Science.gov

Sample records for cementless forged titanium

  1. Neck fracture of a cementless forged titanium alloy femoral stem following total hip arthroplasty: a case report and review of the literature

    PubMed Central

    Grivas, Theodoros B; Savvidou, Olga D; Psarakis, Spyridon A; Bernard, Pierre-Francois; Triantafyllopoulos, George; Kovanis, Ioannis; Alexandropoulos, Panagiotis

    2007-01-01

    Introduction Fractures of the neck of the femoral component have been reported in uncemented total hip replacements, however, to our knowledge, no fractures of the neck of a cementless forged titanium alloy femoral stem coated in the proximal third with hydroxy-apatite have been reported in the medical literature. Case presentation This case report describes a fracture of the neck of a cementless forged titanium alloy stem coated in the proximal third with hydroxy-apatite. Conclusion The neck of the femoral stem failed from fatigue probably because of a combination of factors described analytically below. PMID:18062807

  2. Phased Array Ultrasonic Inspection of Titanium Forgings

    SciTech Connect

    Howard, P.; Klaassen, R.; Kurkcu, N.; Barshinger, J.; Chalek, C.; Nieters, E.; Sun, Zongqi; Fromont, F. de

    2007-03-21

    Aerospace forging inspections typically use multiple, subsurface-focused sound beams in combination with digital C-scan image acquisition and display. Traditionally, forging inspections have been implemented using multiple single element, fixed focused transducers. Recent advances in phased array technology have made it possible to perform an equivalent inspection using a single phased array transducer. General Electric has developed a system to perform titanium forging inspection based on medical phased array technology and advanced image processing techniques. The components of that system and system performance for titanium inspection will be discussed.

  3. Successful hip arthroplasty using cementless titanium implants in rheumatoid arthritis.

    PubMed

    Effenberger, Harald; Ramsauer, Thomas; Böhm, Gerhard; Hilzensauer, Gerhard; Dorn, Ulrich; Lintner, Felix

    2002-03-01

    Over a period of eight years, we implanted a total of 76 cementless hip prostheses in patients with rheumatoid arthritis. The clinical results of 47 patients (70 hips) increased from a mean Harris Hip Score of 33 to 85 after an average of 49 months (range 1-11 years). One threaded cup has had to be revised because of loosening, and one stem because of femoral fracture. At the latest follow-up, 88% of Hofer-Imhof threaded cups had complete bone ingrowth (Type 0); 10% had near-complete bone ingrowth with minimal radiolucency in one third of the bone contact area (Type 1), and 2% had radiolucency in two thirds of the bone contact area (Type 2). Hemispherical push-in cups showed significantly more radiolucency around the cup. For the stems (Uni, Zweymüller SL), 83% showed no radiolucency (Type 0); 17% had radiolucency only very proximally (Type 1). Minor remodelling (Type 1) occurred in 60% of the femoral shafts; 30% had moderate femoral density loss (Type 2), and 10% had severe bone loss and cortical thinning (Type 3). There was no correlation between marked shaft atrophy and clinical symptoms. With regard to radiolucency and remodelling, there was no significant difference between the two types of stem used. Cementless hip arthroplasty using titanium implants has an excellent outcome in the medium term. PMID:11880907

  4. Initial mechanical stability of cementless highly-porous titanium tibial components

    SciTech Connect

    Stone, Timothy Brandon; Amer, Luke D; Warren, Christopher P; Cornwell, Phillip; Meneghini, R Michael

    2008-01-01

    Cementless fixation in total knee replacement has seen limited use since reports of early failure surfaced in the late 80s and early 90s. However the emergence of improved biomaterials, particularly porous titanium and tantalum, has led to a renewed interest in developing a cementless tibial component to enhance long-term survivorship of the implants. Cement is commonly employed to minimize micromotion in new implants but represents a weak interface between the implant and bone. The elimination of cement and application of these new biomaterials, which theoretically provide improved stability and ultimate osseointegration, would likely result in greater knee replacement success. Additionally, the removal of cement from the procedure would help minimize surgical durations and get rid of the time needed for curing, thereby the chance of infection. The purpose of this biomechanical study was twofold. The first goal was to assess whether vibration analysis techniques can be used to evaluate and characterize initial mechanical stability of cementless implants more accurately than the traditional method of micromotion determination, which employs linear variable differential transducers (LVDTs). Second, an evaluative study was performed to determine the comparative mechanical stability of five designs of cementless tibial components under mechanical loading designed to simulate in vivo forces. The test groups will include a cemented Triathlon Keeled baseplate control group, three different 2-peg cementless baseplates with smooth, mid, and high roughnesses and a 4-peg cement/ess baseplate with mid-roughness.

  5. Survey of ultrasonic properties of aircraft Engine Titanium forgings

    NASA Astrophysics Data System (ADS)

    Yu, Linxiao; Margetan, F. J.; Thompson, R. B.; Degtyar, Andrei

    2002-05-01

    The Engine Titanium Consortium is surveying the ultrasonic properties of representative Ti-6-4 forgings used in rotating jet engine components. Velocity, attenuation and backscattered grain noise are being measured as function of position and inspection direction. The overall goal is to better understand and improve ultrasonic defect detection. This paper provides a summary of the work to date on this ongoing project. UT properties are generally found to vary systematically with position, and some properties, such as the grain noise anisotropy, appears to be well correlated to the local forging strain. We demonstrate how the UT properties from the highest noise region of a forging are being used to estimate defect detectability for improved inspection schemes.

  6. Cementless Fixation of Osteoporotic VCFs Using Titanium Mesh Implants (OsseoFix): Preliminary Results

    PubMed Central

    Ender, Stephan Albrecht; Ulmar, Benjamin; Gradl, Georg

    2014-01-01

    Introduction. Vertebral compression fractures (VCFs) affect 20% of people over the age of 70 with increasing incidence. Kypho-/vertebroplasty as standard operative procedures are associated with limitations like cement leakage, limited reduction capabilities, and risk for adjacent fractures. To address these shortcomings, we introduce a new minimal invasive cementless VCF fixation technique. Methods. Four patients (72.3 years, range 70–76) with VCFs type AO/Müller A1.3 and concomitant osteoporosis were treated by minimal invasive transpedicular placement of two intervertebral mesh cages for fracture reduction and maintenance. Follow-up included functional/radiological assessment and clinical scores and averaged 27.7 months (24–28). Results. Endplate reduction was achieved in all cases (mean surgery time: 28.5 minutes). Kyphotic (KA) and Cobb angle revealed considerable improvements postoperatively (KA 14.5° to 10.7°/Cobb 10.1° to 8.3°). Slight loss of vertebral reduction (KA: 12.6°) and segment rekyphosis (Cobb: 10.7°) were observed for final follow-up. Pain improved from 8.8 to 2.8 (visual analogue scale). All cases showed signs of bony healing. No perioperative complications and no adjacent fractures occurred. Conclusion. Preliminary results in a small, selected patient collective indicate the ability of bony healing for osteoporotic VCFs. Cementless fixation using intravertebral titanium mesh cages revealed substantial pain relief, adequate reduction, and reduction maintenance without complications. Trial registration number is DRKS00005657, German Clinical Trials Register (DKRS). PMID:25110699

  7. Microstructure development during conventional and isothermal hot forging of a near-gamma titanium aluminide

    SciTech Connect

    Semiatin, S.L. ); Seetharaman, V. ); Jain, V.K. . Mechanical and Aerospace Engineering Dept.)

    1994-12-01

    The breakdown of the lamellar preform microstructure in the ingot metallurgy near-gamma titanium aluminide, Ti-45.5Al-2Cr-2Nb (atomic percent), was investigated. Microstructures developed during canned, conventional hot forging were compared to those from isothermal hot forging. The higher rate of deformation in conventional forging led to considerably finer and almost completely broken-down structures in the as-forged condition. Several nontraditional approaches, including the isothermal forming of a metastable microstructure (so-called alpha forging'') and the inclusion of a short static recrystallization anneal during forging, were found to produce a more fully broken-down structure in as-isothermally forged conditions. Despite the noticeable microstructure differences after forging, a conventionally and isothermally forged material responded similarly during heat treatment. In both cases, almost totally recrystallized structures of either equiaxed gamma or transformed alpha grains surrounded by fine gamma grains were produced depending on the heat-treatment temperature. Metallography on forged and heat-treated pancake macroslices was useful in delineating small differences in composition not easily detected by analytical methods.

  8. Delivery of Antibiotics from Cementless Titanium-Alloy Cubes May Be a Novel Way to Control Postoperative Infections

    PubMed Central

    Bezuidenhout, Martin B.; van Staden, Anton D.; Oosthuizen, Gert A.; Dimitrov, Dimitar M.; Dicks, Leon M. T.

    2015-01-01

    Bacterial colonisation and biofilm formation onto orthopaedic devices are difficult to eradicate. In most cases infection is treated by surgical removal of the implant and cleaning of the infected area, followed by extensive treatment with broad-spectrum antibiotics. Such treatment causes great discomfort, is expensive, and is not always successful. In this study we report on the release of vancomycin through polyethersulfone membranes from channels in cementless titanium-alloy cubes. The cubes were constructed with LaserCUSING from Ti6Al4V ELI powder. Vancomycin was released by non-Fickian anomalous (constraint) diffusion. Approximately 50% of the vancomycin was released within the first 17 h. However, sustained delivery of vancomycin for 100 h was possible by reinjecting the channels. Refillable implants may be a novel way to control postoperative infections. PMID:25861649

  9. Research on the Influence of Technological Forging Parameters on the Quality of Biphasic Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Mashekov, S. A.; Smaylova, N. T.; Alshynova, A. M.; Mashekova, A. S.

    2015-12-01

    The deflected mode (DM) during the preparation of the broach in the flat and combined baizes and also on radial forging machine (RFM) was investigated for creating the rational technology of a broach and determining the optimum size of the angles of rotation and single squeeze reduction. The quantitative data was obtained by the method of final elements and the MSC.Super Forge program; the main consistent patterns of stress-strain state (SSS) distribution and temperature while modeling forging in flat and combined baizes, also on RFM with various angles of rotation and sizes of squeeze reduction were determined. The rational trial technology of forging of biphasic titanium alloys was developed and tested.

  10. Survival analysis of cementless grit-blasted titanium total hip arthroplasties.

    PubMed

    Delaunay, C; Kapandji, A I

    2001-04-01

    Although about 200000 cementless Zweymüller-Alloclassic total hip arthroplasties (THAs) were carried out worldwide in the last decade, the survival analysis of these prostheses was not available in the 2000 report of the Swedish national hip arthroplasty registry. We report a prospective survivorship analysis of 200 consecutive grit-blasted cementless Alloclassic primary THAs carried out since 1988. Using surgical, clinical and radiological endpoints for the stem and the threaded cup the ten-year survivorship was 91.5% for reoperation for any cause, 96.4% for hip pain (Merle d'Aubigné score < 5 points, clinical failure), 99.4% for definite aseptic loosening (radiological failure) and 99.3% for revision for aseptic loosening. Using the Swedish registry criteria of primary osteoarthritis and revision for aseptic loosening as the endpoint, the survival rate of 99.1% at ten years for the subgroup of 157 Alloclassic THAs in osteoarthritis compares favourably with that of the best modern cemented hip replacements reported in the Swedish arthroplasty registry. PMID:11341429

  11. Effect of Variants of Thermomechanical Working and Annealing Treatment on Titanium Alloy Ti6Al4V Closed Die Forgings

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Kumar, V. Anil; Kumar, P. Ram

    2016-06-01

    Performance of titanium alloy Ti6Al4V pressure vessels made of closed die forged domes of route `B' (multiple step forged and mill annealed) is reported to be better than route `A' (single/two step forged and mill annealed). Analysis revealed that forgings processed through route `B' have uniformity in microstructure and yield strength at various locations within the forging, as compared to that of route `A.' It is attributed to in-process recrystallization (dynamic as well as static) of route `B' forgings as compared to limited recrystallization of route `A' forgings. Further, post-forging recrystallization annealing (RA) effect is found to be more significant for route `A' forgings in achieving uniform microstructure and mechanical properties, since route `B' forgings have already undergone similar phenomenon during the thermomechanical working process itself. Considering prime importance of yield strength, statistical scatter in yield strength values within the forgings have been evaluated for forgings of both the routes. Standard deviation in the yield strength of route `B' forgings was lower (<10 MPa) as compared to route `A' (>15 MPa), which later became lower (~10 MPa) after RA with a minor decrease in yield strength. The present work discusses these variants of thermomechanical processing along with annealing to achieve better uniformity in properties and microstructure.

  12. Phased Array Inspection of Titanium Disk Forgings Targeting no. 1/2 FBH Sensitivity

    SciTech Connect

    Roberts, R.A.; Friedl, J.

    2005-04-09

    The phased array implementation of a focused zoned ultrasonic inspection to achieve a >3dB signal-to-noise for no. 1/2 flat bottom holes (FBH) in titanium is reported. Previous work established the ultrasound focusing required to achieve the targeted sensitivity. This work reports on the design of a phased array transducer capable of maintaining the needed focus to the depths required in the forging inspection. The performance of the phased array inspection is verified by examining signal-to-noise of no. 1/2 FBHs contained in coupons cut from actual forgings.

  13. Formation and Microstructure of Ultrafine-Grained Titanium Processed by Multi-Directional Forging

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Wang, Xiaoyan; Li, Juan

    2016-06-01

    Ultrafine-grained titanium with uniform grain size for medical applications is obtained by multi-directional forging at 773 K in air. The microstructures and microtextures in the deformed titanium specimens are investigated by optical microscopy, electron backscattered diffraction technique, and transmission electron microscopy. Titanium specimen experience the recrystallization softening at cumulative strain about 1.2. After six passes with the cumulative strains of 2.4, the coarse grain sizes are gradually refined from about 25 μm to about 0.2 μm. New microtextures with recrystallized features generate in the specimens after multi-directional forgings. Grain boundaries in the specimens are geometrical necessary boundaries aiming to accommodate the imposed strain. It is suggested that the continuous dynamic recrystallization induced by deformation bands is responsible for the formation of ultrafine-grained titanium during multi-directional forging. Meanwhile the subdivision of grains by the mechanical twinning dramatically enhanced grain refinement to develop ultrafine-grained microstructure.

  14. Formation and Microstructure of Ultrafine-Grained Titanium Processed by Multi-Directional Forging

    NASA Astrophysics Data System (ADS)

    Wang, Bingfeng; Wang, Xiaoyan; Li, Juan

    2016-05-01

    Ultrafine-grained titanium with uniform grain size for medical applications is obtained by multi-directional forging at 773 K in air. The microstructures and microtextures in the deformed titanium specimens are investigated by optical microscopy, electron backscattered diffraction technique, and transmission electron microscopy. Titanium specimen experience the recrystallization softening at cumulative strain about 1.2. After six passes with the cumulative strains of 2.4, the coarse grain sizes are gradually refined from about 25 μm to about 0.2 μm. New microtextures with recrystallized features generate in the specimens after multi-directional forgings. Grain boundaries in the specimens are geometrical necessary boundaries aiming to accommodate the imposed strain. It is suggested that the continuous dynamic recrystallization induced by deformation bands is responsible for the formation of ultrafine-grained titanium during multi-directional forging. Meanwhile the subdivision of grains by the mechanical twinning dramatically enhanced grain refinement to develop ultrafine-grained microstructure.

  15. Forging And Milling Contribution On Residual Stresses For A Textured Biphasic Titanium Alloy

    SciTech Connect

    Deleuze, C.; Fabre, A.; Barrallier, L.; Molinas, O.

    2011-01-17

    Ti-10V-2Fe-3Al is a biphasic titanium alloy ({alpha}+{beta}) used in aeronautical applications for its mechanical properties, such as its yield strength of 1200 MPa and it weighs 40% less than steel. This alloy is particularly useful for vital parts with complex geometry, because of its high forging capability. In order to predict the capability for fatigue lifetime, the designers need to know the residual stresses. X-Ray diffraction is the main experimental technique used to determine residual stresses on the surface. In this case, stress levels are primarily influenced by the complex forging and milling process. On this alloy in particular, it may be difficult to characterize stress due to modification of the microstructure close to the surface. Results obtained by x-ray analysis depend on the correct definition of the shape of the diffraction peaks. The more precisely defined the position of the peak, the more accurately the stresses are evaluated. This paper presents a method to detect if residual stresses can be characterized by x-ray diffraction. The characterization of hardness seems to be a relevant technique to quickly analyze the capability of x-ray diffraction to determine residual stresses.

  16. POD of ultrasonic detection of synthetic hard alpha inclusions in titanium aircraft engine forgings

    SciTech Connect

    Thompson, R. B.; Meeker, W. Q.; Brasche, L. J. H.

    2011-06-23

    The probability of detection (POD) of inspection techniques is a key input to estimating the lives of structural components such as aircraft engines. This paper describes work conducted as a part of the development of POD curves for the ultrasonic detection of synthetic hard alpha (SHA) inclusions in titanium aircraft engine forgings. The sample upon which the POD curves are to be based contains four types of right circular SHAs that have been embedded in a representative titanium forging, as well as a number of flat bottomed holes (FBHs). The SHAs were of two sizes, number 3 and number 5, with each size including seeds with nominal nitrogen concentrations of both 3 and 17 wt. %. The FBHs included sizes of number 1, number 3, and number 5. This discreteness of the data poses a number of challenges to standard processes for determining POD. For example, at each concentration of nitrogen, there are only two sizes, with 10 inspection opportunities each. Fully empirical, standard methodologies such as a circumflex versus a provide less than an ideal framework for such an analysis. For example, there is no way to describe the beam limiting effect whereby the signal no longer increases the flaw grows larger than the beam, one can only determine POD at the two concentration levels present in the block, and confidence bounds tend to be broad because of the limited data available for each case. In this paper, we will describe strategies involving the use of physics-based models to overcome these difficulties by allowing the data from all reflectors to be analyzed by a single statistical model. Included will be a discussion of the development of the physics-based model, its comparison to the experimental data (obtained at multiple sites with multiple operators) and its implications regarding the statistical analysis, whose details will be given in a separate article by Li et al. in this volume.

  17. Pod of Ultrasonic Detection of Synthetic Hard Alpha Inclusions in Titanium Aircraft Engine Forgings

    NASA Astrophysics Data System (ADS)

    Thompson, R. B.; Meeker, W. Q.; Brasche, L. J. H.

    2011-06-01

    The probability of detection (POD) of inspection techniques is a key input to estimating the lives of structural components such as aircraft engines. This paper describes work conducted as a part of the development of POD curves for the ultrasonic detection of synthetic hard alpha (SHA) inclusions in titanium aircraft engine forgings. The sample upon which the POD curves are to be based contains four types of right circular SHAs that have been embedded in a representative titanium forging, as well as a number of flat bottomed holes (FBHs). The SHAs were of two sizes, ♯3 and ♯5, with each size including seeds with nominal nitrogen concentrations of both 3 and 17 wt. %. The FBHs included sizes of ♯1, ♯3, and ♯5. This discreteness of the data poses a number of challenges to standard processes for determining POD. For example, at each concentration of nitrogen, there are only two sizes, with 10 inspection opportunities each. Fully empirical, standard methodologies such as â versus a provide less than an ideal framework for such an analysis. For example, there is no way to describe the beam limiting effect whereby the signal no longer increases the flaw grows larger than the beam, one can only determine POD at the two concentration levels present in the block, and confidence bounds tend to be broad because of the limited data available for each case. In this paper, we will describe strategies involving the use of physics-based models to overcome these difficulties by allowing the data from all reflectors to be analyzed by a single statistical model. Included will be a discussion of the development of the physics-based model, its comparison to the experimental data (obtained at multiple sites with multiple operators) and its implications regarding the statistical analysis, whose details will be given in a separate article by Li et al. in this volume.

  18. Cementless Titanium Mesh Fixation of Osteoporotic Burst Fractures of the Lumbar Spine Leads to Bony Healing: Results of an Experimental Sheep Model.

    PubMed

    Eschler, Anica; Roepenack, Paula; Roesner, Jan; Herlyn, Philipp Karl Ewald; Martin, Heiner; Reichel, Martin; Rotter, Robert; Vollmar, Brigitte; Mittlmeier, Thomas; Gradl, Georg

    2016-01-01

    Introduction. Current treatment strategies for osteoporotic vertebral compression fractures (VCFs) focus on cement-associated solutions. Complications associated with cement application are leakage, embolism, adjacent fractures, and compromise in bony healing. This study comprises a validated VCF model in osteoporotic sheep in order to (1) evaluate a new cementless fracture fixation technique using titanium mesh implants (TMIs) and (2) demonstrate the healing capabilities in osteoporotic VCFs. Methods. Twelve 5-year-old Merino sheep received ovariectomy, corticosteroid injections, and a calcium/phosphorus/vitamin D-deficient diet for osteoporosis induction. Standardized VCFs (type AO A3.1) were created, reduced, and fixed using intravertebral TMIs. Randomly additional autologous spongiosa grafting (G1) or no augmentation was performed (G2, n = 6 each). Two months postoperatively, macroscopic, micro-CT and biomechanical evaluation assessed bony consolidation. Results. Fracture reduction succeeded in all cases without intraoperative complications. Bony consolidation was proven for all cases with increased amounts of callus development for G2 (58.3%). Micro-CT revealed cage integration. Neither group showed improved results with biomechanical testing. Conclusions. Fracture reduction/fixation using TMIs without cement in osteoporotic sheep lumbar VCF resulted in bony fracture healing. Intravertebral application of autologous spongiosa showed no beneficial effects. The technique is now available for clinical use; thus, it offers an opportunity to abandon cement-associated complications. PMID:27019848

  19. Cementless Titanium Mesh Fixation of Osteoporotic Burst Fractures of the Lumbar Spine Leads to Bony Healing: Results of an Experimental Sheep Model

    PubMed Central

    Roepenack, Paula; Roesner, Jan; Herlyn, Philipp Karl Ewald; Martin, Heiner; Reichel, Martin; Rotter, Robert; Vollmar, Brigitte; Mittlmeier, Thomas; Gradl, Georg

    2016-01-01

    Introduction. Current treatment strategies for osteoporotic vertebral compression fractures (VCFs) focus on cement-associated solutions. Complications associated with cement application are leakage, embolism, adjacent fractures, and compromise in bony healing. This study comprises a validated VCF model in osteoporotic sheep in order to (1) evaluate a new cementless fracture fixation technique using titanium mesh implants (TMIs) and (2) demonstrate the healing capabilities in osteoporotic VCFs. Methods. Twelve 5-year-old Merino sheep received ovariectomy, corticosteroid injections, and a calcium/phosphorus/vitamin D-deficient diet for osteoporosis induction. Standardized VCFs (type AO A3.1) were created, reduced, and fixed using intravertebral TMIs. Randomly additional autologous spongiosa grafting (G1) or no augmentation was performed (G2, n = 6 each). Two months postoperatively, macroscopic, micro-CT and biomechanical evaluation assessed bony consolidation. Results. Fracture reduction succeeded in all cases without intraoperative complications. Bony consolidation was proven for all cases with increased amounts of callus development for G2 (58.3%). Micro-CT revealed cage integration. Neither group showed improved results with biomechanical testing. Conclusions. Fracture reduction/fixation using TMIs without cement in osteoporotic sheep lumbar VCF resulted in bony fracture healing. Intravertebral application of autologous spongiosa showed no beneficial effects. The technique is now available for clinical use; thus, it offers an opportunity to abandon cement-associated complications. PMID:27019848

  20. Influence of the microstructure on the fracture toughness and fracture mechanisms of forging steels microalloyed with titanium with ferrite-perlite structures

    SciTech Connect

    Linaza, M.A.; Romero, J.L.; Rodriguez-Ibabe, J.M.; Urcola, J.J. )

    1993-08-15

    Titanium addition to vanadium microalloyed forging steels is one of the ways proposed to improve fracture toughness. Fine TiN particles inhibit austenite grain growth after recrystallization at the high temperatures used to forge these steels. TiN particles, however, can be formed in the liquid, and as their sizes exceed one micron, they could act as cleavage nucleation sites, impairing the fracture toughness. The present work reports fracture toughness results obtained in Ti treated microalloyed forging steels, showing that in coarse microstructures cleavage is nucleated in coarse TiN particles, but that after refining the microstructure, voids originate at the same particles, resulting in ductile rupture.

  1. Comparison of cementless and hybrid cemented total knee arthroplasty.

    PubMed

    Lass, Richard; Kubista, Bernd; Holinka, Johannes; Pfeiffer, Martin; Schuller, Spiro; Stenicka, Sandra; Windhager, Reinhard; Giurea, Alexander

    2013-04-01

    Cementless total knee arthroplasty (TKA) implants were designed to provide long-term fixation without the risk of cement-associated complications. The purpose of this study was to evaluate the outcome of titanium-coated cementless implants compared with hybrid TKA implants with a cemented tibial and a cementless femoral component. The authors performed a case-control, single-center study of 120 TKAs performed between 2003 and 2007, including 60 cementless and 60 hybrid cemented TKAs. The authors prospectively analyzed the radiographic and clinical data and the survivorship of the implants at a minimum follow-up of 5 years. Ninety patients who underwent TKA completed the 5-year assessment. Knee Society Scores increased significantly in both groups (P<.001). In both groups, 2 patients underwent revision due to aseptic tibial component loosening, resulting in a 96% implant survival rate. Radiographs showed significantly less radiolucent lines around the tibial baseplate in the cementless group (n=12) than in the hybrid cemented group (n=26) (P=.009).At 6-year mean follow-up, no significant difference existed between the cementless and hybrid cemented tibial components in TKA in terms of clinical and functional results and postoperative complications. The significantly smaller number of radiolucent lines in the cementless group is an indicator of primary stability with the benefit of long-term fixation durability of TKA. PMID:23590780

  2. [Results of cementless hip arthroplasty].

    PubMed

    Grübl, A

    2006-09-01

    Hip arthroplasty is performed nowadays according to the needs of the patients irrespective of their age. Tapered rectangular stems for cementless fixation are chosen in most cases in central Europe. They provide primary stability by press-fit implantation into a precisely rasped osseous bed and secondary stability by bone ingrowth into the highly biocompatible titanium alloy with a microrough surface. The 10-year survival of such devices is 92%. Typical radiographic patterns include cortical atrophy and radiolucent lines in Gruen zones 1 and 7. They are due to stress shielding with these distally fixed implants. The number one reason for revision is polyethylene wear and subsequent osteolysis. Metal-on-metal and ceramic-on-ceramic bearings show less wear but osteolysis continues to be a problem. PMID:16552511

  3. Manufacturing of Precision Forgings by Radial Forging

    SciTech Connect

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-17

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  4. Long-term results of cementless primary total hip arthroplasty with a threaded cup and a tapered, rectangular titanium stem in rheumatoid arthritis and osteoarthritis.

    PubMed

    Zwartele, Rob; Peters, Anil; Brouwers, Johannes; Olsthoorn, Paul; Brand, Ronald; Doets, Cornelis

    2008-10-01

    The aim of this study was to assess the outcome of primary cementless total hip arthroplasty in rheumatoid arthritis patients and to compare the results with osteoarthritis patients. Sixty-four patients (77 hips) with rheumatoid arthritis and 120 patients (135 hips) with osteoarthritis had a conical-shaped Zweymueller threaded cup and a tapered, rectangular Zweymueller stem implanted and were assessed after an average of 12.5 years. The endpoints for survival analysis were failure of one or both components due to radiographic loosening or revision. Revision was defined as exchange of cup, stem or both. When the PE-insert or the ceramic ball head were exchanged leaving cup and stem in place, e.g. for PE-wear or dislocation, this was not considered a revision but a re-intervention. No differences were found in survival rates; however, in the rheumatoid arthritis group there was an increased rate of malposition of the cup, avulsions of the greater trochanter, and increased bone resorption in the trochanteric region. This study shows that despite altered biomechanical properties of rheumatoid bone, mechanical stability and osseous integration of cementless prosthesis are not compromised and, although a higher complication rate did occur, long-term survival is excellent. PMID:17609955

  5. Cementless total hip arthroplasty with the rectangular titanium Zweymuller stem. A concise follow-up, at a minimum of fifteen years, of a previous report.

    PubMed

    Grübl, Alexander; Chiari, Catharina; Giurea, Alexander; Gruber, Martin; Kaider, Alexandra; Marker, Martina; Zehetgruber, Harald; Gottsauner-Wolf, Florian

    2006-10-01

    Between October 1986 and November 1987, 208 total hip arthroplasties were performed with use of the cementless Zweymüller stem and a threaded cup in 200 consecutive patients. Of 102 patients (108 hips) who were available for follow-up at a minimum of 180 months postoperatively, eighty-three (eighty-nine hips) had the primary joint replacement still intact. No stem had been revised because of aseptic loosening, but we found various degrees of osteolysis around sixteen (18%) of the implants. The probability of survival of the stem at fifteen years was 0.98 (95% confidence interval, 0.96 to 1.00). The probability of survival of the cup was 0.85 (95% confidence interval, 0.79 to 0.91). PMID:17015598

  6. Ten-year follow-up of the non-porous Allofit cementless acetabular component.

    PubMed

    Zenz, P; Stiehl, J B; Knechtel, H; Titzer-Hochmaier, G; Schwagerl, W

    2009-11-01

    Cementless acetabular fixation has demonstrated superior long-term durability in total hip replacement, but most series have studied implants with porous metal surfaces. We retrospectively evaluated the results of 100 consecutive patients undergoing total hip replacement where a non-porous Allofit component was used for primary press-fit fixation. This implant is titanium alloy, grit-blasted, with a macrostructure of forged teeth and has a biradial shape. A total of 81 patients (82 hips) were evaluated at final follow-up at a mean of 10.1 years (8.9 to 11.9). The Harris Hip Score improved from a mean 53 points (23 to 73) pre-operatively to a mean of 96 points (78 to 100) at final review. The osseointegration of all acetabular components was radiologically evaluated with no evidence of loosening. The survival rate with revision of the component as the endpoint was 97.5% (95% confidence interval 94 to 100) after 11.9 years. Radiolucency was found in one DeLee-Charnley zone in four acetabular components. None of the implants required revision for aseptic loosening. Two patients were treated for infection, one requiring a two-stage revision of the implant. One femoral stem was revised for osteolysis due to the production of metal wear debris, but the acetabular shell did not require revision. This study demonstrates that a non-porous titanium acetabular component with adjunct surface fixation offers an alternative to standard porous-coated implants. PMID:19880887

  7. Achieving Fine Beta Grain Structure in a Metastable Beta Titanium Alloy Through Multiple Forging-Annealing Cycles

    NASA Astrophysics Data System (ADS)

    Zafari, Ahmad; Ding, Yunpeng; Cui, Jianzhong; Xia, Kenong

    2016-04-01

    A coarse-grained (order of 1 mm) Ti-5553 metastable beta alloy was subjected to multiple passes of low-temperature forging and multiple forging plus annealing cycles, respectively. In the forging only processing, strain was concentrated in the shear bands formed and accumulated with each forging pass, resulting in a heterogeneous microstructure and eventual cracking along the shear bands. In contrast, the introduction of a short beta annealing after each forging step led to fine recrystallized grains (50 to 100 µm) formed in the shear bands, and a uniformly refined beta grain structure after four cycles. This is attributed to the strengthening effect of the fine grains, causing redistribution of most severe strains to the coarse grain region in the subsequent forging, consistent with the simulated results by finite element analysis. The analyses of the microstructures and simulated strain distributions revealed that the critical strain for recrystallization is between 0.2 and 0.5 and the strain to fracture to be ~0.8 to 0.9. The fine-grained (50 to 100 µm) beta alloy, however, fractured at a much smaller strain of <0.4 during the next forging step, owing to the formation of stress-induced martensitic α″ which is more prevalent in fine grains than in coarse ones.

  8. Achieving Fine Beta Grain Structure in a Metastable Beta Titanium Alloy Through Multiple Forging-Annealing Cycles

    NASA Astrophysics Data System (ADS)

    Zafari, Ahmad; Ding, Yunpeng; Cui, Jianzhong; Xia, Kenong

    2016-07-01

    A coarse-grained (order of 1 mm) Ti-5553 metastable beta alloy was subjected to multiple passes of low-temperature forging and multiple forging plus annealing cycles, respectively. In the forging only processing, strain was concentrated in the shear bands formed and accumulated with each forging pass, resulting in a heterogeneous microstructure and eventual cracking along the shear bands. In contrast, the introduction of a short beta annealing after each forging step led to fine recrystallized grains (50 to 100 µm) formed in the shear bands, and a uniformly refined beta grain structure after four cycles. This is attributed to the strengthening effect of the fine grains, causing redistribution of most severe strains to the coarse grain region in the subsequent forging, consistent with the simulated results by finite element analysis. The analyses of the microstructures and simulated strain distributions revealed that the critical strain for recrystallization is between 0.2 and 0.5 and the strain to fracture to be ~0.8 to 0.9. The fine-grained (50 to 100 µm) beta alloy, however, fractured at a much smaller strain of <0.4 during the next forging step, owing to the formation of stress-induced martensitic α″ which is more prevalent in fine grains than in coarse ones.

  9. Effects of femoral component material properties on cementless fixation in total hip arthroplasty. A comparison study between carbon composite, titanium alloy, and stainless steel.

    PubMed

    Otani, T; Whiteside, L A; White, S E; McCarthy, D S

    1993-02-01

    Carbon-fiber-reinforced-carbon composite material is an attractive implant material because its modulus of elasticity can be made similar to that of cortical bone. This study investigated the effect of femoral prosthesis elastic modulus on cementless implant fixation. Distal, as well as proximal, relative micromovements between implant and bone were measured in two testing protocols (axial-load and torsional-load), comparing identically shaped carbon composite (modulus of elasticity = 18.6 GPa), Ti6Al4V (100 GPa), and 630 stainless steel (200 GPa) prostheses. In the axial-load test, proximal mediolateral micromotions were significantly larger in the flexible composite stem than in the two metals. In the torsional-load test, rotational micromotions and "slop" displacements in the flexible stem were significantly larger proximally and significantly smaller distally than in the two metals. While these results suggest that proximal stress transfer may be improved by a flexible stem, they raise the possibility of increased proximal micromotion, and suggest that improved proximal fixation may be necessary to achieve clinical success with flexible composite femoral components. PMID:8436992

  10. Cementless Oxford unicompartmental knee replacement shows reduced radiolucency at one year.

    PubMed

    Pandit, H; Jenkins, C; Beard, D J; Gallagher, J; Price, A J; Dodd, C A F; Goodfellow, J W; Murray, D W

    2009-02-01

    We randomised 62 knees to receive either cemented or cementless versions of the Oxford unicompartmental knee replacement. The implants used in both arms of the study were similar, except that the cementless components were coated with porous titanium and hydroxyapatite. The tibial interfaces were studied with fluoroscopically-aligned radiographs. At one year there was no difference in clinical outcome between the two groups. Narrow radiolucent lines were seen at the bone-implant interfaces in 75% of cemented tibial components. These were partial in 43%, and complete in 32%. In the cementless implants, partial radiolucencies were seen in 7% and complete radiolucencies in none. These differences are statistically significant (p < 0.0001) and imply satisfactory bone ingrowth into the cementless implants. PMID:19190051

  11. Cementless total hip arthroplasty.

    PubMed

    Morscher, E W

    1983-12-01

    The differences between prostheses fixed with and without cement are mainly in the design and nature of the surface implant. The shapes of the sockets to be implanted without cement show a wide variety: cylinder, square, conus, and ellipsoid with and without threads. The hemispheric shape, however, which was chosen for the acetabular component of the isoelastic hip joint, does not disturb the natural form and function of the hip joint since the outer surface is closely adapted to the original subchondral bone layer. The noncemented cup is secured by threads, pegs, screws, etc., and by ingrowth of bony tissue in the grooves of the surfaces. Most femoral stems are based on the self-locking principle. All prosthetic models incorporate attempts to increase the surface of the stem (ribs, wings, corrugations, rims, etc.). There is a tendency to use less rigid elastic implants instead of the well known rigid metallic prostheses. The aim is to overcome the problems of stress protection and stress concentration observed with rigid implants. For the biomechanical integration of an implant, the properties of the surface, especially macroporosity and microporosity, are important. Most European models of noncemented endoprostheses are based on macroporosity (porometal, madreporic, etc.). The increase in implant surface area achieved with macroscopic perforations and recesses is relatively minor compared with the possibilities offered by microporosity ("alumine fritée," Proplast, fiber-metal, etc.). The best indication for use of a cementless hip endoprosthesis is in revision arthroplasty. The lost bone stock is replaced by bone grafts, thereby creating a situation comparable with that of a primary arthroplasty. Clinical experience with noncemented hip endoprostheses is, to date, promising, although the observation time for most models is short. PMID:6357588

  12. Forging Advisor

    SciTech Connect

    Kerry Barnett

    2003-03-01

    Many mechanical designs demand components produced to a near net shape condition to minimize subsequent process steps. Rough machining from slab or bar stock can quickly and economically produce simple prismatic or cylindrical shapes. More complex shapes can be produced by laser engineered net shaping (LENS), casting , or forging. But for components that require great strength in mission critical applications, forging may be the best or even the only option. However, designers of these parts may and often do lack the detailed forging process knowledge necessary to understand the impact of process details such as grain flow or parting line placement on both the forging process and the characteristics of the forged part. Economics and scheduling requirements must also be considered. Sometimes the only viable answer to a difficult problem is to re-design the assembly to reduce loading and enable use of other alternatives.

  13. Cementless Hydroxyapatite Coated Hip Prostheses

    PubMed Central

    Herrera, Antonio; Mateo, Jesús; Gil-Albarova, Jorge; Lobo-Escolar, Antonio; Ibarz, Elena; Gabarre, Sergio; Más, Yolanda

    2015-01-01

    More than twenty years ago, hydroxyapatite (HA), calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality. PMID:25802848

  14. Implant Design in Cementless Hip Arthroplasty

    PubMed Central

    Kim, Jung Taek

    2016-01-01

    When performing cementless hip arthroplasty, it is critical to achieve firm primary mechanical stability followed by biological fixation. In order to achieve this, it is essential to fully understand characteristics of implant design. In this review, the authors review fixation principles for a variety of implants used for cementless hip replacement and considerations for making an optimal selection. PMID:27536647

  15. New Trends in Forging Technologies

    NASA Astrophysics Data System (ADS)

    Behrens, B.-A.; Hagen, T.; Knigge, J.; Elgaly, I.; Hadifi, T.; Bouguecha, A.

    2011-05-01

    Limited natural resources increase the demand on highly efficient machinery and transportation means. New energy-saving mobility concepts call for design optimisation through downsizing of components and choice of corrosion resistant materials possessing high strength to density ratios. Component downsizing can be performed either by constructive structural optimisation or by substituting heavy materials with lighter high-strength ones. In this context, forging plays an important role in manufacturing load-optimised structural components. At the Institute of Metal Forming and Metal-Forming Machines (IFUM) various innovative forging technologies have been developed. With regard to structural optimisation, different strategies for localised reinforcement of components were investigated. Locally induced strain hardening by means of cold forging under a superimposed hydrostatic pressure could be realised. In addition, controlled martensitic zones could be created through forming induced phase conversion in metastable austenitic steels. Other research focused on the replacement of heavy steel parts with high-strength nonferrous alloys or hybrid material compounds. Several forging processes of magnesium, aluminium and titanium alloys for different aeronautical and automotive applications were developed. The whole process chain from material characterisation via simulation-based process design to the production of the parts has been considered. The feasibility of forging complex shaped geometries using these alloys was confirmed. In spite of the difficulties encountered due to machine noise and high temperature, acoustic emission (AE) technique has been successfully applied for online monitoring of forging defects. New AE analysis algorithm has been developed, so that different signal patterns due to various events such as product/die cracking or die wear could be detected and classified. Further, the feasibility of the mentioned forging technologies was proven by means

  16. Cementless bulk alumina socket: preliminary results at 6 years.

    PubMed

    Hamadouche, M; Nizard, R S; Meunier, A; Bizot, P; Sedel, L

    1999-09-01

    To avoid polyethylene wear observed in total hip replacement, an alumina-alumina combination has been used since 1977. The aim of this study is to report the results of a hybrid alumina-alumina total hip arthroplasty with a cementless press-fit bulk alumina socket and a cemented titanium alloy stem in 55 patients (62 hips) operated on between 1982 and 1990. The bearing surfaces were a 32-mm alumina head articulating within the alumina socket. Four failures occurred: 3 aseptic loosenings of the socket and 1 femoral head fracture. Considering aseptic loosening as the endpoint, the survival rate was 93.2% after 6 years. At a mean of 72.1 months' follow-up, 92.4% of the surviving hips were graded as very good or good using the Merle d'Aubigné-Postel hip score. Radiolucent lines were observed on the acetabular side in 68.1 of the hips. The future of this interface, which is probably fibrous, remains questionable. With the exception of 1 femoral head fracture, all revisions were related to failure of the bony fixation of the socket, and no problem was encountered related to the alumina-alumina friction coupling. Alumina sockets with other types of cementless fixation have therefore been designed and are presently under clinical investigation. PMID:10512442

  17. Titanium

    SciTech Connect

    Fox, G.J.

    1997-01-01

    The article contains a summary of factors pertinent to titanium use. Geology and exploitation, production processes, global production, titanium dioxide and alloy applications, and the titanium market are reviewed. Potential applications outlined are for oil and gas equipment and for the automotive industry. Titanium alloys were selected for drilling risers for North Sea oil and gas drilling platforms due to a high strength-to-weight ratio and corrosion resistance. These properties also make titanium alloys attractive for auto parts, although the cost is currently prohibitive.

  18. Forging process design for risk reduction

    NASA Astrophysics Data System (ADS)

    Mao, Yongning

    In this dissertation, forging process design has been investigated with the primary concern on risk reduction. Different forged components have been studied, especially those ones that could cause catastrophic loss if failure occurs. As an effective modeling methodology, finite element analysis is applied extensively in this work. Three examples, titanium compressor disk, superalloy turbine disk, and titanium hip prosthesis, have been discussed to demonstrate this approach. Discrete defects such as hard alpha anomalies are known to cause disastrous failure if they are present in those stress critical components. In this research, hard-alpha inclusion movement during forging of titanium compressor disk is studied by finite element analysis. By combining the results from Finite Element Method (FEM), regression modeling and Monte Carlo simulation, it is shown that changing the forging path is able to mitigate the failure risk of the components during the service. The second example goes with a turbine disk made of superalloy IN 718. The effect of forging on microstructure is the main consideration in this study. Microstructure defines the as-forged disk properties. Considering specific forging conditions, preform has its own effect on the microstructure. Through a sensitivity study it is found that forging temperature and speed have significant influence on the microstructure. In order to choose the processing parameters to optimize the microstructure, the dependence of microstructure on die speed and temperature is thoroughly studied using design of numerical experiments. For various desired goals, optimal solutions are determined. The narrow processing window of titanium alloy makes the isothermal forging a preferred way to produce forged parts without forging defects. However, the cost of isothermal forging (dies at the same temperature as the workpiece) limits its wide application. In this research, it has been demonstrated that with proper process design, the die

  19. Titanium

    USGS Publications Warehouse

    Bedinger, G.M.

    2013-01-01

    Titanium is the ninth most abundant element in the earth’s crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  20. Ten to twelve-year results with the Zweymüller cementless total hip prosthesis.

    PubMed

    Vervest, Ton M J S; Anderson, Patricia G; Van Hout, Freek; Wapstra, Frits-Hein; Louwerse, Robert T; Koetsier, Juriaan W A

    2005-04-01

    Between January 1987 and December 1990, 221 Zweymüller cementless total hip arthroplasties were performed in 211 patients with idiopathic osteoarthritis. A total of 136 patients (142 prostheses) were evaluated at a mean follow-up of 134 months (SD 9.5). The study group consisted of 78 Hochgezogen and 64 Stepless stem prostheses, all with a threaded titanium cup and ceramic head. No clinical and radiological differences were found between the 2 stem prostheses. Seven cups had been revised because of aseptic loosening; 17 cups showed radiolucent lines, osteolysis, or migration. Mean linear polyethylene wear of 105 (74%) cups was 0.46 mm (SD 0.27), with an annual wear of 0.04 mm (SD 0.02). Wear did not correlate with pain, cup migration, radiolucent lines, or osteolysis. Cumulative survival was 96%. Zweymüller cementless total hip arthroplasty showed good midterm results. PMID:15809956

  1. Cementless fixation in total knee arthroplasty: past, present, and future.

    PubMed

    Meneghini, R Michael; Hanssen, Arlen D

    2008-10-01

    Cementless fixation in total knee arthroplasty (TKA) has had limited use in recent decades due to past failures in the early generation of cementless designs. Screw track osteolysis, poor polyethylene, and metal-backed patellar component failures contributed to a controversial track record and created a reluctance to embrace cementless fixation in TKA; however, these failure mechanisms are correctable. In addition, there is renewed interest in cementless fixation due to the recent development of improved biomaterials, particularly highly porous metals and highly crosslinked polyethylene, as well as time-saving advantages and long-term osseointegration of cementless fixation. There are long-term reports of successful designs of cementless knee arthroplasty that are nearly equal to the results of cemented designs. This article discusses the past history, current long-term results, and future of cementless fixation in TKA. PMID:18979934

  2. A cementless, elastic press-fit socket with and without screws

    PubMed Central

    2012-01-01

    Background The acetabular component has remained the weakest link in hip arthroplasty regarding achievement of long-term survival. Primary fixation is a prerequisite for long-term performance. For this reason, we investigated the stability of a unique cementless titanium-coated elastic monoblock socket and the influence of supplementary screw fixation. Patient and methods During 2006–2008, we performed a randomized controlled trial on 37 patients (mean age 63 years (SD 7), 22 females) in whom we implanted a cementless press-fit socket. The socket was implanted with additional screw fixation (group A, n = 19) and without additional screw fixation (group B, n = 18). Using radiostereometric analysis with a 2-year follow-up, we determined the stability of the socket. Clinically relevant migration was defined as > 1 mm translation and > 2º rotation. Clinical scores were determined. Results The sockets without screw fixation showed a statistically significantly higher proximal translation compared to the socket with additional screw fixation. However, this higher migration was below the clinically relevant threshold. The numbers of migratory sockets were not significantly different between groups. After the 2-year follow-up, there were no clinically relevant differences between groups A and B regarding the clinical scores. 1 patient dropped out of the study. In the others, no sockets were revised. Interpretation We found that additional screw fixation is not necessary to achieve stability of the cementless press-fit elastic RM socket. We saw no postoperative benefit or clinical effect of additional screw fixation. PMID:23083434

  3. Good short-term outcome of primary total hip arthroplasty with cementless bioactive glass ceramic bottom-coated implants

    PubMed Central

    2012-01-01

    Background and purpose Cementless total hip arthroplasty is currently favored by many orthopedic surgeons. The design of the porous surface is critically important for long-term fixation. We examined the clinical and radiographic outcome of the cementless titanium hip implant with a bottom coating of apatite-wollastonite containing bioactive glass ceramic. Methods We retrospectively reviewed 109 hips (92 patients) that had undergone primary cementless total hip arthroplasty with bioactive glass ceramic bottom-coated implants. The mean follow-up period was 7 (3–9) years. Hip joint function was evaluated with the Merle d’Aubigné and Postel hip score, and radiographic changes were determined from anteroposterior radiographs. Results The mean hip score improved from 9.7 preoperatively to 17 at the final follow-up. The overall survival rate was 100% at 9 years, when radiographic loosening or revision for any reason was used as the endpoint. 3 stems in 2 patients subsided more than 3 mm vertically within 1 year after implantation. Radiographs of the interface of the stem and femur were all classified as bone ingrowth fixation. Conclusions The short-term results of this study show good outcome for cementless implants with a bottom coating of apatite-wollastonite containing bioactive glass ceramic. PMID:23043270

  4. Influence of cementless cup surface on stability and bone fixation 2 years after total hip arthroplasty.

    PubMed

    Urbański, Wiktor; Krawczyk, Artur; Dragan, Szymon Ł; Kulej, Mirosław; Dragan, Szymon F

    2012-01-01

    Loss of fixation between bone and implant surface is one of the main treatment problems in total hip arthroplasty. It might lead to implant instability, bone loss and treatment failure resulting in revision surgery. Surface modification is a method for improving bone response to implant and increasing implant osseointegration. However, the currently applied modifications such as hydroxyapatite coatings do not meet expectation and do not provide good clinical result. The object of the study was to evaluate the influence of acetabular cup surface modification on fixation and bone remodelling in total hip arthroplasty. Clinical and radiological outcomes were evaluated in patients two years after cementless total hip replacement. Two groups were compared: patients with acetabular component with uncoated titanium surface and patients with hydroxyapatite-coated acetabular surface. Hips X-rays were analysed for early signs of losing stability of acetabular cups. Two years after surgery the analysis of X-rays did not reveal any statistical differences in stability, migration of acetabular components of endoprosthesis between both groups. No differences were also observed in bone remodelling around implants. Particularly high percentage of cups, i.e. 17.64%, were classified into the group with high risk of early implant loosening, i.e., the group with HA coatings. Hydroxyapatite coatings on titanium cementless acetabular cups implanted by press-fit technique have no influence on their stability, bone-implant fixation and the remodelling of bone surrounding an implant two years after surgery. PMID:22793261

  5. Cement or cementless fixation in total knee arthroplasty?

    PubMed

    Rand, J A

    1991-12-01

    A prospectively studied group of 59 knees with cementless fixation were compared to a retrospectively studied but matched group of 59 knees with cement fixation using a Press Fit Condylar prosthesis. The only significant preoperative difference between the patient groups was mean age; the cemented group was on average nine years older than the cementless group (p less than 0.0001). At an average of 2.8 years after surgery, there were no significant differences in knee scores between the two groups. Radiolucent lines adjacent to the tibial component were similar in both groups. The complication rate of 20% in the cementless knees was higher than the 12% rate in the cemented knees; this was primarily related to polyethylene wear of metal-backed patellar components. Cement or cementless fixation of this prosthesis appears to provide equivalent early results. PMID:1959287

  6. Forging Long Shafts On Disks

    NASA Technical Reports Server (NTRS)

    Tilghman, Chris; Askey, William; Hopkins, Steven

    1989-01-01

    Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.

  7. 31. FORGE, ANVIL, POWER FORGE HAMMER (FRONT TO BACK), AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. FORGE, ANVIL, POWER FORGE HAMMER (FRONT TO BACK), AND DOORWAY INTO MAIN SHOP-LOOKING SOUTHWEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  8. Cemented versus cementless fixation in total knee arthroplasty.

    PubMed

    Matassi, Fabrizio; Carulli, Christian; Civinini, Roberto; Innocenti, Massimo

    2013-01-01

    The question of whether to use cemented or cement-less fixation for a total knee arthroplasty (TKA) is still debated. Discouraging preliminary results of cement-less TKAs have determined the worldwide use of cemented implants. However, with the development of biotechnologies and new biomaterials with high osteoconductive properties, biological fixation is now becoming an attractive option for improving the longevity of TKAs, especially in young patients. There is no evidence in the current literature to support the use of one method of fixation. The extensive clinical experience with cemented implants gathered over the years justifies their widespread use. New randomized clinical trials are necessary to compare cementless fixation based on the new ingrowth surfaces with standard cemented implants. PMID:25606521

  9. Cemented versus cementless fixation in total knee arthroplasty

    PubMed Central

    MATASSI, FABRIZIO; CARULLI, CHRISTIAN; CIVININI, ROBERTO; INNOCENTI, MASSIMO

    2013-01-01

    The question of whether to use cemented or cement-less fixation for a total knee arthroplasty (TKA) is still debated. Discouraging preliminary results of cement-less TKAs have determined the worldwide use of cemented implants. However, with the development of biotechnologies and new biomaterials with high osteoconductive properties, biological fixation is now becoming an attractive option for improving the longevity of TKAs, especially in young patients. There is no evidence in the current literature to support the use of one method of fixation. The extensive clinical experience with cemented implants gathered over the years justifies their widespread use. New randomized clinical trials are necessary to compare cementless fixation based on the new ingrowth surfaces with standard cemented implants. PMID:25606521

  10. Deformation processes in forging ceramics

    NASA Technical Reports Server (NTRS)

    Cannon, R. M.; Rhodes, W. H.

    1972-01-01

    The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging are utilized to investigate both the flow and fracture processes involved. An additional hemisphere forging was done which failed prematurely. Analysis and comparison with available fracture data for AL2O3 indicated possible causes of the failure. Examination of previous forgings indicated an increase in grain boundary cavitation with increasing strain.

  11. Modeling of Closed-Die Forging for Estimating Forging Load

    NASA Astrophysics Data System (ADS)

    Sheth, Debashish; Das, Santanu; Chatterjee, Avik; Bhattacharya, Anirban

    2016-05-01

    Closed die forging is one common metal forming process used for making a range of products. Enough load is to exert on the billet for deforming the material. This forging load is dependent on work material property and frictional characteristics of the work material with the punch and die. Several researchers worked on estimation of forging load for specific products under different process variables. Experimental data on deformation resistance and friction were used to calculate the load. In this work, theoretical estimation of forging load is made to compare this value with that obtained through LS-DYNA model facilitating the finite element analysis. Theoretical work uses slab method to assess forging load for an axi-symmetric upsetting job made of lead. Theoretical forging load estimate shows slightly higher value than the experimental one; however, simulation shows quite close matching with experimental forging load, indicating possibility of wide use of this simulation software.

  12. Fallon FORGE Well Lithologies

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z text file of the downhole lithologic interpretations in the wells in and around the Fallon FORGE site. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  13. Ten-year results after cementless THA with a sandwich-type alumina ceramic bearing.

    PubMed

    Park, Youn-Soo; Park, Se-Jun; Lim, Seung-Jae

    2010-11-01

    We analyzed the long-term results of a single-surgeon series of 102 cementless total hip arthroplasties (THAs) performed using a sandwich-type alumina ceramic bearing. The prostheses involved a porous-coated acetabular socket, a polyethylene-alumina composite liner, a 28-mm alumina head, and a grit-blasted titanium-alloy stem. Mean patient age at the time of THA was 39 years (range, 18-66 years), and 76% of the patients were younger than 50 years. All procedures were performed with use of the same surgical technique and the same implant at a single center. Mean follow-up was 115 months (range, 84-133 months). When failure was defined as revision of either the acetabular or the femoral component for any reason, Kaplan-Meier survival probability at 10 years was 95.3% (95% confidence interval, 89.5%-100%). Mean Harris Hip Score improved from 47 points (range, 16-70 points) preoperatively to 95 points (range, 85-100 points) at final follow-up. No radiographically detectable osteolysis around the acetabular or femoral component was observed in any hip. No patient reported squeaking in the operated hip. During the follow-up period, 3 hips (3%) required revision surgery; 2 underwent acetabular revision because of a ceramic liner fracture and 1 underwent revision for early loosening of the acetabular cup. Ten-year results of cementless THA with a sandwich-type alumina ceramic bearing were encouraging, and no great increase in ceramic failure rate was observed, which contrasts with the findings of previously reported short-term follow-up studies. PMID:21053885

  14. Superplastic forging nitride ceramics

    DOEpatents

    Panda, Prakash C.; Seydel, Edgar R.; Raj, Rishi

    1988-03-22

    The invention relates to producing relatively flaw free silicon nitride ceramic shapes requiring little or no machining by superplastic forging This invention herein was made in part under Department of Energy Grant DE-AC01-84ER80167, creating certain rights in the United States Government. The invention was also made in part under New York State Science and Technology Grant SB1R 1985-10.

  15. The effect of extracorporeal shock wave lithotripsy on the prosthesis interface in cementless arthroplasty. Evaluation in a rabbit model.

    PubMed

    Stranne, S K; Callaghan, J J; Fyda, T M; Fulghum, C S; Glisson, R R; Weinerth, J L; Seaber, A V

    1992-06-01

    The effect of extracorporeal shock wave lithotripsy on interfacial strength between prosthesis and bone in cementless arthroplasty was examined using a rabbit model. Paired femora, each implanted with fiber mesh porous coated titanium implants, were harvested from rabbits 15 weeks after implantation. In group I, one femur from each pair was exposed to lithotripsy treatment consisting of 2,000 shocks at 20 kV. In group II, one femur from each pair was exposed to 2,000 shocks at 26 kV. Contralateral femora from each pair served as controls in both groups. Mechanical pushout tests were conducted on the implants using a 1321 Instron testing machine at a constant rate of 1 mm/minute. Shock waves generated at 20 kV were found to have no significant decrease on either the prosthesis/bone interfacial strength or energy to failure of cementless implants. Shock waves generated at 26 kV produced a mean 17.45% decrease in the prosthesis/bone interfacial strength, which approached statistical significance (P = .062), and a 7.84% mean decrease in the energy to failure (P = .268). However, in four of the seven group II specimens, cortical fractures occurred. These findings suggest that lithotripsy will not aid in the removal of uncemented porous coated devices and lithotripsy inadvertently focused at an uncemented device will not disrupt significantly the prosthesis-bone interface. PMID:1613525

  16. A novel process for breakdown forging of coarse-grain intermetallic alloys

    SciTech Connect

    Semiatin, S.L. . Materials Directorate); McQuay, P.A. . Asian Office of Aerospace R and D); Seetharaman, V. )

    1993-11-01

    The objective of the present work was to develop a novel hot forging process for breakdown of high-temperature intermetallic alloys which exhibit dynamic recrystallization during hot working. During typical forging processes in hydraulic processes, be they based on isothermal or conventional approaches, the ram speed (or sometimes the effective strain rate) is held constant during the forging stroke. In the method introduced here, the ram speed is increased substantially during the forging stroke as the material recrystallizes to a finer-grained structure and its hot workability increases. By this means, fracture is avoided, grain size is reduced, and processing time is decreased, thus improving material quality and reducing cost. The material used to develop and demonstrate the novel forging process was the single phase gamma titanium aluminide, Ti-51Al-2Mn.

  17. Proposal to study stem forgings

    SciTech Connect

    Odegard, B.C.

    1982-06-25

    Reservoir designs consist of two primary features including the stem(s) and the body segment. The stem is either an integral part of the reservoir or is joined at some point in the fabrication sequence. The current interest is in high strength stems for advanced reservoir designs. The processing necessary to achieve these strength levels may result in heavily cold worked microstructures which may not interface well with the stem requirements. For instance, cold worked 316 plate stock has shown decreased hydrogen compatibility when contrasted to the annealed version in laboratory tests. More recently, Precision Forge produced a 100 ksi yield strength, 304L stem forging with a heavily deformed microstructure which also may show decreased compatibility in hydrogen. The proposed forging contract will evaluate the influence of forging parameters on the microstructure and mechanical properties of 304L and 316 stem forgings. A summary of the data available on 304L stem forgings is shown graphically. The yield strength values are shown for each set of forging parameters. Tensile tests and microstructural examination will be conducted to complete the information for 304L and create a similar graph for 316 stem forgings.

  18. Bone ingrowth through porous titanium granulate around a femoral stem: histological assessment in a six-month canine hemiarthroplasty model.

    PubMed

    Turner, Thomas M; Urban, Robert M; Hall, Deborah J; Andersson, Gunnar B J

    2007-01-01

    The procedure of using of porous titanium granules for cementless fixation of a hip replacement femoral stem was studied in a hemiarthroplasty model in 10 canines for 6 months. A vibrating instrument was used to facilitate both the delivery and distribution of the irregularly shaped porous titanium granules into the femoral canal as well as the subsequent insertion of a titanium alloy stem into the intramedullary bed of granules. Histological examination revealed lamellar bone formation through the mantle of porous titanium granules in continuity with the surrounding cortex resulting in the formation of an integrated mantle of bone and titanium granulate around the prosthesis. PMID:17578819

  19. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, II, George T.; Hansen, Jeffrey S.; Oden, Laurance L.; Turner, Paul C.; Ochs, Thomas L.

    1998-01-01

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  20. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, G.T. II; Hansen, J.S.; Oden, L.L.; Turner, P.C.; Ochs, T.L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body followed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet. 3 figs.

  1. Method of making multilayered titanium ceramic composites

    DOEpatents

    Fisher, George T., II; Hansen; Jeffrey S.; Oden; Laurance L.; Turner; Paul C.; Ochs; Thomas L.

    1998-08-25

    A method making a titanium ceramic composite involves forming a hot pressed powder body having a microstructure comprising at least one titanium metal or alloy layer and at least one ceramic particulate reinforced titanium metal or alloy layer and hot forging the hot pressed body follwed by hot rolling to substantially reduce a thickness dimension and substantially increase a lateral dimension thereof to form a composite plate or sheet that retains in the microstructure at least one titanium based layer and at least one ceramic reinforced titanium based layer in the thickness direction of the composite plate or sheet.

  2. Superplastic forging nitride ceramics

    DOEpatents

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  3. Cementless total hip arthroplasty using a threaded cup and a rectangular tapered stem. Follow-up for ten to 17 years.

    PubMed

    Pospischill, M; Knahr, K

    2005-09-01

    We carried out a clinical and radiological review of 103 cementless primary hip arthroplasties with a tapered rectangular grit-blasted titanium press-fit femoral component and a threaded conical titanium acetabular component at a mean follow-up of 14.4 years (10.2 to 17.1). The mean Harris hip score at the last follow-up was 89.2 (32 to 100). No early loosening and no fracture of the implant were found. One patient needed revision surgery because of a late deep infection. In 11 hips (10.7%), the reason for revision was progressive wear of the polyethylene liner. Exchange of the acetabular component because of aseptic loosening without detectable liner wear was carried out in three hips (2.9%). After 15 years the survivorship with aseptic loosening as the definition for failure was 95.6% for the acetabular component and 100% for the femoral component. PMID:16129743

  4. The pathogenesis of osteolysis in two different cementless hip replacements.

    PubMed

    Learmonth, I D; Smith, E J; Cunningham, J L

    1997-01-01

    Wear of ultra-high molecular weight polyethylene has been incriminated in the osteolysis associated with aseptic loosening of hip implants. A variety of different factors can contribute to accelerated patterns of polyethylene wear and subsequent osteolysis. This paper examines the incidence of osteolysis observed in two different well-matched cohorts of cementless total hip arthroplasties. The patterns of osteolysis observed, which are ascribed to the generation of polyethylene debris, are interpreted with reference to the design of the individual prostheses. PMID:9141891

  5. Large forging manufacturing process

    DOEpatents

    Thamboo, Samuel V.; Yang, Ling

    2002-01-01

    A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.

  6. Early results with the cementless Variall hip system.

    PubMed

    Suda, Arnold J; Knahr, Karl

    2009-01-01

    This study presents the early results of the Variall cementless hip system, a further development of the reliable Alloclassic Zweymüller system. In a prospective randomized study, 319 patients (333 hips) underwent the Variall cementless hip system with four different bearings and were scored using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) Score and the Short Form-36 health survey form, with a follow-up period of 3 years. The patients were grouped according to age, with those in the age range 23-75 years as group one (n = 285) and those over 75 years of age as group two (n = 48). For both the Short Form-36 and WOMAC scoring, worse function was found in group two (i.e., patients >75 years). In this group, the function scores were worse in patients who received a conventional polyethylene bearing. The clinical and radiological results after 5 or more years will lead to a clearer prediction. PMID:19105776

  7. Surface composition analysis of failed cementless CoCr- and Ti-base-alloy total hip implants.

    PubMed

    Decking, R; Reuter, P; Hüttner, M; Puhl, W; Claes, L E; Scharf, H P

    2003-02-15

    The surfaces of retrieved failed cementless total hip implants made of cobalt-chromium-molybdenum casting alloy and of wrought titanium 6-aluminum 4-vanadium alloy were studied with the use of scanning-electron microscopy (SEM), energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS). New implants of the same make served as controls. The XPS scans revealed a dense carbon layer on the entire analyzed specimen. The relative composition of the titanium alloy implants showed an overall agreement with the international standards for implants for surgery, and the overall surface composition did not change over the period of the implantation. However, an inhomogeneous distribution of the constituents could be demonstrated in the retrieved as well as in the new MEC-screw rings made of TiAl6V4 alloy, an implant that has been linked to a high early failure rate. In the CoCr-alloy components (Lord-screw rings) a high percentage of aluminum, mainly organized in aluminum inclusions, was found in the retrieved as well as in the new implants. PMID:12516084

  8. Twenty-year survivorship of cementless anatomic graduated component total knee arthroplasty.

    PubMed

    Ritter, Merrill A; Meneghini, R Michael

    2010-06-01

    There is a renewed interest in cementless total knee arthroplasty (TKA) due to improved biomaterials, desire for decreased surgical times and the potential increased longevity. Seventy-three cementless TKAs (AGC, Biomet, Warsaw, Ind) were performed from 1984 to 1986. All components were implanted without cement and without screws and obtained minimum 10 years of follow-up. No patient was lost to follow-up. Fifteen failures occurred, including 12 failed metal-backed patellae, and survivorship for aseptic loosening of any component was 76.4% at 20 years. Two tibial components failed of aseptic loosening at 1.1 and 2.2 years. Excluding patella failures, the survivorship for the cementless tibial component was 96.8% at 20 years. There were no femoral component failures. After eliminating patella failures, this cementless monoblock tibial component without screws demonstrated excellent 20-year survivorship. PMID:19427163

  9. 48 CFR 225.7102 - Forgings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Forgings. 225.7102 Section 225.7102 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF... Forgings....

  10. 48 CFR 225.7102 - Forgings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Forgings. 225.7102 Section 225.7102 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF... Forgings....

  11. 48 CFR 225.7102 - Forgings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Forgings. 225.7102 Section 225.7102 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF... Forgings....

  12. 48 CFR 225.7102 - Forgings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Forgings. 225.7102 Section 225.7102 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF... Forgings....

  13. 48 CFR 225.7102 - Forgings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Forgings. 225.7102 Section 225.7102 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF... Forgings....

  14. Deformation processes in forging ceramics

    NASA Technical Reports Server (NTRS)

    Cannon, R. M.; Rhodes, W. H.

    1973-01-01

    The deformation processes involved in the forging of refractory ceramic oxides were investigated. A combination of mechanical testing and forging was utilized to investigate both the flow and fracture processes involved. Deformation studies of very fine grain Al203 revealed an apparent transition in behavior, characterized by a shift in the strain rate sensitivity from 0.5 at low stresses to near unity at higher stresses. The behavior is indicative of a shift in control between two dependent mechanisms, one of which is indicated to be cation limited diffusional creep with significant boundary enhancement. The possible contributions of slip, indicated by crystallographic texture, interface control of the diffusional creep and inhomogeneous boundary sliding are also discussed. Additional experiments indicated an independence of deformation behavior on MgO doping and retained hot pressing impurities, at least for ultrafine grained material, and also an independence of test atmosphere.

  15. Fallon FORGE Well Temp data

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    x,y,z downhole temperature data for wells in and around the Fallon FORGE site. Data for the following wells are included: 82-36, 82-19, 84.31, 61-36, 88-24, FOH-3D, FDU-1, and FDU-2. Data are formatted in txt format and in columns for importing into Earthvision Software. Column headers and coordinate system information is stored in the file header.

  16. High-energy rate forgings of wedges :

    SciTech Connect

    Reynolds, Thomas Bither; Everhart, Wesley; Switzner, Nathan T; Balch, Dorian K.; San Marchi, Christopher W.

    2014-05-01

    The wedge geometry is a simple geometry for establishing a relatively constant gradient of strain in a forged part. The geometry is used to establish gradients in microstructure and strength as a function of strain, forging temperature, and quenching time after forging. This geometry has previously been used to benchmark predictions of strength and recrystallization using Sandias materials model for type 304L austenitic stainless steel. In this report, the processing conditions, in particular the times to forge and quench the forged parts, are summarized based on information recorded during forging on June 18, 2013 of the so-called wedge geometry from type 316L and 21Cr-6Ni-9Mn austenitic stainless steels.

  17. Forgings meet the challenges of the future

    SciTech Connect

    Mochnal, G.

    1996-04-01

    To meet and exceed the requirements of the customer of the future, the forging industry is entering a new era of increased productivity and technical advancements. The tools for this task have been developed as a result of a partnership among industry, government, and academia. As another consequence of this partnership, the Forging Industry Association and the Forging Industry Educational and Research Foundation are in the process of creating a Vision of the Future. This article will discuss advances in metal-forming simulation, billet heating systems, advanced die materials, and advanced forging presses.

  18. Sintering titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-09-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press-and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics, with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  19. Outcomes of a Newer-Generation Cementless Total Knee Arthroplasty Design.

    PubMed

    Harwin, Steven F; Elmallah, Randa K; Jauregui, Julio J; Cherian, Jeffrey J; Mont, Michael A

    2015-10-01

    Newer-generation cementless total knee arthroplasties (TKAs) aim to improve durability, function, and longevity. In a large series of cementless TKAs at a mean 4-year follow-up, the authors evaluated (1) survivorship, (2) range of motion, (3) patient-reported outcomes, and (4) complications. Mean age was 66 years (range, 34-88 years) and mean body mass index was 32.5 kg/m(2) (range, 20-54 kg/m(2)). Aseptic and septic implant survivorships were 99.6% and 99.5%, respectively. Mean extension, flexion, and Knee Society scores improved significantly. There were 3 septic failures. Aseptic failures included 3 aseptic loosenings, 1 polyethylene revision, and 1 revision to a cemented patella. This study showed excellent clinical and patient-reported outcomes of cementless TKA. PMID:26488775

  20. Study of bone remodeling of two models of femoral cementless stems by means of DEXA and finite elements

    PubMed Central

    2010-01-01

    Background A hip replacement with a cemented or cementless femoral stem produces an effect on the bone called adaptive remodelling, attributable to mechanical and biological factors. All of the cementless prostheses designs try to achieve an optimal load transfer in order to avoid stress-shielding, which produces an osteopenia. Long-term densitometric studies taken after implanting ABG-I and ABG-II stems confirm that the changes made to the design and alloy of the ABG-II stem help produce less proximal atrophy of the femur. The simulation with FE allowed us to study the biomechanical behaviour of two stems. The aim of this study was, if possible, to correlate the biological and mechanical findings. Methods Both models with prostheses ABG-I and II have been simulated in five different moments of time which coincide with the DEXA measurements: postoperative, 6 months, 1, 3 and 5 years, in addition to the healthy femur as the initial reference. For the complete comparative analysis of both stems, all of the possible combinations of bone mass (group I and group II of pacients in two controlled studies for ABG-I and II stems, respectively), prosthetic geometry (ABG-I and ABG-II) and stem material (Wrought Titanium or TMZF) were simulated. Results and Discussion In both groups of bone mass an increase of stress in the area of the cancellous bone is produced, which coincides with the end of the HA coating, as a consequence of the bottleneck effect which is produced in the transmission of loads, and corresponds to Gruen zones 2 and 6, where no osteopenia can be seen in contrast to zones 1 and 7. Conclusions In this study it is shown that the ABG-II stem is more effective than the ABG-I given that it generates higher tensional values on the bone, due to which proximal bone atrophy diminishes. This biomechanical behaviour with an improved transmission of loads confirmed by means of FE simulation corresponds to the biological findings obtained with Dual-Energy X

  1. Preparation of the proximal femur in cementless total hip revision.

    PubMed

    Mallory, T H

    1988-10-01

    With an increased incidence of revision for the failed cemented total hip arthroplasty, techniques of revision surgery need meticulous attention to detail. Although the causes of the failed cemented total hip arthroplasty are many, they tend to follow characteristic patterns. The proximal femur can be exposed through an extensive muscle split incision, which offers a complete circumferential view of the femur. The cement removal is enhanced by controlled perforation using high-speed drills. Classification of bony deficits of the proximal femur can be divided into Type I, including intact cortex and medullary content; Type II, in which there is intact cortex but deficient medullary content; and Type III, in which deficits of both the cortex and medullary canal are present. Prosthetic selection is based on residual bone stock. In general, cementless fixation is advocated, with distal fixation using long-stem devices. Augmentation of bone deficits requires the use of segmental prosthetic replacement or fresh-frozen allografts. One hundred sixty patients were followed for two to six years. Satisfactory results have occurred in over 90% of the patients; better results are anticipated in patients with minimal bone deficits. Aseptic loosening requiring rerevision has occurred in 5% of the patient population. Understanding the dynamics of failure and the residual bone deficits allows one to manage the failed cemented total hip arthroplasty with greater efficiency and predictability. PMID:3416541

  2. Morphological Study of the Newly Designed Cementless Femoral Stem

    PubMed Central

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias

    2014-01-01

    A morphology study was essential to the development of the cementless femoral stem because accurate dimensions for both the periosteal and endosteal canal ensure primary fixation stability for the stem, bone interface, and prevent stress shielding at the calcar region. This paper focused on a three-dimensional femoral model for Asian patients that applied preoperative planning and femoral stem design. We measured various femoral parameters such as the femoral head offset, collodiaphyseal angle, bowing angle, anteversion, and medullary canal diameters from the osteotomy level to 150 mm below the osteotomy level to determine the position of the isthmus. Other indices and ratios for the endosteal canal, metaphyseal, and flares were computed and examined. The results showed that Asian femurs are smaller than Western femurs, except in the metaphyseal region. The canal flare index (CFI) was poorly correlated (r < 0.50) to the metaphyseal canal flare index (MCFI), but correlated well (r = 0.66) with the corticomedullary index (CMI). The diversity of the femoral size, particularly in the metaphyseal region, allows for proper femoral stem design for Asian patients, improves osseointegration, and prolongs the life of the implant. PMID:25025068

  3. Osteolytic lesion of the tibial diaphysis after cementless TKA.

    PubMed

    Vernon, Brian A; Bollinger, Alexander J; Garvin, Kevin L; McGarry, Sean V

    2011-03-01

    Biomaterial wear debris is a known contributing factor in aseptic loosening of total joint prostheses, particularly when cementless tibial trays are used in total knee arthroplasty (TKA). Local inflammatory response can lead to osteolysis and aseptic loosening of implants. The resulting lesions require careful clinical evaluation. This article presents a case of a 76-year old man with a remote history of prostate cancer and cigarette smoking who presented with acute onset left knee and tibia pain 15 years after TKA. Radiographs showed an osteolytic lesion in the distal tibial diaphysis and magnetic resonance imaging revealed a cystic lesion with evidence concerning for pathologic mid-shaft fracture. Biopsy of the lesion confirmed a foreign body reaction and revision TKA was performed. The patient was seen at 3-year follow-up without complication. The existing literature presents cases reporting osteolytic lesions of the distal femur and proximal tibial metaphysis due to polyethylene wear debris and foreign body reaction following TKA. We are unaware of case reports involving osteolysis of this etiology extending into the distal tibial diaphysis. We conclude that polyethylene wear debris with foreign body reaction should be considered in the differential diagnosis of an osteolytic lesion extending into the tibial diaphysis following TKA. PMID:21410114

  4. Reactor pressure vessel with forged nozzles

    DOEpatents

    Desai, Dilip R.

    1993-01-01

    Inlet nozzles for a gravity-driven cooling system (GDCS) are forged with a cylindrical reactor pressure vessel (RPV) section to which a support skirt for the RPV is attached. The forging provides enhanced RPV integrity around the nozzle and substantial reduction of in-service inspection costs by eliminating GDCS nozzle-to-RPV welds.

  5. 29 CFR 1910.218 - Forging machines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Forging machines. 1910.218 Section 1910.218 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.218 Forging machines. (a) General requirements—(1) Use of lead....

  6. Impedance analysis of forging process and strategy study on compliance for forging manipulator

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Yao, Zhenqiang; Du, Zhengchun

    2013-07-01

    In the field of heavy forging, there are numerous researches on deformation rule in forging process by FEM simulation, however, not many scholars take the equipment constraint and the mutual reaction load between the forging manipulator clamp and the forging blank into account, which will impact on safety of manipulator body and quality of forging blank. This paper presents an impedance model to describe the load and formulates compliance strategies correspondingly to reduce the mutual reaction load for forging manipulator. Firstly, an FEM model of forging process is built. Meanwhile, the clamp of forging manipulator is added to the model as movement constraint and interaction part between the manipulator and the forming process. Secondly, a typical forging process is simulated by changing the movement constraint, and then an impedance model is established to describe the relationship between the load and movement constraint. Finally, two kinds of compliance strategies are formulated according to the impedance model, one is called free compliance, and the other is initiative/passive compliance. The simulation results show that compliance strategies reduce the load amounting to 5 000 kN in z direction between the manipulator clamp and the forging blank obviously, which may lead to serious accidents, such as the capsizing of forging manipulator, the fracture of manipulator clamp, and so on. The proposed research simulates the more real forging process, gets the initiative/passive compliance strategy which is more simple and suitable to the real producing and better for forming a forging process planning and control system in the modern production, and improves the quality and efficiency of heavy forging.

  7. Forging of Advanced Disk Alloy LSHR

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Falsey, John

    2005-01-01

    The powder metallurgy disk alloy LSHR was designed with a relatively low gamma precipitate solvus temperature and high refractory element content to allow versatile heat treatment processing combined with high tensile, creep and fatigue properties. Grain size can be chiefly controlled through proper selection of solution heat treatment temperatures relative to the gamma precipitate solvus temperature. However, forging process conditions can also significantly influence solution heat treatment-grain size response. Therefore, it is necessary to understand the relationships between forging process conditions and the eventual grain size of solution heat treated material. A series of forging experiments were performed with subsequent subsolvus and supersolvus heat treatments, in search of suitable forging conditions for producing uniform fine grain and coarse grain microstructures. Subsolvus, supersolvus, and combined subsolvus plus supersolvus heat treatments were then applied. Forging and subsequent heat treatment conditions were identified allowing uniform fine and coarse grain microstructures.

  8. An integrated CAD/CAM/robotic milling method for custom cementless femoral prostheses.

    PubMed

    Wen-ming, Xi; Ai-min, Wang; Qi, Wu; Chang-hua, Liu; Jian-fei, Zhu; Fang-fang, Xia

    2015-09-01

    Aseptic loosening is the primary cause of cementless femoral prosthesis failure and is related to the primary stability of the cementless femoral prosthesis in the femoral cavity. The primary stability affects both the osseointegration and the long-term stability of cementless femoral prostheses. A custom cementless femoral prosthesis can improve the fit and fill of the prosthesis in the femoral cavity and decrease the micromotion of the proximal prosthesis such that the primary stability of the custom prosthesis can be improved, and osseointegration of the proximal prosthesis is achieved. These results will help to achieve long-term stability in total hip arthroplasty (THA). In this paper, we introduce an integrated CAD/CAM/robotic method of milling custom cementless femoral prostheses. The 3D reconstruction model uses femoral CT images and 3D design software to design a CAD model of the custom prosthesis. After the transformation matrices between two units of the robotic system are calibrated, consistency between the CAM software and the robotic system can be achieved, and errors in the robotic milling can be limited. According to the CAD model of the custom prosthesis, the positions of the robotic tool points are produced by the CAM software of the CNC machine. The normal vector of the three adjacent robotic tool point positions determines the pose of the robotic tool point. In conclusion, the fit rate of custom pig femur stems in the femoral cavities was 90.84%. After custom femoral prostheses were inserted into the femoral cavities, the maximum gaps between the prostheses and the cavities measured less than 1 mm at the diaphysis and 1.3 mm at the metaphysis. PMID:26210779

  9. Microstructural Evaluation of Forging Parameters for Superalloy Disks

    NASA Technical Reports Server (NTRS)

    Falsey, John R.

    2004-01-01

    Forgings of nickel base superalloy were formed under several different strain rates and forging temperatures. Samples were taken from each forging condition to find the ASTM grain size, and the as large as grain (ALA). The specimens were mounted in bakelite, polished, etched and then optical microscopy was used to determine grain size. The specimens ASTM grain sizes from each forging condition were plotted against strain rate, forging temperature, and presoak time. Grain sizes increased with increasing forging temperature. Grain sizes also increased with decreasing strain rates and increasing forging presoak time. The ALA had been determined from each forging condition using the ASTM standard method. Each ALA was compared with the ASTM grain size of each forging condition to determine if the grain sizes were uniform or not. The forging condition of a strain rate of .03/sec and supersolvus heat treatment produced non uniform grains indicated by critical grain growth. Other anomalies are noted as well.

  10. NON-MELT PROCESSING OF "LOW-COST", ARMSTRONG TITANIUM AND TITANIUM ALLOY POWDERS

    SciTech Connect

    Peter, William H; Blue, Craig A; Clive, Scorey; Ernst, Bill; McKernan, John; Kiggans, Jim; Rivard, John D; Yu, Dr. Charlie

    2007-01-01

    In the last decade, a considerable effort has been made to develop new methods for producing low cost titanium and titanium powders. The Armstrong process is a new method of producing titanium powder via reducing TiCl4 vapor in molten sodium. The process is scalable, and can be used to produce pre-alloyed powders. Non-melt processing and powder metallurgy approaches are economically viable with the commercially pure powders. In this investigation, several non-melt processing technologies, including vacuum hot pressing, extrusion, roll compaction, and forging techniques, will be evaluated using the Armstrong titanium powders. The metallurgical, chemical, and mechanical properties of the processed titanium samples will be discussed.

  11. Mechanical Testing Development for Reservoir Forgings

    SciTech Connect

    Wenski, E.G.

    2000-05-22

    The goal of this project was to determine the machining techniques and testing capabilities required for mechanical property evaluation of commercially procured reservoir forgings. Due to the small size of these specific forgings, specialized methods are required to adequately machine and test these sub-miniature samples in accordance with the requirements of ASTM-E8 and ASTM-E9. At the time of project initiation, no capability existed at Federal Manufacturing & Technologies (FM&T) to verify the physical properties of these reservoirs as required on the drawing specifications. The project determined the sample definitions, machining processes, and testing procedures to verify the physical properties of the reservoir forgings; specifically, tensile strength, yield strength, reduction of area, and elongation. In addition, a compression test method was also developed to minimize sample preparation time and provide a more easily machined test sample while maintaining the physical validation of the forging.

  12. Forging of FeAl intermetallic compounds

    SciTech Connect

    Flores, O.; Juarez, J.; Campillo, B.; Martinez, L.; Schneibel, J.H.

    1994-09-01

    Much activity has been concentrated on the development of intermetallic compounds with the aim of improving tensile ductility, fracture toughness and high notch sensitivity in order to develop an attractive combination of properties for high and low temperature applications. This paper reports experience in processing and forging of FeAl intermetallic of B2 type. During the experiments two different temperatures were employed, and the specimens were forged after annealing in air, 10{sup {minus}2} torr vacuum and argon. From the results it was learned that annealing FeAl in argon atmosphere prior to forging resulted in better deformation behavior than for the other two environments. For the higher forging temperature used in the experiments (700C), the as-cast microstructure becomes partially recrystallized.

  13. Selecting forged aluminum for automotive applications

    SciTech Connect

    Holtz, M.A.; Davis, J.; Crawford, D.

    1984-01-01

    With the current and future efforts to downsize automobiles and reduce their weight, strong lightweight materials, in various product forms, are being substituted for many traditionally ferrous components. One of the substitute materials is aluminum, which although itself is not new to automobiles is finding novel applications as forgings in critical chassis and suspension areas. The 1984 Corvette provides an excellent example of how the use of forged aluminum can reduce unsprung and overall weight as well as improve performance without compromising the integrity of the vehicle. Using aluminum as forgings permits taking maximum advantage of its high strength-to-weight ratio, excellent ductility and toughness, and good corrosion resistance. This paper discusses the various considerations to be entertained when looking at aluminum forgings for automotive applications and the benefits of planning for these lightweight parts early in the design phase.

  14. Near Net Shape Manufacturing of New Titanium Powders for Industry

    SciTech Connect

    2009-05-01

    This factsheet describes a research project whose goal is to develop a manufacturing technology to process new titanium powders into fully consolidated near net shape components for industrial applications. This will be achieved using various technologies, including press and sinter, pneumatic isostatic forging (PIF), hot isostatic pressing (HIP), and adiabatic compaction.

  15. Cementless porous-coated anatomic medullary locking total hip prostheses.

    PubMed

    Kim, Y H; Kim, V E

    1994-06-01

    the cementless Anatomic Medullary Locking prosthesis. PMID:8077972

  16. Compressed Air System Optimization Project Improves Production at a Metal Forging Plant (Modern Forge, TN, Plant)

    SciTech Connect

    2000-12-01

    In 1995, Modern Forge of Tennessee implemented a compressed air system improvement project at its Piney Flats, Tennessee, forging plant. Due to the project’s implementation, the plant was able to operate with fewer compressors and improve its product quality, thus allowing it to increase productivity. The project also resulted in considerable energy and maintenance savings.

  17. Total knee arthroplasty using cementless keels and cemented tibial trays: 10-year results

    PubMed Central

    Kolisek, Frank R.; Mont, Michael A.; Seyler, Thorsten M.; Marker, David R.; Jessup, Nenette M.; Siddiqui, Junaed A.; Monesmith, Eric

    2008-01-01

    The problem of early mechanical stability of cemented and cementless keels of the tibial component in total knee arthroplasty (TKA) is controversial. The purpose of this study was to assess clinical and radiographic outcomes of a cohort of 51 TKAs using a cemented platform with cementless keel fixation. At a mean follow-up of 10.4 years (range, 7 to 14 years), the mean Knee Society Score (KSS) was 93 points (range, 59 to 100 points), and the mean functional score was 73 points (range, 0 to 100 points). Only one patient demonstrated progressive tibial radiolucencies at 13.1 years follow-up, which resolved with a revision with an exchange of components. The results of this study suggest that a proximally cemented tibial tray with a press-fit keel TKA provides excellent mean 10-year outcomes. PMID:18185931

  18. An investigation on the effect of groove geometry on cementless femoral stem component in hip arthroplasty.

    PubMed

    Rawal, B R; Bhatnagar, Naresh

    2013-12-15

    The optimal surface for a cementless femoral stem has been a subject of debate for the past several years. Several researchers have stressed the need for research on how an implant surface shape contributes to long-term stability after implantation, in the field of orthopaedics. The introduction of optimized grooves on an implant proximal surface may enhance long-term stability of an implant. This study thus analyzes the effect of different groove dimensions and angles in a transverse plane on stress transmission by a constant load at the femur by using Finite Element Analysis (FEA). Results suggest that the tendency of stress transmission differs depending on the size, position and angle of the grooves. An optimized groove size and inclination plays a vital role for long-term stability of cementless femoral stems. PMID:24517034

  19. Removal of a well-fixed cementless femoral component with an extended proximal femoral osteotomy.

    PubMed

    Younger, T I; Bradford, M S; Paprosky, W G

    1995-05-01

    Removal of a stable, well-fixed cementless femoral arthroplasty component occasionally is necessary because of infection, component malposition, persistent pain, or incompatibility with a femoral revision component. Restricted access to ingrowth surfaces may make implant removal exceedingly difficult and increases the risk of iatrogenic damage to the proximal femur. A new extended proximal femoral osteotomy technique is described for use in removing well-fixed cementless femoral components. Previous techniques have been modified to allow access to the bone-implant interface and to provide straight-shot access to the femoral canal for proper sizing and positioning of the revision implant. The osteotomy can be extended to accommodate the entire length of the porous coating on the revision component. If a shorter osteotomy is desired, access to the prosthesis for transection with a metal-cutting burr is possible. The osteotomy is easily repositioned with cerclage wires or cables and reliable healing has been demonstrated. PMID:10150358

  20. Bone scans after total knee arthroplasty in asymptomatic patients. Cemented versus cementless

    SciTech Connect

    Hofmann, A.A.; Wyatt, R.W.; Daniels, A.U.; Armstrong, L.; Alazraki, N.; Taylor, A. Jr. )

    1990-02-01

    The natural history of bone scans after total knee arthroplasty (TKA) was studied in 26 patients with 28 cemented TKAs and 29 patients with 31 cementless TKAs. The bone scans were examined at specified postoperative intervals. Radionuclide activity of the femoral, tibial, and patellar regions was measured. Six patients who developed pain postoperatively were excluded. Bone scans immediately postoperative and at three months demonstrated increased uptake, which gradually decreased to baseline levels at ten to 12 months. Radioisotope uptake was comparable in the cemented and cementless groups, but was highly variable in individual patients and in each of the follow-up periods. A single postoperative bone scan cannot differentiate component loosening from early bone remodeling. Sequential bone scans, as a supplement to the clinical examination and conventional radiography, may prove useful in the diagnosis of TKA failure.

  1. Cementless Hip Arthroplasty in Southern Iran, Midterm Outcome and Comparison of Two Designs

    PubMed Central

    Shahcheraghi, Gholam Hossein; Hashemi, Seyed Ali

    2015-01-01

    Background: Cementless hip prosthesis was designed to provide biologic fixation, without the use of cement. The second generation components have shown more reliable bone ingrowths and survival rates. We are reporting a midterm result of two designs of cementless prosthesis in a unique culture with different social habits and expectations. Methods: 52 primary cementless total hip arthroplasty in 42 patients with the mean age of 48.8 years were retrospectively studied. Two groups of prosthesis had been implanted: Harris-Galante II (HGII) in 15 and Versys-Trilogy (V-T) in 37 hips, both from Zimmer company. The patients were assessed clinically, radiographically and with Harris hip score, SF36, WOMAC, and MACTAR questionnaires, with 65 months (26-136) mean follow-up. Results: All the V-T prostheses had survived well. Eight of HG II were revised by the last follow-up in 19-102 months. All had undergone acetabular revision and 2 combined with femoral revision. Broken tines of HGII cups were seen in 4 radiographs. The 65 months overall survival was 96.2% for femoral and 84.6% for acetabular components. 90% had good or excellent Harris hip scores. The functional scores were poorer in the HG II group. Pain relief and improved walking were the two main patients’ expectations fulfilled in 97.6% and 92.8%, respectively. Conclusions: The outcome of cementless total hip arthroplasty (THA) is satisfactory and comparable with the literature based on the results of function and survival of this small comparative group. The use of HGII acetabular component should be abandoned. PMID:26379348

  2. [An unusual early complication in cementless replacement of the hip joint. Case report].

    PubMed

    Kauschke, T; Zilch, H

    1994-12-01

    This is the first description of a dislocation of the polyethyleninlay from the cup of a cementless hip prosthesis. Due to a fall of the patient 8 months after the implantation an unspecific complaint arised. In spite of detailed diagnostic no reason could have been found. During the renewed operation we saw the dislocated inlay by mechanical anchorage of the cup and the shaft. Retrospective there were made suggestions how the described complication could be recognized earlier. PMID:7871611

  3. The Early Result of Cementless Arthroplasty for Femur Neck Fracture in Elderly Patients with Severe Osteoporosis

    PubMed Central

    Seo, Jae-Seong; Shin, Seong-Kee; Jun, Sung-Han; Cho, Chang-Ho

    2014-01-01

    Purpose The purposes of the current study were to assess the early results of cementless hip arthroplasty (HA) for femoral neck fractures in elderly patients with severe osteoporosis and to compare the clinical outcomes between those who underwent total HA (THA) or bipolar hemiarthroplasty (BHA). Materials and Methods From April 2011 to May 2012, we performed 87 cementless HAs for displaced femoral neck fractures in elderly patients (≥65 years) with severe osteoporosis. Among them, we studied 70 hips that were able to be followed-up for >24 months. Of these, 34 underwent THA and 36 underwent BHA. Clinical results were evaluated using the Harris hip score (HHS), Koval classification, and radiographs. Results Only one instance of femoral stem loosening was observed. Additionally, no dislocations were observed and no revision surgeries were required. The mean changes in the functional items of the HHS scores were 2.8 and 5.2 for those who underwent THA and BHA, respectively (P<0.05). According to the Koval classification used for the ambulatory status analysis, the mean perioperative change in the grade was 0.8 (0-4), with no significant differences noted between the THA and BHA groups. Conclusion The early results of cementless HA for femur neck fractures in elderly patients with osteoporosis were satisfactory, and THA was found to have a functional advantage over BHA.

  4. Promising short-term clinical results of the cementless Oxford phase III medial unicondylar knee prosthesis

    PubMed Central

    van Dorp, Karin B; Breugem, Stefan JM; Bruijn, Daniël J; Driessen, Marcel JM

    2016-01-01

    AIM: To investigate the short-term clinical results of the Oxford phase III cementless medial unicondylar knee prosthesis (UKP) compared to the cemented medial UKP. METHODS: We conducted a cross-sectional study in a tertairy orthopedic centre between the period of May 2010 and September 2012. We included 99 medial UKP in 97 patients and of these UKP, 53 were cemented and 46 were cementless. Clinical outcome was measured using a questionnaire, containing a visual analogue scale (VAS) for pain, Oxford Knee score, Kujala score and SF-12 score. Knee function was tested using the American Knee Society score. Complications, reoperations and revisions were recorded. Statistical significance was defined as a P value < 0.05. RESULTS: In a mean follow-up time of 19.5 mo, three cemented medial UKP were revised to a total knee prosthesis. Reasons for revision were malrotation of the tibial component, aseptic loosening of the tibial component and progression of osteoarthritis in the lateral- and patellofemoral compartment. In five patients a successful reoperation was performed, because of impingement or (sub)luxation of the polyethylene bearing. Patients with a reoperation were significant younger than patients in the primary group (56.7 vs 64.0, P = 0.01) and were more likely to be male (85.7% vs 38.8%, P = 0.015). Overall the cementless medial UKP seems to perform better, but the differences in clinical outcome are not significant; a VAS pain score of 7.4 vs 11.7 (P = 0.22), an Oxford Knee score of 43.3 vs 41.7 (P = 0.27) and a Kujala score of 79.6 vs 78.0 (P = 0.63). The American Knee Society scores were slightly better in the cementless group with 94.5 vs 90.2 (P = 0.055) for the objective score and 91.2 vs 87.8 (P = 0.25) for the subjective score. CONCLUSION: The cementless Oxford phase III medial UKP shows good short-term clinical results, when used in a specialist clinic by an experienced surgeon. PMID:27114932

  5. 4. FORGE, ANVIL, PEDESTAL GRINDER, AND BELT DRIVES. NOTE WATERWHEEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FORGE, ANVIL, PEDESTAL GRINDER, AND BELT DRIVES. NOTE WATERWHEEL NEEDLE VALVE CASTING HANGING ON THE WALL ABOVE THE FORGE. VIEW TO NORTH. - Santa Ana River Hydroelectric System, SAR-1 Machine Shop, Redlands, San Bernardino County, CA

  6. Stainless-steel elbows formed by spin forging

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Large seamless austenitic stainless steel elbows are fabricated by spin forging /rotary shear forming/. A specially designed spin forging tool for mounting on a hydrospin machine has been built for this purpose.

  7. 1. MIDDLE FORGE DISPLAY, ACROSS FROM BUILDING NO. 114 on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. MIDDLE FORGE DISPLAY, ACROSS FROM BUILDING NO. 114 on FARLEY AVE. MARKER ON DISPLAY ITSELF READS: FORGE AND TOOLS, USED AT MIDDLE FORGE LOCATED AT PICATINNY LAKE OUTLETS 1749 TO 1880. NEARBY MARKER READS: THE MIDDLE FORGE. THE MT. HOPE IRONWORKS INCLUDING A TRACT CALLED THE MIDDLE FORGE, SUPPLIED ORDNANCE MATERIAL TO THE CONTINENTAL ARMY IN THE AMERICAN REVOLUTION. GENERAL WASHINGTON INSPECTED THE FACILITY. THE WAR DEPARTMENT PURCHASED THE MIDDLE FORGE PORPERTY FOR AN ARMY POWDER DEPOT IN 1879-80. THE FORGE AND TOOLS WERE RECOVERED AT THE ACTUAL SITE NEAR PICATINNY PEAK. THROUGH THE YEARS, THE MIDDLE FORGE DISPLAY CAME TO BE THE UNOFFICIAL SYMBOL OF PICATINNY ARSENAL. -- HISTORICAL OFFICE NO DATE - Picatinny Arsenal, State Route 15 near I-80, Dover, Morris County, NJ

  8. Impact of Temperature on Cooling Structural Variation of Forging Dies

    NASA Astrophysics Data System (ADS)

    Piesova, Marianna; Czan, Andrej

    2014-12-01

    The article is focused on the issue of die forging in the automotive industry. The cooling effect of temperature on the structure of forged die are under review. In the article, there is elaborated the analysis of theoretical knowledge in the field, focusing on die forging and experimentally proven effect of the cooling rate on the final structure of forged dies made of hypoeutectic carbon steel C56E2.

  9. Near-Net Forging Technology Demonstration Program

    NASA Technical Reports Server (NTRS)

    Hall, I. Keith

    1996-01-01

    Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce

  10. 22 CFR 121.10 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Forgings, castings, and machined bodies. 121.10... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings, and machined bodies. The U.S. Munitions List controls as defense articles those forgings, castings, and other unfinished products, such...

  11. Co-Operative Training in the Sheffield Forging Industry

    ERIC Educational Resources Information Center

    Duncan, R.

    2008-01-01

    Purpose: The purpose of this paper is to give details of an operation carried out in Sheffield to increase the recruitment of young men into the steel forging industry. Design/methodology/approach: The Sheffield Forges Co-operative Training Scheme was designed to encourage boys to enter the forging industry and to provide them with training and…

  12. Titanium 2013

    USGS Publications Warehouse

    2014-01-01

    Titanium is the ninth most abundant element in the earth's crust and can be found in nearly all rocks and sediments. It is a lithophile element with a strong affinity for oxygen and is not found as a pure metal in nature. Titanium was first isolated as a pure metal in 1910, but it was not until 1948 that the metal was produced commercially using the Kroll process (named after its developer, William Kroll) to reduce titanium tetrachloride with magnesium to produce titanium metal.

  13. Forging Inclusive Solutions: Experiential Earth Charter Education

    ERIC Educational Resources Information Center

    Hill, Linda D.

    2010-01-01

    Forging Inclusive Solutions describes the aims, methodology and outcomes of Inclusive Leadership Adventures, an experiential education curriculum for exploring the Earth Charter. Experiential education builds meaningful relationships, skills, awareness and an inclusive community based on the Earth Charter principles. When we meet people where they…

  14. Analysis of forging limit for sintered porous metals

    SciTech Connect

    Han, H.N.; Oh, K.H.; Lee, D.N.

    1995-06-15

    Forging of sintered porous metals has been developed as a method for producing machine parts with good mechanical properties. To extend this manufacturing method to a wide range of applications, it will be helpful to have an understanding of the deformation, density change and fracture of sintered porous metals during forging. Especially, in order to avoid the possibility of surface fracture in forging of porous metals, it is necessary to know the forging limits of sintered porous metals. The purpose of this work is to calculate the forging limit curves of sintered porous metals using the various yield functions for porous metals.

  15. The importance of trochanteric lag screws to achieve primary stability in cementless fixation of the RM hip prosthesis.

    PubMed

    Heitemeyer, U; Hierholzer, G; Haines, J

    1987-01-01

    To allow the bony incorporation of a cementless prosthesis it is important to achieve stability at the time of operation. To neutralize tension and torsional stresses the RM-shaft prosthesis is fixed with two lag screws in the trochanteric part of the femur. By measuring the applied torque intraoperatively we could demonstrate that the threads of the screws found a better grip when inserted from the bone to the prosthesis. Thus, the stronger fixation of the screws enhanced the primary stability of the cementless prosthesis. PMID:3566504

  16. Risk factors for intraoperative calcar fracture in cementless total hip arthroplasty

    PubMed Central

    Miettinen, Simo S A; Mäkinen, Tatu J; Kostensalo, Inari; Mäkelä, Keijo; Huhtala, Heini; Kettunen, Jukka S; Remes, Ville

    2016-01-01

    Background and purpose — Intraoperative periprosthetic femoral fracture is a known complication of cementless total hip arthroplasty (THA). We determined the incidence of—and risk factors for—intraoperative calcar fracture, and assessed its influence on the risk of revision. Patients and methods — This retrospective analysis included 3,207 cementless THAs (in 2,913 patients). 118 intraoperative calcar fractures were observed in these hips (3.7%). A control group of 118 patients/hips without calcar fractures was randomly selected. The mean follow-up was 4.2 (1.8–8.0) years. Demographic data, surgical data, type of implant, and proximal femur morphology were evaluated to determine risk factors for intraoperative calcar fracture. Results — The revision rates in the calcar fracture group and the control group were 10% (95% CI: 5.9–17) and 3.4% (CI: 1.3–8.4), respectively. The revision rate directly related to intraoperative calcar fracture was 7.6%. The Hardinge approach and lower age were risk factors for calcar fracture. In the fracture group, 55 of 118 patients (47%) had at least one risk factor, while only 23 of118 patients in the control group (20%) had a risk factor (p = 0.001). Radiological analysis showed that in the calcar fracture group, there were more deviated femoral anatomies and proximal femur bone cortices were thinner. Interpretation — Intraoperative calcar fracture increased the risk of revision. The Hardinge approach and lower age were risk factors for intraoperative calcar fracture. To avoid intraoperative fractures, special attention should be paid when cementless stems are used with deviant-shaped proximal femurs and with thin cortices. PMID:26541230

  17. Endo medullary extractability of cementless full HA coated femoral stem: Results from 19 cases.

    PubMed

    Lecuire, François; Melere, Gilles; Martres, Sébastien

    2015-03-01

    The Aura cementless full HA coated stem is an anatomical femoral component with a different surface treatment in the metaphyseal and diaphyseal areas. We have studied the feasibility of isolated endo-medullar extraction of the stem. 19 patients (6 infections, 6 neck fractures, 3 stems with risk of fracture, 3 head fractures, and 1 recurrent dislocation) were subjected to the removal of a stable and bone integrated implant at a mean of 4.5 years after surgery. The 19 cases represent the entire population of Aura cementless integrated stem requiring revision during the period of 2003 through 2011, excluding periprosthetic bone fracture cases. The technique consisted of a careful release of the metaphyseal part of the implant with thin osteotomes, followed by the use of a highly efficient extractor. The re-implanted procedure always utilised standard stems: 17 cementless stems full HA coated (13 had the same size as the removed implant, 4 cases had larger sizes) and two received cemented stems. The 19 stems were extracted by simple endo-medullary approach, without the need for additional action. Several complications were encountered, 1 intraoperative diaphyseal fracture, requiring a wiring, 1 fracture of the lesser trochanter at 15 days post-surgery, requiring a revision and 2 postoperative dislocations. Except for the early revision due to fracture, no other stem was revised. There was no recurrence of infection and the functional results were satisfactory (PMA 15-18). 3 patients showed metaphyseal lucent lines on X-Ray leading us to advise the use of a standard stem with larger size after distal reaming, combined with preventive circulate of the calcar. The use of dedicated instrumentation allows successful extraction of full HA coated short stem by endomedullary approach. PMID:26280859

  18. No medium-term advantage of electrochemical deposition of hydroxyapatite in cementless femoral stems

    PubMed Central

    Flatøy, Bernhard; Röhrl, Stephan M; Bøe, Berte; Nordsletten, Lars

    2016-01-01

    Background and purpose Hydroxyapatite has been used for a long time as an adjunct to enhance cementless fixation. The benefit of this is still debated, but new methods of hydroxyapatite deposition have emerged, offering possible gains. In order to investigate this further, we compared the migration pattern and periprosthetic bone remodeling in a cementless femoral stem with either electrochemically deposited hydroxyapatite—called Bonemaster (BM)—or a conventional plasma-sprayed hydroxyapatite (HA) coating. Patients and methods 55 hips were randomized to either BM or HA cementless femoral stems. Patients were followed with radiostereometry (RSA), dual-energy X-ray absorptiometry (DXA), radiographic measurements, and hip questionnaires for 5 years. Results For both stems, migration occurred mainly as subsidence and retroversion during the first 3 months. The BM group had a higher retroversion rate of 0.17° per month during this period, as compared to 0.06° per month for the HA group (p = 0.006). Thereafter, there was almost no movement in any direction for both stem types. Bone resorption occurred mainly during the first year, and subsequently decreased to a rate close to what is seen in normal ageing. The greatest total decrease occurred in Gruen zones 1 and 7, similar in the groups at 5 years. There was a slightly higher resorption rate in Gruen zone 7 from 2 to 5 years in the BM group (1.3% per year; p = 0.04), but in a magnitude that would scarcely affect stem stability or survival. Interpretation There were no clinically relevant differences between the 2 stems regarding stability or periprosthetic bone loss at 5 years. Electrochemically deposited HA does not appear to affect fixation or bone remodeling when compared to conventional plasma spraying at 5 years. Thus, at this point, Bonemaster appears to be safe. PMID:26364953

  19. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, R.; Glatzmaier, G.C.

    1995-05-23

    A process is disclosed for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  20. Process for synthesizing titanium carbide, titanium nitride and titanium carbonitride

    DOEpatents

    Koc, Rasit; Glatzmaier, Gregory C.

    1995-01-01

    A process for synthesizing titanium carbide, titanium nitride or titanium carbonitride. The process comprises placing particles of titanium, a titanium salt or titanium dioxide within a vessel and providing a carbon-containing atmosphere within the vessel. The vessel is heated to a pyrolysis temperature sufficient to pyrolyze the carbon to thereby coat the particles with a carbon coating. Thereafter, the carbon-coated particles are heated in an inert atmosphere to produce titanium carbide, or in a nitrogen atmosphere to produce titanium nitride or titanium carbonitride, with the heating being of a temperature and time sufficient to produce a substantially complete solid solution.

  1. The Otto Aufranc Award: Enhanced Biocompatibility of Stainless Steel Implants by Titanium Coating and Microarc Oxidation

    PubMed Central

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon

    2010-01-01

    Background Stainless steel is one of the most widely used biomaterials for internal fixation devices, but is not used in cementless arthroplasty implants because a stable oxide layer essential for biocompatibility cannot be formed on the surface. We applied a Ti electron beam coating, to form oxide layer on the stainless steel surface. To form a thicker oxide layer, we used a microarc oxidation process on the surface of Ti coated stainless steel. Modification of the surface using Ti electron beam coating and microarc oxidation could improve the ability of stainless steel implants to osseointegrate. Questions/purposes The ability of cells to adhere to grit-blasted, titanium-coated, microarc-oxidated stainless steel in vitro was compared with that of two different types of surface modifications, machined and titanium-coated, and microarc-oxidated. Methods We performed energy-dispersive x-ray spectroscopy and scanning electron microscopy investigations to assess the chemical composition and structure of the stainless steel surfaces and cell morphology. The biologic responses of an osteoblastlike cell line (SaOS-2) were examined by measuring proliferation (cell proliferation assay), differentiation (alkaline phosphatase activity), and attraction ability (cell migration assay). Results Cell proliferation, alkaline phosphatase activity, migration, and adhesion were increased in the grit-blasted, titanium-coated, microarc-oxidated group compared to the two other groups. Osteoblastlike cells on the grit-blasted, titanium-coated, microarc-oxidated surface were strongly adhered, and proliferated well compared to those on the other surfaces. Conclusions The surface modifications we used (grit blasting, titanium coating, microarc oxidation) enhanced the biocompatibility (proliferation and migration of osteoblastlike cells) of stainless steel. Clinical Relevance This process is not unique to stainless steel; it can be applied to many metals to improve their biocompatibility

  2. Computer-based gait analysis of dogs: evaluation of kinetic and kinematic parameters after cemented and cementless total hip replacement.

    PubMed

    Drüen, S; Böddeker, J; Meyer-Lindenberg, A; Fehr, M; Nolte, I; Wefstaedt, P

    2012-01-01

    To date it is unclear whether cementless total hip replacement (THR) in dogs is of clinical advantage in comparison to cemented THR with regard to lameness improvement. Thus the aim of this study was to compare objectively the development of the gait pattern after cemented and cementless THR in dogs. For this purpose, 18 adult dogs with hip dysplasia underwent computer-based gait analysis on an instrumented treadmill prior to unilateral THR and then again ten days, four weeks and four months after surgery. Analysed kinetic parameters were symmetry indices (SI) of vertical ground reaction forces (GRF), which included peak vertical forces (PFz), mean vertical forces (MFz), vertical impulse (IFz), and vertical ground reaction forces of the arthroplasty limbs only. Analysed kinematic parameters were range-of-motion and the flexion and extension angles of hip, stifle and hock joints. The symmetry indice for PVF, MFz and IFz decreased to a value less than six in both THR groups four months after surgery, which is defined as not lame. Improvement in lameness of the arthroplasty limbs during the examination period of four months was not significantly different between the cemented and cementless groups. The results suggest that within a short-term observation period of four months after surgery, neither cementless nor cemented THR have a greater advantage with regard to lameness improvement. Additional studies with larger pools of subjects and longer time periods for follow-up examinations are necessary to verify these findings. PMID:22828804

  3. Improvements in the process of boss bar upset forging into a horizontal forging machine with the aim of joint knuckle forging quality improvement

    NASA Astrophysics Data System (ADS)

    Pankratov, D. L.; Nizamov, R. S.; Kharisov, I. Zh

    2016-06-01

    A new technique for tapered composing transition shaping has been put forward in the process of upset forging with the use of an experimental tool. The results of the upset forging process with the use of a new composing transition has been computer simulated.

  4. A genetic algorithm based multi-objective shape optimization scheme for cementless femoral implant.

    PubMed

    Chanda, Souptick; Gupta, Sanjay; Kumar Pratihar, Dilip

    2015-03-01

    The shape and geometry of femoral implant influence implant-induced periprosthetic bone resorption and implant-bone interface stresses, which are potential causes of aseptic loosening in cementless total hip arthroplasty (THA). Development of a shape optimization scheme is necessary to achieve a trade-off between these two conflicting objectives. The objective of this study was to develop a novel multi-objective custom-based shape optimization scheme for cementless femoral implant by integrating finite element (FE) analysis and a multi-objective genetic algorithm (GA). The FE model of a proximal femur was based on a subject-specific CT-scan dataset. Eighteen parameters describing the nature of four key sections of the implant were identified as design variables. Two objective functions, one based on implant-bone interface failure criterion, and the other based on resorbed proximal bone mass fraction (BMF), were formulated. The results predicted by the two objective functions were found to be contradictory; a reduction in the proximal bone resorption was accompanied by a greater chance of interface failure. The resorbed proximal BMF was found to be between 23% and 27% for the trade-off geometries as compared to ∼39% for a generic implant. Moreover, the overall chances of interface failure have been minimized for the optimal designs, compared to the generic implant. The adaptive bone remodeling was also found to be minimal for the optimally designed implants and, further with remodeling, the chances of interface debonding increased only marginally. PMID:25392855

  5. Custom Cementless Stem Improves Hip Function in Young Patients at 15-year Followup

    PubMed Central

    Flecher, Xavier; Pearce, Oliver; Parratte, Sebastien; Aubaniac, Jean-Manuel

    2009-01-01

    THA in young patients is challenging regarding restoration and survival because patients are young, active, and tend to have disturbed anatomy. We asked whether a three-dimensional custom cementless stem could restore hip function, decrease osteolysis and wear, and enhance stem survival in young patients. We retrospectively reviewed 212 patients (233 hips) younger than 50 years (mean, 40 years) at a followup of 5 to 16 years (mean, 10 years). The Merle D’Aubigné-Postel and Harris hip scores improved at last followup. No thigh pain was recorded for any of the patients; 187 of the 212 patients (88%) had full activity recovery, 206 had full range of motion, and 151 had a score greater than 80 points for all five categories of the Hip disability and Osteoarthritis Outcome score. Five patients had femoral osteolysis not associated with pain. With revision for any reason as an end point, the survivorship was 87% (range, 77%–97%) at 15 years, and considering stem revision only, the survivorship was 93% (confidence interval, 90%–97%) at 15 years. Our data compare favorably with those from series using standard cementless stems at the same followup with a high percentage of patients achieving functional restoration and a low rate of complications. Level of Evidence: Level IV, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19690930

  6. Enhancement of Aluminum Alloy Forgings through Rapid Billet Heating

    SciTech Connect

    Kervick, R.; Blue, C. A.; Kadolkar, P. B.; Ando, T.; Lu, H.; Nakazawa, K.; Mayer, H.; Mochnal, G.

    2006-06-01

    Forging is a manufacturing process in which metal is pressed, pounded or squeezed under great pressure and, often, under high strain rates into high-strength parts known as forgings. The process is typically performed hot by preheating the metal to a desired temperature before it is worked. The forging process can create parts that are stronger than those manufactured by any other metal working process. Forgings are almost always used where reliability and human safety are critical. Forgings are normally component parts contained inside assembled items such airplanes, automobiles, tractors, ships, oil drilling equipment, engines missiles, and all kinds of capital equipment Forgings are stronger than castings and surpass them in predictable strength properties, producing superior strength that is assured, part to part.

  7. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., castings, extrusions, and machined bodies) which have reached a stage in manufacture where they are clearly... components, accessories, attachments and parts) then the particular forging, casting, extrusion,...

  8. 77 FR 23496 - Boundary Revision of Valley Forge National Historical Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... National Park Service Boundary Revision of Valley Forge National Historical Park AGENCY: National Park... to the boundary of Valley Forge National Historical Park, pursuant to the authority specified below... ``Valley Forge National Historical Park Proposed Boundary Expansion, Montgomery County,...

  9. Fallon FORGE 3D Geologic Model

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  10. West Flank Coso, CA FORGE Seismic Reflection

    DOE Data Explorer

    Doug Blankenship

    2016-05-16

    PDFs of seismic reflection profiles 101,110, 111 local to the West Flank FORGE site. 45 line kilometers of seismic reflection data are processed data collected in 2001 through the use of vibroseis trucks. The initial analysis and interpretation of these data was performed by Unruh et al. (2001). Optim processed these data by inverting the P-wave first arrivals to create a 2-D velocity structure. Kirchhoff images were then created for each line using velocity tomograms (Unruh et al., 2001).

  11. Forging Oxide-Dispersion-Strengthened Superalloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.; Glasgow, T. K.; Moracz, D. J.; Austin, C. M.

    1986-01-01

    Cladding of mild steel prevents surface cracking when alloy contacts die. Continual need for improvements in properties of alloys capable of withstanding elevated temperatures. Accomplished by using oxide-dispersion-strengthed superalloys such as Inconel Alloy MA 6000. Elevated tensile properties of forged alloy equal those of hot-rolled MA 6000 bar. Stress-rupture properties somewhat lower than those of bar stock but, at 1,100 degrees C, exceed those of strongest commercial single crystal, directionally solidified and conventionally cast superalloys.

  12. 22 CFR 121.10 - Forgings, castings and machined bodies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Forgings, castings and machined bodies. 121.10... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles..., castings, extrusions and machined bodies) which have reached a stage in manufacture where they are...

  13. 22 CFR 121.10 - Forgings, castings and machined bodies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Forgings, castings and machined bodies. 121.10... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles on the U.S. Munitions List include articles in a partially completed state (such as...

  14. 22 CFR 121.10 - Forgings, castings and machined bodies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Forgings, castings and machined bodies. 121.10... STATES MUNITIONS LIST Enumeration of Articles § 121.10 Forgings, castings and machined bodies. Articles on the U.S. Munitions List include articles in a partially completed state (such as...

  15. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Forgings, castings, and... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles on the U.S. Munitions Import List include articles in a partially completed state (such as...

  16. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Forgings, castings, and... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles on the U.S. Munitions Import List include articles in a partially completed state (such as...

  17. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Forgings, castings, and... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles on the U.S. Munitions Import List include articles in a partially completed state (such as...

  18. 17. Forge building, fuel storage shed, and foundry, 1906 Photocopied ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Forge building, fuel storage shed, and foundry, 1906 Photocopied from a photograph by Thomas S. Bronson, 'Group at Whitney Factory, 5 November 1906,' NHCHSL. The most reliable view of the fuel storage sheds and foundry, together with a view of the forge building. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  19. View west of small tooling and forging dies in Blacksmith ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View west of small tooling and forging dies in Blacksmith Shop, Boilermakers Department, east side of building 57; during World War II approximately forty women were employed as blacksmith's forging a variety of small tools; these may be the tools they used. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA

  20. 18. INTERIOR VIEW OF ROUGH FORGED TOOLS (FOREGROUND) WHICH ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTERIOR VIEW OF ROUGH FORGED TOOLS (FOREGROUND) WHICH ARE PRE-HEATED IN THE FURNACE (REAR RIGHT) AND THEN FORGED WITH THE BRADLEY HAMMER (LEFT) AS SHOWN BY JAMES GLASPELL - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV

  1. Second-Generation Versus First-Generation Cementless Tapered Wedge Femoral Stems.

    PubMed

    Pierce, Todd P; Jauregui, Julio J; Kapadia, Bhaveen H; Elmallah, Randa K; Cherian, Jeffrey J; Harwin, Steven F; Mont, Michael A

    2015-09-01

    Clinical outcomes of a new second-generation proximally coated, tapered wedge cementless stem were compared with those of its predecessor regarding (1) all-cause implant survivorship; (2) objective and subjective outcomes; (3) complications; and (4) radiographic features. Patients who underwent a primary total hip arthroplasty with the second-generation stem (68 hips) were compared with those who received the first-generation stem (136 hips) at a mean follow-up of 3.5 years. Although the first-generation stem was designed in the traditional manner, the second-generation stem was shortened to accommodate all surgical approaches and designed using a computed tomography scan-based database to enhance fit. The second-generation stem had survivorship, functional, and subjective outcomes similar to those of the first-generation stem. PMID:26375526

  2. Biomechanical Study on Distal Filling Effects in Cementless Total Hip Replacement

    NASA Astrophysics Data System (ADS)

    Chae, Soo-Won; Lee, Jun-Hyoung; Choi, Hyung-Yun

    In cementless total hip replacement, initial stability of the femoral component is important in the long term fixation of the femoral stem. Initial stability is closely related to the relative displacement between the prosthesis and the cancellous bone of the proximal femur. After implantation of the prosthesis, the surrounding bone is partially shielded from load carrying and starts to resorb. Stress shielding causes the loss of the proximal bone. The stress distribution of femur must be assessed to predict stress shielding. The initial stability and the stress shielding were investigated for two loading conditions approximating a single leg stance and stair climbing. Two types of stems involving a distal filling and a distal short stem were studied by the finite element method to investigate the biomechanical distal filling effects. The distal short stem produced less stress shielding at the proximal bone than the distal filling stem, while both types of stems seemed to satisfy the initial stability requirement.

  3. Valgus subsidence of the tibial component in cementless Oxford unicompartmental knee replacement

    PubMed Central

    Liddle, A. D.; Pandit, H. G.; Jenkins, C.; Lobenhoffer, P.; Jackson, W. F. M.; Dodd, C. A. F.; Murray, D. W.

    2014-01-01

    The cementless Oxford unicompartmental knee replacement has been demonstrated to have superior fixation on radiographs and a similar early complication rate compared with the cemented version. However, a small number of cases have come to our attention where, after an apparently successful procedure, the tibial component subsides into a valgus position with an increased posterior slope, before becoming well-fixed. We present the clinical and radiological findings of these six patients and describe their natural history and the likely causes. Two underwent revision in the early post-operative period, and in four the implant stabilised and became well-fixed radiologically with a good functional outcome. This situation appears to be avoidable by minor modifications to the operative technique, and it appears that it can be treated conservatively in most patients. Cite this article: Bone Joint J 2014;96-B:345–9. PMID:24589789

  4. Does the ingrowth surface make a difference? A retrieval study of 423 cementless acetabular components.

    PubMed

    Swarts, Eric; Bucher, Thomas A; Phillips, Michael; Yap, Francis H X

    2015-04-01

    The effect of factors such as design, alloy and coating type on bony or fibrous tissue ingrowth was evaluated in a study of 423 retrieved cementless acetabular shells representing 16 shell designs. Small-beaded (250μm) porous coatings, either with or without hydroxyapatite (HA) coatings, proved to be the superior porous surface for bone ingrowth. Small-beaded shells that were Duofix coated had predominantly fibrous tissue ingrowth. In addition to bead size, alloy type and surface type have significant effect on bone ingrowth. In contrast, there is no significant association between bone ingrowth and time in situ, with most bone ingrowth occurring early. Although roughened, press-fit shells have acceptable clinical and Registry data, they showed some of the lowest ingrowth/ongrowth scores of all the shells tested. PMID:25515944

  5. An analysis of screw fixation of the femoral component in cementless hip arthroplasty.

    PubMed

    Martin, J W; Sugiyama, H; Kaiser, A D; Van Hoech, J; Whiteside, L A

    1990-01-01

    A cementless hip stem that allows screw fixation of the collar to cortical bone in the calcar region was found to achieve enhanced rotational stability when implanted in preserved cadaveric human femora. Although the implants with screws showed less tendency for subsidence than the implants without screws, rotational micromotion was not found to be statistically different under light loading conditions. When implanted in composite bone, the addition of screws in the configuration tested was associated with significant metal-on-metal wear during combined compression and rotational cyclic loading. This finding is of concern due to potential wear particle toxicity and possible lowered fatigue life of the prosthesis. Therefore, specific design changes are recommended. PMID:2243211

  6. Analysis of cementless implants using interface nonlinear friction--experimental and finite element studies.

    PubMed

    Dammak, M; Shirazi-Adl, A; Zukor, D J

    1997-02-01

    Measured interface nonlinear friction properties are used to develop models to study the short-term fixation response of smooth- and porous-surfaced posts, bone screws, and plates fixed with and without posts/screws. Experimental studies are carried out to validate the model predictions and identify the relative role of posts and screws in fixation of a plate on a polyurethane block under symmetric/eccentric axial compression loads. The idealized Coulomb's friction is also used for the sake of comparison. The incorporation of measured nonlinear, rather than the idealized Coulomb, friction is essential to compute realistic results. For plate fixation, the experimental and finite element results show that the screw fixation yields the stiffest response followed by the smooth- and then porous-coated post fixation. For example, under 1000 N eccentric axial compression, the edge of the plate opposite the loaded edge is measured to lift by 1147 +/- 72, 244 +/- 38, or 112 +/- 28 microns, respectively, for the cases with no fixation, with smooth-surfaced posts, or with screws. The corresponding models predict, respectively, values of 1538, 347, or 259 microns and also 556 microns for the plate fixed with porous coated posts. The satisfactory agreement between numerical and experimental results confirms the importance of proper interface modelling for the analysis of posts, screws, and complex fixation systems. This becomes further evident when considering cementless implants in which the bone-implant interface exhibits relatively large displacements as the maximum resistance force is reached. The developed models can be used to investigate the post-operative short-term stability of various cementless implant designs. PMID:9001932

  7. Clinical results of cementless total hip arthroplasty with shortening osteotomy for high dislocation with developmental dysplasia.

    PubMed

    Desteli, Engin Eren; Imren, Yunus; Tan, Erkan; Erdoğan, Murat; Özcan, Hüseyin

    2015-03-01

    Total hip arthroplasty for severe developmental dysplasia of the hip is a technically challenging procedure. Subtrochanteric femoral osteotomy enables reducing the femoral head and restoring abductor muscle strength without compromising proximal femoral bone stock in advanced dysplasia.We aimed to retrospectively evaluate Crowe type III or IV developmental dysplasia of the hip who underwent reconstruction with cementless total hip arthroplasty combined with a transverse subtrochanteric femoral osteotomy. Sixty hips of 52 patients (11 male, 49 female) with Crowe type III (n: 37) or IV (n: 23) developmental dysplasia of the hip were included. The average age was 51.4 years. Surgery was performed in lateral decubitis position with posterolateral approach. Subtrochanteric transverse femoral osteotomy were used with cementless components. 40 of the femoral components were Secur-Fit type, and 20 of them were secur-fit plus max type. Ceramic-ceramic coupling was used in 24 cases and metal-polyethylene coupling was used in 36 cases. Merle D'Aubigne and Harris Hip score were used to rate the clinical outcome at the final follow up. All femoral shortening osteotomies were united at a mean of 5.7 months. Mean Merle D'Aubigne pain score was increased from 3.1 to 5.4, and mean Harris Hip score improved from 39 to 92.8, postoperatively (p<0.01). There was no significant difference in time to union between different types of stems. 4 femoral stems had asymptomatic radiolucent lines. There was no significant difference in time to union between different types of stems. PMID:26280851

  8. Cementless porous-coated total knee arthroplasty: 10-year results in a consecutive series.

    PubMed

    Schrøder, H M; Berthelsen, A; Hassani, G; Hansen, E B; Solgaard, S

    2001-08-01

    We report the results of 114 AGC 2000 porous-coated, cementless total knee arthroplasties (TKA) performed consecutively in 102 patients during the period 1984-1986. After 10 years, 58 TKAs in 52 patients were evaluated with patient assessment, Hospital for Special Surgery knee score, weight-bearing radiographs done under fluoroscopic control, and survivorship analysis. All dropouts within the first 9 years were patients dying with a functioning TKA except 1 revision secondary to a supracondylar fracture after 8.5 years. Of the patients, 53 (92%) were satisfied or very satisfied with their TKA, and 55 (95%) of the knees were rated good or excellent. There was no pain in 53 knees, and the median knee flexion was 110 degrees. Six radiolucencies >1 mm were found beneath parts of the tibial component, and 5 radiolucencies were seen beneath the femoral component. None had progressed compared with the 5-year follow-up, and in all cases trabeculae could be seen reaching the prosthetic component. No migrations had occurred since the 5-year follow-up. No obvious joint space reduction was seen. Osteolysis presenting as an isolated cyst was found in 1 knee in the lateral tibial condyle and was not progressive. Two tibial components had been revised because of aseptic loosening and 1 because of septic loosening, all within the first 3 years. No femoral or patellar components were revised. The cumulative prosthesis survival rate after 10 to 11 years was 97%. When pain and radiographic loosening also were considered, the success rate was 87%. Cementless insertion of a nonmodular, porous-coated TKA resulted in a long-term durable bone-prosthesis interface. The flat-on-flat articulation did not result in catastrophic polyethylene wear or osteolysis within the first 10 years. PMID:11503114

  9. Outcomes of Surgical Treatment of Periprosthetic Femoral Fractures in Cementless Hip Arthroplasty

    PubMed Central

    Kim, Min-Wook; Lee, Jung-Ho; Park, Ji-Hoon

    2015-01-01

    Purpose We aimed to evaluate the results of surgical treatment of periprosthetic femoral fractures in cementless total hip arthroplasty (THA). Materials and Methods From June 2002 to May 2012, 40 patients who could be followed-up for more than 1 year after surgery were enrolled in this study. The mean duration of follow-up was 28.5 months (range, 15-97 months) and the average age at the time of surgery was 71.5 years (range, 38-89 years). The fracture types were determined by using the Vancouver classification. Among intraoperative fractures, there were type A in 3 hips, type B2 in 2 hips and type B3 in one. Among postoperative fractures, type AG was present in 5 hips, type AL in 2 hips, type B1 in 15 hips, type B2 in 6 hips, type B3 in 3 hips, and type C in 3 hips. Evaluation of the results was based on bony union, stability of the prosthesis, postoperative complications, and Harris hip score at the final follow-up. Results Bony union was achieved in all but one case and the average time for bony union was 21 weeks. The mean Harris hip score was 86 at the final follow-up. Clinical results were above good in 34 of 40 hips (85.0%). Stem loosening occurred in one patient with a type B1 fracture treated with open reduction and plate fixation. Nonunion was observed in 1 patient with an AG type fracture. Conclusion Open reduction and fixation using a plate with a screw and cerclage wiring provided good results for periprosthetic fractures in patients who had a stable femoral stem without bone defects. Revision surgery with a cementless long stem should be considered in patients with an unstable stem or suspected stability in B1 type of THA using a proximal fixation type. PMID:27536618

  10. [Cementless total hip arthroplasty--results of 8-year follow-up study].

    PubMed

    Wall, Andrzej; Dragan, Szymon

    2006-01-01

    The subjects of the clinical examinations were 382 patients who from 1994 to 1999 were treated with the method of total cementless arthroplasty. The observation time ranged from 3 to 8 years. In the examined group the secondary cause of degenerative changes was identified in 210 (55%) patients. In the remaining 172 cases (45%) the primary cause of degenerative changes in the hip was diagnosed. Four types of cementless endoprostheses, varied in their construction, structure of their surfaces and material they were made of, were used to carry out the postoperative treatment of the degenerative changes in the hip: Antega, Zweymüller SL PLUS (Endoprosthetic) or Alloclasic type of stem, GSS-CL and PM-Plasmapore. The findings of the clinical investigation made it possible to determine the probability of surviving of an endoprosthesis up to the 8th year after an operation depending on a type of implanted stem, which according to Kaplan-Meier's method, amounted to 0.9603. The results of Harris scale evaluation of the function of the operated joints demonstrated the existence of the relationship between the function and the course of bone osteointegration and growth process. The detailed analysis of the X-ray examinations, and especially of the roentgenometric ones, taking into account stability of the endoprosthesis stem enabled to distinguish two stages of the clinical and roentgenological changes: the early stage (up to 6 months after an operation) characterised by settling and micromotions of the stem and the late stage (starting 6-9 months after an operation) with slowly gradual increasing of the function and holding back of stem settling. PMID:17017478

  11. Primary Cementless Hip Arthroplasty in Unstable Intertrochanteric Femur Fracture in Elderlys: Short-term Results

    PubMed Central

    Cho, Hyung Lae; Cho, Hong

    2014-01-01

    Purpose This study was aimed to explore and report the short term results of primary cementless hip arthroplasty in treatment of unstable intertrochanteric femur fracture in elderlys. Materials and Methods Between March 2009 and Feburary 2012, 35 arthroplasty cases performed by single surgeon and followed up for more than one year were evaluated. They were 21 females and 14 males with mean age of 78 years (range, 71-92 years). Preoperative evaluation was performed by American Society of Anesthesia score. Retrospective evaluation was performed by operative time, transfusion amount, time to operation days, hospital stay and time to full weight bearing. Clinically, ambulatory ability was checked by Parker and Palmer (P&P) score and function of hip was appraised by Harris hip score (HSS). Radiologically, bone healing of fractured trochanteric fragment and presence of subsidence, stress shielding or osteolysis were checked. Results Fracture type was 11 cases of A2.2, 18 cases of A2.3 and 6 cases of A3.3. Femoral stems used were 8 cases of rectangular tapered wedge type and 27 cases of fluted modular distal fixation type. P&P score improved from mean preinjury score of 7.1 to mean postoperative last follow-up score of 6.5. Median HHS at last follow-up was 75. Mean time to full weight bearing was 47 days (24-79 days). Postoperative complications were one case of linear periprosthetic femoral fracture and one case of postoperative dislocation. Conclusion Cementless hip replacement arthroplasty could be a good option for unstable intertrochanteric femoral fracture in elderlys.

  12. Prospective study of the cementless "New Wave" total knee mobile-bearing arthroplasty: 8-year follow-up.

    PubMed

    Normand, Xavier; Pinçon, Jean-Louis; Ragot, Jean-Marie; Verdier, Régis; Aslanian, Thierry

    2015-02-01

    One of the main factors affecting the survival of a total knee arthroplasty (TKA) is the fixation method. The constraints placed on the bone-implant interface of a mobile-bearing TKA must be taken in account during the design and evaluation phases. For more than two decades, calcium phosphate ceramics, particularly hydroxyapatitis, have been used in Europe to accelerate the bone integration of cementless implants. A prospective study of patients continuously recruited by three senior surgeons at three French private hospitals has been carried out. There were no exclusion criteria. Eighty-four (84) cementless mobile-bearing total knee prosthesis of the brand "New Wave" were implanted in 74 patients over a 2-year period (2004-2005). Implant survival at 8 years was 95% [with a confidence interval of 95%: 80.2-96.4%] when revision for any cause was defined as the endpoint. Five implants required surgical revision to exchange all or part of the implant: two for aseptic loosening of tibial component, one for osteolysis, one for persistent flessum (30°) and one for tibial periprosthetic fracture. Completely integrated implants and event-free outcomes were recorded in 91.4% of the cases at eight-year follow-up. The Hospital for Special Surgery score significantly improved from 56.8/100 points before the surgery to 83.9/100 points at the last follow-up (p < 0.05). Radiologically, only one patient had radiolucent lines around the tibial and femoral components. This cementless total knee prosthesis yielded good medium-term survival. Cementless arthroplasty can generate solid and durable bone fixation in this total weight-bearing implant, and it seems that the hidroxyapathitis surface in this series stimulate the bone integration at the bone-implant interface. PMID:24858380

  13. Bipolar Hemarthroplasty Using Cementless Conical Stem for Treatment of Dorr Type B and C Femoral Neck Fracture

    PubMed Central

    Kang, Jeong Hoon; Jung, Sung

    2015-01-01

    Purpose The current study aims to evaluate the clinical and the radiological outcome of bipolar hemiarthroplasty using cementless cone stem to treat osteoporotic femoral neck fracture and compare the results according to the proximal femur geometry. Materials and Methods Seventy-five hips (75 patients) that underwent bipolar hemiarthroplasty with cementless cone stem between September 2006 and December 2011 were analyzed. The minimum follow-up period was 3 years. Thirty-three hips were classified as type B and 41 as type C. The clinical outcome was assessed using Harris hip score and the walking ability score. Radiographic evaluation was performed to evaluate the stability of the prosthesis. Results At the most recent follow up, the mean Harris hip score was 86 (range, 70-92) and 65% recovered to preoperative ambulatory status. In the radiographic exam, stable stem fixation was achieved in all cases. For the complications, eight hips developed deep vein thrombosis while three hips showed heterotopic ossification. Dislocation and delayed deep infection occurred in one hip resepectively. There were no significance differences in Harris hip score and walking ability score when the type B group was compare with the type C. Conclusion Bipolar hemiarthroplasty with cementless cone stem showed an excellent early outcome both clinically and radiographically regardless of the shape of the proximal femur. We believe this prosthesis can provide early stability to the Dorr type B and C femur and is an effective treatment for treating osteoporotic femoral neck fracture. PMID:27536631

  14. Total hip arthroplasty in patients with avascular necrosis of the hip. Follow-up observations on cementless and cemented operations.

    PubMed

    Katz, R L; Bourne, R B; Rorabeck, C H; McGee, H

    1992-08-01

    Thirty-one patients with avascular necrosis of the hip were treated by 34 total hip arthroplasties (THAs). All patients were observed prospectively with a minimum two-year follow-up evaluation (average, 46 months; range, 24-84 months). Twenty had cemented arthroplasties using contemporary cementing techniques. This included insertion of a medullary plug, cleansing of the canal with a medullary brush, pulsatile lavage irrigation, and insertion of the cement with a cement gun. In 14 hips, a cementless prosthesis was used. Patients were rated using a modified Harris hip score. Sequential postoperative roentgenograms were analyzed in each patient. The overall Harris hip score ratings were 88 in the cemented and 84 in the noncemented groups. Mechanical failure with loosening of the femoral component occurred in one patient who developed deep sepsis. Significant thigh pain occurred in four patients in the noncemented group. Previous studies in the literature have generally reported unfavorable results in patients with avascular necrosis of the hip treated with THA. Using cementless and cemented fixation with contemporary cementing techniques, improved results can be expected. A high incidence of thigh pain (29%) in the cementless group remains a problem. PMID:1499201

  15. Migration pattern of cementless press fit cups in the presence of stabilizing screws in total hip arthroplasty.

    PubMed

    Zilkens, C; Djalali, S; Bittersohl, B; Kälicke, T; Kraft, C N; Krauspe, R; Jäger, Marcus

    2011-03-28

    The aim of this study was to evaluate the initial acetabular implant stability and late acetabular implant migration in press fit cups combined with screw fixation of the acetabular component in order to answer the question whether screws are necessary for the fixation of the acetabular component in cementless primary total hip arthroplasty. One hundred and seven hips were available for follow-up after primary THA using a cementless, porous-coated acetabular component. A total of 631 standardized radiographs were analyzed digitally by the "single-film-x-ray-analysis" method (EBRA). One hundred and one (94.4 %) acetabular components did not show significant migration of more than 1 mm. Six (5.6%) implants showed migration of more than 1 mm. Statistical analysis did not reveal preoperative patterns that would identify predictors for future migration. Our findings suggest that the use of screw fixation for cementless porous-coated acetabular components for primary THA does not prevent cup migration. PMID:21486725

  16. A technique to remove a well-fixed titanium-coated rm acetabular cup in revision hip arthroplasty

    PubMed Central

    2011-01-01

    A major concern during revision hip arthroplasty is acetabular bone loss and bleeding during the extraction of well-fixed cementless acetabular cup, because no interface exists between the host bone and the cup. Forceful removal of such component using curved gouges and osteotomes often leads to extended bone loss and compromises reimplantation of a new socket. In the following case report, we removed a well-fixed polyethylene titanium-coated RM acetabular cup with 20 years of follow-up, by significant wear of the polyethylene layer. The isoelastic femoral stem was also removed by mechanical failure. We report a technique for removal of the cementless acetabular cup using powered acetabular reamers. The RM cup was sequentially reamed and when the polyethylene layer was thin enough, the remaining cup was removed easily by hand tools. The acetabular bone stock is preserved and the risks of bone fractures and bleeding are minimized. To our knowledge, these principles were applied only in cemented cups. We have used this technique in 10 cases with excellent results and no complications were noted. This is a simple, reproducible, non-costly, non-timing consuming, safe and successful technique to remove well-fixed titanium-coated RM acetabular cups. PMID:21689456

  17. Factors Affecting Scale Adhesion on Steel Forgings

    NASA Astrophysics Data System (ADS)

    Zitterman, J. A.; Bacco, R. P.; Boggs, W. E.

    1982-04-01

    Occasionally, undesirable "sticky" adherent scale forms on low-carbon steel during reheating for hot forging. The mechanical abrading or chemical pickling required to remove this scale adds appreciably to the fabrication cost. Characterization of the steel-scale system by metallographic examination, x-ray diffraction, and electron-probe microanalysis revealed that nickel, silicon, and/or sulfur might be involved in the mechanism of sticky-scale formation. Laboratory reheating tests were conducted on steels with varied concentrations of nickel and silicon in atmospheres simulating those resulting from burning natural gas or sulfur-bearing fuels. Subsequent characterization of the scale formed during the tests tends to confirm that the composition of the steel, especially increased nickel and silicon contents, and the presence of the sulfur in the furnace atmosphere cause the formation of this undesirable scale.

  18. Forging of compressor blades: Temperature and ram velocity effects

    SciTech Connect

    Saigal, A.; Zhen, K.; Chan, T.S.

    1995-07-01

    Forging is one of the most widely used manufacturing process for making high-strength, structurally integrated, impact and creep-resistant Ti-6Al-4V compressor blades for jet engines. In addition, in modern metal forming technology, finite element analysis method and computer modeling are being extensively employed for initial evaluation and optimization of various processes, including forging. In this study, DEFORM, a rigid viscoplastic two-dimensional finite element code was used to study the effects of initial die temperature and initial ram velocity on the forging process. For a given billet, die temperature and ram velocity influence the strain rate, temperature distribution,and thus the flow stress of the material. The die temperature and the ram velocity were varied over the range 300 to 700 F and 15--25 in./sec, respectively, to estimate the maximum forging load and the total energy required to forge compressor blades. The ram velocity was assumed to vary linearly as a function of stroke. Based on the analysis,it was found the increasing the die temperature from 300 to 700 F decreases the forging loads by 19.9 percent and increases the average temperature of the workpiece by 43 F. Similarly, increasing the initial ram velocity from 15 to 25 in./sec decreases the forging loads by 25.2 percent and increases the average temperature of the workpiece by 36 F. The nodal temperature distribution is bimodal in each case. The forging energy required to forge the blades is approximately 18 kips *in./in.

  19. Grain size modeling and optimization of rotary forged Alloy 718

    SciTech Connect

    Domblesky, J.P.; Shivpuri, R.

    1997-04-01

    The study presented describes the simulation procedure and methodology used to develop two models for predicting recrystallized grain size in Alloy 718 billet. To simulate multiple pass forging of billet, controlled, high temperature compression testing was used to apply alternate deformation and dwell cycles to Alloy 718 specimens. Grain size obtained by simulation was found to be in excellent agreement with grain size from forged billet when cooling rate was included. The study also revealed that strain per pass and forging temperature were the predominant factors in controlling the recrystallized grain size. Both models were found to accurately predict the recrystallized grain size obtained by compression tests performed at super-solvus temperatures.

  20. To Cement or Not? Two-Year Results of a Prospective, Randomized Study Comparing Cemented Vs. Cementless Total Knee Arthroplasty (TKA).

    PubMed

    Fricka, Kevin B; Sritulanondha, Supatra; McAsey, Craig J

    2015-09-01

    The optimal mode of fixation in total knee arthroplasty (TKA) is a subject of debate. We enrolled 100 TKA patients randomized to cemented or cementless fixation. Knee Society Scores (KSS), Oxford scores and pain visual analog scales (VAS) were collected pre-operatively and post-operatively. Two-year follow-up was obtained for 93 patients. The mean VAS trended higher for the cementless group at 4 months (P=0.06). At 2 years, the KSS functional scores, Oxford scores, and self-reported questions for satisfaction, less pain and better function were similar but the cemented group had higher KSS clinical scores (96.4 vs. 92.3, P=0.03). More radiolucencies were seen in cementless knees (P<0.001). The cementless group had one revision for instability and one cemented knee was revised for infection. Cementless TKA showed equivalent survivorship (revision for any reason as the endpoint) compared to cemented TKA at this early follow-up. Close monitoring of radiolucencies is important with continued follow-up. PMID:26118567

  1. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  2. 3D finite element simulation of microstructure evolution in blade forging of Ti-6Al-4V alloy based on the internal state variable models

    NASA Astrophysics Data System (ADS)

    Luo, Jiao; Wu, Bin; Li, Miao-Quan

    2012-02-01

    The physically-based internal state variable (ISV) models were used to describe the changes of dislocation density, grain size, and flow stress in the high temperature deformation of titanium alloys in this study. The constants of the present models could be identified based on experimental results, which were conducted at deformation temperatures ranging from 1093 K to 1303 K, height reductions ranging from 20% to 60%, and the strain rates of 0.001, 0.01, 0.1, 1.0, and 10.0 s-1. The physically-based internal state variable models were implemented into the commercial finite element (FE) code. Then, a three-dimensional (3D) FE simulation system coupling of deformation, heat transfer, and microstructure evolution was developed for the blade forging of Ti-6Al-4V alloy. FE analysis was carried out to simulate the microstructure evolution in the blade forging of Ti-6Al-4V alloy. Finally, the blade forging tests of Ti-6Al-4V alloy were performed to validate the results of FE simulation. According to the tensile tests, it is seen that the mechanical properties, such as tensile strength and elongation, satisfy the application requirements well. The maximum and minimum differences between the calculated and experimental grain size of primary α phase are 11.71% and 4.23%, respectively. Thus, the industrial trials show a good agreement with FE simulation of blade forging.

  3. View facing east of top of quarry wall with forge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing east of top of quarry wall with forge site in foreground - Granite Hill Plantation, Quarry No. 4, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  4. View northeast of tooling for forging marine hardware in blacksmith ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View northeast of tooling for forging marine hardware in blacksmith shop, east side of building 57. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA

  5. Modeling microstructural development during the forging of Waspaloy

    NASA Astrophysics Data System (ADS)

    Shen, Gangshu; Semiatin, S. L.; Shivpuri, Rajiv

    1995-07-01

    A model for predicting the evolution of microstructure in Waspaloy during thermomechanical proc-essing was developed in terms of dynamic recrystallization (DRX), metadynamic recrystallization, and grain growth phenomena. Three sets of experiments were conducted to develop the model: (1) preheating tests to model grain growth prior to hot deformation; (2) compression tests in a Gleeble testing machine with different deformation and cooling conditions to model DRX, metadynamic recrystallization, and short time grain growth during the post deformation dwell period and cooling; and (3) pancake and closed die forging tests conducted in a manufacturing environment to verify and refine the model. The microstructural model was combined with finite element modeling (FEM) to predict microstructure development during forging of Waspaloy. Model predictions showed good agreement with microstructures obtained in actual isothermal and hammer forgings carried out at a forging shop.

  6. Modeling microstructural development during the forging of Waspaloy

    SciTech Connect

    Shen, G.; Shivpuri, R.; Semiatin, S.L.

    1995-07-01

    A model for predicting the evolution of microstructure in Waspaloy during thermomechanical processing was developed in terms of dynamic recrystallization (DRX), metadynamic recrystallization, and grain growth phenomena. Three sets of experiments were conducted to develop the model: (1) preheating tests to model grain growth prior to hot deformation; (2) compression tests in a Gleeble testing machine with different deformation and cooling conditions to model DRX, metadynamic recrystallization, and short time grain growth during the post deformation dwell period and cooling; and (3) pancake and closed die forging tests conducted in a manufacturing environment to verify and refine the model. The microstructural model was combined with finite element modeling (FEM) to predict microstructure development during forging of Waspaloy. Model predictions showed good agreement with microstructures obtained in actual isothermal and hammer forgings carried out at a forging shop.

  7. 6. NORTH END OF MACHINE SHOP. FORGE SHOP (HAER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. NORTH END OF MACHINE SHOP. FORGE SHOP (HAER No. CA-326-K) ON LEFT, FORD PLANT IN DISTANCE, NE BY 60. - Rosie the Riveter National Historical Park, Machine Shop, 1311 Canal Boulevard, Richmond, Contra Costa County, CA

  8. DETAIL VIEW OF BLACKSMITH'S FORGE AND WORK AREA ON WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BLACKSMITH'S FORGE AND WORK AREA ON WEST SIDE OF UPPER TRAM TERMINAL, LOOKING EAST. FORGE IS IN FOREGROUND, WITH THE ANVIL BLOCK JUST TO THE RIGHT AND BEHIND IT. A TRAM CAR IS UPSIDE DOWN TO THE LEFT OF THE FORGE. THE PIPE GOING INTO THE FORGE ON THE RIGHT CARRIED COMPRESSED AIR TO BLOW THE COALS. AT CENTER RIGHT ON THE TRAM TERMINAL ARE THE OPENING AND CLOSING MECHANISMS FOR THE ORE BUCKETS. AT CENTER LEFT IS A BRAKE WHEEL. THE ANCHOR POINTS FOR THE STATIONARY TRAM CABLES ARE JUST BELOW THIS WHEEL. THE FRONT END OF THE TERMINAL IS JUST OFF FRAME ON THE RIGHT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  9. FOUNDRY SHOP, FORGE SHOP, NORTH ARMORY, EAST ARMORY. Colt ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FOUNDRY SHOP, FORGE SHOP, NORTH ARMORY, EAST ARMORY. - Colt Fire Arms Company, East Armory Building, 36-150 Huyshope Avenue, 17-170 Van Dyke Avenue, 49 Vredendale Avenue, Hartford, Hartford County, CT

  10. Etiology of osteolysis around porous-coated cementless total hip arthroplasties.

    PubMed

    Jasty, M; Bragdon, C; Jiranek, W; Chandler, H; Maloney, W; Harris, W H

    1994-11-01

    The prosthetic components and tissues retrieved from 12 hips with osteolysis in association with well-fixed cementless porous-coated total hip prostheses (5 Porous Coated Anatomic, 6 Harris-Galante Porous, and 1 Omniflex) were examined using a variety specific techniques including electron microscopy, standard histology, immunohistochemistry, and particle identification. The patients were young and active. Extensive osteolysis developed in all 12 femurs and 3 acetabula between 36 and 84 months after arthroplasty (mean, 63 months). All of the polyethylene liners were noted to be worn substantially (mean volumetric wear, 1140 +/- 810 mm3). The wear was unrelated to the head diameter in this small number of cases. In all 12 cases, the articulating surfaces were wear polished and contained numerous fine multidirectional scratches, suggesting 3-body abrasive wear mechanisms in addition to adhesive wear liberating very small (micron to submicron) wear particles. In 4 cases, surface delamination and flaking of polyethylene were also found, suggesting fatigue wear liberating larger wear particles. Nine of 10 cobalt alloy heads showed numerous fine scratches with sharp edges presumably from 3-body abrasive wear. Corrosion and fretting at the femoral head-neck junction in 5 cases, burnishing of the femoral stem against bone in 4 cases, and metal staining of tissues opposite the porous coatings in 7 cases provided evidence for the liberation of fine metal particles from outside the articulation. Histologic and immunohistochemical studies of tissue in the regions of osteolysis in all cases showed numerous focal aggregates of KP1 antibody positive activated macrophages containing large amounts of submicron intracellular particles of polyethylene (presumably related to the 3-body abrasive wear polishing) and giant cells within a fibrous stroma. In 5 cases, some of the macrophages also contained submicron metal particles but smaller in numbers. T lymphocytes, plasma cells, and

  11. Biomechanical evaluation of adjunctive cerclage wire fixation for the prevention of periprosthetic femur fractures using cementless press-fit total hip replacement.

    PubMed

    Christopher, Scott A; Kim, Stanley E; Roe, Simon; Pozzi, Antonio

    2016-08-01

    Periprosthetic femoral fractures are a common complication associated with cementless press-fit total hip arthroplasty. The use of prophylactic cerclage wire fixation has been advocated to reduce this complication. The objective of this study was to evaluate whether a double loop cerclage wire, used as adjunctive fixation, increased the peak torsional load to failure in femora implanted with press-fit cementless stems. Peak torsional load to failure was compared between femora without adjunctive fixation and femora receiving a 1 mm double loop cerclage wire placed proximally to the lesser trochanter. Femora treated with adjunctive cerclage wire fixation failed at 20% greater peak torque (P = 0.0001). In conclusion, a double loop cerclage wire may aid in the prevention of periprosthetic fractures associated with press-fit cementless femoral stems. PMID:27387718

  12. [Joint prostheses components of warm-forged and surface treated Ti-6Al-7Nb alloy].

    PubMed

    Semlitsch, M; Weber, H; Streicher, R M; Schön, R

    1991-05-01

    In 1978 development of a TiAl alloy with the inert alloying element niobium was initiated. In 1984, the optimal composition was found to be Ti-6Al-7Nb (Protasul-100). This custom-made alloy for implants has the same alpha/beta micro-structure and equally good mechanical properties as Ti-6Al-4V. The corrosion resistance of Ti-6Al-7Nb is better than that of pure titanium and Ti-6Al-4V, due to the very dense and stable passive layer. Since 1985, highly stressed anchoring stems of various hip prosthesis designs have been manufactured from hot-forged Ti-6Al-7Nb/Protasul-100. Polished surfaces of hip, knee or wrist joints made of Ti-6Al-7Nb intended to articulate with polyethylene are surface-treated by the application of a very hard, 3-5 microns thick titanium nitride coating (Tribosul-TiN), or by oxygen diffusion hardening (Tribosul-ODH) to a depth of 30 microns. PMID:1859861

  13. Osseointegration into a Novel Titanium Foam Implant in the Distal Femur of a Rabbit

    PubMed Central

    Willie, Bettina M.; Yang, Xu; Kelly, Natalie H.; Merkow, Justin; Gagne, Shawn; Ware, Robin; Wright, Timothy M.; Bostrom, Mathias P.G.

    2010-01-01

    A novel porous titanium foam implant has recently been developed to enhance biological fixation of orthopaedic implants to bone. The aim of this study was to examine the mechanical and histological characteristics of bone apposition into two different pore sizes of this titanium foam (565 and 464 micron mean void intercept length) and to compare these characteristics to those obtained with a fully porous conventionally sintered titanium bead implant. Cylindrical implants were studied in a rabbit distal femoral intramedullary osseointegration model at time zero and at 3, 6, and 12 weeks. The amount of bone ingrowth, amount of periprosthetic bone, and mineral apposition rate of periprosthetic bone measured did not differ among the three implant designs at 3, 6, or 12 weeks. By 12 weeks, the interface stiffness and maximum load of the beaded implant was significantly greater than either foam implant. No significant difference was found in the interface stiffness or maximum load between the two foam implant designs at 3, 6, or 12 weeks. The lower compressive modulus of the foam compared to the more dense sintered beaded implants likely contributed to the difference in failure mode. However, the foam implants have a similar compressive modulus to other clinically successful coatings, suggesting they are nonetheless clinically adequate. Additional studies are required to confirm this in weight-bearing models. Histological data suggest that these novel titanium foam implants are a promising alternative to current porous coatings and should be further investigated for clinical application in cementless joint replacement. PMID:20024964

  14. Enhanced Cell Integration to Titanium Alloy by Surface Treatment with Microarc Oxidation: A Pilot Study

    PubMed Central

    Lim, Young Wook; Kwon, Soon Yong; Sun, Doo Hoon; Kim, Hyoun Ee

    2009-01-01

    Microarc oxidation (MAO) is a surface treatment that provides nanoporous pits, and thick oxide layers, and incorporates calcium and phosphorus into the coating layer of titanium alloy. We presumed such modification on the surface of titanium alloy by MAO would improve the ability of cementless stems to osseointegrate. We therefore compared the in vitro ability of cells to adhere to MAOed titanium alloy to that of two different types of surface modifications: machined and grit-blasted. We performed energy-dispersive x-ray spectroscopy and scanned electron microscopy investigations to assess the structure and morphology of the surfaces. Biologic and morphologic responses to osteoblast cell lines (SaOS-2) were then examined by measuring cell proliferation, cell differentiation (alkaline phosphatase activity), and αvβ3 integrin. The cell proliferation rate, alkaline phosphatase activity, and cell adhesion in the MAO group increased in comparison to those in the machined and grit-blasted groups. The osteoblast cell lines of the MAO group were also homogeneously spread on the surface, strongly adhered, and well differentiated when compared to the other groups. This method could be a reasonable option for treating the surfaces of titanium alloy for better osseointegration. PMID:19434468

  15. Cementless total knee arthroplasty with Profix: a 8- to 10-year follow-up study.

    PubMed

    Hardeman, François; Vandenneucker, Hilde; Van Lauwe, Johan; Bellemans, Johan

    2006-12-01

    A consecutive series of 115 cementless Profix (Smith and Nephew, Memphis, USA) Total Knee Arthroplasties performed in 113 patients were followed in order to determine the functional results and survivorship at 8 to 10 years. All patients were included in a prospective database and were reviewed annually until final follow-up. Patients overall satisfaction was excellent or good in 91.3% of cases. The mean Knee Society's knee and function scores increased respectively from 49.3 and 36.7 preoperatively to 93.1 and 82.2 postoperatively. The Kaplan-Meier estimate of implant survival at 10 years was 97.1%. Two patients underwent revision and were considered as failures. One patient had a fracture of the medial condyle at 4 days post-surgery, and the other was revised for aseptic loosening of the tibial component at 6 years post-surgery. On the basis of this long-term follow-up study, we can conclude that the Profix Total Knee System is effective and safe. PMID:17064905

  16. Fabrication of low-cost, cementless femoral stem 316L stainless steel using investment casting technique.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Suhasril, Andril Arafat; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Omar, Mohd Afian; Abd Kader, Ab Saman; Mohd Noor, Alias; A Harris, Arief Ruhullah; Abdul Majid, Norazman

    2014-07-01

    Total hip arthroplasty is a flourishing orthopedic surgery, generating billions of dollars of revenue. The cost associated with the fabrication of implants has been increasing year by year, and this phenomenon has burdened the patient with extra charges. Consequently, this study will focus on designing an accurate implant via implementing the reverse engineering of three-dimensional morphological study based on a particular population. By using finite element analysis, this study will assist to predict the outcome and could become a useful tool for preclinical testing of newly designed implants. A prototype is then fabricated using 316L stainless steel by applying investment casting techniques that reduce manufacturing cost without jeopardizing implant quality. The finite element analysis showed that the maximum von Mises stress was 66.88 MPa proximally with a safety factor of 2.39 against endosteal fracture, and micromotion was 4.73 μm, which promotes osseointegration. This method offers a fabrication process of cementless femoral stems with lower cost, subsequently helping patients, particularly those from nondeveloped countries. PMID:24404766

  17. A finite element analysis of the vibration behaviour of a cementless hip system.

    PubMed

    Pérez, M A; Seral-García, B

    2013-01-01

    An early diagnosis of aseptic loosening of a total hip replacement (THR) by plain radiography, scintigraphy or arthography has been shown to be less reliable than using a vibration technique. However, it has been suggested that it may be possible to distinguish between a secure and a loose prosthesis using a vibration technique. In fact, vibration analysis methods have been successfully used to assess dental implant stability, to monitor fracture healing and to measure bone mechanical properties. Several studies have combined the vibration technique with the finite element (FE) method in order to better understand the events involved in the experimental technique. In the present study, the main goal is to simulate the change in the resonance frequency during the osseointegration process of a cementless THR (Zweymüller). The FE method was used and a numerical modal analysis was conducted to obtain the natural frequencies and mode shapes under vibration. The effects were studied of different bone and stem material properties, and different contact conditions at the bone-implant interface. The results were in agreement with previous experimental and computational observations, and differences among the different cases studied were detected. As the osseointegration process at the bone-implant interface evolved, the resonance frequency values of the femur-prosthesis system also increased. In summary, vibration analysis combined with the FE method was able to detect different boundary conditions at the bone-implant interface in cases of both osseointegration and loosening. PMID:22300407

  18. Mid-term Results of Revision Total Hip Arthroplasty Using Modular Cementless Femoral Stems

    PubMed Central

    Jang, Hyung-Gyu; Min, Byung-Woo; Ye, Hee-Uk; Lim, Kyung-Hwan

    2015-01-01

    Purpose The purpose of this study was to evaluate the clinical and radiological results of revision total hip arthroplasty using modular distal fixation stems for proximal femoral deficiency. Materials and Methods Forty-five patients (47 hips) were analyzed more than 24 months after revision total hip arthroplasty that used modular distal fixation stems and was performed between 2006 and 2012. There were proximal femoral defects in all cases. Preoperative femoral defect classification revealed Paprosky type II in 31 cases, type IIIA in 7, and type IIIB in 9. The mean duration of follow-up was 53.4 (25-100) months. We evaluated the Harris hip score (HHS), walking ability according to Koval as clinical parameters, stem stability, and stem position change as radiographic parameters. Kaplan-Meier survival analysis was performed. Results The average HHS improved form 39.5 points to 91.3 points and walking ability also improved in most cases; all patients had stable fixation of the femoral stem. Postoperative complications included 5 cases of infection and 2 cases of dislocation. The survival rate with the end point of re-revision surgery due to infection or dislocation was 86% after 8-year follow-up. Conclusion Cementless revision total hip arthroplasty using modular femoral stems is useful because the stems can be stably fixed on the diaphyseal portion of the femur, which has relatively good bone quality at mid-term follow-up. PMID:27536616

  19. Primary Stability Recognition of the Newly Designed Cementless Femoral Stem Using Digital Signal Processing

    PubMed Central

    Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A.; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230

  20. Design process of cementless femoral stem using a nonlinear three dimensional finite element analysis

    PubMed Central

    2014-01-01

    Background Minimal available information concerning hip morphology is the motivation for several researchers to study the difference between Asian and Western populations. Current use of a universal hip stem of variable size is not the best option for all femur types. This present study proposed a new design process of the cementless femoral stem using a three dimensional model which provided more information and accurate analysis compared to conventional methods. Methods This complete design cycle began with morphological analysis, followed by femoral stem design, fit and fill analysis, and nonlinear finite element analysis (FEA). Various femur parameters for periosteal and endosteal canal diameters are measured from the osteotomy level to 150 mm below to determine the isthmus position. Results The results showed better total fit (53.7%) and fill (76.7%) canal, with more load distributed proximally to prevent stress shielding at calcar region. The stem demonstrated lower displacement and micromotion (less than 40 μm) promoting osseointegration between the stem–bone and providing primary fixation stability. Conclusion This new design process could be used as a preclinical assessment tool and will shorten the design cycle by identifying the major steps which must be taken while designing the femoral stem. PMID:24484753

  1. Primary stability recognition of the newly designed cementless femoral stem using digital signal processing.

    PubMed

    Baharuddin, Mohd Yusof; Salleh, Sh-Hussain; Hamedi, Mahyar; Zulkifly, Ahmad Hafiz; Lee, Muhammad Hisyam; Mohd Noor, Alias; Harris, Arief Ruhullah A; Abdul Majid, Norazman

    2014-01-01

    Stress shielding and micromotion are two major issues which determine the success of newly designed cementless femoral stems. The correlation of experimental validation with finite element analysis (FEA) is commonly used to evaluate the stress distribution and fixation stability of the stem within the femoral canal. This paper focused on the applications of feature extraction and pattern recognition using support vector machine (SVM) to determine the primary stability of the implant. We measured strain with triaxial rosette at the metaphyseal region and micromotion with linear variable direct transducer proximally and distally using composite femora. The root mean squares technique is used to feed the classifier which provides maximum likelihood estimation of amplitude, and radial basis function is used as the kernel parameter which mapped the datasets into separable hyperplanes. The results showed 100% pattern recognition accuracy using SVM for both strain and micromotion. This indicates that DSP could be applied in determining the femoral stem primary stability with high pattern recognition accuracy in biomechanical testing. PMID:24800230

  2. Ex vivo estimation of cementless acetabular cup stability using an impact hammer.

    PubMed

    Michel, Adrien; Bosc, Romain; Sailhan, Frédéric; Vayron, Romain; Haiat, Guillaume

    2016-02-01

    Obtaining primary stability of acetabular cup (AC) implants is one of the main objectives of press-fit procedures used for cementless hip arthroplasty. The aim of this study is to investigate whether the AC implant primary stability can be evaluated using the signals obtained with an impact hammer. A hammer equipped with a force sensor was used to impact the AC implant in 20 bovine bone samples. For each sample, different stability conditions were obtained by changing the cavity diameter. For each configuration, the inserted AC implant was impacted four times with a maximum force comprised between 2500 and 4500 N. An indicator I was determined based on the partial impulse estimation and the pull-out force was measured. The implant stability and the value of the indicator I reached a maximum value for an interference fit equal to 1 mm for 18 out of 20 samples. When pooling all samples and all configurations, the implant stability and I were significantly correlated (R(2) = 0.83). The AC implant primary stability can be assessed through the analysis of the impact force signals obtained using an impact hammer. Based on these ex vivo results, a medical device could be developed to provide a decision support system to the orthopedic surgeons. PMID:26671784

  3. Mid-term results of Copeland shoulder cementless surface replacement arthroplasty from an independent centre

    PubMed Central

    Modi, Chetan S; Drew, Stephen J; Turner, Stephen M

    2014-01-01

    Background The present study reports our experience of Copeland shoulder cementless surface replacement arthroplasty (CSRA) and whether glenoid microfracture influences the progression of glenoid erosion. Methods One-hundred-and-twelve CSRAs were performed in 101 patients between 2002 and 2007. Eighty-three patients were alive at the median follow-up time of 72 months (range 9 to 121 months; interquartile range 46 to 93 months). Assessment included an Oxford shoulder score (OSS), patient satisfaction score and plain radiographs. Results The mean (range) OSS was 27 (7 to 48) and 64 of 73 (87.7%) patients were ‘very satisfied’ or ‘satisfied’ with their shoulder. Twenty-three (20.5%) shoulders had over 2 mm of glenoid erosion. Microfracture was performed in 43 of 112 shoulders (38.4%) and did not influence the progression of glenoid erosion. Further surgery was performed in 27 (24.1%) shoulders, including 15 revisions, eight arthrolyses and four subacromial decompressions. Revision to total shoulder arthroplasty was performed in 14 : 10 for glenoid erosion; one each for loosening, periprosthetic fracture, deep infection, and chronic pain. One was revised to reverse arthroplasty for chronic pain. Conclusions CSRA performed in an independent centre reproduces the functional outcomes reported by the designer. Glenoid erosion, however, was a common occurrence and the main cause of revision – microfracture did not influence its progression.

  4. The effect of stem fit on bone hypertrophy and pain relief in cementless total hip arthroplasty.

    PubMed

    Whiteside, L A

    1989-10-01

    This study was designed to clinically evaluate the effects of a tight distal fit and collar seating in hips with a cylindrical distal stem, collar, and proximal porous coating. A clinical assessment of pain and a roentgenographic assessment of patterns of proximal femoral hypertrophy were made in 105 patients. Intraoperative evaluations of the distal stem fit were performed so that a tight distal fit was ensured in 67 patients. Thirty-eight patients who did not have intraoperative sizing were determined roentgenographically to have a loose distal fit. Pain was significantly more likely to occur in those patients with a loose distal fit (20 of 38) than in those with a tight distal fit (two of 67). Collar seating was associated with hypertrophy under the seated portion of the collar in all cases, and failure to seat the collar was associated with recession and rounding of the upper femoral cortical edge. Distal hypertrophy occurred in 24 of the 67 hips with a tight distal fit, and a tight distal fit did not prevent proximal hypertrophy. It was concluded that a tight distal fit is associated with more complete pain relief in cementless total hip arthroplasty and that a tight distal fit of a cylindrical stem does not prevent proximal load bearing. PMID:2791383

  5. Snake River Plain FORGE Site Characterization Data

    DOE Data Explorer

    Robert Podgorney

    2016-04-18

    The site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. This collection includes data on seismic events, groundwater, geomechanical models, gravity surveys, magnetics, resistivity, magnetotellurics (MT), rock physics, stress, the geologic setting, and supporting documentation, including several papers. Also included are 3D models (Petrel and Jewelsuite) of the proposed site. Data for wells INEL-1, WO-2, and USGS-142 have been included as links to separate data collections. These data have been assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL). Other contributors include the National Renewable Energy Laboratory (NREL), Lawrence Livermore National Laboratory (LLNL), the Center for Advanced Energy Studies (CEAS), the University of Idaho, Idaho State University, Boise State University, University of Wyoming, University of Oklahoma, Energy and Geoscience Institute-University of Utah, US Geothermal, Baker Hughes Campbell Scientific Inc., Chena Power, US Geological Survey (USGS), Idaho Department of Water Resources, Idaho Geological Survey, and Mink GeoHydro.

  6. West Flank Coso, CA FORGE Magnetotelluric Inversion

    DOE Data Explorer

    Doug Blankenship

    2016-05-16

    The Coso Magnetotelluric (MT) dataset of which the West Flank FORGE MT data is a subset, was collected by Schlumberger / WesternGeco and initially processed by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy. The 2011 data was based on 99 soundings that were centered on the West Flank geothermal prospect. The new soundings along with previous data from 2003 and 2006 were incorporated into a 3D inversion. Full impedance tensor data were inverted in the 1-3000 Hz range. The modelling report notes several noise sources, specifically the DC powerline that is 20,000 feet west of the survey area, and may have affected data in the 0.02 to 10 Hz range. Model cell dimensions of 450 x 450 x 65 feet were used to avoid computational instability in the 3D model. The fit between calculated and observed MT values for the final model run had an RMS value of 1.807. The included figure from the WesternGeco report shows the sounding locations from the 2011, 2006 and 2003 surveys.

  7. Forging the future: the public health imperative.

    PubMed Central

    Allukian, M

    1993-01-01

    During the 1980s, national policy promoted military expenditures and downsized domestic programs. These priorities, along with tax reform and deregulation, created a "domestic gulf crisis" with a new wave of vulnerable populations--poor children, the homeless, the elderly, and the uninsured. Our lack of a national health program compounds the problem. The 1990s will be a decade of change and challenge. To forge a healthier and stronger future for our nation, we must implement five public health imperatives: (1) We must have a national health program that is universal, comprehensive, and prevention-oriented, with built-in assurances for quality, efficiency, and a strong public health infrastructure. (2) We must have a comprehensive national health education and promotion program for all schoolchildren. (3) Women must have freedom of choice. (4) Prevention and public health must become one of our country's highest health priorities. (5) The federal government must increase its leadership, commitments, and resources to reach the goals set forth in Healthy Communities 2000 and Healthy People 2000. PMID:8484444

  8. Advanced rotor forgings for high-temperature steam turbines. Volume 1. Ingot and forging production. Final report

    SciTech Connect

    Swaminathan, V.P.; Steiner, J.E.; Mitchell, A.

    1986-05-01

    Three advanced steel-melting processes - low-sulfur vacuum silicon deoxidation, electroslag remelting, and vacuum carbon deoxidation (VCD) - were applied to produce three CrMoV (ASTM A470, Class 8) steel forgings for steam turbine application. Ingots weighing about 100 t each were produced using these three processes, and rotors were forged with final weights of about 30 t each. Compared to the conventionally produced forgings, the advanced technology forgings show better tensile ductility and better uniformity along the radial and longitudinal directions. Charpy upper-shelf energy shows about 40% improvement, and no temper embrittlement was found using step-cooled and isothermal-aging treatments. Significant improvement in fracture toughness (K/sub IC/ and J/sub IC/) is realized for these forgings. Low-cycle fatigue life is better at high temperatures because of the absence of nonmetallic inclusions. Creep strength shows slight improvement. However, creep ductility is improved, probably because of low residual elements. The VCD forgings show excellent creep ductility, even with long lives. Both the toughness and creep properties are equal to or better than those of oil-quenched rotors produced by European practices. These improvements are attributed to cleaner steel, better control of ingot solidification, low residual elements (especially very low sulfur content), and the associated reduction of nonmetallic inclusions. These three rotors have been placed in service in three operating power plants in units rated at 520 MW each. Volume 1 of this report covers ingot and forging production, and volume 2 covers mechanical property evaluation.

  9. Opportunities in the electrowinning of molten titanium from titanium dioxide

    NASA Astrophysics Data System (ADS)

    van Vuuren, D. S.; Engelbrecht, A. D.; Hadley, T. D.

    2005-10-01

    The value chain of titanium products shows that the difference between the cost of titanium ingot and titanium dioxide is about 9/kg titanium. In contrast, the price of aluminum, which is produced in a similar way, is only about 1.7/kg. Electrowinning of molten titanium from titanium dioxide is therefore believed to have significant potential to reduce the cost of titanium products. The process is hampered by the high operating temperatures and sophisticated materials of construction required; the high affinity of titanium for carbon, oxygen, and nitrogen; and physical and chemical properties of the different titanium oxide species when reducing titanium from Ti4+ to metallic titanium.

  10. Inter-subject variability effects on the primary stability of a short cementless femoral stem.

    PubMed

    Bah, Mamadou T; Shi, Junfen; Heller, Markus O; Suchier, Yanneck; Lefebvre, Fabien; Young, Philippe; King, Leonard; Dunlop, Doug G; Boettcher, Mick; Draper, Edward; Browne, Martin

    2015-04-13

    This paper is concerned with the primary stability of the Furlong Evolution(®) cementless short stem across a spectrum of patient morphology. A computational tool is developed that automatically selects and positions the most suitable stem from an implant system made of a total of 48 collarless stems to best match a 3D model based on a library of CT femur scans (75 males and 34 females). Finite Element contact models of reconstructed hips, subjected to physiologically-based boundary constraints and peak loads of walking mode, were simulated using a coefficient of friction of 0.4 and an interference-fit of 50 μm. Maximum and average implant micromotions across the subpopulation were predicted to be 100±7 μm and 7±5 μm with ranges [15 μm, 350 μm] and [1 μm, 25 μm], respectively. The computed percentage of implant area with micromotions greater than reported critical values of 50 μm, 100 μm and 150 μm never exceeded 14%, 8% and 7%, respectively. To explore the possible correlations between anatomy and implant performance, response surface models for micromotion metrics were constructed. Detailed morphological analyses were conducted and a clear nonlinear decreasing trend was observed between implant average micromotion and both the metaphyseal canal flare indices and average densities in Gruen zones. The present study demonstrates that the primary stability and tolerance of the short stem to variability in patient anatomy were high, reducing the need for patient stratification. In addition, the developed tool could be utilised to support implant design and planning of femoral reconstructive surgery. PMID:25724937

  11. The dimensional accuracy of preparation of femoral cavity in cementless total hip arthroplasty*

    PubMed Central

    Wu, Li-dong; Hahne, HJ; Hassenpflug, J

    2004-01-01

    Objective: To observe the accuracy of femoral preparation and the position of the cementless prosthesis in femoral cavity, and to compare the results between the computer-assisted surgical group (CASPAR) and the conventional group. Methods: Ten femoral components were implanted either manually or by CASPAR in cadaver femurs. The specimens were cut to 3 mm thick slices. Microradiograms of every slice were sent to a computer for analysis with special software (IDL). The gaps and the medullary cavities between component and bone, the direct bone contact area of the implant surface, the gap width and the percentage of gap and bone contact area were measured in every slice. Results: In the proximal implant coated with HA of the CASPAR group, the average percentage of bone contact reached 93.2% (ranging from 87.6% to 99.7%); the average gap percentage was 2.9% (ranging from 0.3% to 7.8%); the maximum gap width was 0.81 mm and the average gap width was only 0.20 mm. While in the conventional group, the average percentage of bone contact reached 60.1% (ranging from 49.2% to 70.4%); the average gap percentage was 32.8% (ranging from 25.1% to 39.9%); the maximum gap width was 2.97 mm and the average gap width was 0.77 mm. The average gap around the implant in the CASPAR group was only 9% of that in the manual group; the maximum and average gap widths were only about 26% of those in the manual group. On the other hand, the CASPAR group showed 33% higher bone contact than the manual group. Conclusion: With the use of robotics-assisted system, significant progress can be achieved for femoral preparation in total hip arthroplasty. PMID:15362200

  12. Outcome of the cementless Taperloc stem: a comprehensive literature review including arthroplasty register data

    PubMed Central

    2011-01-01

    Background and purpose The validity of various data sources for the assessment of the outcome quality of medical devices was investigated by comparative analysis of the published data sources available for a sample of implants. It was the aim of the study to determine the performance of this implant and to identify potential bias factors inherent to the various datasets. Methods A comprehensive literature search was carried out from English-language, peer-reviewed journals and worldwide reports from national arthroplasty registers. Publications from Medline-listed journals were included. The main parameter was revision rate, calculated as “revisions per 100 observed component years” to allow adjusted direct comparison of different datasets. Results Of 16 clinical studies that met the inclusion criteria, 9 originated from the implant developer's hospital. In the clinical studies category, publications from the developer's hospital suggested considerably lower revision rates than the other datasets. In fact, the values quoted were 5.5 times below the average of all other studies, and 9.51 times lower than in the Australian arthroplasty register. These differences are statistically significant. Interpretation The cementless Taperloc stem is an implant that shows good performance regarding revision rates in registry data and in clinical studies. However, the excellent results published by the developer's clinic are generally not reproducible by other surgeons. In terms of reference data, registry data are able to make an important contribution to the assessment of clinical sample-based studies, particularly regarding evaluation of the extent to which published results are reproducible in daily routine. PMID:21463220

  13. Prediction of Microstructure in High-Strength Ductile Forging Parts

    SciTech Connect

    Urban, M.; Back, A.; Hirt, G.; Keul, C.; Bleck, W.

    2010-06-15

    Governmental, environmental and economic demands call for lighter, stiffer and at the same time cheaper products in the vehicle industry. Especially safety relevant parts have to be stiff and at the same time ductile. The strategy of this project was to improve the mechanical properties of forging steel alloys by employing a high-strength and ductile bainitic microstructure in the parts while maintaining cost effective process chains to reach these goals for high stressed forged parts. Therefore, a new steel alloy combined with an optimized process chain has been developed. To optimize the process chain with a minimum of expensive experiments, a numerical approach was developed to predict the microstructure of the steel alloy after the process chain based on FEM simulations of the forging and cooling combined with deformation-time-temperature-transformation-diagrams.

  14. The effect of deformation rate on JBK-75 stainless steel forgings

    SciTech Connect

    Odegard, B.C.

    1987-10-01

    A parametric study was conducted to evaluate the effect of forging rate and forging temperature on the strength and microstructure of a precipitation-hardened, austenitic stainless steel forging. High and low forging rates were achieved using a high energy rate forging (HERF) process and a low velocity mechanical press (MP) respectively. The forging geometry required a two-stage forging sequence. The first stage or preform was identical for both forging processes. The final stage used similar die geometries with minor modifications to accommodate the attachment to the respective hammers. The resulting microstructure and mechanical properties were significantly different. These differences are attributed to the effects of strain rate and temperature. 10 figs., 1 tab.

  15. Looking west inside of the machine/forge shop at chargin door ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking west inside of the machine/forge shop at chargin door of the forging furnace. - U.S. Steel Edgar Thomson Works, Auxiliary Buildings & Shops, Along Monongahela River, Braddock, Allegheny County, PA

  16. Loosening pattern in a cementless custom-made hip stem: X-ray analysis, finite-elements and photoelasticity measurements.

    PubMed

    Plath, J; Schuhr, T; Fethke, K; Zacharias, T; Johnson, M; Mach, J

    2000-01-01

    Thirty-three X-press cementless stems (Depuy) manufactured according to standardized X-rays were inserted from 1992 to 1994. The patients' mean age was 49 (range 15-79) years with a mean follow-up of 32 (+/-6) months. A characteristic radiographic pattern of aseptic loosening with erosion of the medial cortex by the tip of the stem occurred in 28 patients and a valgus shift of the implant in 14 cases. A radiolucent line with increased sclerosis below the tip (zone Gruen 4) was observed in 17 cases. Four stems were revised due to histologically confirmed aseptic loosening. Biomechanical investigation of one of the revised stems with the typical pattern of valgus angulation and medial cortex erosion included photoelasticity and finite-element analysis. The intertrochanteric fit and fill obviously resulted in an unfavorable distribution of contact areas, including peaks of high stress on the medial tip of the stem. These experimental findings are even evident for a postulated rotational stability. The clinical and radiographic results of the cementless X-press stems do not seem to support the fixation concept of intertrochanteric fit and fill of femoral components. PMID:10653115

  17. West Flank Coso FORGE Magnetotelluric 3D Data

    SciTech Connect

    Doug Blankenship

    2016-01-01

    This is the 3D version of the MT data for the West Flank FORGE area.The Coso geothermal field has had three Magnetotelluric (MT) datasets collected including surveys in 2003, 2006, and 2011. The final collection, in 2011, expanded the survey to the west and covers the West Flank of FORGE area.This most recent data set was collected by Schlumberger/WesternGeco and inverted by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy; the 2003 and 2006 data were integrated for these inversions in the present study.

  18. Have cementless and resurfacing components improved the medium-term results of hip replacement for patients under 60 years of age?

    PubMed Central

    Mason, James; Baker, Paul; Gregg, Paul J; Porter, Martyn; Deehan, David J; Reed, Mike R

    2015-01-01

    Background and purpose The optimal hip replacement for young patients remains unknown. We compared patient-reported outcome measures (PROMs), revision risk, and implant costs over a range of hip replacements. Methods We included hip replacements for osteoarthritis in patients under 60 years of age performed between 2003 and 2010 using the commonest brand of cemented, cementless, hybrid, or resurfacing prosthesis (11,622 women and 13,087 men). The reference implant comprised a cemented stem with a conventional polyethylene cemented cup and a standard-sized head (28- or 32-mm). Differences in implant survival were assessed using competing-risks models, adjusted for known prognostic influences. Analysis of covariance was used to assess improvement in PROMs (Oxford hip score (OHS) and EQ5D index) in 2014 linked procedures. Results In males, PROMs and implant survival were similar across all types of implants. In females, revision was statistically significantly higher in hard-bearing and/or small-stem cementless implants (hazard ratio (HR) = 4) and resurfacings (small head sizes (< 48 mm): HR = 6; large head sizes (≥ 48 mm): HR = 5) when compared to the reference cemented implant. In component combinations with equivalent survival, women reported significantly greater improvements in OHS with hybrid implants (22, p = 0.006) and cementless implants (21, p = 0.03) (reference, 18), but similar EQ5D index. For men and women, National Health Service (NHS) costs were lowest with the reference implant and highest with a hard-bearing cementless replacement. Interpretation In young women, hybrids offer a balance of good early functional improvement and low revision risk. Fully cementless and resurfacing components are more costly and do not provide any additional benefit for younger patients. PMID:25285617

  19. 48 CFR 252.225-7025 - Restriction on acquisition of forgings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of forgings. 252.225-7025 Section 252.225-7025 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7025 Restriction on acquisition of forgings. As prescribed in 225.7102-4, use the following clause: Restriction on Acquisition of Forgings (DEC 2009)...

  20. 48 CFR 252.225-7025 - Restriction on acquisition of forgings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of forgings. 252.225-7025 Section 252.225-7025 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7025 Restriction on acquisition of forgings. As prescribed in 225.7102-4, use the following clause: Restriction on Acquisition of Forgings (DEC 2009)...

  1. 40 CFR 467.40 - Applicability; description of the forging subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... forging subcategory. 467.40 Section 467.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ALUMINUM FORMING POINT SOURCE CATEGORY Forging Subcategory § 467.40 Applicability; description of the forging subcategory. This subpart applies to...

  2. 48 CFR 252.225-7025 - Restriction on acquisition of forgings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of forgings. 252.225-7025 Section 252.225-7025 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7025 Restriction on acquisition of forgings. As prescribed in 225.7102-4, use the following clause: Restriction on Acquisition of Forgings (DEC 2009)...

  3. 40 CFR 467.40 - Applicability; description of the forging subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... forging subcategory. 467.40 Section 467.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Forging Subcategory § 467.40 Applicability; description of the forging subcategory. This subpart applies to discharges...

  4. 48 CFR 252.225-7025 - Restriction on acquisition of forgings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of forgings. 252.225-7025 Section 252.225-7025 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7025 Restriction on acquisition of forgings. As prescribed in 225.7102-4, use the following clause: Restriction on Acquisition of Forgings (DEC 2009)...

  5. 40 CFR 467.40 - Applicability; description of the forging subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... forging subcategory. 467.40 Section 467.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ALUMINUM FORMING POINT SOURCE CATEGORY Forging Subcategory § 467.40 Applicability; description of the forging subcategory. This subpart applies to...

  6. 40 CFR 467.40 - Applicability; description of the forging subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... forging subcategory. 467.40 Section 467.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Forging Subcategory § 467.40 Applicability; description of the forging subcategory. This subpart applies to discharges...

  7. 48 CFR 252.225-7025 - Restriction on acquisition of forgings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of forgings. 252.225-7025 Section 252.225-7025 Federal Acquisition Regulations System DEFENSE... CLAUSES Text of Provisions And Clauses 252.225-7025 Restriction on acquisition of forgings. As prescribed in 225.7102-4, use the following clause: Restriction on Acquisition of Forgings (DEC 2009)...

  8. 40 CFR 467.40 - Applicability; description of the forging subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... forging subcategory. 467.40 Section 467.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ALUMINUM FORMING POINT SOURCE CATEGORY Forging Subcategory § 467.40 Applicability; description of the forging subcategory. This subpart applies to...

  9. 77 FR 14445 - Application for a License To Export Steel Forging

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... FR 49139 (Aug. 28, 2007). Information about filing electronically is available on the NRC's public... COMMISSION Application for a License To Export Steel Forging Pursuant to 10 CFR 110.70(b) ``Public Notice of... Spain. December 15, 2011 head steel head steel February 7, 2012 forging. forging will be XR175...

  10. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-07-04

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  11. Titanium hermetic seals

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1995-01-01

    Titanium is prenitrided by being heated in a nitrogen environment under conditions which give rise to the formation of a titanium-nitride surface layer on the titanium. Titanium thus prenitrided may be used in electrical components which are hermetically sealed using silicate glasses and standard glass sealing techniques. According to the method of the invention, alkali volatilization and formation of deleterious interfacial silicide are inhibited.

  12. Modelling of the radial forging process of a hollow billet with the mandrel on the lever radial forging machine

    NASA Astrophysics Data System (ADS)

    Karamyshev, A. P.; Nekrasov, I. I.; Pugin, A. I.; Fedulov, A. A.

    2016-04-01

    The finite-element method (FEM) has been used in scientific research of forming technological process modelling. Among the others, the process of the multistage radial forging of hollow billets has been modelled. The model includes both the thermal problem, concerning preliminary heating of the billet taking into account thermal expansion, and the deformation problem, when the billet is forged in a special machine. The latter part of the model describes such features of the process as die calibration, die movement, initial die temperature, friction conditions, etc. The results obtained can be used to define the necessary process parameters and die calibration.

  13. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; Watkins, R.D.

    1988-01-21

    Glass compositions containing CaO, Al/sub 2/O/sub 3/, B/sub 2/O/sub 3/, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  14. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1992-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO of various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with titanium and titanium alloys, for use in components such as seals for battery headers.

  15. 27 CFR 447.22 - Forgings, castings, and machined bodies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... machined bodies. 447.22 Section 447.22 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO... IMPLEMENTS OF WAR The U.S. Munitions Import List § 447.22 Forgings, castings, and machined bodies. Articles..., castings, extrusions, and machined bodies) which have reached a stage in manufacture where they are...

  16. Family Health and Financial Literacy--Forging the Connection

    ERIC Educational Resources Information Center

    Braun, Bonnie; Kim, Jinhee; Anderson, Elaine A.

    2009-01-01

    Families are at-risk of or experiencing a diminished quality of living and life in current economic times and difficult decisions are required. Health and financial literacy are the basis for wise personal and public decision making. Family and consumer sciences (FCS) professionals can forge connections between health and financial literacy to…

  17. Electronic Portfolios in Teacher Education: Forging a Middle Ground

    ERIC Educational Resources Information Center

    Strudler, Neal; Wetzel, Keith

    2012-01-01

    At a time when implementation of electronic portfolios (EPs) is expanding, the issues of clarifying their purposes continue to plague teacher education programs. Are student-centered uses of EPs compatible with program assessment and accreditation efforts? Is this an either/or situation, or can a productive middle ground be forged? This article…

  18. Forging Consensus for Implementing Youth Socialization Policy in Northwest China

    ERIC Educational Resources Information Center

    Fairbrother, Gregory P.

    2011-01-01

    The goal of this article is to examine how the provincial education media in China play a role of forging consensus among local actors responsible for the implementation of new centrally-promulgated youth socialization policy. In doing so, it also explores the tension among three of the Chinese state's claims to legitimacy: economic development,…

  19. Forging an Identity over the Life-Course

    ERIC Educational Resources Information Center

    Spiteri, Damian

    2009-01-01

    Using a social constructionist approach, this study explores the self-perceptions of young men who, when at school, were classed as boys with social, emotional and behavioural difficulties (SEBD). The aim is to understand how these perceptions were forged throughout the young men's life-courses resulting in changing self-identities. The study also…

  20. 16. Forge building and fuel storage shed from the southwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Forge building and fuel storage shed from the southwest, c.1918 Photocopied from a photograph in the collection of William F. Applegate, 43 Grandview Avenue, Wallingford, Connecticut. - Eli Whitney Armory, West of Whitney Avenue, Armory Street Vicinity, Hamden, New Haven County, CT

  1. 76 FR 168 - Heavy Forged Hand Tools From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... part 207), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ No response to this request..., (3) hammers and sledges, and (4) picks and mattocks (56 FR 6622). Following the first five-year... antidumping duty order on imports of heavy forged hand tools from China (65 FR 48962). Following second...

  2. 76 FR 50755 - Heavy Forged Hand Tools From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... determined on April 8, 2011 that it would conduct expedited reviews (76 FR 31631, June 1, 2011). The... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Heavy Forged Hand Tools From China Determinations On the basis of the record \\1\\ developed in...

  3. The Valley Forge Encampment: Epic on the Schuylkill.

    ERIC Educational Resources Information Center

    Trussell, John B. B., Jr.

    Valley Forge, outside Philadelphia (Pennsylvania), has long been recognized as the site of a great victory of the human spirit. Eleven thousand men including Blacks and Indians resided there during the winter of 1777-78 and triumphed over cold, starvation, nakedness, disease, and uncertainty. The encampment site was unprepared for the tattered,…

  4. Consolidation and Forging Methods for a Cryomilled Al Alloy

    NASA Astrophysics Data System (ADS)

    Newbery, A. P.; Ahn, B.; Hayes, R. W.; Pao, P. S.; Nutt, S. R.; Lavernia, E. J.

    2008-09-01

    The method used to consolidate a cryogenically ball-milled powder is critical to the retention of superior strength along with acceptable tensile ductility in the bulk product. In this study, gas-atomized Al 5083 powder was cryomilled, hot vacuum degassed, and consolidated by hot isostatic pressing (HIP) or by quasi-isostatic (QI) forging to produce low-porosity billets. The billets were then forged, either at high strain rate (without a die) or quasi-isostatically, and subsequently hot rolled to produce three 6.5-mm-thick plates. Despite extended periods at elevated temperatures and differences between the consolidation/deformation methods, a similar predominantly ultrafine grain microstructure was obtained in all three plates. The plates possessed similar ultimate tensile strengths, about 50 pct greater than standard work-hardened Al 5083. However, in terms of fracture toughness, there were significant differences between the plates. Debonding at prior cryomilled powder particle surfaces was an important fracture mechanism for “HIPped” material, leading to low toughness for crack surfaces in the plane of the plate. This effect was minimized by the implementation of double QI forging, producing plate with good isotropic fracture toughness. The type of particle boundary deformation during forging and the influence of impurities appeared to be more important in determining fracture toughness than the presence of ˜10 vol pct coarser micron-sized grains.

  5. Nonadherence to the isochrony principle in forged signatures.

    PubMed

    Caligiuri, Michael P; Mohammed, Linton A; Found, Bryan; Rogers, Doug

    2012-11-30

    Highly programmed skilled movements are executed in such a way that their kinematic features adhere to certain rules referred to as minimization principles. One such principle is the isochrony principle, which states that the duration of voluntary movement remains approximately constant across a range of movement distances; that is, movement duration is independent of movement extent. The concept of isochrony suggests that some information stored in the motor program is constant, thus reducing the storage demands of the program. The aim of the present study was to examine whether forged signatures can be distinguished from genuine signatures on the basis of isochrony kinematics. Sixty writers were asked to write their own signatures and to forge model signatures representing three different writing styles: text-based, stylized, and mixed. All signatures were digitized to enable high precision dynamic analyses of stroke kinematics. Vertical stroke duration and absolute amplitude were measured for each pen stroke of the signatures using MovAlyzeR(®) software. Slope coefficients derived from simple regression models of the relationship between stroke duration and amplitude served as our measure of isochrony. The slope coefficient reflects the degree to which stroke duration increases in relation to stroke amplitude. Higher coefficients indicate greater increases in stroke duration for a given stroke amplitude and thus violate the isochrony principle. We hypothesized that the duration-amplitude coefficients for forged signatures would be significantly greater than for genuine signatures suggesting non-adherence to the isochrony principle. Results indicated that regardless of the style of the writer, genuine signatures were associated with low slope coefficients Pen strokes forming forged signatures had significantly greater duration-amplitude slope coefficients than genuine signatures. These findings suggest that when forging signatures, writers execute pen movements

  6. Parameter Optimization During Forging Process of a Novel High-Speed-Steel Cold Work Roll

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liu, Ligang; Sun, Yanliang; Li, Qiang; Ren, Xuejun; Yang, Qingxiang

    2016-01-01

    The forging of high-speed-steel (HSS) roll has always been a technical problem in manufacturing industry. In this study, the forging process of a novel HSS cold work roll was simulated by deform-3D on the basis of rigid-viscoplastic finite element model. The effect of heating temperature and forging speed on temperature and stress fields during forging process was simulated too. The results show that during forging process, the temperature of the contact region with anvils increases. The stress of the forging region increases and distributes un-uniformly, while that of the non-forging region is almost zero. With increasing forging time, Z load on anvil increases gradually. With increasing heating temperature or decreasing forging speed, the temperature of the whole billet increases, while the stress and Z load on anvil decrease. In order to ensure the high efficiency and safety of the forging process, the heating temperature and the forging speed are chosen as 1160 °C and 16.667 mm/s, respectively.

  7. Cementless total hip arthroplasty in developmental dysplasia of the hip with end stage osteoarthritis: 2-7 years' clinical results.

    PubMed

    Yildirim, Tugrul; Guclu, Berk; Karaguven, Dogac; Kaya, Alper; Akan, Burak; Cetin, Ilker

    2015-01-01

    Between 2006 and 2011, 102 hips of 78 patients with end-stage osteoarthritis secondary to developmental dysplasia of the hip (DDH) underwent cementless total hip arthroplasty (THA). According to the Crowe's classification, 22 hips (21%) were type 1, 19 hips (18%) were type 2, 22 hips (21%) were type 3 and 39 hips (38%) were type 4 respectively. Functional and clinical analyses were performed by Harris Hip Scores (HHS). There were 73 (71%) excellent or good results according to HHS. The postoperative HHS was significantly lower in patients who underwent femoral shortening (p<0.01). We observed 25 (24.5%) complications in total, 15 (14.7%) of which required revision surgery. The authors concluded that THA for DDH is a safe and a reliable procedure with good clinical outcomes. PMID:25907395

  8. Transverse Subtrochanteric Shortening Osteotomy During Cementless Total Hip Arthroplasty in Crowe Type-III or IV Developmental Dysplasia.

    PubMed

    Sofu, Hakan; Kockara, Nizamettin; Gursu, Sarper; Issin, Ahmet; Oner, Ali; Sahin, Vedat

    2015-06-01

    The purpose of this study was to review the outcomes of transverse subtrochanteric shortening osteotomy during cementless total hip arthroplasty in Crowe Type-III or IV developmental dysplasia. Seventy-three osteotomies were included in our study. Mean follow-up was 61 months. Harris hip score, leg length discrepancy, neurological status, union status of the osteotomy, and femoral component stability were the criteria for evaluation. All complications were noted. The mean Harris hip score improved from 38.6 points to 83.7 points. The mean leg length discrepancy decreased from 56.5 mm to 10.7 at the latest follow-up. The mean union time was 5.2 months. We observed 4 non-unions. Transverse subtrochanteric shortening osteotomy is an effective and reliable method in restoration of a more normal limb. PMID:25707993

  9. A comparison of the sintering of various titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-02-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press- and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics; with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  10. Metallography of gamma titanium aluminides

    SciTech Connect

    Baeslack, W.A. III . Dept. of Welding Engineering); McQuay, P.A.; Lee, D.S. ); Fletcher, E.D. )

    1993-12-01

    The microstructures of forged and heat treated Ti-48A1-2Nb-2Mn (at.%) and Ti-48A1-2Nb-2Cr (at.%) gamma titanium aluminides have been revealed by the application of selected metallographic preparation techniques and characterized using light microscopy. Examination of the as-polished specimen surface under polarized light was highly effective in revealing the equiaxed gamma grain structure and twins within the gamma grains, but it did not delineate alpha-two phase present at gamma grain boundaries or within a lamellar gamma/alpha-two constituent. Bright-field and differential-interference contrast light microscopy analyses of specimens chemically etched with Kroll's reagent (100mL H[sub 2]O + 4mL HNO[sub 3] + 2mL HF) were marginally effective in characterizing the equiaxed gamma grain structure and likewise did not reveal the alpha-two phase. Furthermore, the application of Kroll's reagent resulted in localized dissolution in the form of fine grooves or microcracks oriented in preferred directions within the equiaxed gamma grains. Under light microscopy, gamma grains that experienced this attack resembled the lamellar gamma/alpha-two constituent. The alpha-two phase was most clearly revealed using an etching solution comprised of 30mL lactic acid + 30mL HNO[sub 3] + 3mL HF, while the gamma grain and twin boundaries were most effectively revealed using an etching solution comprised of 30mL HCL + 10mL HNO[sub 3] + 5mL H[sub 2]O[sub 2] + 3mL HF. An etching solution of 25 mL H[sub 2]O + 50mL glycerol + 25mL HNO[sub 3] + 2mL HF was very effective in simultaneously revealing both the gamma and alpha-two phase morphologies.

  11. Cementless press-fit cup. Principles, experimental data, and three-year follow-up study.

    PubMed

    Morscher, E; Bereiter, H; Lampert, C

    1989-12-01

    The concept of the press-fit cup includes an operative defect as small as possible, achievement of intrinsic stability by press-fit, and surface coating by an orderly, oriented wire mesh coating. The design is a modified hemisphere with flattening in the pole area and oversized cup diameter. A first series of press-fit cups were fitted with titanium nitride-coated stainless steel mesh. The manufacturing of such chemically pure titanium has only recently become feasible. Animal experiments using mountain sheep have shown an increase in the stability of the press-fit cup within the acetabulum with time and progressive bony ingrowth; this was verified in cups retrieved at autopsy. Three hundred eighty-seven first-generation titanium nitride-coated stainless steel mesh implants have been reviewed with a follow-up time of 12 to 39 months (average, 16.6 months). There were no intraoperative complications related to the cup. The roentgenographic follow-up study of 330 (85.1%) hips showed only a single case with a radiolucent line in all zones (1-3) as a roentgenographic sign of loosening, i.e., fibrous ingrowth. Two cups had to be revised due to insufficient primary stability and tilting. PMID:2582662

  12. Eleven- to 14-year follow-up results of cementless total hip arthroplasty using a third-generation alumina ceramic-on-ceramic bearing.

    PubMed

    Sugano, Nobuhiko; Takao, Masaki; Sakai, Takashi; Nishii, Takashi; Miki, Hidenobu; Ohzono, Kenji

    2012-05-01

    To analyze long-term survivorship of cementless total hip arthroplasties (THAs) with the third-generation alumina ceramic-on-ceramic bearing, 100 consecutive THAs between 1996 and 1998 were reviewed. One cup and 2 stems were revised due to aseptic loosening. Another cup showed chipping of the acetabular liner at 8 years and required cup revision. The remaining hips showed stable bone ingrowth fixation with no osteolysis at the final follow-up. The 14-year survivorship as the end point of revision was 97.9% for the cup, 97.8% for the stem, and 95.7% for the overall implants, respectively. We conclude that cementless THA with the third-generation ceramic-on-ceramic hip bearing provided an excellent survivorship and eliminated periprosthetic osteolysis for 11 to 14 years. PMID:21978563

  13. Sustained load crack growth design data for Ti-6Al-4V titanium alloy tanks containing hydrazine

    NASA Technical Reports Server (NTRS)

    Lewis, J. C.; Kenny, J. T.

    1976-01-01

    Sustained load crack growth data for Ti-6Al-4V titanium alloy in hydrazine per MIL-P-26536 and refined hydrazine are presented. Fracture mechanics data on crack growth thresholds for heat-treated forgings, aged and unaged welds, and aged and unaged heat-affected zones are reported. Fracture mechanics design curves of crack growth threshold stress intensity versus temperature are generated from 40 to 71 C.

  14. X-Ray Analysis of the Ultrafine-Grained VT6 Titanium Alloy Subjected to Flat Rolling

    NASA Astrophysics Data System (ADS)

    Sitdikov, V. D.; Alexandrov, I. V.; Danilenko, V. N.; Popov, V. A.

    2015-10-01

    Results are presented of experimental x-ray diffraction analysis of the microstructure of VT6 titanium alloy billets in ultrafine-grained (UFG) state subjected to flat rolling. The UFG state was formed by six cycles of isothermal multiaxial forging at 650°C. The regularities of changes of the structural parameters (the lattice parameter, coherently scattering domain size, and microdistortions of the crystal lattice) are revealed depending on the degree of flat rolling reduction.

  15. Superior fixation of pegged trabecular metal over screw-fixed pegged porous titanium fiber mesh

    PubMed Central

    2011-01-01

    Background and purpose Lasting stability of cementless implants depends on osseointegration into the implant surface, and long-term implant fixation can be predicted using radiostereometric analysis (RSA) with short-term follow-up. We hypothesized that there would be improved fixation of high-porosity trabecular metal (TM) tibial components compared to low-porosity titanium pegged porous fiber-metal (Ti) polyethylene metal backings. Methods In a prospective, parallel-group, randomized unblinded clinical trial, we compared cementless tibial components in patients aged 70 years and younger with osteoarthritis. The pre-study sample size calculation was 22 patients per group. 25 TM tibial components were fixed press-fit by 2 hexagonal pegs (TM group) and 25 Ti tibial components were fixed press-fit and by 4 supplemental screws (Ti group). Stereo radiographs for evaluation of absolute component migration (primary effect size) and single-direction absolute component migration (secondary effect size) were obtained within the first postoperative week and at 6 weeks, 6 months, 1 year, and 2 years. American Knee Society score was used for clinical assessment preoperatively, and at 1 and 2 years. Results There were no intraoperative complications, and no postoperative infections or revisions. All patients had improved function and regained full extension. All tibial components migrated initially. Most migration of the TM components (n = 24) occurred within the first 3 months after surgery whereas migration of the Ti components (n = 22) appeared to stabilize first after 1 year. The TM components migrated less than the Ti components at 1 year (p = 0.01) and 2 years (p = 0.004). Interpretation We conclude that the mechanical fixation of TM tibial components is superior to that of screw-fixed Ti tibial components. We expect long-term implant survival to be better with the TM tibial component. PMID:21434781

  16. First Results of Energy Saving at Process Redesign of Die Forging Al-Alloys

    SciTech Connect

    Pepelnjak, Tomaz; Kuzman, Karl; Kokol, Anton

    2011-05-04

    The contribution deals with eco-friendly solutions for shortened production chains of forging light alloys. During the die forging operations a remarkable amount of material goes into the flash and later on into chips during finish machining. These low value side products are rich with embedded energy therefore recycling or reprocessing could be very energy saving procedure.In cooperation with a die forging company a shortened reprocessing cycle has been studied starting from re-melting the forging flash and without additional heating to cast preforms for subsequent die forging. As such preforms have not as good formability characteristics as those done from extruded billets the isothermal forging process has been adopted. First results showed that without cracks and other defects the formability is sufficient for a broad spectrum of forgings.To improve the formability a homogenization process of cast preforms has been implemented. As the process started immediately after casting, amount of additional energy for heating was minimized. To reduce voids forging process was redesigned in a way to assure greater hydrostatic pressures in parts during forging. First results were promising therefore research is going towards improving processes without adding significantly more energy as it is needed for casting with homogenization and die forging.

  17. West Flank Coso, CA FORGE ArcGIS data 2

    DOE Data Explorer

    Doug Blankenship

    2016-03-01

    archive of ArcGIS data from the West Flank FORGE site located in Coso, California. Archive contains: 8 shapefiles polygon of the 3D geologic model polylines of the traces 3D modeled faults polylines of the fault traces from Duffield and Bacon, 1980 polygon of the West Flank FORGE site polylines of the traces of the geologic cross-sections (cross-sections in a separate archive in the GDR) polylines of the traces of the seismic reflection profiles through and adjacent to the West Flank site (seismic reflection profiles in a separate archive in the GDR) points of the well collars in and around the West Flank site polylines of the surface expression of the West Flank well paths

  18. Process modelings and simulations of heavy castings and forgings

    NASA Astrophysics Data System (ADS)

    Li, Dianzhong; Sun, Mingyue; Wang, Pei; Kang, Xiuhong; Fu, Paixian; Li, Yiyi

    2013-05-01

    The Materials Process Modeling Division, IMR, CAS has been promoting for more than 10 years research activities on modeling and experimental studies on heavy castings and forgings. In this report, we highlight some selected achievements and impacts in this area: To satisfy domestic strategic requirements, such as nuclear and hydraulic power, marine projects and high speed rail, we have developed a number of casting and forging technologies, which combine advanced computing simulations, X-ray real time observation techniques and industrial-scaled trial experiments. These technologies have been successfully applied in various industrial areas and yielded a series of scientific and technological breakthroughs and innovation. Important examples of this strategic research include the hot-processing technologies of the Three Gorge water turbine runner, marine crankshaft manufacturers, backup rolls for hot rolling mills and the production of hundreds-ton steel ingot.

  19. Performance Assessment Method for a Forged Fingerprint Detection Algorithm

    NASA Astrophysics Data System (ADS)

    Shin, Yong Nyuo; Jun, In-Kyung; Kim, Hyun; Shin, Woochang

    The threat of invasion of privacy and of the illegal appropriation of information both increase with the expansion of the biometrics service environment to open systems. However, while certificates or smart cards can easily be cancelled and reissued if found to be missing, there is no way to recover the unique biometric information of an individual following a security breach. With the recognition that this threat factor may disrupt the large-scale civil service operations approaching implementation, such as electronic ID cards and e-Government systems, many agencies and vendors around the world continue to develop forged fingerprint detection technology, but no objective performance assessment method has, to date, been reported. Therefore, in this paper, we propose a methodology designed to evaluate the objective performance of the forged fingerprint detection technology that is currently attracting a great deal of attention.

  20. Crack toughness evaluation of hot pressed and forged beryllium.

    NASA Technical Reports Server (NTRS)

    Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.

    1973-01-01

    Fracture toughness tests at room temperature were made on three-point loaded beryllium bend specimens cut from hot pressed block and a forged disk. These specimens had plane proportions conforming to ASTM E 399 and covered a thickness range of from 1/32 to 1/2 in. Two sets of bend specimens were tested, one having fatigue cracks and the other 0.5 mil radius notches. One objective of the investigation was the development of techniques to produce fatigue cracks in accordance with the procedures specified in ASTM E 399. This objective was achieved for the hot pressed material. In plane cracks were not consistently produced in the specimens cut from forged stock.

  1. Laser Gas Nitriding of Titanium and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Dai, J. J.; Hou, S. Q.

    Titanium and titanium alloys are widely used in many fields due to some of their characteristics such as light density, high strength, and excellent corrosion resistance. However, poor mechanical performances limit their practical applications. Laser gas nitriding is a promising method used to improve the surface properties of components. Recent developments on laser gas nitriding of titanium and titanium alloys are reviewed. The processing parameters have important effects on the resulting characteristics of titanium and titanium alloys. The resulting microstructure and properties of laser gas nitrided specimens are presented. The problems to be solved and the prospects in the field of laser gas nitriding of titanium and titanium alloys are discussed.

  2. Dichloromethane photodegradation using titanium catalysts

    SciTech Connect

    Tanguay, J.F.; Suib, S.L.; Coughlin, R.W. )

    1989-06-01

    The use of titanium dioxide and titanium aluminosilicates in the photocatalytic destruction of chlorinated hydrocarbons is investigated. Titanium-exchanged clays, titanium-pillared clays, and titanium dioxide in the amorphous, anatase, and rutile forms are used to photocatalytically degrade dichloromethane to hydrochloric acid and carbon dioxide. Bentonite clays pillared by titanium dioxide are observed to be more catalytically active than titanium-exchanged clays. Clays pillared by titanium aluminum polymeric cations display about the same catalytic activity as that of titanium-exchanged clays. The rutile form of titanium dioxide is the most active catalyst studied for the dichloromethane degradation reaction. The anatase form of titanium dioxide supported on carbon felt was also used as a catalyst. This material is about five times more active than titanium dioxide-pillared clays. Degradation of dichloromethane using any of these catalysts can be enhanced by oxygen enrichment of the reaction solution or by preirradiating the catalyst with light.

  3. Development of the Dynamic Globularization Prediction Model for Ti-17 Titanium Alloy Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Jia, Zhiqiang; Zeng, Weidong; Xu, Jianwei; Zhou, Jianhua; Wang, Xiaoying

    2015-04-01

    In this work, a finite element method (FEM) model for predicting dynamic globularization of Ti-17 titanium alloy is established. For obtaining the microstructure evolution during dynamic globularization under varying processing parameters, isothermal hot compression tests and quantitative metallographic analysis were conducted on Ti-17 titanium alloy with initial lamellar microstructure. The prediction model, which quantitatively described the non-linear relationship between the dynamic globularization fraction and the deformation strain, temperature, and strain rate, was developed on the basis of the Avrami equation. Then the developed model was incorporated into DEFORM software as a user subroutine. Finally, the large-sized step-shaped workpiece was isothermally forged and corresponding FEM simulation was conducted to verify the reliability and accuracy of the integrated FEM model. The reasonable coincidence of the predicted results with experimental ones indicated that the established FEM model provides an easy and a practical method to predict dynamic globularization for Ti-17 titanium alloy with complex shape.

  4. Sinter-forging of nanocrystalline zirconia. 1: Experimental

    SciTech Connect

    Hague, D.C.; Mayo, M.J.

    1997-01-01

    Nanocrystalline (15 nm) yttria (3 mol%)-stabilized zirconia (3Y-TZP) was sinter-forged under conditions of varying temperature (1,050--1,200 C), plastic strain rate (5 {times} 10{sup {minus}5} to 2 {times} 10{sup {minus}3} s{sup {minus}1}), and green density (33--48%), using constant-crosshead-speed tests, constant-load (i.e., load-and-hold) tests, and constant-loading-rate tests. The densification and pore size evolution results indicate that plastic strain is largely responsible for elimination of large pores, while diffusional mechanisms control the elimination of small pores. Grain growth during sinter-forging is observed to be dependent solely on porosity during intermediate-stage sintering. Once the powder compact enters final-stage sintering, however, both static (time- and temperature-dependent) and dynamic (plastic-strain-dependent) grain growth take place, greatly accelerating the overall rate of grain growth. The use of fast strain rates to impose plastic strain before the onset of dynamic grain growth is proposed as a method of preserving small grain sizes during sinter-forging.

  5. Open-die forging of structurally porous sandwich panels

    SciTech Connect

    Elzey, D.M.; Wadley, H.N.G.

    1999-10-01

    Structurally porous metal sandwich panels consisting of dense face sheets and porous cores of controlled relative density can be manufactured by trapping inert gas during hot isostatic pressing and modifying its distribution via subsequent thermomechanical forming. A plane-strain solution for analyzing the open-die forging of such a plastically compressible sandwich panel is developed. An effective yield potential for the face sheet/core sandwich is constructed from the Mises yield criterion for the rigid-plastic face sheet and Doraivelu et al's density-dependent yield function for the compressible core. This effective constitutive response is used in a classical slab analysis of open-die forging. The analysis predicts the upsetting force and the distributions of pressure, core relative density, and average stresses within both the face sheet and the core. During upsetting, a zone of fully constrained material (i.e., with zero lateral strain) is predicted to occur at the center of the workpiece, and this densifies first. A densification front then advances laterally from the panel center toward the outer edges. The nonuniform densification complicates the use of forging for the production of components requiring a uniform density core.

  6. Influence of Processing Parameters on Grain Size Evolution of a Forged Superalloy

    NASA Astrophysics Data System (ADS)

    Reyes, L. A.; Páramo, P.; Salas Zamarripa, A.; de la Garza, M.; Guerrero-Mata, M. P.

    2016-01-01

    The microstructure evolution of nickel-based superalloys has a great influence on the mechanical behavior during service conditions. Microstructure modification and the effect of process variables such as forging temperature, die-speed, and tool heating were evaluated after hot die forging of a heat-resistant nickel-based alloy. Forging sequences in a temperature range from 1253 to 1323 K were considered through experimental trials. An Avrami model was applied using finite element data to evaluate the average grain size and recrystallization at different evolution zones. It was observed that sequential forging at final temperatures below 1273 K provided greater grain refinement through time-dependent recrystallization phenomena. This investigation was aim to explore the influence of forging parameters on grain size evolution in order to design a fully homogenous and refined microstructure after hot die forging.

  7. Direct visualization and quantification of bone growth into porous titanium implants using micro computed tomography.

    PubMed

    Baril, E; Lefebvre, L P; Hacking, S A

    2011-05-01

    The utility of porous metals for the integration of orthopaedic implants with host bone has been well established. Quantification of the tissue response to cementless implants is laborious and time consuming process requiring tissue processing, embedding, sectioning, polishing, imaging and image analysis. Micro-computed tomography (μCT) is a promising three dimensional (3D) imaging technique to quantify the tissue response to porous metals. However, the suitability and effectiveness of μCT for the quantification of bone ingrowth remains unknown. The purpose of this study was to evaluate and compare bone growth within porous titanium implants using both μCT and traditional hard-tissue histology techniques. Cylindrical implants were implanted in the distal femora and proximal tibiae of a rabbit. After 6 weeks, bone ingrowth was quantified and compared by μCT, light microscopy and backscattered electron microscopy. Quantification of bone volume and implant porosity as determined by μCT compared well with data obtained by traditional histology techniques. Analysis of the 3D dataset showed that bone was present in the pores connected with openings larger 9.4 μm. For pore openings greater than 28.2 μm, the size of the interconnection had little impact on the bone density within the porosity for the titanium foams. PMID:21512898

  8. Net-Shape Forging of Aerofoil Blade based on Flash Trimming and Compensation methods

    SciTech Connect

    Lu, B.; Ou, H.; Armstrong, C. G.

    2011-05-04

    In this research, an automatic blade forging die shape optimisation system was developed by using direct compensation and flash trimming algorithms and integrating with the DEFORM 3D software package. To validate the developed system, a 3D blade forging case problem was simulated and optimised with and without the consideration of trimming simulation. The results were compared with actual measurement data of the forged aerofoil blade with excellent results obtained with the fast trimming simulation procedure used.

  9. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, R.K.; McCollister, H.L.; Phifer, C.C.; Day, D.E.

    1997-07-15

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B{sub 2}O{sub 3}), barium oxide (BaO), lanthanum oxide (La{sub 2}O{sub 3}), and at least one other oxide selected from the group consisting of aluminum oxide (Al{sub 2}O{sub 3}), calcium oxide (CaO), lithium oxide (Li{sub 2}O), sodium oxide (Na{sub 2}O), silicon dioxide (SiO{sub 2}), or titanium dioxide (TiO{sub 2}). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900 C, and generally about 700--800 C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps). 1 fig.

  10. Sealing glasses for titanium and titanium alloys

    DOEpatents

    Brow, Richard K.; McCollister, Howard L.; Phifer, Carol C.; Day, Delbert E.

    1997-01-01

    Barium lanthanoborate sealing-glass compositions are provided comprising various combinations (in terms of mole-%) of boron oxide (B.sub.2 O.sub.3), barium oxide (BaO), lanthanum oxide (La.sub.2 O.sub.3), and at least one other oxide selected from the group consisting of aluminum oxide (Al.sub.2 O.sub.3), calcium oxide (CaO), lithium oxide (Li.sub.2 O), sodium oxide (Na.sub.2 O), silicon dioxide (SiO.sub.2), or titanium dioxide (TiO.sub.2). These sealing-glass compositions are useful for forming hermetic glass-to-metal seals with titanium and titanium alloys having an improved aqueous durability and favorable sealing characteristics. Examples of the sealing-glass compositions are provided having coefficients of thermal expansion about that of titanium or titanium alloys, and with sealing temperatures less than about 900.degree. C., and generally about 700.degree.-800.degree. C. The barium lanthanoborate sealing-glass compositions are useful for components and devices requiring prolonged exposure to moisture or water, and for implanted biomedical devices (e.g. batteries, pacemakers, defibrillators, pumps).