Science.gov

Sample records for cement production process

  1. [Release amount of heavy metals in cement product from co-processing waste in cement kiln].

    PubMed

    Yang, Yu-Fei; Huang, Qi-Fei; Zhang, Xia; Yang, Yu; Wang, Qi

    2009-05-15

    Clinker was produced by Simulating cement calcination test, and concrete samples were also prepared according to national standard GB/T 17671-1999. Long-term cumulative release amount of heavy metals in cement product from co-processing waste in cement kiln was researched through leaching test which refers to EA NEN 7371 and EA NEN 7375, and one-dimensional diffusion model which is on the base of Fick diffusion law. The results show that availabilities of heavy metals are lower than the total amounts in concrete. The diffusion coefficients of heavy metals are different (Cr > As > Ni > Cd). During 30 years service, the cumulative release amounts of Cr, As, Ni and Cd are 4.43 mg/kg, 0.46 mg/kg, 1.50 mg/kg and 0.02 mg/kg, respectively, and the ratios of release which is the division of cumulative release amount and availability are 27.0%, 18.0%, 3.0% and 0.2%, respectively. The most important influence factor of cumulative release amount of heavy metal is the diffusion coefficient, and it is correlative to cumulative release amount. The diffusion coefficient of Cr and As should be controlled exactly in the processing of input the cement-kiln. PMID:19558131

  2. Characteristics of mercury cycling in the cement production process.

    PubMed

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2016-01-25

    The mercury cycling caused by dust shuttling significantly increases the atmospheric emissions from cement production. A comprehensive understanding of this mercury cycling can promote the development of mercury emission control technologies. In this study, the characteristics of mercury cycling in the cement production process were first investigated. Furthermore, the mercury enrichment and effects of dust treatment were evaluated based on the field tests conducted in two Chinese cement plants. The mercury cycling between the kiln system and the raw mill system was the most important aspect and contributed 57-73% to the total amount of mercury emitted from the kiln system. Mercury emitted from the kiln system with flue gas was enriched as high as 3.4-8.8 times in the two tested plants compared to the amount of mercury in the raw materials and coal due to mercury cycling. The mercury enrichment can be significantly affected by the proportion of mercury cycled back to the kiln system. The effects of dust treatment were evaluated, and dust treatment can efficiently reduce approximately 31-70% of atmospheric mercury emissions in the two plants. The reduction proportion approximately linearly decreased with the proportion of mercury removed from the collected dust. PMID:26448491

  3. Sulfur cement production using by products of the perchloroethylene coal cleaning process and the FC4-1 cleaned soil

    SciTech Connect

    Bassam Masri, K.L.; Fullerton, S.L.

    1995-12-31

    An introductory set of experiments to show the feasibility of making sulfur cement were carried out at the University of Akron according to Parrett and Currett`s patent which requires the use of sulfur, a filler, a plasticizer, and a vulcanization accelerator. Small blocks of cement were made using byproducts of the perchloroethylene coal cleaning process. Extracted elemental and organic sulfur, ash and mineral matters from the float sink portion of the PCE process, and FC4-1 cleaned soil were used as substitutes for sulfur and filler needed for the production of sulfur cement. Leaching tests in different solutions and under different conditions were conducted on the sulfur blocks. Other tests such as strength, durability, resistance to high or low temperatures will be conducted in the future. Sulfur cement can be used as a sealing agent at a joint, roofing purposes, forming ornamental figures, and coating of exposed surfaces of iron or steel. When mixed with an aggregate, sulfur concrete is formed. This concrete can be used for structural members, curbings, guthers, slabs, and can be precast or cast at the job site. An advantage of sulfur cement over Portland cement is that it reaches its design strength in two to three hours after processing and it can be remelted and recast.

  4. Chromium behavior during cement-production processes: a clinkerization, hydration, and leaching study.

    PubMed

    Sinyoung, Suthatip; Songsiriritthigul, Prayoon; Asavapisit, Suwimol; Kajitvichyanukul, Puangrat

    2011-07-15

    The behavior of chromium during the production of cement clinker, during the hydration of cement and during the leaching of cement mortars was investigated. The microstructures of clinker and mortar properties were investigated using free lime, XRD, SEM/EDS, and TG/DTA techniques. Chromium was found to be incorporated in the clinker phase. The formation of new chromium compounds such as Ca(6)Al(4)Cr(2)O(15), Ca(5)Cr(3)O(12), Ca(5)Cr(2)SiO(12), and CaCr(2)O(7), with chromium oxidation states of +3, +4.6, +5, and +6, respectively, was detected. After the hydration process, additional chromium compounds were identified in the mortar matrix, including Ca(5)(CrO(4))(3)OH, CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), with chromium oxidation states of +4.6, +6, and +6, respectively. Additionally, some species of chromium, such as Cr(3+) from Ca(6)Al(4)Cr(2)O(15) and Cr(6+) from CaCr(2)O(7), CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), were leached during leaching tests, whereas other species remained in the mortar. The concentrations of chromium that leached from the mortar following U.S. EPA Method 1311 and EA NEN 7375:2004 leaching tests were higher than limits set by the U.S. EPA and the Environment Agency of England and Wales related to hazardous waste disposal in landfills. Thus, waste containing chromium should not be allowed to mix with raw materials in the cement manufacturing process. PMID:21592657

  5. Alternative Fuel for Portland Cement Processing

    SciTech Connect

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  6. Principles of technological design of wasteless chemical processes based on the use of wastes for production of alkaline slag cements and concretes

    SciTech Connect

    Glukhovskii, V.D.; Chernobaev, I.P.; Emel'yanov, B.M.; Semenyuk, A.P.

    1985-05-20

    The strength characteristics of alkaline slag-cement made with the use of waste from alkaline sealing of metals are presented. The cement was prepared from granulated blast-furnance slag with average component contents in the following ranges (mass %): SiO/sub 2/ 36.0-40.2, Al/sub 2/O/sub 3/ 4-18.2, FeO 0.1-3.7, MnO 0.4-5.2, CaO 33.1-48.8, MgO 2.2-9.8. With the use of wastes from the descaling process in alkali melts for production of alkaline slag cements it is possible to obtain highly effective cements of type 700-900, which is 2 to 3 times the value for portland cements. Therefore, the use of wastes from alkaline descaling for production of alkaline slag cements is of great economic and conservational significance. It is possible to devise a wasteless process of scale removal from metals; this is an important advantage of the alkaline scaling method over acid pickling.

  7. Identifying improvement potentials in cement production with life cycle assessment.

    PubMed

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending. PMID:21047057

  8. Process for cementing geothermal wells

    SciTech Connect

    Eilers, L. H.

    1985-12-03

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight monoor copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  9. MDF cements: Chemistry, processing and microstructure

    SciTech Connect

    McHugh, A.J.; Tan, L.S.; Lewis, J.

    1995-12-31

    Macro-Defect-Free (MDF) cements are low water content, polymer-cement composites which can exhibit flexural strengths over 30 times in excess of normally cast cement. The microstructure of hardened MDF, responsible for the vastly improved properties, is the direct outcome of mechano-chemically induced reactions which take place during shear mixing of the damp powder. Mixing torque curves exhibit a characteristic shape which reflects the temperature and shear-rate-dependent kinetics of the polymer-cement crosslinking reactions. These kinetics are parametrically related to the viscoelastic and Theological properties of the paste which also enhance its overall processability. The evolution of overall composite structure and the microstructure of the cement-polymer interphase region are quantified using scanning and transmission electron microscopy in conjunction with energy dispersion spectrometry. Mechanical flexural strength of the hardened composites are also determined.

  10. Process for cementing geothermal wells

    DOEpatents

    Eilers, Louis H.

    1985-01-01

    A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

  11. Evaluation of a lime-mediated sewage sludge stabilisation process. Product characterisation and technological validation for its use in the cement industry.

    PubMed

    Rodríguez, N Husillos; Granados, R J; Blanco-Varela, M T; Cortina, J L; Martínez-Ramírez, S; Marsal, M; Guillem, M; Puig, J; Fos, C; Larrotcha, E; Flores, J

    2012-03-01

    This paper describes an industrial process for stabilising sewage sludge (SS) with lime and evaluates the viability of the stabilised product, denominated Neutral, as a raw material for the cement industry. Lime not only stabilised the sludge, raised the temperature of the mix to 80-100°C, furthering water evaporation, portlandite formation and the partial oxidation of the organic matter present in the sludge. Process mass and energy balances were determined. Neutral, a white powder consisting of portlandite (49.8%), calcite (16.6%), inorganic oxides (13.4%) and organic matter and moisture (20.2%), proved to be technologically apt for inclusion as a component in cement raw mixes. In this study, it was used instead of limestone in raw mixes clinkerised at 1400, 1450 and 1500°C. These raw meals exhibited greater reactivity at high temperatures than the limestone product and their calcination at 1500°C yielded clinker containing over 75% calcium silicates, the key phases in Portland clinker. Finally, the two types of raw meal (Neutral and limestone) were observed to exhibit similar mineralogy and crystal size and distribution. PMID:22119052

  12. Microscale investigation of arsenic distribution and species in cement product from cement kiln coprocessing wastes.

    PubMed

    Yang, Yufei; Xue, Jingchuan; Huang, Qifei

    2013-01-01

    To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As) in the cement product from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale investigation methods, including electron probe microanalysis (EPMA) and X-ray absorption spectroscopy. In this study, sodium arsenate crystals (Na3AsO412H2O) were mixed with cement production raw materials and calcined to produce cement clinker. Then, clinker was mixed water to prepare cement paste. EPMA results showed that As was generally distributed throughout the cement paste. As content in calcium silicate hydrates gel (C-S-H) was in low level, but higher than that in other cement mineral phases. This means that most of As is expected to form some compounds that disperse on the surfaces of cement mineral phases. Linear combination fitting (LCF) of the X-ray absorption near edge structure spectra revealed that As in the cement paste was predominantly As(V) and mainly existed as Mg3(AsO4)2, Ca3(AsO4)2, and Na2HAsO4. PMID:24223030

  13. Microscale Investigation of Arsenic Distribution and Species in Cement Product from Cement Kiln Coprocessing Wastes

    PubMed Central

    Yang, Yufei; Xue, Jingchuan; Huang, Qifei

    2013-01-01

    To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As) in the cement product from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale investigation methods, including electron probe microanalysis (EPMA) and X-ray absorption spectroscopy. In this study, sodium arsenate crystals (Na3AsO412H2O) were mixed with cement production raw materials and calcined to produce cement clinker. Then, clinker was mixed water to prepare cement paste. EPMA results showed that As was generally distributed throughout the cement paste. As content in calcium silicate hydrates gel (C-S-H) was in low level, but higher than that in other cement mineral phases. This means that most of As is expected to form some compounds that disperse on the surfaces of cement mineral phases. Linear combination fitting (LCF) of the X-ray absorption near edge structure spectra revealed that As in the cement paste was predominantly As(V) and mainly existed as Mg3(AsO4)2, Ca3(AsO4)2, and Na2HAsO4. PMID:24223030

  14. Utilization of red mud in cement production: a review.

    PubMed

    Liu, Xiaoming; Zhang, Na

    2011-10-01

    Red mud is a solid waste residue of the digestion of bauxite ores with caustic soda for alumina production. Its disposal remains a worldwide issue in terms of environmental concerns. During the past decades, extensive work has been done by a lot of researchers to develop various economic ways for the utilization of red mud. One of the economic ways is using red mud in cement production, which is also an efficient method for large-scale recycling of red mud. This paper provides a review on the utilization of red mud in cement production, and it clearly points out three directions for the use of red mud in cement production, namely the preparation of cement clinkers, production of composite cements as well as alkali-activated cements. In the present paper, the chemical and mineralogical characteristics of red mud are summarized, and the current progresses on these three directions are reviewed in detail. PMID:21930526

  15. Microwave processing of cement and concrete materials – towards an industrial reality?

    SciTech Connect

    Buttress, Adam Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  16. Control of structurization processes in wood-cement systems at fixed pH

    NASA Astrophysics Data System (ADS)

    Subbotina, Natalia; Gorlenko, Nikolay; Sarkisov, Yuriy; Naumova, Ludmila; Minakova, Tamara

    2016-01-01

    The paper presents a study of structurization processes in the wood-cement systemmixed with the buffer solutions and the improvement of service properties of products produced therefrom. Infrared spectroscopy, X-ray phase analysis, and pH measurements show that structurization processes in wood-cement systems depend on the acidity of aqueous solution, the behavior of hydration, neutralization, and polycondensation reactions with the formation of polymer products including those with cement grout components and functional groups of wood. It is shown that phosphate buffer solutions used for mixing wood-cement compositions improve their strength properties and reduce water absorption. The optimum acidity of the buffered medium for service properties of the wood-cement systemis pH = 4.8.

  17. Sustainable cement production-present and future

    SciTech Connect

    Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H.

    2011-07-15

    Cement will remain the key material to satisfy global housing and modern infrastructure needs. As a consequence, the cement industry worldwide is facing growing challenges in conserving material and energy resources, as well as reducing its CO{sub 2} emissions. According to the International Energy Agency, the main levers for cement producers are the increase in energy efficiency and the use of alternative materials, be it as fuel or raw materials. Accordingly, the use of alternative fuels has already increased significantly in recent years, but potential for further increases still exists. In cement, the reduction of the clinker factor remains a key priority: tremendous progress has already been made. Nevertheless, appropriate materials are limited in their regional availability. New materials might be able to play a role as cement constituents in the future. It remains to be seen to what extent they could substitute Portland cement clinker to a significant degree.

  18. STUDY OF AMMONIA SOURCE AT A PORTLAND CEMENT PRODUCTION PLANT (JOURNAL VERSION)

    EPA Science Inventory

    A source and process sampling study was conducted at a dry process Portland Cement production plant. One aspect of the study focused on the source or point of NH3 within the production process. An extensive number of process solids from raw feeds to baghouse solids were collected...

  19. Use of MRF residue as alternative fuel in cement production.

    PubMed

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high-energy-content non-recycled plastics and fiber. One possible end-of-life solution for these energy-dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade-offs of converting non-recycled post-consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118 Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post-industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9 Mg/h for 24h and then 1.8 Mg/h for the following 48 h. The emissions data recorded in the experimental test burn were used to perform the life-cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate

  20. [Atmospheric emission of PCDD/Fs from modern dry processing cement kilns with preheating in the southwest area, China].

    PubMed

    Zhang, Xiao-Ling; Lu, Yi; Jian, Chuan; Guo, Zhi-Shun; Zhu, Ming-Ji; Deng, Li; Sun, Jing; Zhang, Qin

    2014-01-01

    Six cement kilns were measured for emissions of PCDD/Fs in the Southwest Area, China. The results indicated that the emission levels of PCDD/Fs were 0.0029-0.0062 ng-m(-3) (Average, 0.0043 ng X m(-3)) from cement kilns which did not burn solid waste, and 0.028 ng X m(-3) from co-processing sewage sludge in cement kiln. The levels of PCDD/Fs emissions from cement manufacturing in the Southwest Area were significantly below the national emissions standard (0.1 ng x m(-3)). Emission factors of PCDD/Fs from the six cement kilns varied between 0.0089 and 0.084 microg x t(-1) cement, which were near or below the lowest emission factor reported by UNEP in 2005. Moreover, the emission factor of PCDD/Fs from co-processing sewage sludge in cement kiln was 7.6 times of the average factors from the other five cement kilns. Moreover,congener distribution of PCDD/F in stack gas from the two types of cement kilns was very different. The results showed that modern dry process cement kilns with preheating have lower emissions of PCDD/Fs. This suggested that the product of co-processing solid waste in cement kilns should be largely enhanced in China in future. PMID:24720182

  1. Effect of processing cement to concrete on hexavalent chromium levels.

    PubMed

    Turk, K; Rietschel, R L

    1993-04-01

    Hexavalent chromium sensitization is known to occur from exposure to cement. Concrete is a mixture of cement, sand, rock, and water. Admixtures are compounds used to retard or accelerate concrete setting time. Some countries use ferrous sulfate to reduce hexavalent chromium in cement. We evaluated and compared hexavalent chromium levels in cement, rock (aggregate), and wet and dry concrete in samples from Singapore, Ireland, Denmark, Australia, and the United States. Cement from Denmark contains ferrous sulfate. The effect of representative admixtures on hexavalent chromium concentration in concrete was also evaluated, but technical limitations made evaluation difficult. Soluble chromium levels in cement ranged from 0.225 mg/kg in the US sample to 0.036 mg/kg in the Singapore sample. Aggregate chromium levels ranged from 0.083 mg/kg in the Denmark sample to < 0.002 mg/kg in the Ireland sample. Fresh US concrete, with 1.27 mg/kg hexavalent chromium, contained the highest level. The Denmark sample, with ferrous sulfate added, was lowest (< 0.01 mg/kg). Hardened concrete levels ranged from 0.104 mg/kg from the Ireland sample to 0.002 mg/kg from the Singapore sample. Therefore, hexavalent chromium levels do appear to be influenced by admixtures and by processing from powdered cement to dry concrete. Ferrous sulfate significantly reduced hexavalent chromium levels in fresh cement. PMID:8508629

  2. Utilization of flotation wastes of copper slag as raw material in cement production.

    PubMed

    Alp, I; Deveci, H; Süngün, H

    2008-11-30

    Copper slag wastes, even if treated via processes such as flotation for metal recovery, still contain heavy metals with hazardous properties posing environmental risks for disposal. This study reports the potential use of flotation waste of a copper slag (FWCS) as iron source in the production of Portland cement clinker. The FWCS appears a suitable raw material as iron source containing >59% Fe(2)O(3) mainly in the form of fayalite (Fe(2)SiO(4)) and magnetite (Fe(3)O(4)). The clinker products obtained using the FWCS from the industrial scale trial operations over a 4-month period were characterised for the conformity of its chemical composition and the physico-mechanical performance of the resultant cement products was evaluated. The data collected for the clinker products produced using an iron ore, which is currently used as the cement raw material were also included for comparison. The results have shown that the chemical compositions of all the clinker products including those of FWCS are typical of a Portland cement clinker. The mechanical performance of the standard mortars prepared from the FWCS clinkers were found to be similar to those from the iron ore clinkers with the desired specifications for the industrial cements e.g. CEM I type cements. Furthermore, the leachability tests (TCLP and SPLP) have revealed that the mortar samples obtained from the FWCS clinkers present no environmental problems while the FWCS could act as the potential source of heavy metal contamination. These findings suggest that flotation wastes of copper slag (FWCS) can be readily utilised as cement raw material due to its availability in large quantities at low cost with the further significant benefits for waste management/environmental practices of the FWCS and the reduced production and processing costs for cement raw materials. PMID:18384950

  3. Follow up study of workers manufacturing chrysotile asbestos cement products.

    PubMed Central

    Gardner, M J; Winter, P D; Pannett, B; Powell, C A

    1986-01-01

    A cohort study has been carried out of 2167 subjects employed between 1941 and 1983 at an asbestos cement factory in England. The production process incorporated the use of chrysotile asbestos fibre only, except for a small amount of amosite during four months in 1976. Measured airborne fibre concentrations available since 1970 from personal samplers showed mean levels below 1 fibre/ml, although higher levels had probably occurred previously in certain areas of the factory. No excess of lung cancer was observed in the mortality follow up by comparison with either national or local death rates, and analyses of subgroups of the workforce by job, exposure level, duration of employment, duration since entry, or calendar years of employment gave no real suggestion of an asbestos related excess for this cause of death. There was one death from pleural mesothelioma and one with asbestosis mentioned as an associated cause on the death certificate, but neither is thought to be linked to asbestos exposure at this factory. Other suggested asbestos related cancers, such as laryngeal and gastrointestinal, did not show raised risks. Although the durations of exposure were short in this study, the findings are consistent with two other studies of workers exposed to low concentrations of chrysotile fibre in the manufacture of asbestos cement products which reported no excess mortality. PMID:3024695

  4. Cementation process for minerals recovery from Salton Sea geothermal brines

    SciTech Connect

    Maimoni, A.

    1982-01-26

    The potential for minerals recovery from a 1000-MWe combined geothermal power and minerals recovery plant in the Salton Sea is examined. While the possible value of minerals recovered would substantially exceed the revenue from power production, information is insufficient to carry out a detailed economic analysis. The recovery of precious metals - silver, gold, and platinum - is the most important factor in determining the economics of a minerals recovery plant; however, the precious metals content of the brines is not certain. Such a power plant could recover 14 to 31% of the US demand for manganese and substantial amounts of zinc and lead. Previous work on minerals extraction from Salton Sea brines is also reviewed and a new process, based on a fluidized-bed cementation reaction with metallic iron, is proposed. This process would recover the precious metals, lead, and tin present in the brines.

  5. Carbon dioxide capture from a cement manufacturing process

    DOEpatents

    Blount, Gerald C.; Falta, Ronald W.; Siddall, Alvin A.

    2011-07-12

    A process of manufacturing cement clinker is provided in which a clean supply of CO.sub.2 gas may be captured. The process also involves using an open loop conversion of CaO/MgO from a calciner to capture CO.sub.2 from combustion flue gases thereby forming CaCO.sub.3/CaMg(CO.sub.3).sub.2. The CaCO.sub.3/CaMg(CO.sub.3).sub.2 is then returned to the calciner where CO.sub.2 gas is evolved. The evolved CO.sub.2 gas, along with other evolved CO.sub.2 gases from the calciner are removed from the calciner. The reactants (CaO/MgO) are feed to a high temperature calciner for control of the clinker production composition.

  6. Characterization of vapor phase mercury released from concrete processing with baghouse filter dust added cement.

    PubMed

    Wang, Jun; Hayes, Josh; Wu, Chang-Yu; Townsend, Timothy; Schert, John; Vinson, Tim; Deliz, Katherine; Bonzongo, Jean-Claude

    2014-02-18

    The fate of mercury (Hg) in cement processing and products has drawn intense attention due to its contribution to the ambient emission inventory. Feeding Hg-loaded coal fly ash to the cement kiln introduces additional Hg into the kiln's baghouse filter dust (BFD), and the practice of replacing 5% of cement with the Hg-loaded BFD by cement plants has recently raised environmental and occupational health concerns. The objective of this study was to determine Hg concentration and speciation in BFD as well as to investigate the release of vapor phase Hg from storing and processing BFD-added cement. The results showed that Hg content in the BFD from different seasons ranged from 0.91-1.44 mg/kg (ppm), with 62-73% as soluble inorganic Hg, while Hg in the other concrete constituents were 1-3 orders of magnitude lower than the BFD. Up to 21% of Hg loss was observed in the time-series study while storing the BFD in the open environment by the end of the seventh day. Real-time monitoring in the bench system indicated that high temperature and moisture can facilitate Hg release at the early stage. Ontario Hydro (OH) traps showed that total Hg emission from BFD is dictated by the air exchange surface area. In the bench simulation of concrete processing, only 0.4-0.5% of Hg escaped from mixing and curing BFD-added cement. A follow-up headspace study did not detect Hg release in the following 7 days. In summary, replacing 5% of cement with the BFD investigated in this study has minimal occupational health concerns for concrete workers, and proper storing and mixing of BFD with cement can minimize Hg emission burden for the cement plant. PMID:24444016

  7. Pump down wipe plug and cementing/drilling process

    SciTech Connect

    Davis, C.A.

    1980-02-26

    An improved pump down wipe plug has at least one tooth protruding from its bottom surface capable of engaging, denting and penetrating the surface on which the plug comes in contact within the well. An improved process of cementing and drilling through a plug comprises inserting a pump down wipe plug having at least one tooth protruding from its bottom surface at the interface of wet cement and another fluid within the well, pumping the wet cement and the plug into position so that the tooth engages, dents and penetrates the surface below it, then when the cement has set, lowering a drill bit onto the plug and drilling the plug, the tooth or teeth retarding the tendency of the plug to rotate over the surface with which it is in contact thereby enhancing the drilling action of the drilling bit.

  8. Production of cements from Illinois coal ash. Technical report, September 1, 1995--November 30, 1995

    SciTech Connect

    Wagner, J.C.; Bhatty, J.I.; Mishulovich, A.

    1995-12-31

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. Currently only about 30% of the 5 million tons of these coal combustion residues generated in Illinois each year are utilized, mainly as aggregate. These residues are composed largely Of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. The process being developed in this program will use the residues directly in the manufacture of cement products. Therefore, a much larger amount of residues can be utilized. To achieve the above objective, in the first phase (current year) samples of coal combustion residues will be blended and mixed, as needed, with a lime or cement kiln dust (CKD) to adjust the CaO composition. Six mixtures will be melted in a laboratory-scale furnace at CTL. The resulting products will then be tested for cementitious properties. Two preliminary blends have been tested. One blend used fly ash with limestone, while the other used fly ash with CKD. Each blend was melted and then quenched, and the resulting product samples were ground to a specific surface area similar to portland cement. Cementitious properties of these product samples were evaluated by compression testing of 1-inch cube specimens. The specimens were formed out of cement paste where a certain percentage of the cement paste is displaced by one of the sample products. The specimens were cured for 24 hours at 55{degrees}C and 100% relative humidity. The specimens made with the product samples obtained 84 and 89% of the strength of a pure portland cement control cube. For comparison, similar (pozzolanic) materials in standard concrete practice are required to have a compressive strength of at least 75% of that of the control.

  9. Permeability Changes on Wellbore Cement Fractures Modified by Geochemical and Geomechanical Processes

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Um, W.

    2015-12-01

    Experimental studies were conducted using batch reactors, X-ray microtomography (XMT), and computational fluid dynamics (CFD) modeling to determine changes in cement fracture surfaces, fluid flow pathways and permeability, and cement fracture propagation with geochemical and geomechanical processes. Portland cement-basalt interface sample with artificial fractures was prepared to study the geochemical and geomechanical effects on the integrity of wellbores containing defects caused by subsurface activities. Cement-basalt interface sample was subjected to mechanical stress at 2.7 MPa before the chemical reaction. CFD modeling was performed to simulate flow of supercritical CO2 within the fractures before and after the application of mechanical stress. The model results highlighted the complex flow characteristics within the fracture and also changes in flow patterns due to application of geomechanical stress. The CFD model predicted ~45% increase in permeability after the application of geomechanical force, which increases the fracture aperture. The same sample was reacted with CO2-saturated groundwater with impurity H2S (1 wt.%) at 50°C and 10 MPa for 3 to 3.5 months under static conditions. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Even after a 3.5-month reaction with CO2-H2S-saturated groundwater at 50°C and 10 MPa, CaCO3 (s) precipitation occurred more extensively within the cement fracture rather than along the cement-basalt interfaces. Micro X-ray diffraction analysis also showed that major cement carbonation products of CO2-saturated groundwater reacting with impurity H2S were calcite, aragonite, and vaterite, consistent with cement carbonation by pure CO2-saturated groundwater, while pyrite was not identified due to low H2S content. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated

  10. India's cement industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect

    Schumacher, Katja; Sathaye, Jayant

    1999-07-01

    Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

  11. Formulation of criteria for pollution control on cement products produced from solid wastes in China.

    PubMed

    Yang, Yufei; Huang, Qifei; Yang, Yu; Huang, Zechun; Wang, Qi

    2011-08-01

    The process of producing cement products from solid waste can increase the level of pollutants in the cement products. Therefore, it is very important to establish a pollution control standard for cement products to protect the environment and human health. This paper presents acceptance limits for the availability of heavy metals in cement products which have been produced from solid wastes and explains how the limits have been calculated. The approach and method used to formulate these criteria were based on EN 12920. The typical exposure scenarios used in this paper involve concrete being used for drinking water supply pipelines and concrete pavements and are based on an analysis of typical applications of cement in China, and the potential for contact with water. The parameters of a tank test which was based on NEN 7375 were set in accordance with the environmental conditions of typical scenarios in China. Mechanisms controlling the release of heavy metals in concrete and a model for that release were obtained using the leaching test. Finally, based on acceptance criteria for drinking water and groundwater quality in China, limit values for the availability of heavy metals in concrete were calculated. PMID:21514989

  12. [Utilizing the wastewater treatment plant sludge for the production of eco-cement].

    PubMed

    Lin, Yi-Ming; Zhou, Shao-Qi; Zhou, De-Jun; Wu, Yan-Yu

    2011-02-01

    The aim of this paper was to study the effect on cement property by using of municipal sewage as additive in the process of clinker burning. Based on the standard sample P. 042. 5 from cement plant, the properties of eco-cement samples adding municipal sewage to unit raw material by 0%, 0.50%, 1.00%, 1.50%, 2.00%, 2.50% respectively and the standard sample from the cement plant were compared. According to the analysis of X-ray diffraction, microstructure, the particles size determination material change, the setting time, specific surface area, leaching toxicity and strength of cement mortar of the cement, respectively, it showed that the strength of the productions were similar to the P. 042.5 standard sample. The metal ion concentrations of Al, Fe, Ba, Mn and Ti in clinkers and raw material decreased, the initial and setting time increased, as well as the strength of the paste within the curing time of 3 days decreased with the increase of municipal sewage ratio. However, after the curing of 7 days, the strength was similar to non-sludge-mortar or even higher. PMID:21528578

  13. Influence of the processed sunflower oil on the cement properties

    NASA Astrophysics Data System (ADS)

    Fleysher, A. U.; Tokarchuk, V. V.; Sviderskiy, V. A.

    2015-01-01

    Used oils (vegetable oil, animal oil, engine oil, etc.), which are essentially industrial wastes, have found application as secondary raw materials in some braches of industry. In particular, the only well-known and commonly-used way of utilizing wastes of vegetable oils is to apply them as raw materials in the production of biodiesel. The goal of the present study is to develop a conceptually new way of vegetable oil wastes utilization in the building industry. The test admixture D-148 was obtained from the processing of wastes of sunflower oil and it mainly consists of fatty acid diethanolamide. The test admixture was added to the cement system for the purpose of studying its influence on water demand, flowability, setting times, compressive strength and moisture adsorption. The test admixture D-148 at the optimal content 0. 2 weight % causes 10% decrease in water demand, 1.7 time increase in flowability (namely spread diameter), 23% increase in grade strength and 34% decrease in moisture adsorption. The results of the present investigation make it possible to consider the final product of the waste sunflower oil processing as multifunctional plasticizing-waterproofing admixture.

  14. Evaluation of cement production using a pressurized fluidized-bed combustor

    SciTech Connect

    DeLallo, M.; Eshbach, R.

    1994-01-01

    There are several primary conclusions which can be reached and used to define research required in establishing the feasibility of using PFBC-derived materials as cement feedstock. 1. With appropriate blending almost any material containing the required cement-making materials can be utilized to manufacture cement. However, extensive blending with multiple materials or the use of ash in relatively small quantities would compromise the worth of this concept. 2. The composition of a potential feedstock must be considered not only with respect to the presence of required materials, but just as significantly, with respect to the presence and concentration of known deleterious materials. 3. The processing costs for rendering the feedstock into an acceptable composition and the energy costs associated with both processing and burning must be considered. It should be noted that the cost of energy to produce cement, expressed as a percentage of the price of the product is higher than for any other major industrial product. Energy consumption is, therefore, a major issue. 4. The need for conformance to environmental regulations has a profound effect on the cement industry since waste materials can neither be discharged to the atmosphere or be shipped to a landfill. 5. Fifth, the need for achieving uniformity in the composition of the cement is critical to controlling its quality. Unfortunately, certain materials in very small concentrations have the capability to affect the rate and extent to which the cementitious compound in portland cement are able to form. Particularly critical are variations in the ash, the sulfur content of the coal or the amount and composition of the stack dust returned to the kiln.

  15. Hazardous waste incineration in industrial processes: cement and lime kilns

    SciTech Connect

    Mournighan, R.E.; Peters, J.A.; Branscome, M.R.; Freeman, H.

    1985-07-01

    With more liquid wastes due to be banned from land disposal facilities, expanding hazardous waste incineration capacity becomes increasingly important. At the same time, industrial plants are increasingly seeking to find new sources of lower cost fuel, specifically from the disposal of hazardous wastes with heating value. The Hazardous Waste Engineering Research Laboratory (HWERL) is currently evaluating the disposal of hazardous wastes in a wide range of industrial processes. The effort includes sampling stack emissions at cement, lime and aggregate plants, asphalt plants and blast furnaces, which use waste as a supplemental fuel. This research program is an essential part of EPA's determination of the overall environmental impact of various disposal options available to industry. This paper summarizes the results of the HWERL program of monitoring emissions from cement and lime kilns burning hazardous wastes as fuel.

  16. Potential use of pyrite cinders as raw material in cement production: results of industrial scale trial operations.

    PubMed

    Alp, I; Deveci, H; Yazici, E Y; Türk, T; Süngün, Y H

    2009-07-15

    Pyrite cinders, which are the waste products of sulphuric acid manufacturing plants, contain hazardous heavy metals with potential environmental risks for disposal. In this study, the potential use of pyrite cinders (PyCs) as iron source in the production of Portland cement clinker was demonstrated at the industrial scale. The chemical and mineralogical analyses of the PyC sample used in this study have revealed that it is essentially a suitable raw material for use as iron source since it contains >87% Fe(2)O(3) mainly in the form of hematite (Fe(2)O(3)) and magnetite (Fe(3)O(4)). The samples of the clinkers produced from PyC in the industrial scale trial operation of 6 months were tested for the conformity of their chemical composition and the physico-mechanical performance of the resultant cement products. The data were compared with the clinker products of the iron ore, which is used as the raw material for the production Portland cement clinker in the plant. The chemical compositions of all the clinker products of PyC appeared to conform to those of the iron ore clinker, and hence, a Portland cement clinker. The mechanical performance of the mortars prepared from the PyC clinker was found to be consistent with those of the industrial cements e.g. CEM I type cements. It can be inferred from the leachability tests (TCLP and SPLP) that PyC could be a potential source of heavy metal pollution while the mortar samples obtained from the PyC clinkers present no environmental problems. These findings suggest that the waste pyrite cinders can be readily used as iron source for the production of Portland cement. The availability of PyC in large quantities at low cost provides further significant benefits for the management/environmental practices of these wastes and for the reduction of mining and processing costs of cement raw materials. PMID:19100685

  17. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    SciTech Connect

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

  18. Catalytic behavior of graphene oxide for cement hydration process

    NASA Astrophysics Data System (ADS)

    Lin, Changqing; Wei, Wei; Hu, Yun Hang

    2016-02-01

    Hydration is a critical step that determines the performance of cement-based materials. In this paper, the effect of GO on the hydration of cement was evaluated by XRD and FTIR. It was found that GO can remarkably accelerate the hydration rate of cement due to its catalytic behavior. This happened because the oxygen-containing functional groups of GO provide adsorption sites for both water molecules and cement components.

  19. System for radioactive waste cementation

    SciTech Connect

    Dmitriev, S.A.; Barinov, A.S.; Varlakov, A.P.; Volkov, A.S.; Karlin, S.V.

    1995-12-31

    NPP, research reactors and radiochemical enterprises produce a great amount of liquid radioactive waste (LRW). One of the methods of LRW solidification is cementation. The recent investigations demonstrated possible inclusion of sufficient amount of waste in the cement matrix (up to 20--30 mass% on dry residue). In this case the cementation process becomes competitive with bituminization process, where the matrix can include 40--50 mass% and the solidified product volume is equal to the volume, obtained by cementation. Additionally, the cement matrix in contrast with the bituminous one is unburnable. Many countries are investigating the cementation process. The main idea governing technological process is the waste and cement mixing method and type of mixer. In world practice some principal types of cementation systems are used. The paper describes the SIA Radon industrial plant in Moscow.

  20. Superplasticized Portland cement: Production and compressive strength of mortars and concrete

    SciTech Connect

    Bouzoubaa, N.; Zhang, M.H.; Malhotra, V.M.

    1998-12-01

    This paper deals with the effect of intergrinding different percentages of a naphthalene-based superplasticizer with Portland cement clinker and gypsum on the fineness of the product, and on the water requirement and the compressive strength of the mortars made with the superplasticized cement. The properties of the fresh and hardened concrete made with the superplasticized cements were also investigated. The results showed that the intergrinding of a given amount of a naphthalene-based superplasticizer with Portland clinker and gypsum reduced the grinding time required for obtaining the same Blaine fineness as that of the control Portland cement without the superplasticizer. The water requirement of the mortars made with the superplasticized cements was similar to that of the mortars made with the control Portland cements when the same amount of the superplasticizer was added at the mortar mixer; for a given grinding time and a Blaine fineness of {approximately}4500 cm{sup 2}/g, the mortars made with the superplasticized cement had higher compressive strength than those made with the control Portland cement. For a given grinding time or Blaine fineness of cement {ge}5000 cm{sup 2}/g, the slump loss, air content stability, bleeding, autogenous temperature rise, setting times, and compressive strength of the concrete made with the superplasticized cements were generally comparable to those of the concrete made with the control Portland cements when the superplasticizer was added at the concrete mixer.

  1. Feasibility of using reject fly ash in cement-based stabilization/solidification processes

    SciTech Connect

    Poon, C.S.; Qiao, X.C.; Cheeseman, C.R.; Lin, Z.S.

    2006-01-15

    Stabilization/solidification (s/s) has been routinely used for the final treatment of hazardous wastes prior to land disposal. These processes involve adding one or more solidifying reagents into the waste to transform it into a monolithic solid with improved structural integrity. Cement-based systems with partial replacement by pulverized fuel ash (PFA) have been widely used to minimize leaching of contaminants from hazardous wastes. The finer fraction of PFA ({lt}45 {mu} m, fine fly ash, MA), produced by passing the raw ash through a classifying process is commonly used in s/s processes. Low-grade fly ash is rejected (rFA) from the ash classifying process, and is largely unused due to high carbon content and large particle size but represents a significant proportion of PFA. This paper presents experimental results of a study that has assessed the feasibility of using rFA in the cement-based s/s of a synthetic heavy metal waste. Results were compared to mixes containing fFA. The strength results show that cement-based waste forms with rFA replacement are suitable for disposal at landfill and that the addition of heavy metal sludge can increase the degree of hydration of fly ash and decrease the porosity of samples. Adding Ca(OH){sub 2} and flue gas desulphurization sludge reduces the retarding effect of heavy metals on strength development. The results of the Toxicity Characteristic Leaching Procedure and Dynamic Leach Test show that rFA can be used in cement-based s/s wastes without compromising performance of the product.

  2. DEVELOPMENT OF A POLYMERIC CEMENTING AND ENCAPSULATING PROCESS FOR MANAGING HAZARDOUS WASTES

    EPA Science Inventory

    A process using polymeric materials to cement and encapsulate dry hazardous waste was researched, developed, and evaluated. The process involves cementing particulates of waste into 500 to 1000 pound agglomerates, and then fusing a plastic jacket onto the agglomerate surfaces, th...

  3. Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions.

    PubMed

    Lv, Dong; Zhu, Tianle; Liu, Runwei; Lv, Qingzhi; Sun, Ye; Wang, Hongmei; Liu, Yu; Zhang, Fan

    2016-09-01

    The effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions were systematically investigated in a cement production line in Beijing. The results show that co-processing the sewage sludge was helpful to reduce NOx emission, which primarily depends on the NH3 amount released from the sewage sludge. Meanwhile, NOx and NH3 concentrations in the flue gas have a negative correlation, and the contribution of feeding the sewage sludge to NOx removal decreased with the increase of injection amount of ammonia water in the SNCR system. Therefore, it is suggested that the injection amount of ammonia water in SNCR system may reduce to cut down the operating costs during co-processing the sewage sludge in cement kiln. In addition, the emission of total PAHs seems to increase with the increased amount of the sewage sludge feeding to the cement kiln. However, the distributions of PAHs were barely changed, and lower molecular weight PAHs were mainly distributed in gaseous phase, accounted for the major portion of PAHs when co-processing sewage sludge in cement kiln. PMID:27343866

  4. [Hygienic characteristics of work conditions for main occupations in asbestos cement production of Ukraine].

    PubMed

    Kundiev, Iu I; Cherniuk, V I; Karakashian, A N; Kucheruk, T K; Martynovskaia, T Iu; Demetskaia, A V; Sal'nikova, N A; Chuĭ, T S; Piatnitsa-Gorpinchenko, N K

    2008-01-01

    Studies covered of work conditions for main occupations in asbestos cement production of Ukraine. Studies covered work conditions and occupational features of workers engaged into main occupations in asbestos cement enterprises of Ukraine. Parameters presented characterize ambient air state, microclimate conditions, levels of noise and vibration, work intensity and hardness. PMID:18461799

  5. Distributions, profiles and formation mechanisms of polychlorinated naphthalenes in cement kilns co-processing municipal waste incinerator fly ash.

    PubMed

    Liu, Guorui; Zhan, Jiayu; Zhao, Yuyang; Li, Li; Jiang, Xiaoxu; Fu, Jianjie; Li, Chunping; Zheng, Minghui

    2016-07-01

    Co-processing municipal solid waste incinerator (MSWI) fly ash in cement kilns is challenging because the unintentional production of persistent organic pollutants (POPs) during the process is not well understood. The distributions, profiles and formation mechanisms of polychlorinated naphthalenes (PCNs) as new POPs covered under Stockholm Convention in two cement kilns co-processing MSWI fly ash were studied. The average concentrations of PCNs in stack gas samples were 710 ng m(-3). The PCN concentration in particle samples collected from different process stages in the cement kilns ranged from 1.1 to 84.7 ng g(-1). Three process sites including suspension pre-heater boiler, humidifier tower, and the kiln back-end bag filter were identified to be the major formation sites of PCNs in cement kilns co-processing MSWI fly ash. The PCN distribution patterns were similar to that of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs), which indicates the possibility for simultaneous control of PCNs and PCDD/Fs in cement kilns co-processing fly ash. Chlorination was suggested to be an important formation mechanism of PCNs, and chlorination pathways of PCN congeners are proposed based on the congener profiles. Thermodynamic calculations, including relative thermal energies (ΔE) and standard free energy of formation (ΔG), and the charge densities of the carbon atoms in PCN supported the proposed chlorination mechanisms for PCN formation. The results presented in this study might provide helpful information for developing techniques and strategies to control PCN emissions during cement kilns co-processing MSWI fly ash. PMID:27135696

  6. Up to 80% reduction of CO{sub 2} greenhouse gas emission during cement manufacture. Geology provides very low-CO{sub 2} cement production technology

    SciTech Connect

    Davidovits, J.; Rocher, P.; Davidovits, F.; Gimeno, D.; Marini, C.; Toco, S.

    1996-12-31

    European cement manufacturers are confronted with the EC CO{sub 2} eco-tax proposal and are lobbying Brussel`s Administration. They claim that the eco-tax would have a negative effect on the competitiveness of the European cement industry. Development means building infrastructures and houses; in short cement and concrete. The stage of any national economic development is judged by the growth rate of infrastructures which is linked to the cement production. Due to the exponential use of concrete, cement production has increased at a much higher speed than atmospheric CO{sub 2} concentration, i.e., than all major CO{sub 2} emission caused by human activities, such as energy and transportation. The authors are members of the European industrial research consortium GEOCISTEM, which is developing novel cements with very low CO{sub 2} emissions during their manufacture. The GEOCISTEM program started on January 1994. The authors are presenting the first results obtained so far. The technology presently developed for these novel cements (geopolymeric cements) is reducing the CO{sub 2} emission by 80%. Geopolymeric cements are manufactured in a different manner than Portland Cement. They do not rely on the calcination of calcium carbonate and therefore do not release bounded CO{sub 2}.

  7. Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996

    SciTech Connect

    Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

    1997-05-01

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

  8. The use of calcium phosphate cement in vertebroplasty of the base of odontoid process.

    PubMed

    Zapałowicz, Krzysztof; Wojdyn, Maciej; Zieliński, Krzysztof Włodzimierz; Snopkowska-Wiaderna, Dorota

    2013-01-01

    The authors describe the use of bone cement containing calcium phosphate for vertebroplasty of the cavity in the base of odontoid process. A 23-year-old female patient was operated on by incision in lateral cervical area (anterior open access). After a blunt dissection, the working cannula (Kyphon) was introduced under fluoroscopic guidance through the C2 vertebral body to the cavity in the base of the odontoid process. Intraoperatively, biopsy of the lesion was taken and histo-pathological examination excluded the presence of neoplasm. The cavity, presumably haemangioma, was successfully filled with calcium phosphate bone cement KyphOsTM FS (Ky-phon). The proper filling without paravertebral cement leak was confirmed by postoperative computed tomography (CT). The CT and magnetic resonance imaging performed 9 months after the procedure showed that cement was still present in the cavity. This is the first use of calcium phosphate cement to conduct the vertebroplasty of C2 vertebra. PMID:24375006

  9. Manufacture and properties of fluoride cement

    NASA Astrophysics Data System (ADS)

    Malata-Chirwa, Charles David

    process. It was observed in the laboratory simulated production of fluoride cement, that the clinkering temperature is much lower (around 1 170 °C) compared to that for the production of ordinary Portland cement. The other observed differences were attributed to the different mineralogical composition as a result of fluoride incorporation into the cement. While fluorine content is very minimal in fluoride cement, not more than 2 %, the resulting cementitious products are altered significantly as was observed from the study. Part of the experimental results has been used as reference material in the preparation of a draft Malawi Standard on fluoride cement. This draft standard will be submitted to the Malawi Bureau of Standards for further processing before it can be officially endorsed as a Malawi Standard.

  10. Utilization of municipal sewage sludge as additives for the production of eco-cement.

    PubMed

    Lin, Yiming; Zhou, Shaoqi; Li, Fuzhen; Lin, Yixiao

    2012-04-30

    The effects of using dried sewage sludge as additive on cement property in the process of clinker burning were investigated in this paper. The eco-cement samples were prepared by adding 0.50-15.0% of dried sewage sludge to unit raw meal, and then the mixtures were burned at 1450 °C for 2 h. The results indicated that the major components in the eco-cement clinkers were similar to those in ordinary Portland cement. Although the C(2)S phase formation increased with the increase of sewage sludge content, it was also found that the microstructure of the mixture containing 15.0% sewage sludge in raw meal was significantly different and that a larger amount of pores were distributed in the clinker. Moreover, all the eco-cement pastes had a longer initial setting time and final setting time than those of plain cement paste, which increased as the sewage sludge content in the raw meal increased. All the eco-cement pastes had lower early flexural strengths, which increased as the sewage sludge content increased, while the compressive strengths decreased slightly. However, this had no significant effect on all the strengths at later stages. Furthermore, the leaching concentrations of all the types of eco-cement clinkers met the standard of Chinese current regulatory thresholds. PMID:22386820

  11. Cross-shift study of acute respiratory effects in cement production workers.

    PubMed

    Aminian, Omid; Aslani, Maryam; Sadeghniiat Haghighi, Khosro

    2014-01-01

    Cement dust exposure is associated with increased respiratory impairment. As the major occupational hazard in the cement production industry is cement particles, our aim was to more thoroughly examine the acute effects of occupational exposure to cement dust on the respiratory system. A cross-shift study was conducted in a cement factory in Iran. 100 high exposed workers from production and packing sections and 100 low exposed from office workers were included. Environmental total dust was measured in each section. Assessment of lung function was done by pre and post shift spirometry. At the end of the day shift, acute respiratory symptoms were recorded. The means of total dust among high and low exposed workers were 16.55 mg/m3 and 0.9 mg/m3, respectively. The most common acute respiratory symptoms in high exposed workers were stuffy nose (52%) and shortness of breath (49%). A statistically significant post shift reduction in PEF, FEV1, FEF 25-75, FVC and FEV1/ FVC was demonstrated in high exposed group. Multivariate linear regression showed a significant relationship between the percentage of the cross-shift decrease in spirometric indices and exposure to cement dust. We detected significant relationship between exposure to cement dust and acute respiratory symptoms and pulmonary function indices. Effective dust-control measures and preparing a suitable strategy for respiratory protection are highly recommended. PMID:24659073

  12. Examination of the jarosite-alunite precipitate addition in the raw meal for the production of sulfoaluminate cement clinker.

    PubMed

    Katsioti, M; Tsakiridis, P E; Leonardou-Agatzini, S; Oustadakis, P

    2006-04-17

    The aim of the present research work was to investigate the possibility of adding a jarosite-alunite chemical precipitate, a waste product of a new hydrometallurgical process developed to treat economically low-grade nickel oxides ores, in the raw meal for the production of sulfoaluminate cement clinker. For that reason, two samples of raw meals were prepared, one contained 20% gypsum, as a reference sample ((SAC)Ref) and another with 11.31% jarosite-alunite precipitate ((SAC)J/A). Both raw meals were sintered at 1300 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the jarosite-alunite precipitate did not affect the mineralogical characteristics of the so produced sulfoaluminate cement clinker and there was confirmed the formation of the sulfoaluminate phase (C4A3S), the most typical phase of this cement type. Furthermore, both clinkers were tested by determining the grindability, setting time, compressive strength and expansibility. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of jarosite-alunite precipitate did not negatively affect the quality of the produced cement. PMID:16223566

  13. In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM

    SciTech Connect

    Sun Wei; Zhang Yunsheng; Lin Wei; Liu Zhiyong

    2004-06-01

    Environmental scanning electron microscope (ESEM) was used to in situ quantitatively study the hydration process of K-PS geopolymer cement under an 80% RH environment. An energy dispersion X-ray analysis (EDXA) was also employed to distinguish the chemical composition of hydration product. The ESEM micrographs showed that metakaolin particles pack loosely at 10 min after mixing, resulting in the existence of many large voids. As hydration proceeds, a lot of gels were seen and gradually precipitated on the surfaces of these particles. At later stage, these particles were wrapped by thick gel layers and their interspaces were almost completely filled. The corresponding EDXA results illustrated that the molar ratios of K/Al increase while Si/Al decrease with the development of hydration. As a result, the molar ratios of K/Al and Si/Al of hydration products at an age of 4 h amounted to 0.99 and 1.49, respectively, which were close to the theoretical values (K/Al=1.0, Si/Al=1.0 for K-PS geopolymer cement paste). In addition, well-developed crystals could not been found at any ages; instead, spongelike amorphous gels were always been observed.

  14. PIXE characterization of by-products resulting from the zinc recycling of industrial cemented carbides

    NASA Astrophysics Data System (ADS)

    Freemantle, C. S.; Sacks, N.; Topic, M.; Pineda-Vargas, C. A.

    2015-11-01

    By-product materials of the widely used zinc recycling process of cemented carbides have been studied. Scanning electron microscopy and micro-PIXE techniques have identified elemental concentrations, distributions and purity of by-product materials from an industrial zinc recycling plant. Cobalt surface enrichment, lamellar microstructures of varying composition, including alternating tungsten carbide (WC) grains and globular cobalt, and regions of excess zinc contamination were found in materials with incomplete zinc penetration. Liquid Co-Zn formation occurred above 72 wt.% Zn at the furnace temperature of 930 °C, and was extracted towards the surface of poorly zinc infiltrated material, primarily by the vacuum used for zinc distillation. Surface enrichment was not observed in material that was zinc infiltrated to the sample center, which was more friable and exhibited more homogeneous porosity and elemental concentrations. The result of incomplete zinc infiltration was an enriched surface zone of up to 60 wt.% Co, compared to an original sample composition of ∼10-15 wt.% Co. The impact on resulting powders could be higher or inhomogeneous cobalt content, as well as unacceptably high zinc concentrations. PIXE has proven it can be a powerful technique for solving industrial problems in the cemented carbide cutting tool industry, by identifying trace elements and their locations (such as Zn to 0.1 wt.% accuracy), as well as the distribution of major elements within WC-Co materials.

  15. HAZARDOUS WASTE COMBUSTION IN INDUSTRIAL PROCESSES: CEMENT AND LIME KILNS

    EPA Science Inventory

    The report summarizes the results of several studies relating to hazardous waste combustion in cement and lime kilns. The tests included in the study are four kilns tested by the U.S. Environmental Protection Agency, four kilns tested by State agencies or the kiln operator, two C...

  16. Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement based solidification/stabilization.

    PubMed

    Zhang, Junli; Liu, Jianguo; Li, Cheng; Jin, Yiying; Nie, Yongfeng; Li, Jinhui

    2009-06-15

    Cement rotary kiln co-processing of hazardous wastes and cement based solidification/stabilization could both immobilize heavy metals. The different retention mechanisms of the two technologies lead to different fixation effects of heavy metals. The same amount of heavy metal compounds were treated by the two types of fixation technologies. Long-term leaching test (160 days), the maximum availability leaching test (NEN 7341) and a modified three-step sequential extraction procedure, proposed by the Commission of the European Communities Bureau of Reference (BCR) were employed to compare the fixation effects of the two fixation technologies. The leaching concentrations in NEN 7341 and long-term leaching tests were compared with identification standard for hazardous wastes (GB5085.3-1996) and drinking water standard (GB5749-2005). The results indicate that the leaching concentrations of the long-term leaching test and NEN 7341 test were lower than the regulatory limits and the leached ratios were small. Both cement based solidification/stabilization and cement rotary kiln co-processing could effectively fix heavy metals. Calcination in a cement rotary kiln and the following hydration that follows during cement application could fix As, Cd, Pb and Zn more effectively and decrease the release to the environment. Cement solidification/stabilization technology has better effect in immobilizing Cr and Ni. Cr wastes are more fitful to be treated by cement solidification/stabilization. PMID:19091467

  17. Processing of Sugarcane Bagasse ash and Reactivity of Ash-blended Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad

    Sugarcane bagasse ash (SCBA), a sugar-mill waste, has the potential of a partial cement replacement material if processed and obtained under controlled conditions. This paper discusses the reactivity of SCBA obtained by control burning of sugarcane bagasse procured from Punjab province of India. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to ascertain the amorphousness and morphology of the minerals ash particles. Destructive and non-destructive tests were conducted on SCBA-blended mortar specimens. Ash-blended cement paste specimens were analyzed by XRD, thermal analysis, and SEM methods to evaluate the hydration reaction of SCBA with cement. Results showed that the SCBA processed at 600°C for 5 hours was reactive as ash-blended mortar specimens with up to 15% substitution of cement gave better strength than control specimens.

  18. Effect of carbon dioxide injection on production of wood cement composites from waste medium density fiberboard (MDF).

    PubMed

    Qi, H; Cooper, P A; Wan, H

    2006-01-01

    The possibility of recycling waste medium density fiberboard (MDF) into wood-cement composites was evaluated. Both new fibers and recycled steam exploded MDF fibers had poor compatibility with cement if no treatment was applied, due to interference of the hydration process by the water soluble components of the fiber. However, this issue was resolved when a rapid hardening process with carbon dioxide injection was adopted. It appears that the rapid carbonation allowed the board to develop considerable strength before the adverse effects of the wood extractives could take effect. After 3-5 min of carbon dioxide injection, the composites reached 22-27% of total carbonation and developed 50-70% of their final (28-day) strength. Composites containing recycled MDF fibers had slightly lower splitting tensile strength and lower tensile toughness properties than those containing new fibers especially at a high fiber/cement ratio. Composites containing recycled MDF fibers also showed lower values of water absorption. Unlike composites cured conventionally, composites cured under CO(2) injection developed higher strength and toughness with increased fiber content. Incorporation of recycled MDF fibers into wood cement composites with CO(2) injection during the production stage presents a viable option for recycling of this difficult to manage waste material. PMID:16046114

  19. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  20. Variations and factors that influence the formation of polychlorinated naphthalenes in cement kilns co-processing solid waste.

    PubMed

    Jin, Rong; Zhan, Jiayu; Liu, Guorui; Zhao, Yuyang; Zheng, Minghui

    2016-09-01

    Pilot studies of unintentionally produced pollutants should be performed before waste being co-processed in cement kilns. Polychlorinated naphthalene (PCN) formation and emission from cement kilns co-processing sorted municipal solid waste, sewage sludge, and waste acid, however, have not previously been studied. Here, PCNs were analyzed in stack gas samples and solid samples from different stages of three cement production runs. PCN destruction efficiencies were higher when waste was co-processed (93.1% and 88.7% in two tests) than when waste was not co-processed (39.1%), so co-processing waste would not increase PCN outputs. The PCN concentrations were higher in particle samples from the C1 preheater and stages at back end of kiln than in particle samples from other stages, suggesting that cyclone preheater and back end of kiln should be focused for controlling PCN emissions. Besides that, based on the variation of PCN concentrations and corresponding operating conditions in different stages, the temperature, feeding materials, and chlorine content were suggested as the main factors influencing PCN formation. The PCN homologue and congener profiles suggested chlorination and dechlorination were the main PCN formation and decomposition pathways, and congeners CN-23, CN-46, and CN-59 appear to be appropriate indicators of PCNs emitted from coal-burning sources. PMID:27187059

  1. Using the low-temperature plasma in cement production

    NASA Astrophysics Data System (ADS)

    Sazonova, N. A.; Skripnikova, N. K.

    2015-11-01

    The calculation of the raw-material mixtures and mineralogical composition of the cement clinkers which are synthezed on their base taking into account the disbalanced crystallization of the melting and glassing under conditions of the low-temperature plasma was performed. The difference of the actual values from the calculated ones is 0.69-3.73%. The composition which is characterized as the saturation coefficient 0,88; the silicate module - 3.34, the alumina module - 2.52 in melting of which the alite in amount 78.7%; 3CaO·SiO2 - 4%; 3CaO·Al2O3 - 9.8%; 12CaO·7Al2O3 -2.9%; CaOfree - 1% formed using the lime-stone from the quarry «Pereval» in the town of Slyudyanka and the clay from the deposit «Maximovski» in Irkutsk Region is considered as the optimal one. The structure of the melted clinker is represented as the metastable minerals of alite in the lamellar form with the dimensions up to (3-20)×(80-400) μm and the ratio of length to width 26.6-133. The elongated crystal form may stipulate the high cement activity based on the melted clinkers, which is 82.7-84.2 MPa. Valid- ing the revealed high activity of the viscous substance was confirmed by the results of the scanning electronic microscopy, X-ray phase analysis, with using of which the quantitative and qualitative analyses of the clinker minerals having the deformed crystalic lattice; were performed the morphology of the minerals in the clinker and cement stone, received on its ground, was studied.

  2. Sculpting with Cement.

    ERIC Educational Resources Information Center

    Olson, Lynn

    1983-01-01

    Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

  3. Dolomite magnesium oxychloride cement properties control method during its production

    NASA Astrophysics Data System (ADS)

    Chernykh, T. N.; Nosov, A. V.; Kramar, L. Ya

    2015-01-01

    The work considers the possibility of reducing the decomposition temperature of MgCO3 in dolomite rock, provides the results of studies of the effect of various additives and enhancers on the decomposition of magnesium and calcium components of dolomite. Chlorides additives are the most promising for dolomite rocks roast intensification. They allow shifting the MgCO3 decomposition to lower temperatures, without exerting a significant influence on the decomposition of CaCO3. Introduction of additives-enhancers is found to be an effective method of controlling the properties of dolomite MOC during roasting, producing high-strength dolomite magnesium oxychloride cements with change in volume during solidification.

  4. Heuristic economic assessment of the Afghanistan construction materials sector: cement and dimension stone production

    USGS Publications Warehouse

    Mossotti, Victor G.

    2014-01-01

    supply side to mirror such attributes can be deal-breakers in a transaction. For qualitative interpretation of the findings in this report, the value chain was used to conceptualize the relation between supply and demand. Although quantitative data on the Afghan construction materials sector have been hard to come by, the premise herein was that qualitative aspects of supply and demand are revealed by following the flow of funding through projects of varying sizes. It was found that the spectrum of attributes on the demand side of large multimillion dollar reconstruction projects is generally high dimensional, distributed over a broad line of construction materials at diverse locations, and in varying quantities. As interpreted herein, project funds dispensed at the higher hierarchical levels of a project are often concentrated on procurement of construction materials and services at the upper end of the value chain. In contrast, project funds dispensed at the lower hierarchical levels are disseminated across a multiplicity of subprojects, thus restricting project acquisitions to the lower end of the value chain. Evidence suggests that under the current conditions in Afghanistan producers of construction materials at the lower end of the value chain (adobe brick, aggregate, low-end marble products) can successfully compete in local markets and turn a profit. In contrast, producers of energy-intensive products such as cement will continue to face intense competition from imports, at least in the near-term. In the long-term, as infrastructure issues are resolved, and as business conditions in Afghanistan improve, domestic producers will have a locational advantage in establishing a solid niche in their respective home markets. In the process of tendering properties for cement production, the pivotal issues of abundant, reliable, and cost-effective thermal and electrical energy sources for cement production have become prominent. Over the past 50 years, powdered coal and

  5. [Cancer morbidity risks among workers of asbestos-cement productions].

    PubMed

    Nagornaia, A M; Varivonchik, D V; Kundiev, Iu I; Fedorenko, Z P; Gorokh, E L; Gulak, L O; Vitte, P N; Karakashian, A N; Lepeshkina, T R; Martynovskaia, T Iu

    2008-01-01

    The retrospective assessment of morbidity rates and cancer pathology risks in workers of asbestosis-cement enterprises of Ukraine has been made. It was established that annual cancer morbidity among workers makes 88,1 per 100 000 of workers (RR = 0.26, CI 95 % 0.06-1.01). The most often cancer pathology was located in digestive organs (48.1%), respiratory organs (18.5%) (lung cancer--11.1%). The mesothelioma of pleura, peritoneum and pericardium were not found. The risks (odds ratio--OR) of cancer morbidity were increased for such organs as: respiratory organs (OR = 2.37), skin (OR = 1.78), digestive organs (OR = 1.34). PMID:18467971

  6. Use of Ceramic Material (cement Clinker) for the Production of Biodiesel

    NASA Astrophysics Data System (ADS)

    Soni, Sunny; Agarwal, Madhu

    Biodiesel is a renewable liquid fuel made from natural, renewable biological sources such as edible and non edible oils. Over the last years, biodiesel has gained more market due to its benefits and because it appears as the natural substitute for diesel. Reasons for growing interest in biodiesel include its potential for reducing noxious emissions, potential contributions to rural economic development, as an additional demand center for agricultural commodities, and as a way to reduce reliance on foreign oil. Biodiesel was prepared from soybean oil by transesterification with methanol in the presence of cement clinker. Cement clinker was examined as a catalyst for a conversion of soybean oil to fatty acid methyl esters (FAMEs). It can be a promising heterogeneous catalyst for the production of biodiesel fuels from soybean oil because of high activity in the conversion and no leaching in the transesterification reaction. The reaction conditions were optimized. A study for optimizing the reaction parameters such as the reaction temperature, and reaction time, was carried out. The catalyst cement clinker composition was characterized by XRF. The results demonstrate that the cement clinker shows high catalytic performance & it was found that the yield of biodiesel can reach as high as 84.52% after 1 h reaction at 65°C, with a 6:1 molar ratio of methanol to oil, 21 wt% KOH/cement clinker as catalyst.

  7. Effects of processing and materials variations on mechanical properties of lightweight cement composites

    SciTech Connect

    Park, S.B.; Yoon, E.S.; Lee, B.I.

    1999-02-01

    Low-density/low-cost cement composites were fabricated. Carbon and alkali-resistant glass fibers were used to reinforce the matrix of industrial by-products; fly ash with silica fume, Portland cement, and calcium silicates were mixed in different proportions. The additional low density was obtained by adding perlite and foaming agents followed by hot water curing. The composites also were prepared by autoclave curing for comparison. The mechanical properties were improved by increasing the amount of silica fume, fly ash, and fibers.Both carbon fibers and alkali-resistant glass fibers were effective in reinforcing the matrices, but carbon fibers were superior to glass fibers. Fabrication techniques for producing lightweight cement composites that can substitute for autoclaved lightweight concrete was developed.

  8. Characteristics of dusts encountered during the production of cemented tungsten carbides.

    PubMed

    Stefaniak, Aleksandr B; Day, Gregory A; Harvey, Christopher J; Leonard, Stephen S; Schwegler-Berry, Diane E; Chipera, Steve J; Sahakian, Nancy M; Chisholm, William P

    2007-12-01

    Inhalation of cobalt (Co) and tungsten carbide (WC) particles, but not Co or WC alone, may cause hard metal disease, risk of which does not appear to be uniform across cemented tungsten carbide (CTC) production processes. Inhalation of Co alone or in the presence of WC may cause asthma. Hypothesizing that aerosol size, chemical content, heterogeneity, and constituent compaction may be important exposure factors, we characterized aerosols from representative CTC manufacturing processes. Six work areas were sampled to characterize aerosol size distributions (dust, Co) and 12 work areas were sampled to characterize physicochemical properties (using scanning electron microscopy with energy dispersive x-ray spectrometry [SEM-EDX]). Bulk feedstock and process-generated powders were characterized with SEM-EDX and x-ray diffraction. The dust mass median diameter was respirable and the cobalt respirable mass fraction was highest (37%) in grinding. Morphology of particles changed with processing: individual, agglomerate, or aggregates (pre-sintered materials), then mostly compacted particles (subsequent to sintering). Elemental composition of particles became increasingly heterogeneous: mostly discrete Co or W particles (prior to spray drying), then heterogeneous W/Co particles (subsequent work areas). Variability in aerosol respirability and chemical heterogeneity could translate into differences in toxicity and support detailed characterization of physicochemical properties during exposure assessments. PMID:18212475

  9. Hydration process of cement in the presence of a cellulosic additive. A calorimetric investigation.

    PubMed

    Ridi, Francesca; Fratini, Emiliano; Mannelli, Francesca; Baglioni, Piero

    2005-08-01

    In the cement industry, the extrusion technique is used to produce flat shapes with improved resistance to compression. Extrusion is a plastic-forming process that consists of forcing a highly viscous plastic mixture through a shaped die. The material should be fluid enough to be mixed and to pass through the die, and on the other hand, the extruded specimen should be stiff enough to be handled without changing in shape or cracking. These characteristics are industrially obtained by adding cellulosic polymers to the mixture. The aim of this work is to understand the action mechanism of these additives on the major pure phases constituting a typical Portland cement: tricalcium silicate (C(3)S), dicalcium silicate (C(2)S), tricalcium aluminate (C(3)A), and tetracalcium iron-aluminate (C(4)AF). In particular, a methylhydroxyethyl cellulose (MHEC) was selected from the best-performing polymers for further study. The effect of this additive on the hydration kinetics (rate constants, activation energies, and diffusional constants) was evaluated by means of differential scanning calorimetry (DSC) while the hydration products were studied by using thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). MHEC addition in calcium silicate pastes produces an increase in the induction time without affecting the nucleation-and-growth period. A less dense CSH gel was deduced from the diffusional constants in the presence of MHEC. Moreover, CSH laminar features and poorly structured hydrates were noted during the first hours of hydration. In the case of the aluminous phases, the additive inhibits the growth of stable cubic hydrated phases (C(3)AH(6)), with the advantage of the metastable hexagonal phases being formed in the earliest minutes of hydration. PMID:16852857

  10. [Revision process and thinking of emission standard of air pollutants for cement industry].

    PubMed

    Jiang, Mei; Li, Xiao-Qian; Ji, Liang; Zou, Lan; Wei, Yu-Xia; Zhao, Guo-Hua; Che, Fei; Li, Gang; Zhang, Guo-Ning

    2014-12-01

    The new National Emission Standard of Air Pollutants for Cement Industry (GB 4915-2013) was released recently, which is the third revision since the first release in 1985. This paper reviewed the revision process for the emission standard of air pollutants in cement industry, analyzed the impact of environmental protection situation and management policies changes on the content and form of the standard. The standard formulating principles and several key issues together constitute the base of emission standard, which are not only important to complete the theories and methods of emission standard development, but also important to improve the environmental management and pollution control level. PMID:25826951

  11. Clean burning process which converts pollutants into value added product

    SciTech Connect

    Zhu Xuefang

    1999-07-01

    By adding a multiple composite admixture in coal-fired boilers, the new technology turns ash and the sulfur in coal into cement clinker materials, deepens and stabilizes combustion process, decreases mechanical and chemical instabilities during combustion, and eliminates the production of NO{sub x}. While generating heat and power, the technology produces cement clinkers, and gets rid of the soot type of air pollution caused by cement kilns, thus effects a radical cure for the two pollution sources in coal-fired power plants and cement kilns. The new technology makes use of coal ashes as renewable resources, saves energy resources and the land needed to discard the ashes. Therefore, it benefits for ecological balance and economics.

  12. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 21. THE CEMENT INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The cement indus...

  13. Reuse of de-inking sludge from wastepaper recycling in cement mortar products.

    PubMed

    Yan, Shiqin; Sagoe-Crentsil, Kwesi; Shapiro, Gretta

    2011-08-01

    This paper presents results of an investigation into the use of de-inking sludge from a paper recycling mill as feedstock material in the manufacture of cement mortar products, including masonry blocks and mortar renders. Both physical and mechanical properties of mortar specimens containing various amounts of de-inking sludge were investigated. It was observed that the addition of de-inking sludge to cement mortar at a fixed water-to-cement ratio significantly reduced flow properties and increased setting time. Water absorption and volume of permeable voids of cement mortar increased with increased dosage of de-inking sludge, with a corresponding reduction of bulk density. The 91-day compressive strength of mortar samples with 2.5 wt% and 20 wt% de-inking sludge loadings retained 83% and 62% respectively of the reference mortar strength. The corresponding drying shrinkage increased by up to 160% compared to reference samples. However, a de-inking sludge loading of up to 2.5 wt% did not significantly alter measured physical and mechanical properties. The results demonstrate that despite the high moisture absorbance of de-inking sludge due to its organic matter and residual cellulose fibre content, it serves as a potential supplementary additive and its cellulosic content proving to be an active set retardant to cementitious masonry products. PMID:21507557

  14. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  15. Silicon production process evaluations

    NASA Astrophysics Data System (ADS)

    1982-07-01

    Chemical engineering analyses involving the preliminary process design of a plant (1,000 metric tons/year capacity) to produce silicon via the technology under consideration were accomplished. Major activities in the chemical engineering analyses included base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provided detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process.

  16. Effect of operating parameters on the removal of bone cement by a sawing process.

    PubMed

    James, Thomas P; Sheehan, Brian; Sagar, Amrit

    2014-03-01

    The number of total knee arthroplasty revision surgeries is increasing each year, driven by the wide availability and general acceptance of the procedure accompanied by an aging population of implants. Metal implants are often secured to the tibial plateau by a mantle of poly(methyl methacrylate) bone cement. During revision surgery, a power oscillating saw is used to remove bone cement while preparing the boney bed. Presently, there are no published studies on the mechanics of bone cement removal by a sawing process. The aim of this research was to quantify the effect of blade speed and applied thrust force on the volumetric cutting rate of bone cement. A custom reciprocating saw with variable stroke length was used to conduct a three-factor design of experiments. Two levels, without center-points, were sufficient to model the effect of stroke length (6.75, 10.13 mm), thrust force (11, 19 N), and reciprocating speed in strokes per minute (6000, 8000 SPM) on cutting rate. The results indicate that each of the three parameters had a significant impact on cutting rate (p < 0.001), with a linear relationship between both force and cutting rate (r = 0.98) and blade speed and cutting rate (r = 0.98). For the parameters considered, increasing the reciprocating speed had the most significant effect on cutting rate. For example, while holding force and stroke length constant (11 N, 10.13 mm), an increase in speed from 6000 to 8000 SPM nearly doubled the cutting rate of bone cement. A cutting rate model was developed by regression analysis of the experimental data and validated through additional experiments. The model has applications in haptic feedback for surgical simulators to differentiate between the cutting rates of bone and bone cement during virtual training of resident surgeons. PMID:24562099

  17. ELIMINATION OF WATER POLLUTION BY RECYCLING CEMENT PLANT KILN DUST

    EPA Science Inventory

    Excessive amounts of alkalies can have deleterious effects upon the process of cement manufacture and the product. Normally much of the alkali present in cement raw materials is volatilized in the cement kiln and condenses on the particles of kiln dust which are carried out of th...

  18. Process, Product, and Playmaking

    ERIC Educational Resources Information Center

    Fisher, Maisha T.; Purcell, Susie Spear; May, Rachel

    2009-01-01

    This article examines relationships among process, product, and playmaking in a southeastern playwriting and performance program for teen girls, Playmaking for Girls (PFG). The authors have chosen to focus on tensions between process and product. Such tensions are present in the challenges teachers experience when privileging student-centered…

  19. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications.

    PubMed

    Gualtieri, Alessandro F; Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele; Gualtieri, Magdalena Lassinantti; Lusvardi, Gigliola; Cavenati, Cinzia; Zanatto, Ivano

    2011-01-01

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 °C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY·AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY·AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca(3)Cr(2)(SiO(4))(3)] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO(5)]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY·AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed. PMID:20708915

  20. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications

    SciTech Connect

    Gualtieri, Alessandro F.; Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele; Lassinantti Gualtieri, Magdalena; Cavenati, Cinzia; Zanatto, Ivano

    2011-01-15

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 {sup o}C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca{sub 3}Cr{sub 2}(SiO{sub 4}){sub 3}] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO{sub 5}]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.

  1. Capture of green-house carbon dioxide in Portland cement

    SciTech Connect

    Wagh, A.S.; Singh, D.; Pullockaran, J.; Knox, L.

    1993-12-31

    A novel process has been developed to sequester green-house carbon dioxide produced by the cement industry in precast cement products. Typically, 10--24 wt % of CO{sub 2} produced by calcination of calcium carbonate during clinkering of the cement may be captured. The carbonation process also cures the cement paste within minutes into hard bodies. The process maintains high pH conditions during curing, to allow conventional steel reinforcement of concrete. The process will save time and money to the cement industry, and at the same time, help them to comply with the Clean Air Act by sequestering the green-house carbon dioxide.

  2. Leachable characteristics of arsenical borogypsum wastes and their potential use in cement production.

    PubMed

    Alp, Ibrahim; Deveci, Haci; Süngün, Y Halil; Yazici, Ersin Y; Savaş, Mehmet; Demirci, Songül

    2009-09-15

    In this study; the potential use of arsenical borogypsum wastes (ABW) as a set retarder in cement industry was investigated. The comparative performances of arsenical borogypsum wastes (ABW) and natural gypsum samples (NG1 and NG2) at different proportions in the range of 3-8 wt % were tested based on compressive strength over 1, 2, 7, and 28 days and setting times. The use of ABW was observed to lead to a somewhat slower rate of development of strength of the mortar samples than those of NG1 and NG2 during the curing period of 7 days. This is the indication of the effectiveness of ABW as a set retarder. The 28-day compressive strength of mortars tended to decrease with the addition or increasing the proportion of ABW, beyond 5 wt % in particular. The data for setting times of the cement products confirmed set retarding characteristics of ABW with an initial setting time of 90-120 min at 3-5 wt % dosage, which conforms to the desired setting time of > or = 60 min for CEM I (42.5 N) type cement (TS EN 197-1). Leachability tests (TCLP and SPLP) have also shown that ABW can be classified as a nonhazardous waste; but it can readily release metals such as As and Mn, in particular, whereas the mortar samples containing ABW-cement clinker present no environmental concern with its remarkably reduced leachability. PMID:19806724

  3. The Impact of Thermocycling Process on the Dislodgement Force of Different Endodontic Cements

    PubMed Central

    Saghiri, Mohammad Ali; Asatourian, Armen; Garcia-Godoy, Franklin; Gutmann, James L.; Sheibani, Nader

    2013-01-01

    To evaluate the effects of thermocycling (500 cycles, 5°C/55°C) on the push-out bond strength of calcium silicate based cements including WMTA, Nano-WMTA, and Bioaggregate to root dentin. Forty-eight dentin slices were prepared and divided into 3 groups (n = 16) and filled with Angelus WMTA, Nano-WMTA, or Bioaggregate. After incubation, half of the samples were thermocycled while the other half remained untreated. Push-out bond strength was calculated, and the modes of the bond failures were determined by SEM. The highest bond strength was seen in nonthermocycled Nano-WMTA samples and the lowest in thermocycled Bioaggregate samples. The significant differences between nonthermocycled and thermocycled samples were only noticed in WMTA and Nano-WMTA groups (P < 0.001). The mode of failure for thermocycled samples of all three cements was mostly cohesive. Thermocycling process can drastically affect the push-out bond strength of calcium silicate based cements. The intrastructural damages occurred due to the thermal stresses, causing cohesive failures in set materials. Sealing property of endodontic cements which have experienced the thermal stresses can be jeopardized due to occlusal forces happening in furcation cites. PMID:24063004

  4. 75 FR 453 - FLSMidth, Inc., Cement Division, Product Engineering, Including On-Site Leased Workers of Aerotek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ... Employment and Training Administration FLSMidth, Inc., Cement Division, Product Engineering, Including On-Site Leased Workers of Aerotek Contract Engineering, Allied Personnel Services, Eastern Engineering... Engineering, and Clarke Consulting, Inc., Bethlehem, PA; Amended Certification Regarding Eligibility To...

  5. Release of asbestos fibers from weathered and corroded asbestos cement products

    SciTech Connect

    Spurny, K.R.

    1989-02-01

    The controversy on whether weathered and corroded asbestos cement products are emitting biologically significant asbestos fiber concentrations in ambient air has not been resolved. Nor is it known if the weathered and corroded asbestos cement products release asbestos fibers which have the same carcinogenic potency as standard chrysotile. The purpose of this research project was to develop a method for sampling and measuring asbestos fiber emissions from solid planar surfaces (i.e., roofs and facades) consisting of asbestos cement products and to develop methods for studying the physical and chemical changes and the carcinogenic potency of the emitted fibers. Using this method asbestos fiber emissions in ambient air have been measured in the FRG during 1984/1986. The emissions of asbestos fibers longer than 5 microns were in the range 10(6) to 10(8) fibers/m2.hr. The ambient air concentrations of these asbestos fibers were for the most part less than 10(3) fibers/m3. It was shown that the emitted asbestos fibers were chemically changed and it was shown with animal experiments that their carcinogenic potency did not differ from the carcinogenicity of standard chrysotile fibers.

  6. Calcination of kaolinite clay particles for cement production: A modeling study

    SciTech Connect

    Teklay, Abraham; Yin, Chungen; Rosendahl, Lasse; Bøjer, Martin

    2014-07-01

    Kaolinite rich clay particles calcined under certain conditions can attain favorable pozzolanic properties and can be used to substitute part of the CO{sub 2} intensive clinker in cement production. To better guide calcination of a clay material, a transient one-dimensional single particle model is developed, which fully addresses the conversion process of raw kaolinite particles suspended in hot gas. Particles are discretized into a number of spherical cells, on each of which mass, momentum, energy and species conservation equations are numerically solved by using the finite volume method. Reactions considered in the model include dehydration, dehydroxylation and various phase transformations. Thermogravimetric analysis is used to determine reaction kinetic data required as inputs in the model and to validate the model. Finally, model-based sensitivity analysis is performed, from which quantitative guidelines for calcination condition optimization are derived. - Highlights: • A general 1D mathematical model for single clay particle calcination is developed. • The model fully addresses momentum, heat and mass transfer and all the reactions. • Experiments are performed to determine kinetic data of the key reactions. • The model is verified by different means, including experimental results. • Sensitivity study is done to address key assumptions and derive useful guidelines.

  7. Investigative and management techniques for cement kiln dust and pulp and paper process wastes

    SciTech Connect

    Peters, C.S.

    1998-12-31

    Knowledge of the characteristics of industrial process wastes allows for some innovative and cost savings techniques for investigating and managing these wastes over conventional methods. This paper explores examples of some of these techniques employed on cement kiln dust (CKD) and pulp and paper mill process waste. Similar to Portland Cement, unleached CKD contains free lime and sources of reactive silica and/or alumina. Thus, it can set up in the presence of water. Properly moisture-conditioned CKD has been successfully used in Michigan as a landfill liner and cover material on closures of old CKD piles and newly permitted fills. However, CKD also contains high concentrations of soluble salts and when improperly managed can generate a leachate with high total dissolved solid concentrations. Surface and downhole geophysical methods employing electromagnetic conductivity have proven effective in delineating the horizontal and vertical extent of groundwater plumes caused by releases of CKD leachate.

  8. Fjords: Processes and products

    SciTech Connect

    Syvitski, J.P.M.; Burrell, D.C.; Skei, J.M.

    1987-01-01

    Fjords are a major feature of coasts and provide geologists and oceanographers with an excellent environment for studying and modeling coastal processes and products. This book brings together and integrates an enormous amount of information on fjords and provides the reader with a thorough, interdisciplinary account of current research with emphasis on sedimentary processes. The processes demonstrated in fjords are often relevant to the estuarine or open ocean environment.

  9. New magnesia-polyphosphate cement composites: Synthesis and processing under MDF-like conditions

    SciTech Connect

    Dimotakis, E.D.; Klemperer, W.G.; Young, J.F.

    1993-12-31

    Macro-Defect-Free (MDF) cements represent a major breakthrough in processing advanced cement-based materials. When a mixture of CaAl{sub 2}O{sub 4}/PVA (PVA = polyvinyl alcohol acetate) is processed under high shear mixing conditions, it transform into a high-strength material. The authors` current efforts have been focused on producing similar materials in a purely inorganic system. Thus MgO has been reacted at room temperature with sodium polyphosphates of the general formula Na{sub n}H{sub 2}P{sub n}O{sub 3n+1}{center_dot}xH{sub 2}O n = 6,15,70 and crystalline sodium Kurrol salts (NaPO{sub 3}){sub n}, n>1000, where n is the average degree of polymerization. Processing of all these sodium polyphosphates with MgO under MDF-like conditions gave cement pastes that had compressive strengths ranging from 130 MPa to 140 MPa at 10-12% porosties.

  10. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi , Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of

  11. [Experimental rationale for carcinogenic risk of asbestos cement industry and its products].

    PubMed

    Pylev, D N; Smirnova, O V; Vasil'eva, L A; Khrustalev, S A; Vezentsev, A I; Gudkova, E A; Naumova, L N

    2010-01-01

    During intraperitoneal administration of dispersiveness-comparable chrysotile or asbestos cement fibers to rats (20 mg thrice), mesotheliomas were found in 45.1 and 7.7% of cases respectively. Asbestos cement dust induced tumors in 2.5% of cases, which is of biological importance. Cement or freeze asbestos destruction cement dust failed to cause tumors. The latter were not detected in a control group receiving physiological saline. Asbestos cement fibers and fascicles are covered by a cement matrix. Fiber amorphization gradually occurs. In lung tissue, there may be destruction of the cement coat of fascicles and release of native chrysotile fibers that are carcinogenic. PMID:21381365

  12. Observer, Process, and Product.

    ERIC Educational Resources Information Center

    Schwartz, Noa

    1996-01-01

    The structure of art as a symbol system is composed of three dimensions: observer, process, and product. Each dimension is described, discussed, and its application to art therapy illustrated through the case study of a 12-year-old boy suffering from a progressive neurological disorder. (LSR)

  13. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    SciTech Connect

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; Andres, Robert Joseph; Crawford-Brown, D.; Lin, J.; Zhao, H.; Hong, C.; Boden, Thomas A.; Feng, K.; Peters, Glen P.; Xi, F.; Liu, J.; Li, Y.; Zhao, Y.; Zeng, Ning; He, K.

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).

  14. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    PubMed

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon). PMID:26289204

  15. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A.; Feng, Kuishuang; Peters, Glen P.; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-01

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  16. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    DOE PAGESBeta

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; et al

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption andmore » clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).« less

  17. Research on a Defects Detection Method in the Ferrite Phase Shifter Cementing Process Based on a Multi-Sensor Prognostic and Health Management (PHM) System.

    PubMed

    Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu

    2016-01-01

    The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects. PMID:27517935

  18. ALARA Design Review for the Resumption of the Plutonium Finishing Plant (PFP) Cementation Process Project Activities

    SciTech Connect

    DAYLEY, L.

    2000-06-14

    The requirements for the performance of radiological design reviews are codified in 10CFR835, Occupational Radiation Protection. The basic requirements for the performance of ALARA design reviews are presented in the Hanford Site Radiological Control Manual (HSRCM). The HSRCM has established trigger levels requiring radiological reviews of non-routine or complex work activities. These requirements are implemented in site procedures HNF-PRO-1622 and 1623. HNF-PRO-1622 Radiological Design Review Process requires that ''radiological design reviews [be performed] of new facilities and equipment and modifications of existing facilities and equipment''. In addition, HNF-PRO-1623 Radiological Work Planning Process requires a formal ALARA Review for planned activities that are estimated to exceed 1 person-rem total Dose Equivalent (DE). The purpose of this review is to validate that the original design for the PFP Cementation Process ensures that the principles of ALARA (As Low As Reasonably Achievable) were included in the original project design. That is, that the design and operation of existing Cementation Process equipment and processes allows for the minimization of personnel exposure in its operation, maintenance and decommissioning and that the generation of radioactive waste is kept to a minimum.

  19. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.

  20. Thoracic dust exposure is associated with lung function decline in cement production workers.

    PubMed

    Nordby, Karl-Christian; Notø, Hilde; Eduard, Wijnand; Skogstad, Marit; Fell, Anne Kristin; Thomassen, Yngvar; Skare, Øivind; Bergamaschi, Antonio; Pietroiusti, Antonio; Abderhalden, Rolf; Kongerud, Johny; Kjuus, Helge

    2016-08-01

    We hypothesised that exposure to workplace aerosols may lead to lung function impairment among cement production workers.Our study included 4966 workers in 24 cement production plants. Based on 6111 thoracic aerosol samples and information from questionnaires we estimated arithmetic mean exposure levels by plant and job type. Dynamic lung volumes were assessed by repeated spirometry testing during a mean follow-up time of 3.5 years (range 0.7-4.6 years). The outcomes considered were yearly change of dynamic lung volumes divided by the standing height squared or percentage of predicted values. Statistical modelling was performed using mixed model regression. Individual exposure was classified into quintile levels limited at 0.09, 0.89, 1.56, 2.25, 3.36, and 14.6 mg·m(-3), using the lowest quintile as the reference. Employees that worked in administration were included as a second comparison group.Exposure was associated with a reduction in forced expiratory volume in 1 s (FEV1), forced expiratory volume in 6 s and forced vital capacity. For FEV1 % predicted a yearly excess decline of 0.84 percentage points was found in the highest exposure quintile compared with the lowest.Exposure at the higher levels found in this study may lead to a decline in dynamic lung volumes. Exposure reduction is therefore warranted. PMID:27103386

  1. In vitro biodurability of the product of thermal transformation of cement-asbestos.

    PubMed

    Gualtieri, Alessandro F; Viani, Alberto; Sgarbi, Giulia; Lusvardi, Gigliola

    2012-02-29

    To safely recycle the product of the thermal transformation of cement-asbestos as secondary raw material, its toxicity potential should be assessed by in vitro biodurability tests. In this work, the acellular in vitro biodurability of the products of transformation of cement-asbestos at 1200 °C (named KRY·AS) was tested using both inorganic and organic simulated lung fluids at pH 4.5. The dissolution kinetics were followed using chemical, mineralogical and microstructural analyses. The total dissolution time estimated from the experiments with inorganic HCl diluted solution is one order of magnitude higher than that determined from the experiments with buffered Gamble solution (253 days vs. 20 days). The key parameter determining the difference in dissolution rate turns out to be the solidus/liquidus ratio which prompts a fast saturation of the solution with monosilicic acid. The calculated dissolution rate constants showed that the biodurability in vitro of KRY·AS is much lower with respect to that of standard chrysotile asbestos (total estimated dissolution time of 20 days vs. 298 days, respectively). This proves a low potential toxicity of this secondary raw material. PMID:22257569

  2. Thoracic dust exposure is associated with lung function decline in cement production workers

    PubMed Central

    Notø, Hilde; Eduard, Wijnand; Skogstad, Marit; Fell, Anne Kristin; Thomassen, Yngvar; Skare, Øivind; Bergamaschi, Antonio; Pietroiusti, Antonio; Abderhalden, Rolf; Kongerud, Johny; Kjuus, Helge

    2016-01-01

    We hypothesised that exposure to workplace aerosols may lead to lung function impairment among cement production workers. Our study included 4966 workers in 24 cement production plants. Based on 6111 thoracic aerosol samples and information from questionnaires we estimated arithmetic mean exposure levels by plant and job type. Dynamic lung volumes were assessed by repeated spirometry testing during a mean follow-up time of 3.5 years (range 0.7–4.6 years). The outcomes considered were yearly change of dynamic lung volumes divided by the standing height squared or percentage of predicted values. Statistical modelling was performed using mixed model regression. Individual exposure was classified into quintile levels limited at 0.09, 0.89, 1.56, 2.25, 3.36, and 14.6 mg·m−3, using the lowest quintile as the reference. Employees that worked in administration were included as a second comparison group. Exposure was associated with a reduction in forced expiratory volume in 1 s (FEV1), forced expiratory volume in 6 s and forced vital capacity. For FEV1 % predicted a yearly excess decline of 0.84 percentage points was found in the highest exposure quintile compared with the lowest. Exposure at the higher levels found in this study may lead to a decline in dynamic lung volumes. Exposure reduction is therefore warranted. PMID:27103386

  3. The hydration products of Portland cement in the presence of tin(II) chloride

    SciTech Connect

    Hill, J.; Sharp, J.H

    2003-01-01

    The hydration products of Portland cement pastes cured using water containing tin(II) chloride have been compared with those using distilled water. In the latter case, the expected products - portlandite, ettringite and calcite - were observed. The X-ray diffraction patterns of the cement pastes cured in the presence of tin(II) chloride showed several additional peaks that have been attributed to the formation of calcium hydroxo-stannate, CaSn(OH){sub 6}, and Friedel's salt (tetracalcium aluminate dichloride-10-hydrate), Ca{sub 3}Al{sub 2}O{sub 6}{center_dot}CaCl{sub 2}{center_dot}10H{sub 2}O. The amount of portlandite formed was reduced in the presence of tin(II) chloride. Calcium hydroxo-stannate contains tin in the +IV oxidation state and equations are presented to account for the oxidation of Sn(II) to Sn(IV) preceding the formation of CaSn(OH){sub 6} and Friedel's salt.

  4. Streamlining the production process

    SciTech Connect

    Hulpke, H.; Mueller-Eisen, U.

    1995-01-01

    Process facilities often use a combination of centralized and decentralized treatment plants for solid, liquid and gaseous waste streams. However, despite continual improvements in pollution-control technologies, treatment and disposal methods rarely lead to zero emissions. And, many add-on controls consume raw materials and energy themselves, create secondary waste streams, or require additional capital and operating costs. Environmentally sound manufacturing does not come only from developing better techniques for treating wastes at the end of the production process. Greater effort and capital budgets must be devoted to developing preventive measures, rather than simply working to improve existing treatment and disposal methods. In general all aspects of chemical production and waste management must be integrated. Since pollution-prevention efforts cannot totally eliminate waste formation, process operators should also consider the possibility of onsite reuse of unwanted byproduct streams. IN some cases, the recovery and reuse of unreacted raw materials or auxiliaries may be more cost effective than investing in system overhauls to eliminate their formation.

  5. Reducing the cycle time of cementing processes for high quality doublets

    NASA Astrophysics Data System (ADS)

    Wilde, C.; Hahne, F.; Langehanenberg, P.; Heinisch, J.

    2015-09-01

    For the manufacturing of high performance optical systems, centered alignment of the optical surfaces within the assembly is becoming increasingly important. In this contribution, we will present a system for the automated alignment of optical surfaces for the high-throughput manufacturing of cemented doublets (and triplets) with optimized imaging performance. First of all, different concepts for the alignment of doublets etc. are discussed. Standard methods for cementing evaluate mechanical features, such as the outer barrel of one element as reference axis. Using this procedure the optical performance of the assembly that can be achieved is limited by imperfections in the collinearity of the element's barrel axis and its optical axis. Instead, using the optical axis of the bottom element as target axis opens up perspectives for the production of multiplets with perfect symmetric imaging performance. For this concept, all three center of curvature positions of the optical surfaces are measured. Then, the top surface is aligned to the bottom element's optical axis using high-precision actuators. In order to increase the throughput of this procedure, the system is equipped with a novel measurement head that acquires autocollimation images of all three surfaces of a doublet at the same time. Thus, the positions of all surfaces are measured simultaneously during just a single rotation, avoiding both additional rotations and focus movements. Using this approach, cycle times can significantly be reduced from an average of 1 min to less than 10 seconds (w/o curing time). The system is reconfigurable in order to support a wide range of sample designs and enables cementing of high quality optics with centering errors below 2 μm.

  6. Butadiene production process overview.

    PubMed

    White, Wm Claude

    2007-03-20

    Over 95% of butadiene is produced as a by-product of ethylene production from steam crackers. The crude C4 stream isolated from the steam cracking process is fed to butadiene extraction units, where butadiene is separated from the other C4s by extractive distillation. The amount of crude C4s produced in steam cracking is dependent on the composition of the feed to the cracking unit. Heavier feeds, such as naphtha, yield higher amounts of C4s and butadiene than do lighter feeds. Crackers using light feeds typically produce low quantities of C4s and do not have butadiene extraction units. Overall butadiene capacity is determined by ethylene cracker operating rates, the type of feed being cracked, and availability of butadiene extraction capacity. Global butadiene capacity is approximately 10.5 million metric tons, and global production is approximately 9 million metric tons [Chemical Marketing Associates, Inc. (CMAI), 2005 World Butadiene Analysis, Chemical Marketing Associates, Inc. (CMAI), 2005]. Crude C4s are traded globally, with the United States being the only significant net importer. Finished butadiene is also traded globally, with the largest exporters being Canada, Western Europe, Saudi Arabia and Korea. The largest net importers are Mexico, the United States and China. The global demand for butadiene is approximately 9 million metric tons [Chemical Marketing Associates, Inc. (CMAI), 2005 World Butadiene Analysis, Chemical Marketing Associates, Inc. (CMAI), 2005]. Production of styrene-butadiene rubber and polybutadiene rubber accounts for about 54% of global butadiene demand, with tire production being the single most important end use of butadiene synthetic rubbers. Other major butadiene derivatives are acrylonitrile-butadiene-styrene (ABS) and styrene butadiene latex (about 24% of demand combined). PMID:17324391

  7. Cement As a Waste Form for Nuclear Fission Products: The Case of (90)Sr and Its Daughters.

    PubMed

    Dezerald, Lucile; Kohanoff, Jorge J; Correa, Alfredo A; Caro, Alfredo; Pellenq, Roland J-M; Ulm, Franz J; Saúl, Andrés

    2015-11-17

    One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of (90)Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that (90)Sr is stable when it substitutes the Ca(2+) ions in C-S-H, and so is its daughter nucleus (90)Y after β-decay. Interestingly, (90)Zr, daughter of (90)Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for (90)Sr storage. PMID:26513644

  8. Sets of Reports and Articles Regarding Cement Wastes Forms Containing Alpha Emitters that are Potentially Useful for Development of Russian Federation Waste Treatment Processes for Solidification of Weapons Plutonium MOX Fuel Fabrication Wastes for

    SciTech Connect

    Jardine, L J

    2003-06-12

    This is a set of nine reports and articles that were kindly provided by Dr. Christine A. Langton from the Savannah River Site (SRS) to L. J. Jardine LLNL in June 2003. The reports discuss cement waste forms and primarily focus on gas generation in cement waste forms from alpha particle decays. However other items such as various cement compositions, cement product performance test results and some cement process parameters are also included. This set of documents was put into this Lawrence Livermore National Laboratory (LLNL) releasable report for the sole purpose to provide a set of documents to Russian technical experts now beginning to study cement waste treatment processes for wastes from an excess weapons plutonium MOX fuel fabrication facility. The intent is to provide these reports for use at a US RF Experts Technical Meeting on: the Management of Wastes from MOX Fuel Fabrication Facilities, in Moscow July 9-11, 2003. The Russian experts should find these reports to be very useful for their technical and economic feasibility studies and the supporting R&D activities required to develop acceptable waste treatment processes for use in Russia as part of the ongoing Joint US RF Plutonium Disposition Activities.

  9. Hazardous-waste combustion in industrial processes: cement and lime kilns

    SciTech Connect

    Mournighan, R.E.; Branscome, M.

    1987-11-01

    This report summarizes the results of several studies relating to hazardous-waste combustion in cement and lime kilns. The tests included in the study are four kilns tested by the U.S. Environmental Protection Agency, four kilns tested by State agencies or the kiln operator, two Canadian tests, and one Swedish test. The predominant types of wastes tested included chlorinated organic compounds, aromatic compounds, and metal-contaminated waste oil. The kiln types include lime kilns and cement kilns, which included the dry, wet, and preheated processes. Fabric filters and electrostatic precipitators (ESPs) were the pollution-control devices used in these processes, and the primary fuels included coal, coke, coal/coke, fuel oil, and natural gas/coke. The parameters examined in the report were Destruction and Removal Efficiency (DRE) of the Principal Organic Hazardous Constitutents, particulate and HCl emissions, metals, and the effect of burning hazardous waste on SO/sub 2/, NOx, and CO emissions. The primary conclusion of the study is that DRE's of 99.99% or greater can be obtained in properly-operated calcining kilns. Particulate matter can increase when chlorinated wastes are burned in a kiln equipped with an electrostatic precipitator. Those kilns equipped with fabric filters showed no change in emissions.

  10. Properties and hydration products of lightweight and expansive cements. Part I: Physical and mechanical properties

    SciTech Connect

    Lilkov, V.; Djabarov, N.; Bechev, G.; Kolev, K.

    1999-10-01

    Results from studies on the physical and mechanical properties of lightweight and expansive cements cured at 20 and 75 C are presented. Lightweight additive (cenospheres from thermoelectric power station Bobov Dol, Bulgaria) and expansive additive (Bulexa with hydroxide type of expansion) were used. The compressive and flexural strength, the gas and water impermeability, and the pore structure of the cement stone of lightweight and expansive cements were investigated. The results are compared with corresponding parameters of cement stone without additives. It was found that the cenospheres are appropriate lightweight additives. The use of expansive additive helps overcome the dry shrinkage of cement stone and strengthens the bond with the bounding surfaces.

  11. Microstructural and bulk property changes in hardened cement paste during the first drying process

    SciTech Connect

    Maruyama, Ippei; Nishioka, Yukiko; Igarashi, Go; Matsui, Kunio

    2014-04-01

    This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreased for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and C–S–H globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.

  12. Environmental assessment of sewage sludge as secondary raw material in cement production--a case study in China.

    PubMed

    Hong, Jinglan; Li, Xiangzhi

    2011-06-01

    A life cycle assessment was carried out to estimate the environmental impact of sewage sludge as secondary raw material in cement production. To confirm and add credibility to the study, uncertainty analysis was conducted. Results showed the impact generated from respiratory inorganics, terrestrial ecotoxicity, global warming, and non-renewable energy categories had an important contribution to overall environmental impact, due to energy, clinker, and limestone production stages. Also, uncertainty analysis results showed the technology of sewage sludge as secondary raw material in cement production had little or no effect on changing the overall environmental potential impact generated from general cement production. Accordingly, using the technology of sewage sludge as secondary raw material in cement production is a good choice for reducing the pressure on the environment from dramatically increased sludge disposal. In addition, increasing electricity recovery rate, choosing natural gas fired electricity generation technology, and optimizing the raw material consumption in clinker production are highly recommended to reduce the adverse effects on the environment. PMID:21288709

  13. Effects of test sample shape and surface production method on the fatigue behaviour of PMMA bone cement.

    PubMed

    Sheafi, E M; Tanner, K E

    2014-01-01

    There is no consensus over the optimal criterion to define the fatigue life of bone cement in vitro. Fatigue testing samples have been made into various shapes using different surface preparation techniques with little attention being paid to the importance of these variations on the fatigue results. The present study focuses on the effect of test sample shape and surface production method on the fatigue results. The samples were manufactured with two cross sectional shapes: rectangular according to ISO 527 and circular according to ASTM F2118. Each shape was produced using two methods: direct moulding of the cement dough and machining from oversized rods. Testing was performed using two different bone cements: SmartSet GHV and DePuy CMW1. At least 10 samples of each category were tested, under fully reversed tension-compression fatigue stress at ±20MPa, to allow for Weibull analysis to compare results. The growth of fatigue cracks was observed by means of the changes in the absorbed energy and apparent modulus. It was found that fatigue crack growth can be altered by the sample shape and production method; however it is also dependent on the chemical composition of the cement. The results revealed that moulded samples, particularly those based on the ASTM F2118 standard, can lead to up to 5.5 times greater fatigue lives compared to the machined samples of the same cement. It is thus essential, when comparing the fatigue results of bone cement, to consider the effect of production method along with the shape of the test sample. PMID:24070780

  14. 76 FR 34252 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; Portland Cement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), Portland Cement... published a notice in the Federal Register pursuant to Section 6(b) of the Act on February 5, 1985 (50 FR... in the Federal Register pursuant to Section 6(b) of the Act on March 7, 2011 (76 FR 12370)....

  15. SEM/EDX characterization of the hydration products of belite cements from class C coal fly ash

    SciTech Connect

    Goni, S.; Guerrero, A.

    2007-12-15

    This paper presents the microscopic characterization of two types of fly ash belite cements and their hydration products by means of scanning electron microscopy, energy-dispersive X-ray microanalysis, and X-ray diffraction analysis. The cements were obtained from ASTM class C coal fly ash by the hydrothermal-calcination route in water (FABC-2-W) and NaOH 1M solution (FABC-2-N). The hydration was studied during a period of 180 days at 21{sup o}C and >95% RH. The results showed significant incorporation of aluminum (Al) into the C-S-H gel and other minor elements, with a presumable composition close to that of aluminum-tobermorite. The C-S-H composition of the FABC-2-W is more stable over the hydration time than that of the FABC-2-N cement. Portlandite is scarcely formed during hydration.

  16. Middle Pleistocene carbonate-cemented colluvium in southern Poland: Its depositional processes, diagenesis and regional palaeoenvironmental significance

    NASA Astrophysics Data System (ADS)

    Gradziński, Michał; Hercman, Helena; Staniszewski, Krzysztof

    2014-06-01

    A colluvial origin is postulated for the enigmatic relic mantle of immature, carbonate-cemented rudites on the bedrock slope of Kraków Highland, preserved in the area of Kwaczała Gullies. The deposits comprise four sedimentary facies: (A) sporadic clast-supported openwork conglomerates; (B) predominant matrix-supported massive conglomerates, some with a coarse-tail normal grading; (C) subordinate sheets of parallel stratified and/or ripple cross-laminated fine-grained sandstones; and (D) local coarse-grained sandstones with gently inclined parallel stratification. The 230Th-U dating of sparry calcite cements points to the penultimate Odranian/Warthanian interglacial. The debris was derived from local bedrock, inferred to have been frost-shattered in permafrost conditions during the Odranian glacial. Colluvial resedimentation was triggered by the rapid change in environment conditions brought by early deglaciation. Dense-snow/slush flows and slush-laden watery debris flows are thought to have transferred limestone debris from the upper to middle hillslope, where siliciclastic sand matrix was incorporated and solifluctional creep prevailed, accompanied by slope sheetwash processes. Carbonate cementation of the talus occurred in phreatic conditions during the penultimate Odranian/Warthanian interglacial (marine isotope stage 7), when soils formed and local springs supplied carbonate-saturated groundwater. The patchy preservation of cemented colluvium indicates its erosional relics. The Pleistocene colluvial mantle in the Kraków Highland was probably extensive, but was removed by subsequent erosion where non-cemented.

  17. Investigative and management techniques for cement kiln dust and pulp and paper mill process wastes

    SciTech Connect

    Peters, C.S.

    1997-12-31

    Knowledge of the characteristics of industrial process wastes allows for some innovative and cost savings techniques for investigating and managing these wastes over conventional methods. This paper explores examples of some of these techniques employed on cement kiln dust (CKD) and pulp and paper mill process waste. Similar to Portland Cement, unleached CKD contains free lime and sources of reactive silica and/or alumina. Thus, it can set up in the presence of water. Properly moisture conditioned CKD has been successfully used in Michigan as a landfill liner and cover material on closures of old CKD piles and newly permitted fills. In addition to its pozzolanic properties, CKD contains high concentrations of soluble salts, generating a leachate with high total dissolved solids concentrations. Surface and downhole geophysical methods employing electromagnetic conductivity have proven effective in delineating the horizontal and vertical extent of groundwater plumes. At one paper mill in Alabama where dewatered filter cake had been placed in a lined solid waste facility, liquids that had migrated to the surface due to excessive gas pressures caused unstable working conditions at the surface. Large, vertical french drains and a horizontal drainage blanket consisting of geogrid and sand constructed over the existing waste resulted in dewatering and a substantial increase in waste stability, allowing a vertical expansion to proceed. At a kraft mill in the southeastern US, a geotechnical investigation of a lime mud pond revealed that the stability of the unit would increase by construction of an overlying dike, thereby allowing a vertical expansion to proceed. Finally, laboratory testing and modeling of the behavior of paper mill sludges indicates that they can be used as a landfill cover with permeabilities equivalent to or better than compacted clay.

  18. Process to Product.

    ERIC Educational Resources Information Center

    Harrison, Gary, Ed.; Mirkes, Donna Z., Ed.

    Intended for educators who direct federally funded model projects, the booklet provides a framework for special education product development. In "Making Media Decisions," G. Richman explores procedures for selecting the most appropriate medium to carry the message of a given product. The fundamental questions are addressed: what is the goal; who…

  19. Assessment of ferrous chloride and Portland cement for the remediation of chromite ore processing residue.

    PubMed

    Jagupilla, Santhi C; Wazne, Mahmoud; Moon, Deok Hyun

    2015-10-01

    Chromite Ore Processing Residue (COPR) is an industrial waste containing up to 7% chromium (Cr) including up to 5% hexavalent chromium [Cr(VI)]. The remediation of COPR has been challenging due to the slow release of Cr(VI) from a clinker like material and thereby the incomplete detoxification of Cr(VI) by chemical reagents. The use of sulfur based reagents such as ferrous sulfate and calcium polysulfide to detoxify Cr(VI) has exasperated the swell potential of COPR upon treatment. This study investigated the use of ferrous chloride alone and in combination with Portland cement to address the detoxification of Cr(VI) in COPR and the potential swell of COPR. Chromium regulatory tests, X-ray powder diffraction (XRPD) analyses and X-ray absorption near edge structure (XANES) analyses were used to assess the treatment results. The treatment results indicated that Cr(VI) concentrations for the acid pretreated micronized COPR as measured by XANES analyses were below the New Jersey Department of Environmental Protection (NJDEP) standard of 20 mg kg(-1). The Toxicity characteristic leaching procedure (TCLP) Cr concentrations for all acid pretreated samples also were reduced below the TCLP regulatory limit of 5 mg L(-1). Moreover, the TCLP Cr concentration for the acid pretreated COPR with particle size ⩽0.010 mm were less than the universal treatment standard (UTS) of 0.6 mg L(-1). The treatment appears to have destabilized all COPR potential swell causing minerals. The unconfined compressive strength (UCS) for the treated samples increased significantly upon treatment with Portland cement. PMID:25966327

  20. Reuse of grits waste for the production of soil--cement bricks.

    PubMed

    Siqueira, F B; Holanda, J N F

    2013-12-15

    This investigation focuses on the reuse of grits waste as a raw material for replacing Portland cement by up to 30 wt.% in soil-cement bricks. The grits waste was obtained from a cellulose factory located in south-eastern Brazil. We initially characterized the waste sample with respect to its chemical composition, X-ray diffraction, fineness index, morphology, pozzolanic activity, and pollution potential. Soil-cement bricks were then prepared using the waste material and were tested to determine their technological properties (e.g., water absorption, apparent density, volumetric shrinkage, and compressive strength). Microstructural evolution was accompanied by confocal microscopy. It was found that the grits waste is mainly composed of calcite (CaCO3) particles. Our results indicate that grits waste can be used economically, safely, and sustainably at weight percentages of up to 20% to partially replace Portland cement in soil-cement bricks. PMID:24140481

  1. Recycling the product of thermal transformation of cement-asbestos for the preparation of calcium sulfoaluminate clinker.

    PubMed

    Viani, Alberto; Gualtieri, Alessandro F

    2013-09-15

    According to recent resolutions of the European Parliament (2012/2065(INI)), the need for environmentally friendly alternative solutions to landfill disposal of hazardous wastes, such as asbestos-containing materials, prompts their recycling as secondary raw materials (end of waste concept). In this respect, for the first time, we report the recycling of the high temperature product of cement-asbestos, in the formulation of calcium sulfoaluminate cement clinkers (novel cementitious binders designed to reduce CO₂ emissions), as a continuation of a previous work on their systematic characterization. Up to 29 wt% of the secondary raw material was successfully introduced into the raw mix. Different clinker samples were obtained at 1250 °C and 1300 °C, reproducing the phase composition of industrial analogues. As an alternative source of Ca and Si, this secondary raw material allows for a reduction of the CO₂ emissions in cement production, mitigating the ecological impact of cement manufacturing, and reducing the need for natural resources. PMID:23856311

  2. Acrylamide in processed potato products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trace amounts of acrylamide are found in many foods cooked at high temperatures. Acrylamide in processed potato products is formed from reducing sugars and asparagine and is a product of the Maillard reaction. Processed potato products including fries and chips are relatively high in acrylamide comp...

  3. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production.

    PubMed

    Wu, Kai; Shi, Huisheng; Guo, Xiaolu

    2011-01-01

    The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C(m)) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0~3.0 and firing the raw mixes at 1250 °C for 2h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied. PMID:21616653

  4. [The work process and occupational health risks in a cement factory].

    PubMed

    Ribeiro, Fátima Sueli Neto; Oliveira, Simone; Reis, Marcelo Moreno dos; Silva, Célia Regina Sousa da; Menezes, Marco Antônio Carneiro; Dias, Ana Elisa Xavier de Oliveira e; Moreira, Josino Costa; Kuryiama, Gisele Sayuri

    2002-01-01

    The authors evaluate the work process and its effect on workers' health in a cement factory in the State of Rio de Janeiro. The interactive methodology consisted of different approaches to assessing the workplace through the incorporation of various institutions working in the field of Workers' Health, professionals from different backgrounds, and the trade union, valorizing the workers' experience and actively contributing to the surveillance process under the Unified National Health System (SUS). Levels of particulate matter and noise were measured. The mean level of free crystalline silica in the particulate matter was 2%, resulting in a tolerance limit as specified under Brazilian legislation (NR-15), or 2.0mg/m3. The concentration of particles both in samples collected in the workers' respiratory zone and in area samples varied from 3.59 to 52.44mg/m3. Noise varied from 83dB to 110dB. The majority of the values were higher than the maximum limits set by Brazilian legislation. These results, together with the opinions expressed by the workers themselves, showed an unhealthy workplace and work process, placing the workers' health at risk. PMID:12244356

  5. [Lung cancer mortality in Casale Monferrato (Italy) and attributable risk to occupations in the asbestos-cement production].

    PubMed

    Magnani, C; Zanetti, R; Schiavo, D; Leporati, M; Botta, M

    1995-12-01

    The study presents mortality rates for lung cancer in the town of Casale Monferrato, where the largest Italian asbestos cement-plant was located. Cases of lung cancer dying in 1989-94 were exhaustively searched for in the register of deaths. Each case of lung cancer has been identified as ever or never employed in the factory with a linkage to the rosters of employees in the plant. Women were also identified as ever or never married to an asbestos-cement worker. The number of person-years at risk for asbestos cement workers and their wives was measured on the basis of the most recent follow-up. Mortality rates were computed separately for those exposed (workers and wives of workers) and for those with no evidence of exposure. Mortality rates for non-exposed were similar to rates in Piedmont (the region where Casale is located). The relative risk (ever exposed vs. never exposed) was 2.8 among men and 2.1 among women. Attributable risk among the exposed was 64.5% for men and 53.1% for women while among the general population it was 18.1% for men and 13.2% for women. The study confirms the dramatic effect of occupational asbestos exposure in Casale Monferrato but does not suggest an increase in lung cancer mortality among people with no occupational activity in the asbestos-cement production. PMID:8852083

  6. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  7. Fan System Optimization Improves Production and Saves Energy at Ash Grove Cement Plant

    SciTech Connect

    2002-05-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  8. Evaluation of Life-Cycle Assessment Studies of Chinese Cement Production: Challenges and Opportunities

    SciTech Connect

    Lu, Hongyou; Masanet, Eric; Price, Lynn

    2009-05-29

    The use of life-cycle assessment (LCA) to understand the embodied energy, environmental impacts, and potential energy-savings of manufactured products has become more widespread among researchers in recent years. This paper reviews recent LCA studies in the cement industry in China and in other countries and provides an assessment of the methodology used by the researchers compared to ISO LCA standards (ISO 14040:2006, ISO 14044:2006, and ISO/TR 14048:2002). We evaluate whether the authors provide information on the intended application, targeted audience, functional unit, system boundary, data sources, data quality assessment, data disaggregation and other elements, and draw conclusions regarding the level of adherence to ISO standards for the papers reviewed. We found that China researchers have gained much experience during last decade, but still have room for improvement in establishing boundaries, assessing data quality, identifying data sources, and explaining limitations. The paper concludes with a discussion of directions for future LCA research in China.

  9. Leaching of metals from cement under simulated environmental conditions.

    PubMed

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment. PMID:26802528

  10. Pore-filling cements in turbidites; Southern California: Products of early diagenesis and dewatering of shale

    NASA Astrophysics Data System (ADS)

    Krystinik, L. F.

    Cementation of deep sea fan deposits which begins at the sediment water interface and continues progressively to the maximum depths was studied. The type and intensity of cementation is determined, in part, by the labile components within the system. Authigenic iron-rich smectite (AIRS) is the earliest cement in deep sea sediment. Formation of AIRS begins with the dissolution of biogenic silica. The Stevens sand provides insight into the early stages of graywacke formation. A significant volume of nondetrital, nonpseudomatrix clay is generated by precipitation of dissolved species carried into a sandstone body by waters expelled from adjacent shale. The Stevens also provides insight into turbidite sedimentation within a restricted basin supplied by several sediment sources. Most Cenozoic turbidities from southern California contain either calcite cement which occludes porosity and preserves the initial character of the sediment, or a silica clay cement which reduces porosity slightly, but occludes permeability. Cementation of sandstones by clays precipitated from pore fluids generated in adjacent shales may be a first step toward the genesis of graywacke.

  11. NASA Product Peer Review Process

    NASA Technical Reports Server (NTRS)

    Jenks, Ken

    2009-01-01

    This viewgraph presentation describes NASA's product peer review process. The contents include: 1) Inspection/Peer Review at NASA; 2) Reasons for product peer reviews; 3) Different types of peer reviews; and 4) NASA requirements for peer reviews. This presentation also includes a demonstration of an actual product peer review.

  12. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production

    SciTech Connect

    Wu Kai; Shi Huisheng; Guo Xiaolu

    2011-09-15

    Highlights: > The replacement can be taken up to 30% of MSWI fly ash in the raw mix. > The novelty compositional parameters were defined, their optimum values were determined. > Expansive property of SAC is strongly depended on gypsum content. > Three leaching test methods are used to assess the environmental impact. - Abstract: The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C{sub m}) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0{approx}3.0 and firing the raw mixes at 1250 deg. C for 2 h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied.

  13. The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans

    SciTech Connect

    Cruz, J.M.; Fita, I.C.; Soriano, L.; Payá, J.; Borrachero, M.V.

    2013-08-15

    In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration and allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid–solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.

  14. Characterization of U(VI)-phases in corroded cement products by micro(μ)-spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Rothe, J.; Brendebach, B.; Bube, C.; Dardenne, K.; Denecke, M. A.; Kienzler, B.; Metz, V.; Prüßmann, T.; Rickers-Appel, K.; Schild, D.; Soballa, E.; Vitova, T.

    2013-04-01

    Cementation is an industrial scale conditioning method applied to fix and solidify liquid low and intermediate level radioactive wastes (LLW/ILW) prior to underground disposal in geological formations.To assist prognosis of the long-term safety of cemented waste, alteration of uranium doped cement productswas studied in chloride-rich solutions relevant for final LLW/ILW disposal in rock salt. After long-time exposure of the full-scale LLW/ILW simulates to concentrated NaCl and MgCl2 brines, solid samples were retrieved for chemical and mineralogical analysis with an emphasis on uranium speciation in the corroded cement matrix.Bulk and recent spatially resolved micro(μ) U L3-XAFS measurements point to the occurrence of a diuranate type U(VI) phase forming throughout the corroded cement monoliths. U-enriched hot spots with dimensions up to several tens of μm turn out to be generally X-ray amorphous.

  15. Comparison of glass ionomer cement and incus interposition in reconstruction of incus long process defects.

    PubMed

    Dere, Huseyin; Ozdogan, Fatih; Ozcan, K Murat; Selcuk, Adin; Ozcan, Ibrahim; Gokturk, Gokhan

    2011-11-01

    The ossicles may be affected through the mass effect of the pathological tissue in chronic otitis media. Ossicular reconstruction may be accomplished using the patients' own ossicles or with alloplastic materials. Glass ionomer ossiculoplasty is a fast, efficient, safe and cost-effective method and it has been used more frequently in recent years. Forty-six patients who had surgery for chronic otitis media were included in this study. All patients had an incus long process defect and a normal stapes superstructure. Ossicular reconstruction was performed using glass ionomer cement (GIC) (Ketac-Cem, Espe Dental AG, Seefeld, Germany) in 23 patients (group 1), while incus interposition was performed in other 23 patients (group 2). Preoperative and postoperative air pure tone averages of the group 1 patients were 42.8 and 35.2 dB, respectively (p < 0.01). These values were 42.9 and 34.5 dB in group 2 (p < 0.01). Two groups were similar with respect to postoperative hearing gain (p > 0.05). The air bone gap of group 1 was 27 dB preoperatively and 20.7 dB postoperatively. These values were 28.7 and 20.2 dB, respectively, in group 2. The closure of air bone gap was statistically significant in both the groups (p < 0.01, p < 0.01). The comparison of the mean gains of the air bone gap revealed no difference between the groups (p > 0.05). In conclusion, the use of both GIC ossiculoplasty and incus interposition are efficient methods for reconstruction of incus long process and one is not superior to the other. A larger study population may be useful for comparison of these methods. PMID:21340562

  16. PORE STRUCTURE MODEL OF CEMENT HYDRATES CONSIDERING PORE WATER CONTENT AND REACTION PROCESS UNDER ARBITRARY HUMIDITY

    NASA Astrophysics Data System (ADS)

    Fujikura, Yusuke; Oshita, Hideki

    A simulation model to estimate the pore structure of cement hydrates by curing in arbitrary relative humidity is presented. This paper describes procedures for predicting phase compositions based on the classical hydration model of Portland cement, calculating the particle size distribution of constituent phases and evaluating the pore size distribution by stereological and statistical considerations. And to estimate the water content in pore structure under any relative humidity, we proposed the simulation model of adsorption isotherm model based on the pore structure. To evaluate the effectiveness of this model, simulation results were compared with experimental results of the pore size distribution measured by mercury porosimetry. As a result, it was found that the experimental and simulated results were in close agreement, and the simulated results indicated characterization of the po re structure of cement hydrates.

  17. Products and Processes: Synergistic Relationships

    ERIC Educational Resources Information Center

    Wallace, Virginia; Husid, Whitney

    2013-01-01

    Most people agree that products are the culmination of what students have studied. For this article, "product" will refer to students' abilities to create outcomes and design artifacts. Those abilities are guided by four processes: inquiry-based learning, use of a research model, use of Web 2.0 tools, and appropriate assessments.…

  18. Leaching of hazardous substances from a composite construction product--an experimental and modelling approach for fibre-cement sheets.

    PubMed

    Lupsea, Maria; Tiruta-Barna, Ligia; Schiopu, Nicoleta

    2014-01-15

    The leaching behaviour of a commercial fibre-cement sheet (FCS) product has been investigated. A static pH dependency test and a dynamic surface leaching test have been performed at lab scale. These tests allowed the development of a chemical-transport model capable to predict the release of major and trace elements over the entire pH range, in function of time. FCS exhibits a cement-type leaching behaviour with respect to the mineral species. Potentially hazardous species are released in significant quantities when compared to their total content. These are mainly heavy metals commonly encountered in cement matrixes and boron (probably added as biocide). Organic compounds considered as global dissolved carbon are released in significant concentrations, originating probably from the partial degradation of the organic fibres. The pesticide terbutryn (probably added during the preservative treatment of the organic fibres) was systematically identified in the leachates. The simulation of an upscaled runoff scenario allowed the evaluation of the cumulative release over long periods and the distribution of the released quantities in time, in function of the local exposure conditions. After 10 years of exposure the release reaches significant fractions of the species' total content - going from 4% for Cu to near 100% for B. PMID:24295776

  19. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem'' wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above it's melting point (120{degree}C), combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991. 12 refs., 8 figs., 3 tabs.

  20. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  1. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  2. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  3. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    SciTech Connect

    Robert Weber; Norman Whitton

    2010-09-30

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  4. Modeling Production Plant Forming Processes

    SciTech Connect

    Rhee, M; Becker, R; Couch, R; Li, M

    2004-09-22

    Engineering has simulation tools and experience in modeling forming processes. Y-12 personnel have expressed interest in validating our tools and experience against their manufacturing process activities such as rolling, casting, and forging etc. We have demonstrated numerical capabilities in a collaborative DOE/OIT project with ALCOA that is nearing successful completion. The goal was to use ALE3D to model Alcoa's slab rolling process in order to demonstrate a computational tool that would allow Alcoa to define a rolling schedule that would minimize the probability of ingot fracture, thus reducing waste and energy consumption. It is intended to lead to long-term collaboration with Y-12 and perhaps involvement with other components of the weapons production complex. Using simulations to aid in design of forming processes can: decrease time to production; reduce forming trials and associated expenses; and guide development of products with greater uniformity and less scrap.

  5. Mineralogical composition and phase-to-phase relationships in natural hydraulic lime and/or natural cement - raw materials and burnt products revealed by scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Kozlovcev, Petr; Přikryl, Richard; Racek, Martin; Přikrylová, Jiřina

    2016-04-01

    In contrast to modern process of production of cement clinker, traditional burning of natural hydraulic lime below sintering temperature relied on the formation of new phases from ion migration between neighbouring mineral grains composing raw material. The importance of the mineralogical composition and spatial distribution of rock-forming minerals in impure limestones used as a raw material for natural hydraulic lime presents not well explored issue in the scientific literature. To fill this gap, the recent study focuses in detailed analysis of experimentally burnt impure limestones (mostly from Barrandian area, Bohemian Massif). The phase changes were documented by optical microscopy, X-ray diffraction, and scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS) coupled with x-ray elemental mapping. The latest allowed for visualization of distribution of elements within raw materials and burnt products. SEM/EDS study brought valuable data on the presence of transitional and/or minor phases, which were poorly detectable by other methods.

  6. Case Study of the California Cement Industry

    SciTech Connect

    Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

    2005-05-01

    California is the largest cement producing state in theU.S., accounting for between 10 percent and 15 percent of U.S. cementproduction and cement industry employment. The cement industry inCalifornia consists of 31 sites that consume large amounts of energy,annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3million tons of coal, 0.25 tons of coke, and smaller amounts of wastematerials, including tires. The case study summarized in this paperfocused on providing background information, an assessment ofenergy-efficiency opportunities and barriers, and program recommendationsthat can be used by program planners to better target products to thecement industry. The primary approach to this case study involvedwalk-through surveys of customer facilities and in depth interviews withcustomer decision makers and subsequent analysis of collected data. Inaddition, a basic review of the cement production process was developed,and summary cement industry energy and economic data were collected, andanalyzed. The analysis of secondary data provides background informationon the cement industry and identification of potential energy-efficiencyopportunities. The interviews provide some understanding of the customerperspective about implementation of energy-efficiencyprojects.

  7. Bone cement

    PubMed Central

    Vaishya, Raju; Chauhan, Mayank; Vaish, Abhishek

    2013-01-01

    The knowledge about the bone cement is of paramount importance to all Orthopaedic surgeons. Although the bone cement had been the gold standard in the field of joint replacement surgery, its use has somewhat decreased because of the advent of press-fit implants which encourages bone in growth. The shortcomings, side effects and toxicity of the bone cement are being addressed recently. More research is needed and continues in the field of nanoparticle additives, enhanced bone–cement interface etc. PMID:26403875

  8. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    SciTech Connect

    Hasanbeigi, Ali; Lu, Hongyou; Williams, Christopher; Price, Lynn

    2012-07-01

    The purpose of this report is to describe international best practices for pre-processing and coprocessing of MSW and sewage sludge in cement plants, for the benefit of countries that wish to develop co-processing capacity. The report is divided into three main sections. Section 2 describes the fundamentals of co-processing, Section 3 describes exemplary international regulatory and institutional frameworks for co-processing, and Section 4 describes international best practices related to the technological aspects of co-processing.

  9. Preparation and characterization of a novel strontium-containing calcium phosphate cement with the two-step hydration process.

    PubMed

    Yu, Tao; Ye, Jiandong; Wang, Yingjun

    2009-09-01

    A novel Sr-containing calcium phosphate cement (CPC) with excellent compressive strength, good radiopacity and suitable setting time was developed in this work. The two-step hydration reaction resulted in a high compressive strength, with a maximum of up to 74.9MPa. Sr was doped into the calcium-deficient hydroxyapatite as a hydrated product during the hydration reaction of the CPC. Because of the existence of Sr element and the compact microstructure after hydration, the Sr-containing CPC shows good radiopacity. It is expected to be used in orthopedic and maxillofacial surgery for bone defects repairing. PMID:19380262

  10. Copper-promoted cementation of antimony in hydrochloric acid system: A green protocol.

    PubMed

    Wu, Lian-Kui; Li, Ying-Ying; Cao, Hua-Zhen; Zheng, Guo-Qu

    2015-12-15

    A new method of recovering antimony in hydrochloric acid system by cementation with copper powder was proposed and carried out at laboratory scale. Thermodynamic analysis and cyclic voltammetry test were conducted to study the cementation process. This is a novel antimony removal technology and quite meets the requirements of green chemistry. The main cement product Cu2Sb is a promising anodic material for lithium and sodium ion battery. And nearly all consumed copper powder are transformed into CuCl which is an important industrial material. The effect of reaction temperature, stoichiometric ratio of Cu to Sb(III), stirring rate and concentration of HCl on the cementation efficiency of antimony were investigated in detail. Optimized cementation condition is obtained at 60 °C for 120 min and stirring rate of 600 rpm with Cu/Sb(III) stoichiometric ratio of 6 in 3 mol L(-1) HCl. At this time, nearly all antimony can be removed by copper powder and the cementation efficiency is over 99%. The structure and morphologies of the cement products were characterized by X-ray diffraction and scanning electron microscopy, respectively. Results show that the reaction temperature has little influence on the morphology of the cement products which consist of particles with various sizes. The activation energy of the cementation antimony on copper is 37.75 kJ mol(-1), indicating a chemically controlled step. Inductively coupled plasma mass spectrometry results show that no stibine generates during the cementation process. PMID:26252996

  11. The use of by-products from metallurgical and mineral industries as filler in cement-based materials.

    PubMed

    Moosberg, Helena; Lagerblad, Björn; Forssberg, Eric

    2003-02-01

    This investigation has been made in order to make it possible to increase the use of by-products in cement-based materials. Use of by-products requires a screening procedure that will reliably determine their impact on concrete. A test procedure was developed. The most important properties were considered to be strength development, shrinkage, expansion and workability. The methods used were calorimetry, flow table tests, F-shape measurements, measurements of compressive and flexural strength and shrinkage/expansion measurements. Scanning electron microscopy was used to verify some results. Twelve by-products were collected from Swedish metallurgical and mineral industries and classified according to the test procedure. The investigation showed that the test procedure clearly screened out the materials that can be used in the production of concrete from the unsuitable ones. PMID:12667016

  12. An extrapolation method for compressive strength prediction of hydraulic cement products

    SciTech Connect

    Siqueira Tango, C.E. de

    1998-07-01

    The basis for the AMEBA Method is presented. A strength-time function is used to extrapolate the predicted cementitious material strength for a late (ALTA) age, based on two earlier age strengths--medium (MEDIA) and low (BAIXA) ages. The experimental basis for the method is data from the IPT-Brazil laboratory and the field, including a long-term study on concrete, research on limestone, slag, and fly-ash additions, and quality control data from a cement factory, a shotcrete tunnel lining, and a grout for structural repair. The method applicability was also verified for high-performance concrete with silica fume. The formula for predicting late age (e.g., 28 days) strength, for a given set of involved ages (e.g., 28,7, and 2 days) is normally a function only of the two earlier ages` (e.g., 7 and 2 days) strengths. This equation has been shown to be independent on materials variations, including cement brand, and is easy to use also graphically. Using the AMEBA method, and only needing to know the type of cement used, it has been possible to predict strengths satisfactorily, even without the preliminary tests which are required in other methods.

  13. Discovery Reconceived: Product before Process

    ERIC Educational Resources Information Center

    Abrahamson, Dor

    2012-01-01

    Motivated by the question, "What exactly about a mathematical concept should students discover, when they study it via discovery learning?", I present and demonstrate an interpretation of discovery pedagogy that attempts to address its criticism. My approach hinges on decoupling the solution process from its resultant product. Whereas theories of…

  14. (31)P Solid-State NMR study of the chemical setting process of a dual-paste injectable brushite cements.

    PubMed

    Legrand, A P; Sfihi, H; Lequeux, N; Lemaître, J

    2009-10-01

    The composition and evolution of a brushite-type calcium phosphate cement was investigated by Solid-State NMR and X-ray during the setting process. The cement is obtained by mixing beta-tricalcium phosphate [Ca(3)(PO(4))(2), beta-TCP] and monocalcium phosphate monohydrate [Ca(H(2)PO(4))(2).H(2)O, MCPM] in presence of water, with formation of dicalcium phosphate dihydrate or brushite [CaHPO(2).2H(2)O, DCPD]. Analysis of the initial beta-TCP paste has shown the presence of beta-calcium pyrophosphate [Ca(2)P(2)O(7), beta-CPy] and that of the initial MCPM a mixture of MCPM and dicalcium phosphate [CaHPO(4), DCP]. Follow-up of the chemical composition by (31)P Solid-State NMR enables to show that the chemical setting process appeared to reach an end after 20 min. The constant composition observed at the end of the process was similarly determined. PMID:19365821

  15. Composition and process for stimulating well production

    SciTech Connect

    Allen, J.C.; Tate, J.F.

    1980-08-26

    The production of hydrocarbons from a subterranean hydrocarbonbearing formation containing acid-soluble components, such as one composed at least in part of dolomite or limestone, is stimulated by injecting into the formation usually via casing and cement pack perforations a composition comprising an aqueous solution of a mineral acid having dissolved therein a small amount of a vinylpyrrolidone terpolymer. The increase in the permeability and porosity of the formation achieved utilizing the method of invention results in a substantial improvement in hydrocarbon recovery. Optionally, the injected composition may be saturated with natural gas at the injection pressure.

  16. Predicting the Impact of Multiwalled Carbon Nanotubes on the Cement Hydration Products and Durability of Cementitious Matrix Using Artificial Neural Network Modeling Technique

    PubMed Central

    Fakhim, Babak; Hassani, Abolfazl; Rashidi, Alimorad; Ghodousi, Parviz

    2013-01-01

    In this study the feasibility of using the artificial neural networks modeling in predicting the effect of MWCNT on amount of cement hydration products and improving the quality of cement hydration products microstructures of cement paste was investigated. To determine the amount of cement hydration products thermogravimetric analysis was used. Two critical parameters of TGA test are PHPloss and CHloss. In order to model the TGA test results, the ANN modeling was performed on these parameters separately. In this study, 60% of data are used for model calibration and the remaining 40% are used for model verification. Based on the highest efficiency coefficient and the lowest root mean square error, the best ANN model was chosen. The results of TGA test implied that the cement hydration is enhanced in the presence of the optimum percentage (0.3 wt%) of MWCNT. Moreover, since the efficiency coefficient of the modeling results of CH and PHP loss in both the calibration and verification stages was more than 0.96, it was concluded that the ANN could be used as an accurate tool for modeling the TGA results. Another finding of this study was that the ANN prediction in higher ages was more precise. PMID:24489487

  17. Synthesis: Intertwining product and process

    NASA Technical Reports Server (NTRS)

    Weiss, David M.

    1990-01-01

    Synthesis is a proposed systematic process for rapidly creating different members of a program family. Family members are described by variations in their requirements. Requirements variations are mapped to variations on a standard design to generate production quality code and documentation. The approach is made feasible by using principles underlying design for change. Synthesis incorporates ideas from rapid prototyping, application generators, and domain analysis. The goals of Synthesis and the Synthesis process are discussed. The technology needed and the feasibility of the approach are also briefly discussed. The status of current efforts to implement Synthesis methodologies is presented.

  18. Sulfur polymer cement as a low-level waste glass matrix encapsulant. Part 1: Thermal processing

    SciTech Connect

    Sliva, P.; Peng, Y.B.; Bunnell, L.R.; Peeler, D.K.; Feng, X.; Martin, P.; Turner, P.J.

    1996-08-01

    Sulfur polymer cement (SPC) is a candidate material to encapsulate low-level waste (LLW) glass. Molten SPC will be poured into a LLW glass cullet-filled canister, surrounding the glass to act as an additional barrier to groundwater intrusion. This paper covers the first part of a study performed at Pacific Northwest National Laboratory concerned with the fundamental aspects of embedding LLW glass in SPC. Part one is a study of the SPC itself. Variations in SPC properties are discussed, especially in relation to long-term stability and controlling crystallization in a cooling canister.

  19. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this

  20. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  1. Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan

    SciTech Connect

    Burkitbayev, M.; Omarova, K.; Tolebayev, T.; Galkin, A.; Bachilova, N.; Blynskiy, A.; Maev, V.; Wells, D.; Herrick, A.; Michelbacher, J.

    2008-07-01

    This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

  2. Modifications of sulfur polymer cement (SPC) stabilization and solidification (S/S) process

    SciTech Connect

    Lin, S.L.; Lai, J.S.; Chian, E.S.K.

    1995-12-31

    This paper addresses the effectiveness of using sulfur polymer cement (SPC) as a binder to stabilize/solidify lead-contaminated soils. SPC, which has been used as a construction material because of its excellent resistance to acid and salt environments and its superior water tightness as compared with Portland cement concrete, has recently emerged as a possible alternative binder to stabilize/solidify soils contaminated with hazardous, low-level radioactive and mixed wastes. However, it was found that the use of SPC alone could not satisfactorily stabilize/solidify lead-contaminated soils. Nevertheless, it was shown that additives, such as sodium sulfide or sodium sulfite, could be used to greatly enhance the ability of SPC to react chemically with lead contaminants, and physicochemically to bind these compounds. These enable us significantly to lower the leachability (e.g. from 77.8 mg Pb/l to 1.28 mg Pb/l in EPA TCLP extract) of the SPC-treated wastes to the point where they can be recycled as some form of construction material.

  3. Cement disease.

    PubMed

    Jones, L C; Hungerford, D S

    1987-12-01

    Does "cement disease" exist? The bony environment surrounding a loosened cemented prosthesis is an abnormal pathologic condition which, if left unattended, will progress to a total failure of the joint including an inhibition of function and immobilizing pain. That biomaterial properties of the cement used for fixation also contribute to the pathologic state separates this disease from other modes of loosening. This leads inevitably to the conclusion that "cement disease" does exist. Methyl methacrylate has revolutionized the treatment of severe joint dysfunction. There can be no doubt that improving surgical technique, cement handling, and the cement itself will continue to improve the results and reduce the incidence of failure due to loosening. Cement is undoubtedly satisfactory for elderly patients with low activity levels and relatively short life expectancies. However, because of the inherent biologic and biomechanical properties of methyl methacrylate, it is unlikely that it can be rendered satisfactory in the long run for the young, the active, or the overweight patient, for whom alternatives are currently being sought. In such cases, the elimination of "cement disease" can only occur with the elimination of cement. Alternatives include the search for other grouting materials and the development of prostheses with satisfactory surfaces for either press-fit or biologic ingrowth. PMID:3315375

  4. Environmentally compatible spray cement

    SciTech Connect

    Loeschnig, P.

    1995-12-31

    Within the framework of a European research project, Heidelberger Zement developed a quickly setting and hardening binder for shotcrete, called Chronolith S, which avoids the application of setting accelerators. Density and strength of the shotcrete produced with this spray cement correspond to those of an unaccelerated shotcrete. An increased hazard for the heading team and for the environment, which may occur when applying setting accelerators, can be excluded here. Owing to the special setting properties of a spray cement, the process engineering for its manufacturing is of great importance. The treatment of a spray cement as a dry concrete with kiln-dried aggregates is possible without any problems. The use of a naturally damp pre-batched mixture is possible with Chronolith S but requires special process engineering; spray cement and damp aggregate are mixed with one another immediately before entering the spraying machinery.

  5. Cobalt, titanium and PMMA bone cement debris influence on mouse osteoblast cell elasticity, spring constant and calcium production activity

    PubMed Central

    Preedy, Emily Callard; Perni, Stefano

    2015-01-01

    Periprosthetic osteolysis and implant loosening are the outcomes of wear debris generation in total joint replacements. Wear debris formed from the implanted materials consisting of metals, polymers, ceramic and bone cement initiate the immune system response. Often osteoblasts, the principal cell type in bone tissue adjacent to the prostheses, are directly impacted. In this study, the influence of cobalt, titanium and PMMA bone cement particles of different sizes, charges and compositions on mouse osteoblast adhesion, nanomechanics (elasticity and spring constant) and metabolic activity were investigated. These studies were accompanied by osteoblast mineralisation experiments and cell uptake after exposure to particles at defined time points. Our results demonstrate that alteration of the nanomechanical properties are mainly dependent on the metal type rather than nanoparticles size and concentration. Moreover, despite uptake increasing over exposure time, the cell characteristics exhibit changes predominately after the first 24 hours, highlighting that the cell responses to nanoparticle exposure are not cumulative. Understanding these processes is critical to expanding our knowledge of implant loosening and elucidating the nature of prosthetic joint failure. PMID:27019701

  6. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  7. Reuse of fresh water sludge in cement making.

    PubMed

    Pan, R; Huang, C; Lin, S

    2004-01-01

    With the increasing demand for high quality water, a large quantity of chemical agent must be added in the water purification process, which in turn generates enormous amount of fresh water sludge. Of all the options for sludge disposal, sludge reuse has been considered most economical and environmentally sound. This study evaluated the possibility of incorporating fresh water sludge in the making of Portland cement through the sintering process. The goal was to search for the optimal condition to maximize the replacement of clay with the fresh water sludge. Characteristics of fresh water sludge were collected and analyzed. The analysis showed that water source and water treatment process dominate th characteristics, particularly the chemical composition of the fresh water sludge. The fresh water sludge was mixed with the cement clay in various percentages, from 0% to 100%, as raw material for cement-making. The effects of its addition on the sintering condition and the quality of cement were evaluated. The analysis of the clinkers showed that the addition of the fresh water sludge did not change the phase form and the f-CaO content of the cement. The compressive strength of the masonry increased with the increasing addition of fresh water sludge. All cement products made from various replacement ratios met the Chinese National Standard of first degree Portland cement. PMID:15581011

  8. Cancer mortality in towns in the vicinity of installations for the production of cement, lime, plaster, and magnesium oxide.

    PubMed

    García-Pérez, Javier; López-Abente, Gonzalo; Castelló, Adela; González-Sánchez, Mario; Fernández-Navarro, Pablo

    2015-06-01

    Our objective was to investigate whether there might be excess cancer mortality in the vicinity of Spanish installations for the production of cement, lime, plaster, and magnesium oxide, according to different categories of industrial activity. An ecologic study was designed to examine municipal mortality due to 33 types of cancer (period 1997-2006) in Spain. Population exposure to pollution was estimated on the basis of distance from town to industrial facility. Using spatial Besag-York-Mollié regression models with integrated nested Laplace approximations for Bayesian inference, we assessed the relative risk of dying from cancer in a 5-km zone around installations, analyzed the effect of category of industrial activity according to the manufactured product, and conducted individual analyses within a 50-km radius of each installation. Excess all cancer mortality (relative risk, 95% credible interval) was detected in the vicinity of these installations as a whole (1.04, 1.01-1.07 in men; 1.03, 1.00-1.06 in women), and, principally, in the vicinity of cement installations (1.05, 1.01-1.09 in men). Special mention should be made of the results for tumors of colon-rectum in both sexes (1.07, 1.01-1.14 in men; 1.10, 1.03-1.16 in women), and pleura (1.71, 1.24-2.28), peritoneum (1.62, 1.15-2.20), gallbladder (1.21, 1.02-1.42), bladder (1.11, 1.03-1.20) and stomach (1.09, 1.00-1.18) in men in the vicinity of all such installations. Our results suggest an excess risk of dying from cancer, especially in colon-rectum, in towns near these industries. PMID:25681568

  9. The FGM Concept in the Development of Fiber Cement Components

    SciTech Connect

    Dias, C. M. R.; John, V. M.; Savastano, H. Jr.

    2008-02-15

    The FGM concept appears promising in improving the mechanical performance and reducing production costs of fiber cement building components. However, it has not yet been broadly applied to fiber cement technology. In this study we analyze the functionally graded fiber cement concept and its potential for industrial application in Hatschek machines. The conventional Hatschek process is summarized as well as the proposed modifications to allow FGM fiber cement production. The feasibility of producing functionally graded fiber cement by grading PVA fiber content was experimentally evaluated. Thermogravimetric (TG) and Scanning Electron Microscope (SEM) analysis were used to evaluate fiber distribution profiles. Four-point bending tests were applied to evaluate the mechanical performance of both conventional and functionally graded composites. The results shows that grading PVA fiber content is an effective way to produce functionally graded fiber cement, allowing the reduction of the total fiber volume without significant reduction on composite MOR. TG tests were found adequate to assess fiber content at different positions in functionally graded fiber cements.

  10. Chemical production processes and systems

    DOEpatents

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  11. Chemical production processes and systems

    SciTech Connect

    Holladay, Johnathan E; Muzatko, Danielle S; White, James F; Zacher, Alan H

    2015-04-21

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  12. Research of magnesium phosphosilicate cement

    NASA Astrophysics Data System (ADS)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  13. Acid attack on hydrated cement — Effect of mineral acids on the degradation process

    SciTech Connect

    Gutberlet, T.; Hilbig, H.; Beddoe, R.E.

    2015-08-15

    During acid attack on concrete structural components, a degraded layer develops whose properties as a protective barrier are decisive for durability. {sup 29}Si NMR spectroscopy and {sup 27}Al NMR spectroscopy were used with XRD to investigate the degraded layer on hardened cement paste exposed to HCl and H{sub 2}SO{sub 4}. The layer comprises an amorphous silica gel with framework silicates, geminate and single silanol groups in which Si is substituted by Al. Amorphous Al(OH){sub 3} and Fe(OH){sub 3} are present. The gel forms by polycondensation and cross-linking of C-A-S-H chains at AlO{sub 4} bridging tetrahedra. In the transition zone between the degraded layer and the undamaged material, portlandite dissolves and Ca is removed from the C-A-S-H phases maintaining their polymer structure at first. With HCl, monosulphate in the transition zone is converted into Friedel's salt and ettringite. With H{sub 2}SO{sub 4}, gypsum precipitates near the degradation front reducing the thickness of the transition zone and the rate of degradation.

  14. Speciality cements with advanced properties

    SciTech Connect

    Scheetz, B.E. ); Landers, A.G. ); Odler, I. ); Jennings, H. )

    1991-01-01

    The subject matter, specialty cements with advanced properties, highlight some of the recent progress in the non-standard cementitious systems. The topic was intended to be broad enough to include MDF and DSP cement, as well as phosphate-based and other binders. The response to this broad request resulted in a wide variational sampling of potential binder systems, which included calcium phosphates, magnesium phosphates, silica systems derived from sodium fluosilicates, stratlingite glasses, alkali-activated blended cements, and aluminophosphates. Presentations also addressed in depth, the underlying processing and fundamental insight into macro defect cements and DSP.

  15. Climate change: The impact of the third conference of the parties at Kyoto on the U.S. Portland cement industry

    SciTech Connect

    Cahn, D.; Nisbet, M.; O`Hare, A.

    1998-12-31

    The paper provides, as background, a brief review of the structure of the US cement industry. It outlines the growth trends of the industry over the last 20 years. It describes the sources and significance of cement imports in the US market, and the importance of exports to Canadian cement producers. The sources of CO{sub 2}, the primary greenhouse gas emitted in the cement manufacturing process, are explained and the impact of improved energy efficiency and fuel switching on CO{sub 2} emissions per ton of product are discussed. The aspects of the Kyoto Protocol relevant to the US cement industry are analyzed as are the types of impacts they can be expected to have on: cement trade, domestic cement production, long term growth of the US cement industry, and US cement industry CO{sub 2} emissions. The paper projects the US cement industry CO{sub 2} emissions to 2010, taking into account anticipated improvements in energy efficiency. It discusses manufacturing process and changes that could be made to reduce CO{sub 2} emissions. The paper also covers the types of product modifications that might be made to reduce the embodied CO{sub 2} content. Where possible the potential reductions in CO{sub 2} emissions from process and product changes are quantified.

  16. Wood Technology: Techniques, Processes, and Products

    ERIC Educational Resources Information Center

    Oatman, Olan

    1975-01-01

    Seven areas of wood technology illustrates applicable techniques, processes, and products for an industrial arts woodworking curriculum. They are: wood lamination; PEG (polyethylene glycol) diffusion processes; wood flour and/or particle molding; production product of industry; WPC (wood-plastic-composition) process; residential construction; and…

  17. Development of nanosilica bonded monetite cement from egg shells.

    PubMed

    Zhou, Huan; Luchini, Timothy J F; Boroujeni, Nariman Mansouri; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5±1 min. The compressive strength after 24h of incubation was approximately 8.45±1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10±1 min) process by about 2.5 min and improve compressive strength (20.16±4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. PMID:25746244

  18. Properties and hydration of blended cements with steelmaking slag

    SciTech Connect

    Kourounis, S.; Tsivilis, S. . E-mail: stsiv@central.ntua.gr; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z.

    2007-06-15

    The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the '0-5 mm', due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C{sub 2}S and its low content in calcium silicates.

  19. XML-based product information processing method for product design

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen Yu

    2012-01-01

    Design knowledge of modern mechatronics product is based on information processing as the center of the knowledge-intensive engineering, thus product design innovation is essentially the knowledge and information processing innovation. Analysis of the role of mechatronics product design knowledge and information management features, a unified model of XML-based product information processing method is proposed. Information processing model of product design includes functional knowledge, structural knowledge and their relationships. For the expression of product function element, product structure element, product mapping relationship between function and structure based on the XML model are proposed. The information processing of a parallel friction roller is given as an example, which demonstrates that this method is obviously helpful for knowledge-based design system and product innovation.

  20. XML-based product information processing method for product design

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen Yu

    2011-12-01

    Design knowledge of modern mechatronics product is based on information processing as the center of the knowledge-intensive engineering, thus product design innovation is essentially the knowledge and information processing innovation. Analysis of the role of mechatronics product design knowledge and information management features, a unified model of XML-based product information processing method is proposed. Information processing model of product design includes functional knowledge, structural knowledge and their relationships. For the expression of product function element, product structure element, product mapping relationship between function and structure based on the XML model are proposed. The information processing of a parallel friction roller is given as an example, which demonstrates that this method is obviously helpful for knowledge-based design system and product innovation.

  1. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    NASA Astrophysics Data System (ADS)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  2. Characterization of spatial impact of particles emitted from a cement material production facility on outdoor particle deposition in the surrounding community.

    PubMed

    Yu, Chang Ho; Fan, Zhihua; McCandlish, Elizabeth; Stern, Alan H; Lioy, Paul J

    2011-10-01

    The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3-4 weeks each) were conducted in 8-11 locations 200-800 m downwind of the facility. Background samples were concurrently collected in a remote area located -2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the < 38 microm fraction subsample were analyzed to obtain the elemental source profile. The particle deposition flux in the study area was higher (24-83 mg/m2 x day) than at the background sites (13-17 mg/m2day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P < 0.05). The ratio of Ca/Al, an indicator of Ca enrichment due to anthropogenic sources in a given sample, showed a similar trend. These observations suggest a significant contribution of the facility to the local particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8-7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0-11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7

  3. Characterization of Spatial Impact of Particles Emitted from a Cement Material Production Facility on Outdoor Particle Deposition in the Surrounding Community

    PubMed Central

    Yu, Chang Ho; Fan, Zhihua (Tina); McCandlish, Elizabeth; Stern, Alan H.; Lioy, Paul J.

    2014-01-01

    The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3–4 weeks each) were conducted in 8–11 locations 200–800 m downwind of the facility. Background samples were concurrently collected in a remote area located ~2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the <38 μm fraction subsample were analyzed to obtain the elemental source profile. The particle deposition flux in the study area was higher (24–83 mg/m2 day) than at the background sites (13–17 mg/m2·day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P < 0.05). The ratio of Ca/Al, an indicator of Ca enrichment due to anthropogenic sources in a given sample, showed a similar trend. These observations suggest a significant contribution of the facility to the local particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8–7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0–11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source

  4. Effect of resin cement, aging process and root level on the bond strength of the resin-fiber posts

    NASA Astrophysics Data System (ADS)

    Almuhim, Khalid Salman

    Background. Little is known about the long-term clinical bonding effectiveness of the Fiber-reinforced composite (FRC) posts cemented with self-etch adhesive systems. Bond stability and longevity of the cemented post are adversely affected by physical and chemical factors over time, such as expansion and contraction stresses caused by thermal changes and occlusal load. This clinical condition can be simulated in vitro by thermocyclic loading; and bonding effectiveness can be evaluated by applying the micropush out test. Therefore, more in vitro studies are needed to evaluate the bond strength of the fiber posts cemented with different resin cement systems after simulating the artificial aging induced by thermocycling. The aim of this study was to compare the microtensile bond strength of two different resin cement systems (total etch, and self-etch resin cement system) used for cementation of fiber reinforced composite posts in three different aging periods using thermocycling. Methods. Following IRB approval, sixty freshly extracted bicuspid single rooted natural teeth were endodontically treated, and the post-spaces were prepared to receive a fiber-post cemented with either a total etch resin cement (Rely-X Ultimate) or with a self-etch resin cement (Rely-X Unicem). No thermocycling, 20,000 and 40,000 cycles was used to age the specimens. Teeth were randomly allocated into six different groups: G1 - Control: Rely-X Ultimate cement with no thermocycling. G2: Rely-X Ultimate cement with 20,000 thermocycling. G3: Rely-X Ultimate cement with 40,000 thermocycling. G4: Rely-X Unicem cement. G5: Rely-X Unicem cement. G6: Rely-X Unicem cement. Microtensile bond strength determined using a micropush out test on a universal testing machine (MTS). Additionally, the failure mode of each specimen was observed under a stereomicroscope (Olympus) at 40x magnification. Finally, one representative sample was randomly selected from each of the five failure modes for scanning

  5. Passamaquoddy Technology Recovery Scrubber{trademark} at the Dragon Products, Inc. Cement Plant located in Thomaston, Maine. 1990 Annual technical report

    SciTech Connect

    Not Available

    1990-12-31

    The background and process of the Passamaquoddy Technology Recovery Scrubber{trademark} are described. The Scrubber was developed for Dragon Cement Plant in Thomaston, Maine and facilitates a number of process improvements. The exhaust gas is scrubbed of SO{sub 2} with better than 90% efficiency. The kiln dust is cleaned of alkalines and so can be returned to kiln feed instead of dumped to landfill. Potassium sulfate in commercial quantity and purity can be recovered. Distilled water is recovered which also has commercial potential. Thus, various benefits are accrued and no waste streams remain for disposal. The process is applicable to both wet and dry process cement kilns and appears to have potential in any industry which generates acidic gaseous exhausts and/or basic solid or liquid wastes.

  6. Cellular automata modelling of the cementation process of the Turin (Italy) subsoil conglomerate (``ceppo''),based on a three-dimensional geological model of the city subsoil.

    NASA Astrophysics Data System (ADS)

    Bello, S.; de Rienzo, F.; Nardi, G.

    2003-04-01

    The Turin (Italy) subsoil is mainly made up by alluvial gravels and sands (Pleistocene), characterised by high cementation degree variability, covered by a thin thickness of loess. These alluvial sediments, of about 40 m deep, overlay lacustrine clays (Villafranchiano), locally heteropic with marine sandstones (Pliocene). The reconstruction of the areal distribution of cementation phenomena of the Turin urban subsoil is of fundamental importance within the context of planning and carrying out works in the city subsoil, as well as for preliminary evaluating the stability of such underground works. Moreover, analyses of spatial distribution of soil cementation could be usefully applied for estimating the propagation of waste-polluted fluids, and for reducing either the natural or human-induced risk, related to the overworking of urban area subsoils. The development of mathematical models commonly needs to deal with several interacting physical and chemical phenomena. A deterministic Cellular Automata (CA) model for the evaluation of cementation processes in the conglomerates of the Turin urban subsoil has recently been developed, by using a three-dimensional geological model of the city subsoil based on boreholes data. The model is able to simulate the spatial distribution of the cementation process in the studied area: it has been derived from two pre-existing CA models, i.e. SCAVATU and CABOTO. Geological, mineralogical-petrographic and sedimentological studies of the soil cementation, and a chemical-physical study of the carbonatic equilibria, have first been carried out. These studies pointed out the presence of meniscus cements (which suggest a meteoric diagenesis) and gave fundamental cues for the development of base hypothesis on the genesis of cementation in the considered area. A macroscopic Cellular Automata model has accordingly been developed, in order to simulate the principal phenomena which take place during the cementation process. The model has a

  7. Process for capturing CO2 arising from the calcination of the CaCO3 used in cement manufacture.

    PubMed

    Rodríguez, N; Alonso, M; Grasa, G; Abanades, J Carlos

    2008-09-15

    This paper outlines a new CaCO3 calcination method for producing a stream of CO2 (suitable for permanent geological storage after purification and compression). The process is based on the use of very hot CaO particles (T >1000 degrees C) to transfer heat from a circulating fluidized bed combustor (CFBC) to a calciner (fluidized with CO2 and/or steam). Since the fluidized bed combustor and calciner have separate atmospheres, the CO2 resulting from the decomposition of CaCO3 can be captured, while the CO2 generated in the combustion of the fuel in air is emitted to the atmosphere. We demonstrate that with this system it is possible to reduce the CO2 emissions of a cement plant by around 60%. Furthermore, since the key pieces of equipment are similar to the commercial CFBCs used in power generation plants, it is possible to establish the additional investment required for the system and to estimate the cost per ton of CO2 avoided for this process to be about 19 $/tCO2 avoided. PMID:18853819

  8. Cement advanced furnace component and system optimization. Volume 1. Final report, August 1989-April 1993

    SciTech Connect

    Keane, K.; Chatwani, A.; Litka, A.

    1994-10-01

    Research and development of the Cement Advanced Furnace (CAF) vertical shaft kiln has been performed under the sponsorship of the Gas Research Institute and Southern California Gas Co. by Textron Defense Systems and Fuller Co. The CAF represents a low cost, energy efficient, very low polluting alternative to traditional rotary kilns for the production of Portland and specialty cements. The testing program has resulted in the development of an integrated shaft furnace that has produced clinker in a pilot plant at rates up to 2200 lb/hr. The unit can be scaled to commercial sizes with the aid of a mathematical model of the equipment and process developed as part of this effort. Cement produced in this program is as strong as, but easier to grind than, cement produced in conventional rotary kilns. Polluting emissions from the CAF are lower than from conventional cement processing equipment by virtue of the use of natural gas as fuel and a low combustion temperature.

  9. Thermal Shock-resistant Cement

    SciTech Connect

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  10. Durability of pulp fiber-cement composites

    NASA Astrophysics Data System (ADS)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  11. Meat Products, Hydrodynamic Pressure Processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hydrodynamic pressure process (HDP) has been shown to be very effective at improving meat tenderness in a variety of meat cuts. When compared to conventional aging for tenderization, HDP was more effective. The HDP process may offer the meat industry a new alternative for tenderizing meat in add...

  12. Nanostructured TaxC interlayer synthesized via double glow plasma surface alloying process for diamond deposition on cemented carbide

    NASA Astrophysics Data System (ADS)

    Rong, Wolong; Hei, Hongjun; Zhong, Qiang; Shen, Yanyan; Liu, Xiaoping; Wang, Xin; Zhou, Bing; He, Zhiyong; Yu, Shengwang

    2015-12-01

    The aim in this work was to improve the adhesion of diamond coating with pre-deposition of a TaxC interlayer on cemented carbide (WC-Co) substrate by double glow plasma surface alloying technique. The following deposition of diamond coating on the interlayer was performed in a microwave plasma chemical vapor deposition (MPCVD) reactor. TaxC interlayer with an inner diffusion layer and an outer deposition layer was composed of Ta2C and TaC nanocrystalline, and it exhibited a special compact surface morphology formed of flower-shaped pits. As the gradual element distributions existed in the diffusion layer, the interlayer displayed a superior adherence to the substrate with significantly enhanced surface microhardness to the original substrate. After CVD process, the preferred orientation of TaC changed from (2 2 2) to (2 0 0) plane, and a uniform and tense diamond coating with adhesion referred to class HF 2 at least (Verein Deutscher Ingenieure 3198 norm) was obtained on the interlayered substrate. It indicated that the diffusion of Co was effectively inhibited by the formation of TaxC diffusion-deposition interlayer. The TaxC interlayer is most likely to improve the performance of diamond coatings used in cutting tools.

  13. Consolidated processes for product recovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, fermentation industries are structured on individual unit operations for production of biofuels such as ethanol, butanol, and 2,3-butanediol which result in increased capital and operational costs. Such increased costs result in low profitability and increased consumer price. With the d...

  14. Effect of Eu-citrate complex composition on its cementation

    SciTech Connect

    Lebedev, V.M.; Kornilov, A.S.; Yadovin, A.A.

    1995-03-01

    The dependence of Eu cementation by sodium amalgam in a semicountercurrent regime from citrate solutions on the Eu complex composition is studied. The purity of the {sup 153}Gd product from radioactive Eu can be increased during cementation by introducing correcting solutions of citric acid and stable Eu. The selected conditions are verified by processing irradiated targets. The content of radioactive Eu in the {sup 153}Gd product is reduced from 0.01 to 0.0005% with respect to {gamma}-activity.

  15. Generative inspection process planner for integrated production

    SciTech Connect

    Brown, C.W. . Kansas City Div.); Gyorog, D.A. . Dept. of Mechanical Engineering)

    1990-04-01

    This work describes the design prototype development of a generative process planning system for dimensional inspection. The system, IPPEX (Inspection Process Planning EXpert), is a rule-based expert system for integrated production. Using as advanced product modeler, relational databases, and artificial intelligence techniques, IPPEX generates the process plan and part program for the dimensional inspection of products using CMMs. Through an application interface, the IPPEX system software accesses product definition from the product modeler. The modeler is a solid geometric modeler coupled with a dimension and tolerance modeler. Resource data regarding the machines, probes, and fixtures are queried from databases. IPPEX represents inspection process knowledge as production rules and incorporates an embedded inference engine to perform decision making. The IPPEX system, its functional architecture, system architecture, system approach, product modeling environment, inspection features, inspection knowledge, hierarchical planning strategy, user interface formats, and other fundamental issues related to inspection planning and part programming for CMMs are described. 27 refs., 16 figs., 4 tabs.

  16. Biotechnology in Food Production and Processing

    NASA Astrophysics Data System (ADS)

    Knorr, Dietrich; Sinskey, Anthony J.

    1985-09-01

    The food processing industry is the oldest and largest industry using biotechnological processes. Further development of food products and processes based on biotechnology depends upon the improvement of existing processes, such as fermentation, immobilized biocatalyst technology, and production of additives and processing aids, as well as the development of new opportunities for food biotechnology. Improvements are needed in the characterization, safety, and quality control of food materials, in processing methods, in waste conversion and utilization processes, and in currently used food microorganism and tissue culture systems. Also needed are fundamental studies of the structure-function relationship of food materials and of the cell physiology and biochemistry of raw materials.

  17. A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns

    NASA Astrophysics Data System (ADS)

    Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie

    2015-06-01

    Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.

  18. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, A.J.; Spence, R.D.

    1988-05-04

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  19. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, Alfred J.; Spence, Roger D.

    1989-01-01

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  20. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations.

    PubMed

    Liu, Guorui; Zhan, Jiayu; Zheng, Minghui; Li, Li; Li, Chunping; Jiang, Xiaoxu; Wang, Mei; Zhao, Yuyang; Jin, Rong

    2015-12-15

    A pilot study was performed to evaluate formation, distribution and emission of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from cement kilns that co-process fly ash from municipal solid waste incineration (MSWI). Stack gas and particulate samples from multiple stages in the process were collected and analyzed for PCDD/Fs. Stack emissions of PCDD/Fs were below the European Union limit for cement kilns (0.1 ng TEQ m(-3)). PCDD/F concentrations in particulates from the cyclone preheater outlet, suspension preheater boiler, humidifier tower, and back-end bag filter were much higher than in other samples, which suggests that these areas are the major sites of PCDD/F formation. Comparison of PCDD/F homolog and congener profiles from different stages suggested that tetra- and penta-chlorinated furans were mainly formed during cement kiln co-processing of MSWI fly ash. Three lower chlorinated furan congeners, including 2,3,7,8-tetrachlorodibenzofuran, 1,2,3,7,8-pentachlorodibenzo-p-dioxin and 2,3,4,7,8-pentachlorodibenzofuran, were identified as dominant contributors to the toxic equivalents (TEQ) of the PCDD/Fs. The concentration of PCDD/Fs in particulates was correlated with chloride content, which is consistent with its positive effect on PCDD/F formation. This could be mitigated by pretreating the feedstock to remove chloride and metals. Mass balance indicated that cement kilns eliminated about 94% of the PCDD/F TEQ input from the feedstock. PMID:26241773

  1. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements.

    PubMed

    Voicu, Georgeta; Popa, Alexandru Mihai; Badanoiu, Alina Ioana; Iordache, Florin

    2016-01-01

    In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA) cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h) followed by rapid cooling in air. The resulted material (clinker) was ground for one hour in a laboratory planetary mill (v = 150 rot/min), in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF) and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and thermal analysis (DTA-DTG-TG). The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1) was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2). The compressive strength values were 18.5 MPa (MTA1) and 22.9 MPa (MTA2). Both MTA cements showed good bioactivity (assessed by an in vitro test), good cytocompatibility and stimulatory effect on the proliferation of cells. PMID:26901185

  2. Effect of sepiolite on the flocculation of suspensions of fibre-reinforced cement

    SciTech Connect

    Jarabo, Rocio; Fuente, Elena; Moral, Ana; Blanco, Angeles; Negro, Carlos

    2010-10-15

    Sepiolite is used to increase thixotropy of cement slurries for easier processing, to prevent sagging and to provide a better final quality in the manufacture of fibre-reinforced cement products. However, the effect of sepiolite on flocculation and its interactions with the components of fibre cement are yet unknown. The aim of this research is to study the effects of sepiolite on the flocculation of different fibre-reinforced cement slurries induced by anionic polyacrylamides (A-PAMs). Flocculation and floc properties were studied by monitoring the chord size distribution in real time employing a focused beam reflectance measurement (FBRM) probe. The results show that sepiolite increases floc size and floc stability in fibre-cement suspensions. Sepiolite competes with fibres and clay for A-PAMs adsorption and its interaction with A-PAM improves flocculation of mineral particles.

  3. Business Communication: Its Process and Product.

    ERIC Educational Resources Information Center

    Bowman, Joel P.; Branchaw, Bernadine P.

    1987-01-01

    Discusses the essential difference between the writing process and its product; namely, that the former is a private and unique activity, whereas the latter is an observable artifact that can be publicly evaluated. Argues that even proponents of the process approach to writing cannot escape basing their discussions on products. (JD)

  4. Shotcrete -- Understanding of the hydration process of mixes containing CAC and Portland cement and proposal for a simple rheological characterization

    SciTech Connect

    Bayoux, J.P.; Testud, M.; Guinot, D.; Willocq, J.; Capmas, A.

    1995-12-31

    In order to better understand the performances of CAC-slag cement and CAC--PC cement the hydration study of these mixes was undertaken. The hydrates which are responsible for the early stiffening/strengthening are identical in both mixes; it is only the time of appearance and amount which varies. Ettringite always forms first followed by the precipitation of C{sub 4}AH{sub 13}. They will both form faster then the temperature rises. As a complement, a simple laboratory equipment is proposed to characterize the stiffening behavior of the mixes straight after gauging.

  5. FORMATION OF A DETACHED PLUME FROM A CEMENT PLANT

    EPA Science Inventory

    A coordinated study of process, source emissions, and plume sampling was conducted at a coal-fired cement production plant. Both source and plume sampling consisted of particle and gas measurement and characterization. Particulate sampling of both the source and plume addressed p...

  6. Process for improving metal production in steelmaking processes

    DOEpatents

    Pal, U.B.; Gazula, G.K.M.; Hasham, A.

    1996-06-18

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements. 6 figs.

  7. Process for improving metal production in steelmaking processes

    DOEpatents

    Pal, Uday B.; Gazula, Gopala K. M.; Hasham, Ali

    1996-01-01

    A process and apparatus for improving metal production in ironmaking and steelmaking processes is disclosed. The use of an inert metallic conductor in the slag containing crucible and the addition of a transition metal oxide to the slag are the disclosed process improvements.

  8. Cement manufacture and the environment - Part I: Chemistry and technology

    USGS Publications Warehouse

    Van Oss, H. G.; Padovani, A.C.

    2002-01-01

    Hydraulic (chiefly portland) cement is the binding agent in concrete and mortar and thus a key component of a country's construction sector. Concrete is arguably the most abundant of all manufactured solid materials. Portland cement is made primarily from finely ground clinker, which itself is composed dominantly of hydraulically active calcium silicate minerals formed through high-temperature burning of limestone and other materials in a kiln. This process requires approximately 1.7 tons of raw materials perton of clinker produced and yields about 1 ton of carbon dioxide (CO2) emissions, of which calcination of limestone and the combustion of fuels each contribute about half. The overall level of CO2 output makes the cement industry one of the top two manufacturing industry sources of greenhouse gases; however, in many countries, the cement industry's contribution is a small fraction of that from fossil fuel combustion by power plants and motor vehicles. The nature of clinker and the enormous heat requirements of its manufacture allow the cement industry to consume a wide variety of waste raw materials and fuels, thus providing the opportunity to apply key concepts of industrial ecology, most notably the closing of loops through the use of by-products of other industries (industrial symbiosis). In this article, the chemistry and technology of cement manufacture are summarized. In a forthcoming companion article (part II), some of the environmental challenges and opportunities facing the cement industry are described. Because of the size and scope of the U.S. cement industry, the analysis relies primarily on data and practices from the United States.

  9. The dermal toxicity of cement.

    PubMed

    Winder, Chris; Carmody, Martin

    2002-08-01

    Cement and concrete are products used widely in the construction sector, with a traditional perception that any hazards that they have are limited to dermatitis in a small number of workers. In some cases, employers and builders do not think that concrete is a chemical. However, contact dermatitis is one of the most frequently reported health problems among construction workers. A review of the available literature suggests that cement has constituents that produce both irritant contact dermatitis and corrosive effects (from alkaline ingredients such as lime) and sensitization, leading to allergic contact dermatitis (from ingredients such as chromium). These findings indicate that cement and concrete should be treated as hazardous materials, and that workers handling such products should reduce exposure wherever possible. Initiatives to reduce the chromium content of cement have been shown to be successful in reducing the incidence of allergic dermatitis, although the irritant form remains. PMID:15068132

  10. Utilization of gold tailings as an additive in Portland cement.

    PubMed

    Celik, Ozlem; Elbeyli, Iffet Yakar; Piskin, Sabriye

    2006-06-01

    Mine tailings are formed as an industrial waste during coal and ore mining and processing. In the investigated process, following the extraction of gold from the ore, the remaining tailings are subjected to a two-stage chemical treatment in order to destroy the free cyanide and to stabilize and coagulate heavy metals prior to discharge into the tailings pond. The aim of this study was the investigation of the feasibility of utilization of the tailings as an additive material in Portland cement production. For this purpose, the effects of the tailings on the compressive strength properties of the ordinary Portland cement were investigated. Chemical and physical properties, mineralogical composition, particle size distribution and microstructure of the tailings were determined by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), particle size analyzer (Mastersizer) and scanning electron microscope (SEM). Following the characterization of the tailings, cement mortars were prepared by intergrinding Portland cement with dried tailings. Composition of the cement clinkers were adjusted to contain 5, 15, 25% (wt/wt) dried tailings and also silica fume and fly ash samples (C and F type) were added to clinker in different ratios. The mortars produced with different amounts of tailings, silica fume, fly ashes and also mixtures of them were tested for compressive strength values after 2, 7, 28 and 56 days according to the European Standard (EN 196-1). The results indicated that gold tailings up to 25% in clinker could be beneficially used as an additive in Portland cement production. It is suggested that the gold tailings used in the cement are blended with silica fume and C-type fly ash to obtain higher compressive strength values. PMID:16784164

  11. Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues.

    PubMed

    Grosso, Mario; Dellavedova, Stefano; Rigamonti, Lucia; Scotti, Sergio

    2016-01-01

    The paper describes the performances of the energy recovery pathway from the residual waste based on the production of a Solid Recovered Fuel (SRF) to be exploited via co-combustion in a cement kiln. The SRF is produced in a single stream Mechanical-Biological Treatment plant, where bio-drying of the waste is followed by mechanical refining in order to fulfil the quality requirements by the cement kilns. Peculiar of this MBT is the fact that sorting residues are disposed in a nearby landfill, managed according to a bioreactor approach, where landfill gas is collected for electric energy recovery. A detailed mass and energy balance of the system is presented based on one year operational data, followed by its Life Cycle Assessment. Results show that the system is energetically and environmentally effective, with most of the impacts being more than compensated by the savings of materials and energy. Major role in determining such outcome is the displacement of petcoke in the cement kiln, both in terms of its fossil CO2 emissions and of its life cycle impacts, including the trans-oceanic transport. To check the robustness of the results, two sensitivity analyses are performed on the landfill gas collection efficiency and on the avoided electric energy mix. PMID:26601731

  12. Glass powder blended cement hydration modelling

    NASA Astrophysics Data System (ADS)

    Saeed, Huda

    .17, H/S ratio of 2.5 and N/S ratio of 0.18. In the second phase of this research, theoretical models are built using a modified version of an existing cement hydration modelling code, "CEMHYD3D", to simulate the chemical reaction of the activated glass powder hydration and glass powder in cement. The modified model, which is referred to as the "MOD-model" is further used to predict the types, compositions and quantities of reaction products. Furthermore, the glass powder hydration data, which is obtained experimentally, is incorporated into the MOD-model to determine the effect of adding glass powder to the paste on the process of cement hydration and resulting paste properties. Comparisons between theoretical and experimental results are made to evaluate the developed models. The MOD-model predictions have been validated using the experimental results, and were further used to investigate various properties of the hydrated glass powder cement paste. These properties include, for example, CH content of the paste, porosity, hydration degree of the glass powder and conventional C-S-H and GP CS-H contents. The results show that the MOD-model is capable of accurately simulating the hydration process of glass powder-blended cement paste and can be used to predict various properties of the hydrating paste.

  13. Stromatolites, ooid dunes, hardgrounds, and crusted mud beds, all products of marine cementation and microbial mats in subtidal oceanic mixing zone on eastern margin of Great Bahama Bank

    SciTech Connect

    Dill, R.F.; Kendall, C.S.C.G.; Steinen, R.P.

    1989-03-01

    The interisland channels along the eastern margin of the Great Bahamas Bank contain lithified structures that owe their origin to recent marine cementation. This cementation appears to be commonly associated with a complex microbial community of plants and microorganisms living within a bank-margin oceanographic mixing zone. In this region, reversing tidal and wind-driven currents flow up to 3 knots (150 cm/sec) three hours out of each six-hour tidal period. Here, marine-cement crusted, carbonate mud beds are found interbedded within migrating ooid sand bars and dunes and are associated with growing, lithified stromatolites up to 2 m in height. These laminated mud beds are found with thicknesses of up to 1 m in subtidal depths of 4 to 8 m (12 to 25 ft). The muds appear to be homogeneous, but closer examination by SEM and under a microscope reveals they are composed of pelletoid aggregates of needle-shaped aragonite crystals with diameters of up to 50 ..mu... The size of these soft pellets is similar to the smaller grains of ooid sands that are abundant in the area. This size similarity could explain why both the mud beds are found in similar high-energy hydraulic regimes as the ooid sands, but does not suggest how or why the aggregates of pure aragonite needles form. A high production of ooid sand within this bank margin environment permits the formation of natural levees along the margins of tidal channels. The back sides of these levees are being lithified by marine cements to form hardgrounds. Skeletal and ooid sand dunes stabilized by Thallasia in channel bottoms also are becoming lithified. Grapestones form at the distributaries of flood tidal deltas of ooid sand. All of these features have a common attribute: they are continually in contact with the turbulent mixing-zone waters.

  14. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    SciTech Connect

    Dady Dadyburjor; Philip R. Biedler; Chong Chen; L. Mitchell Clendenin; Manoj Katakdaunde; Elliot B. Kennel; Nathan D. King; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-08-31

    This Department of Energy National Energy Technology Laboratory sponsored project developed carbon products, using mildly hydrogenated solvents to extract the organic portion of coal to create synthetic pitches, cokes, carbon foam and carbon fibers. The focus of this effort was on development of lower cost solvents, milder hydrogenation conditions and improved yield in order to enable practical production of these products. This technology is needed because of the long-term decline in production of domestic feedstocks such as petroleum pitch and coal tar pitch. Currently, carbon products represents a market of roughly 5 million tons domestically, and 19 million tons worldwide. Carbon products are mainly derived from feedstocks such as petroleum pitch and coal tar pitch. The domestic supply of petroleum pitch is declining because of the rising price of liquid fuels, which has caused US refineries to maximize liquid fuel production. As a consequence, the long term trend has a decline in production of petroleum pitch over the past 20 years. The production of coal tar pitch, as in the case of petroleum pitch, has likewise declined significantly over the past two decades. Coal tar pitch is a byproduct of metallurgical grade coke (metcoke) production. In this industry, modern metcoke facilities are recycling coal tar as fuel in order to enhance energy efficiency and minimize environmental emissions. Metcoke production itself is dependent upon the production requirements for domestic steel. Hence, several metcoke ovens have been decommissioned over the past two decades and have not been replaced. As a consequence sources of coal tar are being taken off line and are not being replaced. The long-term trend is a reduction in coal tar pitch production. Thus import of feedstocks, mainly from Eastern Europe and China, is on the rise despite the relatively large transportation cost. To reverse this trend, a new process for producing carbon products is needed. The process must be

  15. Natural cement as the precursor of Portland cement: Methodology for its identification

    SciTech Connect

    Varas, M.J. . E-mail: mjvaras@geo.ucm.es; Alvarez de Buergo, M.; Fort, R.

    2005-11-15

    When cements appeared in the 19th century, they took the place of traditional binding materials (lime, gypsum, and hydraulic lime) which had been used until that time. Early cements can be divided into two groups, natural and artificial (Portland) cements. Natural cements were introduced first, but their widespread usage was short-lived as they were quickly replaced by artificial cements (Portland), still the most important and predominant today. The main differences between natural and artificial cements arise during the manufacturing process. The final properties of the cements are greatly influenced by differences in the raw materials and burning temperatures employed. The aim of this paper is to assess the efficiency of traditional analytical techniques (petrographic microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR)) used to differentiate natural and artificial cements.

  16. The 3Rs and cement kiln dust: Opportunities for reduction, reuse and recycling

    SciTech Connect

    Nisbet, M.

    1997-12-31

    Cement kiln dust (CKD) is a by-product of the cement manufacturing process. This material which is captured in cement kiln dust control equipment consists primarily of raw and partly calcined kiln feed. Factors which contribute to the generation of CKD are described. Cases of successful reduction of CKD generation are presented. Technologies for treating CKD so that it can be reused as a raw material for cement production are discussed. Applications where CKD can be used alone or with other by-products are also presented. Opportunities for developing new uses for CKD are identified and discussed in terms of the drivers behind such applications as well as the economic, technical and regulatory barriers to their development.

  17. A modified technique for extraoral cementation of implant retained restorations for preventing excess cement around the margins

    PubMed Central

    2014-01-01

    The major drawback of cement-retained restorations is the extrusion of the excess cement into the peri-implant sulcus, with subsequent complications. Insufficient removal of the excess cement may initiate a local inflammatory process, which may lead to implant failure. This article presents a method of controlling cement flow on implant abutments, minimizing the excess cement around implant-retained restorations. PMID:24843401

  18. Sustainable development of the cement industry and blended cements to meet ecological challenges.

    PubMed

    Sobolev, Konstantin

    2003-05-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and--at the same time--uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement. PMID:12806096

  19. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    Thomas Robl; John Groppo

    2009-06-30

    The overall objective of this project is to design, construct, and operate an ash beneficiation facility that will generate several products from coal combustion ash stored in a utility ash pond. The site selected is LG&E's Ghent Station located in Carroll County, Kentucky. The specific site under consideration is the lower ash pond at Ghent, a closed landfill encompassing over 100 acres. Coring activities revealed that the pond contains over 7 million tons of ash, including over 1.5 million tons of coarse carbon and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. These potential products are primarily concentrated in the lower end of the pond adjacent to the outlet. A representative bulk sample was excavated for conducting laboratory-scale process testing while a composite 150 ton sample was also excavated for demonstration-scale testing at the Ghent site. A mobile demonstration plant with a design feed rate of 2.5 tph was constructed and hauled to the Ghent site to evaluate unit processes (i.e. primary classification, froth flotation, spiral concentration, secondary classification, etc.) on a continuous basis to determine appropriate scale-up data. Unit processes were configured into four different flowsheets and operated at a feed rate of 2.5 tph to verify continuous operating performance and generate bulk (1 to 2 tons) products for product testing. Cementitious products were evaluated for performance in mortar and concrete as well as cement manufacture process addition. All relevant data from the four flowsheets was compiled to compare product yields and quality while preliminary flowsheet designs were generated to determine throughputs, equipment size specifications and capital cost summaries. A detailed market study was completed to evaluate the potential markets for cementitious products. Results of the study revealed that the Ghent local fly ash market is currently oversupplied by more than 500,000 tpy and distant markets (i.e. Florida

  20. Increasing the productivity of bioconversion processes

    SciTech Connect

    Chauhan, R.P.; Woodley, J.M.

    1997-06-01

    In some syntheses, product formation can cause problems that limit overall productivity. This is frequently the case in bioprocesses, especially in bioconversions, because the product may inhibit or damage the biological catalyst or interfere with other components in the reaction medium. Many reactions are reversible, so yields decrease when the product is allowed to accumulate in the reactor. Some desired products may be unstable or reactive under the conditions of the reaction. Any of these conditions can limit the maximum conversion or product concentration. However, many limitations can be overcome with in situ product removal (ISPR), a family of techniques in which the product is removed as it is synthesized. The authors have devised a systematic approach to identify the most suitable process options for the design and operation of bioconversion processes, emphasizing the integration of upstream (i.e., catalyst production) and downstream (i.e., product recovery) operations. The paper discusses separation principles, ISPR integration, choosing the best techniques, application of ISPR to bioconversion processes, and system design.

  1. Low-temperature ceramic radioactive waste form characteriztion of supercalcine-based monazite-cement composites

    SciTech Connect

    Roy, D.M.; Wakeley, L.D.; Atkinson, S.D.

    1980-04-18

    Simulated radioactive waste solidification by a lower temperature ceramic (cement) process is being investigated. The monazite component (simulated by NdPO/sub 4/) of supercalcine-ceramic has been solidified in cement and found to generate a solid form with low leachability. Several types of commercial cements and modifications thereof were used. No detectable release of Nd or P was found through characterizing the products of accelerated hydrothermal leaching at 473/sup 0/K (200/sup 0/C) and 30.4 MPa (300 bars) pressure.

  2. Mariner 9 - Image processing and products.

    NASA Technical Reports Server (NTRS)

    Levinthal, E. C.; Green, W. B.; Cutts, J. A.; Jahelka, E. D.; Johansen, R. A.; Sander, M. J.; Seidman, J. B.; Young, A. T.; Soderblom, L. A.

    1972-01-01

    The purpose of this paper is to describe the system for the display, processing, and production of image data products created to support the Mariner 9 Television Experiment. Of necessity, the system was large in order to respond to the needs of a large team of scientists with a broad scope of experimental objectives. The desire to generate processed data products as rapidly as possible to take advantage of adaptive planning during the mission, coupled with the complexities introduced by the nature of the vidicon camera, greatly increased the scale of the ground image processing effort. This paper describes the systems that carried out the processes and delivered the products necessary for real-time and near-real-time analyses. References are made to the computer algorithms used for the different levels of decalibration and analysis.

  3. Mariner 9 - Image processing and products.

    NASA Technical Reports Server (NTRS)

    Levinthal, E. C.; Green, W. B.; Cutts, J. A.; Jahelka, E. D.; Johansen, R. A.; Sander, M. J.; Seidman, J. B.; Young, A. T.; Soderblom, L. A.

    1973-01-01

    The purpose of this paper is to describe the system for the display, processing, and production of image-data products created to support the Mariner 9 Television Experiment. Of necessity, the system was large in order to respond to the needs of a large team of scientists with a broad scope of experimental objectives. The desire to generate processed data products as rapidly as possible, coupled with the complexities introduced by the nature of the vidicon camera, greatly increased the scale of the ground-image processing effort. This paper describes the systems that carried out the processes and delivered the products necessary for real-time and near-real-time analyses. References are made to the computer algorithms used for the different levels of decalibration and analysis.

  4. Mariner 9-Image processing and products

    USGS Publications Warehouse

    Levinthal, E.C.; Green, W.B.; Cutts, J.A.; Jahelka, E.D.; Johansen, R.A.; Sander, M.J.; Seidman, J.B.; Young, A.T.; Soderblom, L.A.

    1973-01-01

    The purpose of this paper is to describe the system for the display, processing, and production of image-data products created to support the Mariner 9 Television Experiment. Of necessity, the system was large in order to respond to the needs of a large team of scientists with a broad scope of experimental objectives. The desire to generate processed data products as rapidly as possible to take advantage of adaptive planning during the mission, coupled with the complexities introduced by the nature of the vidicon camera, greatly increased the scale of the ground-image processing effort. This paper describes the systems that carried out the processes and delivered the products necessary for real-time and near-real-time analyses. References are made to the computer algorithms used for the, different levels of decalibration and analysis. ?? 1973.

  5. Processing prefixes and suffixes in handwriting production.

    PubMed

    Kandel, Sonia; Spinelli, Elsa; Tremblay, Annie; Guerassimovitch, Helena; Álvarez, Carlos J

    2012-07-01

    Previous research showed that handwriting production is mediated by linguistically oriented processing units such as syllables and graphemes. The goal of this study was to investigate whether French adults also activate another kind of unit that is more related to semantics than phonology, namely morphemes. Experiment 1 revealed that letter duration and inter-letter intervals were longer for suffixed words than for pseudo-suffixed words. These results suggest that the handwriting production system chunks the letter components of the root and suffix into morpheme-sized units. Experiment 2 compared the production of prefixed and pseudo-prefixed words. The results did not yield significant differences. This asymmetry between suffix and prefix processing has also been observed in other linguistic tasks. In suffixed words, the suffix would be processed on-line during the production of the root, in an analytic fashion. Prefixed words, in contrast, seem to be processed without decomposition, as pseudo-affixed words. PMID:22664316

  6. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    SciTech Connect

    Lim, Seungmin Mondal, Paramita

    2014-06-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage.

  7. Benchmarking Peer Production Mechanisms, Processes & Practices

    ERIC Educational Resources Information Center

    Fischer, Thomas; Kretschmer, Thomas

    2008-01-01

    This deliverable identifies key approaches for quality management in peer production by benchmarking peer production practices and processes in other areas. (Contains 29 footnotes, 13 figures and 2 tables.)[This report has been authored with contributions of: Kaisa Honkonen-Ratinen, Matti Auvinen, David Riley, Jose Pinzon, Thomas Fischer, Thomas…

  8. Cell culture processes for monoclonal antibody production

    PubMed Central

    Li, Feng; Vijayasankaran, Natarajan; Shen, Amy (Yijuan); Kiss, Robert

    2010-01-01

    Animal cell culture technology has advanced significantly over the last few decades and is now generally considered a reliable, robust and relatively mature technology. A range of biotherapeutics are currently synthesized using cell culture methods in large scale manufacturing facilities that produce products for both commercial use and clinical studies. The robust implementation of this technology requires optimization of a number of variables, including (1) cell lines capable of synthesizing the required molecules at high productivities that ensure low operating cost; (2) culture media and bioreactor culture conditions that achieve both the requisite productivity and meet product quality specifications; (3) appropriate on-line and off-line sensors capable of providing information that enhances process control; and (4) good understanding of culture performance at different scales to ensure smooth scale-up. Successful implementation also requires appropriate strategies for process development, scale-up and process characterization and validation that enable robust operation and ensure compliance with current regulations. This review provides an overview of the state-of-the art technology in key aspects of cell culture, e.g., generation of highly productive cell lines and optimization of cell culture process conditions. We also summarize the current thinking on appropriate process development strategies and process advances that might affect process development. PMID:20622510

  9. Revision stapes surgery for lysis of the long process of the incus: comparing hydroxyapatite bone cement versus malleovestibulopexy and total ossicular replacement prosthesis.

    PubMed

    Pitiot, Vincent; Hermann, Ruben; Tringali, Stéphane; Dubreuil, Christian; Truy, Eric

    2016-09-01

    The objective of the study was to report audiological results in revision stapes surgery, comparing hydroxyapatite (HAP) bone cement, malleovestibular (MV) prosthesis, and total ossicular replacement prosthesis (TORP). The study is a retrospective case review conducted in a tertiary referral center. Patients treated for revision stapes surgery from 2010 to 2014, where a lysis of the long process of the incus (LPI) was observed with the use of HAP bone cement, MV prosthesis, or a TORP were included in the study. The main outcomes measured were pre- and postoperative bone conduction (BC) and air conduction (AC) pure-tone averages (PTA) (0.5, 1, 2, 3 kHz), including high frequencies BC (HFBC) (1, 2, 3, 4 kHz) and air-bone gap (ABG). 107 revision stapes surgery were performed in 96 ears. Main cause of failure was LPI lysis in 38 cases (39.6 %). 31 patients were analyzed: HAP bone cement was used in 11 patients (Group I), MV prosthesis in ten patients (Group II), and TORP in ten patients (Group III). The mean post-operative ABG was 10.7 dB (±7.4) (p = 0.003), 10.7 dB (±8.8) (p = 0.001), and 16.9 dB (±9.8) (p = 0.001), respectively. There were no significant differences between groups. In Group I, the mean change in HFBC revealed an improvement of 5.6 dB (±7.9) (p = 0.03), while in Group III there was a significant deterioration of the thresholds of 5.8 dB (±7.6) (p = 0.04). There were no cases of post-operative anacusis. In revision stapes surgery when LPI is eroded, we recommend to perform a cement ossiculoplasty for stabilizing a standard Teflon piston when LPI is still usable, the LPI lengthening with cement being not recommended. When LPI is too eroded, we prefer performing a malleovestibulopexy, and reserve TORP for cases with a bad anatomical presentation. PMID:26690574

  10. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    SciTech Connect

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per year); (5

  11. Micro Mechanics and Microstructures of Major Subsurface Hydraulic Barriers: Shale Caprock vs Wellbore Cement

    NASA Astrophysics Data System (ADS)

    Radonjic, M.; Du, H.

    2015-12-01

    Shale caprocks and wellbore cements are two of the most common subsurface impermeable barriers in the oil and gas industry. More than 60% of effective seals for geologic hydrocarbon bearing formations as natural hydraulic barriers constitute of shale rocks. Wellbore cements provide zonal isolation as an engineered hydraulic barrier to ensure controlled fluid flow from the reservoir to the production facilities. Shale caprocks were deposited and formed by squeezing excess formation water and mineralogical transformations at different temperatures and pressures. In a similar process, wellbore cements are subjected to compression during expandable tubular operations, which lead to a rapid pore water propagation and secondary mineral precipitation within the cement. The focus of this research was to investigate the effect of wellbore cement compression on its microstructure and mechanical properties, as well as a preliminary comparison of shale caprocks and hydrated cement. The purpose of comparative evaluation of engineered vs natural hydraulic barrier materials is to further improve wellbore cement durability when in contact with geofluids. The micro-indentation was utilized to evaluate the change in cement mechanical properties caused by compression. Indentation experiments showed an overall increase in hardness and Young's modulus of compressed cement. Furthermore, SEM imaging and Electron Probe Microanalysis showed mineralogical alterations and decrease in porosity. These can be correlated with the cement rehydration caused by microstructure changes as a result of compression. The mechanical properties were also quantitatively compared to shale caprock samples in order to investigate the similarities of hydraulic barrier features that could help to improve the subsurface application of cement in zonal isolation. The comparison results showed that the poro-mechanical characteristics of wellbore cement appear to be improved when inherent pore sizes are shifted to

  12. Cement Kiln Flue Gas Recovery Scrubber Project

    SciTech Connect

    National Energy Technology Laboratory

    2001-11-30

    The Cement Kiln Flue Gas Recovery Scrubber Project was a technical success and demonstrated the following: CKD can be used successfully as the sole reagent for removing SO2 from cement kiln flue gas, with removal efficiencies of 90 percent or greater; Removal efficiencies for HCl and VOCs were approximately 98 percent and 70 percent, respectively; Particulate emissions were low, in the range of 0.005 to 0.007 grains/standard cubic foot; The treated CKD sorbent can be recycled to the kiln after its potassium content has been reduced in the scrubber, thereby avoiding the need for landfilling; The process can yield fertilizer-grade K2SO4, a saleable by-product; and Waste heat in the flue gas can provide the energy required for evaporation and crystallization in the by-product recovery operation. The demonstration program established the feasibility of using the Recovery Scrubber{trademark} for desulfurization of flue gas from cement kilns, with generally favorable economics, assuming tipping fees are available for disposal of ash from biomass combustion. The process appears to be suitable for commercial use on any type of cement kiln. EPA has ruled that CKD is a nonhazardous waste, provided the facility meets Performance Standards for the Management of CKD (U.S. Environmental Protection Agency 1999d). Therefore, regulatory drivers for the technology focus more on reduction of air pollutants and pollution prevention, rather than on treating CKD as a hazardous waste. Application of the Recovery Scrubbe{trademark} concept to other waste-disposal operations, where pollution and waste reductions are needed, appears promising.

  13. US cement industry

    SciTech Connect

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  14. NISAR ISRO science data processing and products

    NASA Astrophysics Data System (ADS)

    Agrawal, Krishna Murari; Mehra, Raghav; Ryali, Usha Sundari

    2016-05-01

    NASA-ISRO Synthetic Aperture Radar (NISAR) is a Dual Frequency (L & S band) mission which will be operating in SweepSAR mode. As compared to traditional SAR imaging modes in which Swath and resolution are at trade-off, SweepSAR imaging concept can acquire data over large swath (240 Km) without compromising azimuth resolution (6m approximately). NISAR L-band & S-band sensors will be developed by JPL-NASA and ISRO respectively. NISAR science data will be downloaded at both NASA and ISRO ground stations. SAC-ISRO will develop the SAR processor for both L & S band data to generate products in compliance with science requirements. Moreover, JPL will develop L-band SAR processor and all data products will be available to users. Distributed data processing architecture will be used for handling large volume of data resulting from moderate resolution and larger swath in SweepSAR mode. Data products will be available in multiple processing levels like raw signal products, signal processed single-look and multi-look products, ground range products and Geo-Referenced products in HDF5 & GeoTiff formats. Derived Geo-Referenced Polarimetric and Interferometric data products will also be available for dissemination to the users. A rigorous calibration exercise will be performed by acquiring data over reference targets like Amazon rain-forest & corner reflectors sites for the generation of calibrated data products. Furthermore, various science data products (for science applications) will also be derived from basic data products for operational dissemination.

  15. The cement solidification systems at LANL

    SciTech Connect

    Veazey, G.W.

    1990-01-01

    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cement type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.

  16. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review

    SciTech Connect

    Chen, Q.Y. Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P.

    2009-01-15

    Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C{sub 3}S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H{sup +} attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C{sub 3}S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of {sup 29}Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique.

  17. Coagulated silica - a-SiO2 admixture in cement paste

    NASA Astrophysics Data System (ADS)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Rovnaníková, Pavla; Pavlík, Zbyšek

    2016-07-01

    Amorphous silica (a-SiO2) in fine-grained form possesses a high pozzolanic activity which makes it a valuable component of blended binders in concrete production. The origin of a-SiO2 applied in cement-based composites is very diverse. SiO2 in amorphous form is present in various amounts in quite a few supplementary cementing materials (SCMs) being used as partial replacement of Portland cement. In this work, the applicability of a commercially produced coagulated silica powder as a partial replacement of Portland cement in cement paste mix design is investigated. Portland cement CEM I 42.5R produced according to the EU standard EN 197-1 is used as a reference binder. Coagulated silica is applied in dosages of 5 and 10 % by mass of cement. The water/binder ratio is kept constant in all the studied pastes. For the applied silica, specific surface area, density, loss on ignition, pozzolanic activity, chemical composition, and SiO2 amorphous phase content are determined. For the developed pastes on the basis of cement-silica blended binder, basic physical properties as bulk density, matrix density, and total open porosity are accessed. Pore size distribution is determined using MIP analysis. Initial and final setting times of fresh mixtures are measured by automatic Vicat apparatus. Effect of silica admixture on mechanical resistivity is evaluated using compressive strength, bending strength, and dynamic Young's modulus measurement. The obtained data gives evidence of a decreased workability of paste mixtures with silica, whereas the setting process is accelerated. On the other hand, reaction activity of silica with Portland cement minerals results in a slight decrease of porosity and improvement of mechanical resistivity of cement pastes containing a-SiO2.

  18. Well cementing in permafrost

    SciTech Connect

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious material which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.

  19. Tympanoplasty with ionomeric cement.

    PubMed

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    Patients with isolated erosion of the long incus process suffer from severe hearing loss caused by lack of continuity of the ossicular chain. This study is a retrospective evaluation of the hearing results using two different surgical procedures. Since January 1993, 12 consecutive patients with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those in a group of 20 historical controls who underwent surgery in 1991 and 1992 using incus autograft interposition. Among the 12 index patients, 7 (58%) achieved improvement in PTA of > 10 dB, in 3 there was no difference and in 2 a slight decline. Among the 20 controls, 14 (70%) achieved improvement in PTA of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy to perform, presents less risk of damage to the stapes and cochlea, requires less extensive surgery and does not exclude other surgical methods in cases of reoperation. PMID:10909000

  20. Process redesign of production maintenance operations

    SciTech Connect

    Rankin, M.; Lowe, B.; Disney, V. Spilman, K.

    1995-12-31

    This paper describes a methodology for the systematic redesign of traditional production maintenance operations as they relate to subsurface failures of sucker rod pumped wells. The paper advocates an organized approach to process definition, refinement and redesign such that improvement objectives are clearly communicated, appropriate human and physical resources are brought to bear, and a system of improvement measurements becomes the overriding focus of the operation. Specific examples of the use of statistical process control tools in the production maintenance quality improvement effort are explored.

  1. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  2. The effect of lime-dried sewage sludge on the heat-resistance of eco-cement.

    PubMed

    Li, Wen-Quan; Liu, Wei; Cao, Hai-Hua; Xu, Jing-Cheng; Liu, Jia; Li, Guang-Ming; Huang, Juwen

    2016-01-01

    The treatment and disposal of sewage sludge is a growing problem for sewage treatment plants. One method of disposal is to use sewage sludge as partial replacement for raw material in cement manufacture. Although this process has been well researched, little attention has been given to the thermal properties of cement that has had sewage sludge incorporated in the manufacturing process. This study investigated the fire endurance of eco-cement to which lime-dried sludge (LDS) had been added. LDS was added in proportions of 0%, 3%, 6%, 9%, and 12% (by weight) to the raw material. The eco-cement was exposed to 200, 400, or 600 °C for 3 h. The residual strength and the microstructural properties of eco-cement were then studied. Results showed that the eco-cement samples suffered less damage than conventional cement at 600 °C. The microstructural studies showed that LDS incorporation could reduce Ca(OH)(2) content. It was concluded that LDS has the potential to improve the heat resistance of eco-cement products. PMID:27386999

  3. Healing process of dog dental pulp after pulpotomy and pulp covering with mineral trioxide aggregate or Portland cement.

    PubMed

    Holland, R; de Souza, V; Murata, S S; Nery, M J; Bernabé, P F; Otoboni Filho, J A; Dezan Júnior, E

    2001-01-01

    Considering several reports about the similarity between the chemical compositions of the mineral trioxide aggregate (MTA) and Portland cement (PC), the subject of this investigation was to analyze the behavior of dog dental pulp after pulpotomy and direct pulp protection with these materials. After pulpotomy, the pulp stumps of 26 roots of dog teeth were protected with MTA or PC. Sixty days after treatment, the animal was sacrificed and the specimens removed and prepared for histomorphological analysis. There was a complete tubular hard tissue bridge in almost all specimens. In conclusion, MTA and PC show similar comparative results when used in direct pulp protection after pulpotomy. PMID:11445912

  4. Tires fuel oil field cement manufacturing

    SciTech Connect

    Caveny, B.; Ashford, D.; Garcia, J.G.; Hammack, R.

    1998-08-31

    In a new process, waste automobile tires added to the fuel mix of gas, coal, and coke help fire kilns to produce API-quality oil field cement. Capital Cement uses this process in its cement-manufacturing plant in San Antonio, in which it also produces construction cement. The tires provide a lower-cost fuel and boost the temperature at a critical stage in the kiln burn process. Also, steel-belted tires add iron content to the mix. According to lab results, tire-burned cement slurries will perform the same as conventionally burned cement slurries. Actual field applications have proven that cement produced by burning tires performs no different than conventionally produced slurries. Capital`s plant uses both dry and wet processes, with separate kilns running both processes at the same time. Cement clinker is partially fired by waste tires in both kiln processes. The tires represent 12% of the fuel consumed by the plant, a number that is expected to increase. Capital burns about 200 tires/hr, or about 1.6 million tires/year.

  5. Production of strange particles in hadronization processes

    SciTech Connect

    Hofmann, W.

    1987-08-01

    Strange particles provide an important tool for the study of the color confinement mechanisms involved in hadronization processes. We review data on inclusive strange-particle production and on correlations between strange particles in high-energy reactions, and discuss phenomenological models for parton fragmentation. 58 refs., 24 figs.

  6. Workplace exposure at nanomaterial production processes

    NASA Astrophysics Data System (ADS)

    Möhlmann, Carsten; Welter, Johannes; Klenke, Martin; Sander, Jürgen

    2009-05-01

    Typical nanomaterial production processes from daily practice had been performed in order to determine simultaneously the exposure to nanoparticles. They involve mixing of ZnO powder into a liquid, filling and emptying an oven with indium tin oxide (ITO), spraying a suspension of nanoparticles, flame spraying of silanes, and an outside location as comparison.

  7. Sustainability Analysis for Products and Processes

    EPA Science Inventory

    Sustainability Analysis for Products and Processes Subhas K. Sikdar National Risk Management Research Laboratory United States Environmental protection Agency 26 W. M.L. King Dr. Cincinnati, OH 45237 Sikdar.subhas@epa.gov ABSTRACT Claims of both sustainable and unsu...

  8. Thermoradiation processes of energy-carrier production

    NASA Astrophysics Data System (ADS)

    Dzantiev, B. G.; Ermakov, A. N.; Zhitomirskii, V. M.; Popov, V. N.

    Thermoradiation processes in the production of hydrogen and carbon monoxide from water vapor and CO2 are discussed. An radiolysis experiment was conducted using a one-pass flow system and an electron accelerator (with energy of 3 Me V), according to parameters of dose rate, regent-radiation contact time, and temperature (700 deg). Steady-state concentrations of H2 and CO were found to correspond to 20 and 40 percent radiation energy-product and energy conversion, respectively. The results of the experiment permit an accurate determination of the optimal parameters of the conversion process and an estimate of the relative efficiencies of chemonuclear and electrochemical methods (plasmolysis and electrolysis) of H2 and CO production using nuclear piles.

  9. Critical elements in implementations of just-in-time management: empirical study of cement industry in Pakistan.

    PubMed

    Qureshi, Muhammad Imran; Iftikhar, Mehwish; Bhatti, Mansoor Nazir; Shams, Tauqeer; Zaman, Khalid

    2013-01-01

    In recent years, inventory management is continuous challenge for all organizations not only due to heavy cost associated with inventory holding, but also it has a great deal to do with the organizations production process. Cement industry is a growing sector of Pakistan's economy which is now facing problems in capacity utilization of their plants. This study attempts to identify the key strategies for successful implementation of just-in-time (JIT) management philosophy on the cement industry of Pakistan. The study uses survey responses from four hundred operations' managers of cement industry in order to know about the advantages and benefits that cement industry have experienced by Just in time (JIT) adoption. The results show that implementing the quality, product design, inventory management, supply chain and production plans embodied through the JIT philosophy which infect enhances cement industry competitiveness in Pakistan. JIT implementation increases performance by lower level of inventory, reduced operations & inventory costs was reduced eliminates wastage from the processes and reduced unnecessary production which is a big challenge for the manufacturer who are trying to maintain the continuous flow processes. JIT implementation is a vital manufacturing strategy that reaches capacity utilization and minimizes the rate of defect in continuous flow processes. The study emphasize the need for top management commitment in order to incorporate the necessary changes that need to take place in cement industry so that JIT implementation can take place in an effective manner. PMID:24340248

  10. Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction

    SciTech Connect

    Snellings, R.; Mertens, G.; Cizer, O.; Elsen, J.

    2010-12-15

    The in situ early-age hydration and pozzolanic reaction in cements blended with natural zeolites were investigated by time-resolved synchrotron X-ray powder diffraction with Rietveld quantitative phase analysis. Chabazite and Na-, K-, and Ca-exchanged clinoptilolite materials were mixed with Portland cement in a 3:7 weight ratio and hydrated in situ at 40 {sup o}C. The evolution of phase contents showed that the addition of natural zeolites accelerates the onset of C{sub 3}S hydration and precipitation of CH and AFt. Kinetic analysis of the consumption of C{sub 3}S indicates that the enveloping C-S-H layer is thinner and/or less dense in the presence of alkali-exchanged clinoptilolite pozzolans. The zeolite pozzolanic activity is interpreted to depend on the zeolite exchangeable cation content and on the crystallinity. The addition of natural zeolites alters the structural evolution of the C-S-H product. Longer silicate chains and a lower C/S ratio are deduced from the evolution of the C-S-H b-cell parameter.

  11. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-08-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission`s ``Technical Position on Waste Form`` (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  12. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  13. Optimization process of tribenzoine production as a glycerol derived product

    NASA Astrophysics Data System (ADS)

    Widayat, Abdurrakhman, Rifianto, Y.; Abdullah, Hadiyanto, Samsudin, Asep M.; Annisa, A. N.

    2015-12-01

    Tribenzoin is a derived product from glycerol that can produce from glycerol conversion via esterification process. The product can be used in the food industry, cosmetics industry, polymer industry and also can be used to improve the properties of adhesive materials and water resistance in the ink printer.In the other hand, it advantages is environmentally friendly andrenewable because it is not derived from petroleum. This paper discusses the effect of temperature and catalyst concentration for tribenzoin production. For the responses, yield and product composition were observed. Results showed that the highest yield achieved at optimal variable data processed using Central Composite Design (CCD) which is 63.64 temperature (°C), mole ratio of benzoic acidto glycerol is 3.644:1, and catalyst concentration 6.25% (wt% glycerol). Yield products produced 58.71%. FTIR analysis results showed that the samples contained the results of IR spectra wavelength 1761 cm-1 in the fingerprint region and 3165 cm-1 frequency region group. The existence of these two adjustments that fixed in the area is strong evidence that the compound is tribenzoin.

  14. 30 CFR 250.1608 - Well casing and cementing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Well casing and cementing. 250.1608 Section 250... SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1608 Well casing and cementing... rock casing (brine wells), and (vi) Production liner. (2) The lessee shall case and cement all...

  15. Mass balance of dioxins over a cement kiln in China.

    PubMed

    Li, Yeqing; Chen, Tong; Zhang, Jiang; Meng, Weijie; Yan, Mi; Wang, Huanzhong; Li, Xiaodong

    2015-02-01

    The cement production process may be a potential source of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, "dioxins"), due to the widespread distribution of dioxins and potential precursors in raw materials and to conditions favorable to de novo formation in the heat exchangers. The emission, gas/particle distribution, and mass balance of PCDD/Fs were investigated at a typical state-of-the-art Chinese cement kiln. Input and output inventories were established for three campaigns, including two in normal operation and one while co-processing refuse derived fuel (RDF). Sample analysis from stack gas, cement kiln dust, raw meal, fly dust and clinker for the analysis of PCDD/Fs were reported in this study. Dioxins were also analyzed at various positions in the pre-heater, presenting an adsorption-desorption circulation process of PCDD/Fs. The over-all dioxin mass balance was negative, indicating that this cement kiln is not a source but a sink process of dioxins. PMID:25532674

  16. Solidification of microbiologically treated ion-exchange resins using Portland cement-based systems

    SciTech Connect

    Voima Oy, I.

    1993-12-31

    Pretreated inactive ion exchange resins from the Loviisa nuclear power plant (NPP) were first reduced to one tenth of the original volume through microbiological treatment. During the process, the granular ion exchange resins were decomposed to result in dregs, which were solidified with two types of Portland cements. The objective of the present experiments was to investigate whether commercial cements are suitable solidification agents for this kind of waste. A total of ten mixtures were pretested for their rheological and setting properties. On the basis of the pretest results, four additional mixtures were chosen and tested for the spread value, density, air content, setting time and bleeding of the fresh waste product and for the dimensional stability and compressive strength of the hardened waste product. The cementing systems incorporated in the tests were ASTM type V Portland cement and ASTm type P Portland Composite cements. The dregs used in the tests were taken from a Pilot-Plant experiment at the Loviisa NPP and contained 2 wt-% solids. The test results were promising in showing that microbiological dregs can very easily be soldified with Portland cements to form a high-quality waste product. Thus, the microbiological treatment of spent ion exchange resins will drastically decrease the amount of solidified waste to be disposed of at the Loviisa NPP.

  17. The effects of the mechanical–chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste

    SciTech Connect

    Chen, Cheng-Gang; Sun, Chang-Jung; Gau, Sue-Huai; Wu, Ching-Wei; Chen, Yu-Lun

    2013-04-15

    Highlights: ► Milling extracted MSWI fly ash. ► Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ► Increasing heavy metal stability. ► Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH){sub 2} and led to the generation of calcium–silicate–hydrates (C–S–H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.

  18. Advanced cement solidification system

    SciTech Connect

    Nakashima, T.; Kuribayashi, H.; Todo, F.

    1993-12-31

    In order to easily and economically store and transport radioactive waste generated at nuclear power stations, it is essential to reduce the waste volume to the maximum extent. It is also necessary to transform the waste into a stable form for final disposal which will maintain its chemical and physical stability over a long period of time. For this purpose, the Advanced Cement Solidification Process (AC-process) was developed. The AC-process, which utilizes portland cement, can be applied to several kinds of waste such as boric acid waste, laboratory drain waste, incineration ash and spent ion exchange resin. In this paper, the key point of the AC-process, the pretreatment concept for each waste, is described. The AC-process has been adopted for two Japanese PWR stations: the Genkai Nuclear Power Station (Kyushu Electric Power Co.) and the Ikata Nuclear Power Station (Shikoku Electric Power Co.). Construction work has almost finished and commissioning tests are under way at both power stations.

  19. The effects of the mechanical-chemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste.

    PubMed

    Chen, Cheng-Gang; Sun, Chang-Jung; Gau, Sue-Huai; Wu, Ching-Wei; Chen, Yu-Lun

    2013-04-01

    A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH)2 and led to the generation of calcium-silicate-hydrates (C-S-H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste. PMID:23375995

  20. Poly(vinyl chloride) processes and products.

    PubMed Central

    Wheeler, R N

    1981-01-01

    Poly(vinyl chloride) resins are produced by four basic processes: suspension, emulsion, bulk and solution polymerization. PVC suspensions resins are usually relatively dust-free and granular with varying degrees of particle porosity. PVC emulsion resins are small particle powders containing very little free monomer. Bulk PVC resins are similar to suspension PVC resins, though the particles tend to be more porous. Solution PVC resins are smaller in particle size than suspension PVC with high porosity particles containing essentially no free monomer. The variety of PVC resin products does not lend itself to broad generalizations concerning health hazards. In studying occupational hazards the particular PVC process and the product must be considered and identified in the study. PMID:7333230

  1. Multiphase Flow Modeling of Biofuel Production Processes

    SciTech Connect

    D. Gaston; D. P. Guillen; J. Tester

    2011-06-01

    As part of the Idaho National Laboratory's (INL's) Secure Energy Initiative, the INL is performing research in areas that are vital to ensuring clean, secure energy supplies for the future. The INL Hybrid Energy Systems Testing (HYTEST) Laboratory is being established to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. HYTEST involves producing liquid fuels in a Hybrid Energy System (HES) by integrating carbon-based (i.e., bio-mass, oil-shale, etc.) with non-carbon based energy sources (i.e., wind energy, hydro, geothermal, nuclear, etc.). Advances in process development, control and modeling are the unifying vision for HES. This paper describes new modeling tools and methodologies to simulate advanced energy processes. Needs are emerging that require advanced computational modeling of multiphase reacting systems in the energy arena, driven by the 2007 Energy Independence and Security Act, which requires production of 36 billion gal/yr of biofuels by 2022, with 21 billion gal of this as advanced biofuels. Advanced biofuels derived from microalgal biomass have the potential to help achieve the 21 billion gal mandate, as well as reduce greenhouse gas emissions. Production of biofuels from microalgae is receiving considerable interest due to their potentially high oil yields (around 600 gal/acre). Microalgae have a high lipid content (up to 50%) and grow 10 to 100 times faster than terrestrial plants. The use of environmentally friendly alternatives to solvents and reagents commonly employed in reaction and phase separation processes is being explored. This is accomplished through the use of hydrothermal technologies, which are chemical and physical transformations in high-temperature (200-600 C), high-pressure (5-40 MPa) liquid or supercritical water. Figure 1 shows a simplified diagram of the production of biofuels from algae. Hydrothermal processing has significant

  2. A cross-shift study of lung function, exhaled nitric oxide and inflammatory markers in blood in Norwegian cement production workers

    PubMed Central

    Notø, Hilde; Skogstad, Marit; Nordby, Karl-Christian; Eduard, Wijnand; Svendsen, Martin Veel; Øvstebø, Reidun; Trøseid, Anne Marie Siebke; Kongerud, Johny

    2011-01-01

    Objectives To study possible effects of aerosol exposure on lung function, fractional exhaled nitric oxide (FeNO) and inflammatory markers in blood from Norwegian cement production workers across one work shift (0 to 8 h) and again 32 h after the non-exposed baseline registration. Methods 95 workers from two cement plants in Norway were included. Assessment of lung function included spirometry and gas diffusion pre- and post-shift (0 and 8 h). FeNO concentrations were measured and blood samples collected at 0, 8 and 32 h. Blood analysis included cell counts of leucocytes and mediators of inflammation. Results The median respirable aerosol level was 0.3 mg/m3 (range 0.02–6.2 mg/m3). FEV1, FEF25–75% and DLCO decreased by 37 ml (p=0.04), 170 ml/s (p<0.001) and 0.17 mmol/min/kPa (p=0.02), respectively, across the shift. A 2 ppm reduction in FeNO between 0 and 32 h was detected (p=0.01). The number of leucocytes increased by 0.6×109 cells/l (p<0.001) across the shift, while fibrinogen levels increased by 0.02 g/l (p<0.001) from 0 to 32 h. TNF-α level increased and IL-10 decreased across the shift. Baseline levels of fibrinogen were associated with the highest level of respirable dust, and increased by 0.39 g/l (95% CI 0.06 to 0.72). Conclusions We observed small cross-shift changes in lung function and inflammatory markers among cement production workers, indicating that inflammatory effects may occur at exposure levels well below 1 mg/m3. However, because the associations between these acute changes and personal exposure measurements were weak and as the long-term consequences are unknown, these findings should be tested in a follow-up study. PMID:21297153

  3. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    SciTech Connect

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  4. CITRIC ACID AS A SET RETARDER FOR CALCIUM ALUMINATE PHOSPHATE CEMENTS.

    SciTech Connect

    SUGAMA,T.; BROTHERS, L.E.

    2005-01-01

    Citric acid added as set retarder significantly contributed to enhancing the setting temperature and to extending the thickening time of a calcium aluminate phosphate (CaP) geothermal cement slurry consisting of calcium aluminate cement (CAC) as the base reactant and sodium polyphosphate (NaP) solution as the acid reactant. The set-retarding activity of citric acid was due to the uptake of Ca{sup 2+} ions from the CAC by carboxylic acid groups within the citric acid. This uptake led to the precipitation of a Ca-complexed carboxylate compound as a set-retarding barrier layer on the CAC grains' surfaces. However, this barrier layer was vulnerable to disintegration by the attack of free Ca{sup 2+} ions from CAC, and also to degradation at elevated temperature, thereby promoting the generation of exothermic energy from acid-base reactions between the CAC and NaP after the barrier was broken. The exothermic reaction energy that was promoted in this way minimized the loss in strength of the citric acid-retarded cement. The phase composition assembled in both retarded and non-retarded cements after autoclaving at 180 C encompassed three reaction products, hydroxyapatite (HOAp), hydrogrossular and boehmite, which are responsible for strengthening the autoclaved cement. The first two reaction products were susceptible to reactions with sulfuric acid and sodium sulfate to form crystalline bassanite scale as the corrosion product. The boehmite phase possessed a great resistance to acid and sulfate. Although the bassanite scales clinging to the cement's surfaces were the major factor governing the loss in weight, they served in protecting the cement from further acid- and sulfate-corrosion until their spallation eventually occurred. Nevertheless, the repetitive processes of HOAp and hydrogrossular {yields} bassanite {yields} spallation played an important role in extending the useful lifetime of CaP cement in a low pH environment at 180 C.

  5. Measurement of transient and residual stresses during polymerization of bone cement for cemented hip implants.

    PubMed

    Nuño, N; Madrala, A; Plamondon, D

    2008-08-28

    The initial fixation of a cemented hip implant relies on the strength of the interface between the stem, bone cement and adjacent bone. Bone cement is used as grouting material to fix the prosthesis to the bone. The curing process of bone cement is an exothermic reaction where bone cement undergoes volumetric changes that will generate transient stresses resulting in residual stresses once polymerization is completed. However, the precise magnitude of these stresses is still not well documented in the literature. The objective of this study is to develop an experiment for the direct measurement of the transient and residual radial stresses at the stem-cement interface generated during cement polymerization. The idealized femoral-cemented implant consists of a stem placed inside a hollow cylindrical bone filled with bone cement. A sub-miniature load cell is inserted inside the stem to make a direct measurement of the radial compressive forces at the stem-cement interface, which are then converted to radial stresses. A thermocouple measures the temperature evolution during the polymerization process. The results show the evolution of stress generation corresponding to volumetric changes in the cement. The effect of initial temperature of the stem and bone as well as the cement-bone interface condition (adhesion or no adhesion) on residual radial stresses is investigated. A maximum peak temperature of 70 degrees C corresponds to a peak in transient stress during cement curing. Maximum radial residual stresses of 0.6 MPa in compression are measured for the preheated stem. PMID:18692188

  6. Experimental determination of carbonation rate in Portland cement at 25°C and relatively high CO2 partial pressure

    NASA Astrophysics Data System (ADS)

    Hernández-Rodríguez, Ana; Montegrossi, Giordano; Huet, Bruno; Virgili, Giorgio; Orlando, Andrea; Vaselli, Orlando; Marini, Luigi

    2016-04-01

    The aim of this work is to study the alteration of Portland class G Cement at ambient temperature under a relatively high CO2 partial pressure through suitably designed laboratory experiments, in which cement hydration and carbonation are taken into account separately. First, the hydration process was carried out for 28 days to identify and quantify the hydrated solid phases formed. After the completion of hydration, accompanied by partial carbonation under atmospheric conditions, the carbonation process was investigated in a stirred micro-reactor (Parr instrument) with crushed cement samples under 10 bar or more of pure CO2(g) and MilliQ water adopting different reaction times. The reaction time was varied to constrain the reaction kinetics of the carbonation process and to investigate the evolution of secondary solid phases. Chemical and mineralogical analyses (calcimetry, chemical composition, SEM and X-ray Powder Diffraction) were carried out to characterize the secondary minerals formed during cement hydration and carbonation. Water analyses were also performed at the end of each experimental run to measure the concentrations of relevant solutes. The specific surface area of hydrated cement was measured by means of the BET method to obtain the rates of cement carbonation. Experimental outcomes were simulated by means of the PhreeqC software package. The obtained results are of interest to understand the comparatively fast cement alteration in CO2 production wells with damaged casing.

  7. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-10-31

    The objective of this project is to develop an improved ultra- lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  8. Cement analysis using d + D neutrons

    NASA Astrophysics Data System (ADS)

    Womble, Phillip C.; Paschal, Jon; Moore, Ryan

    2005-12-01

    In the cement industry, the primary concern is quality control. The earlier the cement industry can institute quality control upon their product, the more significant their savings in labor, energy and material. We are developing a prototype cement analyzer using pulsed neutrons from a d-D electronic neutron generator with the goal of ensuring quality control of cement in an on-line manner. By utilizing a low intensity d-D neutron source and a specially-designed moderator assembly, we are able to produce one of the safest neutron-based systems in the market. Also, this design includes some exciting new methods of data acquisition which may substantially reduce the final installation costs. In our proof-of-principle measurements, we were able to measure the primary components of cement (Al, Si, Ca and Fe) to limits required for the raw materials, the derived mixes and the clinkers utilizing this neutron generator.

  9. In situ vitrification: Process and products

    SciTech Connect

    Kindle, C.; Koegler, S.

    1991-06-01

    In situ vitrification (ISV) is an electrically powered thermal treatment process that converts soil into a chemically inert and stable glass and crystalline product. It is similar in concept to bringing a simplified glass manufacturing process to a site and operating it in the ground, using the soil as a glass feed stock. Gaseous emissions are contained, scrubbed, and filtered. When the process is completed, the molten volume cools producing a block of glass and crystalline material that resembles natural obsidian commingled with crystalline phases. The product passes US Environmental Protection Agency (EPA) leach resistance tests, and it can be classified as nonhazardous from a chemical hazard perspective. ISV was developed by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for application to contaminated soils. It is also being adapted for applications to buried waste, underground tanks, and liquid seepage sites. ISV's then-year development period has included tests on many different site conditions. As of January 1991 there have been 74 tests using PNL's ISV equipment; these tests have ranged from technology development tests using nonhazardous conditions to hazardous and radioactive tests. 2 refs., 6 figs., 7 tabs.

  10. Process or product: awareness vs. aesthetics.

    PubMed

    Naitove, C E

    1978-01-01

    A historic perspective on the roles of the patient and psychotherapist relative to creative expression clearly demonstrates an emphasis on content, on the projective interpretation of the product. The author challenges the emphasis on product rather than process, the educational 'shop-window' approach to achievers and the talented, as well as the negative effects of 'labeling', and the validity of some forms of projective psychological testing. Discussed is the influence exerted by the psychotherapist through Rogerian 'leakage'. In addition, techniques are suggested for expanding sensory awareness and synthesizing communication skills as a means of enhancing self-image and creative potential. The contention is that the more ways that a skill is synthesized, the more complete is the learning. The more complete the learning, the greater the sense of security. The more secure the individual, the more willing (s)he is to venture into other areas where risk of failure has been a deterrent. PMID:342871

  11. Power Ultrasound to Process Dairy Products

    NASA Astrophysics Data System (ADS)

    Bermúdez-Aguirre, Daniela; Barbosa-Cánovas, Gustavo V.

    Conventional methods of pasteurizing milk involve the use of heat regardless of treatment (batch, high temperature short time - HTST or ultra high temperature - UHT sterilization), and the quality of the milk is affected because of the use of high temperatures. Consequences of thermal treatment are a decrease in nutritional properties through the destruction of vitamins or denaturation of proteins, and sometimes the flavor of milk is undesirably changed. These changes are produced at the same time that the goal of the pasteurization process is achieved, which is to have a microbiological safe product, free of pathogenic bacteria, and to reduce the load of deteriorative microorganisms and enzymes, resulting in a product with a longer storage life.

  12. β-Dicalcium silicate-based cement: synthesis, characterization and in vitro bioactivity and biocompatibility studies.

    PubMed

    Correa, Daniel; Almirall, Amisel; García-Carrodeguas, Raúl; dos Santos, Luis Alberto; De Aza, Antonio H; Parra, Juan; Delgado, José Ángel

    2014-10-01

    β-dicalcium silicate (β-Ca₂ SiO₄, β-C₂ S) is one of the main constituents in Portland cement clinker and many refractory materials, itself is a hydraulic cement that reacts with water or aqueous solution at room/body temperature to form a hydrated phase (C-S-H), which provides mechanical strength to the end product. In the present investigation, β-C₂ S was synthesized by sol-gel process and it was used as powder to cement preparation, named CSiC. In vitro bioactivity and biocompatibility studies were assessed by soaking the cement samples in simulated body fluid solutions and human osteoblast cell cultures for various time periods, respectively. The results showed that the sol-gel process is an available synthesis method in order to obtain a pure powder of β-C₂ S at relatively low temperatures without chemical stabilizers. A bone-like apatite layer covered the material surface after soaking in SBF and its compressive strength (CSiC cement) was comparable with that of the human trabecular bone. The extracts of this cement were not cytotoxic and the cell growth and relative cell viability were comparable to negative control. PMID:24277585

  13. Entropy production in irreversible processes with friction.

    PubMed

    Bizarro, João P S

    2008-08-01

    Established expressions for entropy production in irreversible processes are generalized to include friction explicitly, as a source of irreversibility in the interaction between a system and its surroundings. The net amount of heat delivered to the system does not come now only from the reservoir, but may have an additional component coming from the work done against friction forces and dissipated as heat. To avoid ambiguities in interpreting the different contributions to entropy increase, the latter is also written in terms of the heat directly exchanged between the system and surroundings and of the fraction of frictional work that is lost in the system. PMID:18850816

  14. Emission and distribution of PCDD/Fs and CBzs from two co-processing RDF cement plants in China.

    PubMed

    Chen, Tong; Zhan, Ming-Xiu; Lin, Xiao-Qing; Li, Ye-Qing; Zhang, Jiang; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-06-01

    An analysis of the emission and distribution characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and chlorobenzenes (CBzs) from two cement kilns (CK1 and CK2) is done. Six measurements in CK1 showed an increase of PCDD/F emission from 76 to 97 pg I-TEQ/Nm(3) after feeding 10 ton/h RDF (refuse derived fuel). For CK2, the effect of increasing the RDF substitution rates from 0 to 21 t/h on the emission of PCDD/Fs was investigated. The correlation analysis indicated that replacing parts of the conventional fuel with RDF could not increase the emission of PCDD/Fs. Furthermore, the gas/particle partitions of PCDD/Fs and CBzs in stack gas were investigated, indicating that PCDD/Fs and CBzs were more associated in gas phase, especially for the lower chlorinated ones. Moreover, the bag filter fly ash was characterized by its particle distribution, XRD- and EDS-analysis. Additionally, the level of PCDD/Fs in outflowing fly ash escalates for smaller particle size. In order to evaluate the environmental effect on inhabitants, the levels of PCDD/Fs were also determined in samples of ambient air collected in the vicinity of CK2 (~200 m). PMID:26957426

  15. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production

    NASA Astrophysics Data System (ADS)

    Gregg, Jay S.; Andres, Robert J.; Marland, Gregg

    2008-04-01

    Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate change.

  16. Process for production of a metal hydride

    SciTech Connect

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-12

    A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

  17. Microbial production of scleroglucan and downstream processing

    PubMed Central

    Castillo, Natalia A.; Valdez, Alejandra L.; Fariña, Julia I.

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined. PMID:26528259

  18. Microbial production of scleroglucan and downstream processing.

    PubMed

    Castillo, Natalia A; Valdez, Alejandra L; Fariña, Julia I

    2015-01-01

    Synthetic petroleum-based polymers and natural plant polymers have the disadvantage of restricted sources, in addition to the non-biodegradability of the former ones. In contrast, eco-sustainable microbial polysaccharides, of low-cost and standardized production, represent an alternative to address this situation. With a strong global market, they attracted worldwide attention because of their novel and unique physico-chemical properties as well as varied industrial applications, and many of them are promptly becoming economically competitive. Scleroglucan, a β-1,3-β-1,6-glucan secreted by Sclerotium fungi, exhibits high potential for commercialization and may show different branching frequency, side-chain length, and/or molecular weight depending on the producing strain or culture conditions. Water-solubility, viscosifying ability and wide stability over temperature, pH and salinity make scleroglucan useful for different biotechnological (enhanced oil recovery, food additives, drug delivery, cosmetic and pharmaceutical products, biocompatible materials, etc.), and biomedical (immunoceutical, antitumor, etc.) applications. It can be copiously produced at bioreactor scale under standardized conditions, where a high exopolysaccharide concentration normally governs the process optimization. Operative and nutritional conditions, as well as the incidence of scleroglucan downstream processing will be discussed in this chapter. The relevance of using standardized inocula from selected strains and experiences concerning the intricate scleroglucan scaling-up will be also herein outlined. PMID:26528259

  19. Sequential processing during noun phrase production.

    PubMed

    Bürki, Audrey; Sadat, Jasmin; Dubarry, Anne-Sophie; Alario, F-Xavier

    2016-01-01

    This study examined whether the brain operations involved during the processing of successive words in multi word noun phrase production take place sequentially or simultaneously. German speakers named pictures while ignoring a written distractor superimposed on the picture (picture-word interference paradigm) using the definite determiner and corresponding German noun. The gender congruency and the phonological congruency (i.e., overlap in first phonemes) between target and distractor were manipulated. Naming responses and EEG were recorded. The behavioural performance replicated both the phonology and the gender congruency effects (i.e., shorter naming latencies for gender congruent than incongruent and for phonologically congruent than incongruent trials). The phonological and gender manipulations also influenced the EEG data. Crucially, the two effects occurred in different time windows and over different sets of electrodes. The phonological effect was observed substantially earlier than the gender congruency effect. This finding suggests that the processing of determiners and nouns during determiner noun phrase production occurs at least partly sequentially. PMID:26407338

  20. 21 CFR 113.100 - Processing and production records.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Processing and production records. 113.100 Section... CONTAINERS Records and Reports § 113.100 Processing and production records. (a) Processing and production... scheduled processes used, including the thermal process, its associated critical factors, as well as...

  1. 21 CFR 113.100 - Processing and production records.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Processing and production records. 113.100 Section... CONTAINERS Records and Reports § 113.100 Processing and production records. (a) Processing and production... scheduled processes used, including the thermal process, its associated critical factors, as well as...

  2. Pinellas Plant facts. [Products, processes, laboratory facilities

    SciTech Connect

    Not Available

    1986-09-01

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  3. Current Status of Geothermal Well Cement Development

    SciTech Connect

    Kukacka, L. E.

    1981-01-01

    The results of a study made in 1976 indicated that the cements used for well completion deteriorate in the geothermal environments and that the life expectancy of a well, and therefore the economics of geothermal processes, could be improved significantly if better materials were developed. On the basis of this assessment, Brookhaven National Laboratory (BNL) helped the Department of Energy, Division of Geothermal Energy to organize a program to develop materials that meet the estimated design criteria for geothermal well cements. The BNL work involves research on polymer cements and full management of an integrated program involving contract research and industrial participation. The program consists of the following phases: (1) problem definition, (2) cement research and development, (3) property verification, (4) downhole testing, and (5) cementing of demonstration wells.

  4. Downstream Processing of Synechocystis for Biofuel Production

    NASA Astrophysics Data System (ADS)

    Sheng, Jie

    Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without preextraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant

  5. Advanced Multi-Product Coal Utilization By-Product Processing Plant

    SciTech Connect

    John Groppo; Thomas Robl; Robert Rathbone

    2006-06-01

    an affinity for air entraining admixture (AEA), a consideration that is a significant benefit. In concrete, substitution of 20% showed that the UFA product outperformed a typical ash by achieving 105 to 107% of control strength after 28 days and 109.5 to 112% after 56 days. Higher substitution levels were shown to delay early strength development, but surpass control strength after 28 days while lower substitution levels provide both early and longer term strength. One of the most significant benefits provided by using UFA in concrete mix designs is the improved resistance to chloride permeability while some improvements is flexural strength were realized and tensile strength was essentially unchanged. Potentially significant benefits may also be offered by using UFA as a process addition in the manufacture of cement clinker.

  6. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-04-15

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

  7. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-07-18

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.

  8. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-04-29

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, and shear bond. Testing to determine the effect of temperature cycling on the shear bond properties of the cement systems was also conducted. In addition, the stress-strain behavior of the cement types was studied. This report discusses a software program that is being developed to help design ULHS cements and foamed cements.

  9. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-10-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that will be performed for analyzing the alkali-silica reactivity of ULHS in cement slurries, as well as the results of Field Tests 1 and 2.

  10. Calcium silicate cement sorbent for H/sub 2/S removal and improved gasification processes. Final report

    SciTech Connect

    Yoo, H.J.; Steinberg, M.

    1983-10-01

    Based on the studies performed on the agglomerated cement sorbent (ACS) pellet for in-situ desulfurization of gases and for improved gasification, in low and medium Btu fluidized bed coal gasifier (FBG) systems, the following conclusions can be drawn: (1) The pelletization method by a drum pelletizer is a good way of agglomerating large sized (>20 US mesh) ACS pellets having high sorbent performance. (2) The ACS pellets have a sulfur capture capacity of about 60% at 950/sup 0/C, are 100% regenerable, and so not lose reactivity during cyclic use. (3) The rate of sulfidation increases linearly with H/sub 2/S concentration in the feed gas stream up to 1.0%. (4) The rate of sulfidation first increases with temperature in an Arrhenius fashion in the temperature range of 800/sup 0/C to 1000/sup 0/C and then decreases with further increase in temperatures, giving rise to an optimum sulfidation temperature of about 1000/sup 0/C. (5) The gasification of coal or coal char either with CO/sub 2/ gas or by partial oxidation in a 40 mm ID FBG shows that the gasification efficiency of coal (or coal char) is very much enhanced with the ACS pellets and with Greer limestone over the coal (or coal char) alone. There is, however, not much difference between the ACS pellets and Greer limestone in the degree of enhancement. (6) The gasification of coal by partial oxidation with air to low Btu gas in a 1-inch coal-fired FBG unit shows that in the temperature range of 800/sup 0/ to 900/sup 0/C the efficiency of coal gasification is improved by as much as 40% when ACS pellets are used compared to the use of Greer limestone. At the same time the sulfur removal efficiency is increased from 50 to 65% with Greer limestone to over 95% with the ACS pellets.

  11. Optics for Processes, Products and Metrology

    NASA Astrophysics Data System (ADS)

    Mather, George

    1999-04-01

    Optical physics has a variety of applications in industry, including process inspection, coatings development, vision instrumentation, spectroscopy, and many others. Optics has been used extensively in the design of solar energy collection systems and coatings, for example. Also, with the availability of good CCD cameras and fast computers, it has become possible to develop real-time inspection and metrology devices that can accommodate the high throughputs encountered in modern production processes. More recently, developments in moiré interferometry show great promise for applications in the basic metals and electronics industries. The talk will illustrate applications of optics by discussing process inspection techniques for defect detection, part dimensioning, birefringence measurement, and the analysis of optical coatings in the automotive, glass, and optical disc industries. In particular, examples of optical techniques for the quality control of CD-R, MO, and CD-RW discs will be presented. In addition, the application of optical concepts to solar energy collector design and to metrology by moiré techniques will be discussed. Finally, some of the modern techniques and instruments used for qualitative and quantitative material analysis will be presented.

  12. The suitability of a supersulfated cement for nuclear waste immobilisation

    NASA Astrophysics Data System (ADS)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  13. 21 CFR 820.70 - Production and process controls.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Production and process controls. 820.70 Section...) MEDICAL DEVICES QUALITY SYSTEM REGULATION Production and Process Controls § 820.70 Production and process controls. (a) General. Each manufacturer shall develop, conduct, control, and monitor production...

  14. 21 CFR 820.70 - Production and process controls.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Production and process controls. 820.70 Section...) MEDICAL DEVICES QUALITY SYSTEM REGULATION Production and Process Controls § 820.70 Production and process controls. (a) General. Each manufacturer shall develop, conduct, control, and monitor production...

  15. 40 CFR 161.162 - Description of production process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Description of production process. 161... § 161.162 Description of production process. If the product is produced by an integrated system, the applicant must submit information on the production (reaction) processes used to produce the...

  16. Literature survey on cements for remediation of deformed casing in geothermal wells

    SciTech Connect

    Allan, M.L.; Philippacopoulos, A.J.

    1998-12-31

    Brookhaven National Laboratory was requested to conduct a literature survey for the best available cement to use in the proposed casing patch as part of the Geothermal Drilling Organization (GDO) project on remediation of deformed casings. A total of 50 wells have been identified with deformed production casing in Unocal`s portion of The Geysers geothermal field. A procedure to address the casing deformation and avoid abandonment of these wells has been developed as described in the Geysers Deformed Casing Remediation Proposal. The proposed remediation procedure involves isolation of the zone of interest with an inflatable packer, milling the deformed casing and cementing a 7 inch diameter liner to extend approximately 100 ft above and 100 ft below the milled zone. During the milling operation it is possible that the original cement and surrounding formation may slough away. In order to specify a suitable cement formulation for the casing patch it is first necessary to identify and understand the deformation mechanism/s operating in The Geysers field. Subsequently, the required cement mechanical properties to withstand further deformation of the repaired system must be defined. From this information it can be determined whether available cement formulations meet these requirements. In addition to The Geysers, other geothermal fields are at possible risk of casing deformation due to subsidence, seismic activity, lateral and vertical formation movement or other processes. Therefore, the proposed remediation procedure may have applications in other fields.

  17. The effects of cement-stem debonding in THA on the long-term failure probability of cement.

    PubMed

    Verdonschot, N; Huiskes, R

    1997-08-01

    The damage accumulation failure scenario is one of the most prominent ones of cemented THA reconstruction, and involves the accumulation of mechanical damage in materials and interfaces due to repetitive dynamic loading eventually resulting in gross loosening. This study addresses this scenario by combining finite element techniques with the theory of continuum damage mechanics, to analyze the damage accumulation process in the cement mantle. It was investigated how damage accumulation was affected by stem-cement debonding, and what the effects of a layer with poor bone quality around the cement mantle were. For the unbonded stem, it was determined if clinical migration rates can be explained by failure of the cement mantle, and whether cement failure promotes the formation of a pathway for debris at the stem-cement interface. It was found that stem-cement debonding not only elevated the initial stress levels with a factor of about two to three as demonstrated in earlier studies, but remained to have an impact on the failure process of the cement mantle. Stem-cement debonding accelerated the failure process by a factor of four, and promoted the formation of a pathway for debris at the stem-cement interface, particularly when the bone support to the cement mantle was reduced. The amount of subsidence was only substantial when the damaged cement mantle was surrounded by a layer of bone with reduced stiffness. This study supports the hypothesis that the survival of cemented THA is enhanced by a firm and lasting bond between the stem and the cement mantle, although this may be difficult to realize clinically. PMID:9239564

  18. INVESTIGATIONS ON HYDRAULIC CEMENTS FROM SPENT OIL SHALE

    SciTech Connect

    Mehta, P.K.; Persoff, P.

    1980-04-01

    A process for making hydraulic cements from spent oil shale is described in this paper. Inexpensive cement is needed to grout abandoned in-situ retorts of spent shale for subsidence control, mitigation of leaching, and strengthening the retorted mass in order to recover oil from adjacent pillars of raw shale. A hydraulic cement was produced by heating a 1:1 mixture of Lurgi spent shale and CaCO{sub 3} at 1000 C for one hour. This cement would be less expensive than ordinary portland cement and is expected to fulfill the above requirements.

  19. Distribution of Hg, As and Se in material and flue gas streams from preheater-precalciner cement kilns and vertical shaft cement kilns in China.

    PubMed

    Yan, Dahai; Peng, Zheng; Ding, Qiong; Karstensen, Kåre Helge; Engelsen, Christian J; Li, Li; Ren, Yong; Jiang, Chen

    2015-08-01

    The aim of this study was to evaluate the behavior of Hg, As, and Se in cement production. Two types of cement plants were studied, including the vertical shaft kiln (VSK) and preheater-precalciner kiln (PPK) processes. Determination of Hg, As, and Se in the main material and gas streams were performed. It was found that recycling of particulate matter captured by an air pollution control device caused a significant enrichment of Hg and As inside both processes. The total quantity of Hg entering the process and the quantity emitted to the atmosphere were found to be 10-109 and 6.3-38 mg, respectively, per ton of clinker produced. The average Hg emission was calculated to be around 41% of the total mercury input. The emissions found complied with the European Union (EU) limit and exceeded partly the U.S. limit. Furthermore, it was found that oxidized mercury was the dominant species in the PPK process, whereas the reduced form was dominant in the VSK process, due to the oxidizing and reducing gas conditions, respectively. Regarding the distribution of As and Se, the major amounts were bound to the solid materials, that is, cement clinker and particulate matter. Based on cement production data in China in 2013, the annual emissions of Hg and As were estimated to be in the range of 8.6-52 and 4.1-9.5 tons, respectively. PMID:26037967

  20. Assessment of halite-cemented reservoir zones

    SciTech Connect

    Huurdeman, A.J.M.; Floris, F.J.T.; Lutgert, J.E. ); Breunese, J.N. ); Al-Asbahl, A.M.S. )

    1991-05-01

    This paper describes the techniques used to identify the presence and distribution of halite-cemented layers in a sandstone oil reservoir. The distribution of these layers in the wells was found by matching the core data with two independent halite identifiers from the well logs. Numerical well models were used to assess the dimensions and spatial distribution of the halite-cemented layers. Multiple simulation runs in which the spatial distribution, the dimensions, and the vertical permeability were varied resulted in a stochastic model that best matched the production history. Gas and water coning are retarded by the halite-cemented layers if the perforations are properly located.

  1. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  2. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  3. Atmospheric Processing Module for Mars Propellant Production

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony; Gibson, Tracy; Captain, James; Athman, Robert; Nugent, Matthew; Parks, Steven; Devor, Robert

    2013-01-01

    The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methane/oxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (approx.8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO2 is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a HiCO2 recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO2/hr for 14 hr, (3) the testing of the CO2 freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH4/hr and 71.3 g H2O/hr along with verification of their purity. The resulting 2.22 kg of CH4/O2 propellant per 14 hr day (including O2 from electrolysis of water recovered from regolith, which also supplies the H2 for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASA's new Mars exploration plans will be discussed.

  4. Atmospheric Processing Module for Mars Propellant Production

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony; Gibson, Tracy; Captain, James; Athman, Robert; Nugent, Matthew; Parks, Steven; Devor, Robert

    2013-01-01

    The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methane/oxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO2 is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a HiCO2 recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO2/hr for 14 hr, (3) the testing of the CO2 freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH4/hr and 71.3 g H20/hr along with verification of their purity. The resulting 2.22 kg of CH4/O2 propellant per 14 hr day (including O2 from electrolysis of water recovered from regolith, which also supplies the H2 for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASA's new Mars exploration plans will be discussed.

  5. High-productivity automatic GTAW process

    SciTech Connect

    Imaizumi, H.; Kato, T.; Murakami, Y.

    1994-12-31

    Gas tungsten arc welding (GTAW) has, since developed by AIRCO, spread globally as a weld process which assures a quality weld. However, the only drawback with GTAW is low productivity and we have challenged the subject in how we could improve that. To that end, we set the target of 3 times deposition rate as compared to conventional TIG. With conventional TIG arc, arc spread angle ranges 130{degrees} to 140{degrees}; to improve energy density, we have employed double flux TIG of SAF, France to converge the arc down to 80{degrees}. Consequently, energy density was upped to 4 times of conventional TIG, thus penetration depth and filler wire feed rated increased up to 2 to 4 times. We have succeeded in controlling cool-down in the molten pool, enabling the utilization of highly-converged TIG arc and preventing deposited metals burn-through for cleaner weld process, high-productivity GTAW. We find that: (1) The TIG arc spread angle is convergeable from 140{degrees} down to 80{degrees}; heat energy to be 3.5 times of that obtainable conventionally. (2) 65{emdash}80 g/min attained with 500A and C.S. in flat position, and 35{emdash}40 g/min., with all-position pipe weld. (3) 2{emdash}3 times efficiency improvement, obtained with work in C.S., S.S., and Inconel. (4) Excellent impact value obtainable despite heat-input increase. (5) Fume-less, spatterless, gouging-less and grindingless weld is obtainable; we were successful in improving the operational environment.

  6. INVESTIGATION OF THE FORMATION OF A PORTLAND CEMENT PLANT DETACHED PLUME

    EPA Science Inventory

    A gaseous and particulate source emissions sampling program has been conducted at a Portland Cement production plant in Rapid City South Dakota. The study was conducted to determine the cause of the formation of an opaque detached plume from the plants' dry process kiln. The inst...

  7. 21 CFR 113.100 - Processing and production records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Processing and production records. 113.100 Section... CONTAINERS Records and Reports § 113.100 Processing and production records. (a) Processing and production... the thermal process, its associated critical factors, as well as other critical factors, and...

  8. Technology Transfer and the Product Development Process

    SciTech Connect

    Mock, John E.

    1989-03-21

    It is my pleasure this morning to address a topic that is much talked about in passing but rarely examined from a first person point of view. That topic is Technology Transfer. Over the next 30 minutes I'd like to approach Technology Transfer within the context of the Product Development Process looking at it from the perspectives of the federal government researcher and the industry manufacturer/user. Fist let us recognize that we are living in an ''Information Age'', where global economic and military competition is determined as much by technology as it is by natural resource assets. It is estimated that technical/scientific information is presently growing at a rate of l3 percent per year; this is expected to increase to 30 percent per year by the turn of the century. In fact, something like 90 percent of all scientific knowledge has been generated in the last 30 years; this pool will double again in the next 10-15 years (Exhibit 1). Of all the scientists and engineers throughout history, 90% live and work in the present time. Successfully managing this technical information/knowledge--i.e., transforming the results of R&D to practical applications--will be an important measure of national strength. A little over a dozen years ago, the United States with only 5 percent of the world's population was generating approximately 75 percent of the world's technology. The US. share is now 50 percent and may decline to 30 percent by the turn of the century. This decline won't be because of downturn in U.S. technological advances but because the other 95 percent of the world's population will be increasing its contribution. Economic and military strength then, will be determined by how quickly and successfully companies, industries, and nations can apply new technological information to practical applications--i.e., how they manage technology transfer within the context of the product development process. Much discussion and pronouncements are ongoing in public forums

  9. Effect of Mineral Trioxide Aggregate, Calcium-Enriched Mixture Cement and Mineral Trioxide Aggregate with Disodium Hydrogen Phosphate on BMP-2 Production

    PubMed Central

    Ghasemi, Negin; Rahimi, Saeed; Lotfi, Mehrdad; Solaimanirad, Jafar; Shahi, Shahriar; Shafaie, Hajar; Salem Milani, Amin; Shakuie, Sahar; Zand, Vahid; Abdolrahimi, Majid

    2014-01-01

    Introduction: One of the hypotheses regarding the calcification induction by mineral trioxide aggregate (MTA) is the involvement of transforming growth factor-Beta (TGF-β) super family. Calcium-enriched mixture (CEM) cement is one of the endodontic biomaterials with clinical applications similar to MTA. The aim of the present in vitro study was to compare the induction of bone morphogenic protein-2 (BMP-2) by a combination of disodium hydrogen phosphate (DSHP) and tooth colored ProRoot MTA (WMTA), to that of CEM cement and WMTA. Methods and Materials: Human gingival fibroblasts (HGFs) were obtained from the attached gingiva of human premolars. HGFs were cultured in Dulbecco’s Modified Eagle’s medium, supplemented with 10% fetal calf serum, penicillin, and streptomycin. Cells in groups 1, 2 and 3 were exposed to WMTA, CEM and WMTA+DSHP discs, respectively. The fourth group served as the control. After 72 h of exposure, HGF viability was determined by Mosmann’s tetrazolium toxicity (MTT) assay. BMP-2 levels in cell-free culture media were determined by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using the one-way ANOVA, followed by the post hoc Games-Howell test for BMP-2 and post hoc Tukey’s test for the results of MTT assay. Results: Cellular viability was significantly higher in group 3 compared to the other groups (P<0.05); however, CEM and WMTA did not exhibit significant differences (P=0.08). The control group exhibited significantly higher cellular viability in comparison to the other groups of the study (P<0.05). The highest and lowest protein production rates were observed in the WMTA (3167±274.46 pg/mL) and WMTA+DSHP (1796±839.49 pg/mL) groups, respectively. There were no significant differences between the control, WMTA and CEM groups (P>0.05). Conclusion: WMTA and CEM did not exhibit any significant differences in terms of inducing BMP-2 production; however, incorporation of DSHP into WMTA resulted in a

  10. Process for production of a borohydride compound

    DOEpatents

    Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

    2014-08-19

    A process for production of a borohydride compound M(BH.sub.4).sub.y. The process has three steps. The first step combines a compound of formula (R.sup.1O).sub.yM with aluminum, hydrogen and a metallic catalyst containing at least one metal selected from the group consisting of titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula M(AlH.sub.3OR.sup.1).sub.y, wherein R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group; M is an alkali metal, Be or Mg; and y is one or two; wherein the catalyst is present at a level of at least 200 ppm based on weight of aluminum. The second step combines the compound of formula M(AlH.sub.3OR.sup.1).sub.y with a borate, boroxine or borazine compound to produce M(BH.sub.4).sub.y and a byproduct mixture containing alkali metal and aluminum aryloxides. The third step separates M(BH.sub.4).sub.y from the byproduct mixture.

  11. Natural products and the aging process.

    PubMed

    Ergin, Volkan; Bali, Elif Burcu; Hariry, Reza Ebrahimi; Karasu, Cimen

    2013-12-01

    Abstract Literature surveys show that the most of the research that have been conducted on the effect of herbal remedies on many tissue pathologies, including metabolic disturbances, cardiovascular decline, neurodegeneration, cataract, diabetic retinopathy and skin inflammation, all lead to an accelerated aging process. The increased carbonylation of proteins (carbonyl stress) disturbing their function has been indicated as an underlying mechanism of cellular senescence and age-related diseases. Because it is also linked to the carbonyl stress, aging chronic disease and inflammation plays an important role in understanding the clinical implications of cellular stress response and relevant markers. Greater knowledge of the molecular and cellular mechanisms involved in several pathologies associated with aging would provide a better understanding to help us to develop suitable strategies, use specific targets to mitigate the effect of human aging, prevent particularly chronic degenerative diseases and improve quality of life. However, research is lacking on the herbal compounds affecting cellular aging signaling as well as studies regarding the action mechanism(s) of natural products in prevention of the age-related disease. This review provides leads for identifying new medicinal agents or potential phytochemical drugs from plant sources for the prevention or delaying cellular aging processes and the treatment of some disorders related with accelerated body aging. PMID:25436747

  12. [Optimization of the pertussis vaccine production process].

    PubMed

    Germán Santiago, J; Zamora, N; de la Rosa, E; Alba Carrión, C; Padrón, P; Hernández, M; Betancourt, M; Moretti, N

    1995-01-01

    The production of Pertussis Vaccine was reevaluated at the Instituto Nacional de Higiene "Rafael Rangel" in order to optimise it in terms of vaccine yield, potency, specific toxicity and efficiency (cost per doses). Four different processes, using two culture media (Cohen-Wheeler and Fermentación Glutamato Prolina-1) and two types of bioreactors (25 L Fermentador Caracas and a 450 L industrial fermentor) were compared. Runs were started from freeze-dried strains (134 or 509) and continued until the obtention of the maximal yield. It was found that the combination Fermentación Glutamato Prolina-1/industrial fermentor, shortened the process to 40 hours while consistently yielding a vaccine of higher potency (7.91 +/- 2.56 IU/human dose) and lower specific toxicity in a mice bioassay. In addition, the physical aspect of the preparation was rather homogeneous and free of dark aggregates. Most importantly, the biomass yield more than doubled those of the Fermentador Caracas using the two different media and that in the industrial fermentor with the Cohen-Wheeler medium. Therefore, the cost per doses was substantially decreased. PMID:9279028

  13. Development of an Improved Cement for Geothermal Wells

    SciTech Connect

    Trabits, George

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  14. Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations

    SciTech Connect

    Ross, W.A.; Lokken, R.O.; May, R.P.; Roberts, F.P.; Timmerman, C.L.; Treat, R.L.; Westsik, J.H. Jr.

    1982-09-01

    This study provides an assesses seven waste forms and eight processes for immobilizing transuranic (TRU) wastes. The waste forms considered are cast cement, cold-pressed cement, FUETAP (formed under elevated temperature and pressure) cement, borosilicate glass, aluminosilicate glass, basalt glass-ceramic, and cold-pressed and sintered silicate ceramic. The waste-immobilization processes considered are in-can glass melting, joule-heated glass melting, glass marble forming, cement casting, cement cold-pressing, FUETAP cement processing, ceramic cold-pressing and sintering, basalt glass-ceramic processing. Properties considered included gas generation, chemical durability, mechanical strength, thermal stability, and radiation stability. The ceramic products demonstrated the best properties, except for plutonium release during leaching. The glass and ceramic products had similar properties. The cement products generally had poorer properties than the other forms, except for plutonium release during leaching. Calculations of the Pu release indicated that the waste forms met the proposed NRC release rate limit of 1 part in 10/sup 5/ per year in most test conditions. The cast-cement process had the lowest processing cost, followed closely by the cold-pressed and FUETAP cement processes. Joule-heated glass melting had the lower cost of the glass processes. In-can melting in a high-quality canister had the highest cost, and cold-pressed and sintered ceramic the second highest. Labor and canister costs for in-can melting were identified. The major contributor to costs of disposing of TRU wastes in a defense waste repository is waste processing costs. Repository costs could become the dominant cost for disposing of TRU wastes in a commercial repository. It is recommended that cast and FUETAP cement and borosilicate glass waste-form systems be considered. 13 figures, 16 tables.

  15. 9 CFR 590.680 - Approval of labeling for egg products processed in exempted egg products processing plants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Approval of labeling for egg products processed in exempted egg products processing plants. 590.680 Section 590.680 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION...

  16. 9 CFR 590.680 - Approval of labeling for egg products processed in exempted egg products processing plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Approval of labeling for egg products processed in exempted egg products processing plants. 590.680 Section 590.680 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION...

  17. 9 CFR 590.680 - Approval of labeling for egg products processed in exempted egg products processing plants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Approval of labeling for egg products processed in exempted egg products processing plants. 590.680 Section 590.680 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION...

  18. 9 CFR 590.680 - Approval of labeling for egg products processed in exempted egg products processing plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Approval of labeling for egg products processed in exempted egg products processing plants. 590.680 Section 590.680 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION...

  19. 9 CFR 590.680 - Approval of labeling for egg products processed in exempted egg products processing plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Approval of labeling for egg products processed in exempted egg products processing plants. 590.680 Section 590.680 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION...

  20. The contemporary cement cycle of the United States

    USGS Publications Warehouse

    Kapur, A.; Van Oss, H. G.; Keoleian, G.; Kesler, S.E.; Kendall, A.

    2009-01-01

    A country-level stock and flow model for cement, an important construction material, was developed based on a material flow analysis framework. Using this model, the contemporary cement cycle of the United States was constructed by analyzing production, import, and export data for different stages of the cement cycle. The United States currently supplies approximately 80% of its cement consumption through domestic production and the rest is imported. The average annual net addition of in-use new cement stock over the period 2000-2004 was approximately 83 million metric tons and amounts to 2.3 tons per capita of concrete. Nonfuel carbon dioxide emissions (42 million metric tons per year) from the calcination phase of cement manufacture account for 62% of the total 68 million tons per year of cement production residues. The end-of-life cement discards are estimated to be 33 million metric tons per year, of which between 30% and 80% is recycled. A significant portion of the infrastructure in the United States is reaching the end of its useful life and will need to be replaced or rehabilitated; this could require far more cement than might be expected from economic forecasts of demand for cement. ?? 2009 Springer Japan.

  1. Process for capturing CO{sub 2} arising from the calcination of the CaCO{sub 3} used in cement manufacture

    SciTech Connect

    N. Rodriguez; M. Alonso; G. Grasa; J. Carlos Abanades

    2008-09-15

    This paper outlines a new CaCO{sub 3} calcination method for producing a stream of CO{sub 2} (suitable for permanent geological storage after purification and compression). The process is based on the use of very hot CaO particles (T {gt} 1000{sup o}C) to transfer heat from a circulating fluidized bed combustor (CFBC) to a calciner (fluidized with CO{sub 2} and/or steam). Since the fluidized bed combustor and calciner have separate atmospheres, the CO{sub 2} resulting from the decomposition of CaCO{sub 3} can be captured, while the CO{sub 2} generated in the combustion of the fuel in air is emitted to the atmosphere. We demonstrate that with this system it is possible to reduce the CO{sub 2} emissions of a cement plant by around 60%. Furthermore, since the key pieces of equipment are similar to the commercial CFBCs used in power generation plants, it is possible to establish the additional investment required for the system and to estimate the cost per ton of CO{sub 2} avoided for this process to be about 19 $/tCO{sub 2} avoided. 19 refs., 4 figs.

  2. Atmospheric Processing Module for Mars Propellant Production

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2014-01-01

    The multi-NASA center Mars Atmosphere and Regolith COllectorPrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methaneoxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO(sub 2) is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a H(sub 2)CO(sub 2) recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO(sub 2) hr for 14 hr, (3) the testing of the CO(sub 2) freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH(sub 4) hr and 71.3 g H(sub 2)O hr along with verification of their purity. The resulting 2.22 kg of CH(sub 2)O(sub 2) propellant per 14 hr day (including O(sub 2) from electrolysis of water recovered from regolith, which also supplies the H(sub 2) for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASAs new Mars exploration plans will be discussed.

  3. Atmospheric Processing Module for Mars Propellant Production

    NASA Technical Reports Server (NTRS)

    Muscatello, A.; Devor, R.; Captain, J.

    2014-01-01

    The multi-NASA center Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project was established to build and demonstrate a methaneoxygen propellant production system in a Mars analog environment. Work at the Kennedy Space Center (KSC) Applied Chemistry Laboratory is focused on the Atmospheric Processing Module (APM). The purpose of the APM is to freeze carbon dioxide from a simulated Martian atmosphere containing the minor components nitrogen, argon, carbon monoxide, and water vapor at Martian pressures (approx. 8 torr) by using dual cryocoolers with alternating cycles of freezing and sublimation. The resulting pressurized CO(sub 2) is fed to a methanation subsystem where it is catalytically combined with hydrogen in a Sabatier reactor supplied by the Johnson Space Center (JSC) to make methane and water vapor. We first used a simplified once-through setup and later employed a H(sub 2)CO(sub 2) recycling system to improve process efficiency. This presentation and paper will cover (1) the design and selection of major hardware items, such as the cryocoolers, pumps, tanks, chillers, and membrane separators, (2) the determination of the optimal cold head design and flow rates needed to meet the collection requirement of 88 g CO(sub 2) hr for 14 hr, (3) the testing of the CO(sub 2) freezer subsystem, and (4) the integration and testing of the two subsystems to verify the desired production rate of 31.7 g CH(sub 4) hr and 71.3 g H(sub 2)O hr along with verification of their purity. The resulting 2.22 kg of CH(sub 2)O(sub 2) propellant per 14 hr day (including O(sub 2) from electrolysis of water recovered from regolith, which also supplies the H(sub 2) for methanation) is of the scale needed for a Mars Sample Return mission. In addition, the significance of the project to NASAs new Mars exploration plans will be discussed.

  4. Abyssal seep site cementation

    SciTech Connect

    Neumann, A.C.; Paull, C.K.; Commeau, R.; Commeau, J.

    1988-01-01

    The deepest submarine cements known so far occur along the 3,300-m deep base of the Florida escarpment and are associated with methane-bearing brine seeps, which emanate there. These deep Holocene carbonates, which occur as surficial and buried crusts, burrow fillings, and friable horizons, were sampled via ALVIN. The carbonates form irregular halos extending up to 20 m from seeps colonized by chemosynthetic fauna. Mussels, gastropods, and clams, the carbonate components of the community, produce a shell hash that is locally cemented by coarsely crystalline low-Mg calcite. Halos of palisade calcite are reminiscent of ancient examples of marine cements. Also present are carbonate hemipelagics cemented by micrite into crusts and burrow fillings. The degree of cementation varies from pervasive to light. Slabs of cemented crust up to 30 cm thick contrast with typical shallow crusts and exhibit irregular tops and smooth bottoms indicating different chemical gradients and pathways.

  5. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    SciTech Connect

    Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-12-12

    The purpose of this DOE-funded effort is to develop technologies for carbon products from coal-derived feed-stocks. Carbon products can include precursor materials such as solvent extracted carbon ore (SECO) and synthetic pitch (Synpitch). In addition, derived products include carbon composites, fibers, foams and others.

  6. Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry.

    PubMed

    Anand, Shalini; Vrat, Prem; Dahiya, R P

    2006-06-01

    A system dynamics model based on the dynamic interactions among a number of system components is developed to estimate CO(2) emissions from the cement industry in India. The CO(2) emissions are projected to reach 396.89 million tonnes by the year 2020 if the existing cement making technological options are followed. Policy options of population growth stabilisation, energy conservation and structural management in cement manufacturing processes are incorporated for developing the CO(2) mitigation scenarios. A 42% reduction in the CO(2) emissions can be achieved in the year 2020 based on an integrated mitigation scenario. Indirect CO(2) emissions from the transport of raw materials to the cement plants and finished product to market are also estimated. PMID:16307842

  7. The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses.

    PubMed

    Ramos, A; Simões, J A

    2009-11-13

    Experimental models can be used for pre-clinical testing of cemented and other type of hip replacements. Total hip replacement (THR) failure scenarios include, among others, cement damage accumulation and the assessment of accurate stress and strain magnitudes at the cement mantle interfaces (stem-cement and cement-bone) can be used to predict mechanical failure. The aseptic loosening scenario in cemented hip replacements is currently not fully understood, and methods of evaluating medical devices must be developed to improve clinical performance. Different results and conclusions concerning the cement micro-cracking mechanism have been reported. The aim of this study was to verify the in vitro behavior of two cemented femoral stems with respect to fatigue crack formation. Fatigue crack damage was assessed at the medial, lateral, anterior and posterior sides of the Lubinus SPII and Charnley stems. All stems were loaded and tested in stair climbing fatigue loading during one million cycles at 2 Hz. After the experiments each implanted synthetic femur was sectioned and analyzed. We observed more damage (cracks per area) for the Lubinus SPII stem, mainly on the proximal part of the cement mantle. The micro-cracking formation initiated in the stem-cement interface and grew towards the direction of cortical bone of the femur. Overall, the cement-bone interface seems to be crucial for the success of the hip replacement. The Charnley stem provoked more damage on the cement-bone interface. A failure index (maximum length of crack/maximum thickness of cement) considered was higher for the cement-stem interface of the Lubinus SPII stem. For a cement mantle thickness higher than 5 mm, cracking initiated at the cement-bone interface and depended on the opening canal process (reaming procedure and instrumentation). The analysis also showed that fatigue-induced damage on the cement mantle, increasing proximally, and depended on the axial position of the stem. The cement

  8. Immobilization of radioactive waste by cementation with purified kaolin clay.

    PubMed

    Osmanlioglu, A Erdal

    2002-01-01

    A study is undertaken to determine the waste immobilization performance of low-level wastes in cement-clay mixtures. Liquid low-level wastes are precipitated using chemical methods, followed by solidification in drums. Solidification is done using cementation processes. Long-term leaching rates of the radionuclides are used as indicators of immobilization performance of solidified waste forms. In addition to evaluating the effects of kaolin clay on the leaching properties of the cemented waste forms, the effect of addition of kaolin on the strength of the cemented waste form is also investigated. The long term leaching tests show that inclusion of kaolin in cement reduces the leaching rates of the radionuclides significantly. However, clay additions in excess of 15 wt.% causes a significant decrease in the hydrolytic stability of cemented waste form. It is found that the best waste isolation, without causing a loss in the mechanical strength, is obtained when the kaolin content in cement is 5%. PMID:12092756

  9. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  10. Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/β-TCP and MCPM/HA formulations.

    PubMed

    Alge, Daniel L; Goebel, W Scott; Chu, Tien-Min Gabriel

    2013-04-01

    Dicalcium phosphate dihydrate (DCPD) cements are attractive biomaterials for bone repair, and a number of different DCPD cement formulations have been proposed in the literature. In this study, we have specifically compared monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) and MCPM/β-tricalcium phosphate (β-TCP) formulations to test the hypothesis that DCPD cement chemistry affects the degradation properties and cytocompatibility of the cement. Using simple in vitro models we found that MCPM/β-TCP formulations degraded primarily by DCPD dissolution, which was associated with a slight pH drop and relatively low mass loss. Cytocompatibility testing of cement conditioned culture media revealed no significant change in cell viability relative to the negative control for all of the MCPM/β-TCP formulations. In contrast, the MCPM/HA formulations were prone to undergo rapid conversion of DCPD to HA, resulting in a sharp pH drop and extensive mass loss. A stoichiometric excess of HA in the cement was found to accelerate the conversion process, and significant cytotoxicity was observed for the MCPM/HA formulations containing excess HA. Collectively, these results show that, although the product of the setting reaction is the same, DCPD cements produced with MCPM/HA and MCPM/β-TCP formulations differ significantly in their degradation properties and cytocompatibility. These differences may have important implications for the selection of a DCPD cement formulation for clinical application. PMID:23428798

  11. Effects of DCPD Cement Chemistry on Degradation Properties and Cytocompatibility: Comparison of MCPM/β-TCP and MCPM/HA Formulations

    PubMed Central

    Alge, Daniel L.; Goebel, W. Scott; Chu, Tien-Min Gabriel

    2013-01-01

    Dicalcium phosphate dihydrate (DCPD) cements are attractive biomaterials for bone repair, and a number of different DCPD cement formulations have been proposed in the literature. In this study we have specifically compared monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) and MCPM/β-tricalcium phosphate (β-TCP) formulations to test the hypothesis that DCPD cement chemistry affects the degradation properties and cytocompatibility of the cement. Using simple in vitro models we found that MCPM/β-TCP formulations degraded primarily by DCPD dissolution, which was associated with a slight pH drop and relatively low mass loss. Cytocompatibility testing of cement conditioned culture media revealed no significant change in cell viability relative to the negative control for all of the MCPM/β-TCP formulations. In contrast, the MCPM/HA formulations were prone to undergo rapid conversion of DCPD to HA, resulting in a sharp pH drop and extensive mass loss. A stoichiometric excess of HA in the cement was found to accelerate the conversion process, and significant cytotoxicity was observed for the MCPM/HA formulations containing excess HA. Collectively, these results show that, although the product of the setting reaction is the same, DCPD cements produced with MCPM/HA and MCPM/β-TCP formulations differ significantly in their degradation properties and cytocompatibility. These differences may have important implications for the selection of a DCPD cement formulation for clinical application. PMID:23428798

  12. Holocene cemented beach deposits in Belize

    NASA Astrophysics Data System (ADS)

    Gischler, Eberhard; Lomando, Anthony J.

    1997-06-01

    Two types of cemented beach deposits occur on reef islands off the coast of Belize. These are (1) intertidal beachrock that is dominantly cemented by marine aragonite and high-magnesium-calcite cements, and (2) supratidal cayrock that is cemented mainly by vadose low-magnesium-calcite cements. Besides differences in position relative to present sea level and resulting early diagenesic features, beachrock and cayrock can be distinguished on the basis of differences in composition, texture, geographical position, and age. Whereas the composition of beachrock is similar to that of the adjacent marginal reef sediments, cayrock is enriched in benthic foraminifera. Intertidal beachrock is moderately to well sorted and well cemented, while supratidal cayrock is very well sorted, poorly cemented and friable. Beachrock occurs preferentially on windward beaches of sand-shingle Gays on the middle and southern barrier reefs and on the isolated platforms Glovers and Lighthouse Reefs. Cayrock only occurs on larger mangrove-sand Gays of the isolated platforms Turneffe Islands, Lighthouse Reef, and the northern barrier reef. 14C-dating of ten whole-rock and mollusk shell samples produced calibrated dates between AD 345 and AD 1435 for beachrock and between BC 1085 and AD 1190 for cayrock. The large-scale distribution of beachrock in Belize supports the contention that physical processes such as water agitation rather than biological processes control beachrock formation and distribution. Only on windward sides of cays that are close to the reef crest, where large amounts of seawater flush the beaches, considerable amounts of cements can be precipitated to produce beachrock. Cayrock forms due to cementation in the vadose zone and is only preserved on larger, stable mangrove-sand cays.

  13. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    SciTech Connect

    Wong, H.S. Buenfeld, N.R.

    2009-10-15

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  14. Writing in dyslexia: product and process.

    PubMed

    Morken, Frøydis; Helland, Turid

    2013-08-01

    Research on dyslexia has largely centred on reading. The aim of this study was to assess the writing of 13 children with and 28 without dyslexia at age 11 years. A programme for keystroke logging was used to allow recording of typing activity as the children performed a sentence dictation task. Five sentences were read aloud twice each. The task was to type the sentence as correctly as possible, with no time constraints. The data were analysed from a product (spelling, grammar and semantics) and process (transcription fluency and revisions) perspective, using repeated measures ANOVA and t-tests to investigate group differences. Furthermore, the data were correlated with measures of rapid automatic naming and working memory. Results showed that the group with dyslexia revised their texts as much as the typical group, but they used more time, and the result was poorer. Moreover, rapid automatic naming correlated with transcription fluency, and working memory correlated with the number of semantic errors. This shows that dyslexia is generally not an issue of effort and that cognitive skills that are known to be important for reading also affect writing. PMID:23720272

  15. Fermentation process for production of xanthan

    SciTech Connect

    Wernau, W.C.

    1981-08-04

    Xanthomonas polymers used in displacement of oil from partially depleted reservoirs are produced in higher concentrations and yields by the gradual addition of a source of assimilable carbon, preferably glucose, to the aqueous nutrient medium during the course of a Xanthomonas fermentation. The cost factors involved in secondary and tertiary oil recovery and the competitive use of diluted Xanthomonas whole broths in such recovery dictate increasing the fermentation concentration of the Xanthomonas polymers. Reduced shipping costs, broth storage facilities, and handling costs are some of the benefits derived. Furthermore, reduced volumes of solvent are needed for recovery when initial broth concentrations are high in those processes where Xanthomonas gums are recovered for oil recovery applications. Increasing the fermentation yield of a desired microbial product is accomplished by adding or feeding a nutrient or nutrients during the course of the fermentation cycle. The addition of glucose solution is started immediately after inoculation. The glucose is fed at an exponentially increasing rate up to 24 hr after inoculation and thereafter at a constant rate. Other nutrients may be fed with the source of assimilable carbon. (Also related to US 11/30/78 Appl. 964,951). 4 claims.

  16. Fermentation process for production of Xanthan

    SciTech Connect

    Wernau, W.C.

    1981-08-04

    Xanthomonas polymers used in displacement of oil from partially depleted reservoirs are produced in higher concentrations and yields by the gradual addition of a source of assimilable carbon, preferably glucose, to the aqueous nutrient medium during the course of a Xanthomonas fermentation. The cost factors involved in secondary and tertiary oil recovery and the competitive use of diluted Xanthomonas whole broths in such recovery dictate increasing the fermentation concentration of the Xanthomonas polymers. Reduced shipping costs, broth storage facilities, and handling costs are some of the benefits derived. Furthermore, reduced volumes of solvent are needed for recovery when initial broth concentrations are high in those processes where Xanthomonas gums are recovered for oil recovery applications. Increasing the fermentation yield of a desired microbial product is accomplished by adding or feeding a nutrient or nutrients during the course of the fermentation cycle. The addition of glucose solution is started immediately after inoculation. The glucose is fed at an exponentially increasing rate up to 24 hr after inoculation and thereafter at a constant rate. Other nutrients may be fed with the source of assimilable carbon. (Also related to US 11/30/78 Appl. 964,951). 4 claims.

  17. Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture.

    PubMed

    Chen, Ying-Liang; Chang, Juu-En; Shih, Pai-Haung; Ko, Ming-Sheng; Chang, Yi-Kuo; Chiang, Li-Choung

    2010-09-01

    The purpose of this study was to combine the physical pretreatments of grinding, sieving, and magnetic-separation processes to reclaim iron-rich materials from the desulfurization slag, and to use the remainder for cement clinker production. The iron-rich materials can be separated out efficiently by grinding for 30 min and sieving with a 0.3 mm mesh. The non-magnetic fraction of the particles smaller than 0.3 mm was in the majority, and proved to be suitable for use as a cement raw material. The raw mixes prepared with a pretreated desulfurization slag had a relatively high reactivity, and the temperature at which alite forms was significantly reduced during the clinkerization process. The clinkers produced with 10% desulfurization slag had a high level of alite and good grindability. Generally, the improvements in clinkerization and clinker grindability are beneficial to energy conservation in cement manufacture. PMID:20493627

  18. Cements from nanocrystalline hydroxyapatite.

    PubMed

    Barralet, J E; Lilley, K J; Grover, L M; Farrar, D F; Ansell, C; Gbureck, U

    2004-04-01

    Calcium phosphate cements are used as bone substitute materials because they may be moulded to fill a void or defect in bone and are osteoconductive. Although apatite cements are stronger than brushite cements, they are potentially less resorbable in vivo. Brushite cements are three-component systems whereby phosphate ions and water react with a soluble calcium phosphate to form brushite (CaHPO4 x 2H2O). Previously reported brushite cement formulations set following the mixture of a calcium phosphate, such as beta-tricalcium phosphate (beta-TCP), with an acidic component such as H3PO4 or monocalcium phosphate monohydrate (MCPM). Due to its low solubility, hydroxyapatite (HA) is yet to be reported as a reactive component in calcium phosphate cement systems. Here we report a new cement system setting to form a matrix consisting predominantly of brushite following the mixture of phosphoric acid with nanocrystalline HA. As a result of the relative ease with which ionic substitutions may be made in apatite this route may offer a novel way to control cement composition or setting characteristics. Since kinetic solubility is dependent on particle size and precipitation temperature is known to affect precipitated HA crystal size, the phase composition and mechanical properties of cements made from HA precipitated at temperatures between 4 and 60 degrees C were investigated. PMID:15332608

  19. Mesoscale texture of cement hydrates.

    PubMed

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  20. Mesoscale texture of cement hydrates

    PubMed Central

    Ioannidou, Katerina; Krakowiak, Konrad J.; Bauchy, Mathieu; Hoover, Christian G.; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J.-M.; Del Gado, Emanuela

    2016-01-01

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium–silicate–hydrates (C–S–H) during cement hydration. Controlling structure and properties of the C–S–H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C–S–H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C–S–H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C–S–H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C–S–H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  1. 21 CFR 113.100 - Processing and production records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Processing and production records. 113.100 Section... CONTAINERS Records and Reports § 113.100 Processing and production records. Link to an amendment published at 76 FR 11923, Mar. 3, 2011. (a) Processing and production information shall be entered at the time...

  2. Reducing CO2-Emission by using Eco-Cements

    NASA Astrophysics Data System (ADS)

    Voit, K.; Bergmeister, K.; Janotka, I.

    2012-04-01

    CO2 concentration in the air is rising constantly. Globally, cement companies are emitting nearly two billion tonnes/year of CO2 (or around 6 to 7 % of the planet's total CO2 emissions) by producing portland cement clinker. At this pace, by 2025 the cement industry will be emitting CO2 at a rate of 3.5 billion tones/year causing enormous environmental damage (Shi et al., 2011; Janotka et al., 2012). At the dawn of the industrial revolution in the mid-eighteenth century the concentration of CO2 was at a level of ca. 280 ppm. 200 years later at the time of World War II the CO2 level had risen to 310 ppm what results in a rate of increase of 0,15 ppm per year for that period (Shi et al., 2011). In November 2011 the CO2 concentration reached a value of 391 ppm (NOAA Earth System Research Laboratory, 2011), a rise of ca. 81 ppm in 66 years and an increased rate of around 1,2 ppm/year respectively. In the same period cement production in tons of cement has multiplied by a factor of ca. 62 (Kelly & Oss, US Geological Survey, 2010). Thus new CO2-saving eco-cement types are gaining in importance. In these cement types the energy-consuming portland cement clinker is partially replaced by latent hydraulic additives such as blast furnace slag, fly ash or zeolite. These hydraulic additives do not need to be fired in the rotary furnace. They ony need to be pulverized to the required grain size and added to the ground portland cement clinker. Hence energy is saved by skipping the engery-consuming firing process, in addition there is no CO2-degassing as there is in the case of lime burning. Therefore a research project between Austria and Slovakia, funded by the EU (Project ENVIZEO), was initiated in 2010. The main goal of this project is to develop new CEM V eco-types of cements and certificate them for common usage. CEM V is a portland clinker saving cement kind that allows the reduction of clinker to a proportion of 40-64% for CEM V/A and 20-39% for CEM V/B respectively by the

  3. Soft X-ray Microscopy of Green Cements

    NASA Astrophysics Data System (ADS)

    Monteiro, P. J. M.; Mancio, M.; Kirchheim, A. P.; Chae, R.; Ha, J.; Fischer, P.; Tyliszczak, T.

    2011-09-01

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO2 emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  4. Soft X-ray Microscopy of Green Cements

    SciTech Connect

    Monteiro, P. J. M.; Mancio, M.; Chae, R.; Ha, J.; Kirchheim, A. P.; Fischer, P.; Tyliszczak, T.

    2011-09-09

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO{sub 2} emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  5. Crushed cement concrete substitution for construction aggregates; a materials flow analysis

    USGS Publications Warehouse

    Kelly, Thomas

    1998-01-01

    An analysis of the substitution of crushed cement concrete for natural construction aggregates is performed by using a materials flow diagram that tracks all material flows into and out of the cement concrete portion of the products made with cement concrete: highways, roads, and buildings. Crushed cement concrete is only one of the materials flowing into these products, and the amount of crushed cement concrete substituted influences the amount of other materials in the flow. Factors such as availability and transportation costs, as well as physical properties, that can affect stability and finishability, influence whether crushed cement concrete or construction aggregates should be used or predominate for a particular end use.

  6. Integrated Product and Process Data for B2B Collaboration

    SciTech Connect

    Kulvatunyou, Boonserm; Ivezic, Nenad; Jones, Albert; Wysk, Richard A.

    2003-09-01

    Collaborative development of engineered products in a business-to-business (B2B) environment will require more than just the selection of components from an on-line catalogue. It will involve the electronic exchange of product, process, and production engineering information during both design and manufacturing. While the state-of-the-practice does include a variety of ways to exchange product data electronically, it does not extend to the exchange of manufacturing process data. The reason is simple; process data is usually tied to specific manufacturing resources. These resources are not known typically at product development time. This paper proposes an approach, called an Integrated Product and Process Data (IPPD), where manufacturing process data is considered during product development. This approach replaces traditional process plans, which are resource specific, with a resource-independent process representation. Such a representation will allow a much wider collaboration among business partners and provide the necessary base for collaborative product development.

  7. Personal exposure to inhalable cement dust among construction workers

    NASA Astrophysics Data System (ADS)

    Peters, Susan; Thomassen, Yngvar; Fechter-Rink, Edeltraud; Kromhout, Hans

    2009-02-01

    A case study was carried out in 2006-2007 to assess the actual cement dust exposure among construction workers involved in a full-scale construction project and as a comparison among workers involved in various stages of cement and concrete production. Full-shift personal exposure measurements were performed for several job types. Inhalable dust and cement dust (based on analysis of elemental calcium) concentrations were determined. Inhalable dust exposures at the construction site ranged from 0.05 to 34 mg/m3, with a mean concentration of 1.0 mg/m3. For inhalable cement dust mean exposure was 0.3 mg/m3 (range 0.02-17 mg/m3). Reinforcement and pouring workers had the lowest average concentrations. Inhalable dust levels in the ready-mix and pre-cast concrete plants were, on average, below 0.5 mg/m3 for inhalable dust and below 0.2 mg/m3 for inhalable cement dust. Highest dust concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM=55 mg/m3; inhalable cement dust GM=33 mg/m3) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages of cement during reinforcement work and pouring.

  8. Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration

    SciTech Connect

    Martin-Sedeno, M. Carmen; Cuberos, Antonio J.M.; De la Torre, Angeles G.; Alvarez-Pinazo, Gema; Ordonez, Luis M.; Gateshki, Milen; Aranda, Miguel A.G.

    2010-03-15

    Belite sulfoaluminate (BSA) cements have been proposed as environmentally friendly building materials, as their production may release up to 35% less CO{sub 2} into the atmosphere when compared to ordinary Portland cements. Here, we discuss the laboratory production of three aluminum-rich BSA clinkers with nominal mineralogical compositions in the range C{sub 2}S (50-60%), C{sub 4}A{sub 3}$ (20-30%), CA (10%) and C{sub 12}A{sub 7} (10%). Using thermogravimetry, differential thermal analysis, high temperature microscopy, and X-ray powder diffraction with Rietveld quantitative phase analysis, we found that burning for 15 min at 1350 deg. C was the optimal procedure, in these experimental conditions, for obtaining the highest amount of C{sub 4}A{sub 3}$, i.e. a value as close as possible to the nominal composition. Under these experimental conditions, three different BSA clinkers, nominally with 20, 30 and 30 wt.% of C{sub 4}A{sub 3}$, had 19.6, 27.1 and 27.7 wt.%, C{sub 4}A{sub 3}$ respectively, as determined by Rietveld analysis. We also studied the complex hydration process of BSA cements prepared by mixing BSA clinkers and gypsum. We present a methodology to establish the phase assemblage evolution of BSA cement pastes with time, including amorphous phases and free water. The methodology is based on Rietveld quantitative phase analysis of synchrotron and laboratory X-ray powder diffraction data coupled with chemical constraints. A parallel calorimetric study is also reported. It is shown that the beta-C{sub 2}S phase is more reactive in aluminum-rich BSA cements than in standard belite cements. On the other hand, C{sub 4}A{sub 3}$ reacts faster than the belite phases. The gypsum ratio in the cement is also shown to be an important factor in the phase evolution.

  9. 75 FR 4423 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Portland Cement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... February 5, 1985 (50 FR 5015). The last notification was filed with the Department on May 18, 2009. A notice was published in the Federal Register pursuant to Section 6(b) of the Act on August 9, 2009 (74 FR... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of...

  10. 77 FR 5573 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Portland Cement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... February 5, 1985 (50 FR 5015). The last notification was filed with the Department on May 12, 2011. A notice was published in the Federal Register pursuant to Section 6(b) of the Act on June 13, 2011 (76 FR... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of...

  11. From Sentence Production to Text Production: Investigating Fundamental Processes.

    ERIC Educational Resources Information Center

    Fayol, Michel

    1991-01-01

    Presents a review of cognitive psychology research dealing with the organization and functioning of oral and written language production mechanisms. Discusses works dealing with the microstructural aspects of language, primarily oral production. Describes how the research perspective has evolved from modular to connectionist models. Examines the…

  12. Enhancing the mechanical properties of cement paste by growing in-situ fiber reinforcement during hydration

    NASA Astrophysics Data System (ADS)

    Constantinides, Margarita

    Efforts to improve the mechanical properties of concrete by modifying the cement paste matrix have focused entirely on strength enhancement. But the intrinsic brittleness of the cement paste matrix limits the possible improvement in the mechanical properties of concrete, and in particular the toughness of the material. Increasing the toughness of the cement paste matrix could lead to a reduction in flaw sensitivity by delaying unstable crack propagation. Consequently, the resistance of the material to cracking due to drying shrinkage, thermal shrinkage, expansive deterioration processes, and applied loads could increase considerably. The goal of this study was to grow in-situ fiber reinforcement in cement paste, a technique never before applied to cement-based materials, to enhance the toughness of the material. Ettringite, an existing, fiber-like hydration product was selected as the fiber reinforcement. Ettringite met all the necessary criteria to act as reinforcement in cement paste: adequate distribution in the matrix; adjustable volume fraction, aspect ratio and size; high stiffness along the fiber length; and finally compatibility with existing hydration products. Alkali-free accelerators were selected as the admixtures used to grow the ettringite in the cement paste. X-ray diffraction and scanning electron microscopy experiments were performed to study the volume fraction, distribution, size, and morphology of the ettringite crystals in the cement paste matrix (both plain and accelerator-containing). Mechanical tests (compression, splitting tension, flexural, compact tension) were used to evaluate the effect of the accelerators on the strength and toughness of cement paste. Microindentations on the surface of the cement paste matrix were performed to study the morphology of the cracks and the toughening mechanisms taking place. Through the characterization tests we identified that while more ettringite forms with the addition of the alkali-free accelerators

  13. Accelerated Biodegradation of Cement by Sulfur-Oxidizing Bacteria as a Bioassay for Evaluating Immobilization of Low-Level Radioactive Waste

    PubMed Central

    Aviam, Orli; Bar-Nes, Gabi; Zeiri, Yehuda; Sivan, Alex

    2004-01-01

    Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca2+ and Si2+, the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr2+ and Cs+, which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement. PMID:15466547

  14. Low fluid leakoff cementing compositions and filtration control additive for cement

    SciTech Connect

    Forrest, G.T.

    1993-07-20

    A cementing composition is described, for cementing oil or gas wells penetrating subterranean formations, capable of forming a fluid slurry when mixed with water comprising: dry hydraulic cement; and a filtration control additive of from about 0.2 to 5.0 percent by weight, based upon dry hydraulic cement, of finely ground peanut hulls, wherein 10 percent or more of the finely ground peanut hulls is in the particle size range of less than 20 standard sieve mesh and greater than 500 standard sieve mesh. In a process for cementing a casing in an oil or gas well penetrating a subterranean formation wherein a cement slurry, formed by mixing water and hydraulic cement, is pumped down the well to flow upwardly between the casing and the subterranean formation, the improvement is described comprising: utilizing as a filtration control additive of from about 0.2 to 5.0 percent by weight, based upon dry hydraulic cement, of finely ground peanut hulls, and utilizing finely ground peanut hulls wherein 10 percent or more of the finely ground peanut hulls is in the particle size range of less than 20 standard sieve mesh and greater than 500 standard sieve mesh.

  15. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  16. PRODUCTION OF CARBON PRODUCTS USING A COAL EXTRACTION PROCESS

    SciTech Connect

    Dady Dadyburjor; Chong Chen; Elliot B. Kennel; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2006-02-23

    The purpose of this DOE-funded effort is to develop technologies for carbon products from coal-derived feedstocks. Carbon products can include precursor materials such as solvent extracted carbon ore (SECO) and synthetic pitch (Synpitch). In addition, derived products include carbon composites, fibers, foams and others. Key milestones included producing hydrogenated coal in the Hydrotreating Facility for the first time. The facility is now operational, although digital controls have not yet been completely wired. In addition, ultrasound is being used to investigate enhanced dissolution of coal. Experiments have been carried out.

  17. Plasma processing methods for hydrogen production

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, Jerzy; Jasiński, Mariusz

    2016-08-01

    In the future a transfer from the fossil fuel-based economy to hydrogen-based economy is expected. Therefore the development of systems for efficient H2 production becomes important. The several conventional methods of mass-scale (or central) H2 production (methane, natural gas and higher hydrocarbons reforming, coal gasification reforming) are well developed and their costs of H2 production are acceptable. However, due to the H2 transport and storage problems the small-scale (distributed) technologies for H2 production are demanded. However, these new technologies have to meet the requirement of producing H2 at a production cost of (1-2)/kg(H2) (or 60 g(H2)/kWh) by 2020 (the U.S. Department of Energy's target). Recently several plasma methods have been proposed for the small-scale H2 production. The most promising plasmas for this purpose seems to be those generated by gliding, plasmatron and nozzle arcs, and microwave discharges. In this paper plasma methods proposed for H2 production are briefly described and critically evaluated from the view point of H2 production efficiency. The paper is aiming at answering a question if any plasma method for the small-scale H2 production approaches such challenges as the production energy yield of 60 g(H2)/kWh, high production rate, high reliability and low investment cost. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  18. Processing of Spent Ion Exchange Resins in a Rotary Calciner - 12212

    SciTech Connect

    Kascheev, Vladimir; Musatov, Nikolay

    2012-07-01

    Processing Russian nuclear ion exchange resin KU-2 using a 'Rotary' calciner was conducted. The resulting product is a dry free flowing powder (moisture content 3 wt.%, Angle of repose of ≅ 20 deg.). Compared with the original exchange resin the volume of the final product is about 3 times less.. Rotary calciner product can be stored in metal drums or in special reinforced concrete cubicles. After thermal treatment in a rotary calciner, the spent resin product can be solidified in cement yielding the following attributes: - The cemented waste is only a 35% increase over the volume of powder product; - The volume of cement calciner product is almost 9 times less (8.7) than the volume of cement solidified resin; - The mechanical strength of cemented calciner product meets the radioactive waste regulations in Russia. (authors)

  19. PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS

    DOEpatents

    Spedding, F.H.; Butler, T.A.; Johns, I.B.

    1959-03-10

    The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.

  20. Architectures, Representations and Processes of Language Production

    ERIC Educational Resources Information Center

    Alario, F.-Xavier; Costa, Albert; Ferreira, Victor S.; Pickering, Martin J.

    2006-01-01

    The authors present an overview of recent research conducted in the field of language production based on papers presented at the first edition of the International Workshop on Language Production (Marseille, France, September 2004). This article comprises two main parts. In the first part, consisting of three sections, the authors review the…

  1. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2004-01-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  2. Process simulation for advanced composites production

    SciTech Connect

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S.

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  3. Hydrogen in the Methanol Production Process

    ERIC Educational Resources Information Center

    Kralj, Anita Kovac; Glavic, Peter

    2006-01-01

    Hydrogen is a very important industrial gas in chemical processes. It is very volatile; therefore, it can escape from the process units and its mass balance is not always correct. In many industrial processes where hydrogen is reacted, kinetics are often related to hydrogen pressure. The right thermodynamic properties of hydrogen can be found for…

  4. Powder-Metallurgy Process And Product

    NASA Technical Reports Server (NTRS)

    Paris, Henry G.

    1988-01-01

    Rapid-solidification processing yields alloys with improved properties. Study undertaken to extend favorable property combinations of I/M 2XXX alloys through recently developed technique of rapid-solidification processing using powder metallurgy(P/M). Rapid-solidification processing involves impingement of molten metal stream onto rapidly-spinning chill block or through gas medium using gas atomization technique.

  5. Productive Skills for Process Operatives. Skills Review.

    ERIC Educational Resources Information Center

    Giles, L.; Kodz, J.; Evans, C.

    A study of process operatives examined the developments in processing work in 20 organizations within the chemical and food and drink processing industries. Seven exploratory interviews were followed by 20 employer interviews. Technological innovations caused job losses and layoffs. Organizational responses adopted to meet increasing competitive…

  6. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  7. Fractional exhaled nitric oxide among cement factory workers: a cross sectional study

    PubMed Central

    Tungu, Alexander Mtemi; Bråtveit, Magne; Mamuya, Simon D; Moen, Bente E

    2013-01-01

    Background It has been suggested that dust exposure causes airway inflammation among cement factory workers. However, there is limited information on the mechanisms of this effect. We explored any associations between total dust exposure and fractional exhaled nitric oxide (FENO) as a marker of airway eosinophilic inflammation among cement production workers in Tanzania. We also examined possible differences in FENO concentration between workers in different parts of the production line. Methodology We examined 127 cement workers and 28 controls from a mineral water factory. An electrochemistry-based NIOX MINO device was used to examine FENO concentration. Personal total dust was collected from the breathing zone of the study participants using 37 mm cellulose acetate filters placed in three-piece plastic cassettes. Interviews on workers’ background information were conducted in the Swahili language. Results We found equal concentrations of FENO among exposed workers and controls (geometric mean (GM)=16 ppb). The GM for total dust among the exposed workers and controls was 5.0 and 0.6 mg/m3, respectively. The FENO concentrations did not differ between the exposed workers with high (GM≥5 mg/m3) and low (GM<5 mg/m3) total dust exposure. There was no significant difference in FENO concentration between workers in the two main stages of the cement production process. Conclusions We did not find any difference in FENO concentration between dust-exposed cement workers and controls, and there were similar FENO concentrations among workers in the two main stages of cement production. PMID:23243102

  8. About Calcium Phosphate Cements (CPC)

    NASA Astrophysics Data System (ADS)

    Piñera, Silvia; Piña, Cristina

    2006-09-01

    Calcium phosphate cements (CPC) are used in orthopaedic surgery as bone substitution and fixation of metallic implants, showing advantages with respect to other materials like polymeric cements or ceramic blocks also used for bone repair. For example, they are easy to shape and fill bone defects, react at low temperature and their setting product is hydroxyapatite, mineral from it's composed the inorganic part of the bone, resulting a bioabsorbable material that can be replaced by new bone. Nevertheless there are still some complications like their low absorption rate, inyectability, setting times and their low strength that limits their use to only non load bearing applications. In this work we present a brief resume of some investigations that has been proposed to solve some of these problems, like the addition of phosphates solutions or seeds to increase the reaction rate, or fibers and hard particles to produce a composite material.

  9. Process simulation and economical evaluation of enzymatic biodiesel production plant.

    PubMed

    Sotoft, Lene Fjerbaek; Rong, Ben-Guang; Christensen, Knud V; Norddahl, Birgir

    2010-07-01

    Process simulation and economical evaluation of an enzymatic biodiesel production plant has been carried out. Enzymatic biodiesel production from high quality rapeseed oil and methanol has been investigated for solvent free and cosolvent production processes. Several scenarios have been investigated with different production scales (8 and 200 mio. kg biodiesel/year) and enzyme price. The cosolvent production process is found to be most expensive and is not a viable choice, while the solvent free process is viable for the larger scale production of 200 mio. kg biodiesel/year with the current enzyme price. With the suggested enzyme price of the future, both the small and large scale solvent free production proved viable. The product price was estimated to be 0.73-1.49 euro/kg biodiesel with the current enzyme price and 0.05-0.75 euro/kg with the enzyme price of the future for solvent free process. PMID:20171880

  10. Alkali-slag cements for the immobilization of radioactive wastes

    SciTech Connect

    Shi, C.; Day, R.L.

    1996-12-31

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH){sub 2}, Al (OH){sub 3} and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs{sup + } from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes.

  11. SOA Production From Cloud Processing of Glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Perri, M. J.; Seitzinger, S. P.; Tan, Y.; Turpin, B. J.

    2007-12-01

    Recent studies suggest that aqueous cloud chemistry contributes to secondary organic aerosol (SOA) production. Gas phase primary precursors, such as ethene and isoprene, can oxidize in the interstitial spaces of clouds to form water-soluble species, including glycolaldehyde. These water-soluble products can partition into cloud droplets and undergo further oxidation (e.g., via hydroxyl radicals). If low-volatility products (e.g., oxalate) are formed, these products can remain in the particle phase following droplet evaporation, forming organic aerosol. Organic aerosol plays an important role in cloud microphysics, visibility, and human health, yet little is known about aqueous phase reaction pathways and products that contribute to SOA. The kinetics of aqueous phase glycolaldehyde oxidation were studied and products were identified. Hydroxyl radical was generated via continuous UV photolysis of hydrogen peroxide inside a glass photochemical vessel. The reaction of glycolaldehyde and hydroxyl radical was monitored in real-time via continuous electrospray ionization mass spectrometry (ESI-MS). Organic products (acids and aldehydes) formed and destroyed during the reaction were identified and quantified via negative and positive mode ionization. Based on ESI-MS data obtained, glycolaldehyde is oxidized via hydroxyl radical to glycolic acid, glyoxylic acid, and ultimately oxalic acid, as previously suggested. In addition, several unexpected higher molecular weight compounds were produced, and identification of these reaction products is currently underway. The results obtained from this study serve to validate and refine the aqueous SOA-producing pathway for glycolaldehyde in cloud chemistry models and can be used to increase the accuracy of SOA prediction in atmospheric air quality and climate models.

  12. Personal exposure to inhalable cement dust among construction workers.

    PubMed

    Peters, Susan; Thomassen, Yngvar; Fechter-Rink, Edeltraud; Kromhout, Hans

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and its cement content. Exposure variability was modelled with linear mixed models.Results- Inhalable dust concentrations at the construction site ranged from 0.05 to 34 mg/m(3), with a mean of 1.0 mg/m(3). Average concentration for inhalable cement dust was 0.3 mg/m(3) (GM; range 0.02-17 mg/m(3)). Levels in the ready-mix and pre-cast concrete plants were on average 0.5 mg/m(3) (GM) for inhalable dust and 0.2 mg/m(3) (GM) for inhalable cement dust. Highest concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM = 55 mg/m(3); inhalable cement dust GM = 33 mg/m(3)) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages during reinforcement work and pouring. Most likely other sources were contributing to dust concentrations, particularly at the construction site. Within job groups, temporal variability in exposure concentrations generally outweighed differences in average concentrations between workers. 'Using a broom', 'outdoor wind speed' and 'presence of rain' were overall the most influential factors affecting inhalable (cement) dust exposure.Conclusion- Job type appeared to be the main predictor of exposure to inhalable (cement) dust at the construction site. Inhalable dust concentrations in cement production plants, especially during cleaning tasks, are usually considerably higher than at the construction site. PMID:19137154

  13. Process of beneficiating coal and product

    SciTech Connect

    Burgess, L.E.; Fox, K.M.; McGarry, P.E.

    1981-12-08

    Mine run coal is pulverized and the extended surfaces of the coal particles are rendered hydrophobic and oilophilic by a chemical bonding and graft polymerization reaction with a water unsoluble organic polymerizable monomer under peroxidation influence in a predominantly water reaction medium. The mineral ash present in the coal, particularly the iron pyrites, remains hydrophilic and is separated from the polymeric organic surface bonded coal product in a water washing step wherein the washed coal floats on and is recovered from the water phase and the ash is removed with the separated wash water in a critical wash step. The hydrophobic and oilophilic organic polymeric surface bonded coating about the coal particles is fortified by inclusion of additional unbound free fatty acids by further small additions thereof. Excess water is removed from the beneficiated hydrophobic surface-altered coal product mechanically, and the carboxylic acid groups present in the coal-oil product are thereafter converted to a metal soap. The beneficiated coal product can be used ''dry'', or additional quantities of a liquid hydrocarbon fuel can be incorporated with the ''dry'' beneficiated coal product to produce a flowable fluid or liquid coal product having the rheological property of marked thixotropy. Introduction of this physically induced property into the liquid coal-oil-mixture prevents settling out of the heavier coal particles from the relatively ash-free fluid fuel composition under extended storage periods.

  14. 40 CFR 158.330 - Description of production process.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Description of production process. 158.330 Section 158.330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.330 Description of production process....

  15. 40 CFR 158.330 - Description of production process.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Description of production process. 158.330 Section 158.330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.330 Description of production process....

  16. 40 CFR 158.330 - Description of production process.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Description of production process. 158.330 Section 158.330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.330 Description of production process....

  17. 40 CFR 158.330 - Description of production process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Description of production process. 158.330 Section 158.330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.330 Description of production process....

  18. 40 CFR 158.330 - Description of production process.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Description of production process. 158.330 Section 158.330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Product Chemistry § 158.330 Description of production process....

  19. A Prevalidation of the Product-Process Matrix

    ERIC Educational Resources Information Center

    Ashenbaum, Bryan

    2013-01-01

    A major challenge for instructors of supply chain and operations management (SCOM) courses is to help students who have never seen a production floor visualize concepts, such as the product-process matrix from standard introductory SCOM texts. This article presents a classroom exercise, which "prevalidates" the product-process matrix.…

  20. Reference Production: Production-Internal and Addressee-Oriented Processes

    ERIC Educational Resources Information Center

    Arnold, Jennifer

    2008-01-01

    This paper reviews research on the production of referential expressions, examining the choice between explicit and attenuated lexical forms (e.g., pronouns vs. names), and between acoustically prominent and attenuated pronunciations. Both choices can be explained in terms of addressee-design, in that explicit expressions tend to be used in…

  1. Technical Writing: Process and Product. Third Edition.

    ERIC Educational Resources Information Center

    Gerson, Sharon J.; Gerson, Steven M.

    This book guides students through the entire writing process--prewriting, writing, and rewriting--developing an easy-to-use, step-by-step technique for writing the types of documents they will encounter on the job. It engages students in the writing process and encourages hands-on application as well as discussions about ethics, audience…

  2. 48 CFR 870.111-5 - Frozen processed food products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Frozen processed food... DEPARTMENT SUPPLEMENTARY REGULATIONS SPECIAL PROCUREMENT CONTROLS Controls 870.111-5 Frozen processed food products. (a) The following frozen processed food products must have a label complying with the...

  3. 48 CFR 870.111-5 - Frozen processed food products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Frozen processed food... DEPARTMENT SUPPLEMENTARY REGULATIONS SPECIAL PROCUREMENT CONTROLS Controls 870.111-5 Frozen processed food products. (a) The following frozen processed food products must have a label complying with the...

  4. 48 CFR 870.111-5 - Frozen processed food products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Frozen processed food... DEPARTMENT SUPPLEMENTARY REGULATIONS SPECIAL PROCUREMENT CONTROLS Controls 870.111-5 Frozen processed food products. (a) The following frozen processed food products must have a label complying with the...

  5. 48 CFR 870.111-5 - Frozen processed food products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Frozen processed food... DEPARTMENT SUPPLEMENTARY REGULATIONS SPECIAL PROCUREMENT CONTROLS Controls 870.111-5 Frozen processed food products. (a) The following frozen processed food products must have a label complying with the...

  6. 48 CFR 870.111-5 - Frozen processed food products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Frozen processed food... DEPARTMENT SUPPLEMENTARY REGULATIONS SPECIAL PROCUREMENT CONTROLS Controls 870.111-5 Frozen processed food products. (a) The following frozen processed food products must have a label complying with the...

  7. 7 CFR 926.11 - Processed cranberries or cranberry products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Processed cranberries or cranberry products. 926.11... COLLECTION, REPORTING AND RECORDKEEPING REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.11 Processed cranberries or cranberry products. Processed cranberries or...

  8. 7 CFR 926.11 - Processed cranberries or cranberry products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Processed cranberries or cranberry products. 926.11... COLLECTION, REPORTING AND RECORDKEEPING REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.11 Processed cranberries or cranberry products. Processed cranberries or...

  9. 7 CFR 926.11 - Processed cranberries or cranberry products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Processed cranberries or cranberry products. 926.11... COLLECTION, REPORTING AND RECORDKEEPING REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.11 Processed cranberries or cranberry products. Processed cranberries or...

  10. 7 CFR 926.11 - Processed cranberries or cranberry products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Processed cranberries or cranberry products. 926.11... COLLECTION, REPORTING AND RECORDKEEPING REQUIREMENTS APPLICABLE TO CRANBERRIES NOT SUBJECT TO THE CRANBERRY MARKETING ORDER § 926.11 Processed cranberries or cranberry products. Processed cranberries or...

  11. Paleoenvironmental Controls on Early Cementation of Organic-Rich Shales in the Eagle Ford Group

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Tice, M. M.

    2013-12-01

    Early carbonate cements have the potential to alter fracture toughness, and carbonate can be either promoted or inhibited by microbial processes in different redox zones. It is therefore possible that basin redox evolution could indirectly control early diagenesis and modify reservoir properties of corresponding shale units. The goals of this study are to analyze geochemical characteristics of the Late Cretaceous Eagle Ford Group in McMullen County, Texas in order to test the hypotheses that (1) the redox state of the water column controlled carbonate cement abundance and (2) carbonate cement lowered organic matter content by volumetric dilution. An X-ray analytical microscope was used to map elemental compositions of fresh core samples spanning the Eagle Ford Group. Resultant maps were used to characterize carbonate cements and to estimate the redox state of the overlying water column during deposition as proxied by the relative abundances of the trace metals Mo, V, Cr, and Zn. Preliminary results indicate that cementation occurred early relative to compaction. Ti-Kα1-normalized Mo Kα1 and Ca Kα1 fluorescence intensities are positively correlated throughout the unit, suggesting that carbonate cementation was promoted by basin euxinia. Total organic carbon is negatively correlated with (Ca Kα1)/(Ti Kα1) fluorescence ratio in the upper Eagle Ford Group, consistent with volumetric dilution of sedimentary organic matter by diagenetic cementation prior to compaction. In contrast, there is no significant correlation between total organic carbon and carbonate content in the more organic-rich lower Eagle Ford Group, suggesting that variations in organic matter production, preservation, or dilution by siliciclastic input were also important in controlling final organic content.

  12. Cogrinding significance for calcium carbonate-calcium phosphate mixed cement. II. Effect on cement properties.

    PubMed

    Tadier, Solène; Bolay, Nadine Le; Fullana, Sophie Girod; Cazalbou, Sophie; Charvillat, Cédric; Labarrère, Michel; Boitel, Daniel; Rey, Christian; Combes, Christèle

    2011-11-01

    In the present study, we aim to evaluate the contribution of the cogrinding process in controlling calcium carbonate-dicalcium phosphate dihydrate cement properties. We set a method designed to evaluate phase separation, usually occurring during paste extrusion, which is quantitative, reliable, and discriminating and points out the determining role of cogrinding to limit filter-pressing. We show that solid-phase cogrinding leads to synergistic positive effects on cement injectability, mechanical properties, and radio-opacity. It allows maintaining a low (<0.4 kg) and constant load during the extrusion of paste, and the paste's composition remains constant and close to that of the initial paste. Analogous behavior was observed when adding a third component into the solid phase, especially SrCO(3) as a contrasting agent. Moreover, the cement's mechanical properties can be enhanced by lowering the L/S ratio because of the lower plastic limit. Finally, unloaded or Sr-loaded cements show uniform and increased optical density because of the enhanced homogeneity of dry component distribution. Interestingly, this study reveals that cogrinding improves and controls essential cement properties and involves processing parameters that could be easily scaled up. This constitutes a decisive advantage for the development of calcium carbonate-calcium phosphate mixed cements and, more generally, of injectable multicomponent bone cements that meet a surgeon's requirements. PMID:21953727

  13. Cement-cement interface strength: influence of time to apposition.

    PubMed

    Park, S H; Silva, M; Park, J S; Ebramzadeh, E; Schmalzried, T P

    2001-01-01

    Cement-cement interfaces were created under simulated operating-room conditions. In order to analyze the effect of time to apposition on interface strength, two cement surfaces were brought together 1, 2, 4, and 6 min after 1 min of mixing and 45 s of waiting. Cement-cement interface strength was evaluated with the use of a three-point bending to failure test. Scanning electron microscopy (SEM) images of the failed interface were obtained. The mean interface strength decreased when the cement-cement interface was time delayed. Compared to bulk cement, interface strength in time-delayed groups decreased 8% after 1-min delay (p=.037), 18% after 2-min delay (p=.0004), 20% after 4-min delay (p=.0005), and 42% after 6-min delay (p<.0001). No statistically significant differences in interface strength were found between the 2- and 4-min delayed groups (p=.73). SEM images revealed that after 6-min delay, up to 50% of the cement surface can remain unbonded, explaining the decrease in strength of the cement-cement interface as a function of time to apposition. This laboratory study indicates that time to apposition plays a critical role in cement-cement interface strength. If any cementing technique involves the joining of two cement surfaces, it is recommended that the two cement surfaces be mated together within 5 min and 45 s after the start of mixing (1 min mixing; 45 s waiting; 4 min delay), in order to obtain a strong cement-cement interface bond. Delay beyond this can result in substantial reduction in the strength of the cement-cement interface bond. PMID:11745529

  14. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-07-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the eleventh quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. This report provides a progress summary of ASR testing. The original laboratory procedure for measuring set cement expansion resulted in unacceptable erosion of the test specimens. In subsequent tests, a different expansion procedure was implemented and an alternate curing method for cements formulated with TXI Lightweight cement was employed to prevent sample failure caused by thermal shock. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but data for some compositions were still questionable. Additional modification of test procedures for compositions containing TXI Lightweight cement were implemented and testing is ongoing.

  15. Timing of syntaxial cement

    SciTech Connect

    Perkins, R.D.

    1985-02-01

    Echinodermal fragments are commonly overgrown in ancient limestones, with large single crystals growing in optical continuity over their skeletal hosts (i.e., syntaxial overgrowths). Such syntaxial cements are usually considered to have precipitated from meteoric pore waters associated with a later stage of subaerial exposure. Although several examples have been reported from ancient carbonates where petrographic relationships may indicate an early submarine formation of syntaxial cement, no occurrences have been noted in Holocene submarine-cemented rocks. Syntaxial cements of submarine origin have been found in Bermuda beachrock where isopachous high-magnesian calcite cements merge with large optically continuous crystals growing on echinodermal debris. Examination of other Holocene sediments cemented by magnesian calcite indicates that echinodermal fragments are not always overgrown syntaxially, but may be rimmed by microcrystalline calcite. The reason for this difference is not clear, although it may be a function of the spacing of nucleation sites and rates of crystal growth. A review of syntaxial cements from several localities in ancient carbonate sequences reveals that many are best interpreted as having formed in the submarine setting, whereas it is more clear that others formed from meteoric precipitation. These occurrences suggest that care should be exercised in inferring meteoric diagenesis from syntaxial overgrowths and that the possibility of submarine formation should be considered.

  16. Production Goals Process: Means and End

    ERIC Educational Resources Information Center

    Leske, Gary W.

    1974-01-01

    To remain educationally accountable, agriculture instructors must use production enterprises whenever they are available, exploiting their potential for facilitating the development of students' decision-making abilities through management practices, presented here in sequential development (student-set goals, standards, records, record analyses,…

  17. Heavy quark production processes in QCD

    SciTech Connect

    Brodsky, S.J.; Gunion, J.F.

    1984-12-01

    We have identified two novel effects in QCD, each of which acts to enhance the production of heavy quark and supersymmetric particles beyond what is conventionally expected from gluon fusion. Both effects are present in QED, but are compounded in QCD because of the increased number of diagrams and the much larger coupling constant. The intrinsic charm quark distribution in the nucleon could account for the observed enhancements of the charm structure function at large x and features of the charm production data but this mechanism is relatively suppressed for heavier systems. Prebinding distortion of the fusion cross section is, however, likely to be significant for the production at low p/sub T/ of all particles containing heavy colored constituents. At this stage the QCD calculations are highly model dependent although they agree with the general properties which can be inferred from the operator product expansion in the heavy quark mass. Much more theoretical analysis of these effects is clearly needed. It is also clear that much more experimental work is necessary to extend and confirm the reported anomalous heavy quark signals. 22 references.

  18. Development of an advanced continuous mild gasification process for the production of co-products. Quarterly report, January--March, 1996

    SciTech Connect

    O`Neal, G.W.

    1996-04-01

    Determination of the best furnace for a commercial coke plant is underway. A shuttle or tunnel kiln has economic advantage over a rotary hearth design. Production of 20 tons of coke in a small shuttle kiln is near completion which will provide experience for this design. Twenty tons of CTC continuous coke are being produced for testing at a General Motors` foundry. The production is approximately 75 percent complete. During this production, variables of the process are being studied to aid in design of a commercial coke plant. Raw material composition, blending, briquetting variables, and calcining heat profile are the major areas of interest. Western SynCoal Company produces a dried coal product from sub-bituminous coal. This upgraded product was evaluated for producing coke products by blending char from this coal product with the coal product along with suitable binders. The green briquettes were then calcined to produce coke. The resulting coke was judged to be usable as part of a cupola coke charge or as a fuel in cement kilns and sugar beet furnaces.

  19. PROCESS FOR PRODUCTION OF URANIUM HEXAFLUORIDE

    DOEpatents

    Fowler, R.D.

    1958-11-01

    A process is described for the manufacture of uranium bexafluoride which consists in contacting an oxide of uranium simultaneously with elemental carbon and elemental fluorine at an elevated temperature, using a proportion of the carbon to the oxide about 50% in excess of that theoretically required to combine with f the oxygen as C0/.sub 2/. The process has the advantage that the uranium oxide is reduced by tbe carbon aad converted to the hexafluoride in a single operation.

  20. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    PubMed

    Walling, Sam A; Provis, John L

    2016-04-13

    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis. PMID:27002788

  1. Stage cementing apparatus

    SciTech Connect

    Blamford, D.M.; Easter, J.H.

    1988-06-21

    A stage cementing apparatus for selectively passing cement from the interior passage of a casing to the annulus between the exterior of the casing and borehole, the casing having an upper portion and a lower portion, is described comprising: a barrel secured to the upper portion of the casing; a mandrel secured to the lower portion of the casing, and a stage cementing tool having a generally cylindrical configuration adapted for attachment to the lower end of the barrel about a portion of the mandrel.

  2. Respiratory effects of portland cement dust

    SciTech Connect

    Abrons, H.L.; Sanderson, W.T.; Petersen, M.R.

    1985-01-01

    An epidemiologic study of the respiratory effects of Portland cement dust was conducted. The cohort consisted of 2,736 cement workers at 16 facilities in the United States. The comparisons consisted of 2,213 individuals in activities not involving dust exposure. Spirometry testing was performed. Respiratory-symptom questionnaires were administered. Chest x-rays were taken and examined. Personal sampling for total and respirable dust, quartz, and oxides of sulfur and nitrogen was performed. Cement workers had a significantly elevated adjusted-odds ratio for dyspnea, rounded and irregular small x-ray opacities, and pleural abnormalities. None of the ventilatory-function variables were significantly different between cement workers and the comparisons. The authors conclude that cement dust exerts little adverse effect on respiratory symptoms and ventilatory function. To determine whether the increase in x-ray abnormalities represents pneumoconiosis or another pathological process would require histological study. There is insufficient evidence to suggest a change in the exposure limit for cement dust.

  3. Low-cost process for hydrogen production

    DOEpatents

    Cha, Chang Y.; Bauer, Hans F.; Grimes, Robert W.

    1993-01-01

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen an carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  4. Image processing techniques for digital orthophotoquad production

    USGS Publications Warehouse

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  5. Low-cost process for hydrogen production

    DOEpatents

    Cha, C.H.; Bauer, H.F.; Grimes, R.W.

    1993-03-30

    A method is provided for producing hydrogen and carbon black from hydrocarbon gases comprising mixing the hydrocarbon gases with a source of carbon and applying radiofrequency energy to the mixture. The hydrocarbon gases and the carbon can both be the products of gasification of coal, particularly the mild gasification of coal. A method is also provided for producing hydrogen and carbon monoxide by treating a mixture of hydrocarbon gases and steam with radio-frequency energy.

  6. 30 CFR 250.1608 - Well casing and cementing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Well casing and cementing. 250.1608 Section 250... Operations § 250.1608 Well casing and cementing. (a) General requirements. (1) For the purpose of this... penetrate into the cap rock), (v) Second cap rock casing (brine wells), and (vi) Production liner. (2)...

  7. 30 CFR 250.1608 - Well casing and cementing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Well casing and cementing. 250.1608 Section 250... Well casing and cementing. (a) General requirements. (1) For the purpose of this subpart, the several... the cap rock), (v) Second cap rock casing (brine wells), and (vi) Production liner. (2) The...

  8. 30 CFR 250.1608 - Well casing and cementing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Well casing and cementing. 250.1608 Section 250... Well casing and cementing. (a) General requirements. (1) For the purpose of this subpart, the several... the cap rock), (v) Second cap rock casing (brine wells), and (vi) Production liner. (2) The...

  9. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    SciTech Connect

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

  10. From Process to Product: Your Risk Process at Work

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Fogarty, Jenifer; Charles, John; Buquo, Lynn; Sibonga, Jean; Alexander, David; Horn, Wayne G.; Edwards, J. Michelle

    2010-01-01

    The Space Life Sciences Directorate (SLSD) and Human Research Program (HRP) at the NASA/Johnson Space Center work together to address and manage the human health and performance risks associated with human space flight. This includes all human system requirements before, during, and after space flight, providing for research, and managing the risk of adverse long-term health outcomes for the crew. We previously described the framework and processes developed for identifying and managing these human system risks. The focus of this panel is to demonstrate how the implementation of the framework and associated processes has provided guidance in the management and communication of human system risks. The risks of early onset osteoporosis, CO2 exposure, and intracranial hypertension in particular have all benefitted from the processes developed for human system risk management. Moreover, we are continuing to develop capabilities, particularly in the area of information architecture, which will also be described. We are working to create a system whereby all risks and associated actions can be tracked and related to one another electronically. Such a system will enhance the management and communication capabilities for the human system risks, thereby increasing the benefit to researchers and flight surgeons.

  11. MAINTAINING SOIL PROCESSES FOR PLANT PRODUCTIVITY AND COMMUNITY DYNAMICS

    EPA Science Inventory

    Rangeland soil biota affect soil properties and processes that control the availability of water and nutrients that are essential for the maintenance of productivity and vegetation composition. oil processes mediated by soil biota include decomposition, nutrient immobilization an...

  12. Process for the production of hydrogen peroxide

    DOEpatents

    Datta, R.; Randhava, S.S.; Tsai, S.P.

    1997-09-02

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H{sub 2}O{sub 2} laden permeate. 1 fig.

  13. Process for the production of liquid hydrocarbons

    DOEpatents

    Bhatt, Bharat Lajjaram; Engel, Dirk Coenraad; Heydorn, Edward Clyde; Senden, Matthijis Maria Gerardus

    2006-06-27

    The present invention concerns a process for the preparation of liquid hydrocarbons which process comprises contacting synthesis gas with a slurry of solid catalyst particles and a liquid in a reactor vessel by introducing the synthesis gas at a low level into the slurry at conditions suitable for conversion of the synthesis gas into liquid hydrocarbons, the solid catalyst particles comprising a catalytic active metal selected from cobalt or iron on a porous refractory oxide carrier, preferably selected from silica, alumina, titania, zirconia or mixtures thereof, the catalyst being present in an amount between 10 and 40 vol. percent based on total slurry volume liquids and solids, and separating liquid material from the solid catalyst particles by using a filtration system comprising an asymmetric filtration medium (the selective side at the slurry side), in which filtration system the average pressure differential over the filtration medium is at least 0.1 bar, in which process the particle size distribution is such that at least a certain amount of the catalyst particles is smaller than the average pore size of the selective layer of the filtration medium. The invention also comprises an apparatus to carry out the process described above.

  14. Sweet sorghum processing for alcohol production

    SciTech Connect

    Schmulevich, I.; Coble, C.G.; Egg, R.P.

    1983-12-01

    Several processing techniques for producing ethanol from sweet sorghum were investigated. Fermentating chopped stalks yielded more ethanol than shredded sorghum or juice. Leaf removal prior to fermentation resulted in higher yields per unit feedstock. Removal of solids after fermentation yielded slightly more ethanol than solids removal before fermentation.

  15. Group Work: From Process to Product.

    ERIC Educational Resources Information Center

    Collins, Rosemarie Giroux

    1994-01-01

    Describes a step-by-step process for conducting a small-group activity for intermediate students of French as a Second Language in which the students are asked to create a print advertisement for a new, nutritious snack. The steps include contextualization, brainstorming, establishing criteria, planning the activity, language, and reflection on…

  16. Separation processes during binary monotectic alloy production

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1984-01-01

    Observation of microgravity solidification processes indicates that outside of sedimentation, at least two other important effects can separate the phases: critical-point wetting and spreading; and thermal migration of second-phase droplets due to interfacial tension gradients. It is difficult to study these surface tension effects while in a unit gravity field. In order to investigate the processes occurring over a temperature range, i.e., between a consolute point and the monotectic temperature, it is necessary to use a low-gravity environment. The MSFC drop tube (and tower), the ballistic trajectory KC-135 airplane, and the Space Shuttle are ideal facilities to aid formation and testing of hypotheses. Much of the early work in this area focuses on transparent materials so that process dynamics may be studied by optical techniques such as photography for viewing macro-processes; holography for studying diffusional growth; spinodal decomposition and coalescence; ellipsometry for surface wetting and spreading effects; and interferometry and spectroscopy for small-scale spatial resolution of concentration profiles.

  17. Process for the production of hydrogen peroxide

    DOEpatents

    Datta, Rathin; Randhava, Sarabjit S.; Tsai, Shih-Perng

    1997-01-01

    An integrated membrane-based process method for producing hydrogen peroxide is provided comprising oxidizing hydrogenated anthraquinones with air bubbles which were created with a porous membrane, and then contacting the oxidized solution with a hydrophilic membrane to produce an organics free, H.sub.2 O.sub.2 laden permeate.

  18. Content, Process, and Product: Modeling Differentiated Instruction

    ERIC Educational Resources Information Center

    Taylor, Barbara Kline

    2015-01-01

    Modeling differentiated instruction is one way to demonstrate how educators can incorporate instructional strategies to address students' needs, interests, and learning styles. This article discusses how secondary teacher candidates learn to focus on content--the "what" of instruction; process--the "how" of instruction;…

  19. Child Assessment: The Process and the Product.

    ERIC Educational Resources Information Center

    Hansen, Cheryl L., Ed.; Haring, Norris G., Ed.

    The document contains seven papers from the Child Assessment Topical Workshop designed to raise participant awareness of basic assessment issues involved in screening, placement, and measurement of daily performance; to provide specific information about the assessment process, including collecting, organizing, analyzing, and using data; and to…

  20. Reduced product yield in chemical processes by second law effects

    NASA Technical Reports Server (NTRS)

    England, C.; Funk, J. E.

    1980-01-01

    An analysis of second law effects in chemical processes, where product yield is explicitly related to the individual irreversibilities within the process to indicate a maximum theoretical yield, is presented. Examples are given that indicate differences between first and second law approaches toward process efficiency and process yield. This analysis also expresses production capacity in terms of the heating value of a product. As a result, it is particularly convenient in analyzing fuel conversion plants and their potential for improvement. Relationships are also given for the effects of irreversibilities on requirements for process heat and for feedstocks.

  1. Processing maize flour and corn meal food products

    PubMed Central

    Gwirtz, Jeffrey A; Garcia-Casal, Maria Nieves

    2014-01-01

    Corn is the cereal with the highest production worldwide and is used for human consumption, livestock feed, and fuel. Various food technologies are currently used for processing industrially produced maize flours and corn meals in different parts of the world to obtain precooked refined maize flour, dehydrated nixtamalized flour, fermented maize flours, and other maize products. These products have different intrinsic vitamin and mineral contents, and their processing follows different pathways from raw grain to the consumer final product, which entail changes in nutrient composition. Dry maize mechanical processing creates whole or fractionated products, separated by anatomical features such as bran, germ, and endosperm. Wet maize processing separates by chemical compound classification such as starch and protein. Various industrial processes, including whole grain, dry milling fractionation, and nixtamalization, are described. Vitamin and mineral losses during processing are identified and the nutritional impacts outlined. Also discussed are the vitamin and mineral contents of corn. PMID:24329576

  2. Processing maize flour and corn meal food products.

    PubMed

    Gwirtz, Jeffrey A; Garcia-Casal, Maria Nieves

    2014-04-01

    Corn is the cereal with the highest production worldwide and is used for human consumption, livestock feed, and fuel. Various food technologies are currently used for processing industrially produced maize flours and corn meals in different parts of the world to obtain precooked refined maize flour, dehydrated nixtamalized flour, fermented maize flours, and other maize products. These products have different intrinsic vitamin and mineral contents, and their processing follows different pathways from raw grain to the consumer final product, which entail changes in nutrient composition. Dry maize mechanical processing creates whole or fractionated products, separated by anatomical features such as bran, germ, and endosperm. Wet maize processing separates by chemical compound classification such as starch and protein. Various industrial processes, including whole grain, dry milling fractionation, and nixtamalization, are described. Vitamin and mineral losses during processing are identified and the nutritional impacts outlined. Also discussed are the vitamin and mineral contents of corn. PMID:24329576

  3. [Allergy towards bone cement].

    PubMed

    Thomas, P; Schuh, A; Summer, B; Mazoochian, F; Thomsen, M

    2006-09-01

    Bone cements based on polymethylmethacrylate are typically used for fixation of artificial joints. Intolerance reactions to endoprostheses not explained by infection or mechanical failure may lead to allergological diagnostics, which mostly focuses on metal allergy. However, also bone cement components may provoke hypersensitivity reactions leading to eczema, implant loosening, or fistula formation. Elicitors of such reactions encompass acrylates and additives such as benzoyl peroxide, N,N-dimethyl-p-toluidine, hydroquinone, or antibiotics (particularly gentamicin). Upon repeated contact with bone cement components, e.g., acrylate monomers, also in medical personnel occasionally hand eczema or even asthma may develop. Therefore, in the case of suspected hypersensitivity reactions to arthroplasty, the allergological diagnostics should include bone cement components. PMID:16865384

  4. The Visible Cement Data Set

    PubMed Central

    Bentz, Dale P.; Mizell, Symoane; Satterfield, Steve; Devaney, Judith; George, William; Ketcham, Peter; Graham, James; Porterfield, James; Quenard, Daniel; Vallee, Franck; Sallee, Hebert; Boller, Elodie; Baruchel, Jose

    2002-01-01

    With advances in x-ray microtomography, it is now possible to obtain three-dimensional representations of a material’s microstructure with a voxel size of less than one micrometer. The Visible Cement Data Set represents a collection of 3-D data sets obtained using the European Synchrotron Radiation Facility in Grenoble, France in September 2000. Most of the images obtained are for hydrating portland cement pastes, with a few data sets representing hydrating Plaster of Paris and a common building brick. All of these data sets are being made available on the Visible Cement Data Set website at http://visiblecement.nist.gov. The website includes the raw 3-D datafiles, a description of the material imaged for each data set, example two-dimensional images and visualizations for each data set, and a collection of C language computer programs that will be of use in processing and analyzing the 3-D microstructural images. This paper provides the details of the experiments performed at the ESRF, the analysis procedures utilized in obtaining the data set files, and a few representative example images for each of the three materials investigated. PMID:27446723

  5. BD monomer and elastomer production processes.

    PubMed

    Lynch, J

    2001-06-01

    The monomer 1,3 butadiene (BD) is a product of the petrochemical industry. It is used to make several elastomers including the very high volume styrene butadiene rubber (SBR) that comprises the bulk of automobile tires. It is also used to make polybutadiene rubber that is used in parts of tires, coatings, composites and other products. The monomer can be converted to chlorobutadiene (chloroprene) and used to make polychloroprene (neoprene). BD is one of the several olefins created by cracking hydrocarbons in the presence of steam. A mixed C4 stream from the steam cracker is then sent to a BD monomer extraction unit. Modern units typically use dimethyl formamide as the extraction solvent. SBR is commonly made by the copolymerization of BD and styrene, along with various additives to control the reaction, in a water emulsion. The reaction proceeds in a continuous chain of reactors until it is 'shortstopped' by a strong reducing agent. After removing unreacted monomers from the stabilized latex, it is blended, coagulated and dewatered. The resulting dry rubber crumb is bailed, film wrapped and stored in crates. The polymerization of BD to make polybutadiene rubber can be conducted as a water suspension type polymerization similar to SBR or in a solvent system followed by solvent recovery and transfer into water suspension. PMID:11397387

  6. Process for the production of lactams

    SciTech Connect

    Matson, M.S.

    1989-01-24

    A process is described for producing a lactam comprising contacting a feedstock selected from the group consisting of acid anhydrides, dicarboxylic acids, lactones, and imides, the feedstock having 4 to 6 carbon atoms in the backbone with a catalyst system comprising palladium and at least one second metal selected from the group consisting of ruthenium, rhodium and rhenium under conditions to convert at least a portion of the feedstock to the lactam.

  7. Product review: lucis image processing software.

    PubMed

    Johnson, J E

    1999-04-01

    Lucis is a software program that allows the manipulation of images through the process of selective contrast pattern emphasis. Using an image-processing algorithm called Differential Hysteresis Processing (DHP), Lucis extracts and highlights patterns based on variations in image intensity (luminance). The result is that details can be seen that would otherwise be hidden in deep shadow or excessive brightness. The software is contained on a single floppy disk, is easy to install on a PC, simple to use, and runs on Windows 95, Windows 98, and Windows NT operating systems. The cost is $8,500 for a license, but is estimated to save a great deal of money in photographic materials, time, and labor that would have otherwise been spent in the darkroom. Superb images are easily obtained from unstained (no lead or uranium) sections, and stored image files sent to laser printers are of publication quality. The software can be used not only for all types of microscopy, including color fluorescence light microscopy, biological and materials science electron microscopy (TEM and SEM), but will be beneficial in medicine, such as X-ray films (pending approval by the FDA), and in the arts. PMID:10206154

  8. Interface abrasion between rough surface femoral stems and PMMA cement results in extreme wear volumes--a retrieval study and failure analysis.

    PubMed

    Buchhorn, Gottfried Hans; Bersebach, Petra; Stauch, Tilo; Schultz, Wolfgang; Köster, Georg

    2015-01-01

    During the loosening cascade of cemented rough femoral stems, the destruction of the mantle and the production of cement and metal wear debris occur after the loss of constraint at the interface. Two-dimensional (2D) measurements (light microscopy based morphometry on fragments of mantles and vertical scanning interferometry of femoral stems) permitted mathematical 3D-extrapolations to estimate the wear volumes. Fragments of the cement mantles available lost volumes from 0.85 mm(3) to 494.10 mm(3) (median amount of bone cement wear = 178,426 mg). The harder metal surfaces lost between 1.459 mm(3) and 5.688 mm(3) of material (the median amount of metal wear per surface = 1.504 mg/100 mm(2)). Compared to the loss of material due to the fretting of stems, the abrasion of metal, and cement in defective cement mantles produced wear volumes sufficiently high to induce osteolysis. Though the design of the femoral stem and the handling of bone cement do not represent contemporary design and clinical practice, respectively, an extremely high number of joint replacements still in daily use may be impacted by this study because of possible predicted failures. Once the processes of fragmentation, abrasion, and osteolysis have been realized, the time until revision surgery should not be unduly prolonged. PMID:24820132

  9. An EMQ model in an imperfect production process

    NASA Astrophysics Data System (ADS)

    Sankar Sana, Shib; Chaudhuri, Kripasindhu

    2010-06-01

    The intention of this article is to develop a framework of production policy (resumption and non-resumption) in order to find out optimal safety stock, optimal production rate and production lot size. It encompasses specific versions of the concept of quality and inventory model, stochastic machine breakdown and its correcting and regular repair paths with safety stocks. This framework hopefully serves to simplify answers to the important questions: How much safety stocks, production rate and production lot size are required to minimise the total expected system cost. The optimal production rate, production lot size, production run time and safety stocks are determined numerically and the joint effect of process deterioration, machine breakdown and its repair (correcting and preventive) on the optimal decision is investigated for a numerical example. Such an investigation should also yield logistics directions for the design of products and their manufacturing processes.

  10. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.; Lee, J.W.; Tevault, C.V.

    1995-06-01

    In the fundamental biological process of photosynthesis, atmospheric carbon dioxide is reduced to carbohydrate using water as the source of electrons with simultaneous evolution of molecular oxygen: H{sub 2}O + CO{sub 2} + light {yields} O{sub 2} + (CH{sub 2}O). It is well established that two light reactions, Photosystems I and II (PSI and PSII) working in series, are required to perform oxygenic photosynthesis. Experimental data supporting the two-light reaction model are based on the quantum requirement for complete photosynthesis, spectroscopy, and direct biochemical analysis. Some algae also have the capability to evolve molecular hydrogen in a reaction energized by the light reactions of photosynthesis. This process, now known as biophotolysis, can use water as the electron donor and lead to simultaneous evolution of molecular hydrogen and oxygen. In green algae, hydrogen evolution requires prior incubation under anaerobic conditions. Atmospheric oxygen inhibits hydrogen evolution and also represses the synthesis of hydrogenase enzyme. CO{sub 2} fixation competes with proton reduction for electrons relased from the photosystems. Interest in biophotolysis arises from both the questions that it raises concerning photosynthesis and its potential practical application as a process for converting solar energy to a non-carbon-based fuel. Prior data supported the requirement for both Photosystem I and Photosystem II in spanning the energy gap necessary for biophotolysis of water to oxygen and hydrogen. In this paper we report the at PSII alone is capable of driving sustained simultaneous photoevolution of molecular hydrogen and oxygen in an anaerobically adapted PSI-deficient strain of Chlamydomonas reinhardtii, mutant B4, and that CO{sub 2} competes as an electron acceptor.

  11. Analysis of process water use in poultry meat production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry processing facilities use large quantities of water for chiller unit operations. The chiller is critical for temperature reduction to inhibit microbial growth and preserve product quality and safety. Process water quality can also influence product safety when bacteria present on poultry sk...

  12. The Interaction between Central and Peripheral Processes in Handwriting Production

    ERIC Educational Resources Information Center

    Roux, Sebastien; McKeeff, Thomas J.; Grosjacques, Geraldine; Afonso, Olivia; Kandel, Sonia

    2013-01-01

    Written production studies investigating central processing have ignored research on the peripheral components of movement execution, and vice versa. This study attempts to integrate both approaches and provide evidence that central and peripheral processes interact during word production. French participants wrote regular words (e.g. FORME),…

  13. Product-Process Distinctions in ELT Curriculum Theory and Practice

    ERIC Educational Resources Information Center

    Wette, Rosemary

    2011-01-01

    ELT theory classifies curricula as belonging to one of two contrasting approaches: either process or product. While foundation-level teacher education literature offers strongly product-oriented advice, research- and theory-oriented texts stress the need to negotiate with learners, and to take language-learning processes into account. This article…

  14. "Key Moments" as Pedagogical Windows into the Video Production Process

    ERIC Educational Resources Information Center

    Halverson, Erica; Gibbons, Damiana

    2010-01-01

    In this article, we trace learning across the digital video production process through case studies with four youth media arts organizations (YMAOs) across the United States. We hypothesize that what these organizations share is a series of key moments throughout the production process in which youth must articulate the relationship between the…

  15. Ethanol and other products from citrus processing waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greater than 80 percent of citrus produced in Florida is processed for juice production. The bulk of this waste material is dried as citrus pulp and sold as a cattle feed by-product, often at a price lower than the cost of production. While not profitable, this does solve the problem of waste dispos...

  16. 9 CFR 381.306 - Processing and production records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Processing and production records. 381.306 Section 381.306 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF.... Container conveyor speed, and for agitating hydrostatic retorts, the rotative chain speed, shall...

  17. 9 CFR 318.306 - Processing and production records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Processing and production records. 318.306 Section 318.306 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... retort operation. Container conveyor speed, and for agitating hydrostatic retorts, the rotative...

  18. 9 CFR 381.306 - Processing and production records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Processing and production records. 381.306 Section 381.306 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF.... Container conveyor speed, and for agitating hydrostatic retorts, the rotative chain speed, shall...

  19. 9 CFR 318.306 - Processing and production records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Processing and production records. 318.306 Section 318.306 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... retort operation. Container conveyor speed, and for agitating hydrostatic retorts, the rotative...

  20. 9 CFR 318.306 - Processing and production records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Processing and production records. 318.306 Section 318.306 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... retort operation. Container conveyor speed, and for agitating hydrostatic retorts, the rotative...

  1. 9 CFR 381.306 - Processing and production records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Processing and production records. 381.306 Section 381.306 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF.... Container conveyor speed, and for agitating hydrostatic retorts, the rotative chain speed, shall...

  2. 9 CFR 318.306 - Processing and production records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Processing and production records. 318.306 Section 318.306 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... retort operation. Container conveyor speed, and for agitating hydrostatic retorts, the rotative...

  3. 9 CFR 381.306 - Processing and production records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Processing and production records. 381.306 Section 381.306 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF.... Container conveyor speed, and for agitating hydrostatic retorts, the rotative chain speed, shall...

  4. 9 CFR 318.306 - Processing and production records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Processing and production records. 318.306 Section 318.306 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... retort operation. Container conveyor speed, and for agitating hydrostatic retorts, the rotative...

  5. 9 CFR 381.306 - Processing and production records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Processing and production records. 381.306 Section 381.306 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF.... Container conveyor speed, and for agitating hydrostatic retorts, the rotative chain speed, shall...

  6. Feasibility of disposing waste glyphosate neutralization liquor with cement rotary kiln.

    PubMed

    Bai, Y; Bao, Y B; Cai, X L; Chen, C H; Ye, X C

    2014-08-15

    The waste neutralization liquor generated during the glyphosate production using glycine-dimethylphosphit process is a severe pollution problem due to its high salinity and organic components. The cement rotary kiln was proposed as a zero discharge strategy of disposal. In this work, the waste liquor was calcinated and the mineralogical phases of residue were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). The mineralogical phases and the strength of cement clinker were characterized to evaluate the influence to the products. The burnability of cement raw meal added with waste liquor and the calorific value of waste liquor were tested to evaluate the influence to the thermal state of the kiln system. The results showed that after the addition of this liquor, the differences of the main phases and the strength of cement clinker were negligible, the burnability of raw meal was improved; and the calorific value of this liquor was 6140 J/g, which made it could be considered as an alternative fuel during the actual production. PMID:25010454

  7. Integrated coke, asphalt and jet fuel production process and apparatus

    DOEpatents

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  8. Continuous downstream processing for high value biological products: A Review.

    PubMed

    Zydney, Andrew L

    2016-03-01

    There is growing interest in the possibility of developing truly continuous processes for the large-scale production of high value biological products. Continuous processing has the potential to provide significant reductions in cost and facility size while improving product quality and facilitating the design of flexible multi-product manufacturing facilities. This paper reviews the current state-of-the-art in separations technology suitable for continuous downstream bioprocessing, focusing on unit operations that would be most appropriate for the production of secreted proteins like monoclonal antibodies. This includes cell separation/recycle from the perfusion bioreactor, initial product recovery (capture), product purification (polishing), and formulation. Of particular importance are the available options, and alternatives, for continuous chromatographic separations. Although there are still significant challenges in developing integrated continuous bioprocesses, recent technological advances have provided process developers with a number of attractive options for development of truly continuous bioprocessing operations. PMID:26153056

  9. Product Binding Varies Dramatically between Processive and Nonprocessive Cellulase Enzymes

    SciTech Connect

    Bu, L.; Nimlos, M. R.; Shirts, M. R.; Stahlberg, J.; Himmel, M. E.; Crowley, M. F.; Beckham, G. T.

    2012-07-13

    Cellulases hydrolyze {beta}-1,4 glycosidic linkages in cellulose, which are among the most prevalent and stable bonds in Nature. Cellulases comprise many glycoside hydrolase families and exist as processive or nonprocessive enzymes. Product inhibition negatively impacts cellulase action, but experimental measurements of product-binding constants vary significantly, and there is little consensus on the importance of this phenomenon. To provide molecular level insights into cellulase product inhibition, we examine the impact of product binding on processive and nonprocessive cellulases by calculating the binding free energy of cellobiose to the product sites of catalytic domains of processive and nonprocessive enzymes from glycoside hydrolase families 6 and 7. The results suggest that cellobiose binds to processive cellulases much more strongly than nonprocessive cellulases. We also predict that the presence of a cellodextrin bound in the reactant site of the catalytic domain, which is present during enzymatic catalysis, has no effect on product binding in nonprocessive cellulases, whereas it significantly increases product binding to processive cellulases. This difference in product binding correlates with hydrogen bonding between the substrate-side ligand and the cellobiose product in processive cellulase tunnels and the additional stabilization from the longer tunnel-forming loops. The hydrogen bonds between the substrate- and product-side ligands are disrupted by water in nonprocessive cellulase clefts, and the lack of long tunnel-forming loops results in lower affinity of the product ligand. These findings provide new insights into the large discrepancies reported for binding constants for cellulases and suggest that product inhibition will vary significantly based on the amount of productive binding for processive cellulases on cellulose.

  10. Importance of granulometry on phase evolution and phase-to-phase relationships of experimentally burned impure limestones intended for production of hydraulic lime and/or natural cement

    NASA Astrophysics Data System (ADS)

    Kozlovcev, Petr; Přikryl, Richard; Přikrylová, Jiřina

    2015-04-01

    In contrast to modern ordinary Portland cement production from finely ground raw material blends, ancient burning of hydraulic lime was conducted by burning larger pieces of natural raw material. Due to natural variability of raw material composition, exploitation of different beds from even one formation can result the product with significantly different composition and/or properties. Prague basin (Neoproterozoic to pre-Variscan Palaeozoic of the central part of the Bohemian Massif - the so-called Barrandian area, Czech Republic) represents a classical example of the limestone-rich region with long-term history of limestone burning for quick lime and/or various types of hydraulic binders. Due to the fact that burning of natural hydraulic lime has been abandoned in this region at the turn of 19th/20th c., significant gap in knowledge on the behavior of various limestone types and on the influence of minor variance in composition on the quality of burned product is encountered. Moreover, the importance of employment of larger pieces of raw material for burning for the development of proper phase-to-phase relationships (i.e. development of hydraulic phases below sintering temperature at mutual contacts of minerals) has not been examined before. To fill this gap, a representative specimens of major limestone types from the Prague basin have been selected for experimental study: Upper Silurian limestone types (Přídolí and Kopanina Lms.), and Lower Devonian limestones (Radotín, Kotýs, Řeporyje, Dvorce-Prokop, and Zlíchov Lms.). Petrographic character of the experimental material was examined by polarizing microscopy, cathodoluminescence, scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS), and X-ray diffraction (XRD) of insoluble residue. Based on the data from wet silicate analyses, modal composition of studied impure limestones was computed. Experimental raw material was burned in laboratory electric furnace at 1000 and 1200°C for 3

  11. Process for production desulfurized of synthesis gas

    DOEpatents

    Wolfenbarger, James K.; Najjar, Mitri S.

    1993-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.

  12. Process for the production of maleic anhydride

    SciTech Connect

    Click, G.T.; Barone, B.J.

    1986-06-24

    A process is described for the vapor phase oxidation of hydrocarbons having 4 carbon atoms to produce maleic anhydride comprising contacting the hydrocarbons with a fixed bed vanadium-phosphorus-oxygen catalyst, containing P:V in an atomic ration of 1/2 to 3:1 whereby the catalyst gradually decreases in selectivity, wherein the improvement comprises contacting the catalyst with phosphorus compound of phosphorus halide, phosphorus oxyhalide, organic phospines, organic phosphites, organic phosphates or mixtures thereof at a temperature in the range of about 0/sup 0/ to 600/sup 0/C and thereafter contacting the catalyst with a flow of stream at a temperature in the range of 300/sup 0/ to 600/sup 0/C in an amount and for a sufficient duration whereby the catalyst is regenerated.

  13. Production process for advanced space satellite system cables/interconnects.

    SciTech Connect

    Mendoza, Luis A.

    2007-12-01

    This production process was generated for the satellite system program cables/interconnects group, which in essences had no well defined production process. The driver for the development of a formalized process was based on the set backs, problem areas, challenges, and need improvements faced from within the program at Sandia National Laboratories. In addition, the formal production process was developed from the Master's program of Engineering Management for New Mexico Institute of Mining and Technology in Socorro New Mexico and submitted as a thesis to meet the institute's graduating requirements.

  14. Metrology for the production process of aspheric lenses

    NASA Astrophysics Data System (ADS)

    Beutler, Andreas

    2016-06-01

    Metrology revealing the form deviation of an aspheric surface is a fundamental part of all different production processes of aspheric lenses. Different processing steps have different requirements for the production. A selection of measuring instruments commonly applied in these processes is presented. This contains tactile and optical pointwise measuring instruments and laser interferometer systems. The principle functionality and the properties are presented. An overview of the application of these systems in different production processes is given. In order to show comparability, measuring results of the different types of systems are presented.

  15. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  16. A non-linear model of economic production processes

    NASA Astrophysics Data System (ADS)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  17. Study on Product Innovative Design Process Driven by Ideal Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Fuying; Lu, Ximei; Wang, Ping; Liu, Hui

    Product innovative design in companies today relies heavily on individual members’ experience and creative ideation as well as their skills of integrating creativity and innovation tools with design methods agilely. Creative ideation and inventive ideas generation are two crucial stages in product innovative design process. Ideal solution is the desire final ideas for given problem, and the striving reaching target for product design. In this paper, a product innovative design process driven by ideal solution is proposed. This design process encourages designers to overcome their psychological inertia, to foster creativity in a systematic way for acquiring breakthrough creative and innovative solutions in a reducing sphere of solution-seeking, and results in effective product innovative design rapidly. A case study example is also presented to illustrate the effectiveness of the proposed design process.

  18. From Rocks to Cement. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Science Education Center.

    This module deals with the materials used in making concrete hollow blocks. Topics discussed include: (1) igneous, metamorphic, and sedimentary rocks; (2) weathering (the process of breaking down rocks) and its effects on rocks; (3) cement; (4) stages in the manufacturing of Portland cement; and (5) the transformation of cement into concrete…

  19. 21 CFR 820.70 - Production and process controls.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... operating procedures (SOP's), and methods that define and control the manner of production; (2) Monitoring... process control procedures that describe any process controls necessary to ensure conformance to... establish and maintain procedures for changes to a specification, method, process, or procedure....

  20. 21 CFR 820.70 - Production and process controls.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... operating procedures (SOP's), and methods that define and control the manner of production; (2) Monitoring... process control procedures that describe any process controls necessary to ensure conformance to... establish and maintain procedures for changes to a specification, method, process, or procedure....

  1. Fuzzy control of the production environment process parameters

    NASA Astrophysics Data System (ADS)

    Izvekov, V. N.

    2015-04-01

    The fuzzy control process for support of given microclimatic production environment process parameters with loss of one from values, regulating regime of process was shown. The structural schematic decisions with algorithm of functioning and oriented to existing apparatus (means of realization) was presented.

  2. [Light-cured glass ionomer cements].

    PubMed

    Nordbø, H

    1989-12-01

    An attempt at improving the properties of glass-ionomer cements is represented by the incorporation of light-cure resin systems. This produces materials which have mechanical properties and moisture sensitivity superior to those of present glass-ionomer cements. Such hybrid materials cure by two different mechanisms: polymerization and salt formation. In particular, the early mechanical properties and water sensitivity of the materials are improved due to the formation of a polymer matrix. The tendency to undergo surface crazing during desiccation is also reduced. Three commercially available products are shortly described. PMID:2640704

  3. MEMS product engineering using fabrication process development tools

    NASA Astrophysics Data System (ADS)

    Hahn, K.; Schmidt, T.; Ortloff, D.; Popp, J.; Wagener, A.; Brück, R.

    2008-12-01

    The development of MEMS devices differs substantially from product engineering methods used in more traditional industries. The approach is characterized by a close customer involvement and product specific fabrication processes. A large number interdependencies between device design on the one hand and manufacturing process development on the other hand make product engineering in the MEMS area a rather tedious and complicated task. In this paper we discuss a comprehensive customer-oriented MEMS product engineering methodology. Both MEMS design and fabrication process development are analyzed with regard to procedures and interfaces used in order to develop an appropriate CAD support either in terms of existing tools or by specifying individual tools to be implemented. The manufacturing process development is part of this holistic approach and is supported by a CAD environment for the management and the design of thin-film MEMS fabrication processes. This environment has been developed by the authors and became recently commercially available.

  4. Sources of Information as Determinants of Product and Process Innovation

    PubMed Central

    2016-01-01

    In this paper we use a panel of manufacturing firms in Spain to examine the extent to which they use internal and external sources of information (customers, suppliers, competitors, consultants and universities) to generate product and process innovation. Our results show that, although internal sources are influential, external sources of information are key to achieve innovation performance. These results are in line with the open innovation literature because they show that firms that are opening up their innovation process and that use different information sources have a greater capacity to generate innovations. We also find that the importance of external sources of information varies depending on the type of innovation (product or process) considered. To generate process innovation, firms mainly rely on suppliers while, to generate product innovation, the main contribution is from customers. The potential simultaneity between product and process innovation is also taken into consideration. We find that the generation of both types of innovation is not independent. PMID:27035456

  5. Sources of Information as Determinants of Product and Process Innovation.

    PubMed

    Gómez, Jaime; Salazar, Idana; Vargas, Pilar

    2016-01-01

    In this paper we use a panel of manufacturing firms in Spain to examine the extent to which they use internal and external sources of information (customers, suppliers, competitors, consultants and universities) to generate product and process innovation. Our results show that, although internal sources are influential, external sources of information are key to achieve innovation performance. These results are in line with the open innovation literature because they show that firms that are opening up their innovation process and that use different information sources have a greater capacity to generate innovations. We also find that the importance of external sources of information varies depending on the type of innovation (product or process) considered. To generate process innovation, firms mainly rely on suppliers while, to generate product innovation, the main contribution is from customers. The potential simultaneity between product and process innovation is also taken into consideration. We find that the generation of both types of innovation is not independent. PMID:27035456

  6. Next generation enhancement of cements by the addition of industrial wastes and subsequent treatment with supercritical CO{sub 2}

    SciTech Connect

    Taylor, C.M.V.; Rubin, J.B.; Carey, J.W.; Jones, R.; Baglin, F.G.

    1997-09-01

    The natural curing reactions which occur in a standard portland cement involve the formation of portlandite, Ca(OH){sub 2}, and calcium silicate hydrates, CSH. Over time, the cured cement abstracts carbon dioxide, CO{sub 2}, from the air, converting the portlandite and CSH to calcium carbonate, CaCO{sub 3}. It turns out, however, that this secondary conversion results in the blockage and/or closure of pores, drastically slowing the reaction rate with time. By exposing a portland cement to supercritical CO{sub 2} (SCCO{sub 2}), it is found that the carbonation reaction can be greatly accelerated. This acceleration is due to (1) the ability of the supercritical fluid to penetrate into the pores of the cement, providing continuous availability of fresh reactant, in hyper-stoichiometric concentrations; and (2) the solubility of the reaction product in the supercritical fluid, facilitating its removal. By accelerating the natural aging reactions, a chemically stable product is formed having reduced porosity, permeability and pH, while at the same time significantly enhancing the mechanical strength. The supercritical CO{sub 2} treatment process also removes a majority of the hydrogenous material from the cement, and sequesters large amounts of carbon dioxide, permanently removing it from the environment. The authors describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of cements containing industrial waste. Some of the issues concerning the economic feasibility of industrial scale-up will be addressed. Finally, some initial results of physical property measurements made on portland cements before and after supercritical fluid CO{sub 2} treatment will be presented.

  7. Microstructure-controllable Laser Additive Manufacturing Process for Metal Products

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chuang, Chuan-Sheng; Lin, Ching-Chih; Wu, Chih-Hsien; Lin, De-Yau; Liu, Sung-Ho; Tseng, Wen-Peng; Horng, Ji-Bin

    Controlling the cooling rate of alloy during solidification is the most commonly used method for varying the material microstructure. However, the cooling rate of selective laser melting (SLM) production is constrained by the optimal parameter settings for a dense product. This study proposes a method for forming metal products via the SLM process with electromagnetic vibrations. The electromagnetic vibrations change the solidification process for a given set of SLM parameters, allowing the microstructure to be varied via magnetic flux density. This proposed method can be used for creating microstructure-controllable bio-implant products with complex shapes.

  8. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  9. Technology for the product and process data base

    NASA Technical Reports Server (NTRS)

    Barnes, R. D.

    1984-01-01

    The computerized product and process data base is increasingly recognized to be the cornerstone component of an overall system aimed at the integrated automation of the industrial processes of a given company or enterprise. The technology needed to support these more effective computer integrated design and manufacturing methods, especially the concept of 3-D computer-sensible product definitions rather than engineering drawings, is not fully available and rationalized. Progress is being made, however, in bridging this technology gap with concentration on the modeling of sophisticated information and data structures, high-performance interactive user interfaces and comprehensive tools for managing the resulting computerized product definition and process data base.

  10. Global warming impact on the cement and aggregates industries

    SciTech Connect

    Davidovits, J. . Geopolymer Inst.)

    1994-06-01

    CO[sub 2] related energy taxes are focusing essentially on fuel consumption, not on actual CO[sub 2] emission measured at the chimneys. Ordinary Portland cement, used in the aggregates and industries, results from the calcination of limestone and silica. The production of 1 ton of cement directly generates 0.55 tons of chemical-CO[sub 2] and requires the combustion of carbon-fuel to yield an additional 0.40 tons of CO[sub 2]. The 1987 1 billion metric tons world production of cement accounted for 1 billion metric tons of CO[sub 2], i.e., 5% of the 1987 world CO[sub 2] emission. A world-wide freeze of CO[sub 2] emission at the 1990 level as recommended by international institutions, is incompatible with the extremely high cement development needs of less industrialized countries. Present cement production growth ranges from 5% to 16% and suggests that in 25 years from now, world cement CO[sub 2] emissions could equal 3,500 million tons. Eco-taxes when applied would have a spectacular impact on traditional Portland cement based aggregates industries. Taxation based only on fuel consumption would lead to a cement price increase of 20%, whereas taxation based on actual CO[sub 2] emission would multiply cement price by 1.5 to 2. A 25--30% minor reduction of CO[sub 2] emissions may be achieved through the blending of Portland cement with replacement materials such as coal-fly ash and iron blast furnace slag.

  11. Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements Through Integrin and VEGF Signaling Pathways.

    PubMed

    Lee, Sang-Im; Lee, Eui-Suk; El-Fiqi, Ahmed; Lee, So-Youn; Eun-Cheol Kim; Kim, Hae-Won

    2016-05-01

    Formulating self-setting calcium phosphate cements (CPCs) with secondary phases particularly in the nanoscale order holds great promise to improve biological properties. Here, we focus on the effect that bioactive glass nanoparticles (BGN) incorporated in CPC compositions can have on the proliferation, odontogenic differentiation, and angiogenic stimulation of stem cells derived from human dental pulp (HDPSCs). These odontogenic and angiogenic events are of special importance in the dentin-pulp regeneration processes. In comparison to pure CPCs, nanocomposite cements exhibit a significantly improved proliferation of HDPSCs, and the improvement is more significant as the BGN content increases. The nanocomposite cements substantially enhance the adhesion of cells, and significantly up-regulate odontogenic differentiation, including alkaline phosphatase (ALP) activity and the expressions of odontogenic genes (sialophosphoprotein, dentin matrix protein I, ALP, osteopontin and osteocalcin). Furthermore, the use of nanocomposite cements result in stimulation of angiogenic gene expression (VEGF, FGF-2, VEGFRs, PECAM-1, and VE-cadherin) and protein production (VEGF, VEGFR-1). The angiogenic stimulation by the HDPSCs significantly affects the endothelial cell behaviors, that is, the endothelial cell migration and the tubular network formation are substantially improved when treated with HDPSC-conditioned medium, particularly with the help of nanocomposite cements. The integrin and VEGF signaling pathways are reasoned for the stimulation of the odontogenesis and angiogenesis of cells, where the nanocomposite cements up-regulate the integrin subsets α1, α2, α3, and β1, and activate the integrin downstream signal pathways, such as p-FAK, p-Akt, p-paxillin, JNK, EK, and NF-κB, as well as other nuclear transcriptional factors, including CREB, STAT-3, and ELK-1. The current results indicate that the new formulation of the nanocomposite self-setting cements might provide some

  12. New Vistas in Chemical Product and Process Design.

    PubMed

    Zhang, Lei; Babi, Deenesh K; Gani, Rafiqul

    2016-06-01

    Design of chemicals-based products is broadly classified into those that are process centered and those that are product centered. In this article, the designs of both classes of products are reviewed from a process systems point of view; developments related to the design of the chemical product, its corresponding process, and its integration are highlighted. Although significant advances have been made in the development of systematic model-based techniques for process design (also for optimization, operation, and control), much work is needed to reach the same level for product design. Timeline diagrams illustrating key contributions in product design, process design, and integrated product-process design are presented. The search for novel, innovative, and sustainable solutions must be matched by consideration of issues related to the multidisciplinary nature of problems, the lack of data needed for model development, solution strategies that incorporate multiscale options, and reliability versus predictive power. The need for an integrated model-experiment-based design approach is discussed together with benefits of employing a systematic computer-aided framework with built-in design templates. PMID:27088667

  13. Recycled rubber in cement composites

    SciTech Connect

    Raghavan, D.; Tratt, K.; Wool, R.P.

    1994-12-31

    Disposal of 200 million waste tires in the US each year has become a major problem. An environmentally sound innovative technology of recycling rubber in cement matrix was examined. Using silane coupling agent the rubber was bonded to the hydrating cement making a lighter composite, which absorbed more energy than ordinary Portland cement. The bonding information was obtained by peel strength analysis. SEM was used to understand the mode of fracture in pure cement paste, cement bonded rubber composite and rubber filled cement paste. It was found that cracks propagate through the rubber particle in rubber bonded cement composite while in unbonded rubber cement mix, the cracks propagate around the interface. The density and shrinkage measurements are also discussed.

  14. The nutritional value of some processed meat products in Malaysia.

    PubMed

    Babji, A S; Mohdyusof, S

    1995-03-01

    Per capita consumption of meat and meat products in Malaysia more than doubled from 15.70 kg in 1970 to 35.71 kg in 1990. This increase in meat consumption is mainly due to the rapid development and wide acceptance of value added meat and poultry products amongst Malaysian consumers. Meat products such as burgers, sausages, hotdogs and nuggets are widely accepted and consumed by all ethnic groups at home as well as in the fast food restaurants. The significant expansion of the fast food industry and the increase consumption of processed meat products makes it necessary for a re-evaluation of the nutritional quality of popular meat products currently available in the market. This review paper described the quality of some processed meat products, their proximate composition, meat quality, use of non meat proteins and binders, and the use of additives in the formulation of burgers, frankfurters, nuggets, bologna, chicken and beef balls. Preliminary results on the protein efficiency ratio of local meat products seemed favourable but this study is limited to only one laboratory. In vivo and in vitro protein digestibility studies indicated high values on the digestibility of locally manufactured meat products. Proximate analysis of the raw materials used in the formulation of such products showed many with high fat and low protein contents being utilized. The meat content was lower than the minimum amount stated by the food regulation. This paper concludes that due to lack of information and studies on the nutritional composition of processed meat products, concerned bodies should take positive steps to generate reliable data to elucidate the actual nutritional composition of such products. It is also observed that many by-products from the animal industry from non-conventional sources are increasingly being utilized in the manufacture of processed meat product. PMID:22692017

  15. MCFC integrated system in a biodiesel production process

    NASA Astrophysics Data System (ADS)

    Urbani, F.; Freni, S.; Galvagno, A.; Chiodo, V.

    2011-03-01

    The continuous increasing in biodiesel production by transesterification process is leading to an excess of glycerol production as a byproduct. The utilization of this huge amount of glycerol appears as a not easy solvable problem and thus several authors have proposed alternative ways. The integration of the main production process with a glycerol feed molten carbonate fuel cells bottoming cycle, to satisfy plant energy requirements, seems to be one of the most promising one. The proposed paper reports the main results obtained by authors in the framework of an investigation on a possible use of glycerol as energy sources for a real pilot plant for biodiesel production. An overall evaluation of worldwide biodiesel production plants was made and especially about the production capacity in European Union in the last decade. To make a more detailed study, authors were taken into account a real production plant. After a preliminary step, purported to plant mass and energy flows determination, authors considered the integration of a bottoming cycle based on: (i) steam reforming of glycerol for syn-gas production; (ii) molten carbonate fuel cells (MCFC) system supplied by syn-gas for heat and electricity production. A mathematical model, based on experimental data, has been developed to calculate mass and energy balances for the proposed plant lay-out as well as plant energy efficiency enhancement has been determined. Results have evidenced the feasibility of this process and demonstrated that plant integrated with bottoming cycle can reach a very high level of energy self-production.

  16. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    NASA Astrophysics Data System (ADS)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  17. Automation and control of off-planet oxygen production processes

    NASA Technical Reports Server (NTRS)

    Marner, W. J.; Suitor, J. W.; Schooley, L. S.; Cellier, F. E.

    1990-01-01

    This paper addresses several aspects of the automation and control of off-planet production processes. First, a general approach to process automation and control is discussed from the viewpoint of translating human process control procedures into automated procedures. Second, the control issues for the automation and control of off-planet oxygen processes are discussed. Sensors, instruments, and components are defined and discussed in the context of off-planet applications, and the need for 'smart' components is clearly established.

  18. Vaccine production: upstream processing with adherent or suspension cell lines.

    PubMed

    Genzel, Yvonne; Rödig, Jana; Rapp, Erdmann; Reichl, Udo

    2014-01-01

    The production of viral vaccines in cell culture can be accomplished with primary, diploid, or continuous (transformed) cell lines. Each cell line, each virus type, and each vaccine preparation require the specific design of upstream and downstream processing. Media have to be selected as well as production vessels, cultivation conditions, and modes of operation. Many viruses only replicate to high titers in adherently growing cells, but similar to processes established for recombinant protein production, an increasing number of suspension cell lines is being evaluated for future use. Here, we describe key issues to be considered for the establishment of large-scale virus production in bioreactors. As an example upstream processing of cell culture-derived influenza virus production is described in more detail for adherently growing and for suspension cells. In particular, use of serum-containing, serum-free, and chemically defined media as well as choice of cultivation vessel are considered. PMID:24297427

  19. Assessment of biological Hydrogen production processes: A review

    NASA Astrophysics Data System (ADS)

    Najafpour, G. D.; Shahavi, M. H.; Neshat, S. A.

    2016-06-01

    Energy crisis created a special attention on renewable energy sources. Among these sources; hydrogen through biological processes is well-known as the most suitable and renewable energy sources. In terms of process yield, hydrogen production from various sources was evaluated. A summary of microorganisms as potential hydrogen producers discussed along with advantages and disadvantages of several bioprocesses. The pathway of photo-synthetic and dark fermentative organisms was discussed. In fact, the active enzymes involved in performance of biological processes for hydrogen generation were identified and their special functionalities were discussed. The influential factors affecting on hydrogen production were known as enzymes assisting liberation specific enzymes such as nitrogenase, hydrogenase and uptake hydrogenase. These enzymes were quite effective in reduction of proton and form active molecular hydrogen. Several types of photosynthetic systems were evaluated with intension of maximum hydrogen productivities. In addition dark fermentative and light intensities on hydrogen productions were evaluated. The hydrogen productivities of efficient hydrogen producing strains were evaluated.

  20. Development of a Laboratory Cement Quality Analysis Apparatus Based on Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fan, Juanjuan; Zhang, Lei; Wang, Xin; Li, Yufang; Gong, Yao; Dong, Lei; Ma, Weiguang; Yin, Wangbao; Wang, Zhe; Li, Zheng; Zhang, Xiangjie; Li, Yi; Jia, Suotang

    2015-11-01

    Determination of the chemical composition of cement and ratio values of clinker plays an important role in cement plants as part of the optimal process control and product quality evaluation. In the present paper, a laboratory laser-induced breakdown spectroscopy (LIBS) apparatus mainly comprising a sealed optical module and an analysis chamber has been designed for possible application in cement plants for on-site quality analysis of cement. Emphasis is placed on the structure and operation of the LIBS apparatus, the sealed optical path, the temperature controlled spectrometer, the sample holder, the proper calibration model established for minimizing the matrix effects, and a correction method proposed for overcoming the ‘drift’ obstacle. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The absolute measurement errors presented here for oxides analysis are within 0.5%, while those of ratio values are in the range of 0.02 to 0.05. According to the obtained results, this laboratory LIBS apparatus is capable of performing reliable and accurate, composition and proximate analysis of cement and is suitable for application in cement plants. supported by National Natural Science Foundation of China (Nos. 61127017, 61378047, 61205216, 61178009, 61108030, 61475093, and 61275213), the National Key Technology R&D Program of China (No. 2013BAC14B01), the 973 Program of China (No. 2012CB921603), the Shanxi Natural Science Foundation, China (Nos. 2013021004-1, 2012021022-1), and the Shanxi Scholarship Council of China (Nos. 2013-011 and 2013-01)

  1. Novel particulate production processes to create unique security materials

    NASA Astrophysics Data System (ADS)

    Hampden-Smith, Mark; Kodas, Toivo; Haubrich, Scott; Oljaca, Miki; Einhorn, Rich; Williams, Darryl

    2006-02-01

    Particles are frequently used to impart security features to high value items. These particles are typically produced by traditional methods, and therefore the security must be derived from the chemical composition of the particles rather than the particle production process. Here, we present new and difficult-to-reproduce particle production processes based on spray pyrolysis that can produce unique particles and features that are dependent on the use of these new-to-the-world processes and process trade secrets. Specifically two examples of functional materials are described, luminescent materials and electrocatalytic materials.

  2. Fe-containing phases in hydrated cements

    SciTech Connect

    Dilnesa, B.Z.; Wieland, E.; Lothenbach, B.; Dähn, R.; Scrivener, K.L.

    2014-04-01

    In this study synchrotron X-ray absorption spectroscopy (XAS) has been applied, an element specific technique which allows Fe-containing phases to be identified in the complex mineral mixture of hydrated cements. Several Fe species contributed to the overall Fe K-edge spectra recorded on the cement samples. In the early stage of cement hydration ferrite was the dominant Fe-containing mineral. Ferrihydrite was detected during the first hours of the hydration process. After 1 day the formation of Al- and Fe-siliceous hydrogarnet was observed, while the amount of ferrihydrite decreased. The latter finding agrees with thermodynamic modeling, which predicts the formation of Fe-siliceous hydrogarnet in Portland cement systems. The presence of Al- and Fe-containing siliceous hydrogarnet was further substantiated in the residue of hydrated cement by performing a selective dissolution procedure. - Highlights: • Fe bound to ferrihydrite at early age hydration • Fe found to be stable in siliceous hydrogarnet at longer term age hydration • Fe-containing AFt and AFm phases are less stable than siliceous hydrogarnet. • The study demonstrates EXAFS used to identify amorphous or poorly crystalline phases.

  3. Small-particle-size cement

    SciTech Connect

    Ewert, D.P.; Almond, S.W.; Blerhaus, W.M. II )

    1991-05-01

    Successful remedial cementing has historically been difficult in wells with large-interval, multizone, gravel-packed completions. The reason is the inability of conventional oilfield cements to penetrate gravel packs adequately. Small-particle-size cement (SPSC) was developed to penetrate gravel packs and to provide the zonal isolation required. This paper details the laboratory work, job design, and field implementation of this new cement.

  4. STATE OF THE ART: SWINE WASTE PRODUCTION AND PRETREATMENT PROCESSES

    EPA Science Inventory

    A review of waste generation and pretreatment processes was compiled, expanded, and interpreted for the swine production industry. Typical swine units based upon waste management techniques were detailed as concrete slab facilities, slotted floorpit units, and swine drylot or pas...

  5. Scrounge data processing film products for the thematic mapper

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Information on the format of the film product and type of film used for the LANDSAT-4 scrounge processed thematic mapper data is presented. Image gray scale, annotation field, and general layout are described.

  6. [Limiting the allowable concentration of zearalenone in processed grain products].

    PubMed

    Tutel'ian, V A; L'vova, L S; Kravchenko, L V; Safronova, A M; Starovoĭtov, M L

    2002-01-01

    The distribution zearalenon (ZL) in products of processing of contaminated wheat, barley and maize grains was is investigated. Results of the data analysis on the investigation of an actual nutrition of the population in Russia is presented; the share of products of processing of contaminated wheat, barley and maize grains as part of the total ration was determined Varied values of Maximum Acceptable Concentration (MAC) of ZL based on the obtained results are offered: 1 mg/kg--for wheat, barley and maize grains; 0.2 mg/kg--for main products of grain processing, viz flour and groats. The application of these MAC-values for ZL ensures the conformity between the ones for raw materials and for products of processing of raw materials, as well as the limitation of the maximum possible ZL--intake within the bounds of Acceptable Daily Intake (ADI) for a man. PMID:12227016

  7. Increase in the strength characteristics of Portland cement due to introduction of the compound mineral supplements

    NASA Astrophysics Data System (ADS)

    Il'ina, Liliia; Gichko, Nikolai; Mukhina, Irina

    2016-01-01

    At the initial phase of hardening it is the limestone component that plays a major role in the hardening process, which acts as the substrate for the crystallization of hydrate tumors due to its chemical affinity with the products of Portland cement hydration. After 7 days, the diopside supplement influences the processes more significantly. Diopside has a high modulus of elasticity compared to the cement paste. As a result, stresses are redistributed within the cement paste and the whole composition is hardened. An increase in the quantity of diopside in the compound supplement to more than 66.7% does not provide a substantial increase in the strength of the cement paste. As the hardness of diopside is higher than the hardness of limestone, much more energy is required to grind it down to a usable component. Therefore, a further increase in the quantity of diopside in the compound supplement is not economically feasible. An evaluation of the optimum quantity of input compound mineral supplements can be made based on the ideas of close packing of spherical particles and the Pauling rules. The optimum content of the supplement is 8-8.5% provided that its dispersion and density are close to the dispersion and density of the binder. An increase in the dispersion of the supplement reduces its optimal quantity.

  8. Hydration of alumina cement containing ferrotitanium slag with polycarboxylate-ethers (PCE) additives

    NASA Astrophysics Data System (ADS)

    Rechkalov, Denis; Chernogorlov, Sergey; Abyzov, Victor

    2016-01-01

    The paper is discussing results of study of alumina binder containing aluminous cement and ferrotitanium slag from aluminothermic process by Kliuchevskoi Ferroalloys corp. with various additives containing polycarboxylate-ethers (PCE). Selecting ferrotitanium slag as additive is based on the fact that its content of alumina and phase composition is closest to the alumina cement. The composition of the ferrotitanium slag is displayed. In order to compensate the decrease in strength caused by addition of ferrotitanium slag having low activity, PCE additives were added. As PCE additives were used Melflux 1641F, Melflux 2651F and Melflux PP200F by BASF. The effect of additives on the hydration of the binder, depending on the amount and time of additives hardening is shown. The composition of the hydration products in the cement was studied by physico-chemical analysis: derivatography and X-ray analysis. It is found that in the early stages of hardening PCE additives have inhibitory effect on hydration processes and promote new phase amorphization. The optimal content of additives was investigated. The basic properties of the binders have been tested. It was observed that the modified binders meet the requirements of Russian National State Standard GOST 969 to the alumina cement.

  9. Recombinant Protein Production and Insect Cell Culture and Process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); OConnor, Kim C. (Inventor); Francis, Karen M. (Inventor); Andrews, Angela D. (Inventor); Prewett, Tracey L. (Inventor)

    1997-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using virtually infected or stably transformed insect cells containing a gene encoding the described polypeptide. The insect cells can also be a host for viral production.

  10. Recombinant protein production and insect cell culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn (Inventor); Prewett, Tacey (Inventor); Goodwin, Thomas (Inventor); Francis, Karen (Inventor); Andrews, Angela (Inventor); Oconnor, Kim (Inventor)

    1993-01-01

    A process has been developed for recombinant production of selected polypeptides using transformed insect cells cultured in a horizontally rotating culture vessel modulated to create low shear conditions. A metabolically transformed insect cell line is produced using the culture procedure regardless of genetic transformation. The recombinant polypeptide can be produced by an alternative process using the cultured insect cells as host for a virus encoding the described polypeptide such as baculovirus. The insect cells can also be a host for viral production.

  11. Natural fiber production, harvesting, and preliminary processing: options and opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utilization of natural fibers and plant oils in bio-products introduces numerous logistical challenges not typically encountered with non-agricultural resources. Once it has been determined that a plant material is suitable for commercial development, the production, harvesting, and processing s...

  12. NIR spectroscopy for determining soy contents in processed meat products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy products such as soy concentrate, soy protein and soy grits are used as a meat extender in processed meat products to improve meat texture. However, soy allergies are one of the common food allergies, especially in infants and young children, and can be mild to life-threatening. The United State...

  13. 40 CFR 161.162 - Description of production process.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Description of production process. 161.162 Section 161.162 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data...

  14. 40 CFR 161.162 - Description of production process.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Description of production process. 161.162 Section 161.162 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data...

  15. PROCESS AND EQUIPMENT CHANGES FOR CLEANER PRODUCTION IN FEDERAL FACILITIES

    EPA Science Inventory

    The paper discusses process and equipment changes for cleaner production in federal facilities. During the 1990s, DoD and EPA conducted joint research and development, aimed at reducing the discharge of hazardous and toxic pollutants from military production and maintenance faci...

  16. 40 CFR 161.162 - Description of production process.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Description of production process. 161.162 Section 161.162 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR REGISTRATION OF ANTIMICROBIAL PESTICIDES Product Chemistry Data...

  17. 21 CFR 820.70 - Production and process controls.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Production and process controls. 820.70 Section 820.70 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... used as part of production or the quality system, the manufacturer shall validate computer software...

  18. Cement Mason's Curriculum. Instructional Units.

    ERIC Educational Resources Information Center

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  19. Geothermal Cementing - The State of the Art

    SciTech Connect

    Shryock, S. H.; Smith, D. K.

    1981-01-01

    Much emphasis today is being placed on the drilling and completion of steam wells. Success or failure depends greatly on the cementing process, which requires not only the selection of competent and durable materials but also the complete understanding of placement techniques. Immobile muds, crooked holes, lost circulation, poor centralization, and the inability to move pipe are some of the major areas which contribute to good or bad results. This presentation covers a ''state of the art'' of the various techniques, materials, and equipment being used in cementing steam wells in the US and Mexico.

  20. Development of fluidized bed cement sintering technology

    SciTech Connect

    Mukai, Katsuji

    1994-12-31

    In the new system presented in this paper, the cement clinker is sintered, not in a rotary kiln, but in two different furnaces: a spouted bed kiln and a fluidized bed kiln. The heat generated in the process of cooling the cement clinker is recovered by a fluidized bed cooler and a packed bed cooler, which are more efficient than the conventional coolers. Compared with the rotary kiln system, the new technology significantly reduces NO{sub x} emissions, appreciably cuts energy consumption, and reduces CO{sub 2} emissions as well. Thus, the new system is an efficient cement sintering system that is friendly to the global environment. In this paper, we describe this new technology as one of the applied technologies at an industrial level that is being developed in the Clean Coal Technology Project, and we present the results from test operations at our pilot plant.