a fast growth with a long lifetime.

  6. The relationship between the growth rate and the lifetime in carbon nanotube synthesis.

    PubMed

    Chen, Guohai; Davis, Robert C; Kimura, Hiroe; Sakurai, Shunsuke; Yumura, Motoo; Futaba, Don N; Hata, Kenji

    2015-05-21

    We report an inverse relationship between the carbon nanotube (CNT) growth rate and the catalyst lifetime by investigating the dependence of growth kinetics for ∼330 CNT forests on the carbon feedstock, carbon concentration, and growth temperature. We found that the increased growth temperature led to increased CNT growth rate and shortened catalyst lifetime for all carbon feedstocks, following an inverse relationship of a fairly constant maximum height. For the increased carbon concentration, the carbon feedstocks fell into two groups where ethylene/butane showed an increased/decreased growth rate and a decreased/increased lifetime indicating different rate-limiting growth processes. In addition, this inverse relationship held true for different types of CNTs synthesized by various chemical vapor deposition techniques and continuously spanned a 1000-times range in both the growth rate and catalyst lifetime, indicating the generality and fundamental nature of this behavior originating from the growth mechanism of CNTs itself. These results suggest that it would be fundamentally difficult to achieve a fast growth with a long lifetime. PMID:25913386

  7. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 1; Growth Hormone Regulation Synthesis and Secretion in Microgravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R.; Vale, W.; Sawchenko, P.; Ilyina-Kakueva, E. I.

    1994-01-01

    Changes in the musculoskeletal, immune, vascular, and endocrine system of the rat occur as a result of short-term spaceflight. Since pituitary gland growth hormone (GH) plays a role in the control of these systems, and since the results of an earlier spaceflight mission (Spacelab 3, 1985) showed that GH cell function was compromised in a number of post-flight tests, we repeated and extended the 1985 experiment in two subsequent spaceflights: the 12.5 day mission of Cosmos 1887 (in 1987) and the 14 day mission of Cosmos 2044 (in 1989). The results of these later two flight experiments are the subject of this report. They document repeatable and significant changes in the GH cell system of the spaceflown rat in several post-flight tests.

  8. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine)-b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA) polymeric nanoparticle micelles for nanomedicine applications

    NASA Astrophysics Data System (ADS)

    Salvage, Jonathan P.; Smith, Tia; Lu, Tao; Sanghera, Amendeep; Standen, Guy; Tang, Yiqing; Lewis, Andrew L.

    2016-01-01

    Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)-b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64-69 nm, and increased upon hydrophobic compound loading, circa 65-71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application

  9. Transient exposure of human myoblasts to tumor necrosis factor-alpha inhibits serum and insulin-like growth factor-I stimulated protein synthesis.

    PubMed

    Frost, R A; Lang, C H; Gelato, M C

    1997-10-01

    Tumor necrosis factor-alpha (TNF-alpha) induces cachexia and is postulated to be responsible for muscle wasting in several pathophysiological conditions. The purpose of the present study was to investigate whether exposure of human myoblasts to TNF-alpha could directly inhibit the ability of serum or insulin-like growth factor I (IGF-I) to stimulate protein synthesis as assessed by the incorporation of [3H]phenylalanine into protein. Serum and IGF-I stimulated protein synthesis dose dependently. Half-maximal stimulation of protein synthesis occurred at 05% serum and 8 ng/ml of IGF-I, respectively. TNF-alpha inhibited IGF-I-stimulated protein synthesis in a dose-dependent manner. Additionally, as little as 2 ng/ml of TNF-alpha impaired the ability of IGF-I to stimulate protein synthesis by 33% and, at a dose of 100 ng/ml, TNF-alpha completely prevented the increase in protein synthesis induced by either serum or a maximally stimulating dose of IGF-I. Inhibition of protein synthesis was independent of whether TNF-alpha and growth factors were added to cells simultaneously or if the cells were pretreated with growth factors. Exposure ofmyoblasts to TNF-alpha for 10 min completely inhibited serum-induced stimulation of protein synthesis. TNF-alpha inhibited protein synthesis up to 48 h after addition of the cytokine. TNF-alpha also inhibited serum-stimulated protein synthesis in human myoblasts that were differentiated into myotubes. In contrast, exposure of myoblasts to TNF-alpha had no effect on IGF-I binding and failed to alter the ability of either IGF-I or serum to stimulate [3H]thymidine uptake. These data indicate that transient exposure of myoblasts or myotubes to TNF-alpha inhibits protein synthesis. Thus, the anabolic actions of IGF-I on muscle protein synthesis may be impaired during catabolic conditions in which TNF-alpha is over expressed. PMID:9322924

  10. Cellular resilience.

    PubMed

    Smirnova, Lena; Harris, Georgina; Leist, Marcel; Hartung, Thomas

    2015-01-01

    Cellular resilience describes the ability of a cell to cope with environmental changes such as toxicant exposure. If cellular metabolism does not collapse directly after the hit or end in programmed cell death, the ensuing stress responses promote a new homeostasis under stress. The processes of reverting "back to normal" and reversal of apoptosis ("anastasis") have been studied little at the cellular level. Cell types show astonishingly similar vulnerability to most toxicants, except for those that require a very specific target, metabolism or mechanism present only in specific cell types. The majority of chemicals triggers "general cytotoxicity" in any cell at similar concentrations. We hypothesize that cells differ less in their vulnerability to a given toxicant than in their resilience (coping with the "hit"). In many cases, cells do not return to the naive state after a toxic insult. The phenomena of "pre-conditioning", "tolerance" and "hormesis" describe this for low-dose exposures to toxicants that render the cell more resistant to subsequent hits. The defense and resilience programs include epigenetic changes that leave a "memory/scar" - an alteration as a consequence of the stress the cell has experienced. These memories might have long-term consequences, both positive (resistance) and negative, that contribute to chronic and delayed manifestations of hazard and, ultimately, disease. This article calls for more systematic analyses of how cells cope with toxic perturbations in the long-term after stressor withdrawal. A technical prerequisite for these are stable (organotypic) cultures and a characterization of stress response molecular networks. PMID:26536287

  11. Alcohol Alters Insulin-Like Growth Factor-1-Induced Transforming Growth Factor-ß1 Synthesis in the Medial Basal Hypothalamus of the Prepubertal Female Rat

    PubMed Central

    Hiney, Jill K.; Srivastava, Vinod K.; Volz, Claire E.; Dees, William L.

    2014-01-01

    Objective Insulin-like growth factor-1 (IGF-1) and transforming growth factor ß1 (TGFß1) are produced in hypothalamic astrocytes and facilitate luteinizing hormone-releasing hormone (LHRH) secretion. IGF-1 stimulates release by acting directly on the LHRH nerve terminals and both peptides act indirectly through specific plastic changes on glial/tanycyte processes that further support LHRH secretion. Because the relationship between these growth factors in the hypothalamus is not known, we assessed the ability of IGF-1 to induce TGFβ1 synthesis and release and the actions of alcohol (ALC) on this mechanism prior to the onset of puberty. Methods Hypothalamic astrocytes were exposed to medium only, medium plus IGF-1 (200 ng/ml) or medium plus IGF-1 with 50 mM ALC. After 18 hours, media were collected and assayed for TGFß1. For the in vivo experiment, prepubertal female rats were administered either ALC (3g/kg) or water via gastric gavage at 0730 h and at 1130h. At 0900 h, saline or IGF-1 was administered into the third ventricle. Rats were killed at 1500 hrs and the medial basal hypothalamus (MBH) was collected for assessment of TGFß1, IGF-1 receptor (IGF-1R) and Akt. Results IGF-1 induced TGFß1 release (p<0.01) from hypothalamic astrocytes in culture, an action blocked by ALC. In vivo, IGF-1 administration caused an increase in TGFβ1 protein compared to controls (p<0.05), an action blocked by ALC as well as a PI3K/Akt inhibitor. IGF-1 stimulation also increased both total (p<0.01) and phosphorylated (p<0.05) IGF-1R protein levels, and phosphorylated Akt levels (p<0.01), which were also blocked by ALC. Conclusions This study shows that ALC blocks IGF-1 actions to stimulate synthesis and release of hypothalamic TGFß1, total and phosphorylated IGF-1R and phosphorylated Akt levels further demonstrating the inhibitory actions of ALC on puberty-related events associated with hypothalamic LHRH release. PMID:25335926

  12. Impact of prolonged leucine supplementation on protein synthesis and lean growth in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most low-birth weight infants experience extrauterine growth failure due to reduced nutrient intake as a result of feeding intolerance. The objective of this study was to determine whether prolonged enteral leucine supplementation improves lean growth in neonatal pigs fed a restricted protein diet. ...

  13. Synthesis of graphene by chemical vapor deposition: effect of growth conditions.

    PubMed

    Su, Dan; Ren, Mingwei; Li, Xing'ao; Huang, Wei

    2013-10-01

    Graphene has attracted a great deal of attention due to its extraordinary physical and chemical properties. But the control of growth of high-quality, large-area and inexpensive graphene is still the bottleneck for practical applications. Chemical vapor deposition (CVD) has become the most common method for graphene growth due to its high production and large area of product. However, it generally suffers from an uncontrollable carbon precipitation effect that leads to inhomogeneous growth and strongly dependent on to the growth conditions. Until now, scientists have struggled to synthesize higher quality, larger area graphene through changing the experimental conditions. In this review, the progress made in the last few years concerning the exploration of preparation graphene by CVD is summarized in three aspects (catalysts, precursors and experimental parameters) that influence graphene growth. PMID:24245104

  14. Expression of nerve growth factor and its receptors in the uterus of rabbits: functional involvement in prostaglandin synthesis.

    PubMed

    Maranesi, M; Parillo, F; Leonardi, L; Rebollar, P G; Alonso, B; Petrucci, L; Gobbetti, A; Boiti, C; Arruda-Alencar, J; Moura, A; Zerani, M

    2016-07-01

    The aim of the present study was to evaluate: (1) the presence of nerve growth factor (NGF), neurotrophic tyrosine kinase receptor 1 (NTRK1), and nerve growth factor receptor (NGFR) in the rabbit uterus; and (2) the in vitro effects of NGF on PGF2α and PGE2 synthesis and on the PGE2-9-ketoreductase (PGE2-9-K) activity by the rabbit uterus. Nerve growth factor, NTRK1, and NGFR were immunolocalized in the luminal and glandular epithelium and stroma cells of the endometrium. reverse transcriptase polymerase chain reaction indicated the presence of messenger RNA for NGF, NTRK1, and NGFR in the uterus. Nerve growth factor increased (P < 0.01) in vitro secretions of PGF2α and PGE2 but coincubation with either NTRK1 or oxide nitric synthase (NOS) inhibitors reduced (P < 0.01) PGF2α production and blocked (P < 0.01) PGE2 secretion. Prostaglandins releases were lower (P < 0.01) than control when uterine samples were treated with NGF plus cyclooxygenase inhibitor. However, addition of NGFR inhibitor reduced (P < 0.01) PGF2α secretion less efficiently than NTRK1 or NOS inhibitors but had no effect on PGE2 yield. Nerve growth factor increased (P < 0.01) the activity of PGE2-9-K, whereas coincubation with NTRK1 or NOS inhibitors abolished (P < 0.01) this increase in PGE2-9-K activity. However, cotreatment with either cyclooxygenase or NGFR inhibitors had no effect on PGE2-9-K activity. This is the first study to document the distribution of NGF/NTRK1 and NGFR systems and their effects on prostaglandin synthesis in the rabbit uterus. NGF/NTRK1 increases PGF2α and PGE2 productions by upregulating NOS and PGE2-9-K activities, whereas NGF/NGFR augments only PGF2α secretion, through an intracellular mechanism that is still unknown. PMID:26986844

  15. Cellular characterization of a new irreversible inhibitor of S-adenosylmethionine decarboxylase and its use in determining the relative abilities of individual polyamines to sustain growth and viability of L1210 cells.

    PubMed Central

    Kramer, D L; Khomutov, R M; Bukin, Y V; Khomutov, A R; Porter, C W

    1989-01-01

    S-(5'-Deoxy-5'-adenosyl)methylthioethylhydroxylamine (AMA) is an irreversible inhibitor of S-adenosylmethionine (AdoMet) decarboxylase, which is designed to bind covalently the pyruvate residue at the enzyme active site. In the present study the cellular effects of AMA were characterized for the first time in cultured L1210 leukaemia cells. At the approximate IC50 (concn. giving 50% inhibition; 100 microM), AMA decreased spermidine and spermine by more than 80% at 48 h while increasing putrescine more than 10-fold. As an indication of enzyme specificity, growth inhibition was fully prevented with exogenous spermidine. When compared with the irreversible inhibitor of ornithine decarboxylase, alpha-difluoromethylornithine (DFMO), at similar growth-inhibitory concentrations, AMA was less cytotoxic, as determined by colony-formation efficiency. In combination with AMA, DFMO eliminated the rise in putrescine and decreased growth in an additive manner. The near-total depletion of intracellular polyamine pools achieved with the drug combination provided an opportunity to examine the relative abilities of individual polyamines to support growth and viability. Of the three exogenously supplied polyamines, only spermidine fully sustained cell growth and viability at control values during incubations totalling 120 h. By contrast, spermine supported growth at 23% of control and viability at 8%. Putrescine was similarly ineffective, supporting growth at 13% of control and viability at 7%. The data indicate that, in L1210 cells, spermidine is apparently the preferred polyamine in growth-related functions and is capable of fully supporting cell growth by itself. However, because spermine and putrescine can also support growth to some extent, maximum interference with growth and viability is best achieved by strategies which deplete all three polyamine pools. PMID:2497733

  16. The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth.

    PubMed

    Karlsson, Patrik M; Herdean, Andrei; Adolfsson, Lisa; Beebo, Azeez; Nziengui, Hugues; Irigoyen, Sonia; Ünnep, Renáta; Zsiros, Ottó; Nagy, Gergely; Garab, Győző; Aronsson, Henrik; Versaw, Wayne K; Spetea, Cornelia

    2015-10-01

    The Arabidopsis phosphate transporter PHT4;1 was previously localized to the chloroplast thylakoid membrane. Here we investigated the physiological consequences of the absence of PHT4;1 for photosynthesis and plant growth. In standard growth conditions, two independent Arabidopsis knockout mutant lines displayed significantly reduced leaf size and biomass but normal phosphorus content. When mutants were grown in high-phosphate conditions, the leaf phosphorus levels increased and the growth phenotype was suppressed. Photosynthetic measurements indicated that in the absence of PHT4;1 stromal phosphate was reduced to levels that limited ATP synthase activity. This resulted in reduced CO2 fixation and accumulation of soluble sugars, limiting plant growth. The mutants also displayed faster induction of non-photochemical quenching than the wild type, in line with the increased contribution of ΔpH to the proton-motive force across thylakoids. Small-angle neutron scattering showed a smaller lamellar repeat distance, whereas circular dichroism spectroscopy indicated a perturbed long-range order of photosystem II (PSII) complexes in the mutant thylakoids. The absence of PHT4;1 did not alter the PSII repair cycle, as indicated by wild-type levels of phosphorylation of PSII proteins, inactivation and D1 protein degradation. Interestingly, the expression of genes for several thylakoid proteins was downregulated in the mutants, but the relative levels of the corresponding proteins were either not affected or could not be discerned. Based on these data, we propose that PHT4;1 plays an important role in chloroplast phosphate compartmentation and ATP synthesis, which affect plant growth. It also maintains the ionic environment of thylakoids, which affects the macro-organization of complexes and induction of photoprotective mechanisms. PMID:26255788

  17. Lactate promotes PGE2 synthesis and gluconeogenesis in monocytes to benefit the growth of inflammation-associated colorectal tumor

    PubMed Central

    Wei, Libin; Zhou, Yuxin; Yao, Jing; Qiao, Chen; Ni, Ting; Guo, Ruichen; Guo, Qinglong; Lu, Na

    2015-01-01

    Reprogramming energy metabolism, such as enhanced glycolysis, is an Achilles' heel in cancer treatment. Most studies have been performed on isolated cancer cells. Here, we studied the energy-transfer mechanism in inflammatory tumor microenvironment. We found that human THP-1 monocytes took up lactate secreted from tumor cells through monocarboxylate transporter 1. In THP-1 monocytes, the oxidation product of lactate, pyruvate competed with the substrate of proline hydroxylase and inhibited its activity, resulting in the stabilization of HIF-1α under normoxia. Mechanistically, activated hypoxia-inducible factor 1-α in THP-1 monocytes promoted the transcriptions of prostaglandin-endoperoxide synthase 2 and phosphoenolpyruvate carboxykinase, which were the key enzyme of prostaglandin E2 synthesis and gluconeogenesis, respectively, and promote the growth of human colon cancer HCT116 cells. Interestingly, lactate could not accelerate the growth of colon cancer directly in vivo. Instead, the human monocytic cells affected by lactate would play critical roles to ‘feed’ the colon cancer cells. Thus, recycling of lactate for glucose regeneration was reported in cancer metabolism. The anabolic metabolism of monocytes in inflammatory tumor microenvironment may be a critical event during tumor development, allowing accelerated tumor growth. PMID:25938544

  18. Evolution of the morphology of diamond particles and mechanism of their growth during the synthesis by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Feoktistov, N. A.; Grudinkin, S. A.; Golubev, V. G.; Baranov, M. A.; Bogdanov, K. V.; Kukushkin, S. A.

    2015-11-01

    The evolution of the surface morphology of diamond particles synthesized by chemical vapor deposition (CVD) on silicon substrates has been investigated. It has been found that, when the diamond particles reach a critical size of less than 800 nm, the surface of the diamond faces is transformed. Particles with sizes of no more than 100-300 nm have a well-faceted surface covered by the {100} and {111} faces. An increase in the size of diamond particles leads to a change in the structure of their surface. The surface is covered by the {100} faces surrounded by a disordered phase. With a further increase in the particle size (up to ˜2000 nm), the {100} faces disappear and the diamond particles are covered by high-index faces. A model explaining the evolution of the surface morphology of diamond particles has been proposed. According to this model, during the evolution of diamond particles with an increase in their size, the mechanism of layer-bylayer growth changes to normal growth, which leads to a significant transformation of the entire surface of the diamond particles. The critical size of a two-dimensional nucleus formed on the {100} and {111} faces, at which the change in the growth mechanism begins to occur, has been calculated. A method has been proposed for controlling the morphology of diamond particles during their synthesis.

  19. The coordinate cellular response to insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-2 (IGFBP-2) is regulated through vimentin binding to receptor tyrosine phosphatase β (RPTPβ).

    PubMed

    Shen, Xinchun; Xi, Gang; Wai, Christine; Clemmons, David R

    2015-05-01

    Insulin-like growth factor-binding protein-2 (IGFBP-2) functions coordinately with IGF-I to stimulate cellular proliferation and differentiation. IGFBP-2 binds to receptor tyrosine phosphatase β (RPTPβ), and this binding in conjunction with IGF-I receptor stimulation induces RPTPβ polymerization leading to phosphatase and tensin homolog inactivation, AKT stimulation, and enhanced cell proliferation. To determine the mechanism by which RPTPβ polymerization is regulated, we analyzed the protein(s) that associated with RPTPβ in response to IGF-I and IGFBP-2 in vascular smooth muscle cells. Proteomic experiments revealed that IGF-I stimulated the intermediate filament protein vimentin to bind to RPTPβ, and knockdown of vimentin resulted in failure of IGFBP-2 and IGF-I to stimulate RPTPβ polymerization. Knockdown of IGFBP-2 or inhibition of IGF-IR tyrosine kinase disrupted vimentin/RPTPβ association. Vimentin binding to RPTPβ was mediated through vimentin serine phosphorylation. The serine threonine kinase PKCζ was recruited to vimentin in response to IGF-I and inhibition of PKCζ activation blocked these signaling events. A cell-permeable peptide that contained the vimentin phosphorylation site disrupted vimentin/RPTPβ association, and IGF-I stimulated RPTPβ polymerization and AKT activation. Integrin-linked kinase recruited PKCζ to SHPS-1-associated vimentin in response to IGF-I and inhibition of integrin-linked kinase/PKCζ association reduced vimentin serine phosphorylation. PKCζ stimulation of vimentin phosphorylation required high glucose and vimentin/RPTPβ-association occurred only during hyperglycemia. Disruption of vimetin/RPTPβ in diabetic mice inhibited RPTPβ polymerization, vimentin serine phosphorylation, and AKT activation in response to IGF-I, whereas nondiabetic mice showed no difference. The induction of vimentin phosphorylation is important for IGFBP-2-mediated enhancement of IGF-I-stimulated proliferation during hyperglycemia, and it

  20. Carnosic acid, a component of rosemary (Rosmarinus officinalis L.), promotes synthesis of nerve growth factor in T98G human glioblastoma cells.

    PubMed

    Kosaka, Kunio; Yokoi, Toshio

    2003-11-01

    Nerve growth factor (NGF) is a factor vital for the growth and functional maintenance of nerve tissue. The authors found that a rosemary (Rosmarinus officinalis L.) extract enhanced the production of NGF in T98G human glioblastoma cells. Furthermore, the results indicated that carnosic acid and carnosol, which are major components of the rosemary extract, were able to promote markedly enhanced synthesis of NGF. PMID:14600414

  1. Nerve growth factor inhibits the synthesis of a single-stranded DNA binding protein in pheochromocytoma cells (clone PC12).

    PubMed Central

    Biocca, S; Cattaneo, A; Calissano, P

    1984-01-01

    Arrest of mitosis and neurite outgrowth induced by nerve growth factor (NGF) in rat pheochromocytoma cells (clone PC12) is accompanied by a progressive inhibition of the synthesis of a protein that binds to single-stranded but not to double-stranded DNA. Time course experiments show that this inhibition is already apparent after a 2-day incubation with NGF and is maximum (85-95%) upon achievement of complete PC12 cell differentiation. Inhibition of the synthesis of this single-stranded DNA binding protein after 48 hr of incubation with NGF is potentiated by concomitant treatment of PC12 cells with antimitotic drugs acting at different levels of DNA replication. Purification on a preparative scale of this protein and analysis of its major physicochemical properties show that: (i) it constitutes 0.5% of total soluble proteins of naive PC12 cells; (ii) its molecular weight measured by NaDodSO4/PAGE is Mr 34,000 (sucrose gradient centrifugation under nondenaturing conditions yields a sedimentation coefficient s20,w of 8.1 S, indicating that the native protein is an oligomer); (iii) amino acid analysis demonstrates a preponderance of acidic over basic residues, while electrofocusing experiments show that it has an isoelectric point around 8.0; (iv) approximately 15% of the protein is phosphorylated in vivo. It is postulated that control of the synthesis of this protein is connected with activation of a differentiative program triggered by NGF in the PC12 neoplastic cell line at some step(s) of DNA activity. Images PMID:6585787

  2. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline-3-hydroxy-4-methoxybenzaldehyde

    SciTech Connect

    Sharma, K.P.; Reddi, R.S.B.; Bhattacharya, S.; Rai, R.N.

    2012-06-15

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied. - Graphical abstarct: Exploiting phase diagram study and solvent free synthesis a novel compound was synthesized and its single crystal growth, atomic packing, energy band gap and refractive index were studied. Highlights: Black-Right-Pointing-Pointer Novel organic complex was synthesized using Green or solvent free synthesis. Black-Right-Pointing-Pointer Phase diagram study provided the information to identify the worthy composition of novel complex. Black-Right-Pointing-Pointer The single crystal of the sufficient size was grown from the ethanol solution. Black-Right-Pointing-Pointer Crystal analysis suggested that the covalent bond is formed between the two parent compounds. Black-Right-Pointing-Pointer The transmittance of the crystal was found to be 70% and it was transparent from 412 to 850 nm.

  3. Synthesis and characterization of a cellular membrane affinity chromatography column containing histamine 1 and P2Y1 receptors: A multiple G-protein coupled receptor column

    PubMed Central

    Moaddel, Ruin; Musyimi, Harrison K.; Sanghvi, Mitesh; Bashore, Charlene; Frazier, Chester R.; Khadeer, Mohammad; Bhatia, Prateek; Wainer, Irving W.

    2015-01-01

    A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y1 receptor. The CMAC(1321N1P2Y1) column contained functional P2Y1 and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1P2Y1) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding. PMID:19608372

  4. Neverland is an evolutionally conserved Rieske-domain protein that is essential for ecdysone synthesis and insect growth.

    PubMed

    Yoshiyama, Takuji; Namiki, Toshiki; Mita, Kazuei; Kataoka, Hiroshi; Niwa, Ryusuke

    2006-07-01

    Steroid hormones mediate a wide variety of developmental and physiological events in multicellular organisms. During larval and pupal stages of insects, the principal steroid hormone is ecdysone, which is synthesized in the prothoracic gland (PG) and plays a central role in the control of development. Although many studies have revealed the biochemical features of ecdysone synthesis in the PG, many aspects of this pathway have remained unclear at the molecular level. We describe the neverland (nvd) gene, which encodes an oxygenase-like protein with a Rieske electron carrier domain, from the silkworm Bombyx mori and the fruitfly Drosophila melanogaster. nvd is expressed specifically in tissues that synthesize ecdysone, such as the PG. We also show that loss of nvd function in the PG causes arrest of both molting and growth during Drosophila development. Furthermore, the phenotype is rescued by application of 20-hydroxyecdysone or the precursor 7-dehydrocholesterol. Given that the nvd family is evolutionally conserved, these results suggest that Nvd is an essential regulator of cholesterol metabolism or trafficking in steroid synthesis across animal phyla. PMID:16763204

  5. Kre6 Protein Essential for Yeast Cell Wall β-1,6-Glucan Synthesis Accumulates at Sites of Polarized Growth*

    PubMed Central

    Kurita, Tomokazu; Noda, Yoichi; Takagi, Tomoko; Osumi, Masako; Yoda, Koji

    2011-01-01

    Saccharomyces cerevisiae Kre6 is a type II membrane protein with amino acid sequence homology with glycoside hydrolase and is essential for β-1,6-glucan synthesis as revealed by the mutant phenotype, but its biochemical function is still unknown. The localization of Kre6, determined by epitope tagging, is a matter of debate. We raised anti-Kre6 rabbit antiserum and examined the localization of Kre6 and its tagged protein by immunofluorescence microscopy, subcellular fractionation in sucrose density gradients, and immunoelectron microscopy. Integration of the results indicates that the majority of Kre6 is in the endoplasmic reticulum; however, a small but significant portion is also present in the secretory vesicle-like compartments and plasma membrane. Kre6 in the latter compartments is observed as strong signals that accumulate at the sites of polarized growth by immunofluorescence. The truncated Kre6 without the N-terminal 230-amino acid cytoplasmic region did not show this polarized accumulation and had a severe defect in β-1,6-glucan synthesis. This is the first evidence of a β-1,6-glucan-related protein showing the polarized membrane localization that correlates with its biological function. PMID:21193403

  6. Cellular uptake of PLA nanoparticles studied by light and electron microscopy: synthesis, characterization and biocompatibility studies using an iridium(iii) complex as correlative label.

    PubMed

    Reifarth, Martin; Pretzel, David; Schubert, Stephanie; Weber, Christine; Heintzmann, Rainer; Hoeppener, Stephanie; Schubert, Ulrich S

    2016-03-10

    We present the synthesis of polylactide by ring-opening polymerization using a luminescent iridium(iii) complex acting as initiator. The polymer was formulated into nanoparticles, which were taken up by HEK-293 cells. We could show that the particles provided an appropriate contrast in both superresolution fluorescence and electron microscopy, and, moreover, are non-toxic, in contrast to the free iridium complex. PMID:26923139

  7. Synthesis and Characterization of AICAR and DOX Conjugated Multifunctional Nanoparticles as a Platform for Synergistic Inhibition of Cancer Cell Growth.

    PubMed

    Daglioglu, Cenk; Okutucu, Burcu

    2016-04-20

    The success of cancer treatment depends on the response to chemotherapeutic agents. However, malignancies often acquire resistance to drugs if they are used frequently. Combination therapy involving both a chemotherapeutic agent and molecularly targeted therapy may have the ability to retain and enhance therapeutic efficacy. Here, we addressed this issue by examining the efficacy of a novel therapeutic strategy that combines AICAR and DOX within a multifunctional platform. In this context, we reported the bottom-up synthesis of Fe3O4@SiO2(FITC)-FA/AICAR/DOX multifunctional nanoparticles aiming to neutralize survivin (BIRC5) to potentiate the efficacy of DOX against chemoresistance. The structure of nanoparticles was characterized by dynamic light scattering (DLS), zeta-potential measurement, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and electron microscopy (SEM and STEM with EDX) techniques. Cellular uptake and cytotoxicity experiments demonstrated preferentially targeted delivery of nanoparticles and an efficient reduction of cancer cell viability in five different tumor-derived cell lines (A549, HCT-116, HeLa, Jurkat, and MIA PaCa-2). These results indicate that the multifunctional nanoparticle system possesses high inhibitory drug association and sustained cytotoxic effect with good biocompatibility. This novel approach which combines AICAR and DOX within a single platform might be promising as an antitumor treatment for cancer. PMID:26996194

  8. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth

    PubMed Central

    2013-01-01

    Background Regulation of lipid metabolism via activation of sterol regulatory element binding proteins (SREBPs) has emerged as an important function of the Akt/mTORC1 signaling axis. Although the contribution of dysregulated Akt/mTORC1 signaling to cancer has been investigated extensively and altered lipid metabolism is observed in many tumors, the exact role of SREBPs in the control of biosynthetic processes required for Akt-dependent cell growth and their contribution to tumorigenesis remains unclear. Results We first investigated the effects of loss of SREBP function in non-transformed cells. Combined ablation of SREBP1 and SREBP2 by siRNA-mediated gene silencing or chemical inhibition of SREBP activation induced endoplasmic reticulum (ER)-stress and engaged the unfolded protein response (UPR) pathway, specifically under lipoprotein-deplete conditions in human retinal pigment epithelial cells. Induction of ER-stress led to inhibition of protein synthesis through increased phosphorylation of eIF2α. This demonstrates for the first time the importance of SREBP in the coordination of lipid and protein biosynthesis, two processes that are essential for cell growth and proliferation. SREBP ablation caused major changes in lipid composition characterized by a loss of mono- and poly-unsaturated lipids and induced accumulation of reactive oxygen species (ROS) and apoptosis. Alterations in lipid composition and increased ROS levels, rather than overall changes to lipid synthesis rate, were required for ER-stress induction. Next, we analyzed the effect of SREBP ablation in a panel of cancer cell lines. Importantly, induction of apoptosis following SREBP depletion was restricted to lipoprotein-deplete conditions. U87 glioblastoma cells were highly susceptible to silencing of either SREBP isoform, and apoptosis induced by SREBP1 depletion in these cells was rescued by antioxidants or by restoring the levels of mono-unsaturated fatty acids. Moreover, silencing of SREBP1

  9. Fabrication of cellular materials

    NASA Astrophysics Data System (ADS)

    Prud'homme, Robert K.; Aksay, Ilhan A.; Garg, Rajeev

    1996-02-01

    Nature uses cellular materials in applications requiring strength while, simultaneously, minimizing raw materials requirements. Minimizing raw materials is efficient both in terms of the energy expended by the organism to synthesize the structure and in terms of the strength- to-weight ratio of the structure. Wood is the most obvious example of cellular bio-materials, and it is the focus of other presentations in this symposium. The lightweight bone structure of birds is another excellent example where weight is a key criterion. The anchoring foot of the common muscle [Mytilus edulis] whereby it attaches itself to objects is a further example of a biological system that uses a foam to fill space and yet conserve on raw materials. In the case of the muscle the foam is water filled and the foot structure distributes stress over a larger area so that the strength of the byssal thread from which it is suspended is matched to the strength of interfacial attachment of the foot to a substrate. In these examples the synthesis and fabrication of the cellular material is directed by intercellular, genetically coded, biochemical reactions. The resulting cell sizes are microns in scale. Cellular materials at the next larger scale are created by organisms at the next higher level of integration. For example an African tree frog lays her eggs in a gas/fluid foam sack she builds on a branch overhanging a pond. The outside of the foam sack hardens in the sun and prevents water evaporation. The foam structure minimizes the amount of fluid that needs to be incorporated into the sack and minimizes its weight. However, as far as the developing eggs are concerned, they are in an aqueous medium, i.e. the continuous fluid phase of the foam. After precisely six days the eggs hatch, and the solidified outer wall re-liquefies and dumps the emerging tadpoles into the pond below. The bee honeycomb is an example of a cellular material with exquisite periodicity at millimeter length scales. The

  10. Indole-3-butyric acid synthesis in ecotypes and mutants of Arabidopsis thaliana under different growth conditions.

    PubMed

    Ludwig-Müller, Jutta

    2007-01-01

    Although IBA is a naturally occurring auxin, its role in plant development is still under debate. In this study a set of Arabidopsis mutants was used to analyze the biosynthesis of IBA in vitro. The mutants chosen for this study can be classified as: (1) involvement in auxin metabolism, transport or synthesis (amt1, aux1, ilr1, nit1, rib1, sur1, trp1-100); (2) other hormones possibly involved in the regulation of IBA synthesis (aba1, aba3, eto2, fae1, hls1, jar1); (3) photomorphogenesis (det1, det2, det3); and (4) root architecture (cob1, cob2, scr1). In addition, two transgenic lines overexpressing the IAA glucose synthase (iaglu) gene from maize were analyzed. The ecotypes No-0 and Wassilewskija showed the highest IBA synthetase activity under control conditions, followed by Columbia, Enkheim and Landsberg erecta. In the mutant lines IBA synthetase activity differed in most cases from the wild type, however no particular pattern of up- or down-regulation, which could be correlated to their possible function, was found. For rib1 mutant seedlings it was tested whether reduced IBA synthetase activity correlates with the endogenous IBA levels. Free IBA differed only depending on the culture conditions, but gave no clear correlation with IBA synthetase activity compared to the wild type. Since drought and osmotic stress as well as abscisic acid (ABA) application enhanced IBA synthesis in maize, it was tested whether IBA synthetase from Arabidopsis is also inducible by drought stress conditions. This was confirmed for the two ecotypes Col and Ler which showed different IBA synthetase activity when cultivated with various degrees of drought stress. IBA synthetase was also determined in photomorphogenic mutants under different light regimes. Induction of IBA synthetase in det1 and det3 plants was found under short day plus a red light pulse or in the dark, respectively. The results are discussed with respect to the functions of the mutated genes. PMID:16325963

  11. Synthesis and catalytic properties of highly branched palladium nanostructures using seeded growth

    NASA Astrophysics Data System (ADS)

    Graham, L.; Collins, G.; Holmes, J. D.; Tilley, R. D.

    2016-01-01

    In order to develop nanocatalysts with enhanced catalytic performance, it is important to be able to synthesize nanocrystals enclosed by high-index surface facets, due to their high density of low coordinated atoms at step, ledge and kink sites. Here, we report a facile seed-mediated route to the synthesis of highly branched Pd nanostructures with a combination of {113}, {115} and {220} high-index surface planes. The size of these nanostructures is readily controlled by a simple manipulation of the seed concentration. The selective use of oleylamine and oleic acid was also found to be critical to the synthesis of these structures, with Pd icosahedra enclosed by low-index {111} facets being produced when hexadecylamine was employed as capping ligand. The structure-property relationship of these nanostructures as catalysts in Suzuki-cross coupling reactions was then investigated and compared, with the high-index faceted branched Pd nanostructures found to be the most effective catalysts.In order to develop nanocatalysts with enhanced catalytic performance, it is important to be able to synthesize nanocrystals enclosed by high-index surface facets, due to their high density of low coordinated atoms at step, ledge and kink sites. Here, we report a facile seed-mediated route to the synthesis of highly branched Pd nanostructures with a combination of {113}, {115} and {220} high-index surface planes. The size of these nanostructures is readily controlled by a simple manipulation of the seed concentration. The selective use of oleylamine and oleic acid was also found to be critical to the synthesis of these structures, with Pd icosahedra enclosed by low-index {111} facets being produced when hexadecylamine was employed as capping ligand. The structure-property relationship of these nanostructures as catalysts in Suzuki-cross coupling reactions was then investigated and compared, with the high-index faceted branched Pd nanostructures found to be the most effective catalysts

  12. Synthesis, floating zone crystal growth and characterization of the quantum spin ice Pr2Zr2O7 pyrochlore

    NASA Astrophysics Data System (ADS)

    Koohpayeh, S. M.; Wen, J.-J.; Trump, B. A.; Broholm, C. L.; McQueen, T. M.

    2014-09-01

    Pyrochlore Pr3+2+xZr4+2-xO7-x/2 samples in the form of both powders (-0.02≤x≤0.02) and bulk single crystals have been studied to elucidate the dependence of their magnetic, compositional and structural properties on synthesis and growth conditions. All samples were characterized using X-ray diffraction, specific heat, and DC magnetization measurements. The crystals were also studied using the X-ray Laue technique and scanning electron microscopy. Increasing the Pr content for the Pr2+xZr2-xO7-x/2 powders enlarged the lattice parameter, and resulted in systematic changes in magnetic susceptibility and specific heat. Stoichiometric and high quality single crystals of Pr2Zr2O7 were grown using the optical floating zone technique under a high purity static argon atmosphere, to avoid inclusions of Pr4+ and limit Pr vaporization. Increasing the growth speed was found to significantly reduce Pr vaporization for better control of stoichiometry. Scanning electron microscopy provided direct evidence of spinodal decomposition during growth that is controllable via rotation rate. An intermediate rotation rate of 3-6 rpm was found to produce the best microstructure. The magnetic susceptibility of crystals grown at rates from 1 to 20 mm/h revealed changes that were consistent with Pr vaporization. Further, we report indications of local off-centering of Pr3+ ions from the ideal pyrochlore sites, similar to what is known for the trivalent cation in Bi2Ti2O7 and La2Zr2O7. The effect varies with Pr content and radically modulates the low temperature specific heat. Overall, the results clearly demonstrate important correlations between the growth conditions and physical properties of Pr2Zr2O7 crystals.

  13. Inhibition by 2-deoxy-D-ribose of DNA synthesis and growth in Raji cells

    SciTech Connect

    Ulrich, F.

    1988-04-01

    When Raji cells were cultured for 3 days in serum-free medium, addition of 2-deoxy-D-ribose at the start of culture inhibited incorporation of (/sup 3/H)thymidine and cell division. At deoxyribose concentrations between 1 and 5 mM, viability was 80% or greater after 3 days of culture even though 5 mM deoxyribose inhibited thymidine incorporation 95-99%. Inhibition by deoxyribose could be completely reversed if the culture medium was replaced with fresh medium up to 8 hr after the start of culture. The inhibition was specific for deoxyribose since other monosaccharides had no effect. Inhibition of DNA synthesis did not appear to be due to depletion of essential nutrients in the medium since the percentage inhibition of thymidine incorporation by cells cultured either in suboptimal serum-free media or in media supplemented with 0.025-5% human AB serum was similar. When DNA repair synthesis was measured as hydroxyurea-resistant thymidine incorporation, addition of deoxyribose to Raji cultures caused increased thymidine incorporation. These results, together with data from others,suggest that deoxyribose damages DNA.

  14. Scap is required for sterol synthesis and crypt growth in intestinal mucosa[S

    PubMed Central

    McFarlane, Matthew R.; Cantoria, Mary Jo; Linden, Albert G.; January, Brandon A.; Liang, Guosheng; Engelking, Luke J.

    2015-01-01

    SREBP cleavage-activating protein (Scap) is an endoplasmic reticulum membrane protein required for cleavage and activation of sterol regulatory element-binding proteins (SREBPs), which activate the transcription of genes in sterol and fatty acid biosynthesis. Liver-specific loss of Scap is well tolerated; hepatic synthesis of sterols and fatty acids is reduced, but mice are otherwise healthy. To determine whether Scap loss is tolerated in the intestine, we generated a mouse model (Vil-Scap−) in which tamoxifen-inducible Cre-ERT2, a fusion protein of Cre recombinase with a mutated ligand binding domain of the human estrogen receptor, ablates Scap in intestinal mucosa. After 4 days of tamoxifen, Vil-Scap− mice succumb with a severe enteropathy and near-complete collapse of intestinal mucosa. Organoids grown ex vivo from intestinal crypts of Vil-Scap− mice are readily killed when Scap is deleted by 4-hydroxytamoxifen. Death is prevented when culture medium is supplemented with cholesterol and oleate. These data show that, unlike the liver, the intestine requires Scap to sustain tissue integrity by maintaining the high levels of lipid synthesis necessary for proliferation of intestinal crypts. PMID:25896350

  15. Synthesis and catalytic properties of highly branched palladium nanostructures using seeded growth.

    PubMed

    Graham, L; Collins, G; Holmes, J D; Tilley, R D

    2016-02-01

    In order to develop nanocatalysts with enhanced catalytic performance, it is important to be able to synthesize nanocrystals enclosed by high-index surface facets, due to their high density of low coordinated atoms at step, ledge and kink sites. Here, we report a facile seed-mediated route to the synthesis of highly branched Pd nanostructures with a combination of {113}, {115} and {220} high-index surface planes. The size of these nanostructures is readily controlled by a simple manipulation of the seed concentration. The selective use of oleylamine and oleic acid was also found to be critical to the synthesis of these structures, with Pd icosahedra enclosed by low-index {111} facets being produced when hexadecylamine was employed as capping ligand. The structure-property relationship of these nanostructures as catalysts in Suzuki-cross coupling reactions was then investigated and compared, with the high-index faceted branched Pd nanostructures found to be the most effective catalysts. PMID:26763185

  16. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    SciTech Connect

    Stiene-Martin, A.; Hauser, K.F. )

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 {mu}M met-enkephalin, 1 {mu}M met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined ({sup 3}H)-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in ({sup 3}H)-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture.

  17. Synthesis of the Growth Hormone Secretion Mechanism Using Nonlinear Analysis and CAD Tools.

    PubMed

    Shell, J R

    2005-01-01

    The goal of this paper is to present a hardware realization of the feed-forward and feedback hypothalamic-pituitary growth hormone (GH) secretion mechanism based on a bio-mathematical nonlinear delay differential equation model developed by Farhy et al. (2003) and Veldhuis et al. (2001). Behavioral modeling is implemented through Verilog hardware descriptive language (HDL) to simulate the antagonistic and stimulatory interaction of growth hormone, growth hormone releasing hormone (GHRH) and somatotropin release inhibiting factor (SRIF). The model is synthesized using computer aided design (CAD) tools and is promulgated through a combinational complex programmable logic device (CPLD)/field programmable grid array (FPGA) Xilinx XSA-50 microchip. The microchip sequentially displays the decimal equivalents of the time changing hormonal concentration levels of the biomathematical model. PMID:17281277

  18. Effects of organometals on cellular signaling. II. Inhibition of reincorporation of free arachidonic acid and influence on paf-acether synthesis by triethyllead.

    PubMed Central

    Krug, H F; Mattern, D; Bidault, J; Ninio, E

    1994-01-01

    Organometal compounds affect many enzymes, especially those containing SH-groups as acyl- and acetyltransferases involved in lysophospholipid reacylation. In HL-60 cells, organotin and -lead compounds stimulate phospholipase A2 activity, contributing thus to increase the level of lysophospholipids. In the present study, we have tested whether paf-acether (paf) biosynthesis was affected by treatment with triethyllead (Et3PbCl) in HL-60 cells. Et3PbCl inhibits the incorporation of exogenous arachidonic acid in the presence of high (> or = 50 microM) but not low concentrations (< or = 1 microM). High concentrations of the lead compound are unable to induce paf formation by itself, however, lower concentrations (< or = 10 microM) acted synergistically with TPA or fMLP to stimulate paf formation. Whereas unstimulated cells produced 0.4 pmole paf/2 x 10(6) cells, the stimulation with low fMLP (0.1 microM) resulted in the synthesis of 1.7 pmole and with low TPA (2 ng/ml) in 0.5 pmole paf. Preincubation of the cells with 10 microM Et3PbCl for 20 to 30 min increased the amount of paf formed by these cells to 3.3 pmole after treatment with 0.1 microM fMLP and 1.5 pmole after TPA. Furthermore, the results showed an inhibition of acetyltransferase (the key enzyme of paf synthesis) by the high and not by low concentrations of the lead compound. We conclude that low concentrations of Et3PbCl (< or = 10 microM) may act as a synergistic inducer of paf synthesis initiated via a receptor-coupled stimulation. PMID:7843129

  19. Green synthesis and growth mechanism of new nanomaterial: Zn(salen) nano-complex

    NASA Astrophysics Data System (ADS)

    Mohammadikish, Maryam

    2015-12-01

    Zn(salen) nano-complex was synthesized by facile hydro/solvothermal route in water as green solvent at various times and temperatures without using any surfactant or capping agent. The morphology of the products varied from irregular microcrystals to nanosheets by adjusting the temperature and time of the reaction. Based on the growth process with respect to the morphological structure, a novel growth mechanism is revealed which involves a unique multistep pathway, including reaction-nucleation, aggregation, crystallization, dissolution-recrystallization, and Ostwald ripening. The photoluminescence properties of the compounds were also examined and exhibited strong fluorescence emissions.

  20. Shape controllable synthesis of ZnO nanorod arrays via vapor phase growth

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochen; Zhang, Hongzhou; Xu, Jun; Zhao, Qing; Wang, Rongming; Yu, Dapeng

    2004-03-01

    ZnO nanorod arrays with peculiar morphologies were synthesized on (111)-oriented Si substrate and glass via a vapor phase growth. The morphology of the individual nanorod can be flat-headed bottle-like, and needle-like, which depends on the deposition positions relative to the source materials in the presence of a controlling element Se. In addition, the arrays of all the three morphologies exhibit good alignment and high coverage. This fabrication technique can be also used to direct the controllable growth of other nanomaterials with similar morphologies.

  1. Synthesis and biological evaluation of cyclopropyl analogues of fosmidomycin as potent Plasmodium falciparum growth inhibitors.

    PubMed

    Devreux, Vincent; Wiesner, Jochen; Goeman, Jan L; Van der Eycken, Johan; Jomaa, Hassan; Van Calenbergh, Serge

    2006-04-20

    A series of fosmidomycin analogues featuring restricted conformational mobility has been synthesized and evaluated as inhibitors of 1-deoxy-D-xylulose 5-phosphate (DOXP) reductoisomerase and as growth inhibitors of P. falciparum. The enantiomerically pure trans-cyclopropyl N-acetyl analogue 3b showed comparable inhibitory activity as fosmidomycin toward E. coli DOXP reductoisomerase and proved equally active when tested in vitro for P. falciparum growth inhibition. Conversely, the alpha-phenyl cis-cyclopropyl analogue 4 showed virtually no inhibition of the enzyme. PMID:16610809

  2. Phytohormone balance and stress-related cellular responses are involved in the transition from bud to shoot growth in leafy spurge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Leafy spurge (Euphorbia esula L.) is an herbaceous weed that maintains a perennial growth habit through seasonal production of abundant underground adventitious buds (UABs) on the crown and lateral roots. During the normal growing season, differentiation of bud to shoot growth is inhibit...

  3. Effects of Grape Xylem Sap and Cell-Wall Constituents on In Vitro Growth, Biofilm Formation and Cellular Aggregation of Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purified cell-wall constituents or grape xylem sap added to media affected in vitro growth, biofilm formation, cell aggregation and gene expression of Xylella fastidiosa. Media containing xylem sap from Pierce’s disease (PD)-susceptible plants provided better support for bacterial growth and biofil...

  4. Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles.

    PubMed

    Polavarapu, Lakshminarayana; Zanaga, Daniele; Altantzis, Thomas; Rodal-Cedeira, Sergio; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Bals, Sara; Liz-Marzán, Luis M

    2016-09-14

    Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core-shell NPs (nanorods and nanocubes) into octahedral nanorattles via room-temperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations. PMID:27556588

  5. Transforming growth factor-beta reverses a posttranscriptional defect in elastin synthesis in a cutis laxa skin fibroblast strain.

    PubMed Central

    Zhang, M C; Giro, M; Quaglino, D; Davidson, J M

    1995-01-01

    Skin fibroblasts from two cases of autosomal recessive cutis laxa (CL), having insignificant elastin production and mRNA levels, were challenged with transforming growth factor beta-1 (TGF-beta 1). Elastin production was brought from undetectable values to amounts typical of normal human skin fibroblasts in a dose-dependent fashion. Basic fibroblast growth factor (100 ng/ml) alone or in combination with TGF-beta 1 reduced elastin production and mRNA expression in CL skin fibroblasts more extensively than in normal cells. In situ hybridization showed that these effects were at the transcript level. One of the CL strains was examined in detail. Transcription rates for elastin were similar in normal and CL and unchanged by TGF-beta 1 or TGF-beta 2 (10 ng/ml), while in CL elastin mRNA half-life was increased > 10-fold by TGF-beta 2 and reduced 6-fold after TGF-beta 2 withdrawal, as compared with a control strain. Cycloheximide partially reversed elastin mRNA instability. These data are consistent with a defect in elastin mRNA stability that requires synthesis of labile factors or intact translational machinery, resulting in an extremely low steady state level of mRNA present in this strain of CL. Furthermore, TGF-beta can relieve elastin mRNA instability in at least one CL strain and elastin production defects in both CL strains. Images PMID:7884000

  6. Synthesis of M protein by group A hemolytic streptococci in completely synthetic media during steady-state growth.

    PubMed

    Davies, H C; Karush, F; Rudd, J H

    1968-01-01

    Strains of type 6 (S 43) and type 14 group A streptococci were grown with M-protein production in the presence of chemically defined synthetic media slightly modified from that previously employed for the growth of a nonproducer of M protein (type 4). The M protein, which is associated with virulence in group A streptococcus, was previously produced in growing cultures only with complex media. The bacterial growth with the biosynthesis of M protein in synthetic medium was obtained by successive adaptation in steady-state culture with decreasing amounts of Todd-Hewitt broth. The synthesis continued for at least 480 generations at pH 7.3 and with a generation time of 84 min. Glucose was the limiting nutrilite and the concentration of reducing agents in the medium was critical. The M protein was identified by gel diffusion against type-specific antisera from the Communicable Disease Center and from R. Lancefield. The yield of M protein obtained from organisms grown in the continuous-culture device was comparable to that from standard broth stationary cultures. PMID:4965978

  7. Synthesis of M Protein by Group A Hemolytic Streptococci in Completely Synthetic Media During Steady-State Growth1

    PubMed Central

    Davies, Helen C.; Karush, Fred; Rudd, Joanne H.

    1968-01-01

    Strains of type 6 (S 43) and type 14 group A streptococci were grown with M-protein production in the presence of chemically defined synthetic media slightly modified from that previously employed for the growth of a nonproducer of M protein (type 4). The M protein, which is associated with virulence in group A streptococcus, was previously produced in growing cultures only with complex media. The bacterial growth with the biosynthesis of M protein in synthetic medium was obtained by successive adaptation in steady-state culture with decreasing amounts of Todd-Hewitt broth. The synthesis continued for at least 480 generations at pH 7.3 and with a generation time of 84 min. Glucose was the limiting nutrilite and the concentration of reducing agents in the medium was critical. The M protein was identified by gel diffusion against type-specific antisera from the Communicable Disease Center and from R. Lancefield. The yield of M protein obtained from organisms grown in the continuous-culture device was comparable to that from standard broth stationary cultures. Images PMID:4965978

  8. Facile synthesis of core-shell and Janus particles via 2-D dendritic growth of gold film.

    PubMed

    Jang, Se Gyu; Kim, Se-Heon; Lee, Su Yeon; Jeong, Woong Chan; Yang, Seung-Man

    2010-10-15

    We report a facile method for the electroless deposition (ELD) of gold film via two-dimensional (2-D) dendritic growth. Our scheme employs protonated amine groups, which electrostatically attract both the negatively charged reducing agent and gold-precursor. This electrostatic interaction increases the local concentrations of gold-precursor and reducing agent near the silica surface to levels high enough for gold films with a 2-D fractal morphology to form directly on the surfaces of the amine-functionalized silica nanospheres by diffusion-limited aggregation. Our one-pot reaction avoids the need for seed attachment, which is typically employed for the growth of metallic shells on nanospheres. Therefore, the proposed method significantly reduces the number of processing steps required for the production of core-shell nanospheres. The gold morphologies were systematically investigated in terms of various synthesis variables, including solution pH, reducing agent concentration, and gold precursor injection speed. In addition, we synthesized gold-capped silica nanospheres via ELD of gold on a patterned array of silica nanospheres embedded in polystyrene (PS) film followed by dissolution of the PS matrix, thus demonstrating the potential utility of the proposed method in emerging fields of materials science such as patterning of noble metals and studies of nanometer-scale optics. PMID:20678776

  9. Efficient delivery to human lung fibroblasts (WI-38) of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor and its inhibitory effect on collagen synthesis in idiopathic pulmonary fibrosis.

    PubMed

    Togami, Kohei; Miyao, Aki; Miyakoshi, Kei; Kanehira, Yukimune; Tada, Hitoshi; Chono, Sumio

    2015-01-01

    In the present in vitro study, we assessed the delivery of pirfenidone incorporated into liposomes modified with truncated basic fibroblast growth factor (tbFGF) to lung fibroblasts and investigated the anti-fibrotic effect of the drug. The tbFGF peptide, KRTGQYKLC, was used to modify the surface of liposomes (tbFGF-liposomes). We used the thin-layer evaporation method, followed by sonication, to prepare tbFGF-liposomes containing pirfenidone. The cellular accumulation of tbFGF-liposomes was 1.7-fold greater than that of non-modified liposomes in WI-38 cells used as a model of lung fibroblasts. Confocal laser scanning microscopy showed that tbFGF-liposomes were widely localized in WI-38 cells. The inhibitory effects of pirfenidone incorporated into tbFGF-liposomes on transforming growth factor-β1 (TGF-β1)-induced collagen synthesis in WI-38 cells were evaluated by measuring the level of intracellular hydroxyproline, a major component of the protein collagen. Pirfenidone incorporated into tbFGF-liposomes at concentrations of 10, 30, and 100 µM significantly decreased the TGF-β1-induced hydroxyproline content in WI-38 cells. The anti-fibrotic effect of pirfenidone incorporated into tbFGF-liposomes was enhanced compared with that of pirfenidone solution. These results indicate that tbFGF-liposomes are a useful drug delivery system of anti-fibrotic drugs to lung fibroblasts for the treatment of idiopathic pulmonary fibrosis. PMID:25747986

  10. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe(3+) detection and cellular bioimaging.

    PubMed

    He, Guili; Xu, Minghan; Shu, Mengjun; Li, Xiaolin; Yang, Zhi; Zhang, Liling; Su, Yanjie; Hu, Nantao; Zhang, Yafei

    2016-09-30

    Recently, carbon dots (CDs) have been playing an increasingly important role in industrial production and biomedical field because of their excellent properties. As such, finding an efficient method to quickly synthesize a large scale of relatively high purity CDs is of great interest. Herein, a facile and novel microwave method has been applied to prepare nitrogen doped CDs (N-doped CDs) within 8 min using L-glutamic acid as the sole reaction precursor in the solid phase condition. The as-prepared N-doped CDs with an average size of 1.64 nm are well dispersed in aqueous solution. The photoluminescence of N-doped CDs is pH-sensitive and excitation-dependent. The N-doped CDs show a strong blue fluorescence with relatively high fluorescent quantum yield of 41.2%, which remains stable even under high ionic strength. Since the surface is rich in oxygen-containing functional groups, N-doped CDs can be applied to selectively detect Fe(3+) with the limit of detection of 10(-5) M. In addition, they are also used for cellular bioimaging because of their high fluorescent intensity and nearly zero cytotoxicity. The solid-phase microwave method seems to be an effective strategy to rapidly obtain high quality N-doped CDs and expands their applications in ion detection and cellular bioimaging. PMID:27573680

  11. Synthesis of Mg-Fe-Cl hydrotalcite-like nanoplatelets as an oral phosphate binder: evaluations of phosphorus intercalation activity and cellular cytotoxicity

    PubMed Central

    Lung, Yung-Feng; Sun, Ying-Sui; Lin, Chun-Kai; Uan, Jun-Yen; Huang, Her-Hsiung

    2016-01-01

    The patients with end-stage of renal disease (ESRD) need to take oral phosphate binder. Traditional phosphate binders may leave the disadvantage of aluminum intoxication or cardiac calcification. Herein, Mg-Fe-Cl hydrotalcite-like nanoplatelet (HTln) is for the first time characterized as potential oral phosphate binder, with respect to its phosphorus uptake capacity in cow milk and cellular cytotoxicity. A novel method was developed for synthesizing the Mg-Fe-Cl HTln powder in different Mg2+: Fe3+ ratios where the optimization was 2.8:1. Addition of 0.5 g Mg-Fe-Cl HTln in cow milk could reduce its phosphorus content by 40% in 30 min and by 65% in 90 min. In low pH environment, the Mg-Fe-Cl HTln could exhibit relatively high performance for uptaking phosphorus. During a 90 min reaction of the HTln in milk, no phosphorus restoration occurred. In-vitro cytotoxicity assay of Mg-Fe-Cl HTln revealed no potential cellular cytotoxicity. The cells that were cultured in the HTln extract-containing media were even more viable than cells that were cultured in extract-free media (blank control). The Mg-Fe-Cl HTln extract led to hundred ppm of Mg ion and some ppm of Fe ion in the media, should be a positive effect on the good cell viability. PMID:27581184

  12. Synthesis of Mg-Fe-Cl hydrotalcite-like nanoplatelets as an oral phosphate binder: evaluations of phosphorus intercalation activity and cellular cytotoxicity.

    PubMed

    Lung, Yung-Feng; Sun, Ying-Sui; Lin, Chun-Kai; Uan, Jun-Yen; Huang, Her-Hsiung

    2016-01-01

    The patients with end-stage of renal disease (ESRD) need to take oral phosphate binder. Traditional phosphate binders may leave the disadvantage of aluminum intoxication or cardiac calcification. Herein, Mg-Fe-Cl hydrotalcite-like nanoplatelet (HTln) is for the first time characterized as potential oral phosphate binder, with respect to its phosphorus uptake capacity in cow milk and cellular cytotoxicity. A novel method was developed for synthesizing the Mg-Fe-Cl HTln powder in different Mg(2+): Fe(3+) ratios where the optimization was 2.8:1. Addition of 0.5 g Mg-Fe-Cl HTln in cow milk could reduce its phosphorus content by 40% in 30 min and by 65% in 90 min. In low pH environment, the Mg-Fe-Cl HTln could exhibit relatively high performance for uptaking phosphorus. During a 90 min reaction of the HTln in milk, no phosphorus restoration occurred. In-vitro cytotoxicity assay of Mg-Fe-Cl HTln revealed no potential cellular cytotoxicity. The cells that were cultured in the HTln extract-containing media were even more viable than cells that were cultured in extract-free media (blank control). The Mg-Fe-Cl HTln extract led to hundred ppm of Mg ion and some ppm of Fe ion in the media, should be a positive effect on the good cell viability. PMID:27581184

  13. Transient supplementation of anabolic growth factors rapidly stimulates matrix synthesis in engineered cartilage

    PubMed Central

    Ng, Kenneth W.; O’Conor, Christopher J.; Kugler, Lindsay E.; Cook, James L.; Ateshian, Gerard A.; Hung, Clark T.

    2012-01-01

    The purpose of the presented work is to examine the response of engineered cartilage to a transient, 2-week application of anabolic growth factors compared to continuous exposure in in vitro culture. Immature bovine chondrocytes were suspended in agarose hydrogel and cultured for 28 days (Study 1) or 42 days (Study 2) in chondrogenic media with TGF-β1, TGF-β3, or IGF-I either added for only the first 14 days in culture or added to the media for the entire study period. In both studies, there were no statistical differences in tissue mechanical or biochemical properties between the growth factors on day 14. In Study 1, growth factor removal led to a significant and drastic increase in Young’s modulus and GAG content compared to continuously exposed controls on day 28. In Study 2, both TGF-β1 and β3 led to significantly higher mechanical properties and collagen content versus IGF-I on day 42. These results indicate that the rapid rise in tissue properties (previously observed with TGF-β3 only) is not dependent on the type but rather the temporal application of the anabolic growth factor. These findings shed light on possible techniques to rapidly develop engineered cartilage tissue for the future treatment of osteoarthritis. PMID:21833681

  14. School Choice and Economic Growth: A Research Synthesis on How Market Forces Can Fuel Educational Attainment

    ERIC Educational Resources Information Center

    Keating, Raymond J.

    2015-01-01

    Economic growth typically results when businesses, workers, investors, and entrepreneurs are free to compete, innovate, and work to better serve consumers by supplying new or improved goods and services. These incentives govern the marketplace, and when built upon a sound foundation of property rights, the rule of law, open trade, minimal…

  15. Simulation of soil-root growth interactions and associated processes: Synthesis and summary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulation modeling of above and below ground plant growth and development, and the associated environment, has become an important and increasingly mature discipline within the branches of Agricultural Sciences. Models, by definition, are abstractions of a system. These abstractions are based on th...

  16. Altering the Mitochondrial Fatty Acid Synthesis (mtFASII) Pathway Modulates Cellular Metabolic States and Bioactive Lipid Profiles as Revealed by Metabolomic Profiling

    PubMed Central

    Clay, Hayley B.; Parl, Angelika K.; Mitchell, Sabrina L.; Singh, Larry; Bell, Lauren N.; Murdock, Deborah G.

    2016-01-01

    Despite the presence of a cytosolic fatty acid synthesis pathway, mitochondria have retained their own means of creating fatty acids via the mitochondrial fatty acid synthesis (mtFASII) pathway. The reason for its conservation has not yet been elucidated. Therefore, to better understand the role of mtFASII in the cell, we used thin layer chromatography to characterize the contribution of the mtFASII pathway to the fatty acid composition of selected mitochondrial lipids. Next, we performed metabolomic analysis on HeLa cells in which the mtFASII pathway was either hypofunctional (through knockdown of mitochondrial acyl carrier protein, ACP) or hyperfunctional (through overexpression of mitochondrial enoyl-CoA reductase, MECR). Our results indicate that the mtFASII pathway contributes little to the fatty acid composition of mitochondrial lipid species examined. Additionally, loss of mtFASII function results in changes in biochemical pathways suggesting alterations in glucose utilization and redox state. Interestingly, levels of bioactive lipids, including lysophospholipids and sphingolipids, directly correlate with mtFASII function, indicating that mtFASII may be involved in the regulation of bioactive lipid levels. Regulation of bioactive lipid levels by mtFASII implicates the pathway as a mediator of intracellular signaling. PMID:26963735

  17. Synthesis and characterization of group IV semiconductor nanowires by vapor-liquid-solid growth

    NASA Astrophysics Data System (ADS)

    Lew, Kok-Keong

    There is currently intense interest in one-dimensional nanostructures, such as nanotubes and nanowires, due to their potential to test fundamental concepts of dimensionality and to serve as building blocks for nanoscale devices. Vapor-liquid-solid (VLS) growth, which is one of the most common fabrication methods, has been used to produce single crystal semiconductor nanowires such as silicon (Si), germanium (Ge), and gallium arsenide (GaAs). In the VLS growth of Group IV semiconductor nanowires, a metal, such as gold (Au) is used as a catalyst agent to nucleate whisker growth from a Si-containing (silane (SIH4)) or Ge-containing vapor (germane (GeH 4)). Au and Si/Ge form a liquid alloy that has a eutectic temperature of around 360°C, which, upon supersaturation, nucleates the growth of a Si or Ge wire. The goal of this work is to develop a more fundamental understanding of VLS growth kinetics and intentional doping of Group IV semiconductor nanowires in order to better control the properties of the nanowires. The fabrication of p-type and n-type Si nanowires will be studied via the addition of dopant gases such as diborane (B2H 6), trimethylboron (TMB), and phosphine (PH3) during growth. The use of gaseous dopant sources provides more flexibility in growth, particularly for the fabrication of p-n junctions and structures with axial dopant variations (e.g. p+-p- p+). The study is then extended to fabricate SiGe alloy nanowires by mixing SiH4 and GeH4. Bandgap engineering in Si/SiGe heterostructures can lead to novel devices with improved performance compared to those made entirely of Si. The scientific findings will lead to a better understanding of the fabrication of Si/SiGe axial and radial heterostructure nanowires for functional nanowire device structures, such as heterojunction bipolar transistors (HBTs) and high electron mobility transistors (HEMTs). Eventually, the central theme of this research is to provide a scientific knowledge base and foundation for

  18. Deoxyribonucleic Acid Synthesis During Exponential Growth and Microcyst Formation in Myxococcus xanthus

    PubMed Central

    Rosenberg, Eugene; Katarski, Mary; Gottlieb, Peter

    1967-01-01

    Myxococcus xanthus in exponential phase with a generation time of 270 min contained a period of 50 min during which deoxyribonucleic acid (DNA) synthesis did not take place. After induction of microcysts by the glycerol technique, the DNA content increased 19%. Autoradiographic experiments demonstrated that the DNA made after glycerol induction was not evenly distributed among the microcysts. The distribution of grains per microcyst fits the following model of chromosome replication: in exponential phase, each daughter cell receives two chromosomes which are replicated sequentially during 80% of the divison cycle; after microcyst induction, no chromosomes are initiated. Mathematical formulas were derived which predict the kinetics and discrete probability distribution for several chromosome models. PMID:6032514

  19. Facile synthesis of CeO2 nanoplates and nanorods by [100] oriented growth.

    PubMed

    Lin, Hsin-Lung; Wu, Cheng-Yu; Chiang, Ray-Kuang

    2010-01-01

    This study demonstrated a facile method for the synthesis of CeO(2) nanoplates and nanorods via the thermal decomposition of a mixture of cerium acetate, oleic acid, oleyamine and 1-octadecene under controlled atmospheres. Morphologies of the produced cerium oxides were controlled by the adding procedures of activators. Activators added at room temperature and heated with the reaction mixture result in the formation of nanoplates. Injection of activators at high temperature leads to the formation of nanorods. Both the nanoplates and nanorods are achieved via the [100] oriented assembly of smaller particles. A blue-shifting of the UV absorption threshold edge are observed for the cerium oxide nanoplates and nanorods, contrasting with the bulk commercial powders. PMID:19833346

  20. Epidermal growth factor inhibits radioiodine uptake but stimulates deoxyribonucleic acid synthesis in newborn rat thyroids grown in nude mice

    SciTech Connect

    Ozawa, S.; Spaulding, S.W. )

    1990-08-01

    We have studied the effect of altering the level of circulating epidermal growth factor (EGF) on the function and growth of newborn rat thyroids transplanted into nude mice. Preliminary studies confirmed that sialoadenectomy reduced circulating EGF levels in nude mice (from 0.17 +/- 0.02 to 0.09 +/- 0.02 ng/ml), and that ip injection of 5 micrograms EGF raised EGF levels (the peak level of 91.7 +/- 3.3 ng/ml was achieved at 30 min, with a subsequent half-life of about 1 h). The radioiodine uptake by newborn rat thyroid transplants in the sialoadenectomized and sham-operated animals correlated inversely with the circulating EGF levels determined when the mice were killed (r = -0.99). Low-dose TSH treatment (0.1 microU/day) generally stimulated the radioiodine uptake, but high-dose TSH groups (100 microU/day) were not significantly different from the control group. The 5-day nuclear (3H)thymidine labeling index was 6.8 +/- 0.5% IN newborn rat thyroid transplants grown in sialoadenectomized animals, 13.1 +/- 0.3% in sham-operated animals, and 16.8 +/- 0.5% in nude mice receiving 5 micrograms EGF ip daily. In general, both low-dose and high-dose TSH promoted DNA synthesis under low EGF conditions but were ineffective in the presence of higher levels of EGF. Adult rat thyroid transplants showed no significant responses. Although sialoadenectomy may alter other factors besides EGF, it appears that changes in the levels of circulating EGF within the physiological range affect the function and growth of newborn rat thyroid transplants. Circulating EGF may play a role in thyroid maturation and may also be involved in the regulation of thyroid function throughout life.

  1. The Candida albicans KRE9 gene is required for cell wall β-1,6-glucan synthesis and is essential for growth on glucose

    PubMed Central

    Lussier, Marc; Sdicu, Anne-Marie; Shahinian, Serge; Bussey, Howard

    1998-01-01

    We have isolated CaKRE9, a gene from Candida albicans, that is a functional homologue of the Saccharomyces cerevisiae KRE9 gene involved in β-1,6-glucan synthesis. Disruption of the CaKRE9 gene in C. albicans shows that CaKre9p is required for the synthesis or assembly of this fungal polymer. Homozygous null disruptants of CaKRE9 grow poorly on galactose and fail to form hyphae in serum, and, in growth medium containing glucose, the gene is essential. Thus, the CaKRE9 gene product is a potentially useful candidate as a target for fungal-specific drugs. PMID:9707560

  2. Molecular and Cellular Biophysics

    NASA Astrophysics Data System (ADS)

    Jackson, Meyer B.

    2006-01-01

    Molecular and Cellular Biophysics provides advanced undergraduate and graduate students with a foundation in the basic concepts of biophysics. Students who have taken physical chemistry and calculus courses will find this book an accessible and valuable aid in learning how these concepts can be used in biological research. The text provides a rigorous treatment of the fundamental theories in biophysics and illustrates their application with examples. Conformational transitions of proteins are studied first using thermodynamics, and subsequently with kinetics. Allosteric theory is developed as the synthesis of conformational transitions and association reactions. Basic ideas of thermodynamics and kinetics are applied to topics such as protein folding, enzyme catalysis and ion channel permeation. These concepts are then used as the building blocks in a treatment of membrane excitability. Through these examples, students will gain an understanding of the general importance and broad applicability of biophysical principles to biological problems. Offers a unique synthesis of concepts across a wide range of biophysical topics Provides a rigorous theoretical treatment, alongside applications in biological systems Author has been teaching biophysics for nearly 25 years

  3. CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms.

    PubMed

    Ibrahim, Imad; Bachmatiuk, Alicja; Warner, Jamie H; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H

    2012-07-01

    Single-walled carbon nanotubes (SWCNTs) have attractive electrical and physical properties, which make them very promising for use in various applications. For some applications however, in particular those involving electronics, SWCNTs need to be synthesized with a high degree of control with respect to yield, length, alignment, diameter, and chirality. With this in mind, a great deal of effort is being directed to the precision control of vertically and horizontally aligned nanotubes. In this review the focus is on the latter, horizontally aligned tubes grown by chemical vapor deposition (CVD). The reader is provided with an in-depth review of the established vapor deposition orientation techniques. Detailed discussions on the characterization routes, growth parameters, and growth mechanisms are also provided. PMID:22619167

  4. ZnO three-dimensional hedgehog-like nanostructure: synthesis, growth mechanism and optical enhancement

    NASA Astrophysics Data System (ADS)

    Liu, Huiqiang; Chu, Sheng; Peng, Rufang; Chu, Shijin; Jin, Bo

    2014-07-01

    The 3D hedgehog-like ZnO nanostructures were synthesized on Si substrate through chemical vapor deposition process. The morphology and structure of the products were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, as well as transmission electron microscopy. The ZnO 3D hedgehog-like architectures were found to consist of a central nucleus and multiple side-growing nanowires with diameter of 100-250 nm and length up to 10 µm. The growth mechanism of the hedgehog-like ZnO nanostructures was studied. It revealed a three-step process during the entire growth. Finally, room temperature photoluminescence spectra of ZnO 3D nanostructures showed that the center excitation would render much stronger PL emission intensity. Furthermore, simulation results indicated that the enhanced emission came from light-trapping-induced excitation light field enhancement.

  5. Pseudomonas aeruginosa DesB Promotes Staphylococcus aureus Growth Inhibition in Coculture by Controlling the Synthesis of HAQs

    PubMed Central

    Kim, Sejeong; Yoon, Yohan; Choi, Kyoung-Hee

    2015-01-01

    Pseudomonas aeruginosa is a pathogen that can cause serious infections and usually coexists with other pathogens, such as Staphylococcus aureus. Virulence factors are important for maintaining a presence of the organisms in these multispecies environments, and DesB plays an important role in P. aeruginosa virulence. Therefore, we investigated the effect of DesB on S. aureus reduction under competitive situation. Liquid cultures of P. aeruginosa wild type (WT) and its desB mutant were spotted on agar plates containing S. aureus, and the size of the clear zones was compared. In addition, interbacterial competition between P. aeruginosa and S. aureus was observed over time during planktonic coculture. The transcriptional profiles of the WT and desB mutant were compared by qRT-PCR and microarray to determine the role of DesB in S. aureus reduction at the molecular level. As a result, the clear zone was smaller for the desB mutant than for P. aeruginosa PAO1 (WT), and in planktonic coculture, the number of S. aureus cells was reduced in the desB mutant. qRT-PCR and microarray revealed that the expression of MvfR-controlled pqsA-E and phnAB operons was significantly decreased, but the mexEF-oprN operon was highly expressed. The results indicate that intracellular levels of 4-hydroxy-2-heptylquinoline (HHQ), a ligand of MvfR, are reduced due to MexEF-OprN-mediated efflux in desB mutant, resulting in the decrease of MvfR binding to pqsA-E promoter and the reduction of 4-hydroxy-2-alkylquinolines (HAQs) synthesis. Overexpression of mexEF-oprN operon in desB mutant was phenotypically confirmed by observing significantly increased resistance to chloramphenicol. In conclusion, these results suggest that DesB plays a role in the inhibition of S. aureus growth by controlling HAQ synthesis. PMID:26230088

  6. Synthesis of bovine growth hormone in primates by using a herpesvirus vector.

    PubMed Central

    Desrosiers, R C; Kamine, J; Bakker, A; Silva, D; Woychik, R P; Sakai, D D; Rottman, F M

    1985-01-01

    A strain of herpesvirus saimiri containing a bovine growth hormone (bGH) gene under the control of the simian virus 40 (SV40) late-region promoter was constructed. This strain, bGH-Z20, was replication competent and stably harbored the bGH gene upon serial passage. Nonpermissive marmoset T cells persistently infected with bGH-Z20 produced a 0.9-kilobase RNA which contained all of the bGH exon sequences and appeared to initiate within the SV40 promoter region. However, in permissively infected owl monkey kidney cells, RNAs containing growth hormone sequences appeared to initiate from herpesvirus saimiri promoters positioned upstream from the SV40-growth hormone gene. Persistently infected T cells in culture secreted 500 ng of bGH protein per 10(6) cells per 24 h during the several months of testing. The secreted protein was 21 kilodaltons, the size of authentic bGH. New World primates experimentally infected with bGH-Z20 produced circulating bGH and developed immunoglobulin G antibodies directed against bGH. Because herpesviruses characteristically remain latent in the infected host, these observations suggest a means for replacing gene products missing or defective in hereditary genetic disorders. Images PMID:3016514

  7. Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae.

    PubMed

    Chen, Shangchao; Chen, Mindong; Wang, Zhuang; Qiu, Weijian; Wang, Junfeng; Shen, Yafei; Wang, Yajun; Ge, Shun

    2016-07-01

    This paper aims to acquire the experimental data on the eco-toxicological effects of agricultural pollutants on the aquatic plants and the data can support the assessment of toxicity on the phytoplankton. The pesticide of Chlorpyrifos used as a good model to investigate its eco-toxicological effect on the different microalgae in freshwater. In order to address the pollutants derived from forestry and agricultural applications, freshwater microalgae were considered as a good sample to investigate the impact of pesticides such as Chlorpyrifos on aquatic life species. Two microalgae of Chlorella pyrenoidosa and Merismopedia sp. were employed to evaluate toxicity of Chlorpyrifos in short time and long time by means of measuring the growth inhibition rate, the redox system and the content of chlorophyll a, respectively. In this study, the results showed that EC50 values ranging from 7.63 to 19.64mg/L, indicating the Chlorpyrifos had a relatively limited to the growth of algae during the period of the acute toxicity experiment. Moreover, when two kinds of algae were exposed to a medium level of Chlorpyrifos, SOD and CAT activities were importantly advanced. Therefore, the growth rate and SOD and CAT activities can be highly recommended for the eco-toxicological assessment. In addition, chlorophyll a also could be used as a targeted parameter for assessing the eco-toxicity of Chlorpyrifos on both Chlorella pyrenoidosa and Merismopedia sp. PMID:27314761

  8. Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique

    SciTech Connect

    Tian Chungui; Wang Enbo . E-mail: wangenbo@public.cc.jl.cn; Kang Zhenhui; Mao Baodong; Zhang Chao; Lan Yang; Wang Chunlei; Song Yanli

    2006-11-15

    In this paper, an improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and polystyrene (PS) colloids and the reducing agent in the formation of Ag nanoparticles. Due to the multi-functional characteristic of PEI, Ag seeds formed in-situ and were immobilized on the surface of PEI-modified PS colloids and no free Ag clusters coexist with the Ag 'seeding' PS colloids in the system. Then, the additional agents could be added into the resulting dispersions straightly to produce a thick Ag nanoshell. The Ag nanoshell with controllable thickness was formed on the surface of PS by the 'one-pot' surface seeding and shell growth method. The Ag-coverage increased gradually with the increasing of mass ratio of AgNO{sub 3}/PS. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. - Graphical abstract: An improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. Display Omitted.

  9. Characterization of burden on growth due to the nutritional state of media and pre-induced gene expression.

    PubMed

    Malakar, Pushkar; Venkatesh, K V

    2013-04-01

    Studies have shown that the production of unnecessary proteins burdens the cellular growth mainly due to allocation of cellular resources to unnecessary protein synthesis, thereby limiting the resources available for growth. In the current study, we focus on the effect of pre-induction and nutritional status of the medium on the burden imposed on growth due to the synthesis of unnecessary protein. Escherichia coli cells with different history were grown in a glycerol media with and without IPTG to characterize the burden imposed due to the synthesis of β-galactosidase. Effect of pre-induced lac operon on growth and β-galactosidase expression on lactose milieu was also investigated. The study demonstrates that pre-induction has a strong influence on the extent of burden and is sustained in several generations. Further, the burden was much lower in a rich media relative to that observed in a minimal media. PMID:23354326

  10. Dynamic Characterization of Growth and Gene Expression Using High-throughput Automated Flow cytometry

    PubMed Central

    Zuleta, Ignacio A.; Aranda-Díaz, Andrés; Li, Hao; El-Samad, Hana

    2014-01-01

    Cells adjust to changes in environmental conditions using complex regulatory programs. These cellular programs are the result of an intricate interplay between gene expression, cellular growth rate, and protein degradation fluxes. New technologies that enable simultaneous and time-resolved measurements of these variables are necessary to dissect cellular homeostatic strategies. Here, we report the development of a novel automated flow-cytometry robotic setup that enables real-time measurement of precise and simultaneous relative growth and protein synthesis rates of multiplexed microbial populations across many conditions. These measurements generate quantitative profiles of dynamically-evolving protein synthesis and degradation rates. We demonstrate this setup in the context of gene regulation of the unfolded protein response (UPR) and uncover a dynamic and complex landscape of gene expression, growth dynamics, and proteolysis following perturbations. PMID:24608180

  11. Effect of Trifluralin on Growth, Morphology, and Nucleic Acid Synthesis 1

    PubMed Central

    Schultz, Donald P.; Funderburk, H. H.; Negi, N. S.

    1968-01-01

    Roots and shoots of corn seedlings (Zea mays L. var. Dixie 18) germinated in trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) solutions are characterized by radial enlargement of the cortical cells and by multinucleate cells in the meristematic regions. Trifluralin inhibits elongation of Avena coleoptile sections at concentrations of 0.1 μm to 10 μm. Synthesis of DNA, RNA, and protein is suppressed in the root tips while no significant effect is noticeable in the shoots of corn germinated in trifluralin. A 32P time-course study of 48, 72, and 96 hours utilizing phenol extraction and MAK column separation of corn root and shoot nucleic acids showed suppression of 32P incorporation in the treated roots; however, the 72 and 96 hour treated shoots incorporated a much greater amount than the control with most of the increased incorporation found in the sRNA and DNA fractions. The increased activity in the DNA may be due to a high G-C type DNA. No selective suppression or enhancement of any particular RNA species was noticed in the treated plants. Images PMID:16656762

  12. CFD investigation of Schizochytrium sp. impeller configurations on cell growth and docosahexaenoic acid synthesis.

    PubMed

    Zhao, Xiaoyan; Ren, Lujing; Guo, Dongsheng; Wu, Wenjia; Ji, Xiaojun; Huang, He

    2016-08-01

    Effects of impeller configurations on docosahexaenoic acid production and flow characteristics were investigated by Schizochytrium sp. in a 15 L bioreactor. 6-straight blade disc turbine (6-SBDT), 6-arrowy-blade disc turbine (6-ABDT) and down-pumping propeller (DPP) were combined to form different impeller configurations. Simulated results showed that configuration SSA consisting of upper two 6-SBDT and one bottom 6-ABDT possessed the worst oxygen supply capacity. But it obtained the highest DHA percentage of 48.17 % and DHA yield of 21.42 g/L, indicating that it was beneficial for DHA synthesis and converting glucose to biomass and lipids. Configuration SAS consisting of one middle 6-ABDT and two 6-SBDT provided better mixing capacity, which resulted in the maximum glucose consumption rate of 2.86 g/L h and the highest biomass of 108.09 g/L. This study would improve insight into understanding the relationship between flow field and the physiology of Schizochytrium sp. for the scale-up of industrial DHA production. PMID:27102911

  13. Superoxide radicals increase transforming growth factor-{beta}1 and collagen release from human lung fibroblasts via cellular influx through chloride channels

    SciTech Connect

    Qi Shufan Hartog, Gertjan J.M. den; Bast, Aalt

    2009-05-15

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of fibrosis. However, it remains unclear which ROS is the major cause. We hypothesize that superoxide elicits specific toxicity to human lung fibroblasts and plays an important role in the development of pulmonary fibrosis. In this study, superoxide generated from xanthine and xanthine oxidase activated lung fibroblasts by increasing the release of TGF-{beta}1 and collagen. This was associated with increased levels of intracellular superoxide. SOD and tempol, by scavenging respectively extracellular and intracellular superoxide, prevented the activation of fibroblasts induced by exposure to exogenous superoxide, whereas catalase did not. Moreover, hydrogen peroxide did not activate fibroblasts. Apparently, superoxide rather than hydrogen peroxide is involved in the regulation of TGF-{beta}1 and collagen release in lung fibroblasts. The chloride channel blocker, DIDS, inhibited the increase of intracellular superoxide levels induced by exogenous superoxide and consequently prevented the activation of fibroblasts. This suggests that the cellular influx of superoxide through chloride channels is essential for superoxide-induced activation of fibroblasts. ERK1/2 and p38 MAPKs are involved in the intracellular pathway leading to superoxide-induced fibroblasts activation. Superoxide possesses until now undiscovered specific pro-fibrotic properties in human lung fibroblasts. This takes place via the cellular influx of superoxide through chloride channels rather than via the formation of hydrogen peroxide.

  14. Dynamic Modulation of HIV-1 Integrase Structure and Function by Cellular Lens Epithelium-derived Growth Factor (LEDGF) Protein*S⃞

    PubMed Central

    McKee, Christopher J.; Kessl, Jacques J.; Shkriabai, Nikolozi; Dar, Mohd Jamal; Engelman, Alan; Kvaratskhelia, Mamuka

    2008-01-01

    The mandatory integration of the reverse-transcribed HIV-1 genome into host chromatin is catalyzed by the viral protein integrase (IN), and IN activity can be regulated by numerous viral and cellular proteins. Among these, LEDGF has been identified as a cellular cofactor critical for effective HIV-1 integration. The x-ray crystal structure of the catalytic core domain (CCD) of IN in complex with the IN binding domain (IBD) of LEDGF has furthermore revealed essential protein-protein contacts. However, mutagenic studies indicated that interactions between the full-length proteins were more extensive than the contacts observed in the co-crystal structure of the isolated domains. Therefore, we have conducted detailed biochemical characterization of the interactions between full-length IN and LEDGF. Our results reveal a highly dynamic nature of IN subunit-subunit interactions. LEDGF strongly stabilized these interactions and promoted IN tetramerization. Mass spectrometric protein footprinting and molecular modeling experiments uncovered novel intra- and inter-protein-protein contacts in the full-length IN-LEDGF complex that lay outside of the observable IBD-CCD structure. In particular, our studies defined the IN tetramer interface important for enzymatic activities and high affinity LEDGF binding. These findings provide new insight into how LEDGF modulates HIV-1 IN structure and function, and highlight the potential for exploiting the highly dynamic structure of multimeric IN as a novel therapeutic target. PMID:18801737

  15. Acetoin Synthesis Acquisition Favors Escherichia coli Growth at Low pH

    PubMed Central

    Vivijs, Bram; Moons, Pieter; Aertsen, Abram

    2014-01-01

    Some members of the family Enterobacteriaceae ferment sugars via the mixed-acid fermentation pathway. This yields large amounts of acids, causing strong and sometimes even lethal acidification of the environment. Other family members employ the 2,3-butanediol fermentation pathway, which generates comparatively less acidic and more neutral end products, such as acetoin and 2,3-butanediol. In this work, we equipped Escherichia coli MG1655 with the budAB operon, encoding the acetoin pathway, from Serratia plymuthica RVH1 and investigated how this affected the ability of E. coli to cope with acid stress during growth. Acetoin fermentation prevented lethal medium acidification by E. coli in lysogeny broth (LB) supplemented with glucose. It also supported growth and higher stationary-phase cell densities in acidified LB broth with glucose (pH 4.10 to 4.50) and in tomato juice (pH 4.40 to 5.00) and reduced the minimal pH at which growth could be initiated. On the other hand, the acetoin-producing strain was outcompeted by the nonproducer in a mixed-culture experiment at low pH, suggesting a fitness cost associated with acetoin production. Finally, we showed that acetoin production profoundly changes the appearance of E. coli on several diagnostic culture media. Natural E. coli strains that have laterally acquired budAB genes may therefore have escaped detection thus far. This study demonstrates the potential importance of acetoin fermentation in the ecology of E. coli in the food chain and contributes to a better understanding of the microbiological stability and safety of acidic foods. PMID:25063653

  16. Synthesis of octadecyl esters of histidine-containing tripeptides as potential regulators of plant growth

    SciTech Connect

    Ogrel, A.A.; Zvonkova, E.N.; Gafurov, R.G.

    1995-08-01

    Octadecyl esters of dipeptides and tripeptides of the type Phe-His, Val-His, Phe-Val-His and Val-Phe-His were synthesized using different methods. The minimum energy conformations of these peptides were calculated with computer minimization programs and compared with those of paclobutrazol, a well-known regulator of plant growth. It was demonstrated that the elongation of the peptide chain leads to a higher topochemical correspondence between paclobutrazol and the peptide derivatives than between paclobutrazol and amino acid derivatives. 9 refs., 2 figs., 3 tabs.

  17. Design and synthesis of benzoylphenylureas with fluorinated substituents on the aniline ring as insect growth regulators.

    PubMed

    Sun, Ranfeng; Liu, Yuxiu; Zhang, Yonglin; Xiong, Lixia; Wang, Qingmin

    2011-03-23

    Enormous numbers of synthetic fluorine-containing compounds have been widely used in a variety of fields, especially in drug and pesticide design. To find novel insect growth regulators, a series of benzoylphenylureas with fluorinated substituents were designed and synthesized. The results of larvicidal activities of those novel fluoro-substituted benzoylphenylureas against oriental armyworm and mosquito revealed that most compounds exhibited excellent activities. It is worth mentioning that compounds 3 and 6 exhibited higher activities against oriental armyworm and mosquito than commercial Hexaflumuron. It can be further seen that the insecticidal activities would increase significantly by introducing fluorinated substituents into the structure of the designed benzoylphenylureas. PMID:21366291

  18. Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth.

    PubMed

    Paulose, Maggie; Varghese, Oomman K; Grimes, Craig A

    2003-08-01

    Nanoscale wires of silicon oxide, and silicon oxide with embedded gold-silicide nanospheres, are synthesized by heating of a gold-coated silicon wafer at temperatures of 1000 degrees C or above, with the resulting wires having diameters ranging from 30 to 150 nm and lengths of approximately 1 mm. This simple fabrication process should make possible economical bulk production of nanowires. Studies indicate that the growth of these gold-silica composite nanowires occurs directly on the silicon wafer by a solid-liquid-solid mechanism. PMID:14598450

  19. Fracture mechanics of cellular glass

    NASA Technical Reports Server (NTRS)

    Zwissler, J. G.; Adams, M. A.

    1981-01-01

    The fracture mechanics of cellular glasses (for the structural substrate of mirrored glass for solr concentrator reflecting panels) are discussed. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials were developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region 1 may be slower, by orders of magnitude, than that found in dense glasses.

  20. Direct synthesis of thiolate-protected gold nanoparticles using Bunte salts as ligand precursors: investigations of ligand shell formation and core growth

    NASA Astrophysics Data System (ADS)

    Lohse, Samuel E.

    2011-12-01

    Applications of ligand-protected nanoparticles have increased markedly in recent years, yet their controlled synthesis remains an under-developed field. Nanoparticle syntheses are highly specialized in their execution and often possess significant limitations. For example, the synthesis of thiol-stabilized gold nanoparticles (AuNPs) with core diameters greater than 5.0 nm is difficult to achieve using existing methods. This dissertation describes the development of a synthetic strategy for thiolate-stabilized AuNPs over a wide range of core sizes using alkyl thiosulfates (Bunte salts) as ligand precursors. The use of Bunte salts permits the synthesis of larger AuNPs than can be achieved using thiols by allowing the AuNP cores to grow to larger diameters before the formation of the thiolate ligand shell. Chapter II details the development of a direct synthesis strategy using Bunte salts as ligand precursors that produces AuNPs with diameters up to 20 nm. Chapter III describes an investigation of the ligand shell formation that occurs during these syntheses. The ligand shell formation involves the adsorption of the Bunte salt to the AuNP surface, where it is converted to the thiolate. This conversion requires an excess of sodium borohydride in the synthesis of >5 nm AuNPs, but not for the synthesis of smaller AuNPs. This synthetic strategy was adapted for use in flow reactors to attain simultaneous AuNP synthesis and characterization. Chapter IV demonstrates that thiol-stabilized AuNPs can be synthesized in a microfluidic device with product monitoring provided by UV-vis absorbance spectroscopy. The development of a capillary flow reactor that permits the incorporation of new monitoring techniques is presented in Chapter V. The incorporation of Small-Angle X-ray Scattering (SAXS) analysis provides quantitative in situ determinations of AuNP diameter. The combination of synthetic control and monitoring makes capillary flow reactors powerful tools for optimization of

  1. Synthesis, growth and characterisation of tetrathiourea cadmium tetrathiocyanato zincate single crystals

    NASA Astrophysics Data System (ADS)

    Pabitha, G.; Dhanasekaran, R.

    2013-01-01

    Tetrathiourea cadmium tetrathiocyanato zincate (TCTZ) has been synthesised by the chemical reaction method. The solubility of the synthesised material was determined in water, acetone and water-acetone mixed solvents. Based on the solubility studies, the single crystals of TCTZ were grown from the 3:1 water-acetone mixed solvent by the solvent evaporation method. The crystallinity of the grown crystals was proved from the powder XRD data. TCTZ was found to crystallise in tetragonal symmetry with non-centrosymmetric space group I¯4. The presence of functional group and the coordination of the metal with the ligands were proved from the FTIR studies. The compound exhibits good physicochemical stability up to 182 °C. The UV transparency cut off wavelength of TCTZ was found to be 290 nm and the complex is transparent (69%) over the entire range of visible region showing that it is a good candidate for NLO applications. The growth feature of the TCTZ single crystals was observed by etching studies, which reveals the formation of layer growth pattern. The mechanical property of the crystal was estimated by Vickers hardness test.

  2. The effect of synthesis time on graphene growth from palm oil as green carbon precursor

    NASA Astrophysics Data System (ADS)

    Salifairus, M. J.; Hamid, S. B. Abd; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2016-07-01

    Graphene is the new material that arises after carbon nanotubes (CNTs) era and has extraordinary optical, electronic and mechanical properties compared to CNTs. The 2D graphene is the sp2 carbon allotropes compared to other dimensionality. It also can be in three forms that are zero-dimensional, one-dimensional or three-dimensional. The different dimensionality also called fullerenes, nanotubes and graphite. Therefore, the graphene is known as centre potential materials in expanding research area than others ever. The 2cm × 2cm silicon wafer was seeded with nickel (Ni) at different thickness by using sputter coater. The palm oil, carbon source, was placed in the precursor furnace and the silicon was placed in the second furnace (deposition furnace). The palm oil will mix with Nitrogen gas was used as carrier gas in the CVD under certain temperature and pressure to undergo pyrolysis proses. The deposition temperature was set at 1000 °C. The deposition time varied from 3 minutes, 5 minutes and 7 minutes. The graphene was growth at ambient pressure in the CVD system. Electron microscopy and Raman Spectrometer revealed the structural properties and surface morphology of the grapheme on the substrate. The D and G band appear approximately at 1350 cm-1 and 1850 cm-1. It can be concluded that the growth of graphene varies at different deposition time.

  3. Hydrothermal synthesis of nanostructured SnO particles through crystal growth in the presence of gelatin

    SciTech Connect

    Uchiyama, Hiroaki Nakanishi, Shunsuke; Kozuka, Hiromitsu

    2014-09-15

    Crystalline SnO particles were obtained from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment in aqueous solutions containing gelatin at 150 °C for 24 h, where the morphologies of the SnO products changed from blocks to layered disks, stacked plates and unshaped aggregates with increasing amount of gelatin in the solutions. Such morphological changes of SnO particles were thought to be attributed to the suppression of the growth of SnO crystals by the adsorbed gelatin. - Graphical abstract: Nanostructured SnO particles were obtained from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment in gelatin solutions. - Highlights: • SnO particles were prepared from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment. • The adsorption of gelatin suppressed the growth of SnO crystals. • The shape of SnO particles depends on the amount of gelatin. • Blocks, disks, stacked plates and unshaped aggregates were obtained.

  4. Synthesis of diketopiperazine-based carboline homodimers and in vitro growth inhibition of human carcinomas.

    PubMed

    Deveau, Amy M; Costa, Nancy E; Joshi, Elizabeth M; Macdonald, Timothy L

    2008-06-15

    Starting from d- or l-tryptophan, we have synthesized and characterized six compounds 2.29-2.31a and b that belong to a class of nitrogen heterocycles: the carboline-based homodimers. Each individual homodimer features a 1,3-trans relationship on each side of the central diketopiperazine core, but differs in absolute stereochemistry and also in substitution on the 4' and 4'' oxygens (-Bn, -CH(3), or -H). The in vitro cytotoxicity of the six compounds was evaluated by measuring the growth inhibition in NCI-H520 and PC-3 human carcinoma cells. Phenol 2.30a inhibited cancer cell growth approximately three times better than its enantiomer 2.30b and possessed a GI(50) comparable to the clinically used agent etoposide in both cell lines. We have concluded that both the stereochemistry imparted by l-tryptophan and the presence of hydroxy substituents at the 4' and 4'' positions are necessary to generate cytotoxic properties in the homodimer class. We are now employing 2.30a as a new lead compound in our efforts to discover improved indole-based cancer chemotherapeutics. PMID:18502124

  5. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth.

    PubMed

    Journet, Catherine; Picher, Matthieu; Jourdain, Vincent

    2012-04-13

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about 'high temperature methods' because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of 'medium or low temperature methods' is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process. PMID:22433510

  6. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth

    NASA Astrophysics Data System (ADS)

    Journet, Catherine; Picher, Matthieu; Jourdain, Vincent

    2012-04-01

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about ‘high temperature methods’ because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of ‘medium or low temperature methods’ is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process.

  7. Hydrothermal synthesis of {beta}-nickel hydroxide nanocrystalline thin film and growth of oriented carbon nanofibers

    SciTech Connect

    Zhang Enlei; Tang Yuanhong; Zhang Yong; Guo Chi; Yang Lei

    2009-08-05

    Novel well-crystallized {beta}-nickel hydroxide nanocrystalline thin films were successfully synthesized at low temperature on the quartz substrates by hydrothermal method, and the oriented carbon nanofibers (CNFs) were prepared by acetylene cracking at 750 deg. C on thin film as the catalyst precursor. High resolution transmission electron microscopy (HR-TEM) measurement shows that thin films were constructed mainly with hexagonal {beta}-nickel hydroxide nanosheets. The average diameter of the nanosheets was about 80 nm and thickness about 15 nm. Hydrothermal temperature played an important role in the film growth process, influencing the morphologies and catalytic activity of the Ni catalysts. Ni thin films with high catalytic activity were obtained by reduction of these Ni(OH){sub 2} nanocrystalline thin films synthesized at 170 deg. C for 2 h in hydrothermal condition. The highest carbon yield was 1182%, and was significantly higher than the value of the catalyst precursor which was previously reported as the carbon yield (398%) for Ni catalysts. The morphology and growth mechanism of oriented CNFs were also studied finally.

  8. Targeting of Proteoglycan Synthesis Pathway: A New Strategy to Counteract Excessive Matrix Proteoglycan Deposition and Transforming Growth Factor-β1-Induced Fibrotic Phenotype in Lung Fibroblasts

    PubMed Central

    Shaukat, Irfan; Barré, Lydia; Venkatesan, Narayanan; Li, Dong; Jaquinet, Jean-Claude; Fournel-Gigleux, Sylvie; Ouzzine, Mohamed

    2016-01-01

    Stimulation of proteoglycan (PG) synthesis and deposition plays an important role in the pathophysiology of fibrosis and is an early and dominant feature of pulmonary fibrosis. Transforming growth factor-β1 (TGF-β1) is a major cytokine associated with fibrosis that induces excessive synthesis of matrix proteins, particularly PGs. Owing to the importance of PGs in matrix assembly and in mediating cytokine and growth factor signaling, a strategy based on the inhibition of PG synthesis may prevent excessive matrix PG deposition and attenuates profibrotic effects of TGF-β1 in lung fibroblasts. Here, we showed that 4-MU4-deoxy-β-D-xylopyranoside, a competitive inhibitor of β4-galactosyltransferase7, inhibited PG synthesis and secretion in a dose-dependent manner by decreasing the level of both chondroitin/dermatan- and heparin-sulfate PG in primary lung fibroblasts. Importantly, 4-MU4-deoxy-xyloside was able to counteract TGF-β1-induced synthesis of PGs, activation of fibroblast proliferation and fibroblast-myofibroblast differentiation. Mechanistically, 4-MU4-deoxy-xyloside treatment inhibited TGF-β1-induced activation of canonical Smads2/3 signaling pathway in lung primary fibroblasts. The knockdown of β4-galactosyltransferase7 mimicked 4-MU4-deoxy-xyloside effects, indicating selective inhibition of β4-galactosyltransferase7 by this compound. Collectively, this study reveals the anti-fibrotic activity of 4-MU4-deoxy-xyloside and indicates that inhibition of PG synthesis represents a novel strategy for the treatment of lung fibrosis. PMID:26751072

  9. Synthesis of a growth-associated protein by embryonic rat cerebrocortical neurons in vitro.

    PubMed

    Perrone-Bizzozero, N I; Finklestein, S P; Benowitz, L I

    1986-12-01

    Proteins synthesized by embryonic rat cortical cultures were studied under conditions that were either permissive or nonpermissive to neurite outgrowth. Freshly dissected cortex from embryonic day 17 rat pups was mechanically dissociated and plated on poly(L-lysine) substrate in the presence of (1) serum-free media, which allowed neuronal survival but no outgrowth; (2) serum, which allowed survival of both neurons and glia as well as neurite outgrowth; or (3) a hormone-supplemented defined media, which allowed preferential survival and outgrowth of neurons. In addition, postnatal tissue was cultured as a source of glia. Cultures were pulse-labeled with 35S-methionine 48 hr after plating and the protein synthesis patterns examined by 2-dimensional gel electrophoresis followed by fluorography. The expression of an acidic 50 kDa protein, associated with the particulate fraction of cells, was found to be a prominent correlate of neurite outgrowth. This protein was synthesized in serum- or hormone-treated embryonic cultures showing neurite outgrowth but was undetectable in embryonic cultures without outgrowth or in postnatal glial cultures. By virtue of its migration position on 2-dimensional gels, its presence in a light membrane fraction, and its cleavage products after Staphylococcus aureus protease treatment, the 50 kDa protein appears to be identical to an acidic 43-49 kDa protein that has been identified in several developing and regenerating neural pathways, as well as to the B-50 phosphoprotein. These findings lend support for a critical role of this protein in neural development and demonstrate the feasibility of using primary CNS cell cultures to study its biosynthesis and function. PMID:2947982

  10. LX loaded nanoliposomes synthesis, characterization and cellular uptake studies in H2O2 stressed SH-SY5Y cells.

    PubMed

    Hasan, Murtaza; Iqbal, Javed; Awan, Umer; Xin, Nian; Dang, Hao; Waryani, Baradi; Saeed, Yasmeen; Ullah, Kaleem; Rongji, Dai; Deng, Yulin

    2014-06-01

    In this study, we report the cellular uptake studies of novel LX loaded nanoliposomes in H2O2 stress SH-SY5Y Cells synthesized by thin film evaporation method. We have isolated the smallest size nanoliposomes after 90 min ultrasonification, keeping Polydisperse Index as 0.259. The morphology, size, zepta potential and drug efficiency of prepared nanoliposomes are characterized by using Transmission Electron Microscope (TEM), particle size analyzer and High Pressure Liquid Chromatography (HPLC). The particle size analyzer have confirmed the particle size of nanoluposomes measured in range of 100-250 nm, whereas the shape of these nanoliposomes is almost spherical. The zeta potential of small size nanoliposomes was measured as -49.62 and encapsulation efficiency of the LX loaded nanoliposomes was 87%. The oxidative stress response in SH-SY5Y Cells for various doses of drug with and without nanoliposomes has affectively improved the cell-stress response up to 20% after 24 h of incubation at 37 degrees C. The results indicated that LX loaded nanoliposomes were taken by the cells effectively which ultimately improved the cell-stress response. Thus, this study confirmed that synthesized nanoliposomes are not only effective drug carriers but could be potentially used for delivery of genes, antibodies, and proteins in future. PMID:24738352

  11. Synthesis, spectroscopic, and cellular properties of α-pegylated cis-A2B2- and A3B-types ZnPcs

    PubMed Central

    Ongarora, Benson G.; Zhou, Zehua; Okoth, Elizabeth A.; Kolesnichenko, Igor; Smith, Kevin M.; Vicente, M. Graça H.

    2015-01-01

    A series of pegylated cis-A2B2- or A3B-type ZnPcs, substituted on the α-positions with tri(ethylene glycol) and hydroxyl groups, were synthesized from a new bis-phthalonitrile. A clamshell-type bis-phthalocyanine was also obtained as a byproduct. The hydroxyl group of one ZnPc was alkylated with 3-dimethylaminopropyl chloride to afford a pegylated ZnPc functionalized with an amine group. All mononuclear ZnPcs were soluble in polar organic solvents, showed intense Q absorptions in DMF, and had fluorescence quantum yields in the range 0.10–0.23. The clamshell-type bis-phthalocyanine adopts mainly open shell conformations in DMF, and closed clamshell conformations in chloroform. All ZnPcs were highly phototoxic to human carcinoma HEp2 cells, particularly the amino-ZnPc mainly protonated under physiological conditions, which showed the highest phototoxicity (IC50 = 0.5 μM at 1.5 J/cm2) and dark cytotoxicity (IC50 = 22 μM), in part due to its high cellular uptake. The ZnPcs localized in multiple organelles, including mitochondria, lysosomes, Golgi and ER. PMID:26064037

  12. DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: synthesis, spectroscopy, electrochemistry, and X-ray crystallography.

    PubMed

    Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K

    2013-02-01

    Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion. PMID:23274397

  13. Synthesis, characterization and applications of carboxylated and polyethylene-glycolated bifunctionalized InP/ZnS quantum dots in cellular internalization mediated by cell-penetrating peptides.

    PubMed

    Liu, Betty R; Winiarz, Jeffrey G; Moon, Jong-Sik; Lo, Shih-Yen; Huang, Yue-Wern; Aronstam, Robert S; Lee, Han-Jung

    2013-11-01

    Semiconductor nanoparticles, also known as quantum dots (QDs), are widely used in biomedical imaging studies and pharmaceutical research. Cell-penetrating peptides (CPPs) are a group of small peptides that are able to traverse cell membrane and deliver a variety of cargoes into living cells. CPPs deliver QDs into cells with minimal nonspecific absorption and toxic effect. In this study, water-soluble, monodisperse, carboxyl-functionalized indium phosphide (InP)/zinc sulfide (ZnS) QDs coated with polyethylene glycol lipids (designated QInP) were synthesized for the first time. The physicochemical properties (optical absorption, fluorescence and charging state) and cellular internalization of QInP and CPP/QInP complexes were characterized. CPPs noncovalently interact with QInP in vitro to form stable CPP/QInP complexes, which can then efficiently deliver QInP into human A549 cells. The introduction of 500nM of CPP/QInP complexes and QInP at concentrations of less than 1μM did not reduce cell viability. These results indicate that carboxylated and polyethylene-glycolylated (PEGylated) bifunctionalized QInP are biocompatible nanoparticles with potential for use in biomedical imaging studies and drug delivery applications. PMID:23792556

  14. Methyl 6-Amino-6-deoxy-d-pyranoside-Conjugated Platinum(II) Complexes for Glucose Transporter (GLUT)-Mediated Tumor Targeting: Synthesis, Cytotoxicity, and Cellular Uptake Mechanism.

    PubMed

    Li, Taoli; Gao, Xiangqian; Yang, Liu; Shi, Yunli; Gao, Qingzhi

    2016-05-19

    Methyl 6-aminodeoxy-d-pyranoside-derived platinum(II) glycoconjugates were designed and synthesized based on the clinical drug oxaliplatin for glucose transporter (GLUT)-mediated tumor targeting. In addition to a substantial improvement in water solubility, the conjugates exhibited cytotoxicity similar to or higher than that of oxaliplatin in six different human cancer cell lines. GLUT-mediated transport of the complexes was investigated with a cell-based fluorescence competition assay and GLUT-inhibitor-mediated cytotoxicity analysis in a GLUT-overexpressing human colorectal adenocarcinoma (HT29) cell line. The antitumor effect of the aminodeoxypyranoside-conjugated platinum(II) complexes was found to depend significantly on the GLUT inhibitor, and the cellular uptake of the molecules was regulated by GLUT-mediated transport. The results from this study demonstrate the potential advantages of aminodeoxypyranosides as sugar motifs for glycoconjugation for Warburg-effect-targeted drug design. These fundamental results also support the potential of aminodeoxypyranoside-conjugated platinum(II) complexes as lead compounds for further preclinical evaluation. PMID:27135196

  15. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  16. Synthesis, cellular uptake and HIV-1 Tat-dependent trans-activation inhibition activity of oligonucleotide analogues disulphide-conjugated to cell-penetrating peptides

    PubMed Central

    Turner, John J.; Arzumanov, Andrey A.; Gait, Michael J.

    2005-01-01

    Oligonucleotides composed of 2′-O-methyl and locked nucleic acid residues complementary to HIV-1 trans-activation responsive element TAR block Tat-dependent trans-activation in a HeLa cell assay when delivered by cationic lipids. We describe an improved procedure for synthesis and purification under highly denaturing conditions of 5′-disulphide-linked conjugates of 3′-fluorescein labelled oligonucleotides with a range of cell-penetrating peptides and investigate their abilities to enter HeLa cells and block trans-activation. Free uptake of 12mer OMe/LNA oligonucleotide conjugates to Tat (48–58), Penetratin and R9F2 was observed in cytosolic compartments of HeLa cells. Uptake of the Tat conjugate was enhanced by N-terminal addition of four Lys or Arg residues or a second Tat peptide. None of the conjugates entered the nucleus or inhibited trans-activation when freely delivered, but inhibition was obtained in the presence of cationic lipids. Nuclear exclusion was seen for free delivery of Tat (48–58), Penetratin and R9 conjugates of 16mer phosphorothioate OMe oligonucleotide. Uptake into human fibroblast cytosolic compartments was seen for Tat, Penetratin, R9F2 and Transportan conjugates. Large enhancements of HeLa cell uptake into cytosolic compartments were seen when free Tat peptide was added to Tat conjugate of 12mer OMe/LNA oligonucleotide or Penetratin peptide to Penetratin conjugate of the same oligonucleotide. PMID:15640444

  17. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  18. Cortisol augments synthesis of growth hormone, but does not alter synthesis of prolactin and proopiomelanocortin, in the 120- to 125-day fetal ovine pituitary.

    PubMed

    Miller, W L; Leisti, S

    1984-07-01

    In adult animal pituitaries or in cultured pituitary tumor cells, glucocorticoids are regulators of GH, PRL, and proopiomelancortin (POMC) synthesis. However, ovine fetal plasma cortisol concentrations are low until shortly before parturition, suggesting that cortisol may not normally regulate hormone synthesis in the fetal pituitary. To investigate whether cortisol could affect fetal synthesis of GH, PRL, and POMC, we obtained fetal pituitary tissue from normal fetuses and from fetuses which had received cortisol infusion for 48 h. Tissues were labeled in short term organ culture and the newly synthesized proteins were displayed by two-dimensional gel electrophoresis and autoradiography. Results were quantified by computerized integration of the area and density of the autoradiographic spots after high resolution television scanning. Cortisol infusion augmented synthesis of GH in comparison to controls (P = 0.01), but did not alter PRL synthesis. Cortisol also did not inhibit POMC synthesis in either the anterior pituitary or the neurointermediate lobe. These data suggest that the pituitary-adrenocortical slow feedback inhibition of POMC synthesis is not functional in the ovine fetus at 120 to 125-days gestation, but that pituitary somatotropes are responsive to glucocorticoids at this stage of fetal development. PMID:6734516

  19. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma

    PubMed Central

    Arrieta, O; Guevara, P; Escobar, E; García-Navarrete, R; Pineda, B; Sotelo, J

    2005-01-01

    Angiotensin II (Ang II) is a main effector peptide in the renin–angiotensin system and participates in the regulation of vascular tone. It also has a role in the expression of growth factors that induce neovascularisation which is closely associated to the growth of malignant gliomas. We have shown that the selective blockage of the AT1 receptor of angiotensin inhibites tumour growth, cell proliferation and angiogenesis of C6 rat glioma. The aim of this study was to study the effects of the blockage of AT1 receptor on the synthesis of growth factors, and in the genesis of apoptosis in cultured C6 glioma cells and in rats with C6 glioma. Administration of losartan at doses of 40 or 80 mg kg−1 to rats with C6 glioma significantly decreased tumoral volume and production of platelet-derived growth factor, vascular endothelial growth factor and basic fibroblast growth factor. It also induced apoptosis in a dose-dependent manner. Administration of Ang II increased cell proliferation of cultured C6 cells which decreased by the administration of losartan. Our results suggest that the selective blockage of AT1 diminishes tumoral growth through inhibition of growth factors and promotion of apoptosis. PMID:15785746

  20. Metastable gamma-MnS hierarchical architectures: synthesis, characterization, and growth mechanism.

    PubMed

    Zheng, Yuanhui; Cheng, Yao; Wang, Yuansheng; Zhou, Lihua; Bao, Feng; Jia, Chong

    2006-04-27

    Preparation of shape-controlled metastable gamma-MnS semiconductor nanocrystals has been achieved on a large scale through a simple solvothermal method in the presence of PVP. The key strategy is the use of sulfur powder as sulfur source in ethylene glycol (EG) solvent that also acted as a weak reducing agent. Reaction parameters such as reaction time and temperature are found to be important in controlling various hierarchical architectures, such as homogeneous semi-hollow core-shell, hollow nanospheres, and nanowires. Transmission electron microscopy observations indicate that these hierarchical architectures are formed mainly via Ostwald ripening. The optical absorption measurements reveal that these novel architectures exhibit remarkable shift of absorption peak during the course of structural compaction and grain growth. PMID:16623509

  1. Synthesis, growth and characterization of a new organic three dimensional framework: Piperazin-1-ium 4-aminobenzenesulfonate

    NASA Astrophysics Data System (ADS)

    Rekha, P.; Peramaiyan, G.; NizamMohideen, M.; Mohan Kumar, R.; Kanagadurai, R.

    2016-05-01

    Piperazinium p-aminobenzenesulfonate (PPABS), a new nonlinear optical material was synthesized and crystals were grown from the methanol solvent by slow evaporation solution growth method. Single crystal X-ray diffraction study elucidated the crystal structure of PPABS. It crystallizes in orthorhombic crystal system with space group of Pbca. UV-vis-NIR spectral study was performed to analyze optical transparency of PPABS crystal and found that the grown crystal has sufficient transparency in the entire visible region with lower cutoff wavelength of 321 nm. The thermal stability and decomposition stages of the sample were studied by TG/DTA analyses. The different environmental carbon and hydrogen atoms of the proposed structure were identified by NMR spectral studies. The electric field response of crystal was determined from the dielectric studies. From the Z-scan measurements, the third order nonlinear optical properties of grown crystal were studied.

  2. Synthesis of carbon nanotube bridges on patterned silicon wafers by selective lateral growth

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Shin, Jin-Koog; Kim, Sung-Tae

    2001-12-01

    Floated carbon nanotube bridges were synthesized on a patterned silicon wafer by thermal chemical vapor deposition of acetylene. A conventional photolithography was used to define the catalytic nickel line patterns. The carbon nanotubes grow laterally from the side face to side face of the nickel catalyst by a SiO2 vertical growth barrier deposited on the nickel layer. The typical diameter of carbon nanotube bridges is 10-30 nm and it depends on the thickness of the catalytic nickel layer. Our laterally grown carbon nanotubes have a bamboo structure in which the spacing of compartment layers increases with an increase in temperature. We can control the length, linearity, and density of the carbon nanotube bridges by adjusting various synthetic process parameters and find they may possibly be applied to nanoelectronic devices.

  3. Synthesis of alpha-substituted fosmidomycin analogues as highly potent Plasmodium falciparum growth inhibitors.

    PubMed

    Haemers, Timothy; Wiesner, Jochen; Van Poecke, Sara; Goeman, Jan; Henschker, Dajana; Beck, Edwald; Jomaa, Hassan; Van Calenbergh, Serge

    2006-04-01

    In view of the promising antimalarial activity of fosmidomycin or its N-acetyl homologue FR900098, the objective of this work was to investigate the influence of aromatic substituents in the alpha-position of the phosphonate moiety. The envisaged analogues were prepared using a linear route involving a 3-aryl-3-phosphoryl propanal intermediate. The activities of all compounds were evaluated on Eschericia coli 1-deoxy-d-xylulose 5-phosphate reductoisomerase and against two Plasmodium falciparum strains. Compared with fosmidomycin, several analogues displayed enhanced activity towards the P. falciparum strains. Compound 1e with a 3,4-dichlorophenyl substitution in the alpha-position of fosmidomycin emerged as the most potent analogue of this series. It is approximately three times more potent in inhibiting the growth of P. falciparum than FR900098, the most potent representative of this class reported so far. PMID:16439126

  4. Recovery of prostacyclin synthesis in vascular smooth muscle cells following self-inactivation and requirement for growth factors

    SciTech Connect

    Bailey, J.M.; Hla, T.T.; Pash, J.M.

    1986-05-01

    The cyclooxygenase enzyme system is a prime example of a metabolic pathway that is regulated by self inactivation. This is believed to occur in part via the irreversible reaction of the endoperoxide intermediate species with the cyclooxygenase enzyme. This inactivation and recovery of activity is similar to the inactivation observed with aspirin which irreversibly acetylates the enzyme. Self inactivation was studied in cultured rat and bovine aorta smooth muscle cells. The production of the prostanoid PGI2 was demonstrated by incubation of a monolayer of cells with 12 ..mu..M C-14 labeled arachidonic acid. Products were analyzed by thin layer chromatography and identified by their comigration with authentic standards and confirmed by gas chromatography/mass spectrometry. Preincubation of the cells for 10 minutes with arachidonic acid at concentrations as low as 1 ..mu..g/mL inactivated the cells to a second challenge with radiolabeled arachidonic acid. Recovery from self inactivation took place over a three hour time period and was similar to the recovery observed with aspirin pretreatment. Recovery was inhibited by addition of 10 ..mu..g/mL cycloheximide to the medium indicating that it involves synthesis of cyclooxygenase protein. Epidermal growth factor was identified as a serum factor responsible for the rapid recovery of cyclooxygenase activity in rat and bovine aorta smooth muscle cells.

  5. Stereospecific growth of densely populated rutile mesoporous TiO2 nanoplate films: a facile low temperature chemical synthesis approach

    NASA Astrophysics Data System (ADS)

    Lee, Go-Woon; Ambade, Swapnil B.; Cho, Young-Jin; Mane, Rajaram S.; Shashikala, V.; Yadav, Jyotiprakash; Gaikwad, Rajendra S.; Lee, Soo-Hyoung; Jung, Kwang-Deog; Han, Sung-Hwan; Joo, Oh-Shim

    2010-03-01

    We report for the first time, using a simple and environmentally benign chemical method, the low temperature synthesis of densely populated upright-standing rutile TiO2 nanoplate films onto a glass substrate from a mixture of titanium trichloride, hydrogen peroxide and thiourea in triply distilled water. The rutile TiO2 nanoplate films (the phase is confirmed from x-ray diffraction analysis, selected area electron diffraction, energy-dispersive x-ray analysis, and Raman shift) are 20-35 nm wide and 100-120 nm long. The chemical reaction kinetics for the growth of these upright-standing TiO2 nanoplate films is also interpreted. Films of TiO2 nanoplates are optically transparent in the visible region with a sharp absorption edge close to 350 nm, confirming an indirect band gap energy of 3.12 eV. The Brunauer-Emmet-Teller surface area, Barret-Joyner-Halenda pore volume and pore diameter, obtained from N2 physisorption studies, are 82 m2 g - 1, 0.0964 cm3 g - 1 and 3.5 nm, respectively, confirming the mesoporosity of scratched rutile TiO2 nanoplate powder that would be ideal for the direct fabrication of nanoscaled devices including upcoming dye-sensitized solar cells and gas sensors.

  6. Synergistic effect of targeting the epidermal growth factor receptor and hyaluronan synthesis in oesophageal squamous cell carcinoma cells

    PubMed Central

    Kretschmer, I; Freudenberger, T; Twarock, S; Fischer, J W

    2015-01-01

    Background and Purpose Worldwide, oesophageal cancer is the eighth most common cancer and has a very poor survival rate. In order to identify new tolerable treatment options for oesophageal squamous cell carcinoma (ESCC), erlotinib was tested with moderate efficacy in phase I and II studies. As 4-methylumbelliferone (4-MU), an hyaluronan (HA) synthesis inhibitor showed anti-cancer effects in vitro, and in ESCC xenograft tumours, we investigated whether the anti-cancer effects of erlotinib could be augmented by combining it with 4-MU. Experimental Approach ESCC cell lines were treated with erlotinib or gefitinib (1 μmol·L−1) and 4-MU (300 μmol·L−1), and the cell count, cell cycle progression and migration were determined as compared to the single agents and the solvent-control. Key Results The combination of erlotinib and 4-MU synergistically inhibited the proliferation of ESCC cell lines. Furthermore, the migration speed of ESCC cell line KYSE-410 in gap closure assays was significantly reduced by the combination of erlotinib and 4-MU. Decreased ERK phosphorylation could explain the anti-proliferative and anti-migratory effects in the combined treatment group. Finally, the combination was additionally able to decrease the growth of multicellular tumour spheroids, a three-dimensional cell culture model that was associated with sustained inhibition of ERK1/2 phosphorylation. Conclusions and Implications The combination of 4-MU and erlotinib showed promising anti-cancer efficacies in the ESCC cell lines. PMID:26140525

  7. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth.

    PubMed

    Sun, Ramon C; Denko, Nicholas C

    2014-02-01

    Recent reports have identified a phenomenon by which hypoxia shifts glutamine metabolism from oxidation to reductive carboxylation. We now identify the mechanism by which HIF-1 activation results in a dramatic reduction in the activity of the key mitochondrial enzyme complex α ketoglutarate dehydrogenase (αKGDH). HIF-1 activation promotes SIAH2 targeted ubiquitination and proteolysis of the 48 kDa splice variant of the E1 subunit of the αKGDH complex (OGDH2). Knockdown of SIAH2 or mutation of the ubiquitinated lysine residue on OGDH2 (336KA) reverses the hypoxic drop in αKGDH activity, stimulates glutamine oxidation, and reduces glutamine-dependent lipid synthesis. 336KA OGDH2-expressing cells require exogenous lipids or citrate for growth in hypoxia in vitro and fail to grow as model tumors in immunodeficient mice. Reversal of hypoxic mitochondrial function may provide a target for the development of next-generation anticancer agents targeting tumor metabolism. PMID:24506869

  8. Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis.

    PubMed Central

    Koh, G Y; Kim, S J; Klug, M G; Park, K; Soonpaa, M H; Field, L J

    1995-01-01

    Intracardiac grafts comprised of genetically modified skeletal myoblasts were assessed for their ability to effect long-term delivery of recombinant transforming growth factor-beta (TGF-beta) to the heart. C2C12 myoblasts were stably transfected with a construct comprised of an inducible metallothionein promoter fused to a modified TGF-beta 1 cDNA. When cultured in medium supplemented with zinc sulfate, cells carrying this transgene constitutively secrete active TGF-beta 1. These genetically modified myoblasts were used to produce intracardiac grafts in syngeneic C3Heb/FeJ hosts. Viable grafts were observed as long as three months after implantation, and immunohistological analyses of mice maintained on water supplemented with zinc sulfate revealed the presence of grafted cells which stably expressed TGF-beta 1. Regions of apparent neovascularization, as evidenced by tritiated thymidine incorporation into vascular endothelial cells, were observed in the myocardium which bordered grafts expressing TGF-beta 1. The extent of vascular endothelial cell DNA synthesis could be modulated by altering dietary zinc. Similar effects on the vascular endothelial cells were not seen in mice with grafts comprised of nontransfected cells. This study indicates that genetically modified skeletal myoblast grafts can be used to effect the local, long-term delivery of recombinant molecules to the heart. Images PMID:7529257

  9. Trypanosoma brucei Bloodstream Forms Depend upon Uptake of myo-Inositol for Golgi Complex Phosphatidylinositol Synthesis and Normal Cell Growth.

    PubMed

    González-Salgado, Amaia; Steinmann, Michael; Major, Louise L; Sigel, Erwin; Reymond, Jean-Louis; Smith, Terry K; Bütikofer, Peter

    2015-06-01

    myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol. PMID:25888554

  10. Synthesis, growth and characterization of ZnO microtubes using a traveling-wave mode microwave system

    SciTech Connect

    Al-Naser, Qusay A.H.; Zhou, Jian; Wang, Han; Liu, Guizhen; Wang, Lin

    2015-06-15

    Highlights: • ZnO microtubes were successfully synthesized within 15 min. • Introducing a design of a traveling-wave mode microwave system. • Growth temperature of ZnO microtubes becomes predominant between 1350 °C and 1400 °C. • ZnO microtube showed a strong ultraviolet and a weak and broad green emission. • ZnO microtube is composed only of ZnO with high crystallinity. - Abstract: Field emission scanning electron microscopy (FESEM) investigation reveals that zinc oxide (ZnO) microtubes have been successfully synthesized via a traveling-wave mode microwave system. These products are hexagonal tubular crystals with an average diameter of 60 μm and 250 μm in length, having a well faceted end and side surfaces. The wall thickness of the ZnO tubes is about 3–5 μm. The influence of reaction temperature on the formation of crystalline ZnO hexagonal tubes is studied. Room temperature photoluminescence (PL) spectra have also been examined to explore the optical property which exhibits strong ultraviolet emission at 377.422 nm and a weak and broad green emission band at 587.548 nm. X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) show that the product is composed only of ZnO with high crystallinity. The presented synthesis method possesses several advantages, which would be significant to the deeper study and wide applications of ZnO tubes in the future.

  11. The activation of fibroblast growth factors by heparin: synthesis, structure, and biological activity of heparin-like oligosaccharides.

    PubMed

    de Paz, J L; Angulo, J; Lassaletta, J M; Nieto, P M; Redondo-Horcajo, M; Lozano, R M; Giménez-Gallego, G; Martín-Lomas, M

    2001-09-01

    An effective strategy has been designed for the synthesis of oligosaccharides of different sizes structurally related to the regular region of heparin; this is illustrated by the preparation of hexasaccharide 1 and octasaccharide 2. This synthetic strategy provides the oligosaccharide sequence containing a D-glucosamine unit at the nonreducing end that is not available either by enzymatic or chemical degradation of heparin. It may permit, after slight modifications, the preparation of oligosaccharide fragments with different charge distribution as well. NMR spectroscopy and molecular dynamics simulations have shown that the overall structure of 1 in solution is a stable right-hand helix with four residues per turn. Hexasaccharide 1 and, most likely, octasaccharide 2 are, therefore, chemically well-defined structural models of naturally occurring heparin-like oligosaccharides for use in binding and biological activity studies. Both compounds 1 and 2 induce the mitogenic activity of acid fibroblast growth factor (FGF1), with the half-maximum activating concentration of 2 being equivalent to that of heparin. Sedimentation equilibrium analysis with compound 2 suggests that heparin-induced FGF1 dimerization is not an absolute requirement for biological activity. PMID:11828504

  12. Trypanosoma brucei Bloodstream Forms Depend upon Uptake of myo-Inositol for Golgi Complex Phosphatidylinositol Synthesis and Normal Cell Growth

    PubMed Central

    González-Salgado, Amaia; Steinmann, Michael; Major, Louise L.; Sigel, Erwin; Reymond, Jean-Louis

    2015-01-01

    myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na+- or H+-linked myo-inositol transporters. While Na+-coupled myo-inositol transporters are found exclusively in the plasma membrane, H+-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H+-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol. PMID:25888554

  13. A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop.

    PubMed

    Ware, K E; Hinz, T K; Kleczko, E; Singleton, K R; Marek, L A; Helfrich, B A; Cummings, C T; Graham, D K; Astling, D; Tan, A-C; Heasley, L E

    2013-01-01

    Despite initial and often dramatic responses of epidermal growth factor receptor (EGFR)-addicted lung tumors to the EGFR-specific tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, nearly all develop resistance and relapse. To explore novel mechanisms mediating acquired resistance, we employed non-small-cell lung cancer (NSCLC) cell lines bearing activating mutations in EGFR and rendered them resistant to EGFR-specific TKIs through chronic adaptation in tissue culture. In addition to previously observed resistance mechanisms including EGFR-T790M 'gate-keeper' mutations and MET amplification, a subset of the seven chronically adapted NSCLC cell lines including HCC4006, HCC2279 and H1650 cells exhibited marked induction of fibroblast growth factor (FGF) 2 and FGF receptor 1 (FGFR1) mRNA and protein. Also, adaptation to EGFR-specific TKIs was accompanied by an epithelial to mesenchymal transition (EMT) as assessed by changes in CDH1, VIM, ZEB1 and ZEB2 expression and altered growth properties in Matrigel. In adapted cell lines exhibiting increased FGF2 and FGFR1 expression, measures of growth and signaling, but not EMT, were blocked by FGFR-specific TKIs, an FGF-ligand trap and FGFR1 silencing with RNAi. In parental HCC4006 cells, cell growth was strongly inhibited by gefitinib, although drug-resistant clones progress within 10 days. Combined treatment with gefitinib and AZD4547, an FGFR-specific TKI, prevented the outgrowth of drug-resistant clones. Thus, induction of FGF2 and FGFR1 following chronic adaptation to EGFR-specific TKIs provides a novel autocrine receptor tyrosine kinase-driven bypass pathway in a subset of lung cancer cell lines that are initially sensitive to EGFR-specific TKIs. The findings support FGFR-specific TKIs as potentially valuable additions to existing targeted therapeutic strategies with EGFR-specific TKIs to prevent or delay acquired resistance in EGFR-driven NSCLC. PMID:23552882

  14. Understanding the Sub-Cellular Dynamics of Silicon Transportation and Synthesis in Diatoms Using Population-Level Data and Computational Optimization

    PubMed Central

    Javaheri, Narjes; Dries, Roland; Kaandorp, Jaap

    2014-01-01

    Controlled synthesis of silicon is a major challenge in nanotechnology and material science. Diatoms, the unicellular algae, are an inspiring example of silica biosynthesis, producing complex and delicate nano-structures. This happens in several cell compartments, including cytoplasm and silica deposition vesicle (SDV). Considering the low concentration of silicic acid in oceans, cells have developed silicon transporter proteins (SIT). Moreover, cells change the level of active SITs during one cell cycle, likely as a response to the level of external nutrients and internal deposition rates. Despite this topic being of fundamental interest, the intracellular dynamics of nutrients and cell regulation strategies remain poorly understood. One reason is the difficulties in measurements and manipulation of these mechanisms at such small scales, and even when possible, data often contain large errors. Therefore, using computational techniques seems inevitable. We have constructed a mathematical model for silicon dynamics in the diatom Thalassiosira pseudonana in four compartments: external environment, cytoplasm, SDV and deposited silica. The model builds on mass conservation and Michaelis-Menten kinetics as mass transport equations. In order to find the free parameters of the model from sparse, noisy experimental data, an optimization technique (global and local search), together with enzyme related penalty terms, has been applied. We have connected population-level data to individual-cell-level quantities including the effect of early division of non-synchronized cells. Our model is robust, proven by sensitivity and perturbation analysis, and predicts dynamics of intracellular nutrients and enzymes in different compartments. The model produces different uptake regimes, previously recognized as surge, externally-controlled and internally-controlled uptakes. Finally, we imposed a flux of SITs to the model and compared it with previous classical kinetics. The model

  15. Synthesis of high purity gallium nitride powders and growth and characterization of aluminum nitride and gallium nitride bulk single crystals

    NASA Astrophysics Data System (ADS)

    Balkas, Cengiz Mustafa

    Single crystalline platelets of aluminum nitride (AlN) ≤ 1 mm thick have been grown within the range 1950-2250sp°C on silicon carbide (SiC) substrates via sublimation-recondensation in a resistively heated graphite furnace. The source material was sintered AlN. A maximum growth rate of 500 mum/hr was achieved at 2150sp°C and a source-to-seed separation of 4 mm. Crystals grown at high temperatures ranged in color from blue to green due to the incorporation of Si and C from the SiC substrates; those grown at lower temperatures were colorless and transparent. Secondary-ion mass spectroscopy (SIMS) results showed approximately a two order of magnitude decrease in the concentrations of these two impurities in the transparent crystals. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy studies revealed low densities of line and planar defects and a strain free material. The synthesis of high purity, single phase GaN powders was accomplished in a hot wall tube furnace via (1) the reaction of Ga(l) with ammonia (NHsb3) and (2) the conversion of Gasb2Osb3(s). Polyhedra of various shapes were obtained from both processes; some rod-shaped crystals were also observed in the material derived from Gasb2Osb3. The GaN powders produced via the first route were characterized via XRD technique. The diffraction data revealed the material to be single phase with a = 3.1891 A, c = 5.1855 A, in space group P6sb3mc, Z = 2 and Dsb{x} = 6.0886 gr/cmsp3. Scanning electron microscopy revealed a particle size distribution in the ground material between 1 and 5 mum with most of the particles being {≈}1{mu}m. The data obtained in this study was chosen to be the new standard for the powder diffraction pattern for this material by the International Center for Diffraction Data. Single crystals of GaN up to 3 mm in length were grown by sublimation of pellets of this material under an NHsb3 flow. Typical green densities were 50 to 60% of theoretical density

  16. Synthesis of high-Tc superconductors at Uppsala University: ceramics and crystal growth

    NASA Astrophysics Data System (ADS)

    Lundström, Torsten; Lönnberg, Bertil; Tergenius, Lars-Erik

    1991-07-01

    Synthetic and process studies of the new high-Tc super-conductors are carried out using the methods of powder technology. The equipment for these studies at the Institute of Chemistry, University of Uppsala is described. The laboratory is equipped with jaw crusher, various mills, powder mixer, spray dryer and several sintering furnaces. The laboratory has excellent facilities for powder characterization, such as a semi-automatic image analyzer, a system for X-ray line broadening analysis, BET apparatus, sample divider and a sieving machine. Single-crystal growth experiments are also reported. Single crystals of YBa2Cu3O7 and Bi2Sr2CaCu2O8 were grown by the off-stoichiometric method. The largest crystals of YBa2Cu3O7 were obtained with the soaking temperature of 980°C and a cooling rate of 2°C h-1. A soaking temperature of 925°C and a cooling rate of 40°C h-1 produced the largest Bi2Sr2CaCu2O8 single crystals. A single crystal examination showed that the structure of Bi2Sr2CaCu2O8 is incommensurate along the b axis. The lattice parameters were a = 5.40 Å, b = 25.25 Å, c = 30.62 Å.

  17. Synthesis, growth, structure and characterization of chalcone crystal: A novel organic NLO material

    NASA Astrophysics Data System (ADS)

    Agilandeshwari, R.; Meenatchi, V.; Meenakshisundaram, S. P.

    2016-08-01

    Single crystals of a chalcone, (E)-3-(4-bromophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (BHP), were grown by the slow evaporation solution growth technique. The structure is elucidated by single-crystal X-ray diffraction analysis and the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. Optical studies reveal that the absorption is minimum in the visible region and the cut-off wavelength is at ∼468 nm. The band-gap energy was estimated by the application of the Kubelka-Munk algorithm. The powder X-ray diffraction pattern reveals the good crystallinity of the as-grown specimen. The vibrational patterns in FT-IR are used to identify the functional groups and thermal studies indicate the stability of the material. The second harmonic generation efficiency (SHG), as estimated by Kurtz and Perry powder technique, reveals the superior nonlinear optical character of this material. Hirshfeld surface analysis is done to quantify the intermolecular interactions, responsible for developing a nonlinear atmosphere. As-grown crystals were further characterized by SEM, NMR, mass spectrometry and elemental analysis.

  18. Synthesis, growth and characterization of γ-glycine - A promising material for optical applications

    NASA Astrophysics Data System (ADS)

    Sivakumar, N.; Jayaramakrishnan, V.; Baskar, K.; Anbalagan, G.

    2014-11-01

    Single crystals of γ-glycine have been grown by a slow evaporation solution growth technique (SEST) in presence of barium nitrate. The single crystal XRD confirms the hexagonal structure with the non-centrosymmetric space group P31. A high-resolution X-ray diffraction (HRXRD) rocking curve measurement reveals the good crystalline perfection. The linear refractive index estimated from the UV-Vis spectral data were fitted with Sellmeier's equation and the refractive index was found to be constant (n ≈ 2.55) over a wide range of wavelength. Hence, γ-glycine crystal can be used for optical waveguide applications. The relative SHG efficiency of γ-glycine crystal was studied by Kurtz and Perry powder technique. The third order nonlinear optical susceptibility was measured by Z-scan technique and the value was found to be χ(3) = 9.06 × 10-6 esu. The dispersion behavior of the linear refractive index was analyzed using the single oscillator model. The laser damage threshold value of γ-glycine crystal was estimated in single and multiple shot methods by using Nd:YAG laser.

  19. Toward smart implant synthesis: bonding bioceramics of different resorbability to match bone growth rates.

    PubMed

    Comesaña, Rafael; Lusquiños, Fernando; Del Val, Jesús; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Jones, Julian R; Hill, Robert G; Pou, Juan

    2015-01-01

    Craniofacial reconstructive surgery requires a bioactive bone implant capable to provide a gradual resorbability and to adjust to the kinetics of new bone formation during healing. Biomaterials made of calcium phosphate or bioactive glasses are currently available, mainly as bone defect fillers, but it is still required a versatile processing technique to fabricate composition-gradient bioceramics for application as controlled resorption implants. Here it is reported the application of rapid prototyping based on laser cladding to produce three-dimensional bioceramic implants comprising of a calcium phosphate inner core, with moderate in vitro degradation at physiological pH, surrounded by a bioactive glass outer layer of higher degradability. Each component of the implant is validated in terms of chemical and physical properties, and absence of toxicity. Pre-osteoblastic cell adhesion and proliferation assays reveal the adherence and growth of new bone cells on the material. This technique affords implants with gradual-resorbability for restoration of low-load-bearing bone. PMID:26032983

  20. Synthesis, growth, structure and characterization of chalcone crystal: A novel organic NLO material

    NASA Astrophysics Data System (ADS)

    Agilandeshwari, R.; Meenatchi, V.; Meenakshisundaram, S. P.

    2016-08-01

    Single crystals of a chalcone, (E)-3-(4-bromophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (BHP), were grown by the slow evaporation solution growth technique. The structure is elucidated by single-crystal X-ray diffraction analysis and the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. Optical studies reveal that the absorption is minimum in the visible region and the cut-off wavelength is at ∼468 nm. The band-gap energy was estimated by the application of the Kubelka-Munk algorithm. The powder X-ray diffraction pattern reveals the good crystallinity of the as-grown specimen. The vibrational patterns in FT-IR are used to identify the functional groups and thermal studies indicate the stability of the material. The second harmonic generation efficiency (SHG), as estimated by Kurtz and Perry powder technique, reveals the superior nonlinear optical character of this material. Hirshfeld surface analysis is done to quantify the intermolecular interactions, responsible for developing a nonlinear atmosphere. As-grown crystals were further characterized by SEM, NMR, mass spectrometry and elemental analysis.

  1. Toward Smart Implant Synthesis: Bonding Bioceramics of Different Resorbability to Match Bone Growth Rates

    PubMed Central

    Comesaña, Rafael; Lusquiños, Fernando; del Val, Jesús; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Jones, Julian R.; Hill, Robert G.; Pou, Juan

    2015-01-01

    Craniofacial reconstructive surgery requires a bioactive bone implant capable to provide a gradual resorbability and to adjust to the kinetics of new bone formation during healing. Biomaterials made of calcium phosphate or bioactive glasses are currently available, mainly as bone defect fillers, but it is still required a versatile processing technique to fabricate composition-gradient bioceramics for application as controlled resorption implants. Here it is reported the application of rapid prototyping based on laser cladding to produce three-dimensional bioceramic implants comprising of a calcium phosphate inner core, with moderate in vitro degradation at physiological pH, surrounded by a bioactive glass outer layer of higher degradability. Each component of the implant is validated in terms of chemical and physical properties, and absence of toxicity. Pre–osteoblastic cell adhesion and proliferation assays reveal the adherence and growth of new bone cells on the material. This technique affords implants with gradual-resorbability for restoration of low-load-bearing bone. PMID:26032983

  2. Hydrothermal synthesis of SnO{sub 2} nanorods: Morphology dependence, growth mec