Science.gov

Sample records for celss wheat residue

  1. Use of inedible wheat residues from the KSC-CELSS breadboard facility for production of fungal cellulase

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Brannon, M. A.; Garland, J. L.

    1990-01-01

    Cellulose and xylan (a hemicellulose) comprise 50 percent of inedible wheat residue (which is 60 percent of total wheat biomass) produced in the Kennedy Space Center Closed Ecological Life Support System (CELSS) Breadboard Biomass Production Chamber (BPC). These polysaccharides can be converted by enzymatic hydrolysis into useful monosaccharides, thus maximizing the use of BPC volume and energy, and minimizing waste material to be treated. The evaluation of CELSS-derived wheat residues for production for cellulase enzyme complex by Trichoderma reesei and supplemental beta-glucosidase by Aspergillus phoenicis is in progress. Results to date are given.

  2. Evaluation of Enzymatic Hydrolysis of CELSS Wheat Residue Cellulose at a Scale Environment to NASA's KSC Breadboard Project

    NASA Technical Reports Server (NTRS)

    Strayer, Richard F.

    1993-01-01

    Biomass processing at the Kennedy Space Center CELSS breadboard project has focused on the evaluation of breadboard-scale enzymatic hydrolysis of wheat residue cellulose (25%, w/w). Five replicate runs of cellulase production by Trichoderma reesei (QM9414) and enzymatic hydrolysis of residue cellulose were completed. Enzymes were produced in 1 0 days (5 L, 25 g (dry weight) residue). Cellulose hydrolysis (12 L, 50 g (dry weight) residue) using these enzymes produced 5.5 to 6.0 g glucose liter(exp -1) in 7 days. Cellulose conversion efficiency was 29%. These processes are feasible technically on a breadboard scale, but would only increase the edible wheat yield 10%.

  3. Electrolytic Removal of Nitrate From CELSS Crop Residues

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo; Sager, John

    1996-01-01

    The controlled ecological life support system (CELSS) resource recovery system is a waste processing system using aerobic and anaerobic bioreactors to recover plant nutrients and secondary foods from inedible biomass. Crop residues contain significant amounts of nitrate which presents two problems: (1) both CELSS biomass production and resource recovery consume large quantities of nitric acid, (2) nitrate causes a variety of problems in both aerobic and anaerobic bioreactors. A technique was proposed to remove the nitrate from potato inedible biomass leachate and to satisfy the nitric acid demand using a four compartment electrolytic cell.

  4. Preparations for CELSS flight experiments with wheat.

    PubMed

    Salisbury, F; Gillespie, L; Bingham, G

    1994-11-01

    We are planning a short-term experiment with Superdwarf wheat on the U.S. Space Shuttle and a seed-to-seed experiment on the Russian Space Station Mir. The goals of both experiments are to observe effects of microgravity on developmental steps in the life cycle and to measure photosynthesis, respiration, and transpiration by monitoring gas exchange. This requires somewhat different hardware development for the two experiments. Ground-based research aims to understand plant responses to the environments in the space growth chambers that we will use (after some modification): the Plant Growth Unit (PGU) on the shuttle and units called Svet, Svetoblock 2, or Oasis on Mir. Low irradiance levels (100 to 250 micromoles m-2 s-1 at best) pose a particular problem. Water and nutrient supply are also potentially limiting factors, especially in the long-term experiment. Our ground-based studies emphasize responses to low light levels (50 to 400 micromoles m-2 s-1); results show that all developmental steps are delayed by low light compared with plants at 400 micromoles m-2 s-1. We are also testing various rooting substrates for the shuttle experiment. A 1:1:1 mixture of peat:perlite:vermiculite appears to be the best choice. PMID:11540183

  5. Activation of a controlled ecological life support system (CELSS) breadboard facility - Wheat growth studies

    NASA Technical Reports Server (NTRS)

    Knott, William M.

    1987-01-01

    NASA's Controlled Ecological Life Support System (CELSS) will include subsystems for biomass production, food processing, and waste management in space. This paper discusses the CELSS Breadboard program, which is a research project for integration and evaluation of concepts and techniques of the CELSS facility, with special attention given to the Biomass Production Chamber (BPC). The design of the BPC and of its subsystems for nutrient delivery, atmospheric control, and computer control are discussed together with the subsystem control and monitoring parameter requirements. Results from preliminary wheat-growth tests in the BPC are included.

  6. Effects of Bioreactor Retention Time on Aerobic Microbial Decomposition of CELSS Crop Residues

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable, bioreactor retention time, on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.

  7. Effects of bioreactor retention time on aerobic microbial decomposition of CELSS crop residues

    NASA Astrophysics Data System (ADS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable--bioreactor retention time--on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO_2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.

  8. Effects of photoperiod on wheat growth, development and yield in CELSS

    NASA Astrophysics Data System (ADS)

    Yunze, Shen; Shuangsheng, Guo

    2014-12-01

    A Controlled Ecological Life Support System (CELSS) is a sealed system used in spaceflight in order to provide astronauts with food and O2 by plants. It is of great significance to increase the energy-using efficiency because energy is extremely deficient in the space. Therefore, the objective of this research was to increase the energy-using efficiency of wheat by regulating the photoperiod. Sixteen treatments were set in total: four photoperiods before flowering (PBF) combined with four photoperiods after flowering (PAF) of 12 h, 16 h, 20 h and 24 h. The light source was red-blue LED (90% red+10% blue). As a result, the growth period of wheat was largely extended by shorter PBF, particularly the number of days from tillering to jointing and from jointing to heading. The period from flowering to maturity was extended by shorter PAF. Shorter PBF and longer PAF could increase not only the yield but also the energy-using efficiency of wheat. As for the nutritional quality, longer photoperiod (both PBF and PAF) increased starch concentration as well as decreased protein concentration of seeds. The effects of PBF and PAF were interactional. The lighting strategy with PBF of 12 h and PAF of 24 h was proved to be the optimum photoperiod for wheat cultivation in CELSS. The mechanisms of photoperiod effect contain two aspects. Firstly, photoperiod is a signal for many processes in plant growth, particularly the process of ear differentiation. Shorter PBF promoted the ear differentiation of wheat, increasing the spikelet number, floret number and seed number and thus enhancing the yield. Secondly, longer photoperiod leads to more light energy input and longer time of photosynthesis, so that longer PAF provided more photosynthate and increased seed yield.

  9. Evaluation of an anaerobic digestion system for processing CELSS crop residues for resource recovery.

    PubMed

    Strayer, R F; Finger, B W; Alazraki, M P

    1997-01-01

    Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw day-1) that converted 33% of feed (dry weight loss) to CO2 and "volatile fatty acids" (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH4(+)-N and the remainder unaccounted and probably lost to denitrification and NH4+ volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH4(+)-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 23 day hydraulic retention time) was used to convert successfully the remaining NH4(+)-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production. PMID:11542583

  10. Evaluation of an Anaerobic Digestion System for Processing CELSS Crop Residues for Resource Recovery

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw/day) that converted 33% of feed (dry weight loss) to CO2 and "volatile fatty acids" (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH4(+)-N and the remainder unaccounted and probably lost to denitrification and NH4(+) volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH4(+)-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 2 day hydraulic retention time) was used to convert successfully the remaining NH4(+)-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production.

  11. Evaluation of an anaerobic digestion system for processing CELSS crop residues for resource recovery

    NASA Astrophysics Data System (ADS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw day^-1) that converted 33% of feed (dry weight loss) to CO_2 and ``volatile fatty acids'' (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH_4^+-N and the remainder unaccounted and probably lost to denitrification and NH_4^+ volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH_4^+-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 2 day hydraulic retention time) was used to convert successfully the remaining NH_4^+-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production.

  12. Residue management tactics for corn following spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers are interested in tactics for managing crop residues when growing corn after spring wheat. We compared five systems of managing spring wheat residues: conventional tillage, no-till, strip-till, cover crop (hairy vetch) with no-till, and cover crop with strip-till following spring wheat. ...

  13. Storage stability of screwpress-extracted oils and residual meals from CELSS candidate oilseed crops

    NASA Astrophysics Data System (ADS)

    Stephens, S. D.; Watkins, B. A.; Nielsen, S. S.

    1997-01-01

    The efficacy of using screwpress extraction for oil was studied with three Controlled Ecological Life-Support System (CELSS) candidate oilseed crops (soybean, peanut, and canola), since use of volatile organic solvents for oil extraction likely would be impractical in a closed system. Low oil yields from initial work indicated that a modification of the process is necessary to increase extraction efficiency. The extracted oil from each crop was tested for stability and sensory characteristics. When stored at 23 degC, canola oil and meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. When stored at 65 degC, soybean oil and canola meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. Sensory evaluation of the extracted oils used in bread and salad dressing indicated that flavor, odor intensity, acceptability, and overall preference may be of concern for screwpress-extracted canola oil when it is used in an unrefined form. Overall results with screwpress-extracted crude oils indicated that soybean oil may be more stable and acceptable than canola or peanut under typical storage conditions.

  14. Diet expert subsystem for CELSS

    NASA Technical Reports Server (NTRS)

    Yendler, Boris S.; Nguyen, Thoi K.; Waleh, Ahmad

    1991-01-01

    An account is given of the mathematical basis of a diet-controlling expert system, designated 'Ceres' for the human crews of a Controlled Ecological Life Support System (CELSS). The Ceres methodology can furnish both steady-state and dynamic diet solutions; the differences between Ceres and a conventional nutritional-modeling method is illustrated by the case of a three-component, potato-wheat-soybean food system. Attention is given to the role of food processing in furnishing flexibility in diet-planning management. Crew diet solutions based on simple optimizations are not necessarily the most suitable for optimum CELSS operation.

  15. Characterization of the water soluble component of inedible residue from candidate CELSS crops

    NASA Technical Reports Server (NTRS)

    Garland, Jay

    1992-01-01

    Recycling of inorganic nutrients required for plant growth will be a necessary component of a fully closed, bioregenerative life support system. This research characterized the recovery of plant nutrients from the inedible fraction of three crop types (wheat, potato, and soybean) by soaking, or leaching, in water. A considerable portion of the dry weight of the inedible biomass was readily soluble (29 percent for soybean, 43 percent for wheat, and 52 percent for potato). Greater weight loss from potato was a result of higher tissue concentrations of potassium, nitrate, and phosphate. Approximately 25 percent of the organic content of the biomass was water soluble, while the majority of most inorganic nutrients, except for calcium and iron, were recovered in the leachate. Direct use of the leachates in hydroponic media could provide between 40-90 percent of plant nutrient demands for wheat, and 20-50 percent of demand for soybean and potato. Further evaluation of leaching as a component of resource recovery scheme in a bioregenerative system requires study of (1) utilization of plant leachates in hydroponic plant culture; and (2) conversion of organic material (both soluble and insoluble) into edible, or other useful, products.

  16. A 'breadboard' biomass production chamber for CELSS

    NASA Technical Reports Server (NTRS)

    Prince, Ralph P.; Knott, William M., III; Hilding, Suzanne E.; Mack, Tommy L.

    1987-01-01

    The Breadboard Project of the Controlled Ecological Life Support System (CELSS) Program is the first attempt by NASA to integrate the primary components of a bioregenerative life support system into a functioning system. The central component of this project is a Biomass Production Chamber (BPC). The BPC is under construction, and when finished will be sealed for the study of the flux of gases, liquids, and solids through the production module of a CELSS. Features of the CELSS breadboard facility will be covered as will design requirements for the BPC. Cultural practices developed for wheat for the BPC wil be discussed.

  17. Fate of wheat bound malathion residues in rats during gestation.

    PubMed

    Bitsi, G A; Singh, K; Khan, S U; Akhtar, M H; Kacew, S; White, N D

    1994-08-01

    Malathion [S-1,2-di(ethoxycarbonyl) ethyl 0,0-dimethyl phosphorodithioate], treated wheat when stored for 28 months at 20 degrees C with or without food grade white mineral oil on grains contained about 62 and 79% of the applied insecticide as bound residues, respectively. These bound residues were present mainly in the form of the parent compound. The stored wheat containing bound malathion residues, as well as wheat material freshly spiked with malathion were fed to rats during gestation. No residues of malathion and/or metabolites were detected in urine, feces and body tissues. Further no significant effect on body weight, serum chemistry and cytochrome P450 levels were observed in the mothers. There was no evidence for the histopathological alteration or teratogenic anomalies in the fetuses. However, placental transfer of malathion was indicated by the presence of the insecticide residues in fetuses from rats fed wheat material containing bound residues. PMID:7922151

  18. Chemical characterization of some aqueous leachates from crop residues in 'CELSS'

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1992-01-01

    Aqueous leachate samples prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions have been compared and general chemical characterization has been accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified, however, general composition related to the presence of phenol-like compounds was explored.

  19. Organochlorine pesticide residues in wheat from Konya region, Turkey.

    PubMed

    Guler, G O; Cakmak, Y S; Dagli, Z; Aktumsek, A; Ozparlak, H

    2010-05-01

    The present study has been carried out to evaluate the organochlorine pesticide contamination in wheat from Konya region. This region is the largest area of cereal production in Turkey. The contamination level has been determined according to the European Community Directives. Different wheat samples (36) were obtained from local farmers and wheat factories in this region. All the wheat samples examined were found to be contaminated by organochlorine pesticide residues of cis-Chlordane and methoxychlor. Chlordane isomers, methoxychlor, DDT and its metabolites, aldrin, beta HCH, heptachlor and lindane have been found to be the highest organochlorine pesticide residues. In some of these samples, various organochlorine pesticide residues have been determined to be higher than European Community maximum residual limits. The residues of aldrin in one sample, trans-Chlordane in one sample, oxy-chlordane in eight samples and methoxychlor in one sample were found to be in excess of EC MRLs. Since most of the samples have been found to be contaminated with residues and some residues exceed EC MRLs, a control of organochlorine pesticide residues in wheat is necessary. PMID:20156519

  20. Residual phosphorus and zinc influence wheat productivity under rice-wheat cropping system.

    PubMed

    Amanullah; Inamullah

    2016-01-01

    Continuous cropping of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) deplete soil fertility and crop productivity. One strategy to increase crop productivity under rice-wheat system is balanced application of crop nutrients. Field experiment was conducted to assess the impact of phosphorus (0, 40, 80, 120 kg P ha(-1)) and zinc (0, 5, 10, 15 kg Zn ha(-1)) on the productivity of rice genotypes (fine and coarse) and their residual effects on the grain yield (GY) and its components (YC) of the succeeding wheat crop under rice-wheat cropping system (RWCS) in North Western Pakistan during 2011-12 and 2012-13. After rice harvest in both years, wheat variety "Siren-2010" was grown on the same layout but no additional P, K and Zn was applied to wheat crop in each year. The GY and YC of wheat significantly increased in the treatments receiving the higher P levels (120 > 80 > 40 > 0 kg P ha(-1)) and Zn (15 > 10 > 5 > 0 kg Zn ha(-1)) in the previous rice crop. The residual soil P and Zn contents after rice harvest, GY and YC of wheat increased significantly under low yielding fine genotype (B-385) as compared to the high yielding coarse genotypes (F-Malakand and Pukhraj). The residual soil P and Zn, GY and of wheat increased significantly in the second year as compared with the first year of experiment. These results confirmed strong carry over effects of both P and Zn applied to the previous rice crop on the subsequent wheat crop under RWCS. PMID:27026947

  1. Management of Fresh Wheat Residue for Irrigated Winter Canola Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter canola is popular with many irrigated growers as it provides excellent disease control benefits for potatoes grown in rotation. There is a belief among irrigated canola growers that fresh wheat residue must be burned and the soil then heavily tilled before winter canola is planted. These grow...

  2. Mathematical modeling of control subsystems for CELSS: Application to diet

    NASA Technical Reports Server (NTRS)

    Waleh, Ahmad; Nguyen, Thoi K.; Kanevsky, Valery

    1991-01-01

    The dynamic control of a Closed Ecological Life Support System (CELSS) in a closed space habitat is of critical importance. The development of a practical method of control is also a necessary step for the selection and design of realistic subsystems and processors for a CELSS. Diet is one of the dynamic factors that strongly influences, and is influenced, by the operational states of all major CELSS subsystems. The problems of design and maintenance of a stable diet must be obtained from well characterized expert subsystems. The general description of a mathematical model that forms the basis of an expert control program for a CELSS is described. The formulation is expressed in terms of a complete set of time dependent canonical variables. System representation is dynamic and includes time dependent storage buffers. The details of the algorithm are described. The steady state results of the application of the method for representative diets made from wheat, potato, and soybean are presented.

  3. CELSS Transportation Analysis

    NASA Technical Reports Server (NTRS)

    Olson, R. L.; Gustan, E. A.; Vinopal, T. J.

    1985-01-01

    Regenerative life support systems based on the use of biological material was considered for inclusion in manned spacecraft. Biological life support systems are developed in the controlled ecological life support system (CELSS) program. Because of the progress achieved in the CELSS program, it is determined which space missions may profit from use of the developing technology. Potential transportation cost savings by using CELSS technology for selected future manned space missions was evaluated. Six representative missions were selected which ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The analytical study approach and the missions and systems considered, together with the benefits derived from CELSS when applicable are described.

  4. Dissipation and Residues of Dichlorprop-P and Bentazone in Wheat-Field Ecosystem.

    PubMed

    Feng, Xiaoxiao; Yu, Jianlei; Pan, Lixiang; Song, Guochun; Zhang, Hongyan

    2016-01-01

    Dichlorprop-P and bentazone have been widely used in the prevention and control of weeds in wheat field ecosystems. There is a concern that pesticide residues and metabolites remain on or in the wheat. Thus, the study of the determination and monitoring of their residues in wheat has important significance. A rapid, simple and reliable QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method was modified, developed and validated for the determination of dichlorprop-P, bentazone and its metabolites (6-hydroxy-bentazone and 8-hydroxy-bentazone) in wheat (wheat plants, wheat straw and grains of wheat) using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The average recoveries of this method ranged from 72.9% to 108.7%, and the limits of quantification (LOQs) were 2.5-12 μg/kg. The dissipation and final residue of four compounds in three provinces (Shandong, Jiangsu and Heilongjiang) in China were studied. The trial results showed that the half-lives of dichlorprop-P and bentazone were 1.9-2.5 days and 0.5-2.4 days in wheat plants, respectively. The terminal residues in grains of wheat and wheat straw at harvest were all much below the maximum residue limit (MRL) of 0.2 mg/kg for dichlorprop-P and 0.1 mg/kg for bentazone established by the European Union (EU, Regulation No. 396/2005). PMID:27240385

  5. CELSS engineering parameters

    NASA Technical Reports Server (NTRS)

    Drysdale, Alan; Sager, John; Wheeler, Ray; Fortson, Russ; Chetirkin, Peter

    1993-01-01

    The most important Controlled Ecological Life Support System (CELSS) engineering parameters are, in order of decreasing importance, manpower, mass, and energy. The plant component is a significant contributor to the total system equivalent mass. In this report, a generic plant component is described and the relative equivalent mass and productivity are derived for a number of instances taken from the KSC CELSS Breadboard Project data and literature. Typical specific productivities (edible biomass produced over 10 years divided by system equivalent mass) for closed systems are of the order of 0.2.

  6. Quantifying the Effects of Wheat Residue on Severity of Stagonospora nodorum Blotch and Yield in Winter Wheat.

    PubMed

    Mehra, L K; Cowger, C; Weisz, R; Ojiambo, P S

    2015-11-01

    Stagonospora nodorum blotch (SNB), caused by the fungus Parastagonospora nodorum, is a major disease of wheat (Triticum aestivum). Residue from a previously infected wheat crop can be an important source of initial inoculum, but the effects of infected residue on disease severity and yield have not previously been quantified. Experiments were conducted in Raleigh and Salisbury, North Carolina, in 2012, 2013, and 2014 using the moderately susceptible winter wheat cultivar DG Shirley. In 2014, the highly susceptible cultivar DG 9012 was added to the experiment and the study was conducted at an additional site in Tyner, North Carolina. Four (2012) or six (2013 and 2014) wheat residue treatments were applied in the field in a randomized complete block design with five replicates. Treatments in 2012 were 0, 30, 60, and 90% residue coverage of the soil surface, while 10 and 20% residue treatments were added in 2013 and 2014. Across site-years, disease severity ranged from 0 to 50% and increased nonlinearly (P < 0.05) as residue level increased, with a rapid rise to an upper limit and showing little change in severity above 20 to 30% soil surface coverage. Residue coverage had a significant (P < 0.05) effect on disease severity in all site-years. The effect of residue coverage on yield was only significant (P < 0.05) for DG Shirley at Raleigh and Salisbury in 2012 and for DG 9012 at Salisbury in 2014. Similarly, residue coverage significantly (P < 0.05) affected thousand-kernel weight only of DG 9012 in 2014 at Raleigh and Salisbury. Our results showed that when wheat residue was sparse, small additions to residue density produced greater increases in SNB than when residue was abundant. SNB only led to effects on yield and test weight in the most disease-conducive environments, suggesting that the economic threshold for the disease may be higher than previously assumed and warrants review. PMID:26167761

  7. CELSS transportation analysis.

    PubMed

    Olson, R L; Gustan, E A; Vinopal, T J

    1984-01-01

    Regenerative life support systems based on the use of biological material have been considered for inclusion in manned spacecraft since the early days of the United States space program. These biological life support systems are currently being developed by NASA in the Controlled Ecological Life Support Systems (CELSS) program. Because of the progress being achieved in the CELSS program, it is time to determine which space missions may profit from use of the developing technology. This paper presents the results of a study that was conducted to estimate where potential transportation cost savings could be anticipated by using CELSS technology for selected future manned space missions. Six representative missions were selected for study from those included in NASA planning studies. The selected mission ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The paper present the analytical study approach and describes the missions and systems considered, together with the benefits derived from CELSS when applicable. PMID:11537781

  8. Dissipation and Residues of Dichlorprop-P and Bentazone in Wheat-Field Ecosystem

    PubMed Central

    Feng, Xiaoxiao; Yu, Jianlei; Pan, Lixiang; Song, Guochun; Zhang, Hongyan

    2016-01-01

    Dichlorprop-P and bentazone have been widely used in the prevention and control of weeds in wheat field ecosystems. There is a concern that pesticide residues and metabolites remain on or in the wheat. Thus, the study of the determination and monitoring of their residues in wheat has important significance. A rapid, simple and reliable QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method was modified, developed and validated for the determination of dichlorprop-P, bentazone and its metabolites (6-hydroxy-bentazone and 8-hydroxy-bentazone) in wheat (wheat plants, wheat straw and grains of wheat) using high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The average recoveries of this method ranged from 72.9% to 108.7%, and the limits of quantification (LOQs) were 2.5–12 μg/kg. The dissipation and final residue of four compounds in three provinces (Shandong, Jiangsu and Heilongjiang) in China were studied. The trial results showed that the half-lives of dichlorprop-P and bentazone were 1.9–2.5 days and 0.5–2.4 days in wheat plants, respectively. The terminal residues in grains of wheat and wheat straw at harvest were all much below the maximum residue limit (MRL) of 0.2 mg/kg for dichlorprop-P and 0.1 mg/kg for bentazone established by the European Union (EU, Regulation No. 396/2005). PMID:27240385

  9. Controlled Ecological Life Support System - CELSS

    NASA Technical Reports Server (NTRS)

    Sager, John C.

    1992-01-01

    The Controlled Ecological Life Support System (CELSS) Program, a NASA effort to develop bioregenerative systems which provide required life support elements for crews on long duration space missions or extraterrestrial planetary colonizations, is briefly discussed. The CELSS analytical requirements are defined in relation to the life support objectives and priorities of a CELSS. The first phase of the CELSS Breadboard Concept is shown.

  10. The NASA CELSS program

    NASA Technical Reports Server (NTRS)

    Averner, Maurice M.

    1990-01-01

    The NASA Controlled Ecological Life Support System (CELSS) program was initiated with the premise that NASA's goal would eventually include extended duration missions with sizable crews requiring capabilities beyond the ability of conventional life support technology. Currently, as mission duration and crew size increase, the mass and volume required for consumable life support supplies also increase linearly. Under these circumstances the logistics arrangements and associated costs for life support resupply will adversely affect the ability of NASA to conduct long duration missions. A solution to the problem is to develop technology for the recycling of life support supplies from wastes. The CELSS concept is based upon the integration of biological and physico-chemical processes to construct a system which will produce food, potable water, and a breathable atmosphere from metabolic and other wastes, in a stable and reliable manner. A central feature of a CELSS is the use of green plant photosynthesis to produce food, with the resulting production of oxygen and potable water, and the removal of carbon dioxide.

  11. Effects of Decomposition on Remotely Sensed Estimates of Wheat Residue Cover

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of crop residue cover is required to assess the extent of conservation tillage. Our objectives were to measure the changes in wheat straw composition and spectral reflectance during decomposition and to assess impact of these changes on remotely sensed estimates of residue cover. Mesh...

  12. Plant uptake of pesticides and human health: dynamic modeling of residues in wheat and ingestion intake.

    PubMed

    Fantke, Peter; Charles, Raphaël; de Alencastro, Luiz Felippe; Friedrich, Rainer; Jolliet, Olivier

    2011-11-01

    Human intake of pesticide residues from consumption of processed food plays an important role for evaluating current agricultural practice. We take advantage of latest developments in crop-specific plant uptake modeling and propose an innovative dynamic model to estimate pesticide residues in the wheat-environment system, dynamiCROP. We used this model to analyze uptake and translocation of pesticides in wheat after foliar spray application and subsequent intake fractions by humans. Based on the evolution of residues in edible parts of harvested wheat we predict that between 22 mg and 2.1 g per kg applied pesticide are taken in by humans via consumption of processed wheat products. Model results were compared with experimentally derived concentrations in wheat ears and with estimated intake via inhalation and ingestion caused by indirect emissions, i.e. the amount lost to the environment during pesticide application. Modeled and measured concentrations in wheat fitted very well and deviate from less than a factor 1.5 for chlorothalonil to a maximum factor 3 for tebuconazole. Main aspects influencing pesticide fate behavior are degradation half-life in plant and time between pesticide application and crop harvest, leading to variations in harvest fraction of at least three orders of magnitude. Food processing may further reduce residues by approximately 63%. Intake fractions from residues in sprayed wheat were up to four orders of magnitude higher than intake fractions estimated from indirect emissions, thereby demonstrating the importance of exposure from consumption of food crops after direct pesticide treatment. PMID:21955352

  13. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions.

    PubMed

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  14. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    PubMed Central

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  15. Dissipation and residue behavior of mepiquat on wheat and potato field application.

    PubMed

    Zhang, Fengzu; Fan, Sufang; Liu, Shaowen; Li, Xuesheng; Pan, Canping

    2013-11-01

    A modified LC-MS method for the analysis of mepiquat residue in wheat, potato, and soil was developed and validated. A hydrophilic interaction liquid chromatographic column has been successfully used to retain and separate the mepiquat. Mepiquat residue dynamics and final residues in supervised field trials at Good Agricultural Practice (GAP) conditions in wheat, potato, and soil were studied. The limits of quantification for mepiquat in all samples were all 0.007 mg kg(-1), which were lower than their maximum residue limits. At fortification levels of 0.04, 0.2, and 2 mg kg(-1) in all samples, recoveries ranged from 77.5 to 116.4% with relative standard deviations of 0.4-7.9% (n = 5). The dissipation half-lives (T 1/2) of mepiquat in soil (wheat), wheat plants, soil (potato), and potato plants were 4.5-6.3, 3.0-5.6, 2.2-4.6, and 2.4-3.2 days, respectively. The final residues of mepiquat were below 0.153 mg kg(-1) in soil (wheat), 0.052-1.900 mg kg(-1) in wheat, below 0.072 mg kg(-1) in soil (potato), and below 1.173 mg kg(-1) in potato at harvest time. Moreover, pesticide risk assessment for all the detected residues was conducted. A maximum 0.0012% of acceptable daily intake (150 mg kg(-1)) for national estimated daily intake indicated low dietary risk of these products. PMID:23649477

  16. A Lab-Scale CELSS

    NASA Technical Reports Server (NTRS)

    Flynn, Mark E.; Finn, Cory K.; Srinivasan, Venkatesh; Sun, Sidney; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    It has been shown that prohibitive resupply costs for extended-duration manned space flight missions will demand that a high degree of recycling and in situ food production be implemented. A prime candidate for in situ food production is the growth of higher level plants. Research in the area of plant physiology is currently underway at many institutions. This research is aimed at the characterization and optimization of gas exchange, transpiration and food production of higher plants in order to support human life in space. However, there are a number of unresolved issues involved in making plant chambers an integral part of a closed life support system. For example, issues pertaining to the integration of tightly coupled, non-linear systems with small buffer volumes will need to be better understood in order to ensure successful long term operation of a Controlled Ecological Life Support System (CELSS). The Advanced Life Support Division at NASA Ames Research Center has embarked on a program to explore some of these issues and demonstrate the feasibility of the CELSS concept. The primary goal of the Laboratory Scale CELSS Project is to develop a fully-functioning integrated CELSS on a laboratory scale in order to provide insight, knowledge and experience applicable to the design of human-rated CELSS facilities. Phase I of this program involves the integration of a plant chamber with a solid waste processor. This paper will describe the requirements, design and some experimental results from Phase I of the Laboratory Scale CELSS Program.

  17. CELSS for advanced manned mission

    NASA Technical Reports Server (NTRS)

    Olson, R. L.; Oleson, M. W.; Slavin, T. J.

    1988-01-01

    An overview of the major concepts of Controlled Ecological Life Support System (CELSS) includes an identification of environmental factors, such as gravity levels, light levels, and growth volume, that influence the type of CELSS system that can be developed. Various plant growth systems are described together with their possible space applications. Life support functions performed by plants include food production, atmosphere regeneration, and water purification. Selected relationships between biological and physical-chemical life support techniques are considered as a part of these functions. Consumers in a CELSS may be humans, animals, or microorganisms, but nutritional, water, and atmosphere requirements of humans are emphasized in this report, as they are the primary requirement drivers for a CELSS design. The human role in waste generation is discussed as it affects plant nutrient availability. The role of waste management systems in recovering nutrients for plant growth and requirements for CELSS are defined for air, water, and food. Both physical and a biological nutrient recovery/waste disposal systems are examined. The separate subsystems of a CELSS are identified and discussed. Nutrient recovery, plant irradiation, automation, and facilities equipment and applications are reviewed with special attention to direct solar irradiation using fiber optics. These subsystems, along with other environmental control systems, such as thermal, humidity, and ventilation, are essential to plant growth in the space environment.

  18. Wheat roots and residue effects on soil aggregation and carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have been identified for a number of off-field uses. Poor understanding of the role of crop residues in key soil processes limits our ability to predict sustainable crop residue removal rates. A study was conducted to compare aggregate size distribution, aggregate stability, and soil ...

  19. Modeling the growth dynamics of four candidate crops for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1987-01-01

    The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data.

  20. CELSS Program Meeting

    NASA Technical Reports Server (NTRS)

    Tremor, John W.; Macelroy, Robert D.

    1987-01-01

    A meeting on the potential contributions of plant science to the goals of Controlled Ecological Life Support System (CELSS) research produced discussions that helped to focus on a variety of topics. In the area of volatiles and soluble organics, microbial activity, disease, and productivity, participants emphasized the need to know more about the consequences of closure for the growth of plants. Under nutrient delivery systems, the problems focus on the need to maintain a stable, optimum nutrient system. Lighting systems discussions emphasized unique methods of direct lighting and development of improved irradiation sources. Flight experiment opportunities were outlined by one speaker. Documentation of the Plant Growth Module was discussed. The last day's discussion focused on the organization of the research group to be involved in the development and use of a two to three cubic meter sealed chamber and ancillary equipment.

  1. Substitution of conserved cysteine residues in Wheat streak mosaic virus HC-Pro abolishes virus transmission by the wheat curl mite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Substitutions in the amino-terminal region of Wheat streak mosaic virus (WSMV) HC-Pro were evaluated for effects on transmission by the wheat curl mite (Aceria tosichella Keifer). Alanine substitution at cysteine residues 16, 46 and 49 abolished vector transmission. Although alanine substitution a...

  2. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1993-01-01

    During the past several years, the NASA Program in Controlled Ecological Life Support Systems (CELSS) has continued apace with crop research and logistic, technological, and scientific strides. These include the CELSS Test Facility planned for the space station and its prototype Engineering Development Unit, soon to be active at Ames Research Center (as well as the advanced crop growth research chamber at Ames); the large environmental growth chambers and the planned human test bed facility at Johnson Space Center; the NSCORT at Purdue with new candidate crops and diverse research into the CELSS components; the gas exchange data for soy, potatoes, and wheat from Kennedy Space Center (KSC); and the high-precision gas exchange data for wheat from Utah State University (USU). All these developments, taken together, speak to the need for crop modeling as a means to connect the findings of the crop physiologists with the engineers designing the system. A need also exists for crop modeling to analyze and predict the gas exchange data from the various locations to maximize the scientific yield from the experiments. One fruitful approach employs what has been called the 'energy cascade'. Useful as a basis for CELSS crop growth experimental design, the energy cascade as a generic modeling approach for CELSS crops is a featured accomplishment in this report. The energy cascade is a major tool for linking CELSS crop experiments to the system design. The energy cascade presented here can help collaborations between modelers and crop experimenters to develop the most fruitful experiments for pushing the limits of crop productivity. Furthermore, crop models using the energy cascade provide a natural means to compare, feature for feature, the crop growth components between different CELSS experiments, for example, at Utah State University and Kennedy Space Center.

  3. In situ dynamics of microbial communities during decomposition of wheat, rape, and alfalfa residues.

    PubMed

    Pascault, Noémie; Cécillon, Lauric; Mathieu, Olivier; Hénault, Catherine; Sarr, Amadou; Lévêque, Jean; Farcy, Pascal; Ranjard, Lionel; Maron, Pierre-Alain

    2010-11-01

    Microbial communities are of major importance in the decomposition of soil organic matter. However, the identities and dynamics of the populations involved are still poorly documented. We investigated, in an 11-month field experiment, how the initial biochemical quality of crop residues could lead to specific decomposition patterns, linking biochemical changes undergone by the crop residues to the respiration, biomass, and genetic structure of the soil microbial communities. Wheat, alfalfa, and rape residues were incorporated into the 0-15 cm layer of the soil of field plots by tilling. Biochemical changes in the residues occurring during degradation were assessed by near-infrared spectroscopy. Qualitative modifications in the genetic structure of the bacterial communities were determined by bacterial-automated ribosomal intergenic spacer analysis. Bacterial diversity in the three crop residues at early and late stages of decomposition process was further analyzed from a molecular inventory of the 16S rDNA. The decomposition of plant residues in croplands was shown to involve specific biochemical characteristics and microbial community dynamics which were clearly related to the quality of the organic inputs. Decay stage and seasonal shifts occurred by replacement of copiotrophic bacterial groups such as proteobacteria successful on younger residues with those successful on more extensively decayed material such as Actinobacteria. However, relative abundance of proteobacteria depended greatly on the composition of the residues, with a gradient observed from alfalfa to wheat, suggesting that this bacterial group may represent a good indicator of crop residues degradability and modifications during the decomposition process. PMID:20593174

  4. Earth to lunar CELSS evolution

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comprehensive results of human activities on the environment, such as deforestation and ozone depletion, and the natural laws that govern the global environment have yet to be determined. Closed Ecological Life Support Systems (CELSS) research can play an instrumental role in dispelling these mysteries, as well as have the ability to support life in hostile environments, which the Earth one day may become. CELSS conclusions, such as the timescales in which plants fix carbon dioxide (CO2), will be the key to understanding each component and how it affects the ecological balance between plants and animals, the environment, and the biological engines that drive Earth's system. However, to understand how CELSS can be used as an investigative tool, the concept of a CELSS must be clearly defined. A definition of CELSS is given. The evolutionary establishment of a lunar base with a bioregenerative life support system in a Space Station Freedom (SSF) module to support a crew of four for two weeks duration was chosen as the design topic.

  5. Determination of multi-residue insecticides of organochlorine, organophosphorus, and pyrethroids in wheat.

    PubMed

    Riazuddin; Khan, Muhammad Farhanullah; Iqbal, Sajid; Abbas, Muhammad

    2011-09-01

    The undesirable effects of green revolution include residues of extensively used pesticides in various food commodities. Several studies showed that pesticides could cause health problems. Keeping in view the problem of pesticide residues in various food commodities, the present study was conducted on domestic stored wheat as well as on imported wheat for the qualitative and quantitative analysis of organochlorine, organophosphorus and pyrethroids. Among the imported wheat, 22.5% samples were found contaminated by organophosphorus (chlorpyrifos 0.073-0.230 μg/g, malathion 0.0419-0.1003 μg/g) and pyrethroids (cypermethrin 0.1404-0.2005 μg/g, permethrin 0.0140-0.0480 μg/g) while in domestic wheat 6.7% samples were found contaminated by pyrethroids (deltamethrin 0.0650-1.2903 μg/g) only. Method used for extraction and analysis of insecticides was validated both by recovery studies and inter laboratory comparison proficiency test. The method recovery results show that the average recovery of the fortified wheat samples was in the range of 73.77%-100.17% with the RSD in the range of 2.21-9.27 whereas, the Z-scores of the inter laboratory comparison proficiency test's result was less than 2. PMID:21656043

  6. Effects of Vermicompost and Water Treatment Residuals on Soil Physical Properties and Wheat Yield

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mahmoud M.; Mahmoud, Essawy K.; Ibrahim, Doaa A.

    2015-04-01

    The application of vermicompost and water treatment residuals to improve the physical properties in the salt affected soils is a promising technology to meet the requirements of high plant growth and cost-effective reclamation. Therefore, the aim of this study was to investigate the effect of vermicompost and its mixtures with water treatment residuals on selected physical properties of saline sodic soil and on wheat yield. The treatments were vermicompost, water treatment residuals, vermicompost + water treatment residuals (1:1 and 2:1 wet weight ratio) at levels of 5 and 10 g dry weight kg-1 dry soil. The considered physical properties included aggregate stability, mean weight diameter, pore size distribution and dry bulk density. The addition of vermicompost and water treatment residuals had significant positive effects on the studied soil physical properties, and improved the grain yield of wheat. The treatment of (2 vermicompost + 1 water treatment residuals) at level of 5 g kg-1 soil gave the best grain yield. Combination of vermicompost and water treatment residuals improved the water treatment residuals efficiency in ameliorating the soil physical properties, and could be considered as an ameliorating material for the reclamation of salt affected soils.

  7. The Lunar CELSS Test Module

    NASA Technical Reports Server (NTRS)

    Hoehn, Alexander; Gomez, Shawn; Luttges, Marvin W.

    1992-01-01

    The evolutionarily-developed Lunar Controlled Ecological Life Support System (CELSS) Test Module presented can address questions concerning long-term human presence-related issues both at LEO and in the lunar environment. By achieving well-defined research goals at each of numerous developmental stages (each economically modest), easily justifiable operations can be undertaken. Attention is given to the possibility of maximizing non-NASA involvement in these CELSS developmental efforts via the careful definability and modest risk of each developmental stage.

  8. Utilization of potatoes in CELSS: Productivity and growing systems

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.

    1986-01-01

    The potato plant (solanum tuberosum L.) is one of the basic food crops that should be studied for use in NASA's closed Ecological Life Support System (CELSS). It offers high yields per unit area and time, with most of this production in the form of highly digestible carbohydrate. Potatoes, like wheat and rice, are particularly useful in human diets because of their nutritional versatility and ease of processing and preparation. The growth of the potato was studied and it was found to be a useful species for life support systems.

  9. Ethylene dynamics in the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1994-01-01

    A material balance model for ethylene was developed and applied retrospectively to data obtained in the Biomass Production Chamber of CELSS in order to calculate true plant production rates of ethylene. Four crops were analyzed: wheat, lettuce, soybean, and potato. The model represents an effort to account for each and every source and sink for ethylene in the system. The major source of ethylene is the plant biomass and the major sink is leakage to the surroundings. The result, expressed in the units of ppd/day, were converted to nl of ethylene per gram of plant dry mass per hour and compare favorably with recent glasshouse to belljar experiments.

  10. Progress in European CELSS activities

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.

    1987-01-01

    The European Controlled Ecological Life Support System (CELSS) activities started in the late 1970's with system analysis and feasibility studies of Biological Life Support Systems (BLSS). The initiation for CELSS came from the industry side in Europe, but since then planning and hardware feasibility analyses have been initiated also from customer/agency side. Despite this, it is still too early to state that a CELSS program as a concerted effort has been agreed upon in Europe. However, the general CELSS objectives were accepted as planning and possible development goals for the European effort for manned space activities, and as experimental planning topics in the life sciences community for the next decades. It is expected that ecological life support systems can be tested and implemented on a space station towards the end of this century or early in the next. For the European activities a possible scenario can be projected based on ongoing life support system development activities and the present life sciences goals.

  11. CELSS research and development program

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1990-01-01

    Research in Controlled Ecological Life Support Systems (CELSS) conducted by NASA indicate that plant based systems are feasible candidates for human support in space. Ames has responsibility for research and development, systems integration and control, and space flight experiment portions of the CELSS program. Important areas for development of new methods and technologies are biomass production, waste processing, water purification, air revitalization, and food processing. For the plant system, the approach was to identify the flexibility and response time for the food, water, and oxygen production, and carbon dioxide consumption processes. Tremendous increases in productivity, compared with terrestrial agriculture, were realized. Waste processing research emphasizes recycle (transformation) of human wastes, trash, and inedible biomass to forms usable as inputs to the plant production system. Efforts to improve efficiency of the plant system, select new CELSS crops for a balanced diet, and initiate closed system research with the Crop Growth Research Chambers continue. The System Control and Integration program goal is to insure orchestrated system operation of the biological, physical, and chemical operation of the biological, physical, and chemical component processors of the CELSS. Space flight studies are planned to verify adequate operation of the system in reduced gravity or microgravity environments.

  12. CELSS scenario analysis: Breakeven calculations

    NASA Technical Reports Server (NTRS)

    Mason, R. M.

    1980-01-01

    A model of the relative mass requirements of food production components in a controlled ecological life support system (CELSS) based on regenerative concepts is described. Included are a discussion of model scope, structure, and example calculations. Computer programs for cultivar and breakeven calculations are also included.

  13. Rapid Assessment of In Situ Wheat Straw Residue Via Remote Sensing Platforms

    NASA Technical Reports Server (NTRS)

    Sullivan, D. G.; Shaw, J. N.; Mask, P. L.; Rickman, D.; Luvall, J.; Wersinger, J. M.; Guertal, E. A.

    2003-01-01

    Crop residues influence near surface soil organic carbon content (SOC), impact our ability to remotely assess soil properties, and play a role in global carbon budgets. Methods that measure crop residues are laborious, and largely inappropriate for regional estimates. The objective of this study was to evaluate remote sensing (RS) data for rapid quantification of residue cover. In March 2000 and April 2001, residue plots (15 m x 15 m) were established in the Coastal Plain and Appalachian Plateau physiographic regions of Alabama. Treatments consisted of five wheat (Triticum aestivum L.) straw cover rates (0, 10, 20, 50, and 80%) replicated 3 times. Soil water content and residue decomposition were monitored. Spectral measurements were acquired via spectroradiometer (350 - 1050 nm), Airborne Terrestrial Applications Sensor (ATLAS) (400 - 12,500 nm), airborne color photography (400 - 600 nm), and IKONOS satellite (450 - 900 nm). Spectroradiometer data were acquired monthly, aircraft images yearly, and satellite per availability. Results showed all platforms successfully estimated residue cover variability using red, near infrared (NIR) and thermal infrared (TIR) regions of the spectrum. Airborne ATLAS imagery was best explaining as much as 98% of the variability in wheat straw cover. Spectroradiometer, color infrared photography, and IKONOS imagery accounted for 84, 56, and 24% of the variability, respectively.

  14. A perspective on CELSS control issues

    NASA Technical Reports Server (NTRS)

    Blackwell, Ann L.

    1990-01-01

    Some issues of Closed Ecological Life Support System (CELSS) analysis and design are effectively addressed from a systems control perspective. CELSS system properties that may be elucidated using control theory in conjunction with mathematical and simulation modeling are enumerated. The approach that is being taken to the design of a control strategy for the Crop Growth Research Chamber (CGRC) and the relationship of that approach to CELSS plant growth unit subsystems control is described.

  15. Nitrous oxide and methane fluxes from a rice-wheat crop rotation under wheat residue incorporation and no-tillage practices

    NASA Astrophysics Data System (ADS)

    Yao, Zhisheng; Zheng, Xunhua; Wang, Rui; Xie, Baohua; Butterbach-Bahl, Klaus; Zhu, Jianguo

    2013-11-01

    Crop residue incorporation and no-tillage are recommended as management practices and are being increasingly adopted in the agricultural sector. However, few studies have assessed the extent to which these practices integrate annual carbon and nitrogen trace gas fluxes and grain yield. We investigated the effect of wheat straw incorporation and no-tillage on nitrous oxide (N2O) and methane (CH4) fluxes from a rice-wheat system in southeast China, using year-round field measurements. Compared to the treatment with synthetic nitrogen fertilizers alone, the wheat straw incorporation reduced the N2O emissions by 38% (P < 0.05) and increased the CH4 emissions by 74% (P < 0.05) during the annual rotation cycle. Compared to the conventional tillage, no-tillage prior to wheat sowing enhanced the N2O emissions by an average of 61% (P < 0.05), irrespective of residue incorporation. The CH4-C emissions that were induced by the wheat straw comprised 6% of the residue-carbon incorporated during the rice season. As a result of the stimulating effect of wheat straw incorporation on CH4 fluxes, the annual aggregate emissions of N2O and CH4 with straw incorporation (10.7 Mg CO2-eq ha-1 yr-1 or 725 kg CO2-eq Mg-1 grain yield) were usually higher than those with no residue incorporation (7.6 Mg CO2-eq ha-1 yr-1 or 545 kg CO2-eq Mg-1 grain yield), irrespective of the tillage practice. Nevertheless, the changes in greenhouse gas emissions are notably only the transient response of the rice-wheat system after crop residue incorporation and tillage conversion, which may not necessarily represent equilibrium conditions for this agro-ecosystem over the long term.

  16. Residues and dissipation of the herbicide fenoxaprop-P-ethyl and its metabolite in wheat and soil.

    PubMed

    Chen, Xiaoxu; Yu, Shuang; Han, Lijun; Sun, Shujun; Zhi, Yanan; Li, Wenming

    2011-07-01

    A method for residue analysis of fenoxaprop-P-ethyl and its metabolite (i.e., fenoxaprop-P) was developed using high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). This method was then used to evaluate the residual level and dissipation rate of fenoxaprop-P-ethyl and fenoxaprop-P in the soil and wheat. The half-life of fenoxaprop-P-ethyl in wheat plants and soil was 1.50, 2.36 days in Beijing, and 2.28, 1.79 days in Hubei, respectively. The ultimate residues of the two compounds were undetected in soil, wheat grain and stem at the harvest time, suggesting that fenoxaprop-P-ethyl could be safely used in wheat crops with an appropriate dosage and application. PMID:21533830

  17. Survey of CELSS Concepts and Preliminary Research in Japan

    NASA Technical Reports Server (NTRS)

    Ohya, H.; Oshima, T.; Nitta, K.

    1985-01-01

    Agricultural and other experiments relating to the development of a controlled ecological life support system (CELSS) were proposed. The engineering feasibility of each proposal was investigated by a CELSS experiment concept met study group. The CELSS experiment concept to clarify the goals of CELSS and to determine three phases to achieve the goals. The resulting phases, or missions, and preliminary proposals and studies needed to develop a CELSS are described.

  18. The CELSS breadboard project: Plant production

    NASA Technical Reports Server (NTRS)

    Knott, William M.

    1990-01-01

    NASA's Breadboard Project for the Controlled Ecological Life Support System (CELSS) program is described. The simplified schematic of a CELSS is given. A modular approach is taken to building the CELSS Breadboard. Each module is researched in order to develop a data set for each one prior to its integration into the complete system. The data being obtained from the Biomass Production Module or the Biomass Production Chamber is examined. The other primary modules, food processing and resource recovery or waste management, are discussed briefly. The crew habitat module is not discussed. The primary goal of the Breadboard Project is to scale-up research data to an integrated system capable of supporting one person in order to establish feasibility for the development and operation of a CELSS. Breadboard is NASA's first attempt at developing a large scale CELSS.

  19. Chemical speciation and bioavailability of cadmium in the temperate and semiarid soils treated with wheat residue.

    PubMed

    Safari Sinegani, Ali Akbar; Jafari Monsef, Milad

    2016-05-01

    Heavy metal bioavailability depends on metal fractions in soil. The impacts of mild wheat residue (<2 mm) and incubation time on fractions of Cd were studied in two different spiked soils sampled from Hamadan and Lahijan, Iran with semiarid and temperate climates, respectively. Two factorial experiments were done in two soils polluted with 10 μg Cd g(-1) soil separately. Organic matter (0 and 5 % wheat straw) and soil incubation time (24 and 3600 h) were factors examined in three replicates. The transformation of Cd from KNO3 extractable form to less available fractions was higher in semiarid soils with lower clay and OM contents and higher pH and carbonate contents compared to temperate soils. In polluted semiarid soils after 24 h incubation, greater content of Cd was observed in residual (HNO3 extractable) (45 %), carbonates associated (EDTA extractable) (34 %), organic matter associated (NaOH extractable) (11 %), and KNO3 extractable (10 %) fractions, but in temperate soils, greater content of Cd was observed in KNO3 extractable (61 %), HNO3 extractable (14 %), EDTA extractable (13 %), and NaOH extractable (12 %) fractions. KNO3 extractable form of Cd was decreased, and NaOH extractable and HNO3 extractable forms of Cd were increased by addition of wheat residue to both soils. The initial decrease of added Cd from KNO3 extractable form to less mobile fractions in Hamadan soil was very interesting. But this change was not observed in Lahijan soil. Since contamination factor was significantly high in temperate soils compared to semiarid soils in all treatments, the risk of Cd environmental pollution in temperate region is considerably high. PMID:26850097

  20. Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China

    NASA Astrophysics Data System (ADS)

    Wang, Jinzhou; Wang, Xiujun; Xu, Minggang; Feng, Gu; Zhang, Wenju; Yang, Xueyun; Huang, Shaomin

    2015-06-01

    Soil organic carbon (SOC) dynamics in agro-ecosystem is largely influenced by cropping. However, quantifying the contributions of various crops has been lacking. Here we employed a stable isotopic approach to evaluate the contributions of wheat and maize residues to SOC at three long-term experimental sites in north China. Soil samples were collected from 0-20, 20-40, 40-60, 60-80 and 80-100 cm after 13 and 20 years of wheat-maize rotation, and SOC and its stable 13C composition were determined. Our data showed that the δ13C value of SOC varied, on average, from -22.1‰ in the 0-20 cm to -21.5‰ in the 80-100 cm. Carbon input through maize residues ranged from 35% to 68% whereas the contribution of maize residues to SOC (0-40 cm) ranged from 28% to 40%. Our analyses suggested that the retention coefficient was in the range of 8.0-13.6% for maize residues and 16.5-28.5% for wheat residues. The two-fold higher retention coefficient of wheat versus maize residues was due to the differences in the quality of residues and probably also in the temperature during the growing season. Our study highlighted the importance of crop management on carbon sequestration in agricultural lands.

  1. Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China

    PubMed Central

    Wang, Jinzhou; Wang, Xiujun; Xu, Minggang; Feng, Gu; Zhang, Wenju; Yang, Xueyun; Huang, Shaomin

    2015-01-01

    Soil organic carbon (SOC) dynamics in agro-ecosystem is largely influenced by cropping. However, quantifying the contributions of various crops has been lacking. Here we employed a stable isotopic approach to evaluate the contributions of wheat and maize residues to SOC at three long-term experimental sites in north China. Soil samples were collected from 0–20, 20–40, 40–60, 60–80 and 80–100 cm after 13 and 20 years of wheat-maize rotation, and SOC and its stable 13C composition were determined. Our data showed that the δ13C value of SOC varied, on average, from −22.1‰ in the 0–20 cm to −21.5‰ in the 80–100 cm. Carbon input through maize residues ranged from 35% to 68% whereas the contribution of maize residues to SOC (0–40 cm) ranged from 28% to 40%. Our analyses suggested that the retention coefficient was in the range of 8.0–13.6% for maize residues and 16.5–28.5% for wheat residues. The two-fold higher retention coefficient of wheat versus maize residues was due to the differences in the quality of residues and probably also in the temperature during the growing season. Our study highlighted the importance of crop management on carbon sequestration in agricultural lands. PMID:26100739

  2. Contributions of wheat and maize residues to soil organic carbon under long-term rotation in north China.

    PubMed

    Wang, Jinzhou; Wang, Xiujun; Xu, Minggang; Feng, Gu; Zhang, Wenju; Yang, Xueyun; Huang, Shaomin

    2015-01-01

    Soil organic carbon (SOC) dynamics in agro-ecosystem is largely influenced by cropping. However, quantifying the contributions of various crops has been lacking. Here we employed a stable isotopic approach to evaluate the contributions of wheat and maize residues to SOC at three long-term experimental sites in north China. Soil samples were collected from 0-20, 20-40, 40-60, 60-80 and 80-100 cm after 13 and 20 years of wheat-maize rotation, and SOC and its stable (13)C composition were determined. Our data showed that the δ(13)C value of SOC varied, on average, from -22.1‰ in the 0-20 cm to -21.5‰ in the 80-100 cm. Carbon input through maize residues ranged from 35% to 68% whereas the contribution of maize residues to SOC (0-40 cm) ranged from 28% to 40%. Our analyses suggested that the retention coefficient was in the range of 8.0-13.6% for maize residues and 16.5-28.5% for wheat residues. The two-fold higher retention coefficient of wheat versus maize residues was due to the differences in the quality of residues and probably also in the temperature during the growing season. Our study highlighted the importance of crop management on carbon sequestration in agricultural lands. PMID:26100739

  3. Progress in ultrasonic bioreactors for celss applications

    NASA Astrophysics Data System (ADS)

    Schlager, K. J.

    1998-11-01

    An important issue in Controlled Ecological Life Support Systems (CELSS) is the recycling of inedible crop residues to recover inorganic plant nutrients such as nitrates, phosphates, potassium and other macro- and micro-nutrients. In a closed system in space, such regeneration is vital to the long term viability of plant growth necessary for the food production and waste handling process. Chemical approaches to recycling such as incineration and wet oxidation are not compatible with low energy and environmentally friendly regeneration of such nutrients. Biological regeneration is more acceptable environmentally, but it is a very slow process and does not typically result in complete recovery of inorganic and organic nutrients. A new approach to biological regeneration is described here involving the combined use of special enzymatic catalysts and ultrasonic energy in a bioreactor system. This new system has the potential for rapid, efficient, environmentally friendly and complete conversion of crop wastes to inorganic plant nutrients and food recovery from cellulose materials. A series of experimental tests were carried out with a soybean crop residue meal substrate. Biochemical conversion rates were significantly expedited with the addition of enzymes and further enhanced through ultrasonic stimulation of these enzymes. The difference in conversion rates was particularly increased after the initial period of soluble organics conversion. The remaining cellulose substrate is much more difficult to biodegrade, and the ultrasonically-enhanced reaction was able to demonstrate a much higher rate of substrate conversion.

  4. Bound sup 14 C residues in stored wheat treated with ( sup 14 C)deltamethrin and their bioavailability in rats

    SciTech Connect

    Khan, S.U.; Kacew, S. ); Akhtar, M.H. )

    1990-04-01

    Wheat grains treated with radiolabeled deltamethrin ((S)-{alpha}-cyano-3-phenoxybenzyl (1R,3R)-cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropanecarboxylate) and stored in the laboratory for 168 days formed bound (nonextractable) {sup 14}C residues. The amount of bound {sup 14}C residues formed was about 11% of the total {sup 14}C in stored grain. Br{sub 2}CA (3-(2,2-dibromovinyl)-2,2-dimethylcyclopropanecarboxylic acid) and 3-PBacid (3-phenoxybenzoic acid) were present in the form of bound {sup 14}C residues in addition to some radiolabeled product of unknown composition. The stored wheat containing bound {sup 14}C was fed to rats. The {sup 14}C residues were excreted in urine and feces in nearly equal proportion. The {sup 14}C residues identified in urine were Br{sub 2}CA, 3-PBacid, and conjugated compounds of 4{prime}-OH-3-PBacid (3-(4-hydroxyphenoxy)benzoic acid). Most of the {sup 14}C residues excreted in feces were extractable with methanol. Trace amounts of {sup 14}C residues were also present in lungs, kidney, and liver. The results suggest that bound residues in stored wheat treated with deltamethrin when fed to rats are highly bioavailable.

  5. The Breadboard Project - A functioning CELSS plant growth system

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1992-01-01

    The primary objective of the Breadboard Project for the next 3-4 years is to develop, integrate and operate a Controlled Ecological Life Support System (CELSS) at a one-person scale. The focus of this project over the past two years has been the development of the plant growth facility, the first module of the CELSS. The other major modules, food preparation, biomass processing, and resource recovery, have been researched at the laboratory scale during the past two years and facilities are currently under construction to scale-up these modules to an operational state. This paper will outline the design requirements for the Biomass Production Chamber (BPC), the plant growth facility for the project, and the control and monitoring subsystems which operate the chamber and will present results from both engineering and biological tests of the facility. Three production evaluations of wheat, conducted in the BPC during the past year, will be described and the data generated from these tests discussed.

  6. The Breadboard Project: a functioning CELSS plant growth system.

    PubMed

    Knott, W M

    1992-01-01

    The primary objective of the Breadboard project for the next 3-4 years is to develop, integrate and operate a Controlled Ecological Life Support System (CELSS) at a one person scale. The focus of this project over the past two years has been the development of the plant growth facility, the first module of the CELSS. The other major modules, food preparation, biomass processing, and resource recovery, have been researched at the laboratory scale during the past two years and facilities are currently under construction to scale-up these modules to an operational state. This paper will outline the design requirements for the Biomass Production Chamber (BPC), the plant growth facility for the project, and the control and monitoring subsystems which operate the chamber and will present results from both engineering and biological tests of the facility. Three production evaluations of wheat, conducted in the BPC during the past year, will be described and the data generated from these tests discussed. Future plans for the BPC will be presented along with future goals for the project as the other modules become active. PMID:11537077

  7. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  8. An overview of Japanese CELSS research activities

    NASA Astrophysics Data System (ADS)

    Nitta, Keiji

    Many research activities regarding Controlled Ecological Life Support System (CELSS) have been conducted and continued all over the world since the 1960's and the concept of CELSS is now changing from Science Fiction to Scientific Reality. Development of CELSS technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned mars flight programs. CELSS functions can be divided into two categories, Environment Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Based on these considerations, Japanese research activities have been conducted and will be continued under the tentative guideline of CELSS research activities as shown in documents /1/,/2/. The status of the over all activities are discussed in this paper.

  9. Tolerance of spring wheat to a salt-fluxing residue containing potassium and magnesium

    SciTech Connect

    Mahler, R.L.; Menser, H.A.; Lutcher, L.K.

    1986-01-01

    Field and greenhouse studies were conducted in Idaho in 1985 to document the maximum levels of a salt fluxing residue (slag) material that can be safely applied to agricultural soils without reducing spring wheat (Triticum aestivum) growth. The slag material, which contains significant quantities of Mg and K, was applied to Mission (coarse-silty, mixed, frigid Andic Fragiochrepts) and Palouse (fine-silty, mixed, mesic Pachic Ultic Haploxerolls) silt loam soils at rates ranging from 0 to 40,000 kg/ha. Parameters evaluated included: (1) germination, (2) plant vigor, (3) yield, and (4) soil and plant tissue K, Ca and Mg. Under field conditions slag application rates of 4000 and 8000 kg/ha reduced wheat stands and vigor; however, yields were not adversely affected when compared with the control. Application rates in excess of 8000 kg/ha resulted in reduced germination, plant vigor, and yield and are consequently not recommended. Greenhouse studies provided further evidence to substantiate the field results.

  10. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    PubMed

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. PMID:27295251

  11. An Innovative Rapid Method for Analysis of 10 Organophosphorus Pesticide Residues in Wheat by HS-SPME-GC-FPD/MSD.

    PubMed

    Du, Xin; Ren, YongLin; Beckett, Stephen J

    2016-03-01

    The rapid detection of pesticide residues in wheat has become a top food security priority. A solvent-free headspace solid-phase microextraction (HS-SPME) has been evaluated for rapid screening of organophosphorus pesticide (OPP) residues in wheat with high sensitivity. Individual wheat samples (1.7 g), spiked with 10 OPPs, were placed in a 4 mL sealed amber glass vial and heated at 60°C for 45 min. During this time, the OPP residues were extracted with a 50 μm/30 μm divinylbenzene (DVB)/carboxen (CAR)/plasma desorption mass spectroscopy polydimethylsiloxane (PDMS) fiber from the headspace above the sample. The fiber was then removed and injected into the GC injection port at 250°C for desorption of the extracted chemicals. The multiple residues were identified by a GC mass spectrometer detector (GC-MSD) and quantified with a GC flame photometric detector (GC-FPD). Seven spiked levels of 10 OPPs on wheat were analyzed. The GC responses for a 50 μm/30 μm DVB/CAR/PDMS fiber increased with increasing spiking levels, yielding significant (R(2) > 0.98) linear regressions. The lowest LODs of the multiple pesticide standards were evaluated under the conditions of the validation study in a range of levels from 0 (control) to 100 ng of pesticide residue per g of wheat that separated on a low-polar GC capillary column (Agilent DB-35UI). The results of the HS-SPME method were compared with the QuEChERS AOAC 2007.01 method and they showed several advantages over the latter. These included improved sensitivity, selectivity, and simplicity. PMID:26964527

  12. Degradation of bifenthrin and pirimiphos-methyl residues in stored wheat grains (Triticum aestivum L.) by ozonation.

    PubMed

    Savi, Geovana D; Piacentini, Karim C; Bortolotto, Tiago; Scussel, Vildes M

    2016-07-15

    Pesticide insecticides are used on wheat grains in storage units but their efficiency is hindered by persistent residues in the grains. Therefore, this study aims to evaluate the effectiveness of ozone (O3) gas treatment on the degradation of residual bifenthrin and pirimiphos-methyl insecticides commonly used in storage wheat grains, as well as to evaluate degradation of their by-products. The residues of bifenthrin decreased after 180 min of exposure in a concentration of 60 μmol/mol (a 37.5 ± 7.4% reduction) with 20% moisture content and 0.9 water activity. On the other hand, under the same experimental conditions, the pirimiphos-methyl residues significantly decreased in the wheat grains (71.1 ± 8.6%) after 30 min of exposure. After O3 gas treatment, three by-products of pirimiphos-methyl (m/z=306.1) containing different molecular mass to charge ratios (m/z=278.1, 301.1 and 319.2) were identified by LC-MS. O3 is a strong oxidizer that has shown the potential to reduce pesticide residues in stored grain in order to ensure food quality and safety. PMID:26948611

  13. Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry

    PubMed Central

    Rombouts, Ine; Lagrain, Bert; Brunnbauer, Markus; Delcour, Jan A.; Koehler, Peter

    2013-01-01

    The concentration and composition of wheat gluten proteins and the presence, concentration and location of cysteine residues therein are important for wheat flour quality. However, it is difficult to identify gluten proteins, as they are an extremely polymorphic mixture of prolamins. We here present methods for cysteine labeling of wheat prolamins with 4-vinylpyridine (4-VP) and iodoacetamide (IDAM) which, as compared to label-free analysis, substantially improve identification of cysteine-containing peptides in enzymic prolamin digests by electrospray ionization - tandem mass spectrometry. Both chymotrypsin and thermolysin yielded cysteine-containing peptides from different gluten proteins, but more proteins could be identified after chymotryptic digestion. In addition, to the best of our knowledge, we were the first to label prolamins with isotope coded affinity tags (ICAT), which are commonly used for quantitative proteomics. However, more peptides were detected after labeling gluten proteins with 4-VP and IDAM than with ICAT. PMID:23880742

  14. Controlled Ecological Life Support System (CELSS) modeling

    NASA Technical Reports Server (NTRS)

    Drysdale, Alan; Thomas, Mark; Fresa, Mark; Wheeler, Ray

    1992-01-01

    Attention is given to CELSS, a critical technology for the Space Exploration Initiative. OCAM (object-oriented CELSS analysis and modeling) models carbon, hydrogen, and oxygen recycling. Multiple crops and plant types can be simulated. Resource recovery options from inedible biomass include leaching, enzyme treatment, aerobic digestion, and mushroom and fish growth. The benefit of using many small crops overlapping in time, instead of a single large crop, is demonstrated. Unanticipated results include startup transients which reduce the benefit of multiple small crops. The relative contributions of mass, energy, and manpower to system cost are analyzed in order to determine appropriate research directions.

  15. Celss nutrition system utilizing snails

    NASA Astrophysics Data System (ADS)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  16. MALDI-MS Imaging Analysis of Fungicide Residue Distributions on Wheat Leaf Surfaces.

    PubMed

    Annangudi, Suresh P; Myung, Kyung; Avila Adame, Cruz; Gilbert, Jeffrey R

    2015-05-01

    Improved retention and distribution of agrochemicals on plant surfaces is an important attribute in the biological activity of pesticide. Although retention of agrochemicals on plants after spray application can be quantified using traditional analytical techniques including LC or GC, the spatial distribution of agrochemicals on the plants surfaces has received little attention. Matrix assisted laser desorption/ionization (MALDI) imaging technology has been widely used to determine the distribution of proteins, peptides and metabolites in different tissue sections, but its application to environmental research has been limited. Herein, we probed the potential utility of MALDI imaging in characterizing the distribution of three commercial fungicides on wheat leaf surfaces. Using this MALDI imaging method, we were able to detect 500 ng of epoxiconazole, azoxystrobin, and pyraclostrobin applied in 1 μL drop on the leaf surfaces using MALDI-MS. Subsequent dilutions of pyraclostrobin revealed that the compound can be chemically imaged on the leaf surfaces at levels as low as 60 ng of total applied in the area of 1 μL droplet. After application of epoxiconazole, azoxystrobin, and pyraclostrobin at a field rate of 100 gai/ha in 200 L water using a track sprayer system, residues of these fungicides on the leaf surfaces were sufficiently visualized. These results suggest that MALDI imaging can be used to monitor spatial distribution of agrochemicals on leaf samples after pesticide application. PMID:25830667

  17. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  18. Survey of CELSS concepts and preliminary research in Japan.

    PubMed

    Ohya, H; Oshima, T; Nitta, K

    1984-01-01

    Many agricultural and other experiments relating to the development of a Controlled Ecological Life Support System (CELSS) were proposed by scientists throughout Japan in the fall of 1982. To develop concrete experimental concepts from these proposals, the engineering feasibility of each proposal was investigated by a CELSS experiment concept study group under the support of the National Aerospace Laboratory. The conclusions of the group were described in two documents. Originally, the study group did not clearly define necessary missions leading to the goal of an operational CELSS for spaceflight. Therefore, the CELSS experiment concept study group met again to clarify the goals of CELSS and to determine three phases to achieve the goals. The resulting phases, or missions, and preliminary proposals and studies needed to develop a CELSS are described herein. PMID:11537785

  19. Bioregenerative life support - The initial CELSS reference configuration

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Averner, Mel

    1991-01-01

    The next major step in the development of an operational Controlled Ecological Life-Support System (CELSS) is the creation of a human-rated ground-based demonstrator able to constitute a CELSS's proof-of-concept. The reference configuration recently devised for such a ground facility by NASA will furnish a common reference to all investigators in the field, thereby facilitating performance comparisons among candidate subsystems and clarifying system-level modeling. A detailed NASA reference CELSS flowcharting is presented.

  20. Effect of alkaline hydrogen peroxide treatment on cell wall composition and digestion kinetics of sugarcane residues and wheat straw.

    PubMed

    Amjed, M; Jung, H G; Donker, J D

    1992-09-01

    Our objective was to characterize changes in cell wall composition and digestibility of sugarcane bagasse, pith from bagasse, and wheat straw after treatment with alkaline hydrogen peroxide (AHP). The AHP treatment solution contained 1% H2O2 (wt/vol) maintained at pH 11.5 with NaOH. The H2O2 in solution amounted to 25% of the quantity of substrate treated. After treatment, residues were washed and dried. Detergent fiber composition, total fiber components (neutral sugars, uronic acids, Klason lignin, and noncore lignin phenolic acids), IVDMD, in vitro digestion kinetics of NDF, and monosaccharide digestibilities (24 and 120 h) were determined. Total fiber (TF) and NDF concentrations of all treatment residues were increased (P less than .05) over control substrates by AHP because of greater losses of cell solubles than of cell wall constituents. Hemicellulose:cellulose ratio in NDF of treatment residues was decreased (P less than .05) by AHP for all substrates, but the neutral sugar composition of TF did not agree with this preferential loss of hemicellulose components. Klason lignin, ADL, and esterified noncore lignin, especially ferulic acid, were reduced (P less than .05) by AHP, whereas etherified noncore lignin composition was unchanged. Treatment increased (P less than .05) IVDMD, extent of NDF digestion, and monosaccharide digestibilities of all crop residues. The rate of NDF digestion was increased (P less than .05) for the sugarcane residues but not for wheat straw. Alkaline hydrogen peroxide improved crop residue digestibility, probably as a result of the removal of core and noncore lignin fractions. PMID:1328129

  1. Manipulating cyanobacteria: Spirulina for potential CELSS diet

    NASA Technical Reports Server (NTRS)

    Tadros, Mahasin G.; Smith, Woodrow; Mbuthia, Peter; Joseph, Beverly

    1989-01-01

    Spirulina sp. as a bioregenerative photosynthetic and an edible alga for spacecraft crew in a CELSS, was characterized for the biomass yield in batch cultures, under various environmental conditions. The partitioning of the assimalitory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental growth conditions. Experiments with Spirulina have shown that under stress conditions (i.e., high light 160 uE/sq m/s, temperature 38 C, nitrogen or phosphate limitation; 0.1 M sodium chloride) carbohydrates increased at the expense of proteins. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total of the algal could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.

  2. Plan for CELSS test bed project

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1986-01-01

    The Closed Ecological Life Support Systems (CELSS) testbed project will achieve two major goals: It will develop the knowledge and technology needed to build and test biological or combined biological physiochemical regenerative life support systems. It will fabricate, test, and operate ground based facilities to accomplish proof-of-concent testing and evaluation leading to flight experimentation. The project will combine basic research and applied research/engineering to achieve a phased, integrated development of hardware, systems, and techniques for food and oxygen production, food processing, and waste processing in closed systems. The project will design, fabricate, and operate within three years a botanical production system scaled to a sufficient size to verify oxygen and nutrient load production (carbohydrates, fats, proteins) at a useable level. It will develop within five years a waste management system compatible with the botanical production system and a food processing system that converts available biomass into edible products. It will design, construct, and operate within ten years a ground based candidate CELSS that includes man as an active participant in the system. It will design a flight CELSS module within twelve years and construct and conduct initial flight tests within fifteen years.

  3. An overview of Japanese CELSS research activities

    NASA Technical Reports Server (NTRS)

    Nitta, Keiji

    1987-01-01

    Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.

  4. Closed Ecological Life Support Systems (CELSS) Test Facility

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.

    1992-01-01

    The CELSS Test Facility (CTF) is being developed for installation on Space Station Freedom (SSF) in August 1999. It is designed to conduct experiments that will determine the effects of microgravity on the productivity of higher (crop) plants. The CTF will occupy two standard SSF racks and will accommodate approximately one square meter of growing area and a canopy height of 80 cm. The growth volume will be isolated from the external environment, allowing stringent control of environmental conditions. Temperature, humidity, oxygen, carbon dioxide, and light levels will all be closely controlled to prescribed set points and monitored. This level of environmental control is needed to prevent stress and allow accurate assessment of microgravity effect (10-3 to 10-6 x g). Photosynthetic rates and respiration rates, calculated through continuous recording of gas concentrations, transpiration, and total and edible biomass produced will be measured. Toxic byproducts will be monitored and scrubbed. Transpiration water will be collected within the chamber and recycled into the nutrient solution. A wide variety of crop plants, e.g., wheat, soy beans, lettuce, potatoes, can be accommodated and various nutrient delivery systems and light delivery systems will be available. In the course of its development, the CTF will exploit fully, and contribute importantly, to the state-of-art in closed system technology and plant physiology.

  5. Development of the CELSS emulator at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Emulator is under development. It will be used to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. Described here is Version 1.0 of the CELSS Emulator that was initiated in 1988 on the Johnson Space Center (JSC) Multi Purpose Applications Console Test Bed as the simulation framework. The run model of the simulation system now contains a CELSS model called BLSS. The CELSS simulator empowers us to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  6. Development of the CELSS Emulator at NASA JSC

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.

    1989-01-01

    The Controlled Ecological Life Support System (CELSS) Emulator is under development at the NASA Johnson Space Center (JSC) with the purpose to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. This paper describes Version 1.0 of the CELSS Emulator that was initiated in 1988 on the JSC Multi Purpose Applications Console Test Bed as the simulation framework. The run module of the simulation system now contains a CELSS model called BLSS. The CELSS Emulator makes it possible to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  7. PCDD/F EMISSIONS FROM BURNING WHEAT AND RICE FIELD RESIDUE

    EPA Science Inventory

    The paper presents the first known values for emissions of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs) from combustion of agricultural field biomass. Wheat and rice straw stubble collected from two western U.S. states were tested in a field burn simulation to dete...

  8. Evaluation of headspace solid-phase microextraction for analysis of phosphine residues in wheat.

    PubMed

    Ren, Yong Lin; Padovan, Benjamin; Desmarchelier, James M

    2012-01-01

    In headspace (HS) analysis, a fumigant is released from a commodity into a gas-tight container by grinding, heating, or microwaves. A new technique uses HS-solid-phase microextraction (SPME) for additional preconcentration of fumigant. HS-SPME was tested for detection of phosphine (PH3), chosen for examination because of its wide use on stored commodities. PH3 was applied to 50 g wheat in separate 250 mL sealed flasks, which were equipped either with a septum for conventional HS analysis or with one of four HS-SPME fibers [100 microm polydimethylsiloxane (PDMS), 85 microm carboxen (CAR)/PDMS, 75 microm CAR/PDMS, and 65 pm PDMS/divinylbenzene (DVB)]. The wheat was heated at 45 degrees C for 20 min. In conventional HS analysis, a gaseous aliquot (80 pL) was taken from the HS and injected into the GC instrument. In the HS-SPME procedure, the fiber was removed from the HS and exposed in the heated injection port of the GC instrument. In all cases, PH3 was determined under the same chromatographic conditions with a GC pulsed flame photometric detector. In a comparison of the efficacy of the fibers, the bipolar fibers (CAR/PDMS and PDMS/DVB) contained more PH3 than the aliquot in the conventional HS analysis; larger size bipolar fibers extracted PH3 more efficiently than smaller fibers (e.g., 85 > 75 > 65 microm). The nonpolar fiber (PDMS) contained no PH3. Four fortification levels of PH3 on wheat were tested: 0.01, 0.05, 0.1, and 0.3 microg/g. The response of each bipolar fiber increased with the fortification levels, but the conventional HS analysis detected no fumigant at the lowest fortification level of 0.01 mg/g. Under the conditions of the validation study, the LOD was in the range of 0.005-0.01 ng PH3/g wheat. PMID:22649943

  9. Hydrothermal pretreatment of several lignocellulosic mixtures containing wheat straw and two hardwood residues available in Southern Europe.

    PubMed

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work studied the processing of biomass mixtures containing three lignocellulosic materials largely available in Southern Europe, eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP). The mixtures were chemically characterized, and their pretreatment, by autohydrolysis, evaluated within a severity factor (logR0) ranging from 1.73 up to 4.24. A simple modeling strategy was used to optimize the autohydrolysis conditions based on the chemical characterization of the liquid fraction. The solid fraction was characterized to quantify the polysaccharide and lignin content. The pretreatment conditions for maximal saccharides recovery in the liquid fraction were at a severity range (logR0) of 3.65-3.72, independently of the mixture tested, which suggests that autohydrolysis can effectively process mixtures of lignocellulosic materials for further biochemical conversion processes. PMID:25742753

  10. Controlled Ecological Life Support Systems: CELSS '89 Workshop

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D. (Editor)

    1990-01-01

    Topics discussed at NASA's Controlled Ecological Life Support Systems (CELSS) workshop concerned the production of edible biomass. Specific areas of interest ranged from the efficiency of plant growth, to the conversion of inedible plant material to edible food, to the use of plant culture techniques. Models of plant growth and whole CELSS systems are included. The use of algae to supplement and improve dietary requirements is addressed. Flight experimentation is covered in topics ranging from a Salad Machine for use on the Space Station Freedom to conceptual designs for a lunar base CELSS.

  11. Development of a CELSS Experimental Facility

    NASA Astrophysics Data System (ADS)

    Guo, S.; Tang, Y.; Zhu, J.; Wang, X.; Yin, Y.; Feng, H.; Ai, W.; Liu, X.; Qin, L.

    A CELSS Experimental Facility was developed two years ago. It contains a volume of about 40.0 m3 and a cultivating area of about 8.4 m2; its interior atmospheric parameters such as temperature, relative humidity, oxygen concentration, carbon dioxide concentration, total pressure, lighting intensity, photoperiod, water content in the growing-matrix, CO2-added accumulative amount, O2-released accumulative amount and ethylene concentration are all controlled and logged automatically and effectively; its growing system consists of two rows of racks along its left-and-right sides separately, each side holds two upper-and-lower layers, and the vertical distance of each growing bed can be adjusted automatically and independently; lighting sources consist of both red (95%) and blue (5%) light-emitting diodes (LED), and the average lighting intensity of each lamp bank at 20-cm distance position under it, reaches to 255.0 μmol m-2 s-1. After that, demonstrating tests were carried out and were finally followed by growing lettuce in the facility. The results showed that all subsystems operated well and all parameters were controlled automatically and efficiently. The lettuce plants in the system could grow much well. Successful development of this system laid a necessary foundation for future larger-scale studies on CELSS integration technique.

  12. Wheat production in controlled environments

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.; Bugbee, Bruce; Bubenheim, David

    1987-01-01

    The present optimization study for maximum yield and quality conditions in the lunar or Martian Controlled Environment Life Support System (CELSS)-based growth of wheat has determined that, for 23-57 g/sq m per day of edible biomass, minimum CELSS size must be of the order of 12-30 sq m/person. About 600 W/sq m of electricity would be consumed by the artificial lighting required; temperature, irradiance, photoperiod, CO2 levels, humidity, and wind velocity are all controlled. A rock wool plant support allows direct seeding, and densities of up to 10,000 plants/sq m. Densities of up to 2000 plants/sq m appear to increase seed yields.

  13. CELSS experiment model and design concept of gas recycle system

    NASA Technical Reports Server (NTRS)

    Nitta, K.; Oguchi, M.; Kanda, S.

    1986-01-01

    In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.

  14. CELSS Antarctic Analog Project (CAAP): A New Paradigm for Polar Life Support and CELSS Research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Straight, Christian; Flynn, Michael; Bates, Maynard; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    The CELSS Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. CAAP is implemented through the joint NSF/NASA Antarctic Space Analog Program (ASAP), initiated to support the pursuit of future NASA missions and to promote the transfer of space technologies to the NSF. Under a Memorandum of Agreement, the CAAP represents an example of a working dual agency cooperative project. NASA goals are operational testing of CELSS technologies and the conduct of scientific study to facilitate . technology selection, system design and methods development, including human dynamics as required for the operation of a CELSS. Although not fully closed, food production, water purification, and waste recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. The CAAP facility will be highly integrated with the new South Pole Station infrastructure and will be composed of a deployed hardware facility and a research activity. This paper will include a description of CAAP and its functionality, conceptual designs, component selection and sizing for the crop growth chamber, crop production expectations, and a brief report on an initial on-site visit. This paper will also provide a discussion of issues associated with power and energy use and the applicability of CAAP to direct technology transfer to society in general and remote communities in particular.

  15. Amino acid substitutions of cysteine residues near the amino terminus of Wheat streak mosaic virus HC-Pro abolishes virus transmission by the wheat curl mite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amino-terminal half of HC-Pro of Wheat streak mosaic virus (WSMV) is required for semi-persistent transmission by the wheat curl mite (Aceria tosichella Keifer). The amino-proximal region of WSMV HC-Pro is cysteine-rich with a zinc finger-like motif. Amino acid substitutions were made in this re...

  16. Evaluations of catalysts for wet oxidation waste management in CELSS

    NASA Astrophysics Data System (ADS)

    Oguchi, Mitsuo; Nitta, Keiji

    1992-11-01

    A wet oxidation method is considered to be one of the most effective methods of waste processing and recycling in CELSS (Controlled Ecological Life Support System). The first test using rabbit waste as raw material was conducted under a decomposition temperature of 280 °C for 30 minutes and an initial pure oxygen pressure of 4.9 MPa (50 kgf/cm2) before heating, and the following results were obtained. The value of COD (Chemical Oxygen Demand) was reduced 82.5 % by the wet oxidation. And also the Kjeldahl nitrogen concentration was decreased 98.8%. However, the organic carbon compound in the residual solution was almost acetic acid and ammonia was produced. In order to activate the oxidation more strongly, the second tests using catalysts such as Pd, Ru and Ru+Rh were conducted. As the results of these tests, the effectiveness of catalysts for oxidizing raw material ws shown as follows: COD and the Kjeldahl nitrogen values were drastically decreased 99.65 % and 99.88 %, respectively. Furthermore, the quantity of acetic acid and ammonia were reduced considerably. On the other hand, nitrate was showed a value 30 times as much as without catalytic oxidation.

  17. Chemical characterization of some aerobic liquids in CELSS

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1993-01-01

    Untreated aqueous soybean and wheat leachate and aerobically treated wheat leachate prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions were compared, and a general chemical characterization was accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified; however, general composition related to the initial presence of phenol-like compounds and their disappearance during aerobic treatment was explored.

  18. Spectral estimates of crop residue cover and density for standing and flat wheat stubble

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residue is important for erosion control, soil water storage, filling gaps in various agroecosystem-based modeling, and sink for atmospheric carbon. The use of remote sensing technology provides a fast, objective, and efficient tool for measuring and managing this resource. The challenge is t...

  19. Residue management increases fallow water conservation and yield deficit irrigated crops grown in rotation with wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-tillage (NT) residue management provides cover to increase precipitation capture compared with disk tillage (DT) or in the absence of a cover crop. Therefore, NT has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. In a 4-year study, we quantified DT and NT effe...

  20. Fundamental study on gas monitoring in celss

    NASA Astrophysics Data System (ADS)

    Nishi, I.; Tateishi, T.; Tomizawa, G.; Nitta, K.; Oguchi, M.

    A mass spectrometer and computer system was developed for conducting a fundamental study on gas monitoring in CELSS. Respiration and metabolism of the hamster and photosynthesis of the Spirulina were measured in a combination system consisting of a hamster chamber and a Spirulina cultivator. They are connected through a membrane gas exchanger. Some technical problems were examined. In the mass spectrometric gas monitoring, a simultaneous multi-sample measurement was developed by employing a rotating exchange valve. Long term precise measurement was obtained by employing an automatic calibration system. The membrane gas sampling probe proved to be useful for long term measurement. The cultivation rate of the Spirulina was effectively changed by controlling CO2 and light supply. The experimental results are helpful for improving the hamster-spirulina system.

  1. Laboratory simulated dissipation of metsulfuron methyl and chlorimuron ethyl in soils and their residual fate in rice, wheat and soybean at harvest.

    PubMed

    Sanyal, Nilanjan; Pramanik, Sukhendu Kumar; Pal, Raktim; Chowdhury, Ashim

    2006-03-01

    Two sulfonylurea herbicides, metsulfuron methyl (Ally 20 WP) and chlorimuron ethyl (Classic 25 WP) were evaluated for their dissipation behaviour in alluvial, coastal saline and laterite soils under laboratory incubated condition at 60% water holding capacity of soils and 30 degrees C temperature was maintained. In field study herbicides were applied twice for the control of grasses, annual and perennials broad leaves weeds and sedges in rice, wheat and soybean to find out the residual fate of both the herbicides on different matrices of respective crops after harvest. Extraction and clean up methodologies for the herbicides were standardized and subsequently analyzed by HPLC. The study revealed that the half-lives of metsulfuron methyl and chlorimuron ethyl ranged from 10.75 to 13.94 d irrespective of soils and doses applied. Field trials with rice, wheat and soybean also revealed that these two herbicides could safely be recommended for application as no residues were detected in the harvest samples. PMID:16502507

  2. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  3. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  4. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber.

    PubMed

    Wheeler, R M; Mackowiak, C L; Sager, J C; Knott, W M; Berry, W L

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture. PMID:11538813

  5. Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: eucalyptus residues, wheat straw and olive tree pruning.

    PubMed

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Marques, Susana; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-isothermal conditions (195-230°C) and the non-cellulosic saccharides were recovered in the liquid fraction while cellulose and lignin remained in the solid fraction. The acid post-hydrolysis of the soluble oligosaccharides was studied by optimizing sulfuric acid concentration (1-4%w/w) and reaction time (10-60 min), employing a factorial (2(2)) experimental design. The solids resulting from pretreatment were submitted to enzymatic hydrolysis by applying commercial cellulolytic enzymes Celluclast® 1.5L and Novozyme® 188 (0.225 and 0.025 g/g solid, respectively). This strategy provides high total monosaccharide recovery or high glucose recovery from lignocellulosic materials, depending on the autohydrolysis conditions applied. PMID:25742752

  6. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    NASA Technical Reports Server (NTRS)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  7. A review of recent activities in the NASA CELSS program

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Tremor, J.; Smernoff, D. T.; Knott, W.; Prince, R. P.

    1987-01-01

    A CELSS (Controlled Ecological Life Support System) is a device that utilizes photosynthetic organisms and light energy to regenerate waste materials into oxygen and food for a crew in space. The results of studies with the CELSS program suggest that a bioregenerative life support system is a useful and effective method of regenerating consumable materials for crew sustenance. The data suggests that the operation of a CELSS in space is practical if plants can be made to behave predictably in the space environment. Much of the work centers on the biological components of the CELSS system. Ways of achieving high efficiency and long term stability of all components of the system are examined. Included are explorations of the conversion of nonedible cellulose to edible materials, nitrogen fixation by biological and chemical methods, and methods of waste processing. A description is provided of the extent to which a bioregenerative life support system can meet the constraints of the space environment, and the degree is assessed to which system efficiency and stability can be increased during the next decade.

  8. Research on some functions of Azolla in CELSS system

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Min, Chen; Xia-shi, Liu; Chungchu, Liu

    This article detailed the possibility of using Azolla in CELSS system, the characters of Azolla; the experiments on using Azolla as O 2-releasing plant to provide O 2 for human in airtight chamber; using Azolla as an important biological part for urine solution purification was also introduced.

  9. Utilization of white potatoes in CELSS.

    PubMed

    Tibbitts, T W; Bennett, S M; Morrow, R C; Bula, R J

    1989-01-01

    Potatoes (Solanum tuberosum) have a strong potential as a useful crop species in a functioning CELSS. The cultivar Denali has produced 37.5 g m-2 d-1 when grown for 132 days with the first 40 days under a 12-h photoperiod and a light:dark temperature cycle of 20 degrees C:16 degrees C, and then 92 days under continuous irradiance and a temperature of 16 degrees C. Irradiance was at 725 micromoles m-2 s-1 PPF and carbon dioxide at 1000 micromoles mol-1. The dried tubers had 82% carbohydrates, 9% protein and 0.6% fat. Other studies have shown that carbon dioxide supplementation (1000 micromoles mol-1) is of significant benefit under 12-h irradiance but less benefit under 24 h irradiance. Irradiance cycles of 60 minutes light and 30 minutes dark caused a reduction of more than 50% in tuber weight compared to cycles of 16 h light and 8 h dark. A diurnal temperature change of 22 degrees C for the 12-h light period to 14 degrees C during the 12-h dark period gave increased yields of 30% and 10% for two separate cultivars, compared with plants grown under a constant 18 degrees C temperature. Cultivar screening under continuous irradiance and elevated temperatures (28 degrees C) for 8 weeks of growth indicated that the cvs Haig, Denali, Atlantic, Desiree and Rutt had the best potential for tolerance to these conditions. Harvesting of tubers from plants at weekly intervals, beginning at 8 weeks after planting, did not increase yield over a single final harvest. Spacing of plants on 0.055 centers produced greater yield per m2 than spacing at 0.11 or 0.22 m2. Plants maintained 0.33 meters apart (0.111 m2 per plant) in beds produced the same yields when separated by dividers in the root matrix as when no separation was made. PMID:11537391

  10. The CELSS Test Facility project: an example of a CELSS flight experiment system.

    PubMed

    MacElroy, R D; Straight, C L

    1992-01-01

    The CELSS Test Facility (CTF) is a device for measuring crop plant productivity in the micro-gravity environment of Space Station Freedom. It will allow us to address questions of crop productivity in space, versus that on the ground. The crop productivity factors that will be measured are rates of: 1) biomass production, 2) food production, 3) O2 and CO2 exchange, and 4) water transpiration. In addition, other productivity factors of specific crops will be determined, such as : 1) the ratio of edible to inedible biomass (harvest index), 2) leaf area exposed to and collecting light (leaf area index), 3) ratio of root mass to total biomass, and 4) photosynthetic efficiency (ratio of moles of CO2 fixed (or O2 produced), per mole of photons of specific energies used). Plant and crop morphology, at several levels, ranging from the community to the sub-cellular, will also be evaluated. PMID:11537082

  11. The CELSS Test Facility Project - An example of a CELSS flight experiment system

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Straight, C. L.

    1992-01-01

    The design of the facility is described in terms of its use as an investigation tool for evaluating crop growth in space with reference to required emerging technologies. NASA's CELSS Test Facility (CTF) is designed to permit the measurement of crop-plant productivity under microgravity conditions including biomass production, food production, water transpiration, and O2/CO2 exchanges. Crucial hardware tests and qualifications are identified to assure the operation of CTF technologies in space including the nutrient-delivery, water-condensation, and gas-liquid-mixing subsystems. The design concept and related scientific requirements are described and shown to provide microgravity crop research. The CTF is expected to provide data for plant research and for concepts for bioregenerative life-support systems for applications to Martian, lunar, and space-station missions.

  12. Earth benefits of interdisciplinary celss-related research by the NSCORT in Bioregenerative Life Support

    NASA Astrophysics Data System (ADS)

    Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.

    Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO_2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainability of a CELSS that will enable management of diverse complex systems on Earth.

  13. Earth benefits of interdisciplinary CELSS-related research by the NSCORT in Bioregenerative Life Support

    NASA Technical Reports Server (NTRS)

    Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.

    1996-01-01

    Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainabilty of a CELSS that will enable management of diverse complex systems on Earth.

  14. Optimization of reaction conditions for enzymatic viscosity reduction and hydrolysis of wheat arabinoxylan in an industrial ethanol fermentation residue.

    PubMed

    Sørensen, Hanne R; Pedersen, Sven; Meyer, Anne S

    2006-01-01

    This study examined enzyme-catalyzed viscosity reduction and evaluated the effects of substrate dry matter concentration on enzymatic degradation of arabinoxylan in a fermentation residue, "vinasse", resulting from industrial ethanol manufacture on wheat. Enzymatic catalysis was accomplished with a 50:50 mixture of an enzyme preparation from Humicola insolens, Ultraflo L, and a cellulolytic enzyme preparation from Trichoderma reesei, Celluclast 1.5 L. This enzyme mixture was previously shown to exhibit a synergistic action on arabinoxylan degradation. The viscosity of vinasse decreased with increased enzyme dosage and treatment time at pH 5, 50 degrees C, 5 wt % vinasse dry matter. After 24 h of enzymatic treatment, 76-84%, 75-80%, and 43-47%, respectively, of the theoretically maximal arabinose, xylose, and glucose releases were achieved, indicating that the viscosity decrease was a result of enzyme-catalyzed hydrolysis of arabinoxylan, beta-glucan, and cellulose. In designed response surface experiments, the optimal enzyme reaction conditions with respect to pH and temperature of the vinasse, the vinasse supernatant (mainly soluble material), and the vinasse sediment (mainly insoluble substances) varied from pH 5.2-6.4 and 41-49 degrees C for arabinose release and from pH 4.9-5.3 and 42-46 degrees C for xylose release. Even though only limited hydrolysis of the arabinoxylan in the vinasse sediment fraction was obtained, the results indicated that the same enzyme activities acted on the arabinoxylan in the different vinasse fractions irrespective of the state of solubility of the substrate material. The levels of liberated arabinose and xylose increased with increased dry matter concentration during enzymatic hydrolysis in the vinasse and the vinasse supernatant, but at the same time, increased substrate dry matter concentrations gave corresponding linear decreases in the hydrolytic efficiency as evaluated from levels of monosaccharide release per weight unit dry

  15. Rapid residue analysis of four triazolopyrimidine herbicides in soil, water, and wheat by ultra-performance liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Liu, Xingang; Xu, Jun; Li, Yuanbo; Dong, Fengshou; Li, Jing; Song, Wenchen; Zheng, Yongquan

    2011-03-01

    A sensitive and effective method for simultaneous determination of triazolopyrimidine sulfonamide herbicide residues in soil, water, and wheat was developed using ultra-performance liquid chromatography coupled with tandem mass spectrometry. The four herbicides (pyroxsulam, flumetsulam, metosulam, and diclosulam) were cleaned up with an off-line C18 SPE cartridge and detected by tandem mass spectrometry using an electrospray ionization source in positive mode (ESI+). The determination of the target compounds was achieved in <2.0 min. The limits of detection were below 1 μg kg(-1), while the limits of quantification did not exceed 3 μg kg(-1) in different matrices. Quantitation was determined from calibration curves of standards containing 0.05-100 μg L(-1) with r(2) > 0.997. Recovery studies were conducted at three spiked levels (0.2, 1, and 5 μg kg(-1) for water; 5, 10, and 100 μg kg(-1) for soil and wheat). The overall average recoveries for this method in water, soil, wheat plants, and seeds at three levels ranged from 75.4% to 106.0%, with relative standard deviations in the range of 2.1-12.5% (n = 5) for all analytes. PMID:21221546

  16. Wheat production in controlled environments

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.; Bugbee, Bruce; Bubenheim, David

    1987-01-01

    Conditions are optimized for maximum yield and quality of wheat to be used in a controlled environment life support system (CELSS) in a Lunar or Martian base or a spacecraft. With yields of 23 to 57 g/sq m/d of edible biomass, a minimum size for a CELSS would be between 12 and 30 sq m per person, utilizing about 600 W/sq m of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon dioxide levels, humidity, and wind velocity are controlled in growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants sq m. Densities up to 2000 plants/sq m appear to increase seed yield. Biomass production increases almost linearily with increasing irradiance from 400 to 1700 micromol/sq m/s of photosynthetic photon flux, but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization.

  17. Publications of the NASA CELSS (Controlled Ecological Life Support Systems) program

    NASA Technical Reports Server (NTRS)

    Dufour, P. A.; Solberg, J. L.; Wallace, J. S.

    1985-01-01

    Publications on research sponsored by the NASA CELSS (controlled ecological life support systems) Program are listed. The bibliography is divided into four areas: (1) human requirements; (2) food production; (3) waste management; and (4) system management and control. The 210 references cover the period from the inception of the CELSS Program (1979) to the present, as well as some earlier publications during the development of the CELSS Program.

  18. Integration, design, and construction of a CELSS breadboard facility for bioregenerative life support system research

    NASA Technical Reports Server (NTRS)

    Prince, R.; Knott, W.; Buchanan, Paul

    1987-01-01

    Design criteria for the Biomass Production Chamber (BPC), preliminary operating procedures, and requirements for the future development of the Controlled Ecological Life Support System (CELSS) are discussed. CELSS, which uses a bioregenerative system, includes the following three major units: (1) a biomass production component to grow plants under controlled conditions; (2) food processing components to derive maximum edible content from all plant parts; and (3) waste management components to recover and recycle all solids, liquids, and gases necessary to support life. The current status of the CELSS breadboard facility is reviewed; a block diagram of a simplified version of CELSS and schematic diagrams of the BPS are included.

  19. Design and testing of a model CELSS chamber robot

    NASA Astrophysics Data System (ADS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; McCarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-08-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  20. Design and testing of a model CELSS chamber robot

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; Mccarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-01-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system

  1. Utilization of white potatoes in CELSS

    NASA Astrophysics Data System (ADS)

    Tibbitts, Theodore W.; Bennett, Susan M.; Morrow, Robert C.; Bula, Raymond J.

    Potatoes (Solanum tuberosum) have a strong potential as a useful crop species in a functioning CELSS. The cultivar Denali has produced 37.5 g m-2 d-1 when grown for 132 days with the first 40 days under a 12-h photoperiod and a light:dark temperature cycle of 20°C: 16°C, and then 92 days under continuous irradiance and a temperature of 16°C. Irradiance was at 725 μmol m-2 s-1 PPF and carbon dioxide at 1000 μmol mol-1. The dried tubers had 82% carbohydrates, 9% protein and 0.6% fat. Other studies have shown that carbon dioxide supplementation (1000 μmol mol-1) is of significant benefit under 12-h irradiance but less benefit under 24 h irradiance. Irradiance cycles of 60 minutes light and 30 minutes dark caused a reduction of more than 50% in tuber weight compared to cycles of 16 h light and 8 h dark. A diurnal temperature change of 22°C for the 12-h light period to 14°C during the 12-h dark period gave increased yields of 30% and 10% for two separate cultivars, compared with plants grown under a constant 18°C temperature. Cultivar screening under continuous irradiance and elevated temperatures (28°C) for 8 weeks of grown indicated that the cvs Haig, Denali, Atlantic, Desiree and Rutt had the best potential for tolerance to these conditions. Harvesting of tubers from plants at weekly intervals, beginning at 8 weeks after planting, did not increase yield over a single final harvest. Spacing of plants on 0.055 centers produced greater yield per m2 than spacing at 0.11 or 0.22 m2. Plants maintained 0.33 meters apart (0.111 m2 per plant) in beds produced the same yields when separated by dividers in the root matrix as when no separation was made.

  2. Preparatory space experiments for development of a CELSS

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.

    1990-01-01

    The goal of Closed Ecological Life Support System (CELSS) studies is to examine the effects of microgravity on yield and quality of plant products and on the interactions between irradiance and crop area. Measuring yield and quality of crops as a function of irradiance in microgravity is virtually unique to the CELSS program, as is the emphasis on canopies rather than individual plants. The first step for space experiments is to develop a relatively stress free environment for plant growth, something that has so far never been achieved. High light levels are essential, and there must be time enough to complete a significant portion of the life cycle. Optimal atmosphere and nutrients must be provided. Such responses as germination, orientation of roots and shoots, photosynthesis and respiration, floral initiation and development, and seed maturation and viability will be studied.

  3. Scenarios for optimizing potato productivity in a lunar CELSS

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Morrow, R. C.; Tibbitts, T. W.; Bula, R. J.

    1992-01-01

    The use of controlled ecological life support system (CELSS) in the development and growth of large-scale bases on the Moon will reduce the expense of supplying life support materials from Earth. Such systems would use plants to produce food and oxygen, remove carbon dioxide, and recycle water and minerals. In a lunar CELSS, several factors are likely to be limiting to plant productivity, including the availability of growing area, electrical power, and lamp/ballast weight for lighting systems. Several management scenarios are outlined in this discussion for the production of potatoes based on their response to irradiance, photoperiod, and carbon dioxide concentration. Management scenarios that use 12-hr photoperiods, high carbon dioxide concentrations, and movable lamp banks to alternately irradiate halves of the growing area appear to be the most efficient in terms of growing area, electrical power, and lamp weights. However, the optimal scenario will be dependent upon the relative 'costs' of each factor.

  4. Recycling of trace elements required for humans in CELSS

    NASA Astrophysics Data System (ADS)

    Ashida, A.

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  5. Environmental and cultural considerations for growth of potatoes in CELSS

    NASA Technical Reports Server (NTRS)

    Tibbitts, Theodore W.; Bennett, Susan M.; Morrow, Robert C.

    1990-01-01

    The white potato (Solanum tuberosum) was evaluated for use in the Closed Ecology Life Support System (CELSS) because of its high ratio of edible to inedible biomass and highly nutritious tuber that consists of readily digestible carbohydrates and proteins. Results are given for conditions that will produce the highest yields. The results, given in tabluar form, indicate the optimum temperatures, irradiance, carbon dioxide concentration, root environment, plant spacing, root and stolen containment, and harvesting times.

  6. Preliminary evaluation of waste processing in a CELSS

    NASA Technical Reports Server (NTRS)

    Jacquez, Ricardo B.

    1990-01-01

    Physical/chemical, biological, and hybrid methods can be used in a space environment for processing wastes generated by a Closed Ecological Life Support System (CELSS). Two recycling scenarios are presented. They reflect differing emphases on and responses to the waste system formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system.

  7. The Controlled Ecological Life Support Systems (CELSS) research program

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.

    1990-01-01

    The goal of the Controlled Ecological Life Support Systems (CELSS) program is to develop systems composed of biological, chemical and physical components for purposes of human life support in space. The research activities supported by the program are diverse, but are focused on the growth of higher plants, food and waste processing, and systems control. Current concepts associated with the development and operation of a bioregenerative life support system will be discussed in this paper.

  8. Airborne trace contaminants of possible interest in CELSS

    NASA Technical Reports Server (NTRS)

    Garavelli, J. S.

    1986-01-01

    One design goal of Closed Ecological Life Support Systems (CELSS) for long duration space missions is to maintain an atmosphere which is healthy for all the desirable biological species and not deleterious to any of the mechanical components in that atmosphere. CELESS design must take into account the interactions of at least six major components; (1) humans and animals, (2) higher plants, (3) microalgae, (4) bacteria and fungi, (5) the waste processing system, and (6) other mechanical systems. Each of these major components can be both a source and a target of airborne trace contaminants in a CELSS. A range of possible airborne trace contaminants is discussed within a chemical classification scheme. These contaminants are analyzed with respect to their probable sources among the six major components and their potential effects on those components. Data on airborne chemical contaminants detected in shuttle missions is presented along with this analysis. The observed concentrations of several classes of compounds, including hydrocarbons, halocarbons, halosilanes, amines and nitrogen oxides, are considered with respect to the problems which they present to CELSS.

  9. Applications of CELSS technology to controlled environment agriculture

    NASA Technical Reports Server (NTRS)

    Bates, Maynard E.; Bubenheim, David L.

    1991-01-01

    Controlled environment agriculture (CEA) is defined as the use of environmental manipulation for the commercial production of organisms, whether plants or animals. While many of the technologies necessary for aquaculture systems in North America is nevertheless doubling approximately every five years. Economic, cultural, and environmental pressures all favor CEA over field production for many non-commodity agricultural crops. Many countries around the world are already dependent on CEA for much of their fresh food. Controlled ecological life support systems (CELSS), under development at ARC, KSC, and JSC expand the concept of CEA to the extent that all human requirements for food, oxygen, and water will be provided regenerated by processing of waste streams to supply plant inputs. The CELSS will likely contain plants, humans, possibly other animals, microorganisms and physically and chemical processors. In effect, NASA will create engineered ecosystems. In the process of developing the technology for CELSS, NASA will develop information and technology which will be applied to improving the efficiency, reliability, and cost effectiveness for CEA, improving its resources recycling capabilities, and lessening its environmental impact to negligible levels.

  10. Publications of the NASA Controlled Ecological Life Support Systems (CELSS) Program 1984-86

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Publications of research sponsored by the NASA CELSS (Controlled Ecological Life Support Systems) Program are listed, along with publications of interest to the Program. The bibliography is divided into the three major divisions of CELSS research: (1) Food Production; (2) Waste Management; and (3) Systems Management and Control. This bibliography is an update of NASA CR-3911 and includes references from 1984 through 1986.

  11. Application of Guided Inquiry System Technique (GIST) to Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Aroeste, H.

    1982-01-01

    Guided Inquiry System Technique, a global approach to problem solving, was applied to the subject of Controlled Ecological Life Support Systems (CELSS). Nutrition, food processing, and the use of higher plants in a CELSS were considered by a panel of experts. Specific ideas and recommendations gleaned from discussions with panel members are presented.

  12. Mineral separation and recycle in a Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.

    1982-01-01

    The background of the mineral nutrition needs of plants are examined along with the applicability of mineral control and separation to a controlled ecological life support system (CELSS). Steps that may be taken in a program to analytically define and experimentally test key mineral control concepts in the nutritional and waste processing loops of a CELSS are delineated.

  13. An analysis of alternative technologies for the removal of ethylene from the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1995-01-01

    A variety of technologies were analyzed for their potential to remove ethylene from the CELSS Biomass Production Chamber (BPC). During crop production (e.g., lettuce, wheat, soybean, potato) in the BPC ethylene can accumulate in the airspace and subsequently affect plant viability. The chief source of ethylene is the plants themselves which reside in plastic trays containing nutrient solution. The main sink for ethylene is chamber leakage. The removal technology can be employed when deleterious levels (e.g., 50 ppb for potato) of ethylene are exceeded in the BPC and perhaps to optimize the plant growth process once a better understanding is developed of the relationship between exogenous ethylene concentration and plant growth. The technologies examined were catalytic oxidation, molecular sieve, cryotrapping, permanganate absorption, and UV degradation. Upon analysis, permanganate was chosen as the most suitable method. Experimental data for ethylene removal by permanganate during potato production was analyzed in order to design a system for installation in the BPC air duct. In addition, an analysis of the impact on ethylene concentration in the BPC of integrating the Breadboard Scale Aerobic Bioreactor (BSAB) with the BPC was performed. The result indicates that this unit has no significant effect on the ethylene material balance as a source or sink.

  14. The effect of drying and size reduction pretreatments on recovery of inorganic crop nutrients from inedible wheat residues

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Alazraki, M. P.; Judkins, J.

    2003-01-01

    Inorganic nutrients can be easily recovered from ALS crop residue solid wastes by aqueous leaching. However, oven drying and milling pretreatment of these residues has been frequently required to accommodate crop scientists and facility storage limitations. As part of a research study that will compare three different bioreactor technologies for processing these wastes, we realized that different drying and size-reduction pretreatments had been utilized for each technology. This paper compares the effects of residue pretreatment on recovery of nutrients by leaching. Pretreatments included three drying methods [fresh, oven-dried (70 degrees C overnight), and freeze-dried] and two size reduction methods [chopped (2 cm length) and milled (2 mm diameter)]. Determination of mass balances (dry weight and ash content of solids) before and after leaching indicated solubilization was least for fresh residues (23% dry weight loss and 50% for ash loss), and most for freeze-dried residues (41-47% dry weight loss and nearly 100% for ash loss). Mineral recovery of major elements (NO3, PO4, K, Ca, and Mg) in leachates was poorest for fresh residues. P and K recovery in leachates were best for oven-dried residues and Ca, Mg, and N recovery best for freeze-dried residues. The differences in recovery for N, P, and K in leachates were minimal between chopping and milling and slightly better for Ca and Mg from milled residues.

  15. Investigating the influence of histidine residues on the metal ion binding ability of the wheat metallothionein γ-Ec-1 domain.

    PubMed

    Tarasava, Katsiaryna; Freisinger, Eva

    2015-12-01

    While Zn(II) and Cd(II) have similar geochemical and environmental properties, their biological properties are distinctively different as Cd(II) ions have very limited metabolic significance and are mostly even toxic, while Zn(II) ions belong to the most essential micronutrients. One of the key proteins involved in intracellular Zn(II) and Cd(II) binding are metallothioneins (MTs), small cysteine-rich proteins ubiquitously found in many different organisms. In the past two decades, also MT sequences from diverse species that contain histidine residues have been found, and His-metal ion coordination has been shown. It is not clear, however, why in some MTs parts of the Cys residues are replaced by His, while most other MTs only contain Cys residues for metal ion binding. To address this question, we used the γ-domain of the early-cysteine labeled (Ec-1) metallothionein from common wheat as a model system because its enclosed M2Cys6 cluster represents the smallest metal-thiolate cluster possible with divalent metal ions. Based on the known three-dimensional structure of the γ-domain we set about to investigate the influence of a single Cys-to-His mutation on the structure and metal ion binding abilities of this domain. Combined data obtained by mass spectrometry, UV, as well as NMR spectroscopy suggest a preference for Zn(II) versus Cd(II) ions in the histidine containing binding site. PMID:26299797

  16. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1992-01-01

    The goal of this research is to develop a progressive series of mathematical models for the CELSS hydroponic crops. These models will systematize the experimental findings from the crop researchers in the CELSS Program into a form useful to investigate system-level considerations, for example, dynamic studies of the CELSS Initial Reference Configurations. The crop models will organize data from different crops into a common modeling framework. This is the fifth semiannual report for this project. The following topics are discussed: (1) use of field crop models to explore phasic control of CELSS crops for optimizing yield; (2) seminar presented at Purdue CELSS NSCORT; and (3) paper submitted on analysis of bioprocessing of inedible plant materials.

  17. Contrasting effects of sorghum biochars and sorghum residues on soil chemical changes of coastal plains ultisols with winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although most soil properties were improved following applications of various crop residues, there is still a need to pursue additional research that will improve understanding on the impact of soil fertility enhancement because the effect could vary greatly between sorghum residues and sorghum bioc...

  18. Soil chemical changes of coastal plains ultisols with winter wheat: contrasting effects of sorghum biochars and sorghum residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although most soil properties were improved following application of crop residues and/or pyrolyzed crop residues, there still a need to pursue additional research that will improve our understanding on the impact of soil fertility enhancement because the effect could vary greatly between uncharred ...

  19. Carbon dioxide, methane, and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature

    NASA Astrophysics Data System (ADS)

    Zou, Jianwen; Huang, Yao; Zong, Lianggang; Zheng, Xunhua; Wang, Yuesi

    2004-10-01

    Field measurements were made from June 2001 to May 2002 to evaluate the effect of crop residue application and temperature on CO2, CH4, and N2O emissions within an entire rice-wheat rotation season. Rapeseed cake and wheat straw were incorporated into the soil at a rate of 2.25 t hm-2 when the rice crop was transplanted in June 2001. Compared with the control, the incorporation of rapeseed cake enhanced the emissions of CO2, CH4, and N2O in the rice-growing season by 12.3%, 252.3%, and 17.5%, respectively, while no further effect was held on the emissions of CO2 and N2O in the following wheatgrowing season. The incorporation of wheat straw enhanced the emissions of CO2 and CH4 by 7.1% and 249.6%, respectively, but reduced the N2O emission by 18.8% in the rice-growing season. Significant reductions of 17.8% for the CO2 and of 12.9% for the N2O emission were observed in the following wheatgrowing season. A positive correlation existed between the emissions of N2O and CO2 ( R 2 = 0.445, n = 73, p < 0.001) from the rice-growing season when N2O was emitted. A trade-off relationship between the emissions of CH4 and N2O was found in the rice-growing season. The CH4 emission was significantly correlated with the CO2 emission for the period from rice transplantation to field drainage, but not for the entire rice-growing season. In addition, air temperature was found to regulate the CO2 emissions from the non-waterlogged period over the entire rice-wheat rotation season and the N2O emissions from the nonwaterlogged period of the rice-growing season, which can be quantitatively described by an exponential function. The temperature coefficient ( Q 10) was then evaluated to be 2.3±0.2 for the CO2 emission and 3.9±0.4 for the N2O emission, respectively.

  20. Carbon use efficiency in optimal environments. [for photosynthesis in CELSS

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    1989-01-01

    The short- and long-term effects of environmental changes on plant productivity are studied using a model in which yield is determined by four factors: absorption of photosynthetic photon flux, photosynthetic efficiency, respiratory carbon use efficiency, and harvest index. The characteristics of the model are reviewed. Emphasis is given to the relationship between carbon use efficiency and yield. The biochemical pathways resulting in CO2 efflux are examined, including photorespiration, cyanide-resistant respiration, and dark respiration. The possibility of measuring photosynthesis and respiration in a CELSS is discussed.

  1. A telescience monitoring and control concept for a CELSS plant growth chamber

    NASA Technical Reports Server (NTRS)

    Rasmussen, Daryl N.; Mian, Arshad

    1989-01-01

    Consideration is given to the use of telescience to monitor and control a Space Station CELSS plant growth chamber (PGC). The proposed telescience control system contains controllers for PGC subsystems, a local master controller, and remote controllers. The benefits of telescience are discussed and the functional requirements of the PGC are outlined. A typical monitoring and control scenario is described. It is suggested that the proposed concept would provide remote access to a ground-based CELSS research facility, Space Station plant growth facilities, lunar-based CELSS facilities, and manned interplanetary spacecraft.

  2. Organic manure as an alternative to crop residues for no-tillage wheat-maize systems in North China Plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NT can provide both environmental and economic benefits and has been recognized as a sustainable land use practice in many areas worldwide. NT has induced some concerns in the North China Plain (NCP), e.g. unstable crop yield and fodder shortage, with regards to the amount of crop residues retained ...

  3. Wheat production in controlled environments

    NASA Astrophysics Data System (ADS)

    Salisbury, Frank B.; Bugbee, Bruce; Bubenheim, David

    Our goal is to optimize conditions for maximum yield and quality of wheat to be used in a controlled-environment, life-support system (CELSS) in a Lunar or Martian base or perhaps in a space craft. With yields of 23 to 57 g m-2 d-1 of edible biomass, a minimum size for a CELSS would be between 12 and 30 m2 per person, utilizing about 600 W m-2 of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon-dioxide levels, humidity, and wind velocity are controlled in state-of-the-art growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants per meter2. Densities up to 2000 plants m-2 appear to increase seed yield. Biomass production increases almost linearily with increasing irradiance from 400 to 1700 μmol m-2 s-1 of photosynthetic photon flux (PPF), but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization. High temperatures (25 to 27°C) and long days shorten the life cycle and promote rapid growth, but cooler temperatures (20°C) and shorter days greatly increase seed number per head and thus yield (g m-2). The life cycle is lengthened in these conditions but yield per day (g m-2 d-1) is still increased. We have evaluated about 600 cultivars from around the world and have developed several breeding lines for our controlled conditions. Some of our ultra-dwarf lines (30 to 50 cm tall) look especially promising with high yields and high harvest indices (percent edible biomass).

  4. Wheat production in controlled environments.

    PubMed

    Salisbury, F B; Bugbee, B; Bubenheim, D

    1987-01-01

    Our goal is to optimize conditions for maximum yield and quality of wheat to be used in a controlled-environment, life-support system (CELSS) in a Lunar or Martian base or perhaps in a space craft. With yields of 23 to 57 g m-2 d-1 of edible biomass, a minimum size for a CELSS would be between 12 and 30 m2 per person, utilizing about 600 W m-2 of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon-dioxide levels, humidity, and wind velocity are controlled in state-of-the-art growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants per meter2. Densities up to 2000 plants m-2 appear to increase seed yield. Biomass production increases almost linearly with increasing irradiance from 400 to 1700 micromoles m-2 s-1 of photosynthetic photon flux (PPF), but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization. High temperatures (25 to 27 degrees C) and long days shorten the life cycle and promote rapid growth, but cooler temperatures (20 degrees C) and shorter days greatly increase seed number per head and thus yield (g m-2). The life cycle is lengthened in these conditions but yield per day (g m-2 d-1) is still increased. We have evaluated about 600 cultivars from around the world and have developed several breeding lines for our controlled conditions. Some of our ultra-dwarf lines (30 to 50 cm tall) look especially promising with high yields and high harvest indices (percent edible biomass). PMID:11537261

  5. Design considerations for the CELSS test facility engineering development unit

    NASA Technical Reports Server (NTRS)

    Kliss, M.; Borchers, B.; Drews, M.

    1993-01-01

    The NASA Controlled Ecological Life Support System (CELSS) Program has the goal of developing life support systems for humans in space based on the use of higher plants. The program has supported research at universities with a primary focus of increasing the productivity of candidate crop plants. To understand the effects of the space environment on plant productivity, the CELSS Test Facility (CTF) has been developed as an instrument that will permit the evaluation of plant productivity on Space Station Freedom. The CFT will maintain specific environmental conditions and collect data on gas exchange rates and biomass accumulation over the growth period of several crop plants grown sequentially from seed to harvest. To better understand the systems needed to support plants and maintain the evironmental conditions required by CTF, an Engineering Development Unit (EDU) is being constructed at NASA Ames Research Center (ARC) in the Advanced Life Support Division. The EDU will provide the means of testing and evaluating hardware solutions to CTF requirements. This paper reviews the CTF science and functional requirements, and provides a description of the EDU objectives, design approach, subsystem descriptions, and some of the technology tools employed in accomplishing the design.

  6. Some challenges in designing a lunar, Martian, or microgravity CELSS

    NASA Astrophysics Data System (ADS)

    Salisbury, Frank B.

    The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3xg and in the vacuum of space. Light (energy demanding), CO 2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures-and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved.

  7. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    Controlled-Ecological-Life-Support-System (CELSS) model wastes were wet-oxidized at temperatures from 250 to 500°C, i.e., below and above the critical point of water (374°C and 218 kg/cm2 or 21.4 MPa). A solution of ammonium hydroxide and acetic acid and a slurry of human urine, feces, and wipes were used as model wastes. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500°C, i.e., above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. Although the extent of nitrogen oxidation to nitrous oxide (N2O) and/or nitrogen gas (N2) increased with reaction temperature, most of the nitrogen was retained in solution as ammonia near 400°C. This important finding suggests that most of the nitrogen in the waste feed can be retained in solution as ammonia during oxidation at low supercritical temperatures and be subsequently used as a nitrogen source for plants in a CELSS while at the same time organic matter is almost completely oxidized to carbon dioxide and water. It was also found in this study the Hastelloy C-276 alloy reactor corroded during waste oxidation. The rate of corrosion was lower above than below the critical temperature for water.

  8. Some challenges in designing a lunar, Martian, or microgravity CELSS.

    PubMed

    Salisbury, F B

    1992-01-01

    The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3 xg and in the vacuum of space. Light (energy demanding), CO2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures--and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved. PMID:11537566

  9. Quinoa: An emerging new crop with potential for CELSS

    NASA Technical Reports Server (NTRS)

    Schlick, Greg; Bubenheim, David L.

    1993-01-01

    Chenopodium quinoa is being considered as a new crop for the Controlled Ecological Life Support System (CELSS) because of its high protein values (12 - 18%) and unique amino acid composition. Lysine, and essential amino acid that is deficient in many grain crops, is found in quinoa approaching Food and Agriculture Organization of the United Nations (FAO) standards set for humans. This 'new' crop, rich in protein and with desirable proportions of important amino acids, may provide greater versatility in meeting the needs of humans on long-term space missions. Initially, the cultivars CO407 x ISLUGA, CO407 Heat Tolerant Population 1, and Real' (a Bolivian variety) were examined. The first cultivar showed the most promise in greenhouse studies. When grown hydroponically in the greenhouse, with no attempt to maximize productivity, this cultivar produced 202 g m(exp -2) with a harvest index of 37%. None of the cultivars were greater than 70 cm in height. Initial results indicate that quinoa could be an excellent crop for CELSS because of the high concentration of protein, ease of use, versatility in preparation, and potential for greatly increased yields in controlled environments.

  10. Characterization of Spirulina biomass for CELSS diet potential

    NASA Technical Reports Server (NTRS)

    Tadros, Mahasin G.

    1988-01-01

    Spirulina sp. as a bioregenerative photosynthetic and an edible alga for space craft crew in a CELSS, was characterized for growth rate and biomass yield in batch cultures, under various environmental conditions. The cell characteristics were identified for two strains of Spirulina: S. maxima and S. plantensis. Fast growth rate and high yield of both strains were obtained under the following conditions: temperature (30 to 35 C), light irradiance (60 to 100 uE/m/s), nitrate (30 mM), phosphate (2 mM), aeration (300 ml/min), and ph (9 to 10). The partitioning of the assimalatory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental growth conditions. The experiments with Spirulina demonstrated that under stress conditions (high light 120 uE/m/s, temperature 38 C, nitrogen or phosphate limitation; 0.1 M sodium chloride) carbohydrate increased at the expense of protein. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total proteins were increased up to almost 70 percent of the organic weight. Conclusion: The nutritional quality of the alga could be manipulated by growth conditions, and therefore usful as a subsystem in CELSS.

  11. Microbial biofilm formation and its consequences for the CELSS program

    NASA Technical Reports Server (NTRS)

    Mitchell, R.

    1994-01-01

    A major goal of the Controlled Ecology Life Support System (CELSS) program is to provide reliable and efficient life support systems for long-duration space flights. A principal focus of the program is on the growth of higher plants in growth chambers. These crops should be grown without the risk of damage from microbial contamination. While it is unlikely that plant pathogens will pose a risk, there are serious hazards associated with microorganisms carried in the nutrient delivery systems and in the atmosphere of the growth chamber. Our experience in surface microbiology showed that colonization of surfaces with microorganisms is extremely rapid even when the inoculum is small. After initial colonization extensive biofilms accumulate on moist surfaces. These microbial films metabolize actively and slough off continuously to the air and water. During plant growth in the CELSS program, microbial biofilms have the potential to foul sensors and to plug nutrient delivery systems. In addition both metabolic products of microbial growth and degradation products of materials being considered for use as nutrient reservoirs and for delivery are likely sources of chemicals known to adversly affect plant growth.

  12. CELSS and regenerative life support for manned missions to MARS

    NASA Technical Reports Server (NTRS)

    Mcelroy, R. D.

    1986-01-01

    In the mid 1990's, the space station will become a point from which inter-planetary vehicles can be launched. The practicalities of a manned Mars mission are now being studied, along with some newer concepts for human life support. Specifically, the use of organisms such as plants and algae as the basis for life support systems is now being actively considered. A Controlled Ecological Life Support System (CELSS) is composed of several facilities: (1) to grow photosynthetic plants or algae which will produce food, oxygen and potable water, and remove carbon dioxide exhaled by a crew; (2) to process biomass into food; (3) to oxidize organic wastes into CO2; and (4) to maintain system operation and stability. Such a system, when compared to using materials stored at launch, may have distinct weight and cost advantages, depending upon crew size and mission duration, as well as psychological benefits for the crew. The use of the system during transit, as well as in establishing a re-visitable surface camp, will increase the attractiveness of the CELSS concept for life support on interplanetary missions.

  13. Significance of rhizosphere microorganisms in reclaiming water in a CELSS

    NASA Astrophysics Data System (ADS)

    Greene, C.; Bubenheim, D. L.; Wignarajah, K.

    1997-01-01

    Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponically grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L^-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising.

  14. Significance of rhizosphere microorganisms in reclaiming water in a CELSS

    NASA Astrophysics Data System (ADS)

    1997-01-01

    Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponically grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising.

  15. Composition and analysis of a model waste for a CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.

    1983-01-01

    A model waste based on a modest vegetarian diet is given, including composition and elemental analysis. Its use is recommended for evaluation of candidate waste treatment processes for a Controlled Ecological Life Support System (CELSS).

  16. Publications of the NASA Controlled Ecological Life Support System (CELSS) Program, 1979-1989

    NASA Technical Reports Server (NTRS)

    Wallace, Janice S.; Powers, Janet V.

    1990-01-01

    Publications of research sponsored by the NASA Controlled Ecological Life Support System (CELSS) Program from 1979 to 1989 are listed. The CELSS Program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system that continually recycles the solid, liquid, and gaseous materials essential for human life. The bibliography is divided into four major subject areas: food production, nutritional requirements, waste management, and systems management and control.

  17. Use of Martian resources in a Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.; Macelroy, Robert D.

    1989-01-01

    Possibile crew life support systems for Mars are reviewed, focusing on ways to use Martian resources as life support materials. A system for bioregenerative life support using photosynthetic organisms, known as the Controlled Ecological Life Support System (CELSS), is examined. The possible use of higher plants or algae to produce oxygen on Mars is investigated. The specific requirements for a CELSS on Mars are considered. The exploitation of water, respiratory gases, and mineral nutrients on Mars is discussed.

  18. CELSS-3D: a broad computer model simulating a controlled ecological life support system.

    PubMed

    Schneegurt, M A; Sherman, L A

    1997-01-01

    CELSS-3D is a dynamic, deterministic, and discrete computer simulation of a controlled ecological life support system (CELSS) focusing on biological issues. A series of linear difference equations within a graphic-based modeling environment, the IThink program, was used to describe a modular CELSS system. The overall model included submodels for crop growth chambers, food storage reservoirs, the human crew, a cyanobacterial growth chamber, a waste processor, fixed nitrogen reservoirs, and the atmospheric gases, CO, O2, and N2. The primary process variable was carbon, although oxygen and nitrogen flows were also modeled. Most of the input data used in CELSS-3D were from published sources. A separate linear optimization program, What'sBest!, was used to compare options for the crew's vegetarian diet. CELSS-3D simulations were run for the equivalent of 3 years with a 1-h time interval. Output from simulations run under nominal conditions was used to illustrate dynamic changes in the concentrations of atmospheric gases. The modular design of CELSS-3D will allow other configurations and various failure scenarios to be tested and compared. PMID:11540449

  19. Wet-oxidation waste management system for CELSS

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Ohya, H.

    1986-01-01

    A wet oxidation system will be useful in the Closed Ecological Life Support System (CELSS) as a facility to treat organic wastes and to redistribute inorganic compounds and elements. However at rather higher temperatures needed in this reaction, for instance, at 260 deg C, only 80% of organic in a raw material can be oxidized, and 20% of it will remain in the liquid mainly as acetic acid, which is virtually noncombustible. Furthermore, nitrogen is transformed to ammonium ions which normally cannot be absorbed by plants. To resolve these problems, it becomes necessary to use catalysts. Noble metals such as Ru, Rh and so on have proved to be partially effective as these catalysts. That is, oxidation does not occur completely, and the unexpected denitrification, instead of the expected nitrification, occurs. So, it is essential to develop the catalysts which are able to realize the complete oxidation and the nitrification.

  20. The CELSS research program - A brief review of recent activities

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Tremor, J.; Bubenheim, D. L.; Gale, J.

    1989-01-01

    The history of the Controlled Ecological Life Support System program, initiated by NASA in the late 1970s to explore the use of bioregenerative methods of life support, is reviewed. The project focused on examining the process involved in converting inorganic minerals and gases into life support materials using sunlight as the primary energy source. The research, planning, and technological development required by the CELSS program and conducted at NASA field centers, at various universities, and by commercial organizations are reviewed. Research activities at universities have focused upon exploring methods of reducing the size of the system, reducing system power requirements, understanding issues that are associated with its long-term stability, and identifying new technologies that might be useful in improving its efficiency. Research activities at Ames research center have focused on the use of common duckweed as a high biomass-producing plant, which is high in protein and on waste processing.

  1. Conceptual design for a lunar-base CELSS

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Cullingford, Hatice S.

    1990-01-01

    Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.

  2. Further Characterization of CELSS Wastes: A Review of Solid Wastes Present to Support Potential Secondary Biomass Production

    NASA Technical Reports Server (NTRS)

    Muller, Matthew S.

    1996-01-01

    Controlled ecological life support systems (CELSS) may one day play an essential role in extraterrestrial colonies. Key to the success of any CELSS will be the system's ability to approach a self-supporting status through recovery and reuse of basic resources. Primary CELSS solid wastes with potential to support secondary biomass production will be inedible plant biomass and metabolic human wastes. Solid waste production is summarized and reported as 765 g N per day per person, including 300 g C and 37 g N per day per person. One Resource Recovery configuration using the bioprocessing of solid wastes into a Tilapia feed stream is examined. Based on estimated conversion efficiencies, 12 g of protein per day per person is produced as a nutrition supplement. The unique tissue composition of crops produced at the Kennedy Space Center CELSS Program highlights the need to evaluate Resource Recovery components with data generated in the CELSS environment.

  3. The CELSS Test Facility - A foundation for crop research in space

    NASA Technical Reports Server (NTRS)

    Straight, C. L.; Macelroy, R. D.

    1990-01-01

    Under the NASA Space Biology Initiative, a CELSS Test Facility (CTF) is being planned for installation on Space Station Freedom. The CTF will be used to study the productivity of typical CELSS higher plant crops under the microgravity conditions of the Space Station Freedom (SSF). Such science studies will be supported under the CELSS Space Research Project. The CTF will be used to evaluate fundamental issues of crop productivity, such as the production rates of O2, food and transpired water, and CO2 uptake. A series of precursor tests that are essential to the development of the CTF will be flown on Space Shuttle flights. The tests will be used to validate and qualify technology concepts and to answer specific questions regarding seed germination, root/shoot orientation, water condensation and recycling, nutrient delivery, and liquid/gas phase interactions.

  4. German CELSS research with emphasis on the C.E.B.A.S.-project

    NASA Astrophysics Data System (ADS)

    Volker, Bluem; Karlheinz, Kreuzberg

    In general the German CELSS research program covers both animal and plant systems. In the field of botany a higher plant growth unit is disposed. The construction of a continuous culture device for unicellular algae in long-term multi-generation experiments will start in 1990. In zoology an experimental system for multi-generation experiments, the AQUARACK is already under construction and a running laboratory prototype is sorrounded by a wide-spread ground research program. The combination of the algae system with AQUARACK will result in a combined animal-plant system, the "Closed Equilibrated Biological Aquatic System", C.E.B.A.S. which may be the origin for further interdisciplinary research leading to an aquatic plant-animal-CELSS This research field is closely associated with cybernetical science because the development of the combined systems need simulation processes and highly sophisticated electronical control. A further point in the CELSS program is the study of biological waste management.

  5. Processing of nutritious, safe and acceptable foods from CELSS candidate crops

    NASA Technical Reports Server (NTRS)

    Fu, B.; Nelson, P. E.; Irvine, R.; Kanach, L. L.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    A controlled ecological life-support system (CELSS) is required to sustain life for long-duration space missions. The challenge is preparing a wide variety of tasty, familiar, and nutritious foods from CELSS candidate crops under space environmental conditions. Conventional food processing technologies will have to be modified to adapt to the space environment. Extrusion is one of the processes being examined as a means of converting raw plant biomass into familiar foods. A nutrition-improved pasta has been developed using cowpea as a replacement for a portion of the durum semolina. A freeze-drying system that simulates the space conditions has also been developed. Other technologies that would fulfill the requirements of a CELSS will also be addressed.

  6. The effect of radiation on the long term productivity of a plant based CELSS

    NASA Technical Reports Server (NTRS)

    Thompson, B. G.; Lake, B. H.

    1987-01-01

    Mutations occur at a higher rate in space than under terrestrial conditions, primarily due to an increase in radiation levels. These mutations may effect the productivity of plants found in a controlled ecological life support system (CELSS). Computer simulations of plants with different ploidies, modes of reproduction, lethality thresholds, viability thresholds and susceptibilities to radiation induced mutations were performed under space normal and solar flare conditions. These simulations identified plant characteristics that would enable plants to retain high productivities over time in a CELSS.

  7. Dynamic control of photosynthetic photon flux for lettuce production in CELSS

    NASA Technical Reports Server (NTRS)

    Chun, C.; Mitchell, C. A.

    1996-01-01

    A new dynamic control of photosynthetic photon flux (PPF) was tested using lettuce canopies growing in the Minitron II plant-growth/canopy gas-exchange system. Canopy photosynthetic rates (Pn) were measured in real time and fedback for further environment control. Pn can be manipulated by changing PPF, which is a good environmental parameter for dynamic control of crop production in a Controlled Ecological Life-Support Systems CELSS. Decision making that combines empirical mathematical models with rule sets developed from recent experimental data was tested. With comparable yield indices and potential for energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  8. Application of photosynthetic N2-fixing cyanobacteria to the CELSS program

    NASA Technical Reports Server (NTRS)

    Packer, L.; Fry, I.; Belkin, S.

    1986-01-01

    Commercially available air lift fermentors were used to simultaneously monitor biomass production, N2-fixation, photosynthesis, respiration, and sensitivity to oxidative damage during growth under various nutritional and light regimes, to establish a data base for the integration of these organisms into a Closed Ecological Life Support System (CELSS) program. Certain cyanobacterial species have the unique ability to reduce atmospheric N2 to organic nitrogen. These organisms combine the ease of cultivation characteristics of prokaryotes with the fully developed photosynthetic apparatus of higher plants. This, along with their ability to adapt to changes in their environment by modulation of certain biochemical pathways, make them attractive candidates for incorporation into the CELSS program.

  9. Plant diversity to support humans in a CELSS ground based demonstrator

    NASA Technical Reports Server (NTRS)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  10. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  11. Characterization of Spirulina biomass for CELSS diet potential

    NASA Technical Reports Server (NTRS)

    Tadros, Mahasin G.

    1993-01-01

    Cyanobacteria, Spirulina maxima as a biogenerative photosynthetic and an edible alga for the space craft crew in a CELSS, was evaluated in an effort to increase the growth rate, biomass, yield, and chemical analysis in continuous cultures. The cell characteristics were determined for cultures maintained at steady state with respect to the substrate concentration. The productivity increased in experiments exposed to low light (30 uE m(exp -2)s(exp -1). Oxygen evolved and protein production were higher in cultures exposed to low light intensity. There was a relationship between nitrate concentration and the yield of the culture. Increasing the concentration of nitrate in the growth medium up to 20 mM was enough to produce a culture having the same chemical composition as that of complete medium. High light was inhibiting the yield of the culture. Increasing the concentration of phosphate beyond 1 mM did not improve the yield of the culture. Increasing the concentration of sodium chloride in the growth medium did not affect the growth of the alga up to 0.1 M but beyond that the culture started to be stressed. The response to stress appeared in high production of total carbohydrate on the expense of protein production. The oxygen production was also higher in cultures stressed with sodium chloride.

  12. OCAM - A CELSS modeling tool: Description and results. [Object-oriented Controlled Ecological Life Support System Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Drysdale, Alan; Thomas, Mark; Fresa, Mark; Wheeler, Ray

    1992-01-01

    Controlled Ecological Life Support System (CELSS) technology is critical to the Space Exploration Initiative. NASA's Kennedy Space Center has been performing CELSS research for several years, developing data related to CELSS design. We have developed OCAM (Object-oriented CELSS Analysis and Modeling), a CELSS modeling tool, and have used this tool to evaluate CELSS concepts, using this data. In using OCAM, a CELSS is broken down into components, and each component is modeled as a combination of containers, converters, and gates which store, process, and exchange carbon, hydrogen, and oxygen on a daily basis. Multiple crops and plant types can be simulated. Resource recovery options modeled include combustion, leaching, enzyme treatment, aerobic or anaerobic digestion, and mushroom and fish growth. Results include printouts and time-history graphs of total system mass, biomass, carbon dioxide, and oxygen quantities; energy consumption; and manpower requirements. The contributions of mass, energy, and manpower to system cost have been analyzed to compare configurations and determine appropriate research directions.

  13. Characterization of a benzyladenine binding-site peptide isolated from a wheat cytokinin-binding protein: Sequence analysis and identification of a single affinity-labeled histidine residue by mass spectrometry

    SciTech Connect

    Brinegar, A.C.; Cooper, G.; Stevens, A.; Hauer, C.R.; Shabanowitz, J.; Hunt, D.F.; Fox, J.E. )

    1988-08-01

    A wheat embryo cytokinin-binding protein was covalently modified with the radiolabeled photoaffinity ligand 2-azido-N{sup 6}-({sup 14}C)benzyladenine. A single labeled peptide was obtained after proteolytic digestion and isolation by reversed-phase and anion-exchange HPLC. Sequencing by classical Edman degradation identified 11 of the 12 residues but failed to identify the labeled amino acid. Analysis by laser photodissociation Fourier-transform mass spectrometry of 10 pmol of the peptide independently confirmed the Edman data and also demonstrated that the histidine residue nearest the C terminus (underlined) was modified by the reagent in the sequence Ala-Phe-Leu-Gln-Pro-Ser-His-His{und His}-Asp-Ala-Asp-Glu.

  14. Hormonal regulation of wheat growth during hydroponic culture

    NASA Technical Reports Server (NTRS)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  15. Preparation and analysis of standardized waste samples for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Carden, J. L.; Browner, R.

    1982-01-01

    The preparation and analysis of standardized waste samples for controlled ecological life support systems (CELSS) are considered. Analysis of samples from wet oxidation experiments, the development of ion chromatographic techniques utilizing conventional high pressure liquid chromatography (HPLC) equipment, and an investigation of techniques for interfacing an ion chromatograph (IC) with an inductively coupled plasma optical emission spectrometer (ICPOES) are discussed.

  16. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R. O.; Ollinger, O.; Venables, A.; Fernandez, E.

    1982-01-01

    Studies with algal cultures which relate to closed ecological life support systems (CELSS) are discussed. A description of a constant cell density apparatus for continuous culture of algae is included. Excretion of algal by-products, and nitrogen utilization and excretion are discussed.

  17. Optimization of controlled environments for hydroponic production of leaf lettuce for human life support in CELSS

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Knight, S. L.; Ford, T. L.

    1986-01-01

    A research project in the food production group of the Closed Ecological Life Support System (CELSS) program sought to define optimum conditions for photosynthetic productivity of a higher plant food crop. The effects of radiation and various atmospheric compositions were studied.

  18. Genetic engineering possibilities for CELSS: A bibliography and summary of techniques

    NASA Technical Reports Server (NTRS)

    Johnson, E. J.

    1982-01-01

    A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.

  19. An asparagines residue at the N-terminus affects the maturation process of low molecular weight glutenin subunits of wheat endosperm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum spp.) glutenin polymers are of two main types, high- (HMW-GS) and low- (LMW-GS) molecular weight subunits. The most common are the latter, based on the first amino acid of the mature sequence, are known as LMW-m and LMW-s types. They differ as a result of three extra amino acids (MET...

  20. Significance of Plant Root Microorganisms in Reclaiming Water in CELSS

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Greene, Catherine; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Since many microorganisms demonstrate the ability to quickly break down complex mixtures of waste and environmental contaminants, examining their potential use for water recycling in a closed environment is appealing. Water contributes approximately 90 percent of the life sustaining provisions in a human space habitat. Nearly half of the daily water requirements will be used for personal hygiene and dish washing. The primary contaminants of the used "gray" water will be the cleansing agents or soaps used to carry out these functions. Reclaiming water from the gray water waste streams is one goal of the NASA program, Controlled Ecological Life Support Systems (CELSS). The microorganisms of plane roots are well documented to be of a beneficial effect to promote plant growth. Most plants exhibit a range of bacteria and fungi which can be highly plant-specific. In our investigations with lettuce grown in hydroponic culture, we identified a microflora of normal rhizosphere. When the roots were exposed to an anionic surfactant, the species diversity changed, based on morphological characteristics, with the numbers of species being reduced from 7 to 2 after 48 hours of exposure. In addition, the species that became dominant in the presence of the anionic surfactant also demonstrated a dramatic increase in population density which corresponded to the degradation of the surfactant in the root zone. The potential for using these or other rhizosphere bacteria as a primary or secondary waste processor is promising, but a number of issues still warrant investigation; these include but are not limited to: (1) the full identification of the microbes, (2) the classes of surfactants the microbes will degrade, (3) the environmental conditions required for optimal processing efficiency and (4) the ability of transferring the microbes to a non-living solid matrix such as a bioreactor.

  1. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  2. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    NASA Astrophysics Data System (ADS)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  3. Management of Pre-harvest Sprout Damage in Wheat and Improvement of Soft Wheat Quality in US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United State Department of Agriculture (USDA) estimated world wheat production at 641MMT and US wheat production at 60.5 MMT in 2010/11. About 82% of the world wheat demand is for food and seed use, and about 18% for feed and residual use. Although pre-harvest sprouting occurs for all cereals,...

  4. Studies on maximum yield of wheat for the controlled environments of space

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1986-01-01

    The economic feasibility of using food-producing crop plants in a closed ecological Life-Support System (CELSS) will ultimately depend on the energy and area (or volume) required to provide the nutritional requirements for each person. Energy and area requirements are, to some extent, inversely related; that is, an increased energy input results in a decreased area requirement and vice versa. A major goal of the research effort was to determine the controlled-environment good-production efficiency of wheat per unit area, per unit time, and per unit energy input.

  5. Impact of diet on the design of waste processors in CELSS

    NASA Technical Reports Server (NTRS)

    Waleh, Ahmad; Kanevsky, Valery; Nguyen, Thoi K.; Upadhye, Ravi; Wydeven, Theodore

    1991-01-01

    The preliminary results of a design analysis for a waste processor which employs existing technologies and takes into account the constraints of human diet are presented. The impact of diet is determined by using a model and an algorithm developed for the control and management of diet in a Controlled Ecological Life Support System (CELSS). A material and energy balance model for thermal oxidation of waste is developed which is consistent with both physical/chemical methods of incineration and supercritical water oxidation. The two models yield quantitative analysis of the diet and waste streams and the specific design parameters for waste processors, respectively. The results demonstrate that existing technologies can meet the demands of waste processing, but the choice and design of the processors or processing methods will be sensitive to the constraints of diet. The numerical examples are chosen to display the nature and extent of the gap in the available experiment information about CELSS requirements.

  6. Publications of the NASA Controlled Ecological Life Support System (CELSS) program 1989-1992

    NASA Technical Reports Server (NTRS)

    Powers, Janet V.

    1994-01-01

    Publications of research sponsored by the NASA Controlled Ecological Life Support System (CELSS) program are listed. The CELSS program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system, which is based upon the integration of biological and physical/chemical processes, that will produce nutritious and palatable food, potable and hygienic water, and a breathable atmosphere by recycling metabolic and other wastes. This research and technology development is being performed in the areas of biomass production/food processing, waste management, and systems management and control. The bibliography follows these divisions. Principal investigators whose research tasks resulted in publication are identified by an asterisk. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.

  7. The evolution of CELSS for lunar bases. [Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Klein, H. P.; Averner, M. M.

    1985-01-01

    A bioregenerative life support system designed to address the fundamental requirements of a functioning independent lunar base is presented in full. Issues to be discussed are associated with CELSS weight, volume and cost of operation. The fundamental CELSS component is a small, highly automated module containing plants which photosynthesize and provide the crew with food, water and oxygen. Hydrogen, nitrogen and carbon dioxide will be initially brought in from earth, recycled and their waste products conserved. As the insufficiency of buffers necessitates stringent cybernetic control, a stable state will be maintained by computer control. Through genetic engineering and carbon dioxide, temperature, and nutrient manipulation, plant productivity can be increased, while the area necessary for growth and illumination energy decreased. In addition, photosynthetic efficiency can be enhanced through lamp design, fiber optics and the use of appropriate wavelengths. Crop maintenance will be performed by robotics, as a means of preventing plant ailments.

  8. Closed-ecology life support systems /CELSS/ for long-duration, manned missions

    NASA Technical Reports Server (NTRS)

    Modell, M.; Spurlock, J. M.

    1979-01-01

    Studies were conducted to scope the principal areas of technology that can contribute to the development of closed-ecology life support systems (CELSS). Such systems may be required for future space activities, such as space stations, manufacturing facilities, or colonies. A major feature of CELSS is the regeneration of food from carbon in waste materials. Several processes, using biological and/or physico-chemical components, have been postulated for closing the recycle loop. At the present time, limits of available technical information preclude the specification of an optimum scheme. Nevertheless, the most significant technical requirements can be determined by way of an iterative procedure of formulating, evaluating and comparing various closed-system scenario. The functions features and applications of this systems engineering procedure are discussed.

  9. The conversion of lignocellulosics to fermentable sugars: A survey of current research and application to CELSS

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R.; Baresi, Larry

    1990-01-01

    An overview of the options for converting lignocellulosics into fermentable sugars as applied to the Closed Ecological Life Support System (CELSS) is given. A requirement for pretreatment is shown as well as the many available options. At present, physical/chemical methods are the simplest and best characterized options, but enzymatic processes will likely be the method of choice in the future. The use of pentose sugars by microorganisms to produce edibles at levels comparable to conventional plants is shown. The possible use of mycelial food production on pretreated but not hydrolyzed lignocelluloscis is also presented. Simple tradeoff analysis among some of the many possible biological pathways to regeneration of waste lignocellulosics was undertaken. Comparisons with complete oxidation processes were made. It is suggested that the NASA Life Sciences CELSS program maintain relationships with other government agencies involved in lignocellulosic conversions and use their expertise when the actual need for such conversion technology arises rather than develop this expertise within NASA.

  10. Report of the 1st Planning Workshop for CELSS Flight Experimentation

    NASA Technical Reports Server (NTRS)

    Tremor, John W.; Macelroy, Robert D.

    1988-01-01

    A workshop held March 23 and 24, 1987 to establish a base upon which a CELSS flight experiment program will be developed, is summarized. The kind of information necessary for productivity assessment was determined. In addition, generic experiments necessary to gather that information were identified and prioritized. General problems of hardware and equipment were defined. The need for the hardware to provide a stress-free environment, not only for productivity, but also to make more readily identifiable disturbing mission factors, was recognized.

  11. Nutrition and food technology for a Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.; Mabel, J. A.

    1981-01-01

    Food technology requirements and a nutritional strategy for a Controlled Ecological Life Support System (CELSS) to provide adequate food in an acceptable form in future space missions are discussed. The establishment of nutritional requirements, dietary goals, and a food service system to deliver acceptable foods in a safe and healthy form and the development of research goals and priorities were the main objectives of the study.

  12. The crop growth research chamber: A ground-based facility for CELSS research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    1990-01-01

    A ground based facility for the study of plant growth and development under stringently controlled environments is being developed by the Closed Ecological Life Support System (CELSS) program at the Ames Research Center. Several Crop Growth Research Chambers (CGRC) and laboratory support equipment provide the core of this facility. The CGRC is a closed (sealed) system with a separate recirculating atmosphere and nutrient delivery systems. The atmospheric environment, hydroponic environment, systems controls, and data acquisition are discussed.

  13. Evaluation of engineering foods for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1982-01-01

    The feasibility of developing acceptable and reliable engineered foods for use in controlled ecological support systems (CELSS) was evaluated. Food resupply and regeneration are calculated, flow charts of food processes in a multipurpose food pilot plant are presented, and equipment for a multipurpose food pilot plant and potential simplification of processes are discussed. Food-waste treatment and water usage in food processing and preparation are also considered.

  14. Eat Wheat!

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  15. Wheat Newsletter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review was written for readers of the Annual Wheat Newsletter, Volume 53. It summarizes activities on wheat research during 2006 at the U.S. Grain Marketing Research Laboratory (USGMRL). The article includes technical abstracts of research accomplishments from the Grain Quality and Structure ...

  16. Nonlinear system controller design based on domain of attaction: An application to CELSS analysis and control

    NASA Technical Reports Server (NTRS)

    Babcock, P. S., IV

    1986-01-01

    Nonlinear system controller design based on the domain of attraction is presented. This is particularly suited to investigating Closed Ecological Life Support Systems (CELSS) models. In particular, the dynamic consequences of changes in the waste storage capacity and system mass, and how information is used for control in CELSS models are examined. The models' high dimensionality and nonlinear state equations make them difficult to analyze by any other technique. The domain of attraction is the region in initial conditions that tend toward an attractor and it is delineated by randomly selecting initial conditions from the region of state space being investigated. Error analysis is done by repeating the domain simulations with independent samples. A refinement of this region is the domain of performance which is the region of initial conditions meeting a performance criteria. In nonlinear systems, local stability does not insure stability over a larger region. The domain of attraction marks out this stability region; hence, it can be considered a measure of a nonlinear system's ability to recovery from state perturbations. Considering random perturbations, the minimum radius of the domain is a measure of the magnitude of perturbations for which recovery is guaranteed. Design of both linear and nonlinear controllers are shown. Three CELSS models, with 9 to 30 state variable, are presented. Measures of the domain of attraction are used to show the global behavior of these models under a variety of design and controller scenarios.

  17. Initial Closed Operation of the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    1995-01-01

    As part of the NASA Controlled Ecological Life Support System (CELSS) Program, a CELSS Test Facility (CTF) is being planned for installation on the Space Station. The CTF will be used to provide data on the productivity and efficiency of a variety of CELSS higher plant crops grown sequentially from seed to harvest in the microgravity environment of the Space Station. Stringent environmental control will be maintained while fundamental crop productivity issues, such as carbon dioxide uptake and oxygen production rates, water transpiration rates, and biomass accumulation rates are obtained for comparison with ground-based data. In order to obtain an early realistic determination of the subsystem and system requirements necessary to provide the appropriate environmental conditions specified for CTF crop productivity experiments, an Engineering Development Unit (EDU) has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The EDU is a ground-based testbed which will be used to characterize the integrated performance of major subsystem technologies, to evaluate hardware candidates and control strategies required for the CTF, and to further define the ability to meet CTF requirements within present Space Station constraints. This paper describes the initial closed operational testing of the EDU. Measured performance data are compared with the specified functional requirements and results from initial closed testing are presented. Plans for future science and technology testing are discussed.

  18. Preliminary test results from the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, Mark H.; Macelroy, R. D.; Blackwell, C. C.; Borchers, B. A.; Drews, M. E.; Longabaugh, J. R.; Yendler, B. S.; Zografos, A. I.

    1994-01-01

    As part of the NASA Controlled Ecological Life Support System (CELSS) Program, a CELSS Test Facility (CTF) is being planned for installation on the Space Station. The CTF will be used to provide data on the productivity and efficiency of a variety of CELSS higher plant crops grown in the microgravity environment of the Space Station. Tight environmental control will be maintained while data on gas exchange rates and biomass accumulation rates are collected. In order to obtain an early realistic determination of the subsystem and system requirements necessary to provide the environmental conditions specified for CTF crop productivity experiments, an Engineering Development Unit (EDU) has been designed, constructed and is in the process of subsystem and system testing at NASA Ames Research Center. The EDU is a ground test-bed which will be used to characterize the integrated performance of major subsystem technologies, to evaluate hardware candidates and control strategies required for the CTF, and to further define the ability to meet CTF requirements within present Space Station constraints. This paper reviews the functional requirements for the EDU, and focuses on the performance evaluation and test results of the various subsystems. Preliminary integrated performance results and control system operation are addressed, and plans for future science and technology testing are discussed.

  19. Monitoring and control technologies for bioregenerative life support systems/CELSS

    NASA Technical Reports Server (NTRS)

    Knott, William M.; Sager, John C.

    1991-01-01

    The development of a controlled Ecological Life Support System (CELSS) will require NASA to develop innovative monitoring and control technologies to operate the different components of the system. Primary effort over the past three to four years has been directed toward the development of technologies to operate a biomass production module. Computer hardware and software required to operate, collect, and summarize environmental data for a large plant growth chamber facility were developed and refined. Sensors and controls required to collect information on such physical parameters as relative humidity, temperature, irradiance, pressure, and gases in the atmosphere; and PH, dissolved oxygen, fluid flow rates, and electrical conductivity in the nutrient solutions are being developed and tested. Technologies required to produce high artificial irradiance for plant growth and those required to collect and transport natural light into a plant growth chamber are also being evaluated. Significant effort was directed towards the development and testing of a membrane nutrient delivery system required to manipulate, seed, and harvest crops, and to determine plant health prior to stress impacting plant productivity are also being researched. Tissue culture technologies are being developed for use in management and propagation of crop plants. Though previous efforts have focussed on development of technologies required to operate a biomass production module for a CELSS, current efforts are expanding to include technologies required to operate modules such as food preparation, biomass processing, and resource (waste) recovery which are integral parts of the CELSS.

  20. Nostoc sphaeroides Kützing, an excellent candidate producer for CELSS

    NASA Astrophysics Data System (ADS)

    Hao, Zongjie; Li, Dunhai; Li, Yanhui; Wang, Zhicong; Xiao, Yuan; Wang, Gaohong; Liu, Yongding; Hu, Chunxiang; Liu, Qifang

    2011-11-01

    Some phytoplankton can be regarded as possible candidates in the establishment of Controlled Ecological Life Support System (CELSS) for some intrinsic characteristics, the first characteristic is that they should grow rapidly, secondly, they should be able to endure some stress factors and develop some corresponding adaptive strategies; also it is very important that they could provide food rich in nutritious protein and vitamins for the crew; the last but not the least is they can also fulfill the other main functions of CELSS, including supplying oxygen, removing carbon dioxide and recycling the metabolic waste. According to these characteristics, Nostoc sphaeroides, a potential healthy food in China, was selected as the potential producer in CELSS. It was found that the oxygen average evolution rate of this algae is about 150 μmol O 2 mg -1 h -1, and the size of them are ranged from 2 to 20 mm. Also it can be cultured with high population density, which indicated that the potential productivity of Nostoc sphaeroides is higher than other algae in limited volume. We measured the nutrient contents of the cyanobacterium and concluded it was a good food for the crew. Based on above advantages, Nostoc sphaeroides was assumed to a suitable phytoplankton for the establishment of Controlled Ecological Life Support System. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food in future space missions.

  1. Evaluation of Cyanothece sp. ATCC 51142 as a candidate for inclusion in a CELSS

    NASA Technical Reports Server (NTRS)

    Schneegurt, M. A.; Arieli, B.; Nielsen, S. S.; Trumbo, P. R.; Sherman, L. A.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Controlled ecological life support systems (CELSS) have been proposed to make long-duration manned space flights more cost-effective. Higher plants will presumably provide food and a breathable atmosphere for the crew. It has been suggested that imbalances between the CO2/O2 gas exchange ratios of the heterotrophic and autotrophic components of the system will inevitably lead to an unstable system, and the loss of O2 from the atmosphere. Ratio imbalances may be corrected by including a second autotroph with an appropriate CO2/O2 gas exchange ratio. Cyanothece sp. ATCC 51142 is a large unicellular N2-fixing cyanobacterium, exhibiting high growth rates under diverse physiological conditions. A rat-feeding study showed the biomass to be edible. Furthermore, it may have a CO2/O2 gas exchange ratio that theoretically can compensate for ratio imbalances. It is suggested that Cyanothece spp. could fulfill several roles in a CELSS: supplementing atmosphere recycling, generating fixed N from the air, providing a balanced protein supplement, and protecting a CELSS in case of catastrophic crop failure.

  2. Evaluation of Cyanothece sp. ATCC 51142 as a candidate for inclusion in a CELSS.

    PubMed

    Schneegurt, M A; Arieli, B; Nielsen, S S; Trumbo, P R; Sherman, L A

    1996-01-01

    Controlled ecological life support systems (CELSS) have been proposed to make long-duration manned space flights more cost-effective. Higher plants will presumably provide food and a breathable atmosphere for the crew. It has been suggested that imbalances between the CO2/O2 gas exchange ratios of the heterotrophic and autotrophic components of the system will inevitably lead to an unstable system, and the loss of O2 from the atmosphere. Ratio imbalances may be corrected by including a second autotroph with an appropriate CO2/O2 gas exchange ratio. Cyanothece sp. ATCC 51142 is a large unicellular N2-fixing cyanobacterium, exhibiting high growth rates under diverse physiological conditions. A rat-feeding study showed the biomass to be edible. Furthermore, it may have a CO2/O2 gas exchange ratio that theoretically can compensate for ratio imbalances. It is suggested that Cyanothece spp. could fulfill several roles in a CELSS: supplementing atmosphere recycling, generating fixed N from the air, providing a balanced protein supplement, and protecting a CELSS in case of catastrophic crop failure. PMID:11538794

  3. Residual efficacy of methoprene for control of Tribolium castaneum (Coleoptera: Tenebrionidae) larvae at different temperatures on varnished wood, concrete, and wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The residual efficacy of the juvenile hormone analogue, methoprene (Diacon II), was evaluated in bioassays using larvae of Tribolium castaneum (Herbst) exposed on varnished wood or unsealed concrete treated with a liquid formulation and held at different temperatures. When these surfaces were stored...

  4. The CELSS Antarctic Analog Project: An Advanced Life Support Testbed at the Amundsen-Scott South Pole Station, Antarctica

    NASA Technical Reports Server (NTRS)

    Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.

    1994-01-01

    CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.

  5. Wheat: The Whole Story.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  6. Biomass production chamber air analysis of wheat study (BWT931)

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Peterson, B. V.; Berdis, E.; Wheeler, E. M.

    1993-01-01

    NASA's Controlled Ecological Life Support System (CELSS) biomass production chamber at John F. Kennedy Space Center provides a test bed for bioregenerative studies using plants to provide food, oxygen, carbon dioxide removal, and potable water to humans during long term space travel. Growing plants in enclosed environments has brought about concerns regarding the level of volatile organic compounds (VOC's) emitted from plants and the construction materials that make up the plant growth chambers. In such closed systems, the potential exists for some VOC's to reach toxic levels and lead to poor plant growth, plant death, or health problems for human inhabitants. This study characterized the air in an enclosed environment in which wheat cv. Yocora Rojo was grown. Ninty-four whole air samples were analyzed by gas chromatography/mass spectrometry throughout the eighty-four day planting. VOC emissions from plants and materials were characterized and quantified.

  7. Sweet potato growth parameters, yield components and nutritive value for CELSS applications

    NASA Technical Reports Server (NTRS)

    Loretan, P. A.; Bonsi, C. K.; Hill, W. A.; Ogbuehi, C. R.; Mortley, D. G.

    1989-01-01

    Sweet potatoes have been grown hydroponically using the nutrient film technique (NFT) to provide a potential food source for long-term manned space missions. Experiments in both sand and NFT cultivars have produced up to 1790 g/plant of fresh storage root with an edible biomass index ranging from 60-89 percent and edible biomass linear growth rates of 39-66 g/sq m day in 105 to 130 days. Experiments with different cultivars, nutrient solution compositions, application rates, air and root temperatures, photoperiods, and light intensities indicate good potential for sweet potatoes in CELSS.

  8. The conversion of lignocellulosics to fermentable sugars - A survey of current research and applications to CELSS

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R.; Baresi, Larry

    1990-01-01

    This report provides an overview options for converting lignocellulosics into fermentable sugars in CELSS. A requirement for pretreatment is shown. Physical-chemical and enzymatic hydrolysis processes for producing fermentable sugars are discussed. At present physical-chemical methods are the simplest and best characterized options, but enzymatic processes will be the likely method of choice in the future. The use of pentose sugars by microorganisms to produce edibles is possible. The use of mycelial food production on pretreated but not hydrolyzed lignocellulosics is also possible. Simple trade-off analyses to regenerate waste lignocellulosics for two pathways are made, one of which is compared to complete oxidation.

  9. The maximization of the productivity of aquatic plants for use in controlled ecological life support systems (CELSS)

    NASA Astrophysics Data System (ADS)

    Thompson, B. G.

    Lemna minor (common duckweed) and a Wolffia sp. were grown in submerged growth systems. Submerged growth increased the productivity/unit volume (P/UV) of the organisms and may allow these plants to be used in a controlled ecological life support system (CELSS).

  10. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    NASA Technical Reports Server (NTRS)

    Abraham, Martin; Fisher, John W.

    1995-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst, prepared at The University of Tulsa, at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  11. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Abraham, Martin

    1993-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  12. Mechanism and potential applications of bio-ligninolytic systems in a CELSS

    NASA Technical Reports Server (NTRS)

    Sarikaya, A.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    A large amount of inedible plant material, generated as a result of plant growth in a Controlled Ecological Life Support System (CELSS), should be pretreated and converted into forms that can be recycled on earth as well as in space. The main portion of the inedible biomass is lignocellulosic material. Enzymatic hydrolysis of this cellulose would provide sugars for many other uses by recycling carbon, hydrogen, oxygen, and nitrogen through formation of carbon dioxide, heat, and sugars, which are potential foodstuffs. To obtain monosaccharides from cellulose, the protective effect of lignin should be removed. White-rot fungi degrade lignin more extensively and rapidly than other microorganisms. Pleurotus ostreatus degrades lignin effectively, and produces edible and flavorful mushrooms that increase the quality and nutritional value of the diet. This mushroom is also capable of metabolizing hemicellulose, thereby providing a food use of this pentose containing polysaccharide. This study presents the current knowledge of physiology and biochemistry of primary and secondary metabolisms of basidiomycetes, and degradation mechanism of lignin. A better understanding of the ligninolytic activity of white-rot fungi will impact the CELSS Program by providing insights on how edible fungi might be used to recycle the inedible portions of the crops.

  13. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-01-01

    Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  14. Initial closed operation of the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, M.; Blackwell, C.; Zografos, A.; Drews, M.; MacElroy, R.; McKenna, R.; Heyenga, A. G.

    2003-01-01

    As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. Published by Elsevier Science Ltd on behalf of COSPAR.

  15. Proximate nutritional composition of celss crops grown at different CO2 partial pressures

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-11-01

    Two CELSS candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. With the exception of increased crude fiber of soybean seed with increased CO2, no trends were apparent with regard to CO2 effects on proximate composition of soybean seed and potato tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  16. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures.

    PubMed

    Wheeler, R M; Mackowiak, C L; Sager, J C; Knott, W M; Berry, W L

    1994-11-01

    Two CELSS candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. With the exception of increased crude fiber of soybean seed with increased CO2, no trends were apparent with regard to CO2 effects on proximate composition of soybean seed and potato tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS. PMID:11540178

  17. Operation of an experimental algal gas exchanger for use in a CELSS

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.; Wharton, Robert A., Jr.; Averner, Maurice M.

    1987-01-01

    Concepts of a Closed Ecological Life Support System (CELSS) anticipate the use of photosynthetic organisms (higher plants and algae) for air revitalization. The rates of production and uptake of carbon dioxide and oxygen between the crew and the photosynthetic organisms are mismatched. An algal system used for gas exchange only will have the difficulty of an accumulation or depletion of these gases beyond physiologically tolerable limits (in a closed system the mismatch between assimilatory quotient (AQ) and respiratory quotient (RQ) is balanced by the operation of the waste processor). The results are given of a study designed to test the feasibility of using environmental manipulations to maintain physiologically appropriate atmospheres for algae and mice in a gas closed system. Specifically, the atmosphere behavior of this system is considered with algae grown on nitrate or urea and at different light intensities and optical densities. Manipulation of both allow operation of the system in a gas stable manner. Operation of such a system in a CELSS may be useful for reduction of buffer sizes, as a backup system for higher plant air revitalization and to supply extra oxygen to the waste processor or during crew changes.

  18. Nostoc sphaeroides Kütz, a candidate producer par excellence for CELSS

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Liu, Yongding

    A lot of aquatic organisms could be regarded as suitable candidates par excellence in the establishment of CELSS, since they are relatively easy and fast to grow and resistant to changes in environmental condition as well as providing nutritious, protein-and vitamin-rich foods for the crew, which can fulfill the main functions of CELSS, including supplying oxygen, water and food, removing carbon dioxide and making daily life waste reusable. Our labotory has developed mass culture of Nostoc sphaeroides Kütz, which is one of traditional healthy food in China and. The oxygen evolution rate of the cyanobacterium is about 150 molO2.mg-1.h-1, and it usually grows into colony with size between 2-20mm, which is easy to be harvested. It also can be cultured with high density, which show that the productivity of the cyanobacterium in limited volume is higher than other microalgae. We had measured the nutrient content of the cyanobacterium and developed some Chinese Dishes and Soups with Nostoc sphaeroides Kütz, which showed that it was a good food for crew. Using remote sensing technique, we also investigated its growth in Closed System under microgravity by SHENZHOU-2 spacecraft in January 2001. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food to crew in future.

  19. Operation of an experimental algal gas exchanger for use in a CELSS

    NASA Astrophysics Data System (ADS)

    Smernoff, David T.; Wharton, Robert A.; Averner, Maurice M.

    Concepts of a CELSS anticipate the use of photosynthetic organisms (higher plants and algae) for air revitalization. The rates of production and uptake of carbon dioxide and oxygen between the crew and the photosynthetic organisms are mismatched. An aglal system used for gas exchange only will have the difficulty of an accumulation or depletion of these gases beyond physiologically tolerable limits (in a materially closed system the mismatch between assimilatory quotient (AQ) and respiratory quotient (RQ) will be balanced by the operation of the waste processor). We report the results of a study designed to test the feasibility of using environmental manipulations to maintain physiologically appropriate atmospheres for algae (Chlorella pyrenoidosa) and mice (Mus musculus strain DW/J) in a gas-closed system. Specifically, we consider the atmosphere behavior of this system with Chlorella grown on nitrate or urea and at different light intensities and optical densities. Manipulation of both the photosynthetic rate and AQ of the alga has been found to reduce the mismatch of gas requirements and allow operation of the system in a gas-stable manner. Operation of such a system in a CELSS may be useful for reduction of buffer sizes, as a backup system for higher plant air revitalization and to supply extra oxygen to the waste processor or during crew changes. In addition, mass balance for components of the system (mouse, algae and a waste processor) are presented.

  20. Wheat Lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article is a chapter of a book entitled “Wheat: Chemistry and Technology”, the 4th edition, K. Khan and P.R. Shewry (eds.), to be published in 2007 following the 3rd edition, Y. Pomeranz (ed.), published in 1988 by AACC International Inc., St. Paul, MN. The chapter covers the subject area of wh...

  1. 40 CFR 180.659 - Pyroxasulfone; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues of the herbicide pyroxasulfone, including its metabolites and degradates, in or on the commodities... herbicide pyroxasulfone, including its metabolites and degradates, in or on the commodities in the table... 6.0 Wheat, hay 1.0 Wheat, straw 0.60 (3) Tolerances are established for residues of the...

  2. The CELSS program - An overview of its structure and use of computer modelling

    NASA Technical Reports Server (NTRS)

    Averner, M. M.; Macelroy, R. D.

    1981-01-01

    NASA has initiated a research program, CELSS, directed at the acquisition of the knowledge and technology required for the development of an autonomous, regenerative life support system. The program is structured to promote effective, cooperative research in fundamental, applied and engineering science. The initial research thrusts involve investigations into problems of food production, waste processing and system control and integration. In the area of food production both conventional, higher plant-based processes as well as chemosynthetic food production technologies are being investigated. Alternative waste processing procedures, both biological and physicochemical, are being examined. Computer based modelling as an aid to design and analysis is an integral part of the approach to system control and management. A mass balance model depicting the flow of elemental mass in a conceptualized closed, regenerative life support system is described.

  3. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  4. Operation of an experimental algal gas exchanger for use in a CELSS

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.; Wharton, Robert A., Jr.; Averner, Maurice M.

    1987-01-01

    Concepts of a CELSS anticipate the use of photosynthetic organisms for air revitalization. The rates of production and uptake of carbon dioxide and oxygen between the crew and the photosynthetic organisms are mismatched. An algal system used for gas exchange only will have the difficulty of an accumulation or depletion of these gases beyond physiologically tolerable limits. The results of a study designed to test the feasibility of using environmental manipulations to maintain physiologically appropriate atmospheres for algae (Chlorella pyrenoidosa) and mice (Mus musculus strain DW/J) in a gas-closed system is reported. Specifically, the atmosphere behavior of this system with Chlorella grown on nitrate or urea and at different light intensities and optical densities is considered. Manipulation of both the photosynthetic rate and the assimilatory quotient of the alga has been found to reduce the mismatch of gas requirements and allow operation of the system in a gas-stable manner.

  5. Development of Selection Criteria and Their Application in Evaluation of CELSS Candidate Species

    NASA Technical Reports Server (NTRS)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    A total of 21 criteria were considered; nine of them fall into the realm of human nutrition and convenience (the "use' criteria), and the remaining 12 are predominantly cultural considerations. Five criteria were considered to be of great importance in the selection of plant species and were given double eight relative to the remaining criteria. "Use' criteria include the following: energy concentration, nutritional composition, palatability, serving size and frequency, processing requirements, use flexibility, toxicity, and human experience. "Cultural' criteria include the following: proportion of edible biomass, yield of edible plant biomass, continuous vs. determinate harvestability, growth habit and morphology, environmental tolerance, photoperiodic and temperature requirements, symbiotic requirements and restrictions, carbon dioxide-light intensity response, suitability for soilless culture, disease resistance, familarity with species, and pollination and propagation. A total of 115 species were evaluated and scored according to suitability for a CELSS.

  6. Design and control strategies for CELSS - Integrating mechanistic paradigms and biological complexities

    NASA Technical Reports Server (NTRS)

    Moore, B., III; Kaufmann, R.; Reinhold, C.

    1981-01-01

    Systems analysis and control theory consideration are given to simulations of both individual components and total systems, in order to develop a reliable control strategy for a Controlled Ecological Life Support System (CELSS) which includes complex biological components. Because of the numerous nonlinearities and tight coupling within the biological component, classical control theory may be inadequate and the statistical analysis of factorial experiments more useful. The range in control characteristics of particular species may simplify the overall task by providing an appropriate balance of stability and controllability to match species function in the overall design. The ultimate goal of this research is the coordination of biological and mechanical subsystems in order to achieve a self-supporting environment.

  7. The C23A: first step to a monitoring system of CELSS in flight.

    PubMed

    Lasseur, C h; Massimino, D; Renou, J L; Richaud, C h

    1989-01-01

    Studies for every level of CELSS: Waste processing, food production, photosynthesis system, and so on ..., imply an automatic system to control, command and quantify gases, water and chemical compounds. Used for many years in plant physiology studies, the C23A system monitors the analysis and quantifies gases (O2, CO2. N2, ...), physical parameters (temperature, humidity, ...) and chemical compounds (NH4+, N03-, ...) on numerous experiments. In the new version, the architecture of the computing system is near of the space requirements. We have chosen a structure with three independent levels: acquisition, monitoring and supervision. Moreover, we use multiplexed analysers: IRGA, mass spectrometer and cheminal analyser. The multiplexing increases the accuracy of the measurements and could facilitate the spatialization. Thus the whole structure anticipates the entire separation between automation in space and control-command on ground. PMID:11537379

  8. Atmospheric dynamics in the “Laboratory Biosphere” with wheat and sweet potato crops

    NASA Astrophysics Data System (ADS)

    Dempster, William F.; Allen, J. P.; Alling, A.; Silverstone, S.; Van Thillo, M.

    Laboratory Biosphere is a 40-m 3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m 2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, e.g., hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in mmol h -1 m -2 of planted area. An 85-day crop of USU Apogee wheat under a 16-h lighted/8-h dark regime peaked in fixation rate at about 100 mmol h -1 m -2 approximately 24 days after planting. Light intensity was about 840 μmol m -2 s -1. Dark respiration peaked at about 31 mmol h -1 m -2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h -1 m -2 was observed in the dark closed chamber for 100 days after the harvest. A 126-day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 μmol m -2 s -1, 18-h lighted/6-h dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h -1 m -2 after 42 days and dark respiration settled into a range of 12-23 mmol h -1 m -2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO 2 levels were allowed to range widely from a few hundred to about 3000 ppm, which permitted observation of fixation rates both at varying CO 2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more complex CELSS which

  9. Microwave emission and crop residues

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1991-01-01

    A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.

  10. Evolutionary Genomics of Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is the world’s largest and most important food crop for direct human consumption, therefore, continued wheat improvement is paramount for feeding an ever-increasing human population. Wheat improvement is tightly associated with the characterization and understanding of wheat evolution and gene...

  11. Spring Wheat Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common wheat, known as bread wheat, is one of major crops for human food consumption. It is further classified into spring and winter wheat based on the distinct growing seasons. Spring wheat is grown worldwide and usually planted in the spring and harvested in late summer or early fall. In this c...

  12. Development of a prototype experiment for treating CELSS and PCELSS wastes to produce nutrients for plant growth

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Future long term spaceflights require extensive recycling of wastes to minimize the need for resupplying the vessel. The recycling occurs in a fully or partially closed environment life support system (CELSS or PCELSS). The National Aeronautics and Space Administration (NASA) is interested in converting wastewater into potable water or water for hydroponic farming as part of a CELSS. The development of technologies for wastewater treatment that produce a minimum of by-products is essential. One process that achieves good conversion of moderately concentrated organic wastes in water (1 to 20% by weight) completely to carbon dioxide and water is oxidation in supercritical water. Both air (or oxygen) and many organics are completely miscible with supercritical water, so there are no interphase mass transport resistances that limits the overall oxidation reaction. The temperature of supercritical water, which must be above 374 C, is also sufficient to have rapid reaction kinetics for the oxidations.

  13. Validated environmental and physiological data from the CELSS Breadboard Projects Biomass Production Chamber. BWT931 (Wheat cv. Yecora Rojo)

    NASA Technical Reports Server (NTRS)

    Stutte, G. W.; Mackowiak, C. L.; Markwell, G. A.; Wheeler, R. M.; Sager, J. C.

    1993-01-01

    This KSC database is being made available to the scientific research community to facilitate the development of crop development models, to test monitoring and control strategies, and to identify environmental limitations in crop production systems. The KSC validated dataset consists of 17 parameters necessary to maintain bioregenerative life support functions: water purification, CO2 removal, O2 production, and biomass production. The data are available on disk as either a DATABASE SUBSET (one week of 5-minute data) or DATABASE SUMMARY (daily averages of parameters). Online access to the VALIDATED DATABASE will be made available to institutions with specific programmatic requirements. Availability and access to the KSC validated database are subject to approval and limitations implicit in KSC computer security policies.

  14. [Research advances in wheat (Triticum aestivum) allelopathy].

    PubMed

    Zhang, Xiaoke; Jiang, Yong; Liang, Wenju; Kong, Chuihua

    2004-10-01

    Wheat (Triticum aestivum) is the main food crop in the world, and plays an important role in agricultural production. In order to enhance wheat yield, herbicides and germicides were intensively applied and made negative effects on the environment. Wheat possesses allelopathic potential for weed suppression and disease control through the release of secondary metabolites from its living plants or residues, which could avoid the environment pollution brought by herbicides and germicides. This paper reviewed the research advances in wheat allelopathy. Hydroxamic acids and phenolic acids are the predominant allelochemicals frequently reported which could produce plant natural defense against weed, pest and disease. The allelopathic activity of allelochemicals is determined not only by the allelochemicals, but also by the factors of inheritance, environment and biology. The retention, transportation and transformation processes of allelochemicals, and the relationship between wheat allelopathy and soil biota and its mechanism were seldom studied and still needed to be researched profoundly. Utilizing wheat allelopathy in plant protection, environment protection and crop breeding would improve the stress-resistance, yield and quality of wheat in agricultural production. PMID:15624846

  15. Utilization of the water soluable fraction of wheat straw as a plant nutrient source

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.

    1990-01-01

    Recovery of water soluble, inorganic nutrients from the inedible portion of wheat was found to be an effective means of recycling nutrients within hydroponic systems. Through aqueous extraction (leaching), 60 percent of the total inorganic nutrient weight was removed from wheat straw and roots, although the recovery of individual nutrients varied. Leaching also removed about 20 percent of the total organic carbon from the biomass. In terms of dry weight, the leachate was comprised of approximately 60 percent organic and 40 percent inorganic compounds. Direct use of wheat straw leachate in static hydroponic systems had an inhibitory effect on wheat growth, both in the presence and absence of microorganisms. Biological treatment of leachate either with a mixed microbial community or the oyster mushroom Pleurotus ostreatus L., prior to use in hydroponic solutions, significantly reduced both the organic content and the inhibitory effects of the leachate. The inhibitory effects of unprocessed leachate appear to be a result of rapidly acting phytotoxic compounds that are detoxified by microbial activity. Leaching holds considerable promise as a method for nutrient recycling in a Controlled Ecological Life Support System (CELSS).

  16. Growing wheat in Biosphere 2 under elevated CO2: observations and modeling

    NASA Technical Reports Server (NTRS)

    Tubiello, F. N.; Mahato, T.; Morton, T.; Druitt, J. W.; Volk, T.; Marino, B. D.

    1999-01-01

    Spring wheat (Triticum aestivum L., cv. Yecora Rojo) was grown in the intensive agricultural biome (IAB) of Biosphere 2 during the l995-l996 winter/spring season. Environmental conditions were characterized by a day/night temperature regime of 27/17 degrees C, relative humidity (RH) levels around 45%, mean atmospheric CO2 concentration of 450 ppmv, and natural light conditions with mean intensities about half of outside levels. Weekly samples of above-ground plant matter were collected throughout the growing season and phenological events recorded. A computer model, CERES-Wheat, previously tested under both field and controlled conditions, was used to simulate the observed crop growth and to help in data analysis. We found that CERES-Wheat simulated the data collected at Biosphere 2 to within 10% of observed, thus suggesting that wheat growth inside the IAB was comparable to that documented in other environments. The model predicts phenological stages and final dry matter (DM) production within l0% of the observed data. Measured DM production rates, normalized for light absorbed by the crop. suggested photosynthetic efficiencies intermediate between those observed under optimal field conditions and those recorded in NASA-Controlled Ecological Life-Support Systems (CELSS). We suggest that such a difference can be explained primarily in terms of low light levels inside the IAB, with additional effects due to elevated CO2 concentrations and diffuse light fractions.

  17. Growing wheat in Biosphere 2 under elevated CO2: observations and modeling.

    PubMed

    Tubiello, F N; Mahato, T; Morton, T; Druitt, J W; Volk, T; Marino, B D

    1999-01-01

    Spring wheat (Triticum aestivum L., cv. Yecora Rojo) was grown in the intensive agricultural biome (IAB) of Biosphere 2 during the l995-l996 winter/spring season. Environmental conditions were characterized by a day/night temperature regime of 27/17 degrees C, relative humidity (RH) levels around 45%, mean atmospheric CO2 concentration of 450 ppmv, and natural light conditions with mean intensities about half of outside levels. Weekly samples of above-ground plant matter were collected throughout the growing season and phenological events recorded. A computer model, CERES-Wheat, previously tested under both field and controlled conditions, was used to simulate the observed crop growth and to help in data analysis. We found that CERES-Wheat simulated the data collected at Biosphere 2 to within 10% of observed, thus suggesting that wheat growth inside the IAB was comparable to that documented in other environments. The model predicts phenological stages and final dry matter (DM) production within l0% of the observed data. Measured DM production rates, normalized for light absorbed by the crop. suggested photosynthetic efficiencies intermediate between those observed under optimal field conditions and those recorded in NASA-Controlled Ecological Life-Support Systems (CELSS). We suggest that such a difference can be explained primarily in terms of low light levels inside the IAB, with additional effects due to elevated CO2 concentrations and diffuse light fractions. PMID:11542248

  18. Maize Debris Increases Barley Yellow Dwarf Virus Severity in North Carolina Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the eastern U.S., wheat is often planted with minimal or no tillage into maize residues. We conducted a field experiment in the North Carolina Piedmont to compare the effects of three maize residue treatments (unchopped, chopped, and removed) on Fusarium head blight (FHB) in two winter wheat cul...

  19. Wheat response to differences in water and nutritional status between zeoponic and hydroponic growth systems

    NASA Technical Reports Server (NTRS)

    Steinberg, S. L.; Ming, D. W.; Henderson, K. E.; Carrier, C.; Gruener, J. E.; Barta, D. J.; Henninger, D. L.

    2000-01-01

    Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L. cv. USU-Apogee). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15 to 20 L m-2 d-1 up to Day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences in water status were noted between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT than in hydroponic culture. Sterile green tillers made up 12 and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4-N nutrition of plants grown in ZPT compared with NO3-N in hydroponic nutrient solution. It is probable that NH4-N-induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS.

  20. Wheat Response to Differences In Water and Nutritional Status Between Zeoponic and Hydroponic Growth Systems

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L.; Ming, Douglas W.; Henderson, Keith E.; Carrier, Chris; Gruener, John E.; Barta, Dan J.; Henninger, Don L.

    1999-01-01

    Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L., CV 'USU-Apogee'). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15-20 L per square meters per d up to day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences were noted in water status between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT versus hydroponic culture. Sterile green tillers made up 12% and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4 -N nutrition of plants grown in ZPT as compared with NO3-N in hydroponic nutrient solution. It was likely that NH4-N induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS.

  1. Wheat response to differences in water and nutritional status between zeoponic and hydroponic growth systems.

    PubMed

    Steinberg, S L; Ming, D W; Henderson, K E; Carrier, C; Gruener, J E; Barta, D J; Henninger, D L

    2000-01-01

    Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L. cv. USU-Apogee). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15 to 20 L m-2 d-1 up to Day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences in water status were noted between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT than in hydroponic culture. Sterile green tillers made up 12 and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4-N nutrition of plants grown in ZPT compared with NO3-N in hydroponic nutrient solution. It is probable that NH4-N-induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS. PMID:11543523

  2. An evaluation of microorganisms for unconventional food regeneration schemes in CELSS - Research recommendations

    NASA Technical Reports Server (NTRS)

    Stokes, B. O.; Petersen, G. R.

    1982-01-01

    The benefits and deficiencies of various candidates for a controlled ecological life support system (CELSS) for manned spacecraft missions of at least 3-14 yr are discussed. Conventional plants are considered unacceptable due to their inefficient production of foodstuffs and overproduction of stems and leafy matter. The alternate concepts are algae and/or bacteria or chemical synthesis of food. Microorganisms are considered the most promising because of their direct use of CO2 and possible utilization of waste streams. Yeasts are cited as the most viable candidates, since a large data base and experience already exists in the commercial food industry. The addition of hydrogen bactria and solar-grown algae is recommended, together with genetic manipulation experiments to tailor the microorganisms to production of foodstuffs closer to the 70 percent carbohydrate, 20 percent protein, and 10 percent lipid optimal food currently accepted. The yeast strain, Hansenula polymorpha, has been successfully grown in methanol and encouraged to produce a 55 percent carbohydrate content.

  3. Closed and continuous algae cultivation system for food production and gas exchange in CELSS

    NASA Astrophysics Data System (ADS)

    Oguchi, Mitsuo; Otsubo, Koji; Nitta, Keiji; Shimada, Atsuhiro; Fujii, Shigeo; Koyano, Takashi; Miki, Keizaburo

    In CELSS (Controlled Ecological Life Support System), utilization of photosynthetic algae is an effective means for obtaining food and oxygen at the same time. We have chosen Spirulina, a blue-green alga, and have studied possibilities of algae utilization. We have developed an advanced algae cultivation system, which is able to produce algae continuously in a closed condition. Major features of the new system are as follows. o (1)In order to maintain homogeneous culture conditions, the cultivator was designed so as to cause a swirl on medium circulation. (2)Oxygen gas separation and carbon dioxide supply are conducted by a newly designed membrane module. (3)Algae mass and medium are separated by a specially designed harvester. (4)Cultivation conditions, such as pH, temperature, algae growth rate, light intensity and quanlity of generated oxygen gas are controlled by a computer system and the data are automatically recorded. This equipment is a primary model for ground experiments in order to obtain some design data for space use. A feasibility of algae cultivation in a closed condition is discussed on the basis of data obtained by use of this new system.

  4. An analysis of the productivity of a CELSS continuous algal culture system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Arnett, K.

    1986-01-01

    One of the most attractive aspects of using algal cultures as plant components for a Closed Ecological Life Support Systems (CELSS) is the efficiency with which they can be grown. Although algae are not necessarily intrinsically more efficient than higher plants, the ease which they can be handled and manipulated (more like chemical reagents than plants), and the culturing techniques available, result in much higher growth rates than are usually attainable with higher plants. Furthermore, preliminary experiments have demonstrated that algal growth and physiology is not detectable altered in a microgravity environment, (1) whereas the response of higher plants to zero gravity is unknown. In order to rationally design and operate culture systems, it is necessary to understand how the macroparameters of a culture system, e.g., productivity, are related to the physiological aspects of the algal culture. A first principles analysis of culture system is discussed, and a mathematical model that describes the relationship of culture productivity to the cell concentration of light-limited culture is derived. The predicted productivity vs cell concentration curve agrees well with the experimental data obtained to test this model, indicating that this model permits an accurate prediction of culture productivity given the growth parameters of the system.

  5. Use of biologically reclaimed minerals for continuous hydroponic potato production in a CELSS

    NASA Astrophysics Data System (ADS)

    Mackowiak, C. L.; Wheeler, R. M.; Stutte, G. W.; Yorio, N. C.; Sager, J. C.

    1997-01-01

    Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions.

  6. Use of biologically reclaimed minerals for continuous hydroponic potato production in a CELSS.

    PubMed

    Mackowiak, C L; Wheeler, R M; Stutte, G W; Yorio, N C; Sager, J C

    1997-01-01

    Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions. PMID:11542555

  7. Carbon balance and productivity of Lemna gibba, a candidate plant for CELSS

    NASA Technical Reports Server (NTRS)

    Gale, J.; Smernoff, D. T.; Macler, B. A.; Macelroy, R. D.

    1989-01-01

    The photosynthesis and productivity of Lemna gibba is analyzed for CELSS based plant growth. Net photosynthesis of Lemna gibba is determined as a function of incident photosynthetic photon flux (PPF), with the light coming from above, below, or from both directions. Light from below is about 75 percent as effective as from above when the stand is sparse, but much less so with dense stands. High rates of photosynthesis are measured at 750 micromol / sq m per sec PPF and 1500 micromol/ mol CO2 at densities up to 660 g fresh weight (FW)/ sq m with young cultures. The analysis includes diagrams illustrating the net photosynthesis response to bilateral lighting of a sparse stand of low assimilate Lemna gibba; the effect of stand density on the net photosynthesis response to bilateral lighting of high assimilate Lemna gibba; the net photosynthesis response to ambient CO2 of sparse stands of Lemna gibba; and the time course of net photosynthesis and respiration per unit chamber and per unit dry weight of Lemna gibba.

  8. Nutritional models for a Controlled Ecological Life Support System (CELSS): Linear mathematical modeling

    NASA Technical Reports Server (NTRS)

    Wade, Rose C.

    1989-01-01

    The NASA Controlled Ecological Life Support System (CELSS) Program is involved in developing a biogenerative life support system that will supply food, air, and water to space crews on long-duration missions. An important part of this effort is in development of the knowledge and technological capability of producing and processing foods to provide optimal diets for space crews. This involves such interrelated factors as determination of the diet, based on knowledge of nutrient needs of humans and adjustments in those needs that may be required as a result of the conditions of long-duration space flight; determination of the optimal mixture of crops required to provide nutrients at levels that are sufficient but not excessive or toxic; and consideration of the critical issues of spacecraft space and power limitations, which impose a phytomass minimization requirement. The complex interactions among these factors are examined with the goal of supplying a diet that will satisfy human needs while minimizing the total phytomass requirement. The approach taken was to collect plant nutritional composition and phytomass production data, identify human nutritional needs and estimate the adjustments to the nutrient requirements likely to result from space flight, and then to generate mathematical models from these data.

  9. Research on regulating technique of material flow for 2-person and 30-day integrated CELSS test

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Dong, Wenping; Ai, Weidang; Feng, Hongqi; Tang, Yongkang; Huang, Zhide; Shen, Yunze; Ren, Jin; Qin, Lifeng; Zeng, Gu; Zhang, Lihong; Zhu, Jingtao; Fei, Jinxue; Xu, Guoxin

    2014-07-01

    A man-plant integration test was processed using the CELSS integration experiment platform in which 4 kinds of plants were grown (Lactuca sativa L var. Dasusheng, L. sativa L var. Youmaicai, Gynura bicolor and Cichorium endivia L) to exchange material with 2 persons in order to research the dynamic changing laws and balanced regulation of air and water between man and plant in an inclosed system. In the test the material flow was measured so that the dynamically changing laws and balanced regulation of air and water between man and plant in the closed system were mostly mastered. The material closure degree of air, water and food reached 100%, 90% and 13.9% respectively with the whole system closure degree up to 95.1%. Meanwhile, it was proved that a 13.5 m2 planting area could meet the demand of one person for O2 in the system, and the energy efficiency ratio of which reached 59.56 g/(kW m2 day). The material flow dynamic balance-regulating technology was initially mastered between man and plant through the test. The interaction was realized among man, plant and environment in the closed system, which is of great significance to the advancement of long-term manned environment control and life support technology for China.

  10. Proteomics of Wheat Flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is a major food crop grown on more than 215 million hectares of land throughout the world. Wheat flour provides an important source of protein for human nutrition and is used as a principal ingredient in a wide range of food products, largely because wheat flour, when mixed with water, has un...

  11. Wheat: Science and Trade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is for a book review of Wheat: science and trade, edited by B.F. Carver. The book provides an indepth review of wheat biology, production, breeding, processing, and trade and is organized in four sections. "Making of a Wheat Plant" reviews domestication, evolution, development, and molecular ...

  12. Wheat Stripe Rust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a chapter on wheat stripe rust in a book entitled “Wheat: Science and Trade”. The chapter provides an overview on various aspects of wheat stripe rust and control, including distribution and epidemiology; origin and historical importance; taxonomy, lifecycle, and host range; genetic variati...

  13. Supporting technology for the development of Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Li, Ku-Yen; Yaws, Carl L.; Simon, William E.; Mei, Harry T.

    1995-01-01

    To support the development of Controlled Ecological Life Support Systems (CELSS) in the space program, a metabolic simulator has been selected for use in a closed chamber to test functions of the CELSS. This metabolic simulator is a catalytic reactor which oxidizes the methyl acetate to produce carbon dioxide and water vapor. In this project, kinetic studies of catalytic oxidation of methyl acetate were conducted using monolithic and pellet catalysts with 0.5% (by weight) platinum (Pt) on aluminum oxide (Al2O3). The reaction was studied at a pressure of one atmosphere and at temperatures varying from 160 C to 420 C. By-products were identified at the exit of the preheater and reactor. For the kinetic study with the monolithic catalyst, a linear regression method was used to correlate the kinetic data with zero-order, first-order and Langmuir-Hinshelwood models. Results indicate that the first-order model represents the data adequately at low concentrations of methyl acetate. For higher concentrations of methyl acetate, the Langmuir-Hinshelwood model best represents the kinetic data. Both rate constant and adsorption equilibrium constants were estimated from the regression. A Taguchi orthogonal array (L(sub 9)) was used to investigate the effects of temperature, flow rate, and concentration on the catalytic oxidation of methyl acetate. For the monolithic catalyst, temperature exerts the most significant effect, followed by concentration of methyl acetate. For the pellet catalyst, reaction temperature is the most significant factor, followed by gas flow rate and methyl acetate concentration. Concentrations of either carbon dioxide or oxygen were seen to have insignificant effect on the methyl acetate conversion process. Experimental results indicate that the preheater with glass beads can accomplish thermal cracking and catalytic reaction of methyl acetate to produce acetic acid, methanol, methyl formate, and 1-propanol. The concentration of all by-products was

  14. Integrated developmental model of life-support capabilities in wheat

    NASA Technical Reports Server (NTRS)

    Darnell, R. L.; Obrien, C. O.

    1994-01-01

    The objective of this project was to develop a model for CO2, O2, H2O, and nitrogen use during the life cycle of wheat. Spreadsheets and accompanying graphs were developed to illustrate plant population reactions to environmental parameters established in the Controlled Ecological Life Support System (CELSS) program at Kennedy Space Center, Fl. The spreadsheets and graphs were produced using validated biomass production chamber (BPC) data from BWT931. Conditions of the BPC during the 83 day plant growth period were as follows: The BPC area is 27.8 m(exp 2), volume is 113 m(exp 3). Temperatures during the 83 day plant growth period ranged from 16.3 to 24.8 C during the light cycle (except for day 69, when the minimum and maximum temperatures were 7.7 C and 7.9 C, respectively) and 14.5 C and 23.6 C during the dark cycle (except for day 49, when the minimum and maximum temperatures were 11.1 C and 11.3 C, respectively). Relative humidity was 85 percent for the first seven days of plant growth, and 70 percent thereafter. The plant leaf canopy area was 10 m(exp 2). Presented is a list and explanation of each spreadsheet and accompanying graph(s), conditions under which the data were collected, and formulas used to obtain each result.

  15. Performance of the CELSS Antarctic Analog Project (CAAP) Crop Production System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1998-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a concomitant decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant based, regenerative life support requires resources in excess of resource allocations proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system to achieve enhanced performance efficiency. Both single crop, batch production, and continuous cultivation of mixed crops Product ion scenarios have been completed. The crop productivity as well as engineering performance of the chamber will be described. For each scenario, energy required and partitioned for lighting, cooling, pumps, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with up to 25 different crops under cultivation, 17 sq m of crop area provided a mean of 515 g edible biomass per day (83% of the approximately 620 g required for one person). Lighting efficiency (moles on photons kWh-1) approached 4 and the conversion efficiency of light energy to biomass was greatly enhanced compared with conventional growing systems. Engineering and biological performance achieved place plant-based life support systems at the threshold of feasibility.

  16. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system.

    PubMed

    Bubenheim, D L; Schlick, G; Wilson, D; Bates, M

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. PMID:12580191

  17. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  18. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found

  19. Characterization of alpha-gliadin genes from diploid wheats and the comparative analysis with those from polyploid wheats.

    PubMed

    Ma, Z C; Wei, Y M; Yan, Z H; Zheng, Y L

    2007-11-01

    To carry out the comparative analysis of alpha-gliadin genes on A genomes of diploid and polyploid wheats, 8 full-length alpha-gliadin genes, including 3 functional genes and 5 pseudogenes, were obtained from diploid wheats, among which 2, 2 and 4 alpha-gliadin genes were isolated from T. urartu, T. monococcum and T. boeoticum, respectively. The results indicated that higher number of alpha-gliadin pseudogenes have been present in diploid wheats before the formation of polyploid wheats. Amino acid sequence comparative analysis among 26 alpha-gliadin genes, including 16 functional genes and 10 pseudogenes, from diploid and polyploid wheats was conducted. The results indicated that all alpha-gliadins contained four coeliac toxic peptide sequences (i.e., PSQQ, QQQP, QQPY and QPYP). The polyglutamine domains are highly variable, and the second polyglutamine stretch is usually disrupted by the lysine or arginine residue at the fourth position. The unique domain I is the most conserved domain. There are 4 and 2 conserved cysteine residues in the unique domains I and II, respectively. Comparative analysis indicated that the functional alpha-gliadin genes from A genome are highly conserved, whereas the identity of pseudogenes in diploid wheats are higher than those in hexaploid wheats. Phylogenetic analysis indicated that all the analyzed functional alpha-gliadin genes could be clustered into two major groups, among which one group could be further divided into 5 subgroups. The origin of alpha-gliadin pseudogene and functional genes were also discussed. PMID:18186192

  20. Structural and molecular basis of starch viscosity in hexaploid wheat.

    PubMed

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties. PMID:18459791

  1. Coproduction of xylose, lignosulfonate and ethanol from wheat straw.

    PubMed

    Zhu, Shengdong; Huang, Wangxiang; Huang, Wenjing; Wang, Ke; Chen, Qiming; Wu, Yuanxin

    2015-06-01

    A novel integrated process to coproduce xylose, lignosulfonate and ethanol from wheat straw was investigated. Firstly, wheat straw was treated by dilute sulfuric acid and xylose was recovered from its hydrolyzate. Its optimal conditions were 1.0wt% sulfuric acid, 10% (w/v) wheat straw loading, 100°C, and 2h. Then the acid treated wheat straw was treated by sulfomethylation reagent and its hydrolyzate containing lignosulfonate was directly recovered. Its optimal conditions were 150°C, 15% (w/v) acid treated wheat straw loading, and 5h. Finally, the two-step treated wheat straw was converted to ethanol through enzymatic hydrolysis and microbial fermentation. Under optimal conditions, 1kg wheat straw could produce 0.225kg xylose with 95% purity, 4.16kg hydrolyzate of sulfomethylation treatment containing 5.5% lignosulfonate, 0.183kg ethanol and 0.05kg lignin residue. Compared to present technology, this process is a potential economically profitable wheat straw biorefinery. PMID:25770471

  2. WheatGenome.info: A Resource for Wheat Genomics Resource.

    PubMed

    Lai, Kaitao

    2016-01-01

    An integrated database with a variety of Web-based systems named WheatGenome.info hosting wheat genome and genomic data has been developed to support wheat research and crop improvement. The resource includes multiple Web-based applications, which are implemented as a variety of Web-based systems. These include a GBrowse2-based wheat genome viewer with BLAST search portal, TAGdb for searching wheat second generation genome sequence data, wheat autoSNPdb, links to wheat genetic maps using CMap and CMap3D, and a wheat genome Wiki to allow interaction between diverse wheat genome sequencing activities. This portal provides links to a variety of wheat genome resources hosted at other research organizations. This integrated database aims to accelerate wheat genome research and is freely accessible via the web interface at http://www.wheatgenome.info/ . PMID:26519407

  3. Electrochemical Technology for Oxygen Removal and Measurement in the CELSS Test Facility, Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Drews, Michael E.; Covington, Al (Technical Monitor)

    1994-01-01

    The Life Support Flight Program is evaluating regenerative technologies, including those that utilize higher plants, as a means to reduce resupply over long duration space missions. Constructed to assist in the evaluation process is the CELSS Test Facility Engineering Development Unit (CTF-EDU) an environmentally closed (less than 1% mass and thermal leakage) technology test bed. This ground based fully functional prototype is currently configured to support crop growth, utilizing the power, volume and mass resources allocated for two space station racks. Sub-system technologies were selected considering their impact on available resources, their ability to minimize integration issues, and their degree of modularity. Gas specific mass handling is a key sub-system technology for both biological and physical/chemical life support technologies. The CTF-EDU requires such a system to accommodate non-linear oxygen production from crops, by enabling the control system to change and sustain partial pressure set points in the growth volume. Electrochemical cells are one of the technologies that were examined for oxygen handling in the CTF-EDU. They have been additionally considered to meet other regenerative life support functions, such as oxygen generation, the production of potable water from composite waste streams, and for having the potential to integrate life support functions with those of propulsion and energy storage. An oxygen removal system based on an electrochemical cell was chosen for the EDU due to it's low power, volume and mass requirements (10W, 0.000027 cu m, 4.5 kg) and because of the minimal number of integration considerations. Unlike it's competitors, the system doesn't require post treatments of its byproducts, or heat and power intensive regenerations, that also mandate system redundancy or cycling. The EDUs oxygen removal system only requires two resources, which are already essential to controlled plant growth: electricity and water. Additionally

  4. Wheat Quality Council Hard Spring Wheat Technical Committee 2010 Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeders’ experimental lines of wheat are evaluated for overall quality before being released for commercial production. The Hard Spring Wheat Technical Committee provides milling and baking quality data on breeders’ experimental lines of wheat that are annually submitted to the Wheat Quality Counc...

  5. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the...

  6. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the...

  7. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the...

  8. 21 CFR 137.195 - Crushed wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the...

  9. Registration of 'Ripper' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ripper’ (Reg. No. CV-1016, PI 644222) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2006 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado S...

  10. Registration of 'Snowmass' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Snowmass’ (Reg. No. CV-1050, PI 658597) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in July 2009 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Uni...

  11. Agrometeorology and Wheat Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat phenology varies among shoots on the plant to main stems on plants within a plot to locations across a landscape. Most often phenological measurements have focused on small treatment plots under presumably similar soils and topography. Many models exist to predict wheat phenology for sm...

  12. Wheat: Science and Trade

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Up-to-date textbooks are needed to educate the agricultural scientists of tomorrow. This manuscript comprises one chapter in such a textbook, “Wheat: Science and Trade”, and covers the subject of wheat genetic engineering. The chapter begins with a summary of key discussion elements and ends with a...

  13. Registration of 'Okfield' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Okfield' (Reg. No. CV-_______, PI 643087) is a hard red winter (HRW) wheat (Triticum aestivum L.) cultivar developed and released cooperatively by the Oklahoma Agric. Exp. Stn. (AES) and the USDA-ARS in 2005. It is recommended for dryland wheat production using either grain-only and dual-purpose m...

  14. Registration of 'Antero' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ’Antero’ (Reg. No. CV-XXXX, PI 667743) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2012 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Univ...

  15. Registration of 'Denali' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Denali' (PI 664256) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released cooperatively by Colorado State University (CSU) and Kansas State University (KSU) August, 2011, through a marketing agreement with the Colorado Wheat Research...

  16. Registration of 'Byrd' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Byrd' (PI 664257) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released August, 2011, through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State University (CSU), USDA-ARS ...

  17. Fuel ethanol production from agricultural residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol is a renewable oxygenated fuel. In 2012, about 13.3 billion gallons of fuel ethanol was produced from corn in the USA which makes up 10% of gasoline supply. Various agricultural residues such as corn stover, wheat straw, rice straw and barley straw can serve as low-cost lignocellulosic fee...

  18. Modeling crop production on the soil-like substrate in CELSS

    NASA Astrophysics Data System (ADS)

    Polonskiy, Vadim; Manukovsky, Nickolay; Kovalev, Vladimir

    Use of plants and soils in bioregenerative life support systems (BLSS) is accompanied by mod-eling of nutrient dynamics and gas exchange to analyze data and plan the experiments. In this connection a mathematical model, based on a deterministic differential equation framework, was developed. Our simulations were validated by comparing their predictions with the results obtained during the laboratory experiments with wheat (Triticum aestivum) grown on the soil-like substrate (SLS). The components of the model were the atmospheric carbon dioxide, humus, mineral nitrogen, microbial biomass and extracellular enzymes of SLS as well as the foliage, stems, roots, grains, straw and root exudates of wheat. Impact of photoperiod, daily photosynthetic photon flux, atmospheric volume, carbon and nitrogen content of SLS, decom-position rate of SLS organic matter on the crop production was simulated. When available SLS nitrogen content was sufficient and circulating carbon mass of BLSS was constant, the increase of light intensity from the certain level provoked the decrease of plant harvest index. Decompo-sition rate of SLS organic matter could be increased under nitrogen limiting conditions owing to active synthesis of extracellular microbial enzymes. Possible applications of the modeling for the improvement of plant growing in BLSS are discussed. Keywords: wheat, soil-like substrate, modeling, nitrogen

  19. Non-conventional approaches to food processing in CELSS. I-algal proteins; characterization and process optimization

    NASA Astrophysics Data System (ADS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  20. Study on the kinetic characteristics of trace harmful gases for a two-person-30-day integrated CELSS test.

    PubMed

    Guo, Shuangsheng; Ai, Weidang; Fei, Jinxue; Xu, Guoxin; Zeng, Gu; Shen, Yunze

    2015-05-01

    A two-person-30-day controlled ecological life support system (CELSS) integrated test was carried out, and more than 30 kinds of trace harmful gases including formaldehyde, benzene, and ammonia were measured and analyzed dynamically. The results showed that the kinds and quantities of the trace harmful gases presented a continuously fluctuating state during the experimental period, but none of them exceed the spacecraft maximum allowable concentration (SMAC). The results of the Pre-Test (with two persons without plants for 3 days) and the Test (with two persons and four kinds of plants for 30 days) showed that there are some notable differences for the compositions of the trace harmful gases; the volatile organic compounds (VOCs) such as toluene, hexane, and acetamide were searched out in the Pre-Test, but were not found in the Test. Moreover, the concentrations of the trace harmful gases such as acetic benzene, formaldehyde, and ammonia decreased greatly in the Test more than those in the Pre-Test, which means that the plants can purify these gases efficiently. In addition, the VOCs such as carbon monoxide, cyclopentane, and dichloroethylene were checked out in the Test but none in the Pre-Test, which indicates that these materials might be from the crew's metabolites or those devices in the platform. Additionally, the ethylene released specially by plants accumulated in the later period and its concentration reached nearly ten times of 0.05 mg m(-3) (maximum allowed concentration for plant growth, which must have promoted the later withering of plants). We hoped that the work can play a referring function for controlling VOCs effectively so that future more CELSS integrating tests can be implemented smoothly with more crew, longer period, and higher closure. PMID:25483969

  1. Impact of corn residue quantity on yield of following crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have observed that crop growth can be suppressed in fields where high quantities of corn residue are present on the soil surface. To examine this perceived trend, we grew dry pea, spring wheat, and red clover in two levels of corn residues, achieved by growing corn at 21,000 and 30,000 plants/ac...

  2. Winter crop and residue biomass potential in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper estimates the potential biomass production from winter crops and summer crop residues in China. Rye is used to represent winter crop production, and straw from corn, wheat and rice is used to represent residue potential. Biomass totals are intended for use as energy feedstocks and are ass...

  3. Comparative degradation of [14C]-2,4-dichlorophenoxyacetic acid in wheat and potato after Foliar application and in wheat, radish, lettuce, and apple after soil application.

    PubMed

    Hamburg, A; Puvanesarajah, V; Burnett, T J; Barnekow, D E; Premkumar, N D; Smith, G A

    2001-01-01

    The fate of 2,4-dichlorophenoxyacetic acid (2,4-D) applied foliarly as the 2-ethylhexyl ester (EHE) to wheat and potatoes, to the soil as the dimethylamine (DMA) salt under apple tree canopies, and preplant as the free acid for wheat, lettuce, and radish was studied to evaluate metabolic pathways. Crop fractions analyzed for (14)C residues included wheat forage, straw, and grain; potato vine and tubers; and apple fruit. The primary metabolic pathway for foliar application in wheat is ester hydrolysis followed by the formation of base-labile 2,4-D conjugates. A less significant pathway for 2,4-D in wheat was ring hydroxylation to give NIH-shift products 2,5-dichloro-4-hydroxyphenoxyacetic acid (4-OH-2,5-D), 4-OH-2,3-D, and 5-OH-2,4-D both free and as acid-labile conjugates. The primary metabolic pathway in potato was again ester hydrolysis. 2,4-D acid was further transformed to 4-chlorophenoxyacetic acid and 4-OH-2,5-D. For the soil applications, (14)C residues in the crops were low, and characterization of the (14)C residues indicated association with or incorporation into the biochemical matrix of the tissue. The degradative pathways observed in wheat are similar to those characterized in other intact plant studies but differ from those in studies in wheat cell suspension culture in that no amino acid conjugates were observed. PMID:11170570

  4. Treatment of CELSS and PCELSS waste to produce nutrients for plant growth. [Controlled Ecological Life Support Systems and Partially Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.

    1981-01-01

    The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.

  5. Evaluation of agricultural residues for paper manufacture

    SciTech Connect

    Alcaide, L.J.; Baldovin, F.L.; Herranz, J.L.F. )

    1993-03-01

    Five agricultural residues-olive tree fellings, wheat straw, sunflower stalks, vine shoots, and cotton stalks-were evaluated for use as raw materials for paper manufacture. The untreated raw materials and their pulps were tested for hot-water solubles, 1%-NaOH solubles, alcohol-benzene extractables, ash, holocellulose, lignin, [alpha]-cellulose, and pentosans. Handsheets were tested for breaking length, stretch, burst index, and tear index. The results showed wheat straw to be the most promising material. Vine shoots showed the least promise.

  6. Argentina wheat yield model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    Five models based on multiple regression were developed to estimate wheat yields for the five wheat growing provinces of Argentina. Meteorological data sets were obtained for each province by averaging data for stations within each province. Predictor variables for the models were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature. Buenos Aires was the only province for which a trend variable was included because of increasing trend in yield due to technology from 1950 to 1963.

  7. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and....1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is obtained by hydrating wheat flour...

  8. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  9. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  10. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  11. Wheat for Kids! [and] Teacher's Guide.

    ERIC Educational Resources Information Center

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the information…

  12. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  13. Wind erosion and PM10 emission affected by tillage in the world’s driest rainfed wheat region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Horse Heaven Hills of south-central Washington is the driest rainfed wheat growing region in the world. Low precipitation, high winds, poorly aggregated soils, sparse residue cover, and a tillage-based winter wheat (Triticum aestivum L.) – summer fallow (WW-SF) cropping system often combine to c...

  14. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy

  15. Partitioning Residue-derived and Residue-induced Emissions of N2O Using 15N-labelled Crop Residues

    NASA Astrophysics Data System (ADS)

    Farrell, R. E.; Carverhill, J.; Lemke, R.; Knight, J. D.

    2014-12-01

    Estimates of N2O emissions in Canada indicate that 17% of all agriculture-based emissions are associated with the decomposition of crop residues. However, research specific to the western Canadian prairies (including Saskatchewan) has shown that the N2O emission factor for N sources in this region typically ranges between 0.2 and 0.6%, which is well below the current IPCC default emission factor of 1.0%. Thus, it stands to reason that emissions from crop residues should also be lower than those calculated using the current IPCC emission factor. Current data indicates that residue decomposition, N mineralization and N2O production are affected by a number of factors such as C:N ratio and chemical composition of the residue, soil type, and soil water content; thus, a bench-scale incubation study was conducted to examine the effects of soil type and water content on N2O emissions associated with the decomposition of different crop residues. The study was carried out using soils from the Black, Dark Brown, Brown, and Gray soil zones and was conducted at both 50% and 70% water-filled pore space (WFPS); the soils were amended with 15N-labeled residues of wheat, pea, canola, and flax, or with an equivalent amount of 15N-labeled urea; 15N2O production was monitored using a Picarro G5101-i isotopic N2O analyzer. Crop residue additions to the soils resulted in both direct and indirect emissions of N2O, with residue derived emissions (RDE; measured as 15N2O) generally exceeding residue-induced emissions (RIE) at 50% WFPS—with RDEs ranging from 42% to 88% (mean = 58%) of the total N2O. Conversely, at 70% WFPS, RDEs were generally lower than RIEs—ranging from 21% to 83% (mean = 48%). Whereas both water content and soil type had an impact on N2O production, there was a clear and consistent trend in the emission factors for the residues; i.e., emissions were always greatest for the canola residue and lowest for the wheat residue and urea fertilizer; and intermediate for pea

  16. Determination of trinexapac in wheat by liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Hiemstra, Maurice; de Kok, André

    2003-09-24

    A quantitative and confirmatory method for the analysis of trinexapac (free acid metabolite of trinexapac-ethyl) in wheat is described. Residues were extracted from wheat with acetonitrile in aqueous phosphate buffer (pH 7) overnight. The extract was directly injected into the HPLC system. Chromatographic separation was achieved on an octadecylsilica column, and detection was performed by negative ion electrospray ionization tandem mass spectrometry. The precursor ion of trinexapac [M - H](-) at m/z 223 was subjected to collisional fragmentation with argon to yield two intense diagnostic product ions at m/z 135 and 179, respectively. Accuracy and specificity for routine analysis of trinexapac were demonstrated. The validated concentration range was 10-200 microg/kg based on a 0.10 g/mL wheat sample extract. Recoveries were within the range of 71-94%, with associated relative standard deviations better than 10%. The limit of detection for trinexapac in wheat was estimated at 5 microg/kg. The method has been applied to a survey of 100 samples of wheat. In 46% of the samples analyzed, a quantifiable amount of trinexapac was detected, ranging from 10 to 110 microg/kg. It has been demonstrated that analyses of trinexapac accurately reflect the total amount of residues of the plant growth regulator, trinexapac-ethyl, in the wheat samples following field application. No residues of the parent compound, trinexapac-ethyl, in wheat were detected. PMID:13129284

  17. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2014 Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eleven experimental lines of hard spring wheat were grown at up to five locations in 2014 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spr...

  18. Insects which challenge global wheat production: Russian wheat aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book chapter on Russian wheat aphid, (Diuraphis noxia (Mord.)), is one of several that addresses significant pests in the book entitled, Wheat Science and Trade. The chapter gives a detailed account of the history of the Russian wheat aphid as global pest, and its biology, ecology and managemen...

  19. Cloning crops in a CELSS via tissue culture: Prospects and problems

    NASA Technical Reports Server (NTRS)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  20. Diseases which challenge global wheat production - powdery mildew, leaf, and head blights

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common thread to each of these diseases is the ability of the causal fungi to survive and undergo sexual recombination on wheat residue. When infested residue is not brought into contact with soil, it can serve as a safe harbor for the pathogen to survive between crops. Moreover, it allows the pat...

  1. Uniquely identifying wheat plant structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uniquely naming wheat (Triticum aestivum L. em Thell) plant parts is useful for communicating plant development research and the effects of environmental stresses on normal wheat development. Over the past 30+ years, several naming systems have been proposed for wheat shoot, leaf, spike, spikelet, ...

  2. Reckoning wheat yield trends

    NASA Astrophysics Data System (ADS)

    Lin, M.; Huybers, P.

    2012-06-01

    Wheat yields have increased approximately linearly since the mid-twentieth century across the globe, but stagnation of these trends has now been suggested for several nations. We present a new statistical test for whether a yield time series has leveled off and apply it to wheat yield data from 47 different regions to show that nearly half of the production within our sample has transitioned to level trajectories. With the major exception of India, the majority of leveling in wheat yields occurs within developed nations—including the United Kingdom, France and Germany—whose policies appear to have disincentivized yield increases relative to other objectives. The effects of climate change and of yields nearing their maximum potential may also be important.

  3. A diploid wheat TILLING resource for wheat functional genomics

    PubMed Central

    2012-01-01

    Background Triticum monococcum L., an A genome diploid einkorn wheat, was the first domesticated crop. As a diploid, it is attractive genetic model for the study of gene structure and function of wheat-specific traits. Diploid wheat is currently not amenable to reverse genetics approaches such as insertion mutagenesis and post-transcriptional gene silencing strategies. However, TILLING offers a powerful functional genetics approach for wheat gene analysis. Results We developed a TILLING population of 1,532 M2 families using EMS as a mutagen. A total of 67 mutants were obtained for the four genes studied. Waxy gene mutation frequencies are known to be 1/17.6 - 34.4 kb DNA in polyploid wheat TILLING populations. The T. monococcum diploid wheat TILLING population had a mutation frequency of 1/90 kb for the same gene. Lignin biosynthesis pathway genes- COMT1, HCT2, and 4CL1 had mutation frequencies of 1/86 kb, 1/92 kb and 1/100 kb, respectively. The overall mutation frequency of the diploid wheat TILLING population was 1/92 kb. Conclusion The mutation frequency of a diploid wheat TILLING population was found to be higher than that reported for other diploid grasses. The rate, however, is lower than tetraploid and hexaploid wheat TILLING populations because of the higher tolerance of polyploids to mutations. Unlike polyploid wheat, most mutants in diploid wheat have a phenotype amenable to forward and reverse genetic analysis and establish diploid wheat as an attractive model to study gene function in wheat. We estimate that a TILLING population of 5, 520 will be needed to get a non-sense mutation for every wheat gene of interest with 95% probability. PMID:23134614

  4. Can Incineration Technology Convert CELSS Wastes to Resources for Crop Production ? A Working Hypothesis and some Preliminary Findings

    NASA Astrophysics Data System (ADS)

    Wignarajah, K.; Pisharody, S.; Fisher, J. W.

    Considerable evidence exists to support the hypothesis that human-generated wastes can be utilized as resources in crop production. In the waste mix from a Closed Ecological Life Support System (CELSS), the elemental resources are found mainly in the solid fraction. In order to make these resources available for crop growth, it is necessary to convert the solid wastes to either an aqueous or a gaseous phase. Incineration is one method for processing solid wastes to produce a gaseous fraction and a small solid fraction of ash. Evidence from literature provides a compelling case for a working hypothesis that plants can utilize the gases of incineration. Although uptake and utilization of inorganic elements in the aqueous phase is well established, the uptake and utilization of inorganic elements in the gaseous phase, with the exception of CO2 and O2, is not fully understood. This paper attempts to (a) summarize existing literature on uptake/metabolism of inorganic elements in the gaseous fraction, with the exception of CO2 and O2 and (b) develop a working hypothesis to predict the use of incineration flue gases by plants. Preliminary experimental findings on effects of carbon monoxide, a component of the flue gas, are also presented

  5. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  6. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  7. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  8. 21 CFR 184.1322 - Wheat gluten.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is...

  9. Registration of Warhorse wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Warhorse' (Reg. No. CV-1096, PI 670157) hard red winter (HRW) wheat (Triticum aestivum L.) was developed and released by the Montana Agricultural Experiment Station in September 2013. Warhorse is of unknown pedigree, derived from a composite of three topcrosses made to the same F1 population in 200...

  10. Registration of Camelot Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Camelot ' (PI 653832) hard red winter wheat (Triticum aestivum L.) was developed cooperatively by the Nebraska Agricultural Experiment Station and the USDA-ARS and released in 2008. In addition to researchers at the releasing institutions, USDA-ARS researchers at Manhattan, KS, and St. Paul, MN, ...

  11. Registration of 'Chesapeake' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Chesapeake’ (Reg. No. CV-1011, PI 643935) is a soft red winter wheat (Triticum aestivum L.) that was jointly developed and released by the Maryland Agricultural Experiment Station, Department of Plant Science and Landscape Architecture, and the Virginia Agricultural Experiment Station in 2005. Ches...

  12. Registration of "Merl" Wheat.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Merl’ (Reg. No. CV- , PI 658598) soft red winter (SRW) wheat (Triticum aestivum L.)developed and tested as VA03W-412 by the Virginia Agricultural Experiment Station was released in March 2009. Merl was derived from the three-way cross ‘Roane’ / Pioneer Brand ‘2643’ // ‘38158’ (PI 619052). Merl is a...

  13. Registration of Colter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colter’ (Reg. No. CV-1099, PI 670156) hard red winter wheat (Triticum aestivum L.) was developed and released by the Montana Agricultural Experiment Stations in September 2013. Colter was derived from the cross MT9982*2/BZ9W96-895. MT9982 is a sib selection of 'Yellowstone', and BZ9W96-895 is an unr...

  14. Registration of 'Otto' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to strawbreaker foot rot (caused by Oculimacula yallundae Crous & W. Gams and O. acuformis Crous & W. Gams) and to stripe rust (caused by Puccinia striiformis Westend. f. sp. tritici Eriks.) are important traits for winter wheat cultivars produced in the Pacifi Northwest region of the Uni...

  15. Registration of 'Guymon' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Guymon' (Reg. No. CV-_______, PI 643133) is a hard white (HW) winter wheat (Triticum aestivum L.) cultivar developed and released cooperatively by the Oklahoma Agric. Exp. Stn. (AES) and the USDA-ARS in 2005. It is recommended for grain-only and dual-purpose production systems in an area of the so...

  16. Wheat - Aegilops introgressions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aegilops is the most closely related genus to Triticum in the tribe Triticeae. Aegilops speltoides Tausch (B genome donor) and Ae. tauschii Coss. (D genome donor) contributed two of the three genomes present in common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD genomes). The Aegilops genus c...

  17. Modelling Wheat Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In wheat, a shorter pre-anthesis phase is often associated with increased grain protein content (GPC) but decreased grain yield. Cultivar differences in pre-anthesis development are mainly determined by vernalization requirement, photoperiod sensitivity and earliness per se. This research examines w...

  18. Registration of 'Tiger' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Tiger’ hard white winter wheat (Triticum aestivum L.) was developed at Research Center-Hays, Kansas State University and released by Kansas Agricultural Experiment Station in 2010. Tiger was selected from a three-way cross KS98H245/’Trego’//KS98HW518 made in 1999 at Hays, KS. The objective of this ...

  19. Registration of 'Cowboy' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Cowboy' (Reg. No. CV-1095, PI 668564) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released cooperatively by Colorado State University (CSU) and the University of Wyoming (UWYO) in August 2011. In addition to researchers at CSU and U...

  20. Dynamics of carbon dioxide exchange of a wheat community grown in a semi-closed environment

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1989-01-01

    A wheat (Triticum aestivum Yecora Rojo) community was grown in the semi-closed conditions of the NASA/KSC Biomass Production Chamber (BPC). Experiments were conducted to determine whole community carbon dioxide exchange rates as influenced by growth and development, carbon dioxide concentration, time within the photoperiod, irradiance, and temperature. Plants were grown at a population of about 1500 per sq meter using a 20 hour light/4 hour dark daily regime. Light was supplied by HPS vapor lamps and irradiance was maintained in the range of 590 to 675 mu mol per sq meter. The temperature regime was 20 C light/16 C dark and nutrients were supplied hydroponically as a thin film. Fractional interception of PPF by the community increased rapidly during growth reaching a maximum of 0.96, 24 days after planting. This time corresponded to canopy closure and maximum rates of net photosynthesis (NP). Net daily CO2 utilization rates were calculated to day 48 and a 4th order regression equation integrated to obtain total moles of CO2 fixed by the community. This procedure may be useful for monitoring and prediction of biomass yields in a closed ecology life support system (CELSS).

  1. Wheat allergy: diagnosis and management

    PubMed Central

    Cianferoni, Antonella

    2016-01-01

    Triticum aestivum (bread wheat) is the most widely grown crop worldwide. In genetically predisposed individuals, wheat can cause specific immune responses. A food allergy to wheat is characterized by T helper type 2 activation which can result in immunoglobulin E (IgE) and non-IgE mediated reactions. IgE mediated reactions are immediate, are characterized by the presence of wheat-specific IgE antibodies, and can be life-threatening. Non-IgE mediated reactions are characterized by chronic eosinophilic and lymphocytic infiltration of the gastrointestinal tract. IgE mediated responses to wheat can be related to wheat ingestion (food allergy) or wheat inhalation (respiratory allergy). A food allergy to wheat is more common in children and can be associated with a severe reaction such as anaphylaxis and wheat-dependent, exercise-induced anaphylaxis. An inhalation induced IgE mediated wheat allergy can cause baker’s asthma or rhinitis, which are common occupational diseases in workers who have significant repetitive exposure to wheat flour, such as bakers. Non-IgE mediated food allergy reactions to wheat are mainly eosinophilic esophagitis (EoE) or eosinophilic gastritis (EG), which are both characterized by chronic eosinophilic inflammation. EG is a systemic disease, and is associated with severe inflammation that requires oral steroids to resolve. EoE is a less severe disease, which can lead to complications in feeding intolerance and fibrosis. In both EoE and EG, wheat allergy diagnosis is based on both an elimination diet preceded by a tissue biopsy obtained by esophagogastroduodenoscopy in order to show the effectiveness of the diet. Diagnosis of IgE mediated wheat allergy is based on the medical history, the detection of specific IgE to wheat, and oral food challenges. Currently, the main treatment of a wheat allergy is based on avoidance of wheat altogether. However, in the near future immunotherapy may represent a valid way to treat IgE mediated reactions to

  2. Wheat allergy: diagnosis and management.

    PubMed

    Cianferoni, Antonella

    2016-01-01

    Triticum aestivum (bread wheat) is the most widely grown crop worldwide. In genetically predisposed individuals, wheat can cause specific immune responses. A food allergy to wheat is characterized by T helper type 2 activation which can result in immunoglobulin E (IgE) and non-IgE mediated reactions. IgE mediated reactions are immediate, are characterized by the presence of wheat-specific IgE antibodies, and can be life-threatening. Non-IgE mediated reactions are characterized by chronic eosinophilic and lymphocytic infiltration of the gastrointestinal tract. IgE mediated responses to wheat can be related to wheat ingestion (food allergy) or wheat inhalation (respiratory allergy). A food allergy to wheat is more common in children and can be associated with a severe reaction such as anaphylaxis and wheat-dependent, exercise-induced anaphylaxis. An inhalation induced IgE mediated wheat allergy can cause baker's asthma or rhinitis, which are common occupational diseases in workers who have significant repetitive exposure to wheat flour, such as bakers. Non-IgE mediated food allergy reactions to wheat are mainly eosinophilic esophagitis (EoE) or eosinophilic gastritis (EG), which are both characterized by chronic eosinophilic inflammation. EG is a systemic disease, and is associated with severe inflammation that requires oral steroids to resolve. EoE is a less severe disease, which can lead to complications in feeding intolerance and fibrosis. In both EoE and EG, wheat allergy diagnosis is based on both an elimination diet preceded by a tissue biopsy obtained by esophagogastroduodenoscopy in order to show the effectiveness of the diet. Diagnosis of IgE mediated wheat allergy is based on the medical history, the detection of specific IgE to wheat, and oral food challenges. Currently, the main treatment of a wheat allergy is based on avoidance of wheat altogether. However, in the near future immunotherapy may represent a valid way to treat IgE mediated reactions to

  3. Crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues [e.g., corn (Zea mays) stover and small grain straw] are sometimes excluded when discussing cellulosic energy crops per se, but because of the vast area upon which they are grown and their current role in the development of cellulosic energy systems. This chapter focuses on current cor...

  4. Wheat yield forecasts using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Colwell, J. E.; Rice, D. P.; Nalepka, R. F.

    1977-01-01

    Several considerations of winter wheat yield prediction using LANDSAT data were discussed. In addition, a simple technique which permits direct early season forecasts of wheat production was described.

  5. Fuel ethanol production from crop residues and processing byproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007, the production of fuel ethanol from corn starch reached 6.5 billion gallons in the U.S.A. Various crop residues such as corn stover, wheat straw, and barley straw, and crop processing byproducts such as corn fiber and rice hulls can serve as low-cost lignocellulosic feedstocks for conversi...

  6. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... None Sweet potato (postharvest to sweet potato intended only for use as seed) 0.05 None Wheat, grain 1... residues. Editorial Note: For Federal Register citations affecting § 180.242, see the List of CFR Sections..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01...

  7. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... None Sweet potato (postharvest to sweet potato intended only for use as seed) 0.05 None Wheat, grain 1... residues. Editorial Note: For Federal Register citations affecting § 180.242, see the List of CFR Sections..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01...

  8. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... None Sweet potato (postharvest to sweet potato intended only for use as seed) 0.05 None Wheat, grain 1... residues. Editorial Note: For Federal Register citations affecting § 180.242, see the List of CFR Sections..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01...

  9. 40 CFR 180.242 - Thiabendazole; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... None Sweet potato (postharvest to sweet potato intended only for use as seed) 0.05 None Wheat, grain 1... residues. Editorial Note: For Federal Register citations affecting § 180.242, see the List of CFR Sections..., forage 0.01 None Corn, pop, grain 0.01 None Corn, pop, stover 0.01 None Corn, sweet, forage 0.01...

  10. FUEL ETHANOL PRODUCTION FROM AGRICULTURAL RESIDUES AND PROCESSING BYPRODUCTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2005, the production of fuel ethanol from corn starch reached 4.5 billion gallons in the U.S. Various agricultural residues such as corn stover and wheat straw, and agricultural processing byproducts such as corn fiber and rice hulls, can serve as low-cost lignocellulosic feedstocks for conversi...

  11. 40 CFR 180.377 - Diflubenzuron; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... residues. Editorial Note: For Federal Register citations affecting § 180.377, see the List of CFR Sections... 0.06 Rice, grain 0.02 Rice, straw 0.8 Sheep, meat byproducts 0.15 Turnip greens 9.0 Wheat, forage...

  12. Investigating the effect of previous treatments on wheat biomass over multiple spatial frequencies

    NASA Astrophysics Data System (ADS)

    Milne, A. E.; Castellanos, M. T.; Cartagena, M. C.; Tarquis, A. M.; Lark, R. M.

    2010-09-01

    In this study we use the maximum overlap discrete packet transform (MODWPT) to investigate residual effects on wheat biomass of fertigation treatments applied to a previous crop. The wheat crop covered nine subplots from a previous experiment on melon response to fertigation. Each subplot had previously received a different level of applied nitrogen. Many factors affect wheat biomass, causing it to vary at different spatial frequencies. We hypothesize that these will include residual effects from fertilizer application (at relatively low spatial frequencies) and the local influence of individual plants from the previous melon crop (at high frequency). To test this hypothesis we use the MODWPT to identify the dominant spatial frequencies of wheat biomass variation, and analyse the relationship to both the previous fertilizer application and the location of individual melon plants in the previous crop. The MODWPT is particularly appropriate for this because it allows us first to identify the key spatial frequencies in the wheat biomass objectively and to analyse them, and their relationship to hypothesized driving factors without any assumptions of uniformity (stationarity) of wheat-biomass variation. The results showed that the applied nitrogen dominated the wheat biomass response, and that there was a noticeable component of wheat-biomass variation at the spatial frequency that corresponds to the melon cropping. We expected wheat biomass to be negatively correlated with the position of melons in the previous crop, due to uptake of the applied nitrogen. The MODWPT, which allows us to detect changes in correlation between variables at different frequencies, showed that such a relationship was found across part of the experiment but not uniformly.

  13. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions

    SciTech Connect

    Tsang, L.J.; Reid, I.D.; Coxworth, E.C.

    1987-06-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. (Refs. 24).

  14. 77 FR 59577 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... preamble for FR Doc. 2012-17899, published in the Federal Register of Wednesday, July 25, 2012 (77 FR 43562... tolerances for residues of the herbicide pyroxasulfone and its metabolites in or on wheat (grain,...

  15. Residual efficacy of synergized pyrethrin + methoprene aerosol against larvae of Tribolium castaneum and Tribolium confusum (Coleoptera: Tenebrionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat flour and different packaging surfaces (cardboard, flour bag, muslin bag, paper bag, pallet wrap, plastic overwrap, polyethylene) were exposed to aerosol formulations of either 1% active ingredient [AI] pyrethrin + methoprene or 3% [AI] pyrethrin + methoprene. Residual bioassays were conducted...

  16. [Non-celiac disease non-wheat allergy wheat sensitivity].

    PubMed

    Zopf, Yurdagül; Dieterich, Walburga

    2015-11-01

    Non-celiac non-wheat allergy wheat sensitivity is regarded as discrete glutensensitivity diagnosed after the exclusion of celiac disease and wheat allergy. Due to the absence of reliable biomarkers no exact prevalence rates are known and estimations range between 0,5-6 %. Soon after ingestion of wheat, patients complain of intestinal symptoms mainly bloating, abdominal pain, diarrhea or nausea which improve fast under glutenfree diet. Often extraintestinal manifestation as tiredness, muscle or joint pain, headache and depression are reported. Actually, there are no serological markers and no intestinal mucosal damage was found in patients. The underlying mechanism of the disease is completely unknown and beside of gluten other wheat proteins as well as amylase-trypsin-inhibitor or short chain sugars are discussed as triggers. In addition, the involvement of the intestinal microbiome in pathology of glutensensitivity must be considered. PMID:26536646

  17. Heterologous expression of new antifungal chitinase from wheat.

    PubMed

    Singh, Arpita; Kirubakaran, S Isaac; Sakthivel, N

    2007-11-01

    Chitinases (EC 3.2.1.14) have been grouped into seven classes (class I-VII) on the basis of their structural properties. Chitinases expressed during plant-microbe interaction are involved in defense responses of host plant against pathogens. In the present investigation, chitinase gene from wheat has been subcloned and overexpressed in Escherichia coli BL-21 (DE3). Molecular phylogeny analyses of wheat chitinase indicated that it belongs to an acidic form of class VII chitinase (glycosyl hydrolase family 19) and shows 77% identity with other wheat chitinase of class IV and low level identity to other plant chitinases. The three-dimensional structural model of wheat chitinase showed the presence of 10 alpha-helices, 3 beta-strands, 21 loop turns and the presence of 6 cysteine residues that are responsible for the formation of 3 disulphide bridges. The active site residues (Glu94 and Glu103) may be suggested for its antifungal activity. Expression of chitinase (33 kDa) was confirmed by SDS-PAGE and Western hybridization analyses. The yield of purified chitinase was 20 mg/L with chitinase activity of 1.9 U/mg. Purified chitinase exerted a broad-spectrum antifungal activity against Colletotrichum falcatum (red rot of sugarcane) Pestalotia theae (leaf spot of tea), Rhizoctonia solani (sheath blight of rice), Sarocladium oryzae (sheath rot of rice) Alternaria sp. (grain discoloration of rice) and Fusarium sp. (scab of rye). Due to its innate antifungal potential wheat chitinase can be used to enhance fungal-resistance in crop plants. PMID:17697785

  18. Fuel ethanol production from agricultural residues: current status and future prospects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007, about 6.5 billion gallons of ethanol were produced from corn starch in the U.S. Various agricultural residues such as corn stover, wheat straw, rice straw, and barley straw can serve as low-cost lignocellulosic feedstocks for conversion to fuel ethanol. These residues contain both cellulo...

  19. Registration of 'Rollag' spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) (caused primarily by Fusarium graminearum Schwabe) is a disease that annually threatens wheat (Triticum aestivum L.) grown in the northern plains of the United States. Resistance to this disease is a high priority trait in the University of Minnesota’s spring wheat breedi...

  20. Registration of 'Thunder CL' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Thunder CL' (Reg. No. CV- , PI XXXXXX) hard white winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2008 through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State Uni...

  1. Registration of 'Bill Brown' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Bill Brown’ (Reg. No. CV-133, PI 653260) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2007 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorad...

  2. Registration of Vision 40 Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential exists to develop and market hard winter wheat (Triticum aestivum L.) in the eastern United States, where a majority of the mills, bakeries, and consumers reside. The primary objective of this study was to develop adapted and competitive hard winter wheat cultivars possessing high-valu...

  3. Registration of 'Bill Brown' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Bill Brown’ (Reg. No. CV-133, PI 653260) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2007 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorad...

  4. Registration of 'LCS Wizard' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop widely adapted hard winter wheat (Triticum aestivum L.) varieties to meet the needs of mills, bakeries, and consumers in the eastern and Great Plains regions of the United States. ‘LCS Wizard’ (Reg. No. CV-1111, PI 669574), a hard red winter (HRW) wheat,...

  5. Development of the Wheat Plant

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1) Wheat development is important in creating structures such as leaves and roots needed to capture resources, and also to create the structures ultimately needed to produce viable seed or the desired quality for grain. 2) Wheat canopy development can be considered at many scales of the plant but of...

  6. Wheat landraces: A mini review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers developed and utilized diverse wheat landraces to meet the complexity of a multitude of spatio-temporal, agro-ecological systems and to provide reliable sustenance and a sustainable food source to local communities. The genetic structure of wheat landraces is an evolutionary approach to surv...

  7. Hard Spring Wheat Technical Committee 2006 Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeders’ experimental lines of wheat are evaluated for overall quality before being released for commercial production. The Hard Spring Wheat Technical Committee provides milling and baking quality data on breeders’ experimental lines of wheat that are annually submitted to the Wheat Quality Counc...

  8. Incidence of Wheat streak mosaic virus, Triticum mosaic virus, and Wheat mosaic virus in wheat curl mites recovered from maturing winter wheat spikes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat curl mites (WCM; Aceria tosichella) transmit Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus (WMoV) to wheat (Triticum aestivum L.) in the Great Plains region of the United States. These viruses can be detected in single, double, or triple combinations i...

  9. Poisoning of Canada geese in Texas by parathion sprayed for control of Russian wheat aphid

    USGS Publications Warehouse

    Flickinger, Edward L.; Juenger, Gary; Roffe, Thomas J.; Smith, Milton R.; Irwin, Roy J.

    1991-01-01

    Approximately 200 Canada geese (Branta canadensis) died at a playa lake in the Texas Panhandle shortly after a winter wheat field in the basin adjacent to the lake was treated with parathion to control newly invading Russian wheat aphids (Diuraphis noxia). No evidence of infectious disease was diagnosed during necropsies of geese. Brain ChE activities were depressed up to 77% below normal. Parathion residues in GI tract contents of geese ranged from 4 to 34 ppm. Based on this evidence, parathion was responsible for the goose mortalities. Parathion applications to winter wheat will undoubtedly increase if parathion is applied for control of both Russian wheat aphids and greenbugs (Schizaphis graminum). Geese may potentially be exposed to widespread applications of parathion from fall to spring, essentially their entire wintering period.

  10. Residual Cap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    10 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime view of the south polar residual cap of Mars. In this image, mesas composed largely of solid carbon dioxide are separated from one another by irregularly-shaped depressions. The variation in brightness across this scene is a function of several factors including, but not limited to, varying proportions of dust and solid carbon dioxide, undulating topography, and differences in the roughness of the slopes versus the flat surfaces.

    Location near: 86.7oS, 343.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  11. The potential of papain and alcalase enzymes and process optimizations to reduce allergenic gliadins in wheat flour.

    PubMed

    Li, Ying; Yu, Jianmei; Goktepe, Ipek; Ahmedna, Mohamed

    2016-04-01

    The objectives of this study were to select effective enzymes that catalyze the hydrolysis of allergenic proteins, gliadins, in wheat flour and to optimize the enzymatic treatment conditions. Six proteases were tested. Hydrolyzed samples were tested for residual gliadin concentrations and in vitro allergenicity. The hydrolysis conditions of wheat protein by the effective enzymes were optimized by central composite design. Results showed that alcalase from Bacillus licheniformis, and papain from latex of papaya fruit had greater ability to reduce gliadin content of wheat flour than flavourzyme, pepsin, trypsin or α-chymotrypsin. The sequential-treatment of wheat flour by alcalase-papain was more effective in reducing gliadin content than single enzyme treatment. Under the optimal conditions of sequential enzymatic treatment, gliadin was almost completely removed, resulting in the flour extract showing lowest IgE-binding. Therefore, this could be a promising biotechnology for preparing low allergenic wheat products. PMID:26593625

  12. Engineering High-Fidelity Residue Separations for Selective Harvest

    SciTech Connect

    Kevin L. Kenney; Christopher T. Wright; Reed L. Hoskinson; J. Rochard Hess; David J. Muth, Jr.

    2006-07-01

    Composition and pretreatment studies of corn stover and wheat stover anatomical fractions clearly show that some corn and wheat stover anatomical fractions are of higher value than others as a biofeedstock. This premise, along with soil sustainability and erosion control concerns, provides the motivation for the selective harvest concept for separating and collecting the higher value residue fractions in a combine during grain harvest. This study recognizes the analysis of anatomical fractions as theoretical feedstock quality targets, but not as practical targets for developing selective harvest technologies. Rather, practical quality targets were established that identified the residue separation requirements of a selective harvest combine. Data are presented that shows that a current grain combine is not capable of achieving the fidelity of residue fractionation established by the performance targets. However, using a virtual engineering approach, based on an understanding of the fluid dynamics of the air stream separation, the separation fidelity can be significantly improved without significant changes to the harvester design. A virtual engineering model of a grain combine was developed and used to perform simulations of the residue separator performance. The engineered residue separator was then built into a selective harvest test combine, and tests performed to evaluate the separation fidelity. Field tests were run both with and without the residue separator installed in the test combine, and the chaff and straw residue streams were collected during harvest of Challis soft white spring wheat. The separation fidelity accomplished both with and without the residue separator was quantified by laboratory screening analysis. The screening results showed that the engineered baffle separator did a remarkable job of effecting high-fidelity separation of the straw and chaff residue streams, improving the chaff stream purity and increasing the straw stream yield.

  13. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  14. Recycling crop residues for use in recirculating hydroponic crop production.

    PubMed

    Mackowiak, C L; Garland, J L; Sager, J C

    1996-12-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented. PMID:11541570

  15. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations. PMID:23535542

  16. The Influence of Rotation, Tillage and Row Spacing on Near-Surface Soil Temperature for Winter Wheat in Southern Alberta

    SciTech Connect

    Larney, F. J.; Ren, Tennis L.; McGinn, Sean M.; Lindwall, C W.; Izaurralde, R Cesar C.

    2003-02-01

    The influence of rotation, tillage and row spacing on near-surface soil temperature for winter wheat in southern Alberta. Rotation, tillage and row spacing and their effects on surface residue levels can modify soil temperature. Our study investigated the effect of rotation, tillage and row spacing on near-surface (0.025 m) soil temperature under winter wheat (Triticum aestivum L.) in 1993-94 and 1994-95.

  17. Drought Tolerance in Wheat

    PubMed Central

    Prodhan, Zakaria Hossain; Faruq, Golam

    2013-01-01

    Drought is one of the most important phenomena which limit crops' production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants' vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL) mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea), responsive to abscisic acid (Rab), rubisco, helicase, proline, glutathione-S-transferase (GST), and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress. PMID:24319376

  18. Drought tolerance in wheat.

    PubMed

    Nezhadahmadi, Arash; Prodhan, Zakaria Hossain; Faruq, Golam

    2013-01-01

    Drought is one of the most important phenomena which limit crops' production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants' vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL) mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea), responsive to abscisic acid (Rab), rubisco, helicase, proline, glutathione-S-transferase (GST), and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress. PMID:24319376

  19. Carbon dioxide and oxygen budgets of a plant cultural system in a CELSS - A case of cultivation of lettuce and turnips

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Kiyota, M.; Aiga, I.; Yabuki, K.; Nitta, K.; Ikeda, A.; Nakayama, S.

    In order to collect basic data about CO2 and O2 budgets of a plant cultural system in a CELSS, the variation of the CO2 absorption rates of lettuce and turnips were observed during the growing period, under different conditions. The O2 release rates were deduced from the CO2 absorption rates multiplied by 32/44. As a result, when the light intensity, the photoperiod and the atmospheric CO2 concentration increased, the rates also increased. The effects on the turnips were more significant than those on the lettuce. Turnips at 310 μmol/m2/s of PPFD, 24 hours of photoperiod and 1100 ppm of CO2 concentration grew most actively in the present experimental conditions. One turnip absorbed 32.3 g CO2 and released 23.5 g O2 for 6 days between 24 days and 30 days after sowing.

  20. Dryland Soil Carbon and Nitrogen Influenced by Sheep Grazing in the Wheat-Fallow System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheep (Ovis aries L.) grazing during fallow for weed control in wheat (Triticum aestivum L.)-fallow systems may influence soil C and N levels and grain yields by returning part of consumed crop residue to the soil through feces and urine. We evaluated the effects of fallow management [sheep grazing ...

  1. BIOCONVERSION OF WHEAT STRAW TO BUTANOL (A SUPERIOR LIQUID FUEL): SIMULTANEOUS SACCHARIFICATION, FERMENTATION, AND PRODUCT RECOVERY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a result of the increasing price of transportation fuel, we have intensified our research on butanol production from agricultural residues using Clostridium beijerinckii. Butanol has superior fuel properties compared to ethanol. In this paper, wheat straw was evaluated as a feedstock for butano...

  2. Winter wheat starter nitrogen management: a preplant soil nitrate test and site specific nitrogen loss potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Managing highly variable residual nitrate-nitrogen (NO3-N) following corn (Zea mays L.) is difficult because it can supply starter nitrogen (N) for winter wheat (Triticum aestivum L.), and/or be leached into water resources during the fall-winter water-recharge season in the Humid East. A series of...

  3. Brazil wheat yield covariance model

    NASA Technical Reports Server (NTRS)

    Callis, S. L.; Sakamoto, C.

    1984-01-01

    A model based on multiple regression was developed to estimate wheat yields for the wheat growing states of Rio Grande do Sul, Parana, and Santa Catarina in Brazil. The meteorological data of these three states were pooled and the years 1972 to 1979 were used to develop the model since there was no technological trend in the yields during these years. Predictor variables were derived from monthly total precipitation, average monthly mean temperature, and average monthly maximum temperature.

  4. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  5. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  6. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  7. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  8. Dough Rheology and Wet Milling of Hard Waxy Wheat Flours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To realize the full potential of waxy wheat (Triticum aestivum L.), wet milling of waxy wheat flour to produce gluten and waxy wheat starch was investigated. Flours of six advanced lines of waxy hard wheats, one normal hard wheat (‘Karl 92’), and one partial waxy wheat (‘Trego’) were fractionated by...

  9. 19 CFR 19.32 - Wheat manipulation; reconditioning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Wheat manipulation; reconditioning. 19.32 Section... Bonded for the Storage of Wheat § 19.32 Wheat manipulation; reconditioning. (a) The mixing, blending, or commingling of imported wheat and domestic wheat, or of imported wheat of different classes and grades, as...

  10. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps

    NASA Astrophysics Data System (ADS)

    Bryan, B. A.; King, D.; Zhao, G.

    2014-04-01

    In the future, agriculture will need to produce more, from less land, more sustainably. But currently, in many places, actual crop yields are below those attainable. We quantified the ability for agricultural management to increase wheat yields across 179 Mha of potentially arable land in Australia. Using the Agricultural Production Systems Simulator (APSIM), we simulated the impact on wheat yield of 225 fertilization and residue management scenarios at a high spatial, temporal, and agronomic resolution from 1900 to 2010. The influence of management and environmental variables on wheat yield was then assessed using Spearman’s non-parametric correlation test with bootstrapping. While residue management showed little correlation, fertilization strongly increased wheat yield up to around 100 kg N ha-1 yr-1. However, this effect was highly dependent on the key environment variables of rainfall, temperature, and soil water holding capacity. The influence of fertilization on yield was stronger in cooler, wetter climates, and in soils with greater water holding capacity. We conclude that the effectiveness of management intensification to increase wheat yield is highly dependent upon local climate and soil conditions. We provide context-specific information on the yield benefits of fertilization to support adaptive agronomic decision-making and contribute to the closure of yield gaps. We also suggest that future assessments consider the economic and environmental sustainability of management intensification for closing yield gaps.

  11. Acidic pretreatment of wheat straw in decanol for the production of surfactant, lignin and glucose.

    PubMed

    Marinkovic, Sinisa; Le Bras, Jean; Nardello-Rataj, Véronique; Agach, Mickaël; Estrine, Boris

    2012-01-01

    Wheat straw is an abundant residue of agriculture which is increasingly being considered as feedstock for the production of fuels, energy and chemicals. The acidic decanol-based pre-treatment of wheat straw has been investigated in this work. Wheat straw hemicellulose has been efficiently converted during a single step operation into decyl pentoside surfactants and the remaining material has been preserved keeping all its promises as potential feedstock for fuels or value added platform chemicals such as hydroxymethylfurfural (HMF). The enzymatic digestibility of the cellulose contained in the straw residue has been evaluated and the lignin prepared from the material characterized. Wheat-based surfactants thus obtained have exhibited superior surface properties compared to fossil-based polyethoxylates decyl alcohol or alkyl oligoglucosides, some of which are largely used surfactants. In view of the growing importance of renewable resource-based molecules in the chemical industry, this approach may open a new avenue for the conversion of wheat straw into various chemicals. PMID:22312256

  12. Acidic Pretreatment of Wheat Straw in Decanol for the Production of Surfactant, Lignin and Glucose

    PubMed Central

    Marinkovic, Sinisa; Le Bras, Jean; Nardello-Rataj, Véronique; Agach, Mickaël; Estrine, Boris

    2012-01-01

    Wheat straw is an abundant residue of agriculture which is increasingly being considered as feedstock for the production of fuels, energy and chemicals. The acidic decanol-based pre-treatment of wheat straw has been investigated in this work. Wheat straw hemicellulose has been efficiently converted during a single step operation into decyl pentoside surfactants and the remaining material has been preserved keeping all its promises as potential feedstock for fuels or value added platform chemicals such as hydroxymethylfurfural (HMF). The enzymatic digestibility of the cellulose contained in the straw residue has been evaluated and the lignin prepared from the material characterized. Wheat-based surfactants thus obtained have exhibited superior surface properties compared to fossil-based polyethoxylates decyl alcohol or alkyl oligoglucosides, some of which are largely used surfactants. In view of the growing importance of renewable resource-based molecules in the chemical industry, this approach may open a new avenue for the conversion of wheat straw into various chemicals. PMID:22312256

  13. Cadmium minimization in wheat: A critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Abbas, Tahir; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Keller, Catherine; Al-Wabel, Mohammad I; Ok, Yong Sik

    2016-08-01

    Cadmium (Cd) accumulation in wheat (Triticum aestivum L.) and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding wheat response to Cd stress and its management for aiming to reduce Cd uptake and accumulation in wheat may help to improve wheat growth and grain quality. This paper reviewed the toxic effects, tolerance mechanisms, and management of Cd stress in wheat. It was concluded that Cd decreased germination, growth, mineral nutrients, photosynthesis and grain yield of wheat and plant response to Cd toxicity varies with cultivars, growth conditions and duration of stress applied. Cadmium caused oxidative stress and genotoxicity in wheat plants. Stimulation of antioxidant defense system, osmoregulation, ion homeostasis and over production of signalling molecules are important adaptive strategies of wheat under Cd stress. Exogenous application of plant growth regulators, inorganic amendments, proper fertilization, silicon, and organic, manures and biochar, amendments are commonly used for the reduction of Cd uptake in wheat. Selection of low Cd-accumulating wheat cultivars, crop rotation, soil type, and exogenous application of microbes are among the other agronomic practices successfully employed in reducing Cd uptake by wheat. These management practices could enhance wheat tolerance to Cd stress and reduce the transfer of Cd to the food chain. However, their long-term sustainability in reducing Cd uptake by wheat needs further assessment. PMID:27062345

  14. EVALUATION OF DURUM SPRING WHEAT SUSCEPTIBILITY TO WHEAT STEM SAWFLY (HYMENOPTERA: CEPHIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wheat stem sawfly, Cephus cinctus Norton, is the primary arthropod pest of wheat, Triticum aestivum, in the Northern Great Plains. Rotation to non-host crops should decrease infestation of susceptible spring or winter wheats. Information is unavailable on wheat stem sawfly infestation potentia...

  15. Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid (Diuraphis noxia (Mordvilko)) infests wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and other small grains and grasses. Russian wheat aphid infestations are unpredictable in time and space. In favorable conditions, Russian wheat aphid feeding can result in heavy...

  16. The effects on chicks of dietary fibre from different sources: a growth factor in wheat bran.

    PubMed

    Hegde, S N; Rolls, B A; Turvey, A; Coates, M E

    1978-07-01

    1. Groups of chicks were given a low-residue diet with or without supplements of dietary fibre in the form of wheat bran, wheat straw or bagasse. Growth and food conversion efficiency (g weight gained/g food eaten; FCE) during the first 4 weeks of life were measured. 2. In every one of seven experiments supplementation of the diet with 100 g wheat bran/kg resulted in improved growth, and in three experiments FCE was also increased. 3. Supplementation with coarsely-milled wheat straw to provide an amount of unavailable carbohydrate equivalent to that in the bran diet resulted in poorer growth; finely-milled wheat straw had little effect on growth. 4. The growth-promoting effect of bran was destroyed by sterilization with heat or gamma-radiation. 5. In some experiments weights, lengths and volumes of small intestines were measured. Differences in intestinal dimensions between birds given the diet with and without fibre were not consistent, nor were they correlated with growth rate or FCE. 6. Histometric observations on small intestines from a few birds indicated that those given coarse wheat straw had longer vili and thicker muscularis layers, and the caecal tonsils had a greater area of lymphoid tissue and more follicles. PMID:566554

  17. Effects of tillage and residue management on soil organic carbon and total nitrogen in the North China Plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A suitable tillage-residue management system is needed in the North China Plain (NCP) that sustains soil fertility and agronomic productivity. The objective was to determine the effects of different tillage-residue managements for a winter wheat (Triticum aestivum L.), summer maize (Zea Mays L.) dou...

  18. A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil*

    PubMed Central

    Nourbakhsh, Farshid; Sheikh-Hosseini, Ahmad R.

    2006-01-01

    The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (C 0) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation. PMID:16972320

  19. Ethanol production from mixtures of wheat straw and wheat meal

    PubMed Central

    2010-01-01

    Background Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G) or lignocellulosic (second generation; 2G) raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS) was mixed with presaccharified wheat meal (PWM) and converted to ethanol in simultaneous saccharification and fermentation (SSF). Results Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars) was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS) and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68%) or PWM alone (91%). Conclusions Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated. PMID:20598120

  20. Distribution of Wheat Germ Agglutinin in Young Wheat Plants 12

    PubMed Central

    Mishkind, Michael; Keegstra, Kenneth; Palevitz, Barry A.

    1980-01-01

    A liquid phase, competition-binding radioimmunoassay for wheat germ agglutinin, with a detection limit of 10 nanograms, was developed in order to determine the distribution of this lectin in young wheat plants. Affinity columns for wheat germ agglutinin removed all antigenically detectable activity from crude extracts of wheat tissue; thus, the antigenic cross-reactivity detected by the assay possesses sugar-binding specificity similar to the wheat germ-derived lectin. The amount of lectin per dry grain is approximately 1 microgram, all associated with the embryo. At 34 days of growth, the level of lectin per plant was reduced by about 50%, with approximately one-third in the roots and two-thirds in the shoot. The data also indicate that actively growing regions of the plant (the bases of the leaves and rapidly growing adventitious roots) contain the highest levels of lectin. Half of the lectin associated with the roots could be solubilized by washing intact roots in buffer containing oligomers of N-acetylglucosamine, whereas the remainder is liberated only upon homogenization of the tissue. Images PMID:16661559

  1. Image texture analysis of crushed wheat kernels

    NASA Astrophysics Data System (ADS)

    Zayas, Inna Y.; Martin, C. R.; Steele, James L.; Dempster, Richard E.

    1992-03-01

    The development of new approaches for wheat hardness assessment may impact the grain industry in marketing, milling, and breeding. This study used image texture features for wheat hardness evaluation. Application of digital imaging to grain for grading purposes is principally based on morphometrical (shape and size) characteristics of the kernels. A composite sample of 320 kernels for 17 wheat varieties were collected after testing and crushing with a single kernel hardness characterization meter. Six wheat classes where represented: HRW, HRS, SRW, SWW, Durum, and Club. In this study, parameters which characterize texture or spatial distribution of gray levels of an image were determined and used to classify images of crushed wheat kernels. The texture parameters of crushed wheat kernel images were different depending on class, hardness and variety of the wheat. Image texture analysis of crushed wheat kernels showed promise for use in class, hardness, milling quality, and variety discrimination.

  2. Primary structure of arabinoxylans of ispaghula husk and wheat bran.

    PubMed

    Edwards, Sandra; Chaplin, Martin F; Blackwood, Anne D; Dettmar, Peter W

    2003-02-01

    The primary structures of ispaghula husk and wheat bran were investigated in order to determine how and why these fibres are among the most beneficial dietary fibres. To this end, the polysaccharide preparations have been subjected to enzymic hydrolysis and methylation analysis.The results have shown ispaghula husk and wheat bran to be very-highly-branched arabinoxylans consisting of linear f-D-(1-4)-linked xylopyranose (Xylp) backbones to which a-L-arabinofuranose (AraJ3 units are attached as side residues via a-(l13) and a-(1-02) linkages.Other substituents identified as present in wheat bran include P-D-glucuronic acid attached via the C(O)-2 position, and arabinose oligomers, consisting of two or more arabinofuranosyl residues linked via 1-2, 1-3, and 1-4 linkages. Ispaghula-husk arabinoxylan is more complex having additional side residues which include a-D-glucuronopyranose (GalAp)-(1-42)-linked-a-L-rhamnopyranose-(1-04)-0-D-Xylp, a-D-GalAp-(l-o3)-linked-a-L-Araf-(l-4)-[3-D-Xylp, and a-L-Araf-(l-43)-linked-P-D-Xylp-(1l -4)--D-Xylp. The beneficial effects of increased faecal bulk and water-holding capacity are undoubtedly related to the structures of the arabinoxylans, with differences in their efficacy to treat various functional bowel disorders due to their specific structural features. PMID:12756970

  3. CELSS science needs

    NASA Technical Reports Server (NTRS)

    Rummel, J. D.

    1986-01-01

    Questions and areas of study that need to be persued in order to develope a Controlled Ecological Life Support System are posed. Research topics needing attention are grouped under various leadings: ecology, genetics, plant pathology, cybernetics, chemistry, computer science, fluid dynamics, optics, and solid-state physics.

  4. Investigating the effect of historical treatments on wheat yield over multiple spatial frequencies

    NASA Astrophysics Data System (ADS)

    Milne, A. E.; Castellanos, M. T.; Cartagena, M. C.; Tarquis, A. M.; Lark, R. M.

    2010-03-01

    In this study we use the maximum overlap discrete packet transform (MODWPT) to investigate the impact of historical fertirrigation treatments and cropping on wheat yield. Our objective was to identify the spatial frequencies at which such effects can be detected. Here we consider wheat yield data harvested in consecutive 0.5 m × 0.5 m-sections along the transect. Prior to the wheat crop, a split plot design experiment had been done to investigate the effect of different fertirrigation treatments on melon yield. The wheat transect crossed 9 of the subplots from the melon crop experiment. Each subplot had received a different level of applied nitrogen. The melons were grown at a 1.5 m spacing and will have removed a proportion of the available nitrogen, leaving a soil nitrogen residual. We expect soil properties, such as available nitrogen, to be spatially variable as they result from spatially variable factors operating over multiple orders of spatial frequency. In this example we have good reason to believe this: the applied nitrogen changed from subplot to subplot constituting a low frequency factor, and we expected the removal of nitrogen by the melon crop to be a localized effect in the neighbourhood of the plant therefore constituting a higher frequency factor. We chose to use the MODWPT in this analysis as it is ideally suited to the elucidation of multifrequency processes that are not necessarily stationary in the variance. We show that the applied nitrogen dominates the wheat yield response, and that there is a noticeable contribution to wheat yield variation at the frequency that corresponds to the melon cropping. However the correlation analysis suggests that the relationship between wheat yield and melon positioning is not as straightforward as we might expect and that other influences affect wheat yield variation at this frequency.

  5. Bioconversion of wheat straw to ethanol: chemical modification, enzymatic hydrolysis, and fermentation

    SciTech Connect

    Detroy, R.W.; Lindenfelser, L.A.; Sommer, S.; Orton, W.L.

    1981-07-01

    The current studies involved a series of chemical treatment combinations upon wheat straw (WS), and subsequent hydrolysis of released cellulose to fermentable sugars. Primary chemical treatment of WS was followed by additional, secondary treatment of residues with either acids or alkali. Following primary and secondary treatment the WS residues were hydrolyzed with cellulase, and final glucose yields were determined. Samples of residues and effluents taken after each reaction also were analyzed. Large-scale experiments for both saccharification and alcohol production were investigated in a glass-column reactor. The results showed that conversion of the cellulosic component to sugar varied with the chemical modification steps. 23 refs.

  6. Registration of 'UI Stone' spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soft white spring wheat (Triticum aestivumL.) is an important wheat class being used in domestic and international markets, especially in Idaho and Pacific Northwest (PNW). The objective of this study was to develop a SWS wheat cultivar with high grain yield, desirable end-use quality, and resistanc...

  7. Registration of ‘Babe’ wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soft white wheat (Triticum aestivum L.) is the predominant market class of wheat produced in the Pacific Northwest of the United States. Stripe rust (caused by Puccinia striiformis Westend f. sp. tritici) is a major foliar fungal disease problem for wheat cultivars grown in the region. The objective...

  8. Growing Wheat. People on the Farm.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC. Office of Governmental and Public Affairs.

    This booklet, one in a series about life on modern farms, describes the daily life of the Don Riffel family, wheat farmers in Kansas. Beginning with early morning, the booklet traces the family's activities through a typical harvesting day in July, while explaining how a wheat farm is run. The booklet also briefly describes the wheat growing…

  9. HARD SPRING WHEAT TECHNICAL COMMITTEE 2007 CROP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twelve experimental lines of hard spring wheat were grown at up to five locations in 2007 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Samples of wheat were submitted through the Wheat Quality Council and processed and milled at the USDA Hard Red Spri...

  10. Hard Spring Wheat Technical Committee 2009 Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirteen hard spring wheat lines that were developed by breeders throughout the spring wheat region of the U. S. were grown at up to five locations in 2009 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Samples of wheat were milled at the USDA Hard Red ...

  11. Hard Spring Wheat Technical Committee, 2008 Crop.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eleven hard spring wheat lines that were developed by breeders throughout the spring wheat region of the U. S. were grown at up to five locations in 2008 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Samples of wheat were milled at the USDA Hard Red Sp...

  12. The value of wheat landraces (Editorial)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whether man was domesticated by wheat, or wheat was domesticated by man is but two faces of the same coin; both incidents marked a turning point in human history and led to the emergence of human civilization in the Fertile Crescent of the Old World. The complex history of wheat domestication from i...

  13. Floral Transformation of Wheat

    NASA Astrophysics Data System (ADS)

    Agarwal, Sujata; Loar, Star; Steber, Camille; Zale, Janice

    A method is described for the floral transformation of wheat using a protocol similar to the floral dip of Arabidopsis. This method does not employ tissue culture of dissected embryos, but instead pre-anthesis spikes with clipped florets at the early, mid to late uninucleate microspore stage are dipped in Agrobacterium infiltration media harboring a vector carrying anthocyanin reporters and the NPTII selectable marker. T1 seeds are examined for color changes induced in the embryo by the anthocyanin reporters. Putatively transformed seeds are germinated and the seedlings are screened for the presence of the NPTII gene based on resistance to paromomycin spray and assayed with NPTII ELISAs. Genomic DNA of putative transformants is digested and analyzed on Southern blots for copy number to determine whether the T-DNA has integrated into the nucleus and to show the number of insertions. The non-optimized transformation efficiencies range from 0.3 to 0.6% (number of transformants/number of florets dipped) but the efficiencies are higher in terms of the number of transformants produced/number of seeds set ranging from 0.9 to 10%. Research is underway to maximize seed set and optimize the protocol by testing different Agrobacterium strains, visual reporters, vectors, and surfactants.

  14. Effects of crop residue on soil and plant water evaporation in a dryland cotton system

    NASA Astrophysics Data System (ADS)

    Lascano, R. J.; Baumhardt, R. L.

    1996-03-01

    Dryland agricultural cropping systems emphasize sustaining crop yields with limited use of fertilizer while conserving both rain water and the soil. Conservation of these resources may be achieved with management systems that retain residues at the soil surface simultaneously modifying both its energy and water balance. A conservation practice used with cotton grown on erodible soils of the Texas High Plains is to plant cotton into chemically terminated wheat residues. In this study, the partitioning of daily and seasonal evapotranspiration ( E t) into soil and plant water evaporation was compared for a conventional and a terminated-wheat cotton crop using the numerical model ENWATBAL. The model was configured to account for the effects of residue on the radiative fluxes and by introducing an additional resistance to latent and sensible heat fluxes derived from measurements of wind speed and vapor conductance from a soil covered with wheat-stubble. Our results showed that seasonal E t was similar in both systems and that cumulative soil water evaporation was 50% of E t in conventional cotton and 31% of E t in the wheat-stubble cotton. Calculated values of E t were in agreement with measured values. The main benefit of the wheat residues was to suppress soil water evaporation by intercepting irradiance early in the growing season when the crop leaf area index (LAI) was low. In semiarid regions LAI of dryland cotton seldom exceeds 2 and residues can improve water conservation. Measured soil temperatures showed that early in the season residues reduced temperature at 0.1 m depth by as much as 5°C and that differences between systems diminished with depth and over time. Residues increased lint yield per unit of E t while not modifying seasonal E t and reducing cumulative soil water evaporation.

  15. Induction of wheat straw delignification by Trametes species

    PubMed Central

    Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M.; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena

    2016-01-01

    Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains. PMID:27216645

  16. Induction of wheat straw delignification by Trametes species.

    PubMed

    Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena

    2016-01-01

    Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains. PMID:27216645

  17. Flour Quality and Related Molecular Characterization of High Molecular Weight Glutenin Subunit Genes from Wild Emmer Wheat Accession TD-256.

    PubMed

    Zhang, Da-Le; He, Ting-Ting; Liang, Hui-Hui; Huang, Lu-Yu; Su, Ya-Zhong; Li, Yu-Ge; Li, Suo-Ping

    2016-06-22

    To clarify the effect of high molecular weight glutenin subunit (HMW-GS) from wild emmer wheat on flour quality, which has the same mobility as that from common wheat, the composition and molecular characterization of HMW-GS from wild emmer wheat accession TD-256, as well as its flour quality, were intensively analyzed. It is found that the mobilities of Glu-A1 and Glu-B1 subunits from TD-256 are consistent with those of bread wheat cv. 'XiaoYan 6'. Nevertheless, dough rheological properties of TD-256 reveal its poor flour quality. In the aspect of molecular structure from HMW-GS, only two conserved cysteine residues can be observed in the deduced protein sequence of 1Bx14* from TD-256, while most Glu-1Bx contain four conserved cysteine residues. In addition, as can be predicted from secondary structure, the quantity both of α-helixes and their amino acid residues of the subunits from TD-256 is fewer than those of common wheat. Though low molecular weight glutenin subunit (LMW-GS) and gliadin can also greatly influence flour quality, the protein structure of the HMW-GS revealed in this work can partly explain the poor flour quality of wild emmer accession TD-256. PMID:27243935

  18. Adverse Effects of Wheat Gluten.

    PubMed

    Koning, Frits

    2015-01-01

    Man began to consume cereals approximately 10,000 years ago when hunter-gatherers settled in the fertile golden crescent in the Middle East. Gluten has been an integral part of the Western type of diet ever since, and wheat consumption is also common in the Middle East, parts of India and China as well as Australia and Africa. In fact, the food supply in the world heavily depends on the availability of cereal-based food products, with wheat being one of the largest crops in the world. Part of this is due to the unique properties of wheat gluten, which has a high nutritional value and is crucial for the preparation of high-quality dough. In the last 10 years, however, wheat and gluten have received much negative attention. Many believe that it is inherently bad for our health and try to avoid consumption of gluten-containing cereals; a gluten-low lifestyle so to speak. This is fueled by a series of popular publications like Wheat Belly; Lose the Wheat, Lose the Weight, and Find Your Path Back to Health. However, in reality, there is only one condition where gluten is definitively the culprit: celiac disease (CD), affecting approximately 1% of the population in the Western world. Here, I describe the complexity of the cereals from which gluten is derived, the special properties of gluten which make it so widely used in the food industry, the basis for its toxicity in CD patients and the potential for the development of safe gluten and alternatives to the gluten-free diet. PMID:26606684

  19. Origin and spread of wheat in China

    NASA Astrophysics Data System (ADS)

    Dodson, John R.; Li, Xiaoqiang; Zhou, Xinying; Zhao, Keliang; Sun, Nan; Atahan, Pia

    2013-07-01

    Wheat was added as a new crop to the existing millet and rice based agricultural systems of China. Here we present 35 radiocarbon ages from wheat seeds collected from 18 sites between western (Xinjiang Province) and eastern (Henan Province) China. The earliest wheat ages cluster around 2100-1800 BCE in northern China's Hexi corridor of Gansu Province, where millet was already a well-established crop. Wheat first appears in Xinjiang and Henan about 300-400 years later, and perhaps a little earlier than this in Xinjiang, and we hypothesize that the likely route of wheat into China was via Russia through Gansu.

  20. Wheat in the Mediterranean revisited – tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers

    PubMed Central

    2014-01-01

    Background Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. Results We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. Conclusions SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat. PMID:24885044

  1. Product distribution from pyrolysis of wood and agricultural residues

    SciTech Connect

    Di Blasi, C.; Signorelli, G.; Di Russo, C.; Rea, G.

    1999-06-01

    The pyrolysis characteristics of agricultural residues (wheat straw, olive husks, grape residues, and rice husks) and wood chips have been investigated on a bench scale. The experimental system establishes the conditions encountered by a thin (4 {times} 10{sup {minus}2} m diameter) packed bed of biomass particles suddenly exposed in a high-temperature environment, simulated by a radiant furnace. Product yields (gases, liquids, and char) and gas composition, measured for surface bed temperatures in the range 650--1000 K, reproduce trends already observed for wood. However, differences are quantitatively large. Pyrolysis of agricultural residues is always associated with much higher solid yields (up to a factor of 2) and lower liquid yields. Differences are lower for the total gas, and approximate relationships exist among the ratios of the main gas species yields, indicating comparable activation energies for the corresponding apparent kinetics of formation. However, while the ratios are about the same for wood chips, rice husks, and straw, much lower values are shown by olive and grape residues. Large differences have also been found in the average values of the specific devolatilization rates. The fastest (up to factors of about 1.5 with respect to wood) have been observed for wheat straw and the slowest (up to factors of 2) for grape residues.

  2. Wheat straw biomass: a resource for high-value chemicals.

    PubMed

    Schnitzer, Morris; Monreal, Carlos M; Powell, Erin E

    2014-01-01

    Two methods are proposed for increasing the commercial value of wheat straw based on its chemical constituents. The first method involves the determination and extraction of the major organic components of wheat straw, and the second involves those found and extracted in the aqueous and viscous biooils derived from the straw by fast pyrolysis. We used pyrolysis-field ionization mass spectrometry to identify the fine chemicals, which have high commercial values. The most abundant organic compounds in the wheat straw and biooil used as precursors for green chemicals are N-heterocycles (16 to 29% of the Total Ion Intensities, TII) and fatty acids (19 to 26% of TIIs), followed by phenols and lignins (12 to 23% of TIIs). Other important precursors were carbohydrates and amino acids (1 to 8% TIIs), n-alkyl benzenes (3 to 5% of TIIs), and diols (4 to 9% TIIs). Steroids and flavonoids represented 1 to 5% of TIIs in the three materials. Examples of valuable chemical compounds that can be extracted from the wheat straw and biooils are m/z 256, 270, 278, 280, 282 and 284, which are the n-C16 and n-C17 fatty acids respectively, and the C18:3, C18:2 and C18:1 unsaturated fatty acids. In particular, the C18:2 (linoleic acid) is present at a concentration of 1.7% of TIIs. Pyrazole, pyrazine, pyridine, indoles, quinolines, carbazoles, and their identified derivatives are found in relatively high concentrations (1 to 8% of TIIs). Other useful compounds are sterols such as m/z 412 (stigmasterol), m/z 414 (β-sitosterol), and steroids such m/z 394 (stigmastatriene), m/z 398 (stigmastene) and m/z 410 (stigmastadienone). Relative to the wheat straw, the relative concentration of all flavonoids such as m/z 222 (flavone) and m/z 224 (flavonone) doubled in the biooils. The conversion of wheat straw by fast pyrolysis, followed by chemical characterization with mass spectrometry, and extraction of fine chemicals, opens up new possibilities for increasing the monetary value of crop residues

  3. Preparation and characterization of durum wheat (Triticum durum) straw cellulose nanofibers by electrospinning.

    PubMed

    Montaño-Leyva, Beatriz; Rodriguez-Felix, Francisco; Torres-Chávez, Patricia; Ramirez-Wong, Benjamin; López-Cervantes, Jaime; Sanchez-Machado, Dalia

    2011-02-01

    Cellulose nanofibers from durum wheat straw ( Triticum durum ) were produced and characterized to study their potential as reinforcement fibers in biocomposites. Cellulose was isolated from wheat straw by chemical treatment. Nanofibers were produced via an electrospinning method using trifluoroacetic acid (TFA) as the solvent. The nanofibers were 270 ± 97 nm in diameter. Analysis of the FT-IR spectra demonstrated that the chemical treatment of the wheat straw removed hemicellulose and lignin. XRD revealed that the crystallinity of the cellulose was reduced after electrospinning, but nanofibers remained highly crystalline. The glass transition temperature (T(g) value) of the fibers was 130 °C, higher than that of cellulose (122 °C), and the degradation temperature of the fibers was 236 °C. Residual TFA was not present in the nanofibers as assessed by the FT-IR technique. PMID:21207978

  4. Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production.

    PubMed

    Bauer, Alexander; Bösch, Peter; Friedl, Anton; Amon, Thomas

    2009-06-01

    Agrarian biomass as a renewable energy source can contribute to a considerable CO(2) reduction. The overriding goal of the European Union is to cut energy consumption related greenhouse gas emission in the EU by 20% until the year 2020. This publication aims at optimising the methane production from steam-exploded wheat straw and presents a theoretical estimation of the ethanol and methane potential of straw. For this purpose, wheat straw was pretreated by steam explosion using different time/temperature combinations. Specific methane yields were analyzed according to VDI 4630. Pretreatment of wheat straw by steam explosion significantly increased the methane yield from anaerobic digestion by up to 20% or a maximum of 331 l(N)kg(-1) VS compared to untreated wheat straw. Furthermore, the residual anaerobic digestion potential of methane after ethanol fermentation was determined by enzymatic hydrolysis of pretreated wheat straw using cellulase. Based on the resulting glucose concentration the ethanol yield and the residual sugar available for methane production were calculated. The theoretical maximum ethanol yield of wheat straw was estimated to be 0.249 kg kg(-1) dry matter. The achievable maximum ethanol yield per kg wheat straw dry matter pretreated by steam explosion and enzymatic hydrolysis was estimated to be 0.200 kg under pretreatment conditions of 200 degrees C and 10 min corresponding to 80% of the theoretical maximum. The residual methane yield from straw stillage was estimated to be 183 l(N)kg(-1) wheat straw dry matter. Based on the presented experimental data, a concept is proposed that processes wheat straw for ethanol and methane production. The concept of an energy supply system that provides more than two forms of energy is met by (1) upgrading obtained ethanol to fuel-grade quality and providing methane to CHP plants for the production of (2) electric energy and (3) utility steam that in turn can be used to operate distillation columns in the

  5. Stereoselective Metabolism of the Sterol Biosynthesis Inhibitor Fungicides Fenpropidin, Fenpropimorph, and Spiroxamine in Grapes, Sugar Beets, and Wheat.

    PubMed

    Buerge, Ignaz J; Krauss, Jürgen; López-Cabeza, Rocío; Siegfried, Werner; Stüssi, Michael; Wettstein, Felix E; Poiger, Thomas

    2016-07-01

    Metabolism of chiral pesticides in crops is typically studied using achiral analytical methods and, consequently, the stereoisomer composition of residues is unknown. In this study, we developed an enantioselective GC-MS/MS method to quantify residues of the fungicides fenpropidin, fenpropimorph, and spiroxamine in plant matrices. In field trials, the fungicides were applied to grapevines, sugar beets, or wheat. Fenpropidin was metabolized with no or only weak enantioselectivity. For fenpropimorph, slightly enantioselective metabolism was observed in wheat but more pronounced in sugar beets. This enantioselectivity was due to different rates of metabolism and not due to interconversion of enantiomers. The four stereoisomers of spiroxamine were also metabolized at different rates, but selectivity was only found between diastereomers and not between enantiomers. trans-Spiroxamine was preferentially degraded in grapes and cis-spiroxamine in wheat. These findings may affect the consumer dietary risk assessment because toxicological end points were determined using racemic test substances. PMID:27248479

  6. SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production

    PubMed Central

    2013-01-01

    Background Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production process lowers energy demand in distillation, improves overall energy efficiency and thus lower production cost. There is also a potential to reach higher ethanol yields, which is required in economically feasible ethanol production. Integrated process scenarios with addition of saccharified wheat meal (SWM) or fermented wheat meal (FWM) were investigated in simultaneous saccharification and (co-)fermentation (SSF or SSCF) of steam-pretreated wheat straw, while the possibility of recovering the valuable protein-rich fibre residue from the wheat was also studied. Results The addition of SWM to SSF of steam-pretreated wheat straw, using commercially used dried baker’s yeast, S. cerevisiae, resulted in ethanol concentrations of about 60 g/L, equivalent to ethanol yields of about 90% of the theoretical. The addition of FWM in batch mode SSF was toxic to baker’s yeast, due to the ethanol content of FWM, resulting in a very low yield and high accumulation of glucose. The addition of FWM in fed-batch mode still caused a slight accumulation of glucose, but the ethanol concentration was fairly high, 51.2 g/L, corresponding to an ethanol yield of 90%, based on the amount of glucose added. In batch mode of SSCF using the xylose-fermenting, genetically modified S. cerevisiae strain KE6-12, no improvement was observed in ethanol yield or concentration, compared with baker’s yeast, despite the increased xylose utilization, probably due to the considerable increase in glycerol production. A slight increase in xylose consumption was seen when glucose from SWM was fed at a low feed rate

  7. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  8. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  9. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  10. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  11. Wheat Rusts in the United States in 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007 90% of wheat stem rust races were QFC and 10% were RCRS Both races are relatively avirulent to wheat cultiars grown in the U.S. Wheat stem rust occurred in scattered locations on research plots of susceptible wheat cultivars in 2007, and did not cause yield loss. Wheat leaf rust was widespr...

  12. Diseases Which Challenge Global Wheat Production - The Cereal Rusts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rusts of wheat are common and widespread diseases in the US and throughout the world. Wheat rusts have been important throughout the history of wheat cultivation and are currently important diseases that are responsible for regularly occurring yield losses in wheat. The wheat rust fungi are obli...

  13. Wheat genetics resource center: the first 25 years

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Wheat Genetics Resource Center, a pioneering center without walls, has served the wheat genetics community for 25 years. The Wheat Genetics Resource Center (WGRC) assembled a working collection of over 11,000 wild wheat relatives and cytogenetic stocks for conservation use in wheat genome analys...

  14. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  15. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models.

    PubMed

    Mehra, Lucky K; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S

    2016-01-01

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of

  16. Predicting Pre-planting Risk of Stagonospora nodorum blotch in Winter Wheat Using Machine Learning Models

    PubMed Central

    Mehra, Lucky K.; Cowger, Christina; Gross, Kevin; Ojiambo, Peter S.

    2016-01-01

    Pre-planting factors have been associated with the late-season severity of Stagonospora nodorum blotch (SNB), caused by the fungal pathogen Parastagonospora nodorum, in winter wheat (Triticum aestivum). The relative importance of these factors in the risk of SNB has not been determined and this knowledge can facilitate disease management decisions prior to planting of the wheat crop. In this study, we examined the performance of multiple regression (MR) and three machine learning algorithms namely artificial neural networks, categorical and regression trees, and random forests (RF), in predicting the pre-planting risk of SNB in wheat. Pre-planting factors tested as potential predictor variables were cultivar resistance, latitude, longitude, previous crop, seeding rate, seed treatment, tillage type, and wheat residue. Disease severity assessed at the end of the growing season was used as the response variable. The models were developed using 431 disease cases (unique combinations of predictors) collected from 2012 to 2014 and these cases were randomly divided into training, validation, and test datasets. Models were evaluated based on the regression of observed against predicted severity values of SNB, sensitivity-specificity ROC analysis, and the Kappa statistic. A strong relationship was observed between late-season severity of SNB and specific pre-planting factors in which latitude, longitude, wheat residue, and cultivar resistance were the most important predictors. The MR model explained 33% of variability in the data, while machine learning models explained 47 to 79% of the total variability. Similarly, the MR model correctly classified 74% of the disease cases, while machine learning models correctly classified 81 to 83% of these cases. Results show that the RF algorithm, which explained 79% of the variability within the data, was the most accurate in predicting the risk of SNB, with an accuracy rate of 93%. The RF algorithm could allow early assessment of

  17. Registration of 'Red Ruby' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Red Ruby’ soft red winter wheat (Triticum aestivum L.) was developed by the Michigan Agricultural Experiment Station and released in 2007 via an exclusive licensing agreement through Michigan State University (MSU) Technologies. Red Ruby was selected from the cross Pioneer ‘2552’/Pioneer ‘2737W’ ma...

  18. Adapting wheat to uncertain future

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Stratonovitch, Pierre

    2015-04-01

    This study describes integration of climate change projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble with the LARS-WG weather generator, which delivers an attractive option for downscaling of large-scale climate projections from global climate models (GCMs) to local-scale climate scenarios for impact assessments. A subset of 18 GCMs from the CMIP5 ensemble and 2 RCPs, RCP4.5 and RCP8.5, were integrated with LARS-WG. Climate sensitivity indexes for temperature and precipitation were computed for all GCMs and for 21 regions in the world. For computationally demanding impact assessments, where it is not practical to explore all possible combinations of GCM × RCP, climate sensitivity indexes could be used to select a subset of GCMs from CMIP5 with contrasting climate sensitivity. This would allow to quantify uncertainty in impacts resulting from the CMIP5 ensemble by conducting fewer simulation experiments. As an example, an in silico design of wheat ideotype optimised for future climate scenarios in Europe was described. Two contrasting GCMs were selected for the analysis, "hot" HadGEM2-ES and "cool" GISS-E2-R-CC, along with 2 RCPs. Despite large uncertainty in climate projections, several wheat traits were identified as beneficial for the high-yielding wheat ideotypes that could be used as targets for wheat improvement by breeders.

  19. Registration of TAM401 wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'TAM 401', a hard red winter wheat (Triticum aestivum L) cultivar (PI658500) with experimental designation TX03M1096, was developed and released by Texas AgriLife Research in 2008. TAM 401 is an F4 derived line from the cross 'Mason' (PI 594044)/'Jagger' (PI593688). TAM 401 is an early maturing apic...

  20. Registration of 'Clara CL' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Clara CL’ hard white winter wheat (Triticum aestivum L.) was developed at the Agricultural Research Center-Hays, Kansas State University and released by the Kansas Agricultural Experiment Station in 2011. Clara CL carries one Clearfield gene and has the tolerance to imazamox herbicide. Clara CL wa...

  1. Registration of 'NE01643' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NE01643 is a hard red winter wheat (Triticum aestivum L.) cultivar developed cooperatively by the Nebraska Agricultural Experiment Station and the USDA-ARS and released in 2007 by the developing institutions and the South Dakota Agricultural Experiment Station. NE01643 will be marketed under the na...

  2. Registration of Vision 30 Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Vision 30’ (Reg. No. CV-1062, PI 661153) hard red winter (HRW) wheat (Triticum aestivum L.) was developed and tested as VA06HRW-49 and released by the Virginia Agricultural Experiment Station in March 2010. Vision 30 was derived from the cross 92PAN1#33/VA97W-414. Vision 30 is high yielding, awned,...

  3. Registration of Vision 45 Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Vision 45’ (Reg. No. CV-1110, PI 667642), is a hard red winter (HRW) wheat (Triticum aestivum L.) cultivar that was developed and tested as VA07HRW-45 and released by the Virginia Agricultural Experiment Station in 2012. Vision 45 was derived from the cross ‘Provinciale’/‘Vision 10’ using a modifie...

  4. Development of an Intermediate-Scale Aerobic Bioreactor to Regenerate Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Finger, Barry W.; Strayer, Richard F.

    1994-01-01

    Three Intermediate-Scale Aerobic Bioreactors were designed, fabricated, and operated. They utilized mixed microbial communities to bio-degrade plant residues. The continuously stirred tank reactors operated at a working volume of 8 L, and the average oxygen mass transfer coefficient, k(sub L)a, was 0.01 s(exp -1). Mixing time was 35 s. An experiment using inedible wheat residues, a replenishment rate of 0.125/day, and a solids loading rate of 20 gdw/day yielded a 48% reduction in biomass. Bioreactor effluent was successfully used to regenerate a wheat hydroponic nutrient solution. Over 80% of available potassium, calcium, and other minerals were recovered and recycled in the 76-day wheat growth experiment.

  5. Identification of distinct functions of Wheat streak mosaic virus coat protein in virion assembly and virus movement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) is the type member of Tritimovirus genus of the family Potyviridae. The WSMV coat protein (CP) was subjected to point and deletion mutation analyses. WSMV mutants changing aspartic acid residues at amino acid (aa) positions 289, 290, 326, 333, and 334 to alanine elic...

  6. Reinforcement Effect of Alkali-Hydrolyzed Wheat Gluten and Shear-Degraded Wheat Starch in Carboxylated Styrene-Butadiene Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  7. A novel highly differentially expressed gene in wheat endosperm associated with bread quality.

    PubMed

    Furtado, A; Bundock, P C; Banks, P M; Fox, G; Yin, X; Henry, R J

    2015-01-01

    Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5'-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production. PMID:26011437

  8. A novel highly differentially expressed gene in wheat endosperm associated with bread quality

    PubMed Central

    Furtado, A.; Bundock, P. C.; Banks, P. M.; Fox, G.; Yin, X.; Henry, R. J.

    2015-01-01

    Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5’-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production. PMID:26011437

  9. Runoff nutrient loads as affected by residue cover, manure application rate, and flow rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure is applied to cropland areas with varying surface cover to meet single- or multiple-year crop nutrient requirements. The objectives of this field study were to (1) examine runoff water quality characteristics following land application of manure to sites with and without wheat residue, (2) co...

  10. FUEL ETHANOL PRODUCTION FROM CROP RESIDUES: CURRENT STATUS AND FUTURE PROSPECTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, about 5 billion gallons of ethanol were produced from corn starch in the U.S.A. Various agricultural residues such as corn stover, wheat straw, rice straw, and barley straw can serve as low-cost lignocellulosic feedstocks for conversion to fuel ethanol. In this presentation, current state...

  11. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    Wheat gluten is a naturally occurring protein polymer. It is produced in abundance by the agricultural industry, is biodegradable and very inexpensive (less than $0.50/lb). It has unique viscoelastic properties, which makes it a promising alternative to synthetic plastics. The unplasticized wheat gluten is, however, brittle. Plasticizers such as glycerol are commonly used to give flexibility to the articles made of wheat gluten but with the penalty of greatly reduced stiffness. Former work showed that the brittleness of wheat gluten can also be improved by modifying it with a tri-thiol additive with no penalty of reduced stiffness. However, the cost of the customer designed tri-thiol additive was very high and it was unlikely to make a cost effective material from such an expensive additive. Here we designed a new, inexpensive thiol additive called SHPVA. It was synthesized from polyvinyl alcohol (PVA) through a simple esterification reaction. The mechanical data of the molded wheat gluten/SHPVA material indicated that wheat gluten was toughened by SHPVA. As a control, the wheat gluten/PVA material showed no improvement compared with wheat gluten itself. Several techniques have been used to characterize this novel protein/polymer blend. Differential scanning calorimetric (DSC) study showed two phases in both wheat gluten/PVA and wheat gluten/SHPVA material. However, scanning electron microscope (SEM) pictures indicated that PVA was macroscopically separated from wheat gluten, while wheat gluten/SHPVA had a homogeneous look. The phase image from the atomic force microscope (AFM) gave interesting contrast based on the difference in the mechanical properties of these two phases. The biodegradation behavior of these protein/polymer blends was examined in soil. SHPVA was not degraded in the time period of the experiment. Wheat gluten/SHPVA degraded slower than wheat gluten. We also developed some other interesting material systems based on wheat gluten, including the

  12. Ozonation and alkaline-peroxide pretreatment of wheat straw for Cryptococcus curvatus fermentation

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J. B.; Lin, S.; McKenzie, S.; Denvir, A.

    2000-01-01

    Crop residues in an Advanced Life Support System (ALS) contain many valuable components that could be recovered and used. Wheat is 60% inedible, with approximately 90% of the total sugars in the residue cellulose and hemicellulose. To release these sugars requires pretreatment followed by enzymatic hydrolysis. Cryptococcus curvatus, an oleaginous yeast, uses the sugars in cellulose and hemicellulose for growth and production of storage triglycerides. In this investigation, alkaline-peroxide and ozonation pretreatment methods were compared for their efficiency to release glucose and xylose to be used in the cultivation of C. curvatus. Leaching the biomass with water at 65 degrees C for 4 h prior to pretreatment facilitated saccharification. Alkaline-peroxide and ozone pretreatment were almost 100% and 80% saccharification efficient, respectively. The sugars derived from the hydrolysis of alkaline-peroxide-treated wheat straw supported the growth of C. curvatus and the production of edible single-cell oil.

  13. Extraction and use of nutrients from composted wheat and potato plants.

    PubMed

    Atkinson, C F; Alim, J K; Loader, C A; Sager, J C

    1999-01-01

    Human survival on extended-duration space missions will require reliable regenerative life support systems. Biological systems using higher plants could be incorporated into life support systems; however, substantial quantities of inedible crop residues will also be produced. Composting can reduce the volume of crop residues and provide an end product that may be leached to remove soluble nutrients for use in hydroponic plant growth systems. Solubilization can be affected by physical conditions; we investigated several treatments (pH, temperature, agitation, or pretreatment sonication) for aqueous extraction of nutrients from composted inedible potato and wheat biomass. No significant differences were noted in electrical conductivity data. Chemical analyses indicated highly significant differences. Wheat seeds (Triticum aestivum L. cv. Apogee) were germinated in each extract to monitor for potentially inhibitory compounds. Seeds germinated in each extract, but total mean root lengths were affected negatively by sonication before extraction. Aqueous extracts may also support plant growth. PMID:11542243

  14. Safeguarding world wheat and barley production against Russian wheat aphid: An international pre-breeding initiative

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid (RWA), Diuraphis noxia, is one of the most damaging insect pests of wheat and barley throughout the World. This aphid, although is not yet present in Australia, is extremely damaging with up to 70% yield loses in wheat and barley producing lands, causing significant financia...

  15. Relationship between Russian wheat aphid abundance and edaphic and topographic characteristics of wheat fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study explores the spatial relationship between Russian wheat aphid population density and variation in edaphic or topographic factors within wheat fields. Multiple regression analysis was applied to data collected from six wheat fields located in three States, Colorado, Wyoming, and Nebraska....

  16. Binary mixtures of waxy wheat and conventional wheat as measured by nir reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waxy wheat contains very low concentration (generally <2%) of amylose in endosperm starch, in contrast to conventional wheat whose starch is typically 20% amylose, with the balance being the branched macromolecule, amylopectin. With the release of a commercial hard winter waxy wheat cultivar in the ...

  17. Differentiating stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of Greenbug (Schizaphis graminum Rondani) and Russian wheat aphid appear in the Great Plains almost every year and have had significant economic impacts on wheat yields. Early detection of aphid infestation is a critical part of integrated pest management (IPM) for wheat and sorghum produ...

  18. Chromatin Structure of Wheat Breeding Lines Resistant to Wheat Streak Mosaic Virus.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat Streak Mosaic Virus (WSMV) is an important disease limiting wheat production, however no WSMV resistance effective above 18°C is present within the primary genetic pool of wheat (Triticum aestivum L.). In contrast, the wild relative Thinopyrum intermedium (2n=6x=42) shows good resistance to WS...

  19. Physiological responses of hard red winter wheat to infection by wheat streak mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect o...

  20. Evaluation and reselection of wheat resistance to Russian wheat aphid biotype 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA, Diuraphis noxia, Mordvilko) biotype 2 (RWA2) is virulent to most known RWA resistance genes and severely threatens wheat production in the hard winter wheat area of the US western Great Plains. We determined RWA2 reactions of 386 cultivars from China, 227 advanced breeding...

  1. Resistance among U.S. wheat Triticum aestivum cultivars to the wheat pathotype of Magnaporthe oryzae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Magnaporthe oryzae is the causal agent of blast on several graminaceous plants. The M. oryzae population causing wheat blast has not been found outside South America. U.S. wheat production is at risk to this pathogen if introduced and established. Proactive testing of US wheat cultivars for their re...

  2. Effects of Processing on Wheat Tortilla Quality: Benefits of Hard White Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The suitability of Kansas hard white winter (HWW) wheat milled at a high extraction rate for tortilla production was investigated. Tortillas were made from eight wheat cultivars milled at 80% extraction: four HWW wheat cultivars included Betty, Heyne, Oro Blanco and NuWest; three hard red winter (H...

  3. Modification of Extensigraph Dough Preparation Method Developed for Wheat Breeding Lines and Commercial Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dough rheological characteristics - resistance to extension and extensibility, are very important wheat flour quality traits for the milling and baking industries, and for new wheat varietal selection in wheat breeding programs. Current available techniques or test methods, such as the AACCI extens...

  4. Population divergence in the wheat leaf rust fungus Puccinia triticina is correlated with wheat evolution

    PubMed Central

    Liu, M; Rodrigue, N; Kolmer, J

    2014-01-01

    Co-evolution of fungal pathogens with their host species during the domestication of modern crop varieties has likely affected the current genetic divergence of pathogen populations. The objective of this study was to determine if the evolutionary history of the obligate rust pathogen on wheat, Puccinia triticina, is correlated with adaptation to hosts with different ploidy levels. Sequence data from 15 loci with different levels of polymorphism were generated. Phylogenetic analyses (parsimony, Bayesian, maximum likelihood) showed the clear initial divergence of P. triticina isolates collected from Aegilops speltoides (the likely B genome donor of modern wheat) in Israel from the other isolates that were collected from tetraploid (AB genomes) durum wheat and hexaploid (ABD genomes) common wheat. Coalescence-based genealogy samplers also indicated that P. triticina on A. speltoides, diverged initially, followed by P. triticina isolates from durum wheat in Ethiopia and then by isolates from common wheat. Isolates of P. triticina found worldwide on cultivated durum wheat were the most recently coalesced and formed a clade nested within the isolates from common wheat. By a relative time scale, the divergence of P. triticinia as delimited by host specificity appears very recent. Significant reciprocal gene flow between isolates from common wheat and isolates from durum wheat that are found worldwide was detected, in addition to gene flow from isolates on common wheat to isolates on durum wheat in Ethiopia. PMID:24301080

  5. Weather, disease, and wheat breeding effects on Kansas wheat varietal yields, 1985 to 2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum L.) yields in Kansas have increased due to wheat breeding and improved agronomic practices, but are subject to climate and disease challenges. The objective of this research is to quantify the impact of weather, disease, and genetic improvement on wheat yields of varieties g...

  6. Association Analysis of Soft Wheat Quality Traits in Eastern US Soft Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soft wheat quality is highly heritable, is controlled by multiple loci, and has been mapped in a number of bi-parental crosses. We extended the mapping information on soft wheat quality by using association analysis between genetic markers and quality phenotyping in 192 soft winter wheat cultivars ...

  7. Grain and vegetative biomass reduction by the Russian wheat aphid in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Russian wheat aphid, Diuraphis noxia (Mordvilko), is a severe pest of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), other small grains, and grasses. Although the Russian wheat aphid is a significant pest of small grains, its feeding effects on grain yield and vegetative biomass in ...

  8. LACIE: Wheat yield models for the USSR

    NASA Technical Reports Server (NTRS)

    Sakamoto, C. M.; Leduc, S. K.

    1977-01-01

    A quantitative model determining the relationship between weather conditions and wheat yield in the U.S.S.R. was studied to provide early reliable forecasts on the size of the U.S.S.R. wheat harvest. Separate models are developed for spring wheat and for winter. Differences in yield potential and responses to stress conditions and cultural improvements necessitate models for each class.

  9. Winter wheat and summer shade

    NASA Astrophysics Data System (ADS)

    Artru, S.; Garre, S.; Lassois, L.; Dupraz, C.

    2014-12-01

    Agroforestry research is in full expansion, but uncertainty remains on the performance of combinations of species with regard to the broad range of possible species associations. In addition, the variability of environmental conditions under which agroforestry stands can be successfully developed is unknown. Under Belgian pedoclimatic conditions, tree-crop competition for light might be the principal limiting factor in the agroforestry context. Most studies show that shade stress induces a systematic reduction of final crop yield. However, the response of a specific crop to shade is highly dependent on environmental conditions. In agroforestry systems, the tree canopy reduces the incident radiation for the crop following a dynamic spatio-temporal pattern. In this study, we will report on the efficiency of wheat under artificial dynamic shade in the experimental farm of Gembloux Agro-Bio Tech, Belgium in order to evaluate it's potential for agroforestry purposes in the same region. Wheat productivity and development under artificial shade conditions have been monitored during 1 year and the observations will be continued for 2 more years. We constructed an artificial shade structure, which mimics the light environment observed under hybrid walnut agroforestry trees: periodic fluctuation in radiation transmittance and discontinuous light quantity. We collected information on biomass development, soil state and radiation patterns in the field. Using this data, we evaluated the influence of dynamic shade, light availability and the efficiency with which energy is converted in wheat dry matter under the artificial shade treatment. This, in combination with modeling, will allow a thorough study of the potential of wheat-walnut agroforestry systems in the Hesbaye region in Belgium.

  10. Registration of 'TAM 113' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘TAM 113’ (Reg. No. CV-1081, PI 666125), a hard red winter wheat (Triticum aestivum L.) cultivar with experimental designation TX02A0252, was developed and released by Texas AgriLife Research in 2010. TAM 113 is an F5–derived line from the cross TX90V6313/TX94V3724 made at Vernon, TX in 1995. Both T...

  11. 40 CFR 180.638 - Pyroxsulam; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-pyridinesulfonamide in or on the raw agricultural commodities: Commodity Parts per million Wheat, forage 0.06 Wheat, grain 0.01 Wheat, hay 0.01 Wheat, straw 0.03 (b) Section 18 emergency exemptions. (c) Tolerances...

  12. 40 CFR 180.638 - Pyroxsulam; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-pyridinesulfonamide in or on the raw agricultural commodities: Commodity Parts per million Wheat, forage 0.06 Wheat, grain 0.01 Wheat, hay 0.01 Wheat, straw 0.03 (b) Section 18 emergency exemptions. (c) Tolerances...

  13. 40 CFR 180.638 - Pyroxsulam; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-pyridinesulfonamide in or on the raw agricultural commodities: Commodity Parts per million Wheat, forage 0.06 Wheat, grain 0.01 Wheat, hay 0.01 Wheat, straw 0.03 (b) Section 18 emergency exemptions. (c) Tolerances...

  14. 40 CFR 180.638 - Pyroxsulam; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-pyridinesulfonamide in or on the raw agricultural commodities: Commodity Parts per million Wheat, forage 0.06 Wheat, grain 0.01 Wheat, hay 0.01 Wheat, straw 0.03 (b) Section 18 emergency exemptions. (c) Tolerances...

  15. 40 CFR 180.638 - Pyroxsulam; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-pyridinesulfonamide in or on the raw agricultural commodities: Commodity Parts per million Wheat, forage 0.06 Wheat, grain 0.01 Wheat, hay 0.01 Wheat, straw 0.03 (b) Section 18 emergency exemptions. (c) Tolerances...

  16. Achieving yield gains in wheat.

    PubMed

    Reynolds, Matthew; Foulkes, John; Furbank, Robert; Griffiths, Simon; King, Julie; Murchie, Erik; Parry, Martin; Slafer, Gustavo

    2012-10-01

    Wheat provides 20% of calories and protein consumed by humans. Recent genetic gains are <1% per annum (p.a.), insufficient to meet future demand. The Wheat Yield Consortium brings expertise in photosynthesis, crop adaptation and genetics to a common breeding platform. Theory suggest radiation use efficiency (RUE) of wheat could be increased ~50%; strategies include modifying specificity, catalytic rate and regulation of Rubisco, up-regulating Calvin cycle enzymes, introducing chloroplast CO(2) concentrating mechanisms, optimizing light and N distribution of canopies while minimizing photoinhibition, and increasing spike photosynthesis. Maximum yield expression will also require dynamic optimization of source: sink so that dry matter partitioning to reproductive structures is not at the cost of the roots, stems and leaves needed to maintain physiological and structural integrity. Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index. Strategic crossing of complementary physiological traits will be augmented with wide crossing, while genome-wide selection and high throughput phenotyping and genotyping will increase efficiency of progeny screening. To ensure investment in breeding achieves agronomic impact, sustainable crop management must also be promoted through crop improvement networks. PMID:22860982

  17. [Development of Triticale and soft wheat forms with substituted wheat and rye chromosomes].

    PubMed

    Suvorova, E Iu; Cherednichenko, V N; Semenov, V I

    2000-01-01

    During hybridization between winter forms of hexaploid (6x) triticale and soft wheat varieties the intergenomic substitution of alian chromosomes occurs. As a result of these crosses the forms of 6x-triticale with D(R)-substitution of chromosomes in R-rye genome by wheat ones of D-genome and wheat revertants with rye chromosomes replacing the wheat ones are originated. This is the simplest and the most effective technique for developing of selected lines of triticale and soft wheat with alien substituted chromosomes and valuable genes transfer. PMID:11213630

  18. Integration of Biological, Physical/Chemical and Energy Efficient Systems in the CELSS Antarctic Analog: Performance of Prototype Systems and Issues for Life Support

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Lamparter, Richard; Bates, Maynard; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP), and the National Aeronautics and Space Administration (NASA). The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle, and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety, and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions, such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for waste treatment, water recycle, resource recovery and crop production are being evaluated in a testbed at Ames Research Center. The combined performance of these biological and physical/chemical systems as an integrated function in support of the human habitat will be discussed. Overall system performance will be emphasized. The effectiveness and efficiency of component technologies will be discussed in the context of energy and mass flow within the system and contribution to achieving a mass and energy conservative system. Critical to the discussion are interfaces with habitat functions outside of the closed-loop life support: the ability of the system to satisfy the life support requirements of the habitat and the ability to define input requirements. The significance of analog functions in relation to future Mars habitats will be discussed.

  19. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    PubMed Central

    2012-01-01

    Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second

  20. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains

    NASA Astrophysics Data System (ADS)

    Bhatia, A.; Pathak, H.; Jain, N.; Singh, P. K.; Singh, A. K.

    Use of organic amendments such as farmyard manure (FYM), green manure (GM) and crop residues is important to improve soil health and reduce the dependence on synthetic chemical fertilizer. However, these organic amendments also effect the emissions of greenhouse gas (GHG) from soil. Influence of different organic amendments on emissions of GHG from soil and their global warming potential (GWP) was studied in a field experiment in rice-wheat cropping system of Indo-Gangetic plains (IGP). There was 28% increase in CH 4 emissions on addition of 25% N through Sesbania GM along with urea compared to urea alone. Substitution of 100% inorganic N by organic sources lead to a 60% increase in CH 4 emissions. The carbon equivalent emission from rice-wheat systems varied between 3816 and 4886 kg C equivalent ha -1 depending upon fertilizer and organic amendment. GWP of rice-wheat system increased by 28% on full substitution of organic N by chemical N. However, the C efficiency ratios of the GM and crop residue treatments were at par with the recommended inorganic fertilizer treatment. Thus use of organic amendments along with inorganic fertilizer increases the GWP of the rice-wheat system but may improve the soil fertility status without adversely affecting the C efficiency ratio. However, the trade-off between improved yield and soil health versus GHG emissions should be taken into account while promoting the practice of farming with organic residues substitution for mineral fertilizer.

  1. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis.

    PubMed

    Zhu, Xiuliang; Yang, Kun; Wei, Xuening; Zhang, Qiaofeng; Rong, Wei; Du, Lipu; Ye, Xingguo; Qi, Lin; Zhang, Zengyan

    2015-11-01

    Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes. PMID:26220083

  2. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis

    PubMed Central

    Zhu, Xiuliang; Yang, Kun; Wei, Xuening; Zhang, Qiaofeng; Rong, Wei; Du, Lipu; Ye, Xingguo; Qi, Lin; Zhang, Zengyan

    2015-01-01

    Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes. PMID:26220083

  3. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham...

  4. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham...

  5. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham...

  6. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham...

  7. 21 CFR 136.180 - Whole wheat bread, rolls, and buns.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat bread, rolls, and buns. 136.180... § 136.180 Whole wheat bread, rolls, and buns. (a) Each of the foods whole wheat bread, graham bread, entire wheat bread, whole wheat rolls, graham rolls, entire wheat rolls, whole wheat buns, graham...

  8. Effects of gamma irradiation on chemical compositions of some agricultural residues

    NASA Astrophysics Data System (ADS)

    Al-Masri, M. R.; Zarkawi, M.

    1994-03-01

    An experiment was carried out to study the effects of different doses of γ irradiation on the changes in the crude fibre contents of cottonwood, wheat straw, barley straw, lentils straw, maize straw and maize cobs. Ground samples of the 6 residues were irradiated by γ irradiation at doses of 0, 10, 50 and 100 kilogray (kGy) under identical conditions of temperature and humidity and analyzed for total nitrogen (N), crude fibre (CF), neutral-detergent fibre (NDF), acid-detergent fibre (ADF) and acid-detergent lignin (ADL). The results indicate that γ irradiation has no effect on total N whereas it decreased CF contents especially at the highest dose (100 kGy) reaching 30% for cottonwood, 21% for wheat straw and maize straw, and about 16% for barley straw, lentils straw and maize cobs. NDF decreased by about 6% for cottonwood, wheat straw and barley straw, 11% for maize straw and 9% for maize cobs. γ Irradiation (100 kGy) also decreased ADF by 8% for cottonwood, 7% for maize straw and maize cobs, and 6% for wheat straw and barley straw. No effects on NDF and ADF in lentils straw were observed. ADL content was also decreased by 8% in cottonwood, 21% in wheat straw, 18% in barley straw and maize straw, and by 30% in maize cobs, with no effect in lentils straw. The percentage of cellulose (CL):CF ratio increased by 31, 25, 13, 18, 19 and 15% for cottonwood, wheat straw, barley straw, lentils straw, maize straw and maize cobs, respectively. Also hemicellulose (HCL):CF ratios increased by 48, 18, 15, 17, 5 and 4% for cottonwood, wheat straw, barley straw, lentils straw, maize straw and maize cobs, respectively, and 48%, 18%, 15%, 17%, 5% and 4% in the HCL:CF ratio for cottonwood, wheat straw, barley straw, lentils straw, maize straw and maize cobs, respectively. CL:ADL ratios increased by γ irradiation (100 kGy) by 23, 16, 14 and 38% for wheat straw, barley straw, maize straw and maize cobs, respectively, with no changes in the ratios for cottonwood and lentils straw

  9. Using Transcriptomics to Understand the Wheat Genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum aestivum L.) is one of the most important food crops in the world, and transcriptomics studies of this crop promise to reveal the expression dynamics of genes that control many agriculturally important traits. In this review of wheat transcriptomics research, the current status of tr...

  10. Chapter 6: Floral Transformation of Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hexaploid wheat is one of the world’s most important staple crops but genetic transformation is still challenging. We are developing a floral transformation protocol for wheat that does not require tissue culture. Several T-DNA transformants have been produced in the high quality, hard red germpla...

  11. Registration of ‘Yellowstone’ wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Yellowstone' hard red winter wheat (Triticum aestivum L.) was developed by the Montana Agricultural Experiment Station and released in September 2005. Yellowstone was released for its high yield potential and broad adaptation to Montana winter wheat production environments. Yellowstone was named in...

  12. Agronomic Performance of Low Phytic Acid Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low phytic acid (LPA) genotypes of wheat are one approach to improving the nutritional quality of wheat by reducing the concentration of phytic acid in the aleurone layer, thus reducing the chelation of nutritionally important minerals and improving the bioavailability of phosphorus. Field studies ...

  13. Stem rust resistance in 'Jagger' winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    "Jagger" has been utilized widely as a parent to develop hard red winter wheat varieties throughout the U.S. southern Great Plains. Jagger has resistance to stem rust pathogen race TTTTF, which is virulent to many winter wheat cultivars, yet the genetic basis of this resistance remains unknown. Mark...

  14. Registration of 'Brawl CL Plus' wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Brawl CL Plus' (PI 664255) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released August, 2011, through a marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado State University (CSU), ...

  15. Registration of ‘Ripper’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Ripper’ (Reg. No. CV-1016, PI 644222) hard red winter wheat (Triticum aestivum L.) was developed by the Colorado Agricultural Experiment Station and released in August 2006 through an exclusive marketing agreement with the Colorado Wheat Research Foundation. In addition to researchers at Colorado S...

  16. Production of fuel ethanol from wheat straw

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat straw contains about 70% carbohydrates that can serve as a low cost feedstock for production of fuel ethanol. The pretreatment of wheat straw is essential prior to enzymatic hydrolysis. Research needs to be carried out to develop an efficient pretreatment method which can greatly help enzyme...

  17. Functional dissection of wheat disease resistance pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is an essential component of human food supply. We are working to identify genes that mediate resistance to the most significant pathogens of wheat, so that ultimately, we can engineer improved disease resistance. We are employing virus-induced gene silencing (VIGS) to test if candidate gene...

  18. Genetics of tan spot resistance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tan spot is a devastating foliar disease of wheat caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis. Much has been learned during the past two decades regarding the genetics of wheat-P. tritici-repentis interactions. Research has shown that the fungus produces at least three ho...

  19. Alternative Dryland Cropping Systems to Wheat Fallow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat-summer fallow (W-F) in the Central Great Plains of the U.S.A. is not a long-term sustainable dryland system due to a high potential for erosion and associated soil degradation. Utilizing no-till and more intensive cropping we have developed several alternative rotations to wheat fallow....

  20. Selecting wheat varieties for tortilla production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat flour tortillas are the second most consumed bread product behind white pan bread. Manufactured tortillas are formulated with highly viscoelastic hard red wheat flours selected and grown for bread making. However, the inherent properties of the bread making flours require costly reducing agent...

  1. IMPACT OF OZONE ON WINTER WHEAT YIELD

    EPA Science Inventory

    Wheat is one of the more important agricultural crops in the USA, and the major production areas may be subjected to potentially damaging concentrations of ozone (O3). Since no information was available regarding the O3 sensitivity of winter wheat cultivars grown in the Midwest, ...

  2. New approaches to rust resistance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ug99 is new race of Puccinia graminis that is virulent on most of the widely deployed stem rust resistance genes from wheat, posing a serious threat to global wheat production. Sr35, a resistance gene from Triticum monococcum, confers resistance to Ug99 and all related Ug99-derived stem rust races i...

  3. Registration of ‘NuEast’ wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential exists to develop and market hard winter wheat (Triticum aestivum L.) in the eastern United States, where a majority of the mills, bakeries, and consumers reside. The primary objective of this study was to develop adapted and competitive hard winter wheat cultivars possessing high-valu...

  4. Registration of ‘Appalachian White’ wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential exists to develop and market hard winter wheat (Triticum aestivum L.) in the eastern United States, where a majority of the mills, bakeries, and consumers reside. The primary objective of this study was to develop adapted and competitive hard winter wheat cultivars possessing high-valu...

  5. Environmental and economic evaluation of energy recovery from agricultural and forestry residues

    SciTech Connect

    1980-09-01

    Four conversion methods and five residues are examined in this report, which describes six model systems: hydrolysis of corn residues, pyrolysis of corn residues, combustion of cotton-ginning residues, pyrolysis of wheat residues, fermentation of molasses, and combustion of pulp and papermill wastes. Estimates of material and energy flows for those systems are given per 10/sup 12/ Btu of recovered energy. Regional effects are incorporated by addressing the regionalized production of the residues. A national scope cannot be provided for every residue considered because of the biological and physical constraints of crop production. Thus, regionalization of the model systems to the primary production region for the crop from which the residue is obtained has been undertaken. The associated environmental consequences of residue utilization are then assessed for the production region. In addition, the environmental impacts of operating the model systems are examined by quantifying the residuals generated and the land, water, and material requirements per 10/sup 12/ Btu of energy generated. On the basis of estimates found in the literature, capital, operating, and maintenance cost estimates are given for the model systems. These data are also computed on the basis of 10/sup 12/ Btu of energy recovered. The cost, residual, material, land, and water data were then organized into a format acceptable for input into the SEAS data management program. The study indicates that the most serious environmental impacts arise from residue removal rather than from conversion.

  6. Characterization of a new antifungal lipid transfer protein from wheat.

    PubMed

    Kirubakaran, S Isaac; Begum, S Mubarak; Ulaganathan, K; Sakthivel, N

    2008-10-01

    Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, a novel gene Ltp 3F1 encoding an antifungal protein from wheat (Sumai 3) was subcloned, overexpressed in Escherichia coli BL-21 (DE3) and enriched using ammonium sulfate fractionation followed by gel permeation chromatography. Molecular phylogeny analyses of wheat Ltp 3F1 gene showed a strong identity to other plant LTPs. Predicted three-dimensional structural model showed the presence of 6 alpha-helices and 9 loop turns. The active site catalytic residues Gly30, Pro50, Ala52 and Cys55 may be suggested for catalyzing the reaction involved in lipid binding. SDS-PAGE analysis confirmed the production of recombinant fusion protein. The LTP fusion protein exhibited a broad-spectrum antifungal activity against Alternaria sp., Rhizoctonia solani, Curvularia lunata, Bipolaris oryzae, Cylindrocladium scoparium, Botrytis cinerea and Sarocladium oryzae. Gene cassette with cyanamide hydratase (cah) marker and Ltp 3F1 gene was constructed for genetic transformation in tobacco. Efficient regeneration was achieved in selective media amended with cyanamide. Transgenic plants with normal phenotype were obtained. Results of PCR and Southern, Northern and Western hybridization analyses confirmed the integration and expression of genes in transgenic plants. Experiments with detached leaves from transgenic tobacco expressing Ltp 3F1 gene showed fungal resistance. Due to the innate potential of broad-spectrum antifungal activity, wheat Ltp 3F1 gene can be used to enhance resistance against fungi in crop plants. PMID:18595724

  7. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club...

  8. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products... percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from...

  9. 7 CFR 782.17 - Wheat purchased for resale.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Wheat purchased for resale. 782.17 Section 782.17... § 782.17 Wheat purchased for resale. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of reselling the wheat. (b) The importer...

  10. 7 CFR 782.17 - Wheat purchased for resale.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Wheat purchased for resale. 782.17 Section 782.17... § 782.17 Wheat purchased for resale. (a) This section applies to an importer or subsequent buyer who imports or purchases Canadian-produced wheat for the purpose of reselling the wheat. (b) The importer...

  11. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products... percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from...

  12. 21 CFR 139.180 - Wheat and soy noodle products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Wheat and soy noodle products. 139.180 Section 139... and Noodle Products § 139.180 Wheat and soy noodle products. (a) Wheat and soy noodle products are the... wheat and soy ingredients used (the soy flour used is made from heat-processed, dehulled soybeans,...

  13. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products... percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from...

  14. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club...

  15. 21 CFR 137.205 - Bromated whole wheat flour.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Bromated whole wheat flour. 137.205 Section 137... Cereal Flours and Related Products § 137.205 Bromated whole wheat flour. Bromated whole wheat flour... of ingredients, prescribed for whole wheat flour by § 137.200, except that potassium bromate is...

  16. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club...

  17. 7 CFR 810.2201 - Definition of wheat.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Definition of wheat. 810.2201 Section 810.2201... GRAIN United States Standards for Wheat Terms Defined § 810.2201 Definition of wheat. Grain that, before the removal of dockage, consists of 50 percent or more common wheat (Triticum aestivum L.), club...

  18. 21 CFR 137.205 - Bromated whole wheat flour.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Bromated whole wheat flour. 137.205 Section 137... Cereal Flours and Related Products § 137.205 Bromated whole wheat flour. Bromated whole wheat flour... of ingredients, prescribed for whole wheat flour by § 137.200, except that potassium bromate is...

  19. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Wheat and soy macaroni products. 139.140 Section... Macaroni and Noodle Products § 139.140 Wheat and soy macaroni products. (a) Wheat and soy macaroni products... percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from...

  20. 21 CFR 139.180 - Wheat and soy noodle products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Wheat and soy noodle products. 139.180 Section 139... and Noodle Products § 139.180 Wheat and soy noodle products. (a) Wheat and soy noodle products are the... wheat and soy ingredients used (the soy flour used is made from heat-processed, dehulled soybeans,...