Sample records for center water distribution

  1. Acute aluminum encephalopathy in a dialysis center caused by a cement mortar water distribution pipe.

    PubMed

    Berend, K; van der Voet, G; Boer, W H

    2001-02-01

    In Curaçao, distilled seawater from the water plant was used without further purification for hemodialysis for several decades. A new distribution pipe supplying water to a dialysis center on the island was installed in May 1996. To protect it from corrosion, this pipe was lined on the inside with a cement mortar. Because of the aggressiveness of the distilled water, calcium and aluminum (Al) leached from the cement mortar into the water used to prepare dialysate. This caused a possible hard water syndrome and definite acute Al intoxication. We reviewed clinical details and outcome at follow-up, and arranged laboratory and toxicological studies of serum and hemodialysis water. Of the 27 patients who had a similar exposure ( approximately 60 hours) to the contaminated dialysate, 10 died from acute Al encephalopathy, whereas 17 patients had no or only minor symptoms and survived. The nonsurvivors were older (64 +/- 3 years vs. 52 +/- 2 years, P < 0.01) and had a lower body weight (57.5 +/- 5.9 kg vs. 86.5 +/- 4.1 kg, P < 0.01) and lower serum albumin concentrations (33 +/- 1 vs. 36 +/- 1 g/L, P < 0.01). Anuria tended to be more common in the nonsurvivors (8 out of 10 vs. 8 out of 17, P> 0.05). Serum Al concentrations, available in seven nonsurvivors, were significantly higher than in the survivors (808 +/- 127 vs. 255 +/- 25 microg/L, P < 0.01). The water distribution pipe was lined with a cement mortar that was probably inappropriate for transporting drinking water. Water distribution facilities as well as the dialysis community should be aware of the possibility of Al leaching from cemented water distribution pipes. Similar Al loads appear to induce a more severe intoxication in malnourished, older patients with smaller Al distribution volumes and anuria.

  2. Iowa Water Center | Iowa Water Center

    Science.gov Websites

    :42 Advancing the state of water knowledge and management The Iowa Water Center is a part of a 10% of that original resource remains, and little to no information exists on the current status or information to assess the condition of wetlands. Information gathered from monitoring wetlands may help answer

  3. Water Resources Research Center

    Science.gov Websites

    Untitled Document  Search Welcome to the University of Hawai'i at Manoa Water Resources Research Center and contracts. Our Focus is to: Serve as the Water Research Center in Hawaii and in this capacity to coordinate and conduct research to identify, characterize, and quantify water-related problems in the state

  4. Water resources scientific information center

    USGS Publications Warehouse

    Cardin, C. William; Campbell, J.T.

    1986-01-01

    The Water Resources Scientific Information Center (WRSIC) acquires, abstracts and indexes the major water resources related literature of the world, and makes information available to the water resources community and the public. A component of the Water Resources Division of the US Geological Survey, the Center maintains a searchable computerized bibliographic data base, and publishers a monthly journal of abstracts. Through its services, the Center is able to provide reliable scientific and technical information about the most recent water resources developments, as well as long-term trends and changes. WRSIC was established in 1966 by the Secretary of the Interior to further the objectives of the Water Resources Research Act of 1964--legislation that encouraged research in water resources and the prevention of needless duplication of research efforts. It was determined the WRSIC should be the national center for information on water resources, covering research reports, scientific journals, and other water resources literature of the world. WRSIC would evaluate all water resources literature, catalog selected articles, and make the information available in publications or by computer access. In this way WRSIC would increase the availability and awareness of water related scientific and technical information. (Lantz-PTT)

  5. NREL Establishes New Center for Distributed Power

    Science.gov Websites

    Establishes New Center for Distributed Power Changing Electricity Market Demands Greater , smaller-scale generation facilities. That concept, known as "distributed power," will be Energy Laboratory (NREL). The Distributed Energy Resources Center at NREL will conduct research and

  6. International Water Center

    NASA Astrophysics Data System (ADS)

    The urban district of Nancy and the Town of Nancy, France, have taken the initiative of creating an International Center of Water (Centre International de l'Eau à Nancy—NAN.C.I.E.) in association with two universities, six engineering colleges, the Research Centers of Nancy, the Rhine-Meuse Basin Agency, and the Chamber of Commerce and Industry. The aim of this center is to promote research and technology transfer in the areas of water and sanitation. In 1985 it will initiate a research program drawing on the experience of 350 researchers and engineers of various disciplines who have already been assigned to research in these fields. The research themes, the majority of which will be multidisciplinary, concern aspects of hygiene and health, the engineering of industrial processes, water resources, and the environment and agriculture. A specialist training program offering five types of training aimed at university graduates, graduates of engineering colleges, or experts, will start in October 1984.

  7. Alternative Fuels Data Center: Natural Gas Distribution

    Science.gov Websites

    . Gas is distributed using 305,000 miles of transmission pipelines (see map), while an additional 2.2 Natural Gas Distribution to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Distribution on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Distribution on Twitter

  8. GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    EPA's Office of Research and Development operates a Ground Water Technical Support Center (GWTSC). The Center provides support on issues regarding subsurface contamination, contaminant fluxes to other media (e.g., surface water or air), and ecosystem restoration. The GWTSC creat...

  9. Data catalog for JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC)

    NASA Technical Reports Server (NTRS)

    Digby, Susan

    1995-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory contains satellite data sets and ancillary in-situ data for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Geophysical parameters available from the archive include sea-surface height, surface-wind vector, surface-wind speed, surface-wind stress vector, sea-surface temperature, atmospheric liquid water, integrated water vapor, phytoplankton pigment concentration, heat flux, and in-situ data. PO.DAAC is an element of the Earth Observing System Data and Information System and is the United States distribution site for TOPEX/POSEIDON data and metadata.

  10. JPL Physical Oceanography Distributed Active Archive Center (PO.DAAC) data availability, version 1-94

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global-change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea-surface height, surface-wind vector, sea-surface temperature, atmospheric liquid water, and integrated water vapor. The JPL PO.DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and is the United States distribution site for Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  11. Demonstration of a Model-Based Technology for Monitoring Water Quality and Corrosion in Water-Distribution systems

    DTIC Science & Technology

    2016-12-01

    Kamojjala, 2014, “Real-Time M0deling of Water Distribution Systems: A Case Study ,” Journal AWWA, Vol. 106, No. 9 (September 2014.) Feinauer, Lynn R...Quality and Corrosion in Water-Distribution Systems Final Report on Project F07-AR05 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to...Final Report on Project F07-AR05 Vicki L. Van Blaricum Construction Engineering Research Laboratory U.S. Army Engineer Research and Development Center

  12. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  13. Kansas Water Science Center bookmark

    USGS Publications Warehouse

    ,

    2017-03-27

    The U.S. Geological Survey Kansas Water Science Center has collected and interpreted hydrologic information in Kansas since 1895. Data collected include streamflow and gage height, reservoir content, water quality and water quantity, suspended sediment, and groundwater levels. Interpretative hydrologic studies are completed on national, regional, statewide, and local levels and cooperatively funded through more than 40 partnerships with these agencies. The U.S. Geological Survey provides impartial scientific information to describe and understand the health of our ecosystems and environment; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. These collected data are in the National Water Information System https://waterdata.usgs.gov/ks/nwis/rt, and all results are documented in reports that also are online at https://ks.water.usgs.gov/. Follow the USGS Kansas Water Science Center on Twitter for the most recent updates and other information: https://twitter.com/USGS_KS.

  14. Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Bodden, Lee; Pease, Phil; Bedet, Jean-Jacques; Rosen, Wayne

    1993-01-01

    The Goddard Space Flight Center Version 0 Distributed Active Archive Center (GSFC V0 DAAC) is being developed to enhance and improve scientific research and productivity by consolidating access to remote sensor earth science data in the pre-EOS time frame. In cooperation with scientists from the science labs at GSFC, other NASA facilities, universities, and other government agencies, the DAAC will support data acquisition, validation, archive and distribution. The DAAC is being developed in response to EOSDIS Project Functional Requirements as well as from requirements originating from individual science projects such as SeaWiFS, Meteor3/TOMS2, AVHRR Pathfinder, TOVS Pathfinder, and UARS. The GSFC V0 DAAC has begun operational support for the AVHRR Pathfinder (as of April, 1993), TOVS Pathfinder (as of July, 1993) and the UARS (September, 1993) Projects, and is preparing to provide operational support for SeaWiFS (August, 1994) data. The GSFC V0 DAAC has also incorporated the existing data, services, and functionality of the DAAC/Climate, DAAC/Land, and the Coastal Zone Color Scanner (CZCS) Systems.

  15. Building better water models using the shape of the charge distribution of a water molecule

    NASA Astrophysics Data System (ADS)

    Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko

    2017-11-01

    The unique properties of liquid water apparently arise from more than just the tetrahedral bond angle between the nuclei of a water molecule since simple three-site models of water are poor at mimicking these properties in computer simulations. Four- and five-site models add partial charges on dummy sites and are better at modeling these properties, which suggests that the shape of charge distribution is important. Since a multipole expansion of the electrostatic potential describes a charge distribution in an orthogonal basis set that is exact in the limit of infinite order, multipoles may be an even better way to model the charge distribution. In particular, molecular multipoles up to the octupole centered on the oxygen appear to describe the electrostatic potential from electronic structure calculations better than four- and five-site models, and molecular multipole models give better agreement with the temperature and pressure dependence of many liquid state properties of water while retaining the computational efficiency of three-site models. Here, the influence of the shape of the molecular charge distribution on liquid state properties is examined by correlating multipoles of non-polarizable water models with their liquid state properties in computer simulations. This will aid in the development of accurate water models for classical simulations as well as in determining the accuracy needed in quantum mechanical/molecular mechanical studies and ab initio molecular dynamics simulations of water. More fundamentally, this will lead to a greater understanding of how the charge distribution of a water molecule leads to the unique properties of liquid water. In particular, these studies indicate that p-orbital charge out of the molecular plane is important.

  16. Cluster analysis for determining distribution center location

    NASA Astrophysics Data System (ADS)

    Lestari Widaningrum, Dyah; Andika, Aditya; Murphiyanto, Richard Dimas Julian

    2017-12-01

    Determination of distribution facilities is highly important to survive in the high level of competition in today’s business world. Companies can operate multiple distribution centers to mitigate supply chain risk. Thus, new problems arise, namely how many and where the facilities should be provided. This study examines a fast-food restaurant brand, which located in the Greater Jakarta. This brand is included in the category of top 5 fast food restaurant chain based on retail sales. There were three stages in this study, compiling spatial data, cluster analysis, and network analysis. Cluster analysis results are used to consider the location of the additional distribution center. Network analysis results show a more efficient process referring to a shorter distance to the distribution process.

  17. Distribution path robust optimization of electric vehicle with multiple distribution centers

    PubMed Central

    Hao, Wei; He, Ruichun; Jia, Xiaoyan; Pan, Fuquan; Fan, Jing; Xiong, Ruiqi

    2018-01-01

    To identify electrical vehicle (EV) distribution paths with high robustness, insensitivity to uncertainty factors, and detailed road-by-road schemes, optimization of the distribution path problem of EV with multiple distribution centers and considering the charging facilities is necessary. With the minimum transport time as the goal, a robust optimization model of EV distribution path with adjustable robustness is established based on Bertsimas’ theory of robust discrete optimization. An enhanced three-segment genetic algorithm is also developed to solve the model, such that the optimal distribution scheme initially contains all road-by-road path data using the three-segment mixed coding and decoding method. During genetic manipulation, different interlacing and mutation operations are carried out on different chromosomes, while, during population evolution, the infeasible solution is naturally avoided. A part of the road network of Xifeng District in Qingyang City is taken as an example to test the model and the algorithm in this study, and the concrete transportation paths are utilized in the final distribution scheme. Therefore, more robust EV distribution paths with multiple distribution centers can be obtained using the robust optimization model. PMID:29518169

  18. Contents of the JPL Distributed Active Archive Center (DAAC) archive, version 2-91

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)

    1991-01-01

    The Distributed Active Archive Center (DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea surface height, surface wind vector, sea surface temperature, atmospheric liquid water, and surface pigment concentration. The Jet Propulsion Laboratory DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for the Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.

  19. Water--The New Fitness Center!

    ERIC Educational Resources Information Center

    Spannuth, John

    1989-01-01

    This article presents an explanation of the benefits of exercises done in the water and describes several water fitness programs implemented by an Oklahoma YMCA center. Water walking is described, and guidelines and cautions are given to maximize the benefits and minimize the risks of this form of exercise. (IAH)

  20. The DIAS/CEOS Water Portal, distributed system using brokering architecture

    NASA Astrophysics Data System (ADS)

    Miura, Satoko; Sekioka, Shinichi; Kuroiwa, Kaori; Kudo, Yoshiyuki

    2015-04-01

    The DIAS/CEOS Water Portal is a one of the DIAS (Data Integration and Analysis System, http://www.editoria.u-tokyo.ac.jp/projects/dias/?locale=en_US) systems for data distribution for users including, but not limited to, scientists, decision makers and officers like river administrators. This portal has two main functions; one is to search and access data and the other is to register and share use cases which use datasets provided via this portal. This presentation focuses on the first function, to search and access data. The Portal system is distributed in the sense that, while the portal system is located in Tokyo, the data is located in archive centers which are globally distributed. For example, some in-situ data is archived at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory in Boulder, Colorado, USA. The NWP station time series and global gridded model output data is archived at the Max Planck Institute for Meteorology (MPIM) in cooperation with the World Data Center for Climate in Hamburg, Germany. Part of satellite data is archived at DIAS storage at the University of Tokyo, Japan. This portal itself does not store data. Instead, according to requests made by users on the web page, it retrieves data from distributed data centers on-the-fly and lets them download and see rendered images/plots. Although some data centers have unique meta data format and/or data search protocols, our portal's brokering function enables users to search across various data centers at one time, like one-stop shopping. And this portal is also connected to other data brokering systems, including GEOSS DAB (Discovery and Access Broker). As a result, users can search over thousands of datasets, millions of files at one time. Our system mainly relies on the open source software GI-cat (http://essi-lab.eu/do/view/GIcat), Opensearch protocol and OPeNDAP protocol to enable the above functions. Details on how it works will be introduced during the

  1. Drinking Water Distribution Systems

    EPA Pesticide Factsheets

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  2. Surface-Water Quality-Assurance Plan for the USGS Wisconsin Water Science Center

    USGS Publications Warehouse

    Garn, H.S.

    2007-01-01

    This surface-water quality-assurance plan documents the standards, policies, and procedures used by the Wisconsin Water Science Center of the U.S. Geological Survey, Water Resources Discipline, for activities related to the collection, processing, storage, analysis, management, and publication of surface-water data. The roles and responsibilities of Water Science Center personnel in following these policies and procedures including those related to safety and training are presented.

  3. High-Performance Computing Data Center Warm-Water Liquid Cooling |

    Science.gov Websites

    Computational Science | NREL Warm-Water Liquid Cooling High-Performance Computing Data Center Warm-Water Liquid Cooling NREL's High-Performance Computing Data Center (HPC Data Center) is liquid water Liquid cooling technologies offer a more energy-efficient solution that also allows for effective

  4. The Hydrologic Cycle Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Hardin, Danny M.; Goodman, H. Michael

    1995-01-01

    The Marshall Space Flight Center Distributed Active Archive Center in Huntsville, Alabama supports the acquisition, production, archival and dissemination of data relevant to the study of the global hydrologic cycle. This paper describes the Hydrologic Cycle DAAC, surveys its principle data holdings, addresses future growth, and gives information for accessing the data sets.

  5. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  6. Distribution of specialized care centers in the United States.

    PubMed

    Wang, Henry E; Yealy, Donald M

    2012-11-01

    As a recommended strategy for optimally managing critical illness, regionalization of care involves matching the needs of the target population with available hospital resources. The national supply and characteristics of hospitals providing specialized critical care services is currently unknown. We seek to characterize the current distribution of specialized care centers in the United States. Using public data linked with the American Hospital Association directory and US Census, we identified US general acute hospitals providing specialized care for ST-segment elevation myocardial infarction (STEMI) (≥40 annual primary percutaneous coronary interventions reported in Medicare Hospital Compare), stroke (The Joint Commission certified stroke centers), trauma (American College of Surgeons or state-designated, adult or pediatric, level I or II), and pediatric critical care (presence of a pediatric ICU) services. We determined the characteristics and state-level distribution and density of specialized care centers (centers per state and centers per state population). Among 4,931 acute care hospitals in the United States, 1,325 (26.9%) provided one of the 4 defined specialized care services, including 574 STEMI, 763 stroke, 508 trauma, and 457 pediatric critical care centers. Approximately half of the 1,325 hospitals provided 2 or more specialized services, and one fifth provided 3 or 4 specialized services. There was variation in the number of each type of specialized care center in each state: STEMI median 7 interquartile range (IQR 2 to 14), stroke 8 (IQR 3 to 17), trauma 6 (IQR 3 to 11), pediatric specialized care 6 (IQR 3 to 11). Similarly, there was variation in the number of each type of specialized care center per population: STEMI median 1 center per 585,135 persons (IQR 418,729 to 696,143), stroke 1 center per 412,188 persons (IQR 321,604 to 572,387), trauma 1 center per 610,589 persons (IQR 406,192 to 917,588), and pediatric critical care 1 center per 665

  7. Water Infrastructure and Resiliency Finance Center

    EPA Pesticide Factsheets

    The Water Infrastructure and Resiliency Finance Center serves as a resource to communities to improve their wastewater, drinking water and stormwater systems, particularly through innovative financing and increased resiliency to climate change.

  8. Evaluation of potential human health risk and investigation of drinking water quality in Isparta city center (Turkey).

    PubMed

    Varol, Simge; Davraz, Aysen

    2016-06-01

    Isparta city center is selected as a work area in this study because the public believes that the tap water is dirty and harmful. In this study, the city's drinking water in the distribution system and other spring waters which are used as drinking water in this region were investigated from the point of water quality and health risk assessment. Water samples were collected from major drinking water springs, tap waters, treatment plants and dam pond in the Isparta province center. Ca-Mg-HCO3, Mg-Ca-HCO3, Ca-Na-HCO3, Ca-HCO3, Ca-HCO3-SO4 and Ca-Mg-HCO3-SO4 are dominant water types. When compared to drinking water guidelines established by World Health Organization and Turkey, much greater attention should be paid to As, Br, Fe, F, NH4, PO4 through varied chemicals above the critical values. The increases of As, Fe, F, NH4 and PO4 are related to water-rock interaction. In tap waters, the increases of As and Fe are due to corrosion of pipes in drinking water distribution systems. The major toxic and carcinogenic chemicals within drinking water are As and Br for both tap water and spring water. Also, F is the non-carcinogenic chemical for only spring waters in the study area.

  9. Ground Water Technical Support Center (GWTSC) Annual ...

    EPA Pesticide Factsheets

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Support Centersthat were established under the Technical Support Project (TSP). The GWTSC provides technical support on issues related to groundwater. Specifically, the GWTSC provides technical support to U.S. EPA and State regulators for issues and problems related to:1. subsurface contamination (contaminants in ground water, soils and sediments),2. cross-media transfer (movement of contaminants from the subsurface to other media such as surface water or air), and3. restoration of impacted ecosystems.The GWTSC works with Remedial Project Managers (RPMs) and other decision makers to solve specific problems at Superfund, RCRA (Resource Conservation and Recovery Act), Brownfields sites, and ecosystem restoration sites. The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management Research Laboratory (NRMRL). The GWTSC is one of an interlinked group of specialized Technical Suppo

  10. Modeled ground water age distributions

    USGS Publications Warehouse

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  11. - Oklahoma Water Resources Center

    Science.gov Websites

    INTERDISCIPLINARY PROGRAMS Environmental Sciences Master of International Agriculture Degree Program OSU Home Professional Development Training (Baton Rouge, LA; 8/5-10) Global Water Security for Agriculture and Natural Oklahoma City Center for Health Sciences Division of Agriculture Institute of Technology Veterinary

  12. 14 CFR 25.1519 - Weight, center of gravity, and weight distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Weight, center of gravity, and weight... Information Operating Limitations § 25.1519 Weight, center of gravity, and weight distribution. The airplane weight, center of gravity, and weight distribution limitations determined under §§ 25.23 through 25.27...

  13. 14 CFR 25.1519 - Weight, center of gravity, and weight distribution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Weight, center of gravity, and weight... Information Operating Limitations § 25.1519 Weight, center of gravity, and weight distribution. The airplane weight, center of gravity, and weight distribution limitations determined under §§ 25.23 through 25.27...

  14. 14 CFR 25.1519 - Weight, center of gravity, and weight distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Weight, center of gravity, and weight... Information Operating Limitations § 25.1519 Weight, center of gravity, and weight distribution. The airplane weight, center of gravity, and weight distribution limitations determined under §§ 25.23 through 25.27...

  15. 14 CFR 25.1519 - Weight, center of gravity, and weight distribution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Weight, center of gravity, and weight... Information Operating Limitations § 25.1519 Weight, center of gravity, and weight distribution. The airplane weight, center of gravity, and weight distribution limitations determined under §§ 25.23 through 25.27...

  16. 14 CFR 25.1519 - Weight, center of gravity, and weight distribution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Weight, center of gravity, and weight... Information Operating Limitations § 25.1519 Weight, center of gravity, and weight distribution. The airplane weight, center of gravity, and weight distribution limitations determined under §§ 25.23 through 25.27...

  17. Octanol-water distribution of engineered nanomaterials.

    PubMed

    Hristovski, Kiril D; Westerhoff, Paul K; Posner, Jonathan D

    2011-01-01

    The goal of this study was to examine the effects of pH and ionic strength on octanol-water distribution of five model engineered nanomaterials. Distribution experiments resulted in a spectrum of three broadly classified scenarios: distribution in the aqueous phase, distribution in the octanol, and distribution into the octanol-water interface. Two distribution coefficients were derived to describe the distribution of nanoparticles among octanol, water and their interface. The results show that particle surface charge, surface functionalization, and composition, as well as the solvent ionic strength and presence of natural organic matter, dramatically impact this distribution. Distributions of nanoparticles into the interface were significant for nanomaterials that exhibit low surface charge in natural pH ranges. Increased ionic strengths also contributed to increased distributions of nanoparticle into the interface. Similarly to the octanol-water distribution coefficients, which represent a starting point in predicting the environmental fate, bioavailability and transport of organic pollutants, distribution coefficients such as the ones described in this study could help to easily predict the fate, bioavailability, and transport of engineered nanomaterials in the environment.

  18. USGS Colorado Water Science Center bookmark

    USGS Publications Warehouse

    ,

    2016-12-05

    The U.S. Geological Survey Colorado Water Science Center conducts its water-resources activities primarily in Colorado in cooperation with more than 125 different entities. These activities include extensive data-collection efforts and studies of streamflow, water quality, and groundwater to address many specific issues of concern to Colorado water-management entities and citizens. The collected data are provided in the National Water Information System, and study results are documented in reports and information served on the Internet.

  19. Passive containment cooling water distribution device

    DOEpatents

    Conway, Lawrence E.; Fanto, Susan V.

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using a series of radial guide elements and cascading weir boxes to collect and then distribute the cooling water into a series of distribution areas through a plurality of cascading weirs. The cooling water is then uniformly distributed over the curved surface by a plurality of weir notches in the face plate of the weir box.

  20. Water vapor distribution in protoplanetary disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Fujun; Bergin, Edwin A., E-mail: fdu@umich.edu

    Water vapor has been detected in protoplanetary disks. In this work, we model the distribution of water vapor in protoplanetary disks with a thermo-chemical code. For a set of parameterized disk models, we calculate the distribution of dust temperature and radiation field of the disk with a Monte Carlo method, and then solve the gas temperature distribution and chemical composition. The radiative transfer includes detailed treatment of scattering by atomic hydrogen and absorption by water of Lyα photons, since the Lyα line dominates the UV spectrum of accreting young stars. In a fiducial model, we find that warm water vapormore » with temperature around 300 K is mainly distributed in a small and well-confined region in the inner disk. The inner boundary of the warm water region is where the shielding of UV field due to dust and water itself become significant. The outer boundary is where the dust temperature drops below the water condensation temperature. A more luminous central star leads to a more extended distribution of warm water vapor, while dust growth and settling tends to reduce the amount of warm water vapor. Based on typical assumptions regarding the elemental oxygen abundance and the water chemistry, the column density of warm water vapor can be as high as 10{sup 22} cm{sup –2}. A small amount of hot water vapor with temperature higher than ∼300 K exists in a more extended region in the upper atmosphere of the disk. Cold water vapor with temperature lower than 100 K is distributed over the entire disk, produced by photodesorption of the water ice.« less

  1. Architecture and evolution of Goddard Space Flight Center Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Bedet, Jean-Jacques; Bodden, Lee; Rosen, Wayne; Sherman, Mark; Pease, Phil

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been developed to enhance Earth Science research by improved access to remote sensor earth science data. Building and operating an archive, even one of a moderate size (a few Terabytes), is a challenging task. One of the critical components of this system is Unitree, the Hierarchical File Storage Management System. Unitree, selected two years ago as the best available solution, requires constant system administrative support. It is not always suitable as an archive and distribution data center, and has moderate performance. The Data Archive and Distribution System (DADS) software developed to monitor, manage, and automate the ingestion, archive, and distribution functions turned out to be more challenging than anticipated. Having the software and tools is not sufficient to succeed. Human interaction within the system must be fully understood to improve efficiency to improve efficiency and ensure that the right tools are developed. One of the lessons learned is that the operability, reliability, and performance aspects should be thoroughly addressed in the initial design. However, the GSFC DAAC has demonstrated that it is capable of distributing over 40 GB per day. A backup system to archive a second copy of all data ingested is under development. This backup system will be used not only for disaster recovery but will also replace the main archive when it is unavailable during maintenance or hardware replacement. The GSFC DAAC has put a strong emphasis on quality at all level of its organization. A Quality team has also been formed to identify quality issues and to propose improvements. The DAAC has conducted numerous tests to benchmark the performance of the system. These tests proved to be extremely useful in identifying bottlenecks and deficiencies in operational procedures.

  2. BIOFILM IN DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Throughout the world there are millions of miles of water distribution pipe lines which provide potable water for use by individuals and industry. Some of these water distribution systems have been in service well over one hundred years. Treated water moving through a distributio...

  3. The International Center for Integrated Water Resources Management (ICIWaRM): The United States' Contribution to UNESCO IHP's Global Network of Water Centers

    NASA Astrophysics Data System (ADS)

    Logan, W. S.

    2015-12-01

    The concept of a "category 2 center"—i.e., one that is closely affiliated with UNESCO, but not legally part of UNESCO—dates back many decades. However, only in the last decade has the concept been fully developed. Within UNESCO, the International Hydrological Programme (IHP) has led the way in creating a network of regional and global water-related centers.ICIWaRM—the International Center for Integrated Water Resources Management—is one member of this network. Approved by UNESCO's General Conference, the center has been operating since 2009. It was designed to fill a niche in the system for a center that was backed by an institution with on-the-ground water management experience, but that also had strong connections to academia, NGOs and other governmental agencies. Thus, ICIWaRM is hosted by the US Army Corps of Engineers' Institute for Water Resources (IWR), but established with an internal network of partner institutions. Three main factors have contributed to any success that ICIWaRM has achieved in its global work: A focus on practical science and technology which can be readily transferred. This includes the Corps' own methodologies and models for planning and water management, and those of our university and government partners. Collaboration with other UNESCO Centers on joint applied research, capacity-building and training. A network of centers needs to function as a network, and ICIWaRM has worked together with UNESCO-affiliated centers in Chile, Brazil, Paraguay, the Dominican Republic, Japan, China, and elsewhere. Partnering with and supporting existing UNESCO-IHP programs. ICIWaRM serves as the Global Technical Secretariat for IHP's Global Network on Water and Development Information in Arid Lands (G-WADI). In addition to directly supporting IHP, work through G-WADI helps the center to frame, prioritize and integrate its activities. With the recent release of the United Nation's 2030 Agenda for Sustainable Development, it is clear that

  4. Water Treatment Technology - Distribution Systems.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  5. Effects of the proposed Prosperity Reservoir on ground water and water quality in lower Center Creek basin, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.; Barks, James H.

    1980-01-01

    Effects of the proposed Prosperity Reservoir on ground water and water quality in lower Center Creek basin depend partly on the effectiveness of Grove Creek as a hydrologic boundary between the reservoir site and the Oronogo-Duenweg mining belt. Results of two dye traces indicate that Grove Creek probably is not an effective boundary. Therefore, higher water levels near the reservoir may cause more ground water to move into the mining belt and cause a greater discharge of zinc-laden mine water into Center Creek.Ground-water-level measurements and seepage runs on Center Creek indicate a relationship between ground-water levels, mine-water discharge and seepage, and base flow in Center Creek. From March to October 1979, ground-water levels generally decreased from 5 to 20 feet at higher elevations (recharge areas) and from 1 to 3 feet near Center Creek (discharge area); total mine water discharged to the surface before entering Center Creek decreased from 5.4 to 2.2 cubic feet per second; mine-water seepage directly to Center Creek decreased from an estimated 1.9 to 1.1 cubic feet per second; and the discharge of Center Creek near Carterville decreased from 184 to 42 cubic feet per second.Fertilizer industry wastes discharged into Grove Creek resulted in significant increases of nitrogen and phosphorus in lower Center Creek.

  6. Morphofunctional changes in distribution of pressure center in multiple sclerosis.

    PubMed

    Neamţu, Marius Cristian; Neamţu, Oana Maria; Enescu Bieru, Denisa; Marin, Mihnea Ion; Rusu, Mihai Robert; Tudorache, Ştefania; Brăila, Anca Daniela; Poiană, Cătălina; Rusu, Ligia

    2018-01-01

    Gait evaluation and assessment of motor performance are of utmost importance in the clinical management of multiple sclerosis (MS). A new approach to the analysis of static and dynamic balance of MS patients is the use of complex biomechanical analysis that includes an analysis of the distribution of the center of pressure (DCP) and loading, measured by using the pressure and force platforms. The study was conducted on a total of 18 patients with MS, with the mean age of 41.2 years old, divided into two groups, according to the presence of clinically detectable gait disturbances. The biomechanical analysis that included the assessment of the loading and DPC was performed using the platform of force distribution. DPC represented the center of all the forces applied and its value could appreciate the mediolateral stability, hence the pronation or, respectively, the supination. Group 1, consisting of 12 patients with MS with clinically detectable gait disorders, including six men and six women, and group 2, of six MS patients without clinically detectable gait disorders, including two men and four women. For group 1, the center of pressure had a left-right asymmetric distribution, and also an anterior-posterior one. There was a predominant distribution at the medial heel, at metatarsals 1-3 and at the hallux. For group 2, the analysis of the plantograms recorded in our study indicated a tendency of the distribution of the pressure center in the metatarsals 2, 3 and less in the heel. The analysis of the loading and distribution of the pressure center was important not only to appreciate the static equilibrium disorders but also to appreciate how these disorders affected the gait initiation, since the patients suffered from anterior-posterior and mediolateral disorders, which produced spatial and temporal distortion preventing gait initiation. In the study of pressure and force, we noticed a predominant distribution on the lateral region of the heel, explained by an

  7. Characterization of Cloud Water-Content Distribution

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2010-01-01

    The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.

  8. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  9. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  10. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  11. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  12. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance with...

  13. Mobile Centers For Secondary Power Distribution

    NASA Technical Reports Server (NTRS)

    Mears, Robert L.

    1990-01-01

    Concept for distribution of 60-Hz ac power in large building devoted to assembly and testing of equipment improves safety, reduces number of outlets and lengthy cables, and readily accommodates frequent changes in operations and configuration. Power from floor recess fed via unobtrusive cable to portable power management center. A cart containing variety of outlets and circuit breakers, wheeled to convenient location near equipment to be assembled or tested. Power distribution system presents larger range of operational configurations than fixed location. Meets tighter standards to feed computers and delicate instruments. Industrial-grade power suitable for power tools and other hardware. Three-phase and single-phase outlets available from each.

  14. Silver disinfection in water distribution systems

    NASA Astrophysics Data System (ADS)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  15. Efficient workload management in geographically distributed data centers leveraging autoregressive models

    NASA Astrophysics Data System (ADS)

    Altomare, Albino; Cesario, Eugenio; Mastroianni, Carlo

    2016-10-01

    The opportunity of using Cloud resources on a pay-as-you-go basis and the availability of powerful data centers and high bandwidth connections are speeding up the success and popularity of Cloud systems, which is making on-demand computing a common practice for enterprises and scientific communities. The reasons for this success include natural business distribution, the need for high availability and disaster tolerance, the sheer size of their computational infrastructure, and/or the desire to provide uniform access times to the infrastructure from widely distributed client sites. Nevertheless, the expansion of large data centers is resulting in a huge rise of electrical power consumed by hardware facilities and cooling systems. The geographical distribution of data centers is becoming an opportunity: the variability of electricity prices, environmental conditions and client requests, both from site to site and with time, makes it possible to intelligently and dynamically (re)distribute the computational workload and achieve as diverse business goals as: the reduction of costs, energy consumption and carbon emissions, the satisfaction of performance constraints, the adherence to Service Level Agreement established with users, etc. This paper proposes an approach that helps to achieve the business goals established by the data center administrators. The workload distribution is driven by a fitness function, evaluated for each data center, which weighs some key parameters related to business objectives, among which, the price of electricity, the carbon emission rate, the balance of load among the data centers etc. For example, the energy costs can be reduced by using a "follow the moon" approach, e.g. by migrating the workload to data centers where the price of electricity is lower at that time. Our approach uses data about historical usage of the data centers and data about environmental conditions to predict, with the help of regressive models, the values of the

  16. Constraint based scheduling for the Goddard Space Flight Center distributed Active Archive Center's data archive and distribution system

    NASA Technical Reports Server (NTRS)

    Short, Nick, Jr.; Bedet, Jean-Jacques; Bodden, Lee; Boddy, Mark; White, Jim; Beane, John

    1994-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational since October 1, 1993. Its mission is to support the Earth Observing System (EOS) by providing rapid access to EOS data and analysis products, and to test Earth Observing System Data and Information System (EOSDIS) design concepts. One of the challenges is to ensure quick and easy retrieval of any data archived within the DAAC's Data Archive and Distributed System (DADS). Over the 15-year life of EOS project, an estimated several Petabytes (10(exp 15)) of data will be permanently stored. Accessing that amount of information is a formidable task that will require innovative approaches. As a precursor of the full EOS system, the GSFC DAAC with a few Terabits of storage, has implemented a prototype of a constraint-based task and resource scheduler to improve the performance of the DADS. This Honeywell Task and Resource Scheduler (HTRS), developed by Honeywell Technology Center in cooperation the Information Science and Technology Branch/935, the Code X Operations Technology Program, and the GSFC DAAC, makes better use of limited resources, prevents backlog of data, provides information about resources bottlenecks and performance characteristics. The prototype which is developed concurrently with the GSFC Version 0 (V0) DADS, models DADS activities such as ingestion and distribution with priority, precedence, resource requirements (disk and network bandwidth) and temporal constraints. HTRS supports schedule updates, insertions, and retrieval of task information via an Application Program Interface (API). The prototype has demonstrated with a few examples, the substantial advantages of using HTRS over scheduling algorithms such as a First In First Out (FIFO) queue. The kernel scheduling engine for HTRS, called Kronos, has been successfully applied to several other domains such as space shuttle mission scheduling, demand flow manufacturing, and avionics communications

  17. Virginia Water Resources Research Center - at Virginia Tech since 1965

    Science.gov Websites

    Virginia Water Resources Research Center at Virginia Tech since 1965 Search for: Search Skip to collaborative research, extension, and education programs to develop solutions to water resource challenges. We Monitoring Council Conference: March 21, 2018 The Virginia Water Resources Research Center at Virginia Tech

  18. 24 CFR 3280.609 - Water distribution systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Water distribution systems. 3280....609 Water distribution systems. (a) Water supply—(1) Supply piping. Piping systems shall be sized to provide an adequate quantity of water to each plumbing fixture at a flow rate sufficient to keep the...

  19. 24 CFR 3280.609 - Water distribution systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Water distribution systems. 3280....609 Water distribution systems. (a) Water supply—(1) Supply piping. Piping systems shall be sized to provide an adequate quantity of water to each plumbing fixture at a flow rate sufficient to keep the...

  20. 24 CFR 3280.609 - Water distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Water distribution systems. 3280....609 Water distribution systems. (a) Water supply—(1) Supply piping. Piping systems shall be sized to provide an adequate quantity of water to each plumbing fixture at a flow rate sufficient to keep the...

  1. 24 CFR 3280.609 - Water distribution systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Water distribution systems. 3280....609 Water distribution systems. Link to an amendment published at 78 FR 73986, Dec. 9, 2013. (a) Water supply—(1) Supply piping. Piping systems shall be sized to provide an adequate quantity of water to each...

  2. Managing Returns in a Catalog Distribution Center

    ERIC Educational Resources Information Center

    Gates, Joyce; Stuart, Julie Ann; Bonawi-tan, Winston; Loehr, Sarah

    2004-01-01

    The research team of the Purdue University in the United States developed an algorithm that considers several different factors, in addition to cost, to help catalog distribution centers process their returns more efficiently. A case study to teach the students important concepts involved in developing a solution to the returns disposition problem…

  3. Chilled water study EEAP program for Walter Reed Army Medical Center: Book 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Energy Engineering Analysis Program (EEAP) Study for Walter Reed Army Medical Center (WRAMC) was to provide a thorough examination of the central chilled water plants on site. WRAMC is comprised of seventy-one (71) buildings located on a 113-acre site in Washington, D.C. There are two (2) central chilled water plants (Buildings 48 and 49) each with a primary chilled water distribution system. In addition to the two (2) central plants, three (3) buildings utilize their own independent chillers. Two (2) of the independent chillers (Buildings 7 and T-2), one of which is inoperative (T-2), are smaller air-cooled units, whilemore » the third (Building 54) has a 1,900-ton chilled water plant comprised of three (3) centrifugal chillers. Of the two (2) central chilled water plants, Building 48 houses six (6) chillers totalling 7,080 tons of cooling and Building 49 houses one (1) chiller with 660 tons of cooling. The total chiller cooling capacity available on site is 9,840 tons. The chilled water systems were reviewed for alternative ways of conserving energy on site and reducing the peak-cooling load. Distribution systems were reviewed to determine which buildings were served by each of the chilled water plants and to determine chilled water usage on site. Evaluations were made of building exterior and interior composition in order to estimate cooling loads. Interviews with site personnel helped Entech better understand the chilled water plants, the distribution systems, and how each system was utilized.« less

  4. Impact of RO-desalted water on distribution water qualities.

    PubMed

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  5. Redesign of Water Distribution Systems for Passive ...

    EPA Pesticide Factsheets

    Journal article The purpose of this paper is to examine how water distribution systems could be designed or retrofitted to passively contain contaminants that might enter the water distribution system.

  6. EPA'S GROUND WATER TECHNICAL SUPPORT CENTER

    EPA Science Inventory

    The purpose and the services provided by EPA's Ground Water Technical Support Center (GWTSC) will be presented. In 1987 the Office of Solid Waste and Emergency Response, Regional Waste Management Offices, and ORD established the Technical Support Project (TSP)

    The purpos...

  7. [Influence of water source switching on water quality in drinking water distribution system].

    PubMed

    Wang, Yang; Niu, Zhang-bin; Zhang, Xiao-jian; Chen, Chao; He, Wen-jie; Han, Hong-da

    2007-10-01

    This study investigates the regularity of the change on the physical and chemical water qualities in the distribution system during the process of water source switching in A city. Due to the water source switching, the water quality is chemical-astable. Because of the differences between the two water sources, pH reduced from 7.54 to 7.18, alkalinity reduced from 188 mg x L(-1) to 117 mg x L(-1), chloride (Cl(-)) reduced from 310 mg x L(-1) to 132 mg x L(-1), conductance reduced from 0.176 S x m(-1) to 0.087 S x m(-1) and the ions of calcium and magnesium reduced to 15 mg x L(-1) and 11 mg x L(-1) respectively. Residual chlorine changed while the increase of the chlorine demand and the water quantity decreasing at night, and the changes of pH, alkalinity and residual chlorine brought the iron increased to 0.4 mg x L(-1) at the tiptop, which was over the standard. The influence of the change of the water parameters on the water chemical-stability in the drinking water distribution system is analyzed, and the controlling countermeasure is advanced: increasing pH, using phosphate and enhancing the quality of the water in distribution system especially the residual chlorine.

  8. [Research on controlling iron release of desalted water transmitted in existing water distribution system].

    PubMed

    Tian, Yi-Mei; Liu, Yang; Zhao, Peng; Shan, Jin-Lin; Yang, Suo-Yin; Liu, Wei

    2012-04-01

    Desalted water, with strong corrosion characteristics, would possibly lead to serious "red water" when transmitted and distributed in existing municipal water distribution network. The main reason for red water phenomenon is iron release in water pipes. In order to study the methods of controlling iron release in existing drinking water distribution pipe, tubercle analysis of steel pipe and cast iron pipe, which have served the distribution system for 30-40 years, was carried out, the main construction materials were Fe3O4 and FeOOH; and immersion experiments were carried in more corrosive pipes. Through changing mixing volume of tap water and desalted water, pH, alkalinity, chloride and sulfate, the influence of different water quality indexes on iron release were mainly analyzed. Meanwhile, based on controlling iron content, water quality conditions were established to meet with the safety distribution of desalted water: volume ratio of potable water and desalted water should be higher than or equal to 2, pH was higher than 7.6, alkalinity was higher than 200 mg x L(-1).

  9. DRINKING WATER QUALITY DETERIORATION IN DISTRIBUTION SYSTEMS: COLORED WATER FORMATION AND ITS CONTROL

    EPA Science Inventory

    The release of iron from drinking water distribution systems is a common source of drinking water distribution system consumer complaints. Suspended iron particles result in colored (red) water and metallic tasting water. Iron release results from both physical and chemical mec...

  10. From policy to practice: implementation of water policies in child care centers in Connecticut.

    PubMed

    Middleton, Ann E; Henderson, Kathryn E; Schwartz, Marlene B

    2013-03-01

    Child care policies may contribute to healthy beverage consumption patterns. This study documented availability and accessibility of water and correspondence with state and federal policy and accreditation standards in child care centers. One-day observations were conducted in a random sample of 40 Child and Adult Care Food Program-participating preschool classrooms in Connecticut. Child care centers, center directors, and preschool teachers. Raters observed water availability and teacher behaviors during lunch, physical activity, and in the classroom. National, state, and childcare center water regulations and policies were reviewed. Descriptive statistics present data on water availability, promotion, and modeling. Bivariate relationships between water availability and accreditation status, center water policy, location of physical activity, and verbal promotion were assessed using the Fisher exact test (P < .05). Many centers were in violation of water-promoting policies. Water was available in most classrooms (84%) but was only adult accessible in over half of those classrooms. Water was available during one third of physical activity periods observed. Verbal prompts for children to drink water were few. Support is needed to help centers meet existing water policies and new water requirements included in the 2010 Child Nutrition Reauthorization Act. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  11. ASC Distribution Management Center (DMC) Provides Materiel Management Capability

    DTIC Science & Technology

    2008-09-01

    Distribution Management Center (DMC) is the single interface for the synchronization and integration of logistical functions among active Army units in CONUS...with an integrated team of Soldiers, government service employees, and contractors assigned to Rock Island, as well as forward-positioned Distribution ... Management Teams (DMTs) at 15 major Army installations throughout CONUS, Alaska, and Hawaii. The current DMC structure provides the benefit of

  12. Occurrence of Mycobacteria in Water Treatment Lines and in Water Distribution Systems

    PubMed Central

    Le Dantec, Corinne; Duguet, Jean-Pierre; Montiel, Antoine; Dumoutier, Nadine; Dubrou, Sylvie; Vincent, Véronique

    2002-01-01

    The frequency of recovery of atypical mycobacteria was estimated in two treatment plants providing drinking water to Paris, France, at some intermediate stages of treatment. The two plants use two different filtration processes, rapid and slow sand filtration. Our results suggest that slow sand filtration is more efficient for removing mycobacteria than rapid sand filtration. In addition, our results show that mycobacteria can colonize and grow on granular activated carbon and are able to enter distribution systems. We also investigated the frequency of recovery of mycobacteria in the water distribution system of Paris (outside buildings). The mycobacterial species isolated from the Paris drinking water distribution system are different from those isolated from the water leaving the treatment plants. Saprophytic mycobacteria (present in 41.3% of positive samples), potentially pathogenic mycobacteria (16.3%), and unidentifiable mycobacteria (54.8%) were isolated from 12 sites within the Paris water distribution system. Mycobacterium gordonae was preferentially recovered from treated surface water, whereas Mycobacterium nonchromogenicum was preferentially recovered from groundwater. No significant correlations were found among the presence of mycobacteria, the origin of water, and water temperature. PMID:12406720

  13. EQUITY EVALUATION OF PADDY IRRIGATION WATER DISTRIBUTION BY SOCIETY-JUSTICE-WATER DISTRIBUTION RULE HYPOTHESIS

    NASA Astrophysics Data System (ADS)

    Tanji, Hajime; Kiri, Hirohide; Kobayashi, Shintaro

    When total supply is smaller than total demand, it is difficult to apply the paddy irrigation water distribution rule. The gap must be narrowed by decreasing demand. Historically, the upstream served rule, rotation schedule, or central schedule weight to irrigated area was adopted. This paper proposes the hypothesis that these rules are dependent on social justice, a hypothesis called the "Society-Justice-Water Distribution Rule Hypothesis". Justice, which means a balance of efficiency and equity of distribution, is discussed under the political philosophy of utilitarianism, liberalism (Rawls), libertarianism, and communitarianism. The upstream served rule can be derived from libertarianism. The rotation schedule and central schedule can be derived from communitarianism. Liberalism can provide arranged schedule to adjust supply and demand based on "the Difference Principle". The authors conclude that to achieve efficiency and equity, liberalism may provide the best solution after modernization.

  14. Review on Water Distribution of Cooling Tower in Power Station

    NASA Astrophysics Data System (ADS)

    Huichao, Zhang; Lei, Fang; Hao, Guang; Ying, Niu

    2018-04-01

    As the energy sources situation is becoming more and more severe, the importance of energy conservation and emissions reduction gets clearer. Since the optimization of water distribution system of cooling tower in power station can save a great amount of energy, the research of water distribution system gets more attention nowadays. This paper summarizes the development process of counter-flow type natural draft wet cooling tower and the water distribution system, and introduces the related domestic and international research situation. Combining the current situation, we come to the conclusion about the advantages and disadvantages of the several major water distribution modes, and analyze the problems of the existing water distribution ways in engineering application, furthermore, we put forward the direction of water distribution mode development on the basis knowledge of water distribution of cooling tower. Due to the water system can hardly be optimized again when it’s built, choosing an appropriate water distribution mode according to actual condition seems to be more significant.

  15. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey Montana Water Science Center

    USGS Publications Warehouse

    Lambing, John H.

    2006-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.

  16. Online monitoring of seismic damage in water distribution systems

    NASA Astrophysics Data System (ADS)

    Liang, Jianwen; Xiao, Di; Zhao, Xinhua; Zhang, Hongwei

    2004-07-01

    It is shown that water distribution systems can be damaged by earthquakes, and the seismic damages cannot easily be located, especially immediately after the events. Earthquake experiences show that accurate and quick location of seismic damage is critical to emergency response of water distribution systems. This paper develops a methodology to locate seismic damage -- multiple breaks in a water distribution system by monitoring water pressure online at limited positions in the water distribution system. For the purpose of online monitoring, supervisory control and data acquisition (SCADA) technology can well be used. A neural network-based inverse analysis method is constructed for locating the seismic damage based on the variation of water pressure. The neural network is trained by using analytically simulated data from the water distribution system, and validated by using a set of data that have never been used in the training. It is found that the methodology provides an effective and practical way in which seismic damage in a water distribution system can be accurately and quickly located.

  17. Three-dimensional evolution of water vapor distributions in the Northern Hemisphere stratosphere as observed by the MLS

    NASA Technical Reports Server (NTRS)

    Lahoz, W. A.; O'Neill, A.; Carr, E. S.; Harwood, R. S.; Froidevaux, L.; Read, W. G.; Waters, J. W.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.

    1994-01-01

    The three-dimensional evolution of stratospheric water vapor distributions observed by the Microwave Limb Sounder (MLS) during the period October 1991 - July 1992 is documented. The transport features inferred from the MLS water vapor distributions are corroborated using other dynamical fields, namely, nitrous oxide from the Cryogenic Limb Array Etalon Spectrometer instrument, analyzed winds from the U.K. Meteorological Office (UKMO), UKMO-derived potential vorticity, and the diabatic heating field. By taking a vortex-centered view and an along-track view, the authors observe in great detail the vertical and horizontal structure of the northern winter stratosphere. It is demonstrated that the water vapor distributions show clear signatures of the effects of diabatic descent through isentropic surfaces and quasi-horizontal transport along isentropic surfaces, and that the large-scale winter flow is organized by the interaction between the westerly polar vortex and the Aleutian high.

  18. Ground Water Technical Support Center (GWTSC) Annual Report Fiscal Year 2015

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA’s National Risk Management ...

  19. Logistics Distribution Center Location Evaluation Based on Genetic Algorithm and Fuzzy Neural Network

    NASA Astrophysics Data System (ADS)

    Shao, Yuxiang; Chen, Qing; Wei, Zhenhua

    Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.

  20. Online location of a break in water distribution systems

    NASA Astrophysics Data System (ADS)

    Liang, Jianwen; Xiao, Di; Zhao, Xinhua; Zhang, Hongwei

    2003-08-01

    Breaks often occur to urban water distribution systems under severely cold weather, or due to corrosion of pipes, deformation of ground, etc., and the breaks cannot easily be located, especially immediately after the events. This paper develops a methodology to locate a break in a water distribution system by monitoring water pressure online at some nodes in the water distribution system. For the purpose of online monitoring, supervisory control and data acquisition (SCADA) technology can well be used. A neural network-based inverse analysis method is constructed for locating the break based on the variation of water pressure. The neural network is trained by using analytically simulated data from the water distribution system, and validated by using a set of data that have never been used in the training. It is found that the methodology provides a quick, effective, and practical way in which a break in a water distribution system can be located.

  1. Distribution of Water in Jupiter Stratosphere

    NASA Image and Video Library

    2013-04-23

    This map shows the distribution of water in the stratosphere of Jupiter as measured with the Herschel space observatory. White and cyan indicate highest concentration of water, and blue indicates lesser amounts.

  2. Analysis of logistic distribution performance of good supply from PT. Mentari Trans Nusantara distribution center to branches using Smart PLS 3.0

    NASA Astrophysics Data System (ADS)

    Endrawati, Titin; Siregar, M. Tirtana

    2018-03-01

    PT Mentari Trans Nusantara is a company engaged in the distribution of goods from the manufacture of the product to the distributor branch of the customer so that the product distribution must be controlled directly from the PT Mentari Trans Nusantara Center for faster delivery process. Problems often occur on the expedition company which in charge in sending the goods although it has quite extensive networking. The company is less control over logistics management. Meanwhile, logistics distribution management control policy will affect the company's performance in distributing products to customer distributor branches and managing product inventory in distribution center. PT Mentari Trans Nusantara is an expedition company which engaged in good delivery, including in Jakarta. Logistics management performance is very important due to its related to the supply of goods from the central activities to the branches based oncustomer demand. Supply chain management performance is obviously depends on the location of both the distribution center and branches, the smoothness of transportation in the distribution and the availability of the product in the distribution center to meet the demand in order to avoid losing sales. This study concluded that the company could be more efficient and effective in minimizing the risks of loses by improve its logistic management.

  3. USGS California Water Science Center water programs in California

    USGS Publications Warehouse

    Shulters, Michael V.

    2005-01-01

    California is threatened by many natural hazards—fire, floods, landslides, earthquakes. The State is also threatened by longer-term problems, such as hydrologic effects of climate change, and human-induced problems, such as overuse of ground water and degradation of water quality. The threats and problems are intensified by increases in population, which has risen to nearly 36.8 million. For the USGS California Water Science Center, providing scientific information to help address hazards, threats, and hydrologic issues is a top priority. To meet the demands of a growing California, USGS scientific investigations are helping State and local governments improve emergency management, optimize resources, collect contaminant-source and -mobility information, and improve surface- and ground-water quality. USGS hydrologic studies and data collection throughout the State give water managers quantifiable and detailed scientific information that can be used to plan for development and to protect and more efficiently manage resources. The USGS, in cooperation with state, local, and tribal agencies, operates more than 500 instrument stations, which monitor streamflow, ground-water levels, and surface- and ground-water constituents to help protect water supplies and predict the threats of natural hazards. The following are some of the programs implemented by the USGS, in cooperation with other agencies, to obtain and analyze information needed to preserve California's environment and resources.

  4. Transparent exopolymer particle removal in different drinking water production centers.

    PubMed

    Van Nevel, Sam; Hennebel, Tom; De Beuf, Kristof; Du Laing, Gijs; Verstraete, Willy; Boon, Nico

    2012-07-01

    Transparent exopolymer particles (TEP) have recently gained interest in relation to membrane fouling. These sticky, gel-like particles consist of acidic polysaccharides excreted by bacteria and algae. The concentrations, expressed as xanthan gum equivalents L⁻¹ (μg X(eq) L⁻¹), usually reach hundred up to thousands μg X(eq) L⁻¹ in natural waters. However, very few research was performed on the occurrence and fate of TEP in drinking water, this far. This study examined three different drinking water production centers, taking in effluent of a sewage treatment plant (STP), surface water and groundwater, respectively. Each treatment step was evaluated on TEP removal and on 13 other chemical and biological parameters. An assessment on TEP removal efficiency of a diverse range of water treatment methods and on correlations between TEP and other parameters was performed. Significant correlations between particulate TEP (>0.4 μm) and viable cell concentrations were found, as well as between colloidal TEP (0.05-0.4 μm) and total COD, TOC, total cell or viable cell concentrations. TEP concentrations were very dependent on the raw water source; no TEP was detected in groundwater but the STP effluent contained 1572 μg X(eq) L⁻¹ and the surface water 699 μg X(eq) L⁻¹. Over 94% of total TEP in both plants was colloidal TEP, a fraction neglected in nearly every other TEP study. The combination of coagulation and sand filtration was effective to decrease the TEP levels by 67%, while the combination of ultrafiltration and reverse osmosis provided a total TEP removal. Finally, in none of the installations TEP reached the final drinking water distribution system at significant concentrations. Overall, this study described the presence and removal of TEP in drinking water systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Geographic Distribution of Trauma Centers and Injury Related Mortality in the United States

    PubMed Central

    Brown, Joshua B.; Rosengart, Matthew R.; Billiar, Timothy R.; Peitzman, Andrew B.; Sperry, Jason L.

    2015-01-01

    Background Regionalized trauma care improves outcomes; however access to care is not uniform across the US. The objective was to evaluate whether geographic distribution of trauma centers correlates with injury mortality across state trauma systems. Methods Level I/II trauma centers in the contiguous US were mapped. State-level age-adjusted injury fatality rates/100,000people were obtained and evaluated for spatial autocorrelation. Nearest neighbor ratios (NNR) were generated for each state. A NNR<1 indicates clustering, while NNR>1 indicates dispersion. NNR were tested for difference from random geographic distribution. Fatality rates and NNR were examined for correlation. Fatality rates were compared between states with trauma center clustering versus dispersion. Trauma center distribution and population density were evaluated. Spatial-lag regression determined the association between fatality rate and NNR, controlling for state-level demographics, population density, injury severity, trauma system resources, and socioeconomic factors. Results Fatality rates were spatially autocorrelated (Moran's I=0.35, p<0.01). Nine states had a clustered pattern (median NNR 0.55, IQR 0.48–0.60), 22 had a dispersed pattern (median NNR 2.00, IQR 1.68–3.99), and 10 had a random pattern (median NNR 0.90, IQR 0.85–1.00) of trauma center distribution. Fatality rate and NNR were correlated (ρ=0.34, p=0.03). Clustered states had a lower median injury fatality rate compared to dispersed states (56.9 [IQR 46.5–58.9] versus 64.9 [IQR 52.5–77.1], p=0.04). Dispersed compared to clustered states had more counties without a trauma center that had higher population density than counties with a trauma center (5.7% versus 1.2%, p<0.01). Spatial-lag regression demonstrated fatality rates increased 0.02/100,000persons for each unit increase in NNR (p<0.01). Conclusions Geographic distribution of trauma centers correlates with injury mortality, with more clustered state trauma centers

  6. Geographic distribution of trauma centers and injury-related mortality in the United States.

    PubMed

    Brown, Joshua B; Rosengart, Matthew R; Billiar, Timothy R; Peitzman, Andrew B; Sperry, Jason L

    2016-01-01

    Regionalized trauma care improves outcomes; however, access to care is not uniform across the United States. The objective was to evaluate whether geographic distribution of trauma centers correlates with injury mortality across state trauma systems. Level I or II trauma centers in the contiguous United States were mapped. State-level age-adjusted injury fatality rates per 100,000 people were obtained and evaluated for spatial autocorrelation. Nearest neighbor ratios (NNRs) were generated for each state. A NNR less than 1 indicates clustering, while a NNR greater than 1 indicates dispersion. NNRs were tested for difference from random geographic distribution. Fatality rates and NNRs were examined for correlation. Fatality rates were compared between states with trauma center clustering versus dispersion. Trauma center distribution and population density were evaluated. Spatial-lag regression determined the association between fatality rate and NNR, controlling for state-level demographics, population density, injury severity, trauma system resources, and socioeconomic factors. Fatality rates were spatially autocorrelated (Moran's I = 0.35, p < 0.01). Nine states had a clustered pattern (median NNR, 0.55; interquartile range [IQR], 0.48-0.60), 22 had a dispersed pattern (median NNR, 2.00; IQR, 1.68-3.99), and 10 had a random pattern (median NNR, 0.90; IQR, 0.85-1.00) of trauma center distribution. Fatality rate and NNR were correlated (ρ = 0.34, p = 0.03). Clustered states had a lower median injury fatality rate compared with dispersed states (56.9 [IQR, 46.5-58.9] vs. 64.9 [IQR, 52.5-77.1]; p = 0.04). Dispersed compared with clustered states had more counties without a trauma center that had higher population density than counties with a trauma center (5.7% vs. 1.2%, p < 0.01). Spatial-lag regression demonstrated that fatality rates increased by 0.02 per 100,000 persons for each unit increase in NNR (p < 0.01). Geographic distribution of trauma centers correlates

  7. Systems Measures of Water Distribution System Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Murray, Regan; Walker, La Tonya Nicole

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements tomore » water distribution system modeling tools.« less

  8. THE PRESENCE OF ARSENIC IN DRINKING WATER DISTRIBUTION SOLIDS

    EPA Science Inventory

    The objective of this presentation was to determine whether solids found in drinking water distribution systems contain arsenic. Distribution system pipes and solids removed during hydrant flushing were collected from the distribution system of eight water utilities that had mea...

  9. Shallow ground-water quality beneath a major urban center: Denver, Colorado, USA

    USGS Publications Warehouse

    Bruce, B.W.; McMahon, P.B.

    1996-01-01

    A survey of the chemical quality of ground water in the unconsolidated alluvial aquifer beneath a major urban center (Denver, Colorado, USA) was performed in 1993 with the objective of characterizing the quality of shallow ground-water in the urban area and relating water quality to land use. Thirty randomly selected alluvial wells were each sampled once for a broad range of dissolved constituents. The urban land use at each well site was sub- classified into one of three land-use settings: residential, commercial, and industrial. Shallow ground-water quality was highly variable in the urban area and the variability could be related to these land-use setting classifications. Sulfate (SO4) was the predominant anion in most samples from the residential and commercial land-use settings, whereas bicarbonate (HCO3) was the predominant anion in samples from the industrial land-use setting, indicating a possible shift in redox conditions associated with land use. Only three of 30 samples had nitrate concentrations that exceeded the US national drinking-water standard of 10 mg l-1 as nitrogen, indicating that nitrate contamination of shallow ground water may not be a serious problem in this urban area. However, the highest median nitrate concentration (4.2 mg l-1) was in samples from the residential setting, where fertilizer application is assumed to be most intense. Twenty-seven of 30 samples had detectable pesticides and nine of 82 analyzed pesticide compounds were detected at low concentrations, indicating that pesticides are widely distributed in shallow ground water in this urban area. Although the highest median total pesticide concentration (0.17 ??g l-1) was in the commercial setting, the herbicides prometon and atrazine were found in each land-use setting. Similarly, 25 of 29 samples analyzed had detectable volatile organic compounds (VOCs) indicating these compounds are also widely distributed in this urban area. The total VOC concentrations in sampled wells

  10. STANDARDIZED COSTS FOR WATER SUPPLY DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Presented within the report are cost data for construction and operation/maintenance of domestic water distribution and transmission pipelines, domestic water pumping stations, and domestic water storage reservoirs. To allow comparison of new construction with rehabilitation of e...

  11. Performance Monitoring of Residential Hot Water Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purposemore » of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.« less

  12. Deficiencies in drinking water distribution systems in developing countries.

    PubMed

    Lee, Ellen J; Schwab, Kellogg J

    2005-06-01

    Rapidly growing populations and migration to urban areas in developing countries has resulted in a vital need for the establishment of centralized water systems to disseminate potable water to residents. Protected source water and modern, well-maintained drinking water treatment plants can provide water adequate for human consumption. However, ageing, stressed or poorly maintained distribution systems can cause the quality of piped drinking water to deteriorate below acceptable levels and pose serious health risks. This review will outline distribution system deficiencies in developing countries caused by: the failure to disinfect water or maintain a proper disinfection residual; low pipeline water pressure; intermittent service; excessive network leakages; corrosion of parts; inadequate sewage disposal; and inequitable pricing and usage of water. Through improved research, monitoring and surveillance, increased understanding of distribution system deficiencies may focus limited resources on key areas in an effort to improve public health and decrease global disease burden.

  13. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    PubMed

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. TxDOT can help pave the way for distribution centers.

    DOT National Transportation Integrated Search

    2010-05-01

    TxDOT supports economic development in Texas. : Working through its district offices, TxDOT can help : developers avoid common transportation-related : problems associated with selected center sites. TxDOT : may also be able to help distribution cent...

  15. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    EPA Science Inventory

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  16. Identification and characterization of steady and occluded water in drinking water distribution systems.

    PubMed

    Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei

    2015-01-01

    Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Systems of frequency distributions for water and environmental engineering

    NASA Astrophysics Data System (ADS)

    Singh, Vijay P.

    2018-09-01

    A wide spectrum of frequency distributions are used in hydrologic, hydraulic, environmental and water resources engineering. These distributions may have different origins, are based on different hypotheses, and belong to different generating systems. Review of literature suggests that different systems of frequency distributions employed in science and engineering in general and environmental and water engineering in particular have been derived using different approaches which include (1) differential equations, (2) distribution elasticity, (3) genetic theory, (4) generating functions, (5) transformations, (6) Bessel function, (7) expansions, and (8) entropy maximization. This paper revisits these systems of distributions and discusses the hypotheses that are used for deriving these systems. It also proposes, based on empirical evidence, another general system of distributions and derives a number of distributions from this general system that are used in environmental and water engineering.

  18. Flood impacts on a water distribution network

    NASA Astrophysics Data System (ADS)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-12-01

    Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  19. Chilled water study EEAP program for Walter Reed Army Medical Center. Book 1. Final Submission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    The Energy Engineering Analysis Program (EEAP) Study for Walter Reed Army Medical Center (WRAMC) was to provide a thorough examination of the central chilled water plants on site. WRAMC is comprised of seventy-one (71) buildings located on a 113-acre site in Washington, D.C. There are two (2) central chilled water plants (Buildings 48 and 49) each with a primary chilled water distribution system. In addition to the two (2) central plants, three (3) buildings utilize their own independent chillers. Two (2) of the independent chillers (Buildings 7 and T-2), one of which is inoperative (T-2), are smaller air-cooled units, whilemore » the third (Building 54) has a 1,900-ton chilled water plant comprised of three (3) centrifugal chillers. Of the two (2) central chilled water plants, Building 48 houses six (6) chillers totalling 7,080 tons of cooling and Building 49 houses one (1) chiller with 660 tons of cooling. The total chiller cooling capacity available on site is 9,840 tons.« less

  20. Science center capabilities to monitor and investigate Michigan’s water resources, 2016

    USGS Publications Warehouse

    Giesen, Julia A.; Givens, Carrie E.

    2016-09-06

    Michigan faces many challenges related to water resources, including flooding, drought, water-quality degradation and impairment, varying water availability, watershed-management issues, stormwater management, aquatic-ecosystem impairment, and invasive species. Michigan’s water resources include approximately 36,000 miles of streams, over 11,000 inland lakes, 3,000 miles of shoreline along the Great Lakes (MDEQ, 2016), and groundwater aquifers throughout the State.The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as tribes and universities, to provide scientific information used to manage the water resources of Michigan. To effectively assess water resources, the USGS uses standardized methods to operate streamgages, water-quality stations, and groundwater stations. The USGS also monitors water quality in lakes and reservoirs, makes periodic measurements along rivers and streams, and maintains all monitoring data in a national, quality-assured, hydrologic database.The USGS in Michigan investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface water and groundwater statewide. Water-resource monitoring and scientific investigations are conducted statewide by USGS hydrologists, hydrologic technicians, biologists, and microbiologists who have expertise in data collection as well as various scientific specialties. A support staff consisting of computer-operations and administrative personnel provides the USGS the functionality to move science forward. Funding for USGS activities in Michigan comes from local and State agencies, other Federal agencies, direct Federal appropriations, and through the USGS Cooperative Matching Funds, which allows the USGS to partially match funding provided by local and State partners.This fact sheet provides an overview of the USGS current (2016) capabilities to monitor and study Michigan’s vast water resources. More

  1. The Impact of Wireless Technology on Order Selection Audits at an Auto Parts Distribution Center

    ERIC Educational Resources Information Center

    Goomas, David T.

    2012-01-01

    Audits of store order pallets or totes performed by auditors at five distribution centers (two experimental and three comparison distribution centers) were used to check for picking accuracy prior to being loaded onto a truck for store delivery. Replacing the paper audits with wireless handheld computers that included immediate auditory and visual…

  2. 75 FR 9343 - Nomenclature Change Relating to the Network Distribution Center Transition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... POSTAL SERVICE 39 CFR Parts 111 and 121 Nomenclature Change Relating to the Network Distribution... (BMC) to network distribution centers (NDC), by replacing all text references to ``BMC'' with ``NDC...: Background: The BMC network was established in the 1970s to process Parcel Post[supreg], Bound Printed Matter...

  3. A second generation distributed point polarizable water model.

    PubMed

    Kumar, Revati; Wang, Fang-Fang; Jenness, Glen R; Jordan, Kenneth D

    2010-01-07

    A distributed point polarizable model (DPP2) for water, with explicit terms for charge penetration, induction, and charge transfer, is introduced. The DPP2 model accurately describes the interaction energies in small and large water clusters and also gives an average internal energy per molecule and radial distribution functions of liquid water in good agreement with experiment. A key to the success of the model is its accurate description of the individual terms in the n-body expansion of the interaction energies.

  4. Ground Water Technical Support Center (GWTSC) Annual Report Fiscal Year 2014 (FY14)

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  5. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    EPA Science Inventory

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  6. Resilience-based optimal design of water distribution network

    NASA Astrophysics Data System (ADS)

    Suribabu, C. R.

    2017-11-01

    Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.

  7. Legacy data center integration into distributed data federations: The World Data Center for Climate (WDCC) experience

    NASA Astrophysics Data System (ADS)

    Kindermann, Stephan; Berger, Katharina; Toussaint, Frank

    2014-05-01

    The integration of well-established legacy data centers into newly developed data federation infrastructures is a key requirement to enhance climate data access based on widely agreed interfaces. We present the approach taken to integrate the ICSU World Data Center for Climate (WDCC) located in Hamburg, Germany into the European ENES climate data Federation which is part of the international ESGF data federation. The ENES / ESGF data federation hosts petabytes of climate model data and provides scalable data search and access services across the worldwide distributed data centers. Parts of the data provided by the ENES / ESGF data federation is also long term archived and curated at the WDCC data archive, allowing e.g. for DOI based data citation. An integration of the WDCC into the ENES / ESGF federation allows end users to search and access WDCC data using consistent interfaces worldwide. We will summarize the integration approach we have taken for WDCC legacy system and ESGF infrastructure integration. On the technical side we describe the provisioning of ESGF consistent metadata and data interfaces as well as the security infrastructure adoption. On the non-technical side we describe our experiences in integrating a long-term archival center with costly quality assurance procedures with an integrated distributed data federation putting emphasis on providing early and consistent data search and access services to scientists. The experiences were gained in the process of curating ESGF hosted CMIP5 data at the WDCC. Approximately one petabyte of CMIP5 data which was used for the IPCC climate report is being replicated and archived at the WDCC.

  8. Biological instability in a chlorinated drinking water distribution network.

    PubMed

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×10(3) cells mL(-1) to 4.66×10(5) cells mL(-1) in the network. While this parameter did not exceed 2.1×10(4) cells mL(-1) in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×10(5) cells mL(-1). This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability.

  9. Biological Instability in a Chlorinated Drinking Water Distribution Network

    PubMed Central

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923

  10. A multipurpose computing center with distributed resources

    NASA Astrophysics Data System (ADS)

    Chudoba, J.; Adam, M.; Adamová, D.; Kouba, T.; Mikula, A.; Říkal, V.; Švec, J.; Uhlířová, J.; Vokáč, P.; Svatoš, M.

    2017-10-01

    The Computing Center of the Institute of Physics (CC IoP) of the Czech Academy of Sciences serves a broad spectrum of users with various computing needs. It runs WLCG Tier-2 center for the ALICE and the ATLAS experiments; the same group of services is used by astroparticle physics projects the Pierre Auger Observatory (PAO) and the Cherenkov Telescope Array (CTA). OSG stack is installed for the NOvA experiment. Other groups of users use directly local batch system. Storage capacity is distributed to several locations. DPM servers used by the ATLAS and the PAO are all in the same server room, but several xrootd servers for the ALICE experiment are operated in the Nuclear Physics Institute in Řež, about 10 km away. The storage capacity for the ATLAS and the PAO is extended by resources of the CESNET - the Czech National Grid Initiative representative. Those resources are in Plzen and Jihlava, more than 100 km away from the CC IoP. Both distant sites use a hierarchical storage solution based on disks and tapes. They installed one common dCache instance, which is published in the CC IoP BDII. ATLAS users can use these resources using the standard ATLAS tools in the same way as the local storage without noticing this geographical distribution. Computing clusters LUNA and EXMAG dedicated to users mostly from the Solid State Physics departments offer resources for parallel computing. They are part of the Czech NGI infrastructure MetaCentrum with distributed batch system based on torque with a custom scheduler. Clusters are installed remotely by the MetaCentrum team and a local contact helps only when needed. Users from IoP have exclusive access only to a part of these two clusters and take advantage of higher priorities on the rest (1500 cores in total), which can also be used by any user of the MetaCentrum. IoP researchers can also use distant resources located in several towns of the Czech Republic with a capacity of more than 12000 cores in total.

  11. Optimizing Mexico’s Water Distribution Services

    DTIC Science & Technology

    2011-10-28

    government pursued a decentralization policy in the water distribution infrastructure sector.5 This is evident in Article 115 of the Mexican Constitution ...infrastructure, monitoring water 5 Ibid, 47. 6 Mexican Constitution . http://www.oas.org/juridico...54 Apogee Research International, Ltd., Innovative Financing of Water and Wastewater Infrastructure in the NAFTA Partners: A Focus on

  12. Reduction of water losses by rehabilitation of water distribution network.

    PubMed

    Güngör, Mahmud; Yarar, Ufuk; Firat, Mahmut

    2017-09-11

    Physical or real losses may be indicated as the most important component of the water losses occurring in a water distribution network (WDN). The objective of this study is to examine the effects of piping material management and network rehabilitation on the physical water losses and water losses management in a WDN. For this aim, the Denizli WDN consisting of very old pipes that have exhausted their economic life is selected as the study area. The fact that the current network is old results in the decrease of pressure strength, increase of failure intensity, and inefficient use of water resources thus leading to the application of the rehabilitation program. In Denizli, network renewal works have been carried out since the year 2009 under the rehabilitation program. It was determined that the failure rate at regions where network renewal constructions have been completed decreased down to zero level. Renewal of piping material enables the minimization of leakage losses as well as the failure rate. On the other hand, the system rehabilitation has the potential to amortize itself in a very short amount of time if the initial investment cost of network renewal is considered along with the operating costs of the old and new systems, as well as water loss costs. As a result, it can be stated that renewal of piping material in water distribution systems, enhancement of the physical properties of the system, provide significant contributions such as increase of water and energy efficiency and more effective use of resources.

  13. MEASURING AND MODELING VARIATIONS IN DISTRIBUTION SYSTEM WATER QUALITY

    EPA Science Inventory

    The authors describe a field study that examined the effects of hydraulic mixing on water quality variations in a distribution system. Conducted at the North Penn Water Authority (average production of 5 mgd and 225 mi of distribution pipe), the study incorporated a field samplin...

  14. Water turbidity optical meter using optical fiber array for topographical distribution analysis

    NASA Astrophysics Data System (ADS)

    Mutter, Kussay Nugamesh; Mat Jafri, Mohd Zubir; Yeoh, Stephenie

    2017-06-01

    This work is presenting an analysis study for using optical fiber array as turbidity meter and topographical distribution. Although many studies have been figure out of utilizing optical fibers as sensors for turbidity measurements, still the topographical map of suspended particles in water as rare as expected among all of works in literatures in this scope. The effect of suspended particles are highly affect the water quality which varies according to the source of these particles. A two dimensional array of optical fibers in a 1 litter rectangular plastic container with 2 cm cladding off sensing portion prepared to point out 632.8 nm laser power at each fiber location at the container center. The overall output map of the optical power were found in an inhomogeneous distribution such that the top to down layers of a present water sample show different magnitudes. Each sample prepared by mixing a distilled water with large grains sand, small grains sand, glucose and salt. All with different amount of concentration which measured by refractometer and turbidity meter. The measurements were done in different times i.e. from 10 min to 60 min. This is to let the heavy particles to move down and accumulate at the bottom of the container. The results were as expected which had a gradually topographical map from low power at top layers into high power at bottom layers. There are many applications can be implemented of this study such as transport vehicles fuel meter, to measure the purity of tanks, and monitoring the fluids quality in pipes.

  15. Urban distribution centers : a means to reducing freight vehicle miles traveled.

    DOT National Transportation Integrated Search

    2011-02-01

    The present study examines the model of freight consolidation platforms, and urban distribution centers (UDCs) in particular, as a means to solve the last mile problem of urban freight while reducing vehicle miles traveled and associated environmenta...

  16. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.

    1993-01-01

    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  17. Land processes distributed active archive center product lifecycle plan

    USGS Publications Warehouse

    Daucsavage, John C.; Bennett, Stacie D.

    2014-01-01

    The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the National Aeronautics and Space Administration (NASA) Earth Science Data System Program worked together to establish, develop, and operate the Land Processes (LP) Distributed Active Archive Center (DAAC) to provide stewardship for NASA’s land processes science data. These data are critical science assets that serve the land processes science community with potential value beyond any immediate research use, and therefore need to be accounted for and properly managed throughout their lifecycle. A fundamental LP DAAC objective is to enable permanent preservation of these data and information products. The LP DAAC accomplishes this by bridging data producers and permanent archival resources while providing intermediate archive services for data and information products.

  18. Water Quality Modeling in the Dead End Sections of Drinking Water Distribution Networks

    EPA Science Inventory

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Wate...

  19. Bacterial Composition in a Metropolitan Drinking Water Distribution System Utilizing Different Source Waters

    EPA Science Inventory

    The microbial community structure was investigated from bulk phase water samples of multiple collection sites from two service areas within the Cincinnati drinking water distribution system (DWDS). Each area is associated with a different primary source of water (i.e., groundwat...

  20. [Three-dimension temporal and spatial dynamics of soil water for the artificial vegetation in the center of Taklimakan desert under saline water drip-irrigation].

    PubMed

    Ding, Xin-yuan; Zhou, Zhi-bin; Xu, Xin-wen; Lei, Jia-qiang; Lu, Jing-jing; Ma, Xue-xi; Feng, Xiao

    2015-09-01

    Three-dimension temporal and spatial dynamics of the soil water characteristics during four irrigating cycles of months from April to July for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation had been analyzed by timely measuring the soil water content in horizontal and vertical distances 60 cm and 120 cm away from the irrigating drips, respectively. Periodic spatial and temporal variations of soil water content were observed. When the precipitation effect was not considered, there were no significant differences in the characteristics of soil water among the irrigation intervals in different months, while discrepancies were obvious in the temporal and spatial changes of soil moisture content under the conditions of rainfall and non-rainfall. When it referred to the temporal changes of soil water, it was a little higher in April but a bit lower in July, and the soil water content in June was the highest among four months because some remarkable events of precipitation happened in this month. However, as a whole, the content of soil moisture was reduced as months (from April to July) went on and it took a decreasing tendency along with days (1-15 d) following a power function. Meanwhile, the characteristics of soil water content displayed three changeable stages in an irrigation interval. When it referred to the spatial distributions of soil water, the average content of soil moisture was reduced along with the horizontal distance following a linear regression function, and varied with double peaks along with the vertical distance. In addition, the spatial distribution characteristics of the soil water were not influenced by the factors of precipitation and irrigating time but the physical properties of soil.

  1. Mass size distribution of particle-bound water

    NASA Astrophysics Data System (ADS)

    Canepari, S.; Simonetti, G.; Perrino, C.

    2017-09-01

    The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).

  2. The Joint Distribution Process Analysis Center (JDPAC): Background and Current Capability

    DTIC Science & Technology

    2007-06-12

    Systems Integration and Data Management JDDE Analysis/Global Distribution Performance Assessment Futures/Transformation Analysis Balancing Operational Art ... Science JDPAC “101” USTRANSCOM Future Operations Center SDDC – TEA Army SES (Dual Hat) • Transportability Engineering • Other Title 10

  3. The Land Processes Distributed Active Archive Center (LP DAAC)

    USGS Publications Warehouse

    Golon, Danielle K.

    2016-10-03

    The Land Processes Distributed Active Archive Center (LP DAAC) operates as a partnership with the U.S. Geological Survey and is 1 of 12 DAACs within the National Aeronautics and Space Administration (NASA) Earth Observing System Data and Information System (EOSDIS). The LP DAAC ingests, archives, processes, and distributes NASA Earth science remote sensing data. These data are provided to the public at no charge. Data distributed by the LP DAAC provide information about Earth’s surface from daily to yearly intervals and at 15 to 5,600 meter spatial resolution. Data provided by the LP DAAC can be used to study changes in agriculture, vegetation, ecosystems, elevation, and much more. The LP DAAC provides several ways to access, process, and interact with these data. In addition, the LP DAAC is actively archiving new datasets to provide users with a variety of data to study the Earth.

  4. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated,more » distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.« less

  5. Distribution of water quality parameters in Dhemaji district, Assam (India).

    PubMed

    Buragohain, Mridul; Bhuyan, Bhabajit; Sarma, H P

    2010-07-01

    The primary objective of this study is to present a statistically significant water quality database of Dhemaji district, Assam (India) with special reference to pH, fluoride, nitrate, arsenic, iron, sodium and potassium. 25 water samples collected from different locations of five development blocks in Dhemaji district have been studied separately. The implications presented are based on statistical analyses of the raw data. Normal distribution statistics and reliability analysis (correlation and covariance matrix) have been employed to find out the distribution pattern, localisation of data, and other related information. Statistical observations show that all the parameters under investigation exhibit non uniform distribution with a long asymmetric tail either on the right or left side of the median. The width of the third quartile was consistently found to be more than the second quartile for each parameter. Differences among mean, mode and median, significant skewness and kurtosis value indicate that the distribution of various water quality parameters in the study area is widely off normal. Thus, the intrinsic water quality is not encouraging due to unsymmetrical distribution of various water quality parameters in the study area.

  6. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    NASA Astrophysics Data System (ADS)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  7. Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems.

    PubMed

    Douterelo, I; Husband, S; Loza, V; Boxall, J

    2016-07-15

    The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. Copyright © 2016 Douterelo et al.

  8. Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems

    PubMed Central

    Husband, S.; Loza, V.; Boxall, J.

    2016-01-01

    ABSTRACT The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. IMPORTANCE This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. PMID:27208119

  9. Convergent surface water distributions in U.S. cities

    Treesearch

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  10. Climate-driven Shifting in Distribution Patterns of Calanus sinicus Brodsky in the Continental Shelf Waters of the Northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Liu, H.; Yan, Q. L.; Fan, J. F.

    2016-02-01

    Large-scale variations in zooplankton dynamics, including the poleward movements and earlier timing of life cycle events, have been widely observed over recent decades. The biogeographical shifts are often related to the increasing sea surface temperature or the long-term climatological change, such as the North Atlantic Oscillation (NAO), the El Niño Southern Oscillation (NESO) and the Pacific Decadal Oscillation (PDO). The Copepod Calanus sinicus Brodsky plays an important trophic role in the continental shelf waters of the Northwest Pacific Ocean as a grazer of phytoplankton and main food source for many ecologically and commercially important fish, such as sardine and anchovy. Because of its importance in marine ecosystem dynamics, C. sinicus was selected as one of the "keystone species" in the China-GLOBEC program. In this study, we examined the shifts in spatial patterns of the species within its distribution domain - the Yellow Sea and the northern East China Sea in the 1950s, 1980s and 2010s. We used contour mapping and a mathematical model to locate the geographical distribution center of the species. We found a significant relationship (r=0.594, P<0.05) between the monthly PDO index and the latitudes of the distribution center of C. sinicus, and a lag of two months for copepods to respond the PDO index. Our findings imply a northward shifting in the distribution center, and the northern Yellow Sea is becoming a new distribution center as another possible over-summering site of C. sinicus.

  11. AVIRIS and TIMS data processing and distribution at the land processes distributed active archive center

    NASA Technical Reports Server (NTRS)

    Mah, G. R.; Myers, J.

    1993-01-01

    The U.S. Government has initiated the Global Change Research program, a systematic study of the Earth as a complete system. NASA's contribution of the Global Change Research Program is the Earth Observing System (EOS), a series of orbital sensor platforms and an associated data processing and distribution system. The EOS Data and Information System (EOSDIS) is the archiving, production, and distribution system for data collected by the EOS space segment and uses a multilayer architecture for processing, archiving, and distributing EOS data. The first layer consists of the spacecraft ground stations and processing facilities that receive the raw data from the orbiting platforms and then separate the data by individual sensors. The second layer consists of Distributed Active Archive Centers (DAAC) that process, distribute, and archive the sensor data. The third layer consists of a user science processing network. The EOSDIS is being developed in a phased implementation. The initial phase, Version 0, is a prototype of the operational system. Version 0 activities are based upon existing systems and are designed to provide an EOSDIS-like capability for information management and distribution. An important science support task is the creation of simulated data sets for EOS instruments from precursor aircraft or satellite data. The Land Processes DAAC, at the EROS Data Center (EDC), is responsible for archiving and processing EOS precursor data from airborne instruments such as the Thermal Infrared Multispectral Scanner (TIMS), the Thematic Mapper Simulator (TMS), and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). AVIRIS, TIMS, and TMS are flown by the NASA-Ames Research Center ARC) on an ER-2. The ER-2 flies at 65000 feet and can carry up to three sensors simultaneously. Most jointly collected data sets are somewhat boresighted and roughly registered. The instrument data are being used to construct data sets that simulate the spectral and spatial

  12. Assessment of Nitrification in Distribution Systems of Waters with Elevated Ammonia Levels

    EPA Science Inventory

    The objective of this work is to monitor ammonia, nitrite, and nitrate in drinking water from the distribution systems of four drinking water utilities in Illinois. A monthly drinking water distribution system water quality monitoring protocol for each water utility in Illinois h...

  13. Water leakage management by district metered areas at water distribution networks.

    PubMed

    Özdemir, Özgür

    2018-03-01

    The aim of this study is to design a district metered area (DMA) at water distribution network (WDN) for determination and reduction of water losses in the city of Malatya, Turkey. In the application area, a pilot DMA zone was built by analyzing the existing WDN, topographic map, length of pipes, number of customers, service connections, and valves. In the DMA, International Water Association standard water balance was calculated considering inflow rates and billing records. The ratio of water losses in DMAs was determined as 82%. Moreover, 3124 water meters of 2805 customers were examined while 50% of water meters were detected as faulty. This study revealed that DMA application is useful for the determination of water loss rate in WDNs and identify a cost-effective leakage reduction program.

  14. GPR-Based Water Leak Models in Water Distribution Systems

    PubMed Central

    Ayala-Cabrera, David; Herrera, Manuel; Izquierdo, Joaquín; Ocaña-Levario, Silvia J.; Pérez-García, Rafael

    2013-01-01

    This paper addresses the problem of leakage in water distribution systems through the use of ground penetrating radar (GPR) as a nondestructive method. Laboratory tests are performed to extract features of water leakage from the obtained GPR images. Moreover, a test in a real-world urban system under real conditions is performed. Feature extraction is performed by interpreting GPR images with the support of a pre-processing methodology based on an appropriate combination of statistical methods and multi-agent systems. The results of these tests are presented, interpreted, analyzed and discussed in this paper.

  15. GHRC: NASAs Hazardous Weather Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Bugbee, Kaylin

    2016-01-01

    The Global Hydrology Resource Center (GHRC; ghrc.nsstc.nasa.gov) is one of NASA's twelve Distributed Active Archive Centers responsible for providing access to NASA's Earth science data to users worldwide. Each of NASA's twelve DAACs focuses on a specific science discipline within Earth science, provides data stewardship services and supports its research community's needs. Established in 1991 as the Marshall Space Flight Center DAAC and renamed GHRC in 1997, the data center's original mission focused on the global hydrologic cycle. However, over the years, data holdings, tools and expertise of GHRC have gradually shifted. In 2014, a User Working Group (UWG) was established to review GHRC capabilities and provide recommendations to make GHRC more responsive to the research community's evolving needs. The UWG recommended an update to the GHRC mission, as well as a strategic plan to move in the new direction. After a careful and detailed analysis of GHRC's capabilities, research community needs and the existing data landscape, a new mission statement for GHRC has been crafted: to provide a comprehensive active archive of both data and knowledge augmentation services with a focus on hazardous weather, its governing dynamical and physical processes, and associated applications. Within this broad mandate, GHRC will focus on lightning, tropical cyclones and storm-induced hazards through integrated collections of satellite, airborne, and in-situ data sets. The new mission was adopted at the recent 2015 UWG meeting. GHRC will retain its current name until such time as it has built substantial data holdings aligned with the new mission.

  16. On the vertical distribution of water vapor in the Martian tropics

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    1988-01-01

    Although measurements of the column abundance of atmospheric water vapor on Mars have been made, measurements of its vertical distribution have not. How water is distributed in the vertical is fundamental to atmosphere-surface exchange processes, and especially to transport within the atmosphere. Several lines of evidence suggest that in the lowest several scale heights of the atmosphere, water vapor is nearly uniformly distributed. However, most of these arguments are suggestive rather than conclusive since they only demonstrate that the altitude to saturation is very high if the observed amount of water vapor is distributed uniformly. A simple argument is presented, independent of the saturation constraint, which suggests that in tropical regions, water vapor on Mars should be very nearly uniformly mixed on an annual and zonally averaged basis.

  17. Nitrification in Chloraminated Drinking Water Distribution Systems - Occurrence

    EPA Science Inventory

    This chapter discusses available information on nitrification occurrence in drinking water chloraminated distribution systems. Chapter 4 provides an introduction to causes and controls for nitrification in chloraminated drinking water systems. Both chapters are intended to serve ...

  18. Distribution characteristics of dissolved organic carbon in annular wetland soil-water solutions through soil profiles in the Sanjiang Plain, northeast China.

    PubMed

    Xi, Min; Lu, Xian-Guo; Li, Yue; Kong, Fan-Long

    2007-01-01

    Overwhelming evidence reveals that concentrations of dissolved organic carbon (DOC) have increased in streams which brings negative environmental impacts. DOC in stream flow is mainly originated from soil-water solutions of watershed. Wetlands prove to be the most sensitive areas as an important DOC reserve between terrestrial and fluvial biogeosystems. This reported study was focused on the distribution characteristics and the controlling factors of DOC in soil-water solutions of annular wetland, i.e., a dishing wetland and a forest wetland together, in the Sanjiang Plain, Northeast China. The results indicate that DOC concentrations in soil-water solutions decreased and then increased with increasing soil depth in the annular wetland. In the upper soil layers of 0-10 cm and 10-20 cm, DOC concentrations in soil-water solutions linearly increased from edge to center of the annular wetland (R2 = 0.3122 and R2 = 0.443). The distribution variations were intimately linked to DOC production and utilization and DOC transport processes in annular wetland soil-water solutions. The concentrations of total organic carbon (TOC), total carbon (TC) and Fe(II), DOC mobility and continuous vertical and lateral flow affected the distribution variations of DOC in soil-water solutions. The correlation coefficients between DOC concentrations and TOC, TC and Fe(II) were 0.974, 0.813 and 0.753 respectively. These distribution characteristics suggested a systematic response of the distribution variations of DOC in annular wetland soil-water solutions to the geometry of closed depressions on a scale of small catchments. However, the DOC in soil pore water of the annular wetland may be the potential source of DOC to stream flow on watershed scale. These observations also implied the fragmentation of wetland landscape could bring the spatial-temporal variations of DOC distribution and exports, which would bring negative environmental impacts in watersheds of the Sanjiang Plain.

  19. A Wireless Sensor Network approach for distributed in-line chemical analysis of water.

    PubMed

    Capella, J V; Bonastre, A; Ors, R; Peris, M

    2010-03-15

    In this work we propose the implementation of a distributed system based on a Wireless Sensor Network for the control of a chemical analysis system for fresh water. This implementation is presented by describing the nodes that form the distributed system, the communication system by wireless networks, control strategies, and so on. Nitrate, ammonium, and chloride are measured in-line using appropriate ion selective electrodes (ISEs), the results obtained being compared with those provided by the corresponding reference methods. Recovery analyses with ISEs and standard methods, study of interferences, and evaluation of major sensor features have also been carried out. The communication among the nodes that form the distributed system is implemented by means of the utilization of proprietary wireless networks, and secondary data transmission services (GSM or GPRS) provided by a mobile telephone operator. The information is processed, integrated and stored in a control center. These data can be retrieved--through the Internet--so as to know the real-time system status and its evolution. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  20. A Geology-Based Estimate of Connate Water Salinity Distribution

    DTIC Science & Technology

    2014-09-01

    poses serious environmental concerns if connate water is mobilized into shallow aquifers or surface water systems. Estimating the distribution of...groundwater flow and salinity transport near the Herbert Hoover Dike (HHD) surrounding Lake Okeechobee in Florida . The simulations were conducted using the...on the geologic configuration at equilibrium, and the horizontal salinity distribution is strongly linked to aquifer connectivity because

  1. GROWTH OF HETROTROPHIC BIOFILMS IN A WATER DISTRIBUTION SYSTEM SIMULATOR

    EPA Science Inventory

    The U.S. EPA has designed and constructed a distribution system simulator (DSS) to evaluate factors which influence water quality within water distribution systems. Six individual 25 meter lengths of 15 cm diameter ductile iron pipe are arranged into loop configurations. Each lo...

  2. Asset deterioration and discolouration in water distribution systems.

    PubMed

    Husband, P S; Boxall, J B

    2011-01-01

    Water Distribution Systems function to supply treated water safe for human consumption and complying with increasingly stringent quality regulations. Considered primarily an aesthetic issue, discolouration is the largest cause of customer dissatisfaction associated with distribution system water quality. Pro-active measures to prevent discolouration are sought yet network processes remain insufficiently understood to fully justify and optimise capital or operational strategies to manage discolouration risk. Results are presented from a comprehensive fieldwork programme in UK water distribution networks that have determined asset deterioration with respect to discolouration. This is achieved by quantification of material accumulating as cohesive layers on pipe surfaces that when mobilised are acknowledged as the primary cause of discolouration. It is shown that these material layers develop ubiquitously with defined layer strength characteristics and at a consistent and repeatable rate dependant on water quality. For UK networks iron concentration in the bulk water is shown as a potential indicator of deterioration rate. With material layer development rates determined, management decisions that balance discolouration risk and expenditure to maintain water quality integrity can be justified. In particular the balance between capital investment such as improving water treatment output or pipe renewal and operational expenditure such as the frequency of network maintenance through flushing may be judged. While the rate of development is shown to be a function of water quality, the magnitude (peak or average turbidity) of discolouration incidents is shown to be dominated by hydraulic conditions. From this it can be proposed that network hydraulic management, such as regular periodic 'stressing', is a potential strategy in reducing discolouration risk. The ultimate application of this is the hydraulic design of self-cleaning networks to maintain discolouration risk

  3. Iron and copper release in drinking-water distribution systems.

    PubMed

    Shi, Baoyou; Taylor, James S

    2007-09-01

    A large-scale pilot study was carried out to evaluate the impacts of changes in water source and treatment process on iron and copper release in water distribution systems. Finished surface waters, groundwaters, and desalinated waters were produced with seven different treatment systems and supplied to 18 pipe distribution systems (PDSs). The major water treatment processes included lime softening, ferric sulfate coagulation, reverse osmosis, nanofiltration, and integrated membrane systems. PDSs were constructed from PVC, lined cast iron, unlined cast iron, and galvanized pipes. Copper pipe loops were set up for corrosion monitoring. Results showed that surface water after ferric sulfate coagulation had low alkalinity and high sulfates, and consequently caused the highest iron release. Finished groundwater treated by conventional method produced the lowest iron release but the highest copper release. The iron release of desalinated water was relatively high because of the water's high chloride level and low alkalinity. Both iron and copper release behaviors were influenced by temperature.

  4. Surface-water quality-assurance plan for the U.S. Geological Survey Washington Water Science Center

    USGS Publications Warehouse

    Mastin, Mark C.

    2016-02-19

    This Surface-Water Quality-Assurance Plan documents the standards, policies, and procedures used by the U.S. Geological Survey Washington Water Science Center (WAWSC) for activities related to the collection, processing, storage, analysis, and publication of surface-water data. This plan serves as a guide to all WAWSC personnel involved in surface-water data activities, and changes as the needs and requirements of the WAWSC change. Regular updates to this plan represent an integral part of the quality-assurance process. In the WAWSC, direct oversight and responsibility by the hydrographer(s) assigned to a surface-water station, combined with team approaches in all work efforts, assure highquality data, analyses, reviews, and reports for cooperating agencies and the public.

  5. Significance of losses in water distribution systems in India

    PubMed Central

    Raman, V.

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the system. At a conservative estimate, the national loss of processed water through leaks in the water distribution systems amounts to 1012 litres per year, which is equivalent to 500 million rupees. It is possible to bring down the water losses in the pipe mains to 3-5% of the total flow, and the cost incurred on the control programme can be recovered in 6-18 months. Appropriate conservation measures will help in achieving the goals of the International Water Supply and Sanitation Decade to provide clean water for all. PMID:6418401

  6. Significance of losses in water distribution systems in India.

    PubMed

    Raman, V

    1983-01-01

    Effective management of water supply systems consists in supplying adequate quantities of clean water to the population. Detailed pilot studies of water distribution systems were carried out in 9 cities in India during 1971-81 to establish the feasibility of a programme of assessment, detection, and control of water losses from supply systems. A cost-benefit analysis was carried out. Water losses from mains and service pipes in the areas studied amounted to 20-35% of the total flow in the system. At a conservative estimate, the national loss of processed water through leaks in the water distribution systems amounts to 10(12) litres per year, which is equivalent to 500 million rupees.It is possible to bring down the water losses in the pipe mains to 3-5% of the total flow, and the cost incurred on the control programme can be recovered in 6-18 months. Appropriate conservation measures will help in achieving the goals of the International Water Supply and Sanitation Decade to provide clean water for all.

  7. OPTIMAL SCHEDULING OF BOOSTER DISINFECTION IN WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Booster disinfection is the addition of disinfectant at locations distributed throughout a water distribution system. Such a strategy can reduce the mass of disinfectant required to maintain a detectable residual at points of consumption in the distribution system, which may lea...

  8. Radial Distribution of X-Ray Point Sources Near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Hong, Jae Sub; van den Berg, Maureen; Grindlay, Jonathan E.; Laycock, Silas

    2009-11-01

    We present the log N-log S and spatial distributions of X-ray point sources in seven Galactic bulge (GB) fields within 4° from the Galactic center (GC). We compare the properties of 1159 X-ray point sources discovered in our deep (100 ks) Chandra observations of three low extinction Window fields near the GC with the X-ray sources in the other GB fields centered around Sgr B2, Sgr C, the Arches Cluster, and Sgr A* using Chandra archival data. To reduce the systematic errors induced by the uncertain X-ray spectra of the sources coupled with field-and-distance-dependent extinction, we classify the X-ray sources using quantile analysis and estimate their fluxes accordingly. The result indicates that the GB X-ray population is highly concentrated at the center, more heavily than the stellar distribution models. It extends out to more than 1fdg4 from the GC, and the projected density follows an empirical radial relation inversely proportional to the offset from the GC. We also compare the total X-ray and infrared surface brightness using the Chandra and Spitzer observations of the regions. The radial distribution of the total infrared surface brightness from the 3.6 band μm images appears to resemble the radial distribution of the X-ray point sources better than that predicted by the stellar distribution models. Assuming a simple power-law model for the X-ray spectra, the closer to the GC the intrinsically harder the X-ray spectra appear, but adding an iron emission line at 6.7 keV in the model allows the spectra of the GB X-ray sources to be largely consistent across the region. This implies that the majority of these GB X-ray sources can be of the same or similar type. Their X-ray luminosity and spectral properties support the idea that the most likely candidate is magnetic cataclysmic variables (CVs), primarily intermediate polars (IPs). Their observed number density is also consistent with the majority being IPs, provided the relative CV to star density in the GB

  9. Quality-assurance plan for water-quality activities in the U.S. Geological Survey Washington Water Science Center

    USGS Publications Warehouse

    Conn, Kathleen E.; Huffman, Raegan L.; Barton, Cynthia

    2017-05-08

    In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.

  10. Epidemiology of urban water distribution systems

    NASA Astrophysics Data System (ADS)

    Bardet, Jean-Pierre; Little, Richard

    2014-08-01

    Urban water distribution systems worldwide contain numerous old and fragile pipes that inevitably break, flood streets and damage property, and disrupt economic and social activities. Such breaks often present dramatically in temporal clusters as occurred in Los Angeles during 2009. These clustered pipe breaks share many characteristics with human mortality observed during extreme climatological events such as heat waves or air pollution. Drawing from research and empirical studies in human epidemiology, a framework is introduced to analyze the time variations of disruptive pipe breaks that can help water agencies better understand clustered pipe failures and institute measures to minimize the disruptions caused by them. It is posited that at any time, a cohort of the pipes comprising the water distribution system will be in a weakened state due to fatigue and corrosion. This frail cohort becomes vulnerable during normal operations and ultimately breaks due to rapid increase in crack lengths induced by abnormal stressors. The epidemiological harvesting model developed in this paper simulates an observed time series of monthly pipe breaks and has both explanatory and predictive power. It also demonstrates that models from nonengineering disciplines such as medicine can provide improved insights into the performance of infrastructure systems.

  11. MIPAS middle atmosphere water vapor distributions

    NASA Astrophysics Data System (ADS)

    Garcia-Comas, Maya; Lopez-Puertas, Manuel; Funke, Bernd; Bermejo-Pantale, Diego; Stiller, Gabriele; Grabowski, Udo; von Clarmann, Thomas

    Water vapor is a key constituent of the middle atmosphere. It is involved in the ozone chem-istry, it is the precursor of PSCs and PMCs, and it is an infrared cooler in the stratosphere. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard Envisat observes the H2O infrared emissions with high resolution up to the mesopause. We have derived water vapor abundance from MIPAS spectra using the IMK/IAA data processor, which includes the GRANADA non-LTE algorithm. That allows for accurate H2O retrievals in the atmospheric regions where its emissions are affected by non-LTE, i.e., above 50km and particularly in the polar summer. We describe the information gained from MIPAS spectra about the non-LTE processes affecting the H2O infrared emissions, discuss its uncertainties and present MIPAS pole-to-pole distributions of water vapor retrieved from the stratosphere to the upper meso-sphere. We pay special attention to its behavior in the polar summer mesosphere, where the presence of PMCs and particular dynamical events may perturb the H2O vertical distribution. We also compare our results with those from global circulation models and other independent measurements.

  12. WATER DISTRIBUTION SYSTEM ANALYSIS: FIELD STUDIES, MODELING AND MANAGEMENT

    EPA Science Inventory

    The user‘s guide entitled “Water Distribution System Analysis: Field Studies, Modeling and Management” is a reference guide for water utilities and an extensive summarization of information designed to provide drinking water utility personnel (and related consultants and research...

  13. Ground Water Technical Support Center (GWTSC) Annual Report FY 2012: October 2011 – September 2012

    EPA Science Inventory

    The Ground Water Technical Support Center (GWTSC) is part of the Ground Water and Ecosystems Restoration Division (GWERD), which is based in the Robert S. Kerr Environmental Research Center in Ada, Oklahoma. The GWERD is a research division of U.S. EPA's National Risk Management...

  14. Protozoan Bacterivory and Escherichia coli Survival in Drinking Water Distribution Systems

    PubMed Central

    Sibille, I.; Sime-Ngando, T.; Mathieu, L.; Block, J. C.

    1998-01-01

    The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 × 107 bacterial cells liter−1) or in the biofilm (on average, 7 × 106 bacterial cells cm−2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 × 108 cells liter−1 in water and 4 × 107 cells cm−2 in biofilm) and protozoa (on average, 105 cells liter−1 in water and 103 cells cm−2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and

  15. Protozoan bacterivory and Escherichia coli survival in drinking water distribution systems.

    PubMed

    Sibille, I; Sime-Ngando, T; Mathieu, L; Block, J C

    1998-01-01

    The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 x 10(7) bacterial cells liter-1) or in the biofilm (on average, 7 x 10(6) bacterial cells cm-2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 x 10(8) cells liter-1 in water and 4 x 10(7) cells cm-2 in biofilm) and protozoa (on average, 10(5) cells liter-1 in water and 10(3) cells cm-2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and

  16. Origin and Distribution of Water Contents in Continental and Oceanic Lithospheric Mantle

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.

    2013-01-01

    The water content distribution of the upper mantle will be reviewed as based on the peridotite record. The amount of water in cratonic xenoliths appears controlled by metasomatism while that of the oceanic mantle retains in part the signature of melting events. In both cases, the water distribution is heterogeneous both with depth and laterally, depending on localized water re-enrichments next to melt/fluid channels. The consequence of the water distribution on the rheology of the upper mantle and the location of the lithosphere-asthenosphere boundary will also be discussed.

  17. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  18. The Distribution of Water in a Viscous Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    Ciesla, F. J.; Cuzzi, J. N.

    2005-01-01

    The distribution of water in the solar nebula is important to understand for a number of reasons. Firstly, in the inner regions of the solar nebula, the concentration of water vapor is expected to have played a major role in determining its oxidation state, and therefore would control which minerals would form there. Secondly, in the outer nebula, water would be a major condensable, making up nearly 50% of the mass of the solids and thus possibly playing a role in determining where giant planets formed. Lastly, liquid water is important for forming and sustaining life, and therefore understanding where and how water was transported to the habitable zone of a a star is critical to understanding how common life may be in the galaxy. Because of its importance, the distribution of water in the solar nebula has been studied by a number of authors. The main transport mechanisms which would determine the distribution of water would be diffusion and gas drag migration. Water vapor and small solids would diffuse in the nebula, moving away from areas of high concentrations. Larger bodies, while also subject to diffusion, though to a lesser extent, would experience gas drag migration, causing them to move inwards with time. The bodies most affected by this transport mechanism would be on the order of 1 meter in size. As objects continued to grow larger, their inertia would also grow, making them nearly immobile to gas drag. While efforts have been made to understand how water would be distributed in a protoplanetary disk, none of the published models simultaneously consider the effects of nebular evolution, transport of material throughout the nebula, and the existence of solids of various sizes at a given location of the nebula. We are currently developing a model which allows for these effects and is consistent with models for the accretion of bodies in the solar nebula.

  19. Optimal Water-Power Flow Problem: Formulation and Distributed Optimal Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhao, Changhong; Zamzam, Admed S.

    This paper formalizes an optimal water-power flow (OWPF) problem to optimize the use of controllable assets across power and water systems while accounting for the couplings between the two infrastructures. Tanks and pumps are optimally managed to satisfy water demand while improving power grid operations; {for the power network, an AC optimal power flow formulation is augmented to accommodate the controllability of water pumps.} Unfortunately, the physics governing the operation of the two infrastructures and coupling constraints lead to a nonconvex (and, in fact, NP-hard) problem; however, after reformulating OWPF as a nonconvex, quadratically-constrained quadratic problem, a feasible point pursuit-successivemore » convex approximation approach is used to identify feasible and optimal solutions. In addition, a distributed solver based on the alternating direction method of multipliers enables water and power operators to pursue individual objectives while respecting the couplings between the two networks. The merits of the proposed approach are demonstrated for the case of a distribution feeder coupled with a municipal water distribution network.« less

  20. Production and Distribution Research Center

    DTIC Science & Technology

    1986-05-01

    Steel, Coca Cola , Standard Oil of Ohio, and Martin Marietta have been involved in joint research with members of the Center. The number of Faculty...permitted the establishment of the Center and supports its continuing development. The Center has also received research sponsorship from the Joint...published relating to results developed within the PDRC under Offce of Naval Research sponsorship . These reports are listed in Appendix A. Many of these

  1. Using WNTR to Model Water Distribution System Resilience

    EPA Science Inventory

    The Water Network Tool for Resilience (WNTR) is a new open source Python package developed by the U.S. Environmental Protection Agency and Sandia National Laboratories to model and evaluate resilience of water distribution systems. WNTR can be used to simulate a wide range of di...

  2. Supporting users through integrated retrieval, processing, and distribution systems at the Land Processes Distributed Active Archive Center

    USGS Publications Warehouse

    Kalvelage, Thomas A.; Willems, Jennifer

    2005-01-01

    The US Geological Survey's EROS Data Center (EDC) hosts the Land Processes Distributed Active Archive Center (LP DAAC). The LP DAAC supports NASA's Earth Observing System (EOS), which is a series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. The EOS Data and Information Systems (EOSDIS) was designed to acquire, archive, manage and distribute Earth observation data to the broadest possible user community.The LP DAAC is one of four DAACs that utilize the EOSDIS Core System (ECS) to manage and archive their data. Since the ECS was originally designed, significant changes have taken place in technology, user expectations, and user requirements. Therefore the LP DAAC has implemented additional systems to meet the evolving needs of scientific users, tailored to an integrated working environment. These systems provide a wide variety of services to improve data access and to enhance data usability through subsampling, reformatting, and reprojection. These systems also support the wide breadth of products that are handled by the LP DAAC.The LP DAAC is the primary archive for the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data; it is the only facility in the United States that archives, processes, and distributes data from the Advanced Spaceborne Thermal Emission/Reflection Radiometer (ASTER) on NASA's Terra spacecraft; and it is responsible for the archive and distribution of “land products” generated from data acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra and Aqua satellites.

  3. Particulate Arsenic Release in a Drinking Water Distribution System

    EPA Science Inventory

    Trace contaminants, such as arsenic, have been shown to accumulate in solids found in drinking water distribution systems. The obvious concern is that the contaminants in these solids could be released back into the water resulting in elevated levels in a consumer’s tap water. Th...

  4. WATERBORNE PATHOGEN INVASIONS: A CASE FOR WATER QUALITY PROTECTION IN DISTRIBUTION PROTECTION IN DISTRIBUTION

    EPA Science Inventory

    No degree of treatment will insure the delivery of a safe water supplyto the consumer's tap when the distribution system is subject to cross-connections water pressure losses, frequent line breaks, open reservoirs and infrastructure deterioration. n one recent U.S. outbreak, wate...

  5. Distribution of guidance models for cardiac resynchronization therapy in the setting of multi-center clinical trials

    NASA Astrophysics Data System (ADS)

    Rajchl, Martin; Abhari, Kamyar; Stirrat, John; Ukwatta, Eranga; Cantor, Diego; Li, Feng P.; Peters, Terry M.; White, James A.

    2014-03-01

    Multi-center trials provide the unique ability to investigate novel techniques across a range of geographical sites with sufficient statistical power, the inclusion of multiple operators determining feasibility under a wider array of clinical environments and work-flows. For this purpose, we introduce a new means of distributing pre-procedural cardiac models for image-guided interventions across a large scale multi-center trial. In this method, a single core facility is responsible for image processing, employing a novel web-based interface for model visualization and distribution. The requirements for such an interface, being WebGL-based, are minimal and well within the realms of accessibility for participating centers. We then demonstrate the accuracy of our approach using a single-center pacemaker lead implantation trial with generic planning models.

  6. Isolation and identification of environmental mycobacteria in the waters of a hemodialysis center.

    PubMed

    Sartori, Flávio Garcia; Leandro, Luís Fernando; Montanari, Lilian Bueno; de Souza, Maria Gorete Mendes; Pires, Regina Helena; Sato, Daisy Nakamura; Leite, Clarice Queico Fujimura; de Andrade Prince, Karina; Martins, Carlos Henrique Gomes

    2013-07-01

    The use of poorly treated water during hemodialysis may lead to contamination with nontuberculous mycobacteria (NTM). This study aimed to isolate and identify NTM species in the water of a Brazilian hemodialysis center. We collected 210 samples of water from the hydric system of the unit (post-osmosis system, hemodialysis rooms, reuse system, and hemodialysis equipment) and from the municipal supply network; we isolated the NTM by a classic microbiological technique and identified them by the PCR restriction enzyme pattern of the hsp65 gene (PRA). Fifty-one (24.3 %) of the collected samples tested positive for NTM; both the municipal supply network (2 samples, 3.2 %) and the hydric system of the hemodialysis center (49 samples, 96.1 %) contained NTM. We isolated and identified potentially pathogenic bacteria such as Mycobacterium lentiflavum (59.0 %) and M. kansasii (5.0 %), as well as rarely pathogenic bacteria like M. gordonae (24.0 %), M. gastri (8.0 %), and M. szulgai (4.0 %). The ability of NTM to cause diseases is well documented in the literature. Therefore, the identification of NTM in the water of a Brazilian hemodialysis center calls for more effective water disinfection procedures in this unit.

  7. ANIMATION AND VISUALIZATION OF WATER QUALITY IN DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Water may undergo a number of changes in the distribution system, making the quality of the water at the customer's tap different from the quality of the water that leaves the treatment plant. Such changes in quality may be caused by chemical or biological variations or by a loss...

  8. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    NASA Astrophysics Data System (ADS)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and

  9. 1. View of Pier G (center photo, on the water ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Pier G (center photo, on the water line) taken from the foot of Washington Street. The view is of the southeastern, northeastern, and northern sides of the structure. - Lehigh Valley Railroad, Pier G, Jersey City, Hudson County, NJ

  10. Water Quality Modeling in the Dead End Sections of Drinking Water Distribution Networks -journal article

    EPA Science Inventory

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Wate...

  11. Elevated Natural Source Water Ammonia and Nitrification in the Distribution Systems of Four Water Utilities

    EPA Science Inventory

    Nitrification in drinking water distribution systems is a concern of many drinking water systems. Although chloramination as a source of nitrification (i.e., addition of excess ammonia or breakdown of chloramines) has drawn the most attention, many source waters contain signific...

  12. National Space Transportation System telemetry distribution and processing, NASA-JFK Space Center/Cape Canaveral

    NASA Technical Reports Server (NTRS)

    Jenkins, George

    1986-01-01

    Prelaunch, launch, mission, and landing distribution of RF and hardline uplink/downlink information between Space Shuttle Orbiter/cargo elements, tracking antennas, and control centers at JSC, KSC, MSFC, GSFC, ESMC/RCC, and Sunnyvale are presented as functional block diagrams. Typical mismatch problems encountered during spacecraft-to-project control center telemetry transmissions are listed along with new items for future support enhancement.

  13. National Space Transportation System telemetry distribution and processing, NASA-JFK Space Center/Cape Canaveral

    NASA Astrophysics Data System (ADS)

    Jenkins, George

    Prelaunch, launch, mission, and landing distribution of RF and hardline uplink/downlink information between Space Shuttle Orbiter/cargo elements, tracking antennas, and control centers at JSC, KSC, MSFC, GSFC, ESMC/RCC, and Sunnyvale are presented as functional block diagrams. Typical mismatch problems encountered during spacecraft-to-project control center telemetry transmissions are listed along with new items for future support enhancement.

  14. Building A Cloud Based Distributed Active Data Archive Center

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Baynes, Katie; Murphy, Kevin

    2017-01-01

    NASA's Earth Science Data System (ESDS) Program facilitates the implementation of NASA's Earth Science strategic plan, which is committed to the full and open sharing of Earth science data obtained from NASA instruments to all users. The Earth Science Data information System (ESDIS) project manages the Earth Observing System Data and Information System (EOSDIS). Data within EOSDIS are held at Distributed Active Archive Centers (DAACs). One of the key responsibilities of the ESDS Program is to continuously evolve the entire data and information system to maximize returns on the collected NASA data.

  15. Quality-assurance plan for groundwater activities, U.S. Geological Survey, Washington Water Science Center

    USGS Publications Warehouse

    Kozar, Mark D.; Kahle, Sue C.

    2013-01-01

    This report documents the standard procedures, policies, and field methods used by the U.S. Geological Survey’s (USGS) Washington Water Science Center staff for activities related to the collection, processing, analysis, storage, and publication of groundwater data. This groundwater quality-assurance plan changes through time to accommodate new methods and requirements developed by the Washington Water Science Center and the USGS Office of Groundwater. The plan is based largely on requirements and guidelines provided by the USGS Office of Groundwater, or the USGS Water Mission Area. Regular updates to this plan represent an integral part of the quality-assurance process. Because numerous policy memoranda have been issued by the Office of Groundwater since the previous groundwater quality assurance plan was written, this report is a substantial revision of the previous report, supplants it, and contains significant additional policies not covered in the previous report. This updated plan includes information related to the organization and responsibilities of USGS Washington Water Science Center staff, training, safety, project proposal development, project review procedures, data collection activities, data processing activities, report review procedures, and archiving of field data and interpretative information pertaining to groundwater flow models, borehole aquifer tests, and aquifer tests. Important updates from the previous groundwater quality assurance plan include: (1) procedures for documenting and archiving of groundwater flow models; (2) revisions to procedures and policies for the creation of sites in the Groundwater Site Inventory database; (3) adoption of new water-level forms to be used within the USGS Washington Water Science Center; (4) procedures for future creation of borehole geophysics, surface geophysics, and aquifer-test archives; and (5) use of the USGS Multi Optional Network Key Entry System software for entry of routine water-level data

  16. Rapid detection of Naegleria fowleri in water distribution pipeline biofilms and drinking water samples.

    PubMed

    Puzon, Geoffrey J; Lancaster, James A; Wylie, Jason T; Plumb, Iason J

    2009-09-01

    Rapid detection of pathogenic Naegleria fowler in water distribution networks is critical for water utilities. Current detection methods rely on sampling drinking water followed by culturing and molecular identification of purified strains. This culture-based method takes an extended amount of time (days), detects both nonpathogenic and pathogenic species, and does not account for N. fowleri cells associated with pipe wall biofilms. In this study, a total DNA extraction technique coupled with a real-time PCR method using primers specific for N. fowleri was developed and validated. The method readily detected N. fowleri without preculturing with the lowest detection limit for N. fowleri cells spiked in biofilm being one cell (66% detection rate) and five cells (100% detection rate). For drinking water, the detection limit was five cells (66% detection rate) and 10 cells (100% detection rate). By comparison, culture-based methods were less sensitive for detection of cells spiked into both biofilm (66% detection for <10 cells) and drinking water (0% detection for <10 cells). In mixed cultures of N. fowleri and nonpathogenic Naegleria, the method identified N. fowleri in 100% of all replicates, whereastests with the current consensus primers detected N. fowleri in only 5% of all replicates. Application of the new method to drinking water and pipe wall biofilm samples obtained from a distribution network enabled the detection of N. fowleri in under 6 h, versus 3+ daysforthe culture based method. Further, comparison of the real-time PCR data from the field samples and the standard curves enabled an approximation of N. fowleri cells in the biofilm and drinking water. The use of such a method will further aid water utilities in detecting and managing the persistence of N. fowleri in water distribution networks.

  17. Soil Water Characteristics of Cores from Low- and High-Centered Polygons, Barrow, Alaska, 2012

    DOE Data Explorer

    Graham, David; Moon, Ji-Won

    2016-08-22

    This dataset includes soil water characteristic curves for soil and permafrost in two representative frozen cores collected from a high-center polygon (HCP) and a low-center polygon (LCP) from the Barrow Environmental Observatory. Data include soil water content and soil water potential measured using the simple evaporation method for hydrological and biogeochemical simulations and experimental data analysis. Data can be used to generate a soil moisture characteristic curve, which can be fit to a variety of hydrological functions to infer critical parameters for soil physics. Considering the measured the soil water properties, the van Genuchten model predicted well the HCP, in contrast, the Kosugi model well fitted LCP which had more saturated condition.

  18. NASA CORE - A Worldwide Distribution Center for Educational Materials.

    NASA Astrophysics Data System (ADS)

    Kaiser-Holscott, K.

    2005-05-01

    The Lorain County Joint Vocational School District (JVS) administers NASA's Central Operation of Resources for Educators (CORE) for the purpose of: A. Operating a mail order service to supply educators around the world with NASA's educational materials; B. Servicing NASA Education Programs/Projects with NASA's educational materials; C. Supporting the NASA Educator Resource Center Network with technology resources for the next generation of ERC. D. Support NASA's mission to inspire the next generation of explorers...as only NASA can; E. Inspire and motivate students to pursue careers in geography, science, technology, engineering and mathematics. This is accomplished by the continued operation of a central site that educators can contact to obtain information about NASA educational programs and research; obtain NASA educational publications and media; and receive technical support for NASA multimedia materials. In addition CORE coordinates the efforts of the 67 NASA Educator Resource Centers to establish a more effective network to serve educators. CORE directly supports part of NASA's core mission, To Inspire the Next Generation of Explorers.as only NASA can. CORE inspires and motivates students to pursue careers in geography, science, technology, engineering and mathematics by providing educators with exciting and NASA-unique educational material to enhance the students' learning experience. CORE is located at the Lorain County Joint Vocational School (JVS) in Oberlin, Ohio. Students at the JVS assist with the daily operations of CORE. This assistance provides the students with valuable vocational training opportunities and helps the JVS reduce the amount of funding needed to operate CORE. CORE has vast experience in the dissemination of NASA educational materials as well as a network of NASA Education Resource Centers who distribute NASA materials to secondary and post-secondary schools and universities, informal educators, and other interested individuals and

  19. Risk of viral acute gastrointestinal illness from nondisinfected drinking water distribution systems.

    PubMed

    Lambertini, Elisabetta; Borchardt, Mark A; Kieke, Burney A; Spencer, Susan K; Loge, Frank J

    2012-09-04

    Acute gastrointestinal illness (AGI) resulting from pathogens directly entering the piping of drinking water distribution systems is insufficiently understood. Here, we estimate AGI incidence from virus intrusions into the distribution systems of 14 nondisinfecting, groundwater-source, community water systems. Water samples for virus quantification were collected monthly at wells and households during four 12-week periods in 2006-2007. Ultraviolet (UV) disinfection was installed on the communities' wellheads during one study year; UV was absent the other year. UV was intended to eliminate virus contributions from the wells and without residual disinfectant present in these systems, any increase in virus concentration downstream at household taps represented virus contributions from the distribution system (Approach 1). During no-UV periods, distribution system viruses were estimated by the difference between well water and household tap virus concentrations (Approach 2). For both approaches, a Monte Carlo risk assessment framework was used to estimate AGI risk from distribution systems using study-specific exposure-response relationships. Depending on the exposure-response relationship selected, AGI risk from the distribution systems was 0.0180-0.0661 and 0.001-0.1047 episodes/person-year estimated by Approaches 1 and 2, respectively. These values represented 0.1-4.9% of AGI risk from all exposure routes, and 1.6-67.8% of risk related to drinking water exposure. Virus intrusions into nondisinfected drinking water distribution systems can contribute to sporadic AGI.

  20. Data for distribution of various species of fecal coliforms in urban, rural and private drinking water sources in ten years period - A case study: Kermanshah, Iran.

    PubMed

    Davoodi, Reza; Pirsaheb, Meghdad; Karimyan, Kamaladdin; Gupta, Vinod Kumar; Takhtshahi, Ali Reza; Sharafi, Hooshmand; Moradi, Masoud

    2018-06-01

    This study was aimed to investigate the distribution of various species of fecal coliform in urban, rural and private drinking water sources of Kermanshah, in the west of Iran. For this study, data of ten years period (2006-2016) assessments of microbial quality regarding various species of Fecal coliforms was taken from health centers associated with urban, rural and private resources of Kermanshah city. A total number of 8643 samples were taken, 1851 samples from rural, 365 from urban and 4834 from private resources. The results showed that Fecal coliforms , Escherichia coli ( E. coli ) had the widest distribution in all urban, rural and private water resources (22.3%, 45.9% and 34%, respectively). Moreover, E. coli (47.5%) and Klebsiella (0.4%) had, respectively, the highest and lowest distribution in all months considered. Based on the results, E.coli exists mostly in water resources; it is therefore of particular importance in the monitoring of water resources.

  1. Condition Assessment Technologies for Water Transmission and Distribution Systems

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency’s (EPA’s) Aging Water Infrastructure Research Program, this research was conducted to identify and characterize the state of the technology for structural condition assessment of drinking water transmission and distribution syst...

  2. SWAG: Survey of Water and Ammonia in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Ott, Jürgen; Meier, David S.; Krieger, Nico; Rickert, Matthew

    2017-01-01

    SWAG (``Survey of Water and Ammonia in the Galactic Center'') is a multi-line interferometric survey toward the Center of the Milky Way conducted with the Australia Telescope Compact Array. The survey region spans the entire ~400 pc Central Molecular Zone and comprises ~42 spectral lines at pc spatial and sub-km/s spectral resolution. In addition, we deeply map continuum intensity, spectral index, and polarization at the frequencies where synchrotron, free-free, and thermal dust sources emit. The observed spectral lines include many transitions of ammonia, which we use to construct maps of molecular gas temperature, opacity and gas formation temperature (see poster by Nico Krieger et al., this volume). Water masers pinpoint the sites of active star formation and other lines are good tracers for density, radiation field, shocks, and ionization. This extremely rich survey forms a perfect basis to construct maps of the physical parameters of the gas in this extreme environment.

  3. The function of the earth observing system - Data information system Distributed Active Archive Centers

    NASA Technical Reports Server (NTRS)

    Lapenta, C. C.

    1992-01-01

    The functionality of the Distributed Active Archive Centers (DAACs) which are significant elements of the Earth Observing System Data and Information System (EOSDIS) is discussed. Each DAAC encompasses the information management system, the data archival and distribution system, and the product generation system. The EOSDIS DAACs are expected to improve the access to earth science data set needed for global change research.

  4. Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven

    2010-05-01

    Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.

  5. Condition Assessment of Drinking Water Transmission and Distribution Systems

    EPA Science Inventory

    Condition assessment of water transmission and distribution mains is the collection of data and information through direct and/or indirect methods, followed by analysis of the data and information, to make a determination of the current and/or future structural, water quality, an...

  6. Two and three-dimensional quantitative neutron imaging of the water distribution during ponded infiltration

    NASA Astrophysics Data System (ADS)

    Sacha, Jan; Snehota, Michal; Jelinkova, Vladimira

    2016-04-01

    sample. Tomography images were reconstructed from the both corrected and uncorrected water thickness maps to obtain the 3D spatial distribution of water content within the sample. Without the correction the beam hardening and scattering effects overestimated the water content values close to the sample perimeter and underestimated the values close to the center of the sample, however the total water content of whole sample was the same in both cases.

  7. Research report : guidance on mitigating impacts of large distribution centers on Texas highways.

    DOT National Transportation Integrated Search

    2010-01-01

    Numerous distribution centers (DCs) have been built in Texas over the past 20 years. They serve retail, : grocery, oil, motor vehicle, manufacturer, and other types of business. These DCs vary in size and truck : traffic. Depending on the type of DC ...

  8. Using ant colony optimization on the quadratic assignment problem to achieve low energy cost in geo-distributed data centers

    NASA Astrophysics Data System (ADS)

    Osei, Richard

    There are many problems associated with operating a data center. Some of these problems include data security, system performance, increasing infrastructure complexity, increasing storage utilization, keeping up with data growth, and increasing energy costs. Energy cost differs by location, and at most locations fluctuates over time. The rising cost of energy makes it harder for data centers to function properly and provide a good quality of service. With reduced energy cost, data centers will have longer lasting servers/equipment, higher availability of resources, better quality of service, a greener environment, and reduced service and software costs for consumers. Some of the ways that data centers have tried to using to reduce energy costs include dynamically switching on and off servers based on the number of users and some predefined conditions, the use of environmental monitoring sensors, and the use of dynamic voltage and frequency scaling (DVFS), which enables processors to run at different combinations of frequencies with voltages to reduce energy cost. This thesis presents another method by which energy cost at data centers could be reduced. This method involves the use of Ant Colony Optimization (ACO) on a Quadratic Assignment Problem (QAP) in assigning user request to servers in geo-distributed data centers. In this paper, an effort to reduce data center energy cost involves the use of front portals, which handle users' requests, were used as ants to find cost effective ways to assign users requests to a server in heterogeneous geo-distributed data centers. The simulation results indicate that the ACO for Optimal Server Activation and Task Placement algorithm reduces energy cost on a small and large number of users' requests in a geo-distributed data center and its performance increases as the input data grows. In a simulation with 3 geo-distributed data centers, and user's resource request ranging from 25,000 to 25,000,000, the ACO algorithm was able

  9. Water quality modeling in the dead end sections of drinking water distribution networks.

    PubMed

    Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim

    2016-02-01

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations in flow demands on the simulation accuracy. A set of three correction factors were analytically derived to adjust residence time, dispersion rate and wall demand to overcome simulation error caused by spatial aggregation approximation. The current model results show better agreement with field-measured concentrations of conservative fluoride tracer and free chlorine disinfectant than the simulations of recent advection dispersion reaction models published in the literature. Accuracy of the simulated

  10. [Distribution of virtual water of crops in Beijing].

    PubMed

    Wang, Hong-Rui; Dong, Yan-Yan; Wang, Jun-Hong; Wang, Yan; Han, Zhao-Xing

    2007-11-01

    Virtual water content of grains and vegetables in Beijing's districts is calculated and analyzed for many years by irrigating water quota method, which is compared with the distribution and exploitation of groundwater in Beijing. The results indicate the virtual water content of grains shows a downward trend in all the districts, but the grain production in Yanqing district brings great pressure to the local groundwater. Secondly, the virtual water content of vegetables shows an upward trend in Shunyi District, Daxing district and Pinggu District and is accounting for more and more gradually. Thirdly, the total virtual water volume of grains is decreasing, and the total virtual water volume of vegetables is increasing and the total virtual water volume of crops in Beijing is reducing in recent years, which corresponds with the structural adjustment of policies.

  11. Evaluation of a spatially-distributed Thornthwaite water-balance model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lough, J.A.

    1993-03-01

    A small watershed of low relief in coastal New Hampshire was divided into hydrologic sub-areas in a geographic information system on the basis of soils, sub-basins and remotely-sensed landcover. Three variables were spatially modeled for input to 49 individual water-balances: available water content of the root zone, water input and potential evapotranspiration (PET). The individual balances were weight-summed to generate the aggregate watershed-balance, which saw 9% (48--50 mm) less annual actual-evapotranspiration (AET) compared to a lumped approach. Analysis of streamflow coefficients suggests that the spatially-distributed approach is more representative of the basin dynamics. Variation of PET by landcover accounted formore » the majority of the 9% AET reduction. Variation of soils played a near-negligible role. As a consequence of the above points, estimates of landcover proportions and annual PET by landcover are sufficient to correct a lumped water-balance in the Northeast. If remote sensing is used to estimate the landcover area, a sensor with a high spatial resolution is required. Finally, while the lower Thornthwaite model has conceptual limitations for distributed application, the upper Thornthwaite model is highly adaptable to distributed problems and may prove useful in many earth-system models.« less

  12. Measuring experimental cyclohexane-water distribution coefficients for the SAMPL5 challenge

    NASA Astrophysics Data System (ADS)

    Rustenburg, Ariën S.; Dancer, Justin; Lin, Baiwei; Feng, Jianwen A.; Ortwine, Daniel F.; Mobley, David L.; Chodera, John D.

    2016-11-01

    Small molecule distribution coefficients between immiscible nonaqueuous and aqueous phases—such as cyclohexane and water—measure the degree to which small molecules prefer one phase over another at a given pH. As distribution coefficients capture both thermodynamic effects (the free energy of transfer between phases) and chemical effects (protonation state and tautomer effects in aqueous solution), they provide an exacting test of the thermodynamic and chemical accuracy of physical models without the long correlation times inherent to the prediction of more complex properties of relevance to drug discovery, such as protein-ligand binding affinities. For the SAMPL5 challenge, we carried out a blind prediction exercise in which participants were tasked with the prediction of distribution coefficients to assess its potential as a new route for the evaluation and systematic improvement of predictive physical models. These measurements are typically performed for octanol-water, but we opted to utilize cyclohexane for the nonpolar phase. Cyclohexane was suggested to avoid issues with the high water content and persistent heterogeneous structure of water-saturated octanol phases, since it has greatly reduced water content and a homogeneous liquid structure. Using a modified shake-flask LC-MS/MS protocol, we collected cyclohexane/water distribution coefficients for a set of 53 druglike compounds at pH 7.4. These measurements were used as the basis for the SAMPL5 Distribution Coefficient Challenge, where 18 research groups predicted these measurements before the experimental values reported here were released. In this work, we describe the experimental protocol we utilized for measurement of cyclohexane-water distribution coefficients, report the measured data, propose a new bootstrap-based data analysis procedure to incorporate multiple sources of experimental error, and provide insights to help guide future iterations of this valuable exercise in predictive modeling.

  13. Coliform non-compliance nightmares in water-supply distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geldreich, E.E.

    1988-01-01

    Coliform occurrences in distribution systems have created a great concern for both utilities and water authorities because of the implied public-health implications and failure to meet Federal regulations. Many of the known cases involve systems in the east and midwest. The common denominator being systems that have significant amounts of pipe networks over 75 years old and all are treating surface waters. Origins for these contamination events can be found in source-water fluctuations, failures in treatment-barrier protection, or loss of pipe-network integrity. Once passage into the distribution network has been achieved, some of the coliforms (Klebsiella, Enterobacter, Citrobacter) and othermore » heterotrophic bacteria adapt to the pipe environment, finding protection and nutrient support in pipe sediments. Under conditions of seasonal warm waters (10 degC) and availability of assimilable organics in the pipe sediments and tubercles, colonization grows into biofilms that may slough-off into the water supply, creating a coliform non-compliance problem. Significance of these occurrences and control measures are part of a realistic action plan presented for guidance.« less

  14. Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures.

    PubMed

    Chen, Xianfeng; Weber, Irene; Harrison, Robert W

    2008-09-25

    Water plays a critical role in the structure and function of proteins, although the experimental properties of water around protein structures are not well understood. The water can be classified by the separation from the protein surface into bulk water and hydration water. Hydration water interacts closely with the protein and contributes to protein folding, stability, and dynamics, as well as interacting with the bulk water. Water potential functions are often parametrized to fit bulk water properties because of the limited experimental data for hydration water. Therefore, the structural and energetic properties of the hydration water were assessed for 105 atomic resolution (water by calculating the experimental water-protein radial distribution function or surface distribution function (SDF) and water radial distribution function (RDF). Two maxima are observed in SDF: the first maximum at a radius of 2.75 A reflects first shell and hydrogen bond interactions between protein and water, and the second maximum at 3.65 A reflects second shell and van der Waals interactions between water and nonpolar atoms of protein-forming clathrate-hydrate-like structures. Thus, the two shells do not overlap. The RDF showed the features of liquid water rather than solid ice. The first and second maxima of RDF at 2.75 and 4.5 A, respectively, are the same as for bulk water, but the peaks are sharper, indicating hydration water is more stable than bulk water. Both distribution functions are inversely correlated with the distribution of B factors (atomic thermal factors) for the waters, suggesting that the maxima reflect stable positions. Therefore, the average water structure near the protein surface has experimentally observable differences from bulk water. This analysis will help improve the accuracy for models of water on the protein surface by providing rigorous data for the effects of the apparent chemical

  15. Large-Scale Ichthyoplankton and Water Mass Distribution along the South Brazil Shelf

    PubMed Central

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27′ and 34°51′S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients. PMID:24614798

  16. Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf.

    PubMed

    de Macedo-Soares, Luis Carlos Pinto; Garcia, Carlos Alberto Eiras; Freire, Andrea Santarosa; Muelbert, José Henrique

    2014-01-01

    Ichthyoplankton is an essential component of pelagic ecosystems, and environmental factors play an important role in determining its distribution. We have investigated simultaneous latitudinal and cross-shelf gradients in ichthyoplankton abundance to test the hypothesis that the large-scale distribution of fish larvae in the South Brazil Shelf is associated with water mass composition. Vertical plankton tows were collected between 21°27' and 34°51'S at 107 stations, in austral late spring and early summer seasons. Samples were taken with a conical-cylindrical plankton net from the depth of chlorophyll maxima to the surface in deep stations, or from 10 m from the bottom to the surface in shallow waters. Salinity and temperature were obtained with a CTD/rosette system, which provided seawater for chlorophyll-a and nutrient concentrations. The influence of water mass on larval fish species was studied using Indicator Species Analysis, whereas environmental effects on the distribution of larval fish species were analyzed by Distance-based Redundancy Analysis. Larval fish species were associated with specific water masses: in the north, Sardinella brasiliensis was found in Shelf Water; whereas in the south, Engraulis anchoita inhabited the Plata Plume Water. At the slope, Tropical Water was characterized by the bristlemouth Cyclothone acclinidens. The concurrent analysis showed the importance of both cross-shelf and latitudinal gradients on the large-scale distribution of larval fish species. Our findings reveal that ichthyoplankton composition and large-scale spatial distribution are determined by water mass composition in both latitudinal and cross-shelf gradients.

  17. Injection of Contaminants into a Simulated Water Distribution System Equipped with Continuous Multi-Parameter Water Monitors

    EPA Science Inventory

    The U.S. EPA’s Technology Testing and Evaluation Program has been charged by EPA to evaluate the performance of commercially available water security-related technologies. Multi-parameter water monitors for distributions systems have been evaluated as such a water security techn...

  18. Evaluating online data of water quality changes in a pilot drinking water distribution system with multivariate data exploration methods.

    PubMed

    Mustonen, Satu M; Tissari, Soile; Huikko, Laura; Kolehmainen, Mikko; Lehtola, Markku J; Hirvonen, Arja

    2008-05-01

    The distribution of drinking water generates soft deposits and biofilms in the pipelines of distribution systems. Disturbances in water distribution can detach these deposits and biofilms and thus deteriorate the water quality. We studied the effects of simulated pressure shocks on the water quality with online analysers. The study was conducted with copper and composite plastic pipelines in a pilot distribution system. The online data gathered during the study was evaluated with Self-Organising Map (SOM) and Sammon's mapping, which are useful methods in exploring large amounts of multivariate data. The objective was to test the usefulness of these methods in pinpointing the abnormal water quality changes in the online data. The pressure shocks increased temporarily the number of particles, turbidity and electrical conductivity. SOM and Sammon's mapping were able to separate these situations from the normal data and thus make those visible. Therefore these methods make it possible to detect abrupt changes in water quality and thus to react rapidly to any disturbances in the system. These methods are useful in developing alert systems and predictive applications connected to online monitoring.

  19. Monitoring copper release in drinking water distribution systems.

    PubMed

    d'Antonio, L; Fabbricino, M; Panico, A

    2008-01-01

    A new procedure, recently proposed for on-line monitoring of copper released from metal pipes in household plumbing system for drinking water distribution during the development of corrosion processes, is tested experimentally. Experiments were carried out in laboratory controlled conditions, using synthetic water and varying the water alkalinity. The possibility of using the corrosion potential as a surrogate measure of copper concentration in stagnating water is shown, verifying, in the meantime, the effect of alkalinity on the development of passivation phenomena, which tend to protect the pipe from corrosion processes. Experimental data are discussed, highlighting the potentiality of the procedure, and recognizing its limitations. Copyright IWA Publishing 2008.

  20. Distribution of water in the G327.3-0.6 massive star-forming region

    NASA Astrophysics Data System (ADS)

    Leurini, S.; Herpin, F.; van der Tak, F.; Wyrowski, F.; Herczeg, G. J.; van Dishoeck, E. F.

    2017-06-01

    expansion, situated between the outflow and the observer, extending over 0.32 pc. The outflow is seen face-on and rather centered away from the hot core. Conclusions: The distribution of water along the IRDC is roughly constant with an abundance peak in the more evolved object, that is, in the hot core. These water abundances are in agreement with previous studies in other massive objects and chemical models. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. Looking Back at 25 Years With NASA's EOSDIS Distributed Active Archive Centers

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Kittel, D.

    2017-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's. The data collected by NASA's remote sensing instruments represent a significant public investment in research. EOSDIS provides free and open access to this data to a worldwide public research community. EOSDIS manages a wide range of Earth science discipline data that include cryosphere, land cover change, polar processes, field campaigns, ocean surface, digital elevation, atmosphere dynamics and composition, and inter-disciplinary research, among many others. From the very beginning, EOSDIS was conceived as a system built on partnerships between NASA Centers, US agencies and academia. As originally conceived, the EOSDIS comprised of organizations to process and disseminate remote sensing and in situ data and provide services to a wide variety of users. These organizations are known as the Distributed Active Archive Centers (DAACs). Because of their active role in NASA mission science and with the science community, the DAACs represent a distinct departure from the run-of-the-mill data center. The purpose of this paper is to highlight this distinction and to describe the experiences, strategies, and lessons learned from the operation of the DAACs. Today, there are 12 DAACs geographically distributed across the US that serve over 3 million users and distributed over 1.5 billion Earth science data products. Managed by NASA's Earth Science Data and Information System (ESDIS) Project at Goddard Space Flight Center, the DAACs each support different Earth science disciplines allowing for the customized support to user communities. The ESDIS Project provides the infrastructure support for the entire EOSDIS system, which has grown to 23 petabytes. The DAACs have improved performance as they have grown over the years, while costs are tightly controlled. We have several recommendations about curation, level of service

  2. Optimal cost design of water distribution networks using a decomposition approach

    NASA Astrophysics Data System (ADS)

    Lee, Ho Min; Yoo, Do Guen; Sadollah, Ali; Kim, Joong Hoon

    2016-12-01

    Water distribution network decomposition, which is an engineering approach, is adopted to increase the efficiency of obtaining the optimal cost design of a water distribution network using an optimization algorithm. This study applied the source tracing tool in EPANET, which is a hydraulic and water quality analysis model, to the decomposition of a network to improve the efficiency of the optimal design process. The proposed approach was tested by carrying out the optimal cost design of two water distribution networks, and the results were compared with other optimal cost designs derived from previously proposed optimization algorithms. The proposed decomposition approach using the source tracing technique enables the efficient decomposition of an actual large-scale network, and the results can be combined with the optimal cost design process using an optimization algorithm. This proves that the final design in this study is better than those obtained with other previously proposed optimization algorithms.

  3. Global Distribution of Outbreaks of Water-Associated Infectious Diseases

    PubMed Central

    Yang, Kun; LeJeune, Jeffrey; Alsdorf, Doug; Lu, Bo; Shum, C. K.; Liang, Song

    2012-01-01

    Background Water plays an important role in the transmission of many infectious diseases, which pose a great burden on global public health. However, the global distribution of these water-associated infectious diseases and underlying factors remain largely unexplored. Methods and Findings Based on the Global Infectious Disease and Epidemiology Network (GIDEON), a global database including water-associated pathogens and diseases was developed. In this study, reported outbreak events associated with corresponding water-associated infectious diseases from 1991 to 2008 were extracted from the database. The location of each reported outbreak event was identified and geocoded into a GIS database. Also collected in the GIS database included geo-referenced socio-environmental information including population density (2000), annual accumulated temperature, surface water area, and average annual precipitation. Poisson models with Bayesian inference were developed to explore the association between these socio-environmental factors and distribution of the reported outbreak events. Based on model predictions a global relative risk map was generated. A total of 1,428 reported outbreak events were retrieved from the database. The analysis suggested that outbreaks of water-associated diseases are significantly correlated with socio-environmental factors. Population density is a significant risk factor for all categories of reported outbreaks of water-associated diseases; water-related diseases (e.g., vector-borne diseases) are associated with accumulated temperature; water-washed diseases (e.g., conjunctivitis) are inversely related to surface water area; both water-borne and water-related diseases are inversely related to average annual rainfall. Based on the model predictions, “hotspots” of risks for all categories of water-associated diseases were explored. Conclusions At the global scale, water-associated infectious diseases are significantly correlated with socio

  4. Distilled Water Distribution Systems. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Sell, J.C.

    Factors concerning water distribution systems, including an evaluation of materials and a recommendation of materials best suited for service in typical facilities are discussed. Several installations are discussed in an effort to bring out typical features in selected applications. The following system types are included--(1) industrial…

  5. Optimal reconstruction of historical water supply to a distribution system: A. Methodology.

    PubMed

    Aral, M M; Guan, J; Maslia, M L; Sautner, J B; Gillig, R E; Reyes, J J; Williams, R C

    2004-09-01

    The New Jersey Department of Health and Senior Services (NJDHSS), with support from the Agency for Toxic Substances and Disease Registry (ATSDR) conducted an epidemiological study of childhood leukaemia and nervous system cancers that occurred in the period 1979 through 1996 in Dover Township, Ocean County, New Jersey. The epidemiological study explored a wide variety of possible risk factors, including environmental exposures. ATSDR and NJDHSS determined that completed human exposure pathways to groundwater contaminants occurred in the past through private and community water supplies (i.e. the water distribution system serving the area). To investigate this exposure, a model of the water distribution system was developed and calibrated through an extensive field investigation. The components of this water distribution system, such as number of pipes, number of tanks, and number of supply wells in the network, changed significantly over a 35-year period (1962--1996), the time frame established for the epidemiological study. Data on the historical management of this system was limited. Thus, it was necessary to investigate alternative ways to reconstruct the operation of the system and test the sensitivity of the system to various alternative operations. Manual reconstruction of the historical water supply to the system in order to provide this sensitivity analysis was time-consuming and labour intensive, given the complexity of the system and the time constraints imposed on the study. To address these issues, the problem was formulated as an optimization problem, where it was assumed that the water distribution system was operated in an optimum manner at all times to satisfy the constraints in the system. The solution to the optimization problem provided the historical water supply strategy in a consistent manner for each month of the study period. The non-uniqueness of the selected historical water supply strategy was addressed by the formulation of a second

  6. Development of Secondary Archive System at Goddard Space Flight Center Version 0 Distributed Active Archive Center

    NASA Technical Reports Server (NTRS)

    Sherman, Mark; Kodis, John; Bedet, Jean-Jacques; Wacker, Chris; Woytek, Joanne; Lynnes, Chris

    1996-01-01

    The Goddard Space Flight Center (GSFC) version 0 Distributed Active Archive Center (DAAC) has been developed to support existing and pre Earth Observing System (EOS) Earth science datasets, facilitate the scientific research, and test EOS data and information system (EOSDIS) concepts. To ensure that no data is ever lost, each product received at GSFC DAAC is archived on two different media, VHS and digital linear tape (DLT). The first copy is made on VHS tape and is under the control of UniTree. The second and third copies are made to DLT and VHS media under a custom built software package named 'Archer'. While Archer provides only a subset of the functions available with commercial software like UniTree, it supports migration between near-line and off-line media and offers much greater performance and flexibility to satisfy the specific needs of a data center. Archer is specifically designed to maximize total system throughput, rather than focusing on the turn-around time for individual files. The commercial off the shelf software (COTS) hierarchical storage management (HSM) products evaluated were mainly concerned with transparent, interactive, file access to the end-user, rather than a batch-orientated, optimizable (based on known data file characteristics) data archive and retrieval system. This is critical to the distribution requirements of the GSFC DAAC where orders for 5000 or more files at a time are received. Archer has the ability to queue many thousands of file requests and to sort these requests into internal processing schedules that optimize overall throughput. Specifically, mount and dismount, tape load and unload cycles, and tape motion are minimized. This feature did not seem to be available in many COTS pacages. Archer also uses a generic tar tape format that allows tapes to be read by many different systems rather than the proprietary format found in most COTS packages. This paper discusses some of the specific requirements at GSFC DAAC, the

  7. Mountain waves modulate the water vapor distribution in the UTLS

    NASA Astrophysics Data System (ADS)

    Heller, Romy; Voigt, Christiane; Beaton, Stuart; Dörnbrack, Andreas; Giez, Andreas; Kaufmann, Stefan; Mallaun, Christian; Schlager, Hans; Wagner, Johannes; Young, Kate; Rapp, Markus

    2017-12-01

    The water vapor distribution in the upper troposphere-lower stratosphere (UTLS) region has a strong impact on the atmospheric radiation budget. Transport and mixing processes on different scales mainly determine the water vapor concentration in the UTLS. Here, we investigate the effect of mountain waves on the vertical transport and mixing of water vapor. For this purpose we analyze measurements of water vapor and meteorological parameters recorded by the DLR Falcon and NSF/NCAR Gulfstream V research aircraft taken during the Deep Propagating Gravity Wave Experiment (DEEPWAVE) in New Zealand. By combining different methods, we develop a new approach to quantify location, direction and irreversibility of the water vapor transport during a strong mountain wave event on 4 July 2014. A large positive vertical water vapor flux is detected above the Southern Alps extending from the troposphere to the stratosphere in the altitude range between 7.7 and 13.0 km. Wavelet analysis for the 8.9 km altitude level shows that the enhanced upward water vapor transport above the mountains is caused by mountain waves with horizontal wavelengths between 22 and 60 km. A downward transport of water vapor with 22 km wavelength is observed in the lee-side of the mountain ridge. While it is a priori not clear whether the observed fluxes are irreversible, low Richardson numbers derived from dropsonde data indicate enhanced turbulence in the tropopause region related to the mountain wave event. Together with the analysis of the water vapor to ozone correlation, we find indications for vertical transport followed by irreversible mixing of water vapor. For our case study, we further estimate greater than 1 W m-2 radiative forcing by the increased water vapor concentrations in the UTLS above the Southern Alps of New Zealand, resulting from mountain waves relative to unperturbed conditions. Hence, mountain waves have a great potential to affect the water vapor distribution in the UTLS. Our

  8. Biostability analysis for drinking water distribution systems.

    PubMed

    Srinivasan, Soumya; Harrington, Gregory W

    2007-05-01

    The ability to limit regrowth in drinking water is referred to as biological stability and depends on the concentration of disinfectant residual and on the concentration of substrate required for the growth of microorganisms. The biostability curve, based on this fundamental concept of biological stability, is a graphical approach to study the two competing effects that determine bacterial regrowth in a distribution system: inactivation due to the presence of a disinfectant, and growth due to the presence of a substrate. Biostability curves are a practical, system specific approach for addressing the problem of bacterial regrowth in distribution systems. This paper presents a standardized algorithm for generating biostability curves and this will enable water utilities to incorporate this approach for their site-specific needs. Using data from pilot scale studies, it was found that this algorithm was applicable to control regrowth of HPC in chlorinated systems where AOC is the growth limiting substrate, and growth of AOB in chloraminated systems, where ammonia is the growth limiting substrate.

  9. U.S. Geological Survey Virginia and West Virginia Water Science Center

    USGS Publications Warehouse

    Jastram, John D.

    2017-08-22

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. In support of this mission, the USGS Virginia and West Virginia Water Science Center works in cooperation with many entities to provide reliable, impartial scientific information to resource managers, planners, and the public.

  10. Measurements of gas hydrate formation probability distributions on a quasi-free water droplet

    NASA Astrophysics Data System (ADS)

    Maeda, Nobuo

    2014-06-01

    A High Pressure Automated Lag Time Apparatus (HP-ALTA) can measure gas hydrate formation probability distributions from water in a glass sample cell. In an HP-ALTA gas hydrate formation originates near the edges of the sample cell and gas hydrate films subsequently grow across the water-guest gas interface. It would ideally be desirable to be able to measure gas hydrate formation probability distributions of a single water droplet or mist that is freely levitating in a guest gas, but this is technically challenging. The next best option is to let a water droplet sit on top of a denser, immiscible, inert, and wall-wetting hydrophobic liquid to avoid contact of a water droplet with the solid walls. Here we report the development of a second generation HP-ALTA which can measure gas hydrate formation probability distributions of a water droplet which sits on a perfluorocarbon oil in a container that is coated with 1H,1H,2H,2H-Perfluorodecyltriethoxysilane. It was found that the gas hydrate formation probability distributions of such a quasi-free water droplet were significantly lower than those of water in a glass sample cell.

  11. Water Distribution in the Continental and Oceanic Upper Mantle

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.

    2015-01-01

    Nominally anhydrous minerals such as olivine, pyroxene and garnet can accommodate tens to hundreds of ppm H2O in the form of hydrogen bonded to structural oxygen in lattice defects. Although in seemingly small amounts, this water can significantly alter chemical and physical properties of the minerals and rocks. Water in particular can modify their rheological properties and its distribution in the mantle derives from melting and metasomatic processes and lithology repartition (pyroxenite vs peridotite). These effects will be examined here using Fourier transform infrared spectrometry (FTIR) water analyses on minerals from mantle xenoliths from cratons, plume-influenced cratons and oceanic settings. In particular, our results on xenoliths from three different cratons will be compared. Each craton has a different water distribution and only the mantle root of Kaapvaal has evidence for dry olivine at its base. This challenges the link between olivine water content and survival of Archean cratonic mantle, and questions whether xenoliths are representative of the whole cratonic mantle. We will also present our latest data on Hawaii and Tanzanian craton xenoliths which both suggest the intriguing result that mantle lithosphere is not enriched in water when it interacts with melts from deep mantle upwellings (plumes).

  12. Effects of spatially distributed sectoral water management on the redistribution of water resources in an integrated water model

    NASA Astrophysics Data System (ADS)

    Voisin, Nathalie; Hejazi, Mohamad I.; Leung, L. Ruby; Liu, Lu; Huang, Maoyi; Li, Hong-Yi; Tesfa, Teklu

    2017-05-01

    Realistic representations of sectoral water withdrawals and consumptive demands and their allocation to surface and groundwater sources are important for improving modeling of the integrated water cycle. To inform future model development, we enhance the representation of water management in a regional Earth system (ES) model with a spatially distributed allocation of sectoral water demands simulated by a regional integrated assessment (IA) model to surface and groundwater systems. The integrated modeling framework (IA-ES) is evaluated by analyzing the simulated regulated flow and sectoral supply deficit in major hydrologic regions of the conterminous U.S, which differ from ES studies looking at water storage variations. Decreases in historical supply deficit are used as metrics to evaluate IA-ES model improvement in representating the complex sectoral human activities for assessing future adaptation and mitigation strategies. We also assess the spatial changes in both regulated flow and unmet demands, for irrigation and nonirrigation sectors, resulting from the individual and combined additions of groundwater and return flow modules. Results show that groundwater use has a pronounced regional and sectoral effect by reducing water supply deficit. The effects of sectoral return flow exhibit a clear east-west contrast in the hydrologic patterns, so the return flow component combined with the IA sectoral demands is a major driver for spatial redistribution of water resources and water deficits in the US. Our analysis highlights the need for spatially distributed sectoral representation of water management to capture the regional differences in interbasin redistribution of water resources and deficits.

  13. ESTABLISHMENT OF A GROUNDWATER RESEARCH DATA CENTER FOR VALIDATION OF SUBSURFACE FLOW AND TRANSPORT MODELS

    EPA Science Inventory

    The International Ground Water Modeling Center has established a Groundwater Research Data Center that provides information on datasets resulting from publicly funded field experiments and related bench studies in soil and groundwater pollution and distributes datasets for tes...

  14. EVALUATION OF WATER MONITORING INSTRUMENTATION AT EPA'S WATER AWARENESS TECHNOLOGY EVALUATION RESEARCH SECURITY CENTER

    EPA Science Inventory

    The safety and security of distribution systems has come under reassessment in the past year. Several chemical and biological agents have been identified that might constitute a credible threat against water supply systems. There have also been a few reported threats against wate...

  15. Into hot water head first: distribution of intentional and unintentional immersion burns.

    PubMed

    Daria, Sonya; Sugar, Naomi F; Feldman, Kenneth W; Boos, Stephen C; Benton, Scott A; Ornstein, Amy

    2004-05-01

    Experience with several, previously unreported, intentional face-first immersion burns led us to evaluate the distribution of inflicted and unintentional immersion scald burns in a hospital series. (1) Authors' clinical and legal practices; (2) Burn center at regional Level 1 trauma hospital. : (1) Case series of face-first, inflicted immersion burn victims; (2) Consecutive hospitalized scald burn victims younger than 5 years old, 1/3/1996 to 3/25/2000. (1) Individual case reports; (2) Retrospective records review. Simple descriptive statistics, Fisher Exact test and t test. (1) Six cases of inflicted head and neck immersion injury are described. Four were tap water and 2 food/drink scalds. (2) 22/195 hospitalized victims had sustained immersion burns, 13 from tap water and 9 from other fluids. Six (46%) tap water immersions and no (0%) other immersions had inflicted injuries (P = 0.05). Two of the tap water immersions and one other source immersion included burning of the head and neck. Of these, one tap water immersion, but no other immersion, was inflicted. In no patients were head and neck injuries the sole or predominant site of scalding. In all, 9 children sustained inflicted scalds. Bilateral lower extremity tap water immersion scalds occurred in 100% (6/6) of abusive and 29% (2/7) of unintentional injuries (P = 0.02). Buttock and perineal injuries occurred in 67% (4/6) inflicted versus 29% (2/7) unintentional tap water immersion scalds (P = 0.28). Other fluids caused bilateral lower extremity immersion burns in 3/9 (33 %) unintentionally injured patients, but no abused children (NS). Craniofacial immersion injury, although seen by the authors in legal cases, is infrequent. It was present incidentally in one inflicted tap water burn in the consecutive hospital series. This series affirms the predominance of bilateral lower extremity burns in inflicted tap water immersions. Buttock/perineal immersions were more common with abuse than with unintentional injury.

  16. Handbook : guidelines for successful location and accommodation of major distribution centers on Texas highways.

    DOT National Transportation Integrated Search

    2010-04-01

    Distribution centers (DC) have become more common in Texas over the past decade. As : major generators of large truck traffic, DCs can increase design and maintenance requirements of : Texas highway facilities. This handbook contains guidelines for u...

  17. Water Pressure Distribution on a Twin-Float Seaplane

    NASA Technical Reports Server (NTRS)

    Thompson, F L

    1930-01-01

    This is the second of a series of investigations to determine water pressure distribution on various types of seaplane floats and hulls, and was conducted on a twin-float seaplane. It consisted of measuring water pressures and accelerations on a TS-1 seaplane during numerous landing and taxiing maneuvers at various speeds and angles. The results show that water pressures as great as 10 lbs. per sq. in.may occur at the step in various maneuvers and that pressures of approximately the same magnitude occur at the stern and near the bow in hard pancake landings with the stern way down. At the other parts of the float the pressures are less and are usually zero or slightly negative for some distance abaft the step. A maximum negative pressure of 0.87 lb. Per square inch was measured immediately abaft the step. The maximum positive pressures have a duration of approximately one-twentieth to one-hundredth second at any given location and are distributed over a very limited area at any particular instant.

  18. Breaks and maintenance work in the water distribution systems and gastrointestinal illness: a cohort study.

    PubMed

    Nygård, Karin; Wahl, Erik; Krogh, Truls; Tveit, Odd Atle; Bøhleng, Erik; Tverdal, Aage; Aavitsland, Preben

    2007-08-01

    During maintenance work or breaks on the water distribution system, water pressure occasionally will be reduced. This may lead to intrusion of polluted water-either at the place of repair or through cracks or leaks elsewhere in the distribution system. The objective of this study was to assess whether breaks or maintenance work in the water distribution system with presumed loss of water pressure was associated with an increased risk of gastrointestinal illness among recipients. We conducted a cohort study among recipients of water from seven waterworks in Norway during 2003-04. One week after an episode of mains breaks or maintenance work on the water distribution system, the exposed and unexposed households were interviewed about gastrointestinal illness in the week following the episode. During the 1-week period after the episode, 12.7% of the exposed households reported gastrointestinal illness in the household, compared with 8.0% in the unexposed households [risk ratio (RR) 1.58, 95% confidence interval (CI): 1.1, 2.3]. The risk was highest in households with higher average water consumption. The attributable fraction among the exposed households was 37% in the week following exposure. Our results show that breaks and maintenance work in the water distribution systems caused an increased risk of gastrointestinal illness among water recipients. Better data on the occurrence of low-pressure episodes and improved registration of mains breaks and maintenance work on the water distribution network are needed in order to assess the public health burden of contamination of drinking water within the distribution network.

  19. Water distribution system and diarrheal disease transmission: a case study in Uzbekistan.

    PubMed

    Semenza, J C; Roberts, L; Henderson, A; Bogan, J; Rubin, C H

    1998-12-01

    Deteriorating water treatment facilities and distribution systems pose a significant public health threat, particularly in republics of the former Soviet Union. Interventions to decrease the disease burden associated with these water systems range from upgrading distribution networks to installing reverse osmosis technology. To provide insight into this decision process, we conducted a randomized intervention study to provide epidemiologic data for water policy decisions in Nukus, Uzbekistan, where drinking water quality is suboptimal. We interviewed residents of 240 households, 120 with and 120 without access to municipal piped water. Residents of 62 households without piped water were trained to chlorinate their drinking water at home in a narrow-necked water container with a spout. All study subjects (1583 individuals) were monitored biweekly for self-reported diarrheal illness over a period of 9.5 weeks. The home chlorination intervention group had the lowest diarrheal rate (28.8/1,000 subjects/month) despite lack of access to piped water in their homes. Compared with the two groups that did not receive the intervention this rate was one-sixth that of the group with no piped water (179.2/1,000 subjects/month) and one-third that of the households with piped water (75.5/1,000 subjects/month). More than 30% of the households with piped water lacked detectable levels of chlorine residues in their drinking water, despite two-stage chlorination of the source water, and were at increased risk of diarrhea. Forty-two percent of these municipal users reported that water pressure had been intermittent within the previous two days. The dramatic reduction in diarrheal rates in the home-chlorination intervention group indicates that a large proportion of diarrheal diseases in Nukus are water-borne. The home-chlorination group had less diarrhea than the group with piped water, implicating the distribution system as a source of disease transmission. Taken together, these

  20. FLOW SEPARATION CONDITIONS AT PIPE WALLS OF WATER DISTRIBUTION MAINS

    EPA Science Inventory

    Biofilm formations on pipe walls have been found in potable water distribution mains. The biofilm layers contribute to accelerated corrosion rates, increased flow resistance, and formation of encrustations that may deteriorate drinking water quality. Research to evaluate the depe...

  1. Controls on the distribution of alkylphenols and BTEX in oilfield waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, J.D.; Aplin, A.C.; Larter, S.R.

    1996-10-01

    Controls on the abundance of alkylphenols and BTEX in oilfield waters are poorly understood, but are important because these species are the main dissolved pollutants in produced waters and may also be used as indicators of both the proximity and migration range of petroleum. Using (1) measurements of alkyl phenols and BTEX in oilfield waters and associated petroleums, and (b) oil/water partition coefficients under subsurface conditions we conclude that: (1) The distribution of alkylphenols and BTEX in formation waters are controlled by partition equilibrium with petroleum. Phenol and benzene typically account for 50% of total phenols and total BTEX respectively.more » (2) The concentrations of alkylphenols and BTEX in produced waters equilibriated with oil in reservoirs or in separator systems vary predictably as a function of pressure, temperature and salinity. This suggests that oil/water partition is the primary control influencing the distribution of alkylphenols and BTEX in oilfield waters and that other processes such as hydrolysis processes at the oil-water contact are secondary.« less

  2. Water Distribution System Deficiencies and Gastrointestinal Illness: A Systematic Review and Meta-Analysis

    PubMed Central

    Gruber, Joshua S.; Colford, John M.

    2014-01-01

    Background: Water distribution systems are vulnerable to performance deficiencies that can cause (re)contamination of treated water and plausibly lead to increased risk of gastrointestinal illness (GII) in consumers. Objectives: It is well established that large system disruptions in piped water networks can cause GII outbreaks. We hypothesized that routine network problems can also contribute to background levels of waterborne illness and conducted a systematic review and meta-analysis to assess the impact of distribution system deficiencies on endemic GII. Methods: We reviewed published studies that compared direct tap water consumption to consumption of tap water re-treated at the point of use (POU) and studies of specific system deficiencies such as breach of physical or hydraulic pipe integrity and lack of disinfectant residual. Results: In settings with network malfunction, consumers of tap water versus POU-treated water had increased GII [incidence density ratio (IDR) = 1.34; 95% CI: 1.00, 1.79]. The subset of nonblinded studies showed a significant association between GII and tap water versus POU-treated water consumption (IDR = 1.52; 95% CI: 1.05, 2.20), but there was no association based on studies that blinded participants to their POU water treatment status (IDR = 0.98; 95% CI: 0.90, 1.08). Among studies focusing on specific network deficiencies, GII was associated with temporary water outages (relative risk = 3.26; 95% CI: 1.48, 7.19) as well as chronic outages in intermittently operated distribution systems (odds ratio = 1.61; 95% CI: 1.26, 2.07). Conclusions: Tap water consumption is associated with GII in malfunctioning distribution networks. System deficiencies such as water outages also are associated with increased GII, suggesting a potential health risk for consumers served by piped water networks. Citation: Ercumen A, Gruber JS, Colford JM Jr. 2014. Water distribution system deficiencies and gastrointestinal illness: a systematic review and

  3. The Accumulation of Radioactive Contaminants in Drinking Water Distribution Systems

    EPA Science Inventory

    The accumulation of trace contaminants in drinking water distribution systems has been documented and the subsequent release of the contaminants back to the water is a potential exposure pathway. Radioactive contaminants are of particular concern because of their known health eff...

  4. Evaluation of water quality and stability in the drinking water distribution network in the Azogues city, Ecuador.

    PubMed

    García-Ávila, Fernando; Ramos-Fernández, Lía; Pauta, Damián; Quezada, Diego

    2018-06-01

    This document presents the physical-chemical parameters with the objective of evaluating and analyzing the drinking water quality in the Azogues city applying the water quality index (WQI) and to research the water stability in the distribution network using corrosion indexes. Thirty samples were collected monthly for six months throughout the drinking water distribution network; turbidity, temperature, electric conductivity, pH, total dissolved solids, total hardness, calcium, magnesium, alkalinity, chlorides, nitrates, sulfates and phosphates were determined; the physical-chemical parameters were measured using standard methods. The processed data revealed that the average values ​​of LSI, RSI and PSI were 0.5 (±0.34), 6.76 (±0.6), 6.50 (±0.99) respectively. The WQI calculation indicated that 100% of the samples are considered excellent quality water. According to the Langelier, Ryznar and Pukorius indexes showed that drinking water in Azogues is corrosive. The quality of drinking water according to the WQI is in a good and excellent category.

  5. Environmental controls on cold-water coral mound distribution, morphology, and development in the straits of Florida

    NASA Astrophysics Data System (ADS)

    Simoes Correa, Thiago Barreto

    Scleractinian cold-water corals are widely distributed in seaways and basins of the North Atlantic Ocean, including the Straits of Florida. These corals can form extensive biogenic mounds, which are biodiversity hotspots in the deep ocean. The processes that lead to the genesis of such cold-water coral mounds and control their distribution and morphology are poorly understood. This work uses an innovative mapping approach that combines 130 km 2 of high resolution geophysical and oceanographic data collected using an Autonomous Underwater Vehicle (AUV) from five cold-water coral habitats in the Straits of Florida. These AUV data, together with ground-truthing observations from eleven submersible dives, are used to investigate fine-scale mound parameters and their relationships with environmental factors. Based on these datasets, automated methods are developed for extracting and analyzing mound morphometrics and coral cover. These analyses reveal that mound density is 14 mound/km 2 for the three surveyed sites on the toe-of-slope of Great Bahama Bank (GBB); this density is higher than previously documented (0.3 mound/km 2) in nearby mound fields. Morphometric analyses further indicate that mounds vary significantly in size, from a meter to up to 110 m in relief, and 81 to 600,000 m2 in footprint area. In addition to individual mounds, cold-water corals also develop in some areas as elongated low-relief ridges that are up to 25 m high and 2000 m long. These ridges cover approximately 60 and 70% of the mapped seafloor from the sites at the center of the Straits and at the base of the Miami Terrace, respectively. Morphometrics and current data analyses across the five surveyed fields indicate that mounds and ridges are not in alignment with the dominant current directions. These findings contradict previous studies that described streamlined mounds parallel to the northward Florida Current. In contrast, this study shows that the sites dominated by coral ridges are

  6. An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance.

    PubMed

    Lee, Zhong Ping; Du, Keping; Voss, Kenneth J; Zibordi, Giuseppe; Lubac, Bertrand; Arnone, Robert; Weidemann, Alan

    2011-07-01

    Remote-sensing reflectance (R(rs)), which is defined as the ratio of water-leaving radiance (L(w)) to downwelling irradiance just above the surface (E(d)(0⁺)), varies with both water constituents (including bottom properties of optically-shallow waters) and angular geometry. L(w) is commonly measured in the field or by satellite sensors at convenient angles, while E(d)(0⁺) can be measured in the field or estimated based on atmospheric properties. To isolate the variations of R(rs) (or L(w)) resulting from a change of water constituents, the angular effects of R(rs) (or L(w)) need to be removed. This is also a necessity for the calibration and validation of satellite ocean color measurements. To reach this objective, for optically-deep waters where bottom contribution is negligible, we present a system centered on water's inherent optical properties (IOPs). It can be used to derive IOPs from angular Rrs and offers an alternative to the system centered on the concentration of chlorophyll. This system is applicable to oceanic and coastal waters as well as to multiband and hyperspectral sensors. This IOP-centered system is applied to both numerically simulated data and in situ measurements to test and evaluate its performance. The good results obtained suggest that the system can be applied to angular R(rs) to retrieve IOPs and to remove the angular variation of R(rs).

  7. Detection of Leaks in Water Distribution System using Non-Destructive Techniques

    NASA Astrophysics Data System (ADS)

    Aslam, H.; Kaur, M.; Sasi, S.; Mortula, Md M.; Yehia, S.; Ali, T.

    2018-05-01

    Water is scarce and needs to be conserved. A considerable amount of water which flows in the water distribution systems was found to be lost due to pipe leaks. Consequently, innovations in methods of pipe leakage detections for early recognition and repair of these leaks is vital to ensure minimum wastage of water in distribution systems. A major component of detection of pipe leaks is the ability to accurately locate the leak location in pipes through minimum invasion. Therefore, this paper studies the leak detection abilities of the three NDT’s: Ground Penetration Radar (GPR) and spectrometer and aims at determining whether these instruments are effective in identifying the leak. An experimental setup was constructed to simulate the underground conditions of water distribution systems. After analysing the experimental data, it was concluded that both the GPR and the spectrometer were effective in detecting leaks in the pipes. However, the results obtained from the spectrometer were not very differentiating in terms of observing the leaks in comparison to the results obtained from the GPR. In addition to this, it was concluded that both instruments could not be used if the water from the leaks had reached on the surface, resulting in surface ponding.

  8. Cellular water distribution, transport, and its investigation methods for plant-based food material.

    PubMed

    Khan, Md Imran H; Karim, M A

    2017-09-01

    Heterogeneous and hygroscopic characteristics of plant-based food material make it complex in structure, and therefore water distribution in its different cellular environments is very complex. There are three different cellular environments, namely the intercellular environment, the intracellular environment, and the cell wall environment inside the food structure. According to the bonding strength, intracellular water is defined as loosely bound water, cell wall water is categorized as strongly bound water, and intercellular water is known as free water (FW). During food drying, optimization of the heat and mass transfer process is crucial for the energy efficiency of the process and the quality of the product. For optimizing heat and mass transfer during food processing, understanding these three types of waters (strongly bound, loosely bound, and free water) in plant-based food material is essential. However, there are few studies that investigate cellular level water distribution and transport. As there is no direct method for determining the cellular level water distributions, various indirect methods have been applied to investigate the cellular level water distribution, and there is, as yet, no consensus on the appropriate method for measuring cellular level water in plant-based food material. Therefore, the main aim of this paper is to present a comprehensive review on the available methods to investigate the cellular level water, the characteristics of water at different cellular levels and its transport mechanism during drying. The effect of bound water transport on quality of food product is also discussed. This review article presents a comparative study of different methods that can be applied to investigate cellular water such as nuclear magnetic resonance (NMR), bioelectric impedance analysis (BIA), differential scanning calorimetry (DSC), and dilatometry. The article closes with a discussion of current challenges to investigating cellular water

  9. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    PubMed Central

    Prest, E. I.; Weissbrodt, D. G.; Hammes, F.; van Loosdrecht, M. C. M.; Vrouwenvelder, J. S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  10. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    PubMed

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1-3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  11. Analysis of the access patterns at GSFC distributed active archive center

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore; Bedet, Jean-Jacques

    1996-01-01

    The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational for more than two years. Its mission is to support existing and pre Earth Observing System (EOS) Earth science datasets, facilitate the scientific research, and test Earth Observing System Data and Information System (EOSDIS) concepts. Over 550,000 files and documents have been archived, and more than six Terabytes have been distributed to the scientific community. Information about user request and file access patterns, and their impact on system loading, is needed to optimize current operations and to plan for future archives. To facilitate the management of daily activities, the GSFC DAAC has developed a data base system to track correspondence, requests, ingestion and distribution. In addition, several log files which record transactions on Unitree are maintained and periodically examined. This study identifies some of the users' requests and file access patterns at the GSFC DAAC during 1995. The analysis is limited to the subset of orders for which the data files are under the control of the Hierarchical Storage Management (HSM) Unitree. The results show that most of the data volume ordered was for two data products. The volume was also mostly made up of level 3 and 4 data and most of the volume was distributed on 8 mm and 4 mm tapes. In addition, most of the volume ordered was for deliveries in North America although there was a significant world-wide use. There was a wide range of request sizes in terms of volume and number of files ordered. On an average 78.6 files were ordered per request. Using the data managed by Unitree, several caching algorithms have been evaluated for both hit rate and the overhead ('cost') associated with the movement of data from near-line devices to disks. The algorithm called LRU/2 bin was found to be the best for this workload, but the STbin algorithm also worked well.

  12. Description of the surface water filtration and ozone treatment system at the Northeast Fishery Center

    USDA-ARS?s Scientific Manuscript database

    A water filtration and ozone disinfection system was installed at the U.S. Fish and Wildlife Service's Northeast Fishery Center in Lamar, Pennsylvania to treat a surface water supply that is used to culture sensitive and endangered fish. The treatment system first passes the surface water through dr...

  13. Water-Cooled Data Center Packs More Power Per Rack | Poster

    Cancer.gov

    By Frank Blanchard and Ken Michaels, Staff Writers Behind each tall, black computer rack in the data center at the Advanced Technology Research Facility (ATRF) is something both strangely familiar and oddly out of place: It looks like a radiator. The back door of each cabinet is gridded with the coils of the Liebert cooling system, which circulates chilled water to remove heat

  14. [Investigation of the distribution of water clusters in vegetables, fruits, and natural waters by flicker noise spectroscopy].

    PubMed

    Zubov, A V; Zubov, K V; Zubov, V A

    2007-01-01

    The distribution of water clusters in fresh rain water and in rain water that was aged for 30 days (North Germany, 53 degrees 33' N, 12 degrees 47' E, 293 K, rain on 25.06.06) as well as in fresh vegetables and fruits was studied by flicker noise spectroscopy. In addition, the development of water clusters in apples and potatoes during ripening in 2006 was investigated. A different distribution of water clusters in irrigation water (river and rain) and in the biomatrix of vegetables (potatoes, onions, tomatoes, red beets) and fruits (apples, bananas) was observed. It was concluded that the cluster structure of irrigation water differs from that of water of the biomatrix of vegetables and fruits and depends on drought and the biomatrix nature. Water clusters in plants are more stable and reproducible than water clusters in natural water. The main characteristics of cluster formation in materials studied were given. The oscillation frequencies of water clusters in plants (biofield) are given at which they interact with water clusters of the Earth hydrosphere. A model of series of clusters 16(H2O)100 <--> 4(H2O)402 <--> 2(H2O)903 <--> (H2O)1889 in the biomatrix of vegetables and fruits was discussed.

  15. Water quality in the proposed Prosperity Reservoir area, Center Creek Basin, Missouri

    USGS Publications Warehouse

    Barks, James H.; Berkas, Wayne R.

    1979-01-01

    Water in Center Creek basin, Mo., upstream from the proposed Prosperity Reservoir damsite is a calcium bicarbonate type that is moderately mineralized, hard, and slightly alkaline. Ammonia and organic nitrogen, phosphorus, total organic carbon, chemical oxygen demand, and bacteria increased considerably during storm runoff, probably due to livestock wastes. Nitrogen and phosphorus concentrations are probably high enough to cause the proposed lake to be eutrophic. Minor-element concentrations were at or near normal levels in Center and Jones Creeks. The only pesticides detected were 0.01 micrograms per liter of 2, 4, 5-T in one base-flow sample and 0.02 to 0.04 micrograms per liter of 2, 4, 5-T and 2, 4-D in all storm-runoff samples. Fecal coliform and fecal streptococcus densities ranged from 2 to 650 and 2 to 550 colonies per 100 milliliters, respectively, during base flow , but were 17,000 to 45,000 and 27,000 to 70,000 colonies per 100 milliliters, respectively, during storm runoff. Water in Center Creek about 2.5 miles downstream from the proposed damsite is similar in quality to that upstream from the damsite except for higher concentrations of sodium, sulfate, chloride, fluoride, nitrogen, and phosphorus. These higher concentrations are caused by fertilizer industry wastes that enter Center Creek about 1.0 mile downstream from the proposed damsite. (Woodard-USGS).

  16. Aging Water Infrastructure Program at U.S. EPA: Rehabilitation of Water Distribution and Wastewater Collection Systems

    EPA Science Inventory

    Several EPA projects are currently underway to encourage technology development and dissemination in key aspects of the condition assessment and rehabilitation of water and wastewater systems. The progress on one of these projects, "Rehabilitation of Water Distribution and Waste...

  17. CHANGES IN BACTERIAL COMPOSITION OF BIOFILM IN A METROPOLITAN DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e., groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The b...

  18. WATER DISTRIBUTION SYSTEMS: A SPATIAL AND COST EVALUATION

    EPA Science Inventory

    Problems associated with maintaining and replacing water supply distribution systems are reviewed. Some of these problems are associated with public health, economic and spatial development of the community, and costs of repair and replacement of system components. A repair frequ...

  19. Metagenomic Analysis of Water Distribution System Bacterial Communities

    EPA Science Inventory

    The microbial quality of drinking water is assessed using culture-based methods that are highly selective and that tend to underestimate the densities and diversity of microbial populations inhabiting distribution systems. In order to better understand the effect of different dis...

  20. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems (abstract)

    EPA Science Inventory

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of...

  1. Object-Oriented Technology-Based Software Library for Operations of Water Reclamation Centers

    NASA Astrophysics Data System (ADS)

    Otani, Tetsuo; Shimada, Takehiro; Yoshida, Norio; Abe, Wataru

    SCADA systems in water reclamation centers have been constructed based on hardware and software that each manufacturer produced according to their design. Even though this approach used to be effective to realize real-time and reliable execution, it is an obstacle to cost reduction about system construction and maintenance. A promising solution to address the problem is to set specifications that can be used commonly. In terms of software, information model approach has been adopted in SCADA systems in other field, such as telecommunications and power systems. An information model is a piece of software specification that describes a physical or logical object to be monitored. In this paper, we propose information models for operations of water reclamation centers, which have not ever existed. In addition, we show the feasibility of the information model in terms of common use and processing performance.

  2. Disinfectant Penetration into Nitrifying Drinking Water Distribution System Biofilm Using Microelectrodes

    EPA Science Inventory

    Nitrification within drinking water distribution systems reduces water quality, causes difficulties maintaining adequate disinfectant residual, and poses public health concerns including exposure to nitrite, nitrate, and opportunistic pathogenic microorganisms. Monochloramine is...

  3. The NASA Distributed Active Archive Center Experience in Providing Trustworthy Digital Repositories

    NASA Astrophysics Data System (ADS)

    de Sherbinin, A. M.; Downs, R. R.; Chen, R. S.

    2017-12-01

    Since the early 1990s, NASA Earth Observation System Data and Information System (EOSDIS) has supported between 10 to 12 discipline-specific Distributed Active Archive Centers (DAACs) that have provided long-term preservation of Earth Science data records, particularly from satellite and airborne remote sensing. The focus of this presentation is on two of the DAACs - the Socioeconomic Data and Applications Center (SEDAC) and Oak Ridge National Laboratory (ORNL) DAAC - that provide archiving and dissemination of third party data sets. The presentation describes the community of interest for these two DAACs, their data management practices, and the benefits of certification to the DAACs and their user communities. It also describes the organizational, technical, financial, and legal challenges to providing trustworthy long-term data stewardship.

  4. Evaluating the spatial distribution of water balance in a small watershed, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Gburek, W. J.; Schwartz, F. W.

    2000-04-01

    A conceptual water-balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice.

  5. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems.

    PubMed

    Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2015-12-01

    The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.

  6. [Development and application of a multi-species water quality model for water distribution systems with EPANET-MSX].

    PubMed

    Sun, Fu; Chen, Ji-ning; Zeng, Si-yu

    2008-12-01

    A conceptual multi-species water quality model for water distribution systems was developed on the basis of the toolkit of the EPANET-MSX software. The model divided the pipe segment into four compartments including pipe wall, biofilm, boundary layer and bulk liquid. The involved processes were substrate utilization and microbial growth, decay and inactivation of microorganisms, mass transfer of soluble components through the boundary layer, adsorption and desorption of particular components between bulk liquid and biofilm, oxidation and halogenation of organic matter by residual chlorine, and chlorine consumption by pipe wall. The fifteen simulated variables included the seven common variables both in the biofilm and in the bulk liquid, i.e. soluble organic matter, particular organic matter, ammonia nitrogen, residual chlorine, heterotrophic bacteria, autotrophic bacteria and inert solids, as well as biofilm thickness on the pipe wall. The model was validated against the data from a series of pilot experiments, and the simulation accuracy for residual chlorine and turbidity were 0.1 mg/L and 0.3 NTU respectively. A case study showed that the model could reasonably reflect the dynamic variation of residual chlorine and turbidity in the studied water distribution system, while Monte Carlo simulation, taking into account both the variability of finished water from the waterworks and the uncertainties of model parameters, could be performed to assess the violation risk of water quality in the water distribution system.

  7. Paleoclimate Signals and Age Distributions from 41 Public Water Works in the Netherlands

    NASA Astrophysics Data System (ADS)

    Broers, H. P.; Weert, J. D.; Sültenfuß, J.; Aeschbach, W.; Vonhof, H.; Casteleijns, J.

    2015-12-01

    Knowing the age distribution of water abstracted from public water supply wells is of prime importance to ensure customer trust and to underpin predictions of water quality evolution in time. Especially, age distributions enable the assessment of the vulnerability of well fields, both in relation to surface sources of contamination as in relation to subsurface sources, such as possibly related to shale gas extraction. We sampled the raw water of 41 large public supply well fields which represents a mixture of groundwaters and used the a discrete travel time distribution model (DTTDM, Visser et al. 2013, WRR) in order to quantify the age distribution of the mixture. Measurements included major ion chemistry, 3H, 3He, 4He, 18O, 2H, 14C, 13CDIC and 13CCH4 and the full range of noble gases. The heavier noble gases enable the calculation of the Noble Gas Temperature (NGT) which characterizes the temperature of past recharge conditions. The 14C apparent age of each mixture was derived correcting for dead carbon sources. The DTTDM used the 3H and 4He concentrations, the 14C apparent age and the NGT as the four distinctive tracers to estimate the age distributions. Especially 4He and NGT provide extra information on the older part of the age distributions and showed that the 14C apparent ages are often the result of mixing of waters ranging between 2.000 and 35.000 years old, instead of being discrete ages with a limited .variance as sometimes assumed.The results show a large range of age distributions, comprising vulnerable well fields with >60% young water (< 100 yrs) and well-protected well fields with >85% very old groundwater (> 25 kyrs) and all forms of TTD's in between. The age distributions are well in correspondence with the hydrogeological setting of the well fields; all well fields with an age distribution skewed towards older ages are in the Roer Valley Graben structure, where fluvial and marine aquitards provide protection from recent recharge. Especially

  8. NASA Tests Upgraded Water System for Stennis Space Center's B-2 Test Stand

    NASA Image and Video Library

    2017-12-04

    On December 4, Stennis Space Center conducted a water flow test on the B-2 test stand to check the water system’s upgraded modifications in preparation for Space Launch System’s Core Stage testing. During a test, rocket engine fire and exhaust is redirected out of the stand by a large flame trench. For this test, the water deluge system, with the capability of flowing 335,000 gallons of water per minute, directed more than 240,000 gallons of water per minute through more than 32,000 5/32-inch holes in the B2 stand flame deflector, cooling the exhaust and protecting the trench from damage.

  9. Bacterial communities associated with an occurrence of colored water in an urban drinking water distribution system.

    PubMed

    Wu, Hui Ting; Mi, Zi Long; Zhang, Jing Xu; Chen, Chao; Xie, Shu Guang

    2014-08-01

    This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquabacterium might contribute to the formation of colored water. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  10. Earthquake hazards to domestic water distribution systems in Salt Lake County, Utah

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  11. PHYSIO-CHEMICAL CHARACTERIZATION OF IRON TUBERCULATION FROM A SINGLE DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Corrosion of iron pipes in Drinking Water Distribution Systems (DWDS) contributes to the formation of tubercles whose physio-chemical properties are influenced by the composition of the waters in the distribution system. Thus the objective of this study was to assess the extent o...

  12. Real time monitoring of water distribution in an operando fuel cell during transient states

    NASA Astrophysics Data System (ADS)

    Martinez, N.; Peng, Z.; Morin, A.; Porcar, L.; Gebel, G.; Lyonnard, S.

    2017-10-01

    The water distribution of an operating proton exchange membrane fuel cell (PEMFC) was monitored in real time by using Small Angle Neutron Scattering (SANS). The formation of liquid water was obtained simultaneously with the evolution of the water content inside the membrane. Measurements were performed when changing current with a time resolution of 10 s, providing insights on the kinetics of water management prior to the stationary phase. We confirmed that water distribution is strongly heterogeneous at the scale at of the whole Membrane Electrode Assembly. As already reported, at the local scale there is no straightforward link between the amounts of water present inside and outside the membrane. However, we show that the temporal evolutions of these two parameters are strongly correlated. In particular, the local membrane water content is nearly instantaneously correlated to the total liquid water content, whether it is located at the anode or cathode side. These results can help in optimizing 3D stationary diphasic models used to predict PEMFC water distribution.

  13. Water-Pressure Distribution on Seaplane Float

    NASA Technical Reports Server (NTRS)

    Thompson, F L

    1929-01-01

    The investigation presented in this report was conducted for the purpose of determining the distribution and magnitude of water pressures likely to be experienced on seaplane hulls in service. It consisted of the development and construction of apparatus for recording water pressures lasting one one-hundredth second or longer and of flight tests to determine the water pressures on a UO-1 seaplane float under various conditions of taxiing, taking off, and landing. The apparatus developed was found to operate with satisfactory accuracy and is suitable for flight tests on other seaplanes. The tests on the UO-1 showed that maximum pressures of about 6.5 pounds per square inch occur at the step for the full width of the float bottom. Proceeding forward from the step the maximum pressures decrease in magnitude uniformly toward the bow, and the region of highest pressures narrows toward the keel. Immediately abaft the step the maximum pressures are very small, but increase in magnitude toward the stern and there once reached a value of about 5 pounds per square inch. (author)

  14. The Role of Distributed Generation and Combined Heat and Power (CHP) Systems in Data Centers

    EPA Pesticide Factsheets

    This report reviews how distributed generation (DG) resources such as fuel cells, reciprocating engines, and gas turbines can offer powerful energy efficiency savings in data centers, particularly when configured in combined heat and power (CHP) mode.

  15. Increased food production and reduced water use through optimized crop distribution

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo

    2017-12-01

    Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.

  16. Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system.

    PubMed

    Revetta, R P; Gomez-Alvarez, V; Gerke, T L; Santo Domingo, J W; Ashbolt, N J

    2016-07-01

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e. groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to 18 months. Differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity were associated with the classes Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Firmicutes. After 9 months the biofilm bacterial community from both GW and SW were dominated by Mycobacterium species. The distribution of the dominant operational taxonomic unit (OTU) (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature. In this study, the biofilm community structure observed between GW and SW were dissimilar, while communities from different locations receiving SW did not show significant differences. The results suggest that source water and/or the water quality shaped by their respective treatment processes may play an important role in shaping the bacterial communities in the distribution system. In addition, several bacterial groups were present in all samples, suggesting that they are an integral part of the core microbiota of this DWDS. These results provide an ecological insight into biofilm bacterial structure in chlorine-treated drinking water influenced by different water sources and their respective treatment processes. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. Water in the Earth's Interior: Distribution and Origin

    NASA Astrophysics Data System (ADS)

    Peslier, Anne H.; Schönbächler, Maria; Busemann, Henner; Karato, Shun-Ichiro

    2017-10-01

    The concentration and distribution of water in the Earth has influenced its evolution throughout its history. Even at the trace levels contained in the planet's deep interior (mantle and core), water affects Earth's thermal, deformational, melting, electrical and seismic properties, that control differentiation, plate tectonics and volcanism. These in turn influenced the development of Earth's atmosphere, oceans, and life. In addition to the ubiquitous presence of water in the hydrosphere, most of Earth's "water" actually occurs as trace amounts of hydrogen incorporated in the rock-forming silicate minerals that constitute the planet's crust and mantle, and may also be stored in the metallic core. The heterogeneous distribution of water in the Earth is the result of early planetary differentiation into crust, mantle and core, followed by remixing of lithosphere into the mantle after plate-tectonics started. The Earth's total water content is estimated at 18_{-15}^{+81} times the equivalent mass of the oceans (or a concentration of 3900_{-3300}^{+32700} ppm weight H2O). Uncertainties in this estimate arise primarily from the less-well-known concentrations for the lower mantle and core, since samples for water analyses are only available from the crust, the upper mantle and very rarely from the mantle transition zone (410-670 km depth). For the lower mantle (670-2900 km) and core (2900-4500 km), the estimates rely on laboratory experiments and indirect geophysical techniques (electrical conductivity and seismology). The Earth's accretion likely started relatively dry because it mainly acquired material from the inner part of the proto-planetary disk, where temperatures were too high for the formation and accretion of water ice. Combined evidence from several radionuclide systems (Pd-Ag, Mn-Cr, Rb-Sr, U-Pb) suggests that water was not incorporated in the Earth in significant quantities until the planet had grown to ˜60-90% of its current size, while core formation

  18. [Effect on iron release in drinking water distribution systems].

    PubMed

    Niu, Zhang-bin; Wang, Yang; Zhang, Xiao-jian; Chen, Chao; Wang, Sheng-hui

    2007-10-01

    Batch-scale experiments were done to quantitatively study the effect of inorganic chemical parameters on iron release in drinking water distribution systems. The parameters include acid-base condition, oxidation-reduction condition, and neutral ion condition. It was found that the iron release rate decreased with pH, alkalinity, the concentration of dissolved oxygen increasing, and the iron release rate increased with the concentration of chloride increasing. The theoretical critical formula of iron release rate was elucidated. According to the formula, the necessary condition for controlling iron release is that pH is above 7.6, the concentration of alkalinity and dissolved oxygen is more than 150 mg/L and 2 mg/L, and the concentration of chloride is less than 150 mg/L of distributed water.

  19. Operation of remote mobile sensors for security of drinking water distribution systems.

    PubMed

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Spatial Distributions of DDTs in the Water Masses of the Arctic Ocean.

    PubMed

    Carrizo, Daniel; Sobek, Anna; Salvadó, Joan A; Gustafsson, Örjan

    2017-07-18

    There is a scarcity of data on the amount and distribution of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolites in intermediate and deep ocean water masses. Here, the distribution and inventories of DDTs in water of the Arctic shelf seas and the interior basin are presented. The occurrence of ∑ 6 DDT (0.10-66 pg L -1 ) in the surface water was dominated by 4,4'-DDE. In the Central Arctic Ocean increasing concentrations of DDE with depth were observed in the Makarov and Amundsen basins. The increasing concentrations down to 2500 m depth is in accordance with previous findings for PCBs and PBDEs. Similar concentrations of DDT and DDEs were found in the surface water, while the relative contribution of DDEs increased with depth, demonstrating a transformation over time and depth. Higher concentrations of DDTs were found in the European part of the Arctic Ocean; these distributions likely reflect a combination of different usage patterns, transport, and fate of these compounds. For instance, the elevated concentrations of DDTs in the Barents and Atlantic sectors of the Arctic Ocean indicate the northbound Atlantic current as a significant conveyor of DDTs. This study contributes to the very rare data on OCPs in the vast deep-water compartments and combined with surface water distribution across the Arctic Ocean helps to improve our understanding of the large-scale fate of DDTs in the Arctic.

  1. A Decision-Support System for Sustainable Water Distribution System Planning.

    PubMed

    Freund, Alina; Aydin, Nazli Yonca; Zeckzer, Dirk; Hagen, Hans

    2017-01-01

    An interactive decision-support system (DSS) can help experts prepare water resource management plans for decision makers and stakeholders. The design of the proposed prototype incorporates visualization techniques such as circle views, grid layout, small multiple maps, and node simplification to improve the data readability of water distribution systems. A case study with three urban water management and sanitary engineering experts revealed that the proposed DSS is satisfactory, efficient, and effective.

  2. Characteristics of service requests and service processes of fire and rescue service dispatch centers: analysis of real world data and the underlying probability distributions.

    PubMed

    Krueger, Ute; Schimmelpfeng, Katja

    2013-03-01

    A sufficient staffing level in fire and rescue dispatch centers is crucial for saving lives. Therefore, it is important to estimate the expected workload properly. For this purpose, we analyzed whether a dispatch center can be considered as a call center. Current call center publications very often model call arrivals as a non-homogeneous Poisson process. This bases on the underlying assumption of the caller's independent decision to call or not to call. In case of an emergency, however, there are often calls from more than one person reporting the same incident and thus, these calls are not independent. Therefore, this paper focuses on the dependency of calls in a fire and rescue dispatch center. We analyzed and evaluated several distributions in this setting. Results are illustrated using real-world data collected from a typical German dispatch center in Cottbus ("Leitstelle Lausitz"). We identified the Pólya distribution as being superior to the Poisson distribution in describing the call arrival rate and the Weibull distribution to be more suitable than the exponential distribution for interarrival times and service times. However, the commonly used distributions offer acceptable approximations. This is important for estimating a sufficient staffing level in practice using, e.g., the Erlang-C model.

  3. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    NASA Astrophysics Data System (ADS)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  4. Water Distribution System Operation and Maintenance. A Field Study Training Program. Second Edition.

    ERIC Educational Resources Information Center

    Kerri, Kenneth D.; And Others

    Proper installation, inspection, operation, maintenance, repair and management of water distribution systems have a significant impact on the operation and maintenance cost and effectiveness of the systems. The objective of this manual is to provide water distribution system operators with the knowledge and skills required to operate and maintain…

  5. Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints.

    PubMed

    Liu, Gang; Zhang, Ya; van der Mark, Ed; Magic-Knezev, Aleksandra; Pinto, Ameet; van den Bogert, Bartholomeus; Liu, Wentso; van der Meer, Walter; Medema, Gertjan

    2018-07-01

    The general consensus is that the abundance of tap water bacteria is greatly influenced by water purification and distribution. Those bacteria that are released from biofilm in the distribution system are especially considered as the major potential risk for drinking water bio-safety. For the first time, this full-scale study has captured and identified the proportional contribution of the source water, treated water, and distribution system in shaping the tap water bacterial community based on their microbial community fingerprints using the Bayesian "SourceTracker" method. The bacterial community profiles and diversity analyses illustrated that the water purification process shaped the community of planktonic and suspended particle-associated bacteria in treated water. The bacterial communities associated with suspended particles, loose deposits, and biofilm were similar to each other, while the community of tap water planktonic bacteria varied across different locations in distribution system. The microbial source tracking results showed that there was not a detectable contribution of source water to bacterial community in the tap water and distribution system. The planktonic bacteria in the treated water was the major contributor to planktonic bacteria in the tap water (17.7-54.1%). The particle-associated bacterial community in the treated water seeded the bacterial community associated with loose deposits (24.9-32.7%) and biofilm (37.8-43.8%) in the distribution system. In return, the loose deposits and biofilm showed a significant influence on tap water planktonic and particle-associated bacteria, which were location dependent and influenced by hydraulic changes. This was revealed by the increased contribution of loose deposits to tap water planktonic bacteria (from 2.5% to 38.0%) and an increased contribution of biofilm to tap water particle-associated bacteria (from 5.9% to 19.7%) caused by possible hydraulic disturbance from proximal to distal regions

  6. JobCenter: an open source, cross-platform, and distributed job queue management system optimized for scalability and versatility.

    PubMed

    Jaschob, Daniel; Riffle, Michael

    2012-07-30

    Laboratories engaged in computational biology or bioinformatics frequently need to run lengthy, multistep, and user-driven computational jobs. Each job can tie up a computer for a few minutes to several days, and many laboratories lack the expertise or resources to build and maintain a dedicated computer cluster. JobCenter is a client-server application and framework for job management and distributed job execution. The client and server components are both written in Java and are cross-platform and relatively easy to install. All communication with the server is client-driven, which allows worker nodes to run anywhere (even behind external firewalls or "in the cloud") and provides inherent load balancing. Adding a worker node to the worker pool is as simple as dropping the JobCenter client files onto any computer and performing basic configuration, which provides tremendous ease-of-use, flexibility, and limitless horizontal scalability. Each worker installation may be independently configured, including the types of jobs it is able to run. Executed jobs may be written in any language and may include multistep workflows. JobCenter is a versatile and scalable distributed job management system that allows laboratories to very efficiently distribute all computational work among available resources. JobCenter is freely available at http://code.google.com/p/jobcenter/.

  7. The transmembrane gradient of the dielectric constant influences the DPH lifetime distribution.

    PubMed

    Konopásek, I; Kvasnicka, P; Amler, E; Kotyk, A; Curatola, G

    1995-11-06

    The fluorescence lifetime distribution of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) in egg-phosphatidylcholine liposomes was measured in normal and heavy water. The lower dielectric constant (by approximately 12%) of heavy water compared with normal water was employed to provide direct evidence that the drop of the dielectric constant along the membrane normal shifts the centers of the distribution of both DPH and TMA-DPH to higher values and sharpens the widths of the distribution. The profile of the dielectric constant along the membrane normal was not found to be a linear gradient (in contrast to [1]) but a more complex function. Presence of cholesterol in liposomes further shifted the center of the distributions to higher value and sharpened them. In addition, it resulted in a more gradient-like profile of the dielectric constant (i.e. linearization) along the normal of the membrane. The effect of the change of dielectric constant on the membrane proteins is discussed.

  8. Comparison of Particle-Associated Bacteria from a Drinking Water Treatment Plant and Distribution Reservoirs with Different Water Sources.

    PubMed

    Liu, G; Ling, F Q; van der Mark, E J; Zhang, X D; Knezev, A; Verberk, J Q J C; van der Meer, W G J; Medema, G J; Liu, W T; van Dijk, J C

    2016-02-02

    This study assessed the characteristics of and changes in the suspended particles and the associated bacteria in an unchlorinated drinking water distribution system and its reservoirs with different water sources. The results show that particle-associated bacteria (PAB) were present at a level of 0.8-4.5 × 10(3) cells ml(-1) with a biological activity of 0.01-0.04 ng l(-1) ATP. Different PAB communities in the waters produced from different sources were revealed by a 16S rRNA-based pyrosequencing analysis. The quantified biomass underestimation due to the multiple cells attached per particle was ≥ 85%. The distribution of the biologically stable water increased the number of cells per particle (from 48 to 90) but had minor effects on the PAB community. Significant changes were observed at the mixing reservoir. Our results show the characteristics of and changes in suspended PAB during distribution, and highlight the significance of suspended PAB in the distribution system, because suspended PAB can lead to a considerable underestimation of biomass, and because they exist as biofilm, which has a greater mobility than pipe-wall biofilm and therefore presents a greater risk, given the higher probability that it will reach the customers' taps and be ingested.

  9. Comparison of Particle-Associated Bacteria from a Drinking Water Treatment Plant and Distribution Reservoirs with Different Water Sources

    PubMed Central

    Liu, G.; Ling, F. Q.; van der Mark, E. J.; Zhang, X. D.; Knezev, A.; Verberk, J. Q. J. C.; van der Meer, W. G. J.; Medema, G. J.; Liu, W. T.; van Dijk, J. C.

    2016-01-01

    This study assessed the characteristics of and changes in the suspended particles and the associated bacteria in an unchlorinated drinking water distribution system and its reservoirs with different water sources. The results show that particle-associated bacteria (PAB) were present at a level of 0.8–4.5 × 103 cells ml−1 with a biological activity of 0.01–0.04 ng l−1 ATP. Different PAB communities in the waters produced from different sources were revealed by a 16S rRNA-based pyrosequencing analysis. The quantified biomass underestimation due to the multiple cells attached per particle was ≥ 85%. The distribution of the biologically stable water increased the number of cells per particle (from 48 to 90) but had minor effects on the PAB community. Significant changes were observed at the mixing reservoir. Our results show the characteristics of and changes in suspended PAB during distribution, and highlight the significance of suspended PAB in the distribution system, because suspended PAB can lead to a considerable underestimation of biomass, and because they exist as biofilm, which has a greater mobility than pipe-wall biofilm and therefore presents a greater risk, given the higher probability that it will reach the customers’ taps and be ingested. PMID:26832989

  10. Ground-water hydrology and water quality of Irwin Basin at Fort Irwin National Training Center, California

    USGS Publications Warehouse

    Densmore, Jill N.; Londquist, Clark J.

    1997-01-01

    Geohydrologic data were collected from Irwin Basin at Fort Irwin National Training Center in the Mojave Desert of southern California by the U.S. Geological Survey during 199296 to deter mine the quantity and quality of ground water available in this basin. In addition to data collected from existing wells and test holes, 17 monitoring sites were constructed in Irwin Basin to provide data on subsurface geology, ground-water levels, and ground-water quality. Eleven of these sites were multiple-well monitoring sites that were constructed to provide depth-dependent geohydrologic data in the aquifer system. The aquifer system of Irwin Basin, defined on the basis of hydrologic data collected from wells in Irwin Basin, consists of an upper and a lower aquifer. A 1994 water-table contour map shows that a cone of depression beneath Irwin Basin well field has developed as a result of ground-water development. Water-quality samples collected from Irwin Basin wells to determine potential sources of ground-water degradation indicate that water in three areas in the basin contains high nitrate and dissolved-solids concentrations. The stable isotopes of oxygen and hydrogen indicate that present-day precipitation is not a major source of recharge in this basin. Tritium and carbon-14 data indicate that most of the basin was recharged before 1953 and that this water may be more than 14,000 years old.

  11. Strategies for monitoring the bacteriological quality of water supply in distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geldreich, E.E.; Goodrich, J.A.; Clark, R.M.

    1989-01-01

    Monitoring strategies for characterizing the bacteriological quality of water in the distribution system require a complete understanding of a variety of interrelated aspects that include treated water quality, water-supply retention in storage and infrastructure deterioration in the distribution system. A study of field data from several water-supply utilities was used to highlight some innovative interpretations of compliance monitoring data. Major perceptions include: The use of a 5% coliform frequency of occurrence limit highlights compliance significance in those situations where there are clusters of positive samples containing less than 4 coliforms per 100 mL. Unfortunately, this presence/absence concept does not providemore » any indication of the magnitude of a contamination event.« less

  12. MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    A mass-transfer-based model is developed for predicting chlorine decay in drinking-water distribution networks. The model considers first-order reactions of chlorine to occur both in the bulk flow and at the pipe wall. The overall rate of the wall reaction is a function of the ...

  13. MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    A mass transfer-based model is developed for predicting chlorine decay in drinking water distribution networks. he model considers first order reactions of chlorine to occur both in the bulk flow and at the pipe wall. he overall rate of the wall reaction is a function of the rate...

  14. Spatial distributions and seasonal variations of organochlorine pesticides in water and soil samples in Bolu, Turkey.

    PubMed

    Karadeniz, Hatice; Yenisoy-Karakaş, Serpil

    2015-03-01

    In this study, a total of 75 water samples (38 groundwater and 37 surface water samples) and 54 surface soil samples were collected from the five districts of Bolu, which is located in the Western Black Sea Region of Turkey in the summer season of 2009. In the autumn season, 17 water samples (surface water and groundwater samples) and 17 soil samples were collected within the city center to observe the seasonal changes of organochlorine pesticides (OCPs). Groundwater and surface water samples were extracted using solid phase extraction. Soil samples were extracted ultrasonically. Sixteen OCP compounds in the standard solution were detected by a gas chromatography-electron capture detector (GC-ECD). Therefore, the method validation was performed for those 16 OCP compounds. However, 13 OCP compounds could be observed in the samples. The concentrations of most OCPs were higher in samples collected in the summer than those in the autumn. The most frequently observed pesticides were endosulfan sulfate and 4,4'-dichlorodiphenyltrichloroethane (DDT) in groundwater samples, α-HCH in surface water samples, and endosulfan sulfate in soil samples. The average concentration of endosulfan sulfate was the highest in water and soil samples. Compared to the literature values, the average concentrations in this study were lower values. Spatial distribution of OCPs was evaluated with the aid of contour maps for the five districts of Bolu. Generally, agricultural processes affected the water and soil quality in the region. However, non-agricultural areas were also affected by pesticides. The concentrations of pesticides were below the legal limits of European directives for each pesticide.

  15. Atlantic salmon breeding program at the National Cold Water Marine Aquaculture Center

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, ME has been supporting the U.S. coldwater marine aquaculture industry for the past thirteen years by developing a genetically improved North American Atlantic salmon. The St. John's River stock was chosen as the focal ...

  16. PHYLOGENETIC DIVERSITY IN DRINKING WATER BACTERIA IN A DISTRIBUTION SYSTEM SIMULATOR

    EPA Science Inventory

    This work was carried out to characterize the composition of microbial populations in a distribution system simulator (DSS) by direct sequence analysis of 16S rDNA clone libraries. Bacterial populations were examined in chlorinated distribution water and chloraminated DSS feed an...

  17. Water-Cooled Data Center Packs More Power Per Rack | Poster

    Cancer.gov

    By Frank Blanchard and Ken Michaels, Staff Writers Behind each tall, black computer rack in the data center at the Advanced Technology Research Facility (ATRF) is something both strangely familiar and oddly out of place: It looks like a radiator. The back door of each cabinet is gridded with the coils of the Liebert cooling system, which circulates chilled water to remove heat generated by the high-speed, high-capacity, fault-tolerant equipment.

  18. Impact of orthophosphate addition on biofilm development in drinking water distribution systems.

    PubMed

    Gouider, Mbarka; Bouzid, Jalel; Sayadi, Sami; Montiel, Antoine

    2009-08-15

    The contamination of the water distribution network results from fixed bacteria multiplication (biofilm) on the water pipe walls, followed by their detachment and their transport in the circulating liquid. The presence of biofilms in distribution networks can result in numerous unwanted problems for the user such as microbial contamination of the distributed water and deterioration of the network (bio-corrosion). For old networks, lead-containing plumbings can be a serious cause of worry for the consumer owing to the release of lead ions in the circulating water. Among the solutions considered to reduce the presence of lead in drinking water, the addition of orthophosphates constitutes an interesting alternative. However, the added orthophosphate may cause--even at low doses--additional microbial growth. The main objective of this study was to evaluate the impact of the orthophosphate treatment on the biofilm development in the water supplied by the Joinville-le-Pont water treatment plant (Eau de Paris, France). For this purpose, a laboratory pilot plant was devised and connected to the considered water network. Two quantification methods for monitoring the biofilm formation were used: the enumeration on R2A agar and the determination of proteins. For the biofilm detachment operation, an optimization of the rinsing step was firstly conducted in order to distinguish between free and fixed biomass. The data obtained showed that there was a linear relation between both quantification methods. They also showed that, for the tested water, the bacterial densities were not affected by orthophosphate addition at a treatment rate of 1mg PO(4)(3-)/L.

  19. Variations in trihalomethane levels in three French water distribution systems and the development of a predictive model.

    PubMed

    Mouly, Damien; Joulin, Eric; Rosin, Christophe; Beaudeau, Pascal; Zeghnoun, Abdelkrim; Olszewski-Ortar, Agnès; Munoz, Jean François; Welté, Bénédicte; Joyeux, Michel; Seux, René; Montiel, Antoine; Rodriguez, M J

    2010-10-01

    Epidemiological studies have demonstrated that chlorination by-products in drinking water may cause some types of cancer in humans. However, due to differences in methodology between the various studies, it is not possible to establish a dose-response relationship. This shortcoming is due primarily to uncertainties about how exposure is measured-made difficult by the great number of compounds present-the exposure routes involved and the variation in concentrations in water distribution systems. This is especially true for trihalomethanes for which concentrations can double between the water treatment plant and the consumer tap. The aim of this study is to describe the behaviour of trihalomethanes in three French water distribution systems and develop a mathematical model to predict concentrations in the water distribution system using data collected from treated water at the plant (i.e. the entrance of the distribution system). In 2006 and 2007, samples were taken successively from treated water at the plant and at several points in the water distribution system in three French cities. In addition to the concentrations of the four trihalomethanes (chloroform, dichlorobromomethane, chlorodibromomethane, bromoform), many other parameters involved in their formation that affect their concentration were also measured. The average trihalomethane concentration in the three water distribution systems ranged from 21.6 μg/L to 59.9 μg/L. The increase in trihalomethanes between the treated water at the plant and a given point in the water distribution system varied by a factor of 1.1-5.7 over all of the samples. A log-log linear regression model was constructed to predict THM concentrations in the water distribution system. The five variables used were trihalomethane concentration and free residual chlorine for treated water at the plant, two variables that characterize the reactivity of organic matter (specific UV absorbance (SUVA), an indicator developed for the free

  20. 75 FR 66795 - Enesco, LLC, Gund Division, Distribution Center, Edison, NJ; Notice of Affirmative Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,479] Enesco, LLC, Gund Division, Distribution Center, Edison, NJ; Notice of Affirmative Determination Regarding Application for... application, I conclude that the claim is of sufficient weight to justify reconsideration of the U.S...

  1. Construction, water-level, and water-quality data for multiple-well monitoring sites and test wells, Fort Irwin National Training Center, San Bernardino County, California, 2009-12

    USGS Publications Warehouse

    Kjos, Adam R.; Densmore, Jill N.; Nawikas, Joseph M.; Brown, Anthony A.

    2014-01-01

    Because of increasing water demands at the U.S. Army Fort Irwin National Training Center, the U.S. Geological Survey in cooperation with the U.S. Army carried out a study to evaluate the water quality and potential groundwater supply of undeveloped basins within the U.S. Army Fort Irwin National Training Center. In addition, work was performed in the three developed basins—Langford, Bicycle, and Irwin—proximal to or underlying cantonment to provide information in support of water-resources management and to supplement monitoring in these basins. Between 2009 and 2012, the U.S. Geological Survey installed 41 wells to expand collection of water-resource data within the U.S. Army Fort Irwin National Training Center. Thirty-four monitoring wells (2-inch diameter) were constructed at 14 single- or multiple-well monitoring sites and 7 test wells (8-inch diameter) were installed. The majority of the wells were installed in previously undeveloped or minimally developed basins (Cronise, Red Pass, the Central Corridor area, Superior, Goldstone, and Nelson Basins) proximal to cantonment (primary base housing and infrastructure). Data associated with well construction, water-level monitoring, and water-quality sampling are presented in this report.

  2. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer

    Liu, Guosheng

    2008-01-15

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  3. Impacts of blending ground, surface, and saline waters on lead release in drinking water distribution systems.

    PubMed

    Tang, Zhijian; Hong, Seungkwan; Xiao, Weizhong; Taylor, James

    2006-03-01

    The impacts of distribution water quality changes caused by blending different source waters on lead release from corrosion loops containing small lead coupons were investigated in a pilot distribution study. The 1-year pilot study demonstrated that lead release to drinking water increased as chlorides increased and sulfates decreased. Silica and calcium inhibited lead release to a lesser degree than sulfates. An additional 3-month field study isolated and verified the effects of chlorides and sulfates on lead release. Lead release decreased with increasing pH and increasing alkalinity during the 1-year pilot study; however, the effects of pH and alkalinity on lead release, were not clearly elucidated due to confounding effects. A statistical model was developed using nonlinear regression, which showed that lead release increased with increasing chlorides, alkalinity and temperature, and decreased with increasing pH and sulfates. The model indicated that primary treatment processes such as enhanced coagulation and RO (reverse osmosis membrane) were related to lead release by water quality. Chlorides are high in RO-finished water and increase lead release, while sulfates are high following enhanced coagulation and decrease lead release.

  4. A model for distribution centers location-routing problem on a multimodal transportation network with a meta-heuristic solving approach

    NASA Astrophysics Data System (ADS)

    Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai

    2017-07-01

    Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.

  5. A model for distribution centers location-routing problem on a multimodal transportation network with a meta-heuristic solving approach

    NASA Astrophysics Data System (ADS)

    Fazayeli, Saeed; Eydi, Alireza; Kamalabadi, Isa Nakhai

    2018-07-01

    Nowadays, organizations have to compete with different competitors in regional, national and international levels, so they have to improve their competition capabilities to survive against competitors. Undertaking activities on a global scale requires a proper distribution system which could take advantages of different transportation modes. Accordingly, the present paper addresses a location-routing problem on multimodal transportation network. The introduced problem follows four objectives simultaneously which form main contribution of the paper; determining multimodal routes between supplier and distribution centers, locating mode changing facilities, locating distribution centers, and determining product delivery tours from the distribution centers to retailers. An integer linear programming is presented for the problem, and a genetic algorithm with a new chromosome structure proposed to solve the problem. Proposed chromosome structure consists of two different parts for multimodal transportation and location-routing parts of the model. Based on published data in the literature, two numerical cases with different sizes generated and solved. Also, different cost scenarios designed to better analyze model and algorithm performance. Results show that algorithm can effectively solve large-size problems within a reasonable time which GAMS software failed to reach an optimal solution even within much longer times.

  6. Dataset for Testing Contamination Source Identification Methods for Water Distribution Networks

    EPA Pesticide Factsheets

    This dataset includes the results of a simulation study using the source inversion techniques available in the Water Security Toolkit. The data was created to test the different techniques for accuracy, specificity, false positive rate, and false negative rate. The tests examined different parameters including measurement error, modeling error, injection characteristics, time horizon, network size, and sensor placement. The water distribution system network models that were used in the study are also included in the dataset. This dataset is associated with the following publication:Seth, A., K. Klise, J. Siirola, T. Haxton , and C. Laird. Testing Contamination Source Identification Methods for Water Distribution Networks. Journal of Environmental Division, Proceedings of American Society of Civil Engineers. American Society of Civil Engineers (ASCE), Reston, VA, USA, ., (2016).

  7. Evaluation of biological stability and corrosion potential in drinking water distribution systems: a case study.

    PubMed

    Chien, C C; Kao, C M; Chen, C W; Dong, C D; Chien, H Y

    2009-06-01

    The appearance of assimilable organic carbon (AOC), microbial regrowth, disinfection by-products (DBPs), and pipe corrosion in drinking water distribution systems are among those major safe drinking water issues in many countries. The water distribution system of Cheng-Ching Lake Water Treatment Plant (CCLWTP) was selected in this study to evaluate the: (1) fate and transport of AOC, DBPs [e.g., trihalomethanes (THMs), haloacetic acids (HAAs)], and other organic carbon indicators in the selected distribution system, (2) correlations between AOC (or DBPs) and major water quality parameters [e.g. dissolved oxygen (DO), free residual chlorine, and bacteria, and (3) causes and significance of corrosion problems of the water pipes in this system. In this study, seasonal water samples were collected from 13 representative locations in the distribution system for analyses of AOC, DBPs, and other water quality indicators. Results indicate that residual free chlorine concentrations in the distribution system met the drinking water standards (0.2 to 1 mg l(-1)) established by Taiwan Environmental Protection Administration (TEPA). Results show that AOC measurements correlated positively with total organic carbon (TOC) and UV-254 (an organic indicator) values in this system. Moreover, AOC concentrations at some locations were higher than the 50 microg acetate-C l(-1) standard established by Taiwan Water Company. This indicates that the microbial regrowth might be a potential water quality problem in this system. Higher DO measurements (>5.7 mg l(-1)) might cause the aerobic biodegradation of THMs and HAAs in the system, and thus, low THMs (<0.035 mg l(-1)) and HAAs (<0.019 mg l(-1)) concentrations were observed at all sampling locations. Results from the observed negative Langelier Saturation Index (LSI) values, higher Ryznar Stability Index (RSI) values, and high Fe3+ concentrations at some pipe-end locations indicate that highly oxidative and corrosive conditions occurred

  8. Transformation of Bisphenol A in Water Distribution Systems, A Pilot-scale Study

    EPA Science Inventory

    Halogenations of bisphenol A (BPA) in a pilot-scale water distribution system (WDS) of cement-lined ductile cast iron pipe were investigated under the condition: pH 7.3±0.3, water flow velocity of 1.0 m/s, and 25 °C ± 1 °C in water temperature. The testing water was chlorinated f...

  9. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    NASA Astrophysics Data System (ADS)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  10. Thermosyphon Cooler Hybrid System for Water Savings in an Energy-Efficient HPC Data Center: Modeling and Installation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Thomas; Liu, Zan; Sickinger, David

    The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device, the thermosyphon cooler (TSC), with an open cooling tower. A combination of equipment and controls, this new heat rejection system embraces the 'smart use of water,' using evaporative cooling when it is most advantageous and then saving water and modulating toward increased dry sensible cooling as system operations and ambient weather conditions permit. Innovative fan control strategies ensure the most economical balance between water savings and parasitic fan energy. The unique low-pressure-drop design of the TSC allows water to be cooled directly by the TSCmore » evaporator without risk of bursting tubes in subfreezing ambient conditions. Johnson Controls partnered with the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories to deploy the TSC as a test bed at NREL's high-performance computing (HPC) data center in the first half of 2016. Located in NREL's Energy Systems Integration Facility (ESIF), this HPC data center has achieved an annualized average power usage effectiveness rating of 1.06 or better since 2012. Warm-water liquid cooling is used to capture heat generated by computer systems direct to water; that waste heat is either reused as the primary heat source in the ESIF building or rejected using evaporative cooling. This data center is the single largest source of water and power demand on the NREL campus, using about 7,600 m3 (2.0 million gal) of water during the past year with an hourly average IT load of nearly 1 MW (3.4 million Btu/h) -- so dramatically reducing water use while continuing efficient data center operations is of significant interest. Because Sandia's climate is similar to NREL's, this new heat rejection system being deployed at NREL has gained interest at Sandia. Sandia's data centers utilize an hourly average of 8.5 MW (29 million Btu/h) and are also one of the largest consumers of water on Sandia's site. In

  11. JobCenter: an open source, cross-platform, and distributed job queue management system optimized for scalability and versatility

    PubMed Central

    2012-01-01

    Background Laboratories engaged in computational biology or bioinformatics frequently need to run lengthy, multistep, and user-driven computational jobs. Each job can tie up a computer for a few minutes to several days, and many laboratories lack the expertise or resources to build and maintain a dedicated computer cluster. Results JobCenter is a client–server application and framework for job management and distributed job execution. The client and server components are both written in Java and are cross-platform and relatively easy to install. All communication with the server is client-driven, which allows worker nodes to run anywhere (even behind external firewalls or “in the cloud”) and provides inherent load balancing. Adding a worker node to the worker pool is as simple as dropping the JobCenter client files onto any computer and performing basic configuration, which provides tremendous ease-of-use, flexibility, and limitless horizontal scalability. Each worker installation may be independently configured, including the types of jobs it is able to run. Executed jobs may be written in any language and may include multistep workflows. Conclusions JobCenter is a versatile and scalable distributed job management system that allows laboratories to very efficiently distribute all computational work among available resources. JobCenter is freely available at http://code.google.com/p/jobcenter/. PMID:22846423

  12. Impact of particles on sediment accumulation in a drinking water distribution system.

    PubMed

    Vreeburg, J H G; Schippers, D; Verberk, J Q J C; van Dijk, J C

    2008-10-01

    Discolouration of drinking water is one of the main reasons customers complain to their water company. Though corrosion of cast iron is often seen as the main source for this problem, the particles originating from the treatment plant play an important and potentially dominant role in the generation of a discolouration risk in drinking water distribution systems. To investigate this thesis a study was performed in a drinking water distribution system. In two similar isolated network areas the effect of particles on discolouration risk was studied with particle counting, the Resuspension Potential Method (RPM) and assessment of the total accumulated sediment. In the 'Control Area', supplied with normal drinking water, the discolouration risk was regenerated within 1.5 year. In the 'Research Area', supplied with particle-free water, this will take 10-15 years. An obvious remedy for controlling the discolouration risk is to improve the treatment with respect to the short peaks that are caused by particle breakthrough.

  13. The CUAHSI Water Data Center: Empowering scientists to discover, use, store, and share water data

    NASA Astrophysics Data System (ADS)

    Couch, A. L.; Hooper, R. P.; Arrigo, J. S.

    2012-12-01

    The proposed CUAHSI Water Data Center (WDC) will provide production-quality water data resources based upon the successful large-scale data services prototype developed by the CUAHSI Hydrologic Information System (HIS) project. The WDC, using the HIS technology, concentrates on providing time series data collected at fixed points or on moving platforms from sensors primarily (but not exclusively) in the medium of water. The WDC's missions include providing simple and effective data discovery tools useful to researchers in a variety of water-related disciplines, and providing simple and cost-effective data publication mechanisms for projects that do not desire to run their own data servers. The WDC's activities will include: 1. Rigorous curation of the water data catalog already assembled during the CUAHSI HIS project, to ensure accuracy of records and existence of declared sources. 2. Data backup and failover services for "at risk" data sources. 3. Creation and support for ubiquitously accessible data discovery and access, web-based search and smartphone applications. 4. Partnerships with researchers to extend the state of the art in water data use. 5. Partnerships with industry to create plug-and-play data publishing from sensors, and to create domain-specific tools. The WDC will serve as a knowledge resource for researchers of water-related issues, and will interface with other data centers to make their data more accessible to water researchers. The WDC will serve as a vehicle for addressing some of the grand challenges of accessing and using water data, including: a. Cross-domain data discovery: different scientific domains refer to the same kind of water data using different terminologies, making discovery of data difficult for researchers outside the data provider's domain. b. Cross-validation of data sources: much water data comes from sources lacking rigorous quality control procedures; such sources can be compared against others with rigorous quality

  14. Imaging water velocity and volume fraction distributions in water continuous multiphase flows using inductive flow tomography and electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Meng, Yiqing; Lucas, Gary P.

    2017-05-01

    This paper presents the design and implementation of an inductive flow tomography (IFT) system, employing a multi-electrode electromagnetic flow meter (EMFM) and novel reconstruction techniques, for measuring the local water velocity distribution in water continuous single and multiphase flows. A series of experiments were carried out in vertical-upward and upward-inclined single phase water flows and ‘water continuous’ gas-water and oil-gas-water flows in which the velocity profiles ranged from axisymmetric (single phase and vertical-upward multiphase flows) to highly asymmetric (upward-inclined multiphase flows). Using potential difference measurements obtained from the electrode array of the EMFM, local axial velocity distributions of the continuous water phase were reconstructed using two different IFT reconstruction algorithms denoted RT#1, which assumes that the overall water velocity profile comprises the sum of a series of polynomial velocity components, and RT#2, which is similar to RT#1 but which assumes that the zero’th order velocity component may be replaced by an axisymmetric ‘power law’ velocity distribution. During each experiment, measurement of the local water volume fraction distribution was also made using the well-established technique of electrical resistance tomography (ERT). By integrating the product of the local axial water velocity and the local water volume fraction in the cross section an estimate of the water volumetric flow rate was made which was compared with a reference measurement of the water volumetric flow rate. In vertical upward flows RT#2 was found to give rise to water velocity profiles which are consistent with the previous literature although the profiles obtained in the multiphase flows had relatively higher central velocity peaks than was observed for the single phase profiles. This observation was almost certainly a result of the transfer of axial momentum from the less dense dispersed phases to the water

  15. MIXING IN DISTRIBUTION SYSTEM STORAGE TANKS: ITS EFFECT ON WATER QUALITY

    EPA Science Inventory

    Nearly all distribution systems in the US include storage tanks and reservoirs. They are the most visible components of a wate distribution system but are generally the least understood in terms of their impact on water quality. Long residence times in storage tanks can have nega...

  16. Paleoclimate signals and age distributions from 41 public water works in the Netherlands

    NASA Astrophysics Data System (ADS)

    Broers, Hans Peter; de Weert, Jasperien; Sueltenfuss, Juergen; Aeschbach-Hertig, Werner; Vonhof, Hubert; Casteleijns, Jeroen

    2015-04-01

    Knowing the age distribution of water abstracted from public water supply wells is of prime importance to ensure customer trust and to underpin predictions of water quality evolution in time. Especially, age distributions enable the assessment of the vulnerability of well fields, both in relation to surface sources of contamination as in relation to subsurface sources, such as possibly related to shale gas extraction. We sampled the raw water of 41 large public supply well fields which represents a mixture of groundwaters and used the a discrete travel time distribution model (DTTDM, Visser et al. 2013, WRR) in order to quantify the age distribution of the mixture. Measurements included major ion chemistry, 3H, 3He, 4He, 18O, 2H, 14C, 13CDIC and 13CCH4 and the full range of noble gases. The heavier noble gases enable the calculation of the Noble Gas Temperature (NGT) which characterizes the temperature of past recharge conditions. The 14C apparent age of each mixture was derived correcting for dead carbon sources and included carbonate dissolution and methanogenesis as the defining processes. The DTTDM used the 3H and 4He concentrations, the 14C apparent age and the NGT as the four distinctive tracers to estimate the age distributions. The use of 18O was less effective because the processes that led to more enriched values are too uncertain . Especially 4He and NGT provide extra information on the older part of the age distributions and showed that the 14C apparent ages are often the result of mixing of waters ranging between 2.000 and 35.000 years old, instead of being discrete ages with a limited .variance as sometimes assumed. The results show a large range of age distributions, comprising vulnerable well fields with >60% young water (< 100 yrs) and well-protected well fields with >85% very old groundwater (> 25 kyrs) and all forms of TTD's in between. The age distributions are well in correspondence with the hydrogeological setting of the well fields; all well

  17. Strategic plan for science-U.S. Geological Survey, Ohio Water Science Center, 2010-15

    USGS Publications Warehouse

    ,

    2010-01-01

    This Science Plan identifies specific scientific and technical programmatic issues of current importance to Ohio and the Nation. An examination of those issues yielded a set of five major focus areas with associated science goals and strategies that the Ohio Water Science Center will emphasize in its program during 2010-15. A primary goal of the Science Plan is to establish a relevant multidisciplinary scientific and technical program that generates high-quality products that meet or exceed the expectations of our partners while supporting the goals and initiatives of the U.S. Geological Survey. The Science Plan will be used to set the direction of new and existing programs and will influence future training and hiring decisions by the Ohio Water Science Center.

  18. Ecology of Legionella pneumophila within water distribution systems.

    PubMed Central

    Stout, J E; Yu, V L; Best, M G

    1985-01-01

    The reservoir for hospital-acquired Legionnaires disease has been shown to be the potable water distribution system. We investigated the influence of the natural microbial population and sediment (scale and organic particulates) found in water systems as growth-promoting factors for Legionella pneumophila. Our in vitro experiments showed that: (i) water from hot-water storage tank readily supported the survival of L. pneumophila, (ii) the concentration of sediment was directly related to the survival of L. pneumophila, (iii) the presence of environmental bacteria improved the survival of L. pneumophila via nutritional symbiosis, (iv) the combination of sediment and environmental bacteria acted synergistically to improve the survival of L. pneumophila, and (v) the role of sediment in this synergistic effect was determined to be nutritional. Sediment was found to stimulate the growth of environmental microflora, which in turn stimulated the growth of L. pneumophila. These findings confirm the empiric observations of the predilection of L. pneumophila for growth in hot-water tanks and its localization to sediment. L. pneumophila occupies an ecological niche within the potable water system, with interrelationships between microflora, sediment, and temperature. Images PMID:3977311

  19. Lewis Research Center earth resources program

    NASA Technical Reports Server (NTRS)

    Mark, H.

    1972-01-01

    The Lewis Research Center earth resources program efforts are in the areas of: (1) monitoring and rapid evaluation of water quality; (2) determining ice-type and ice coverage distribution to aid operations in a possible extension of the Great Lakes ice navigation and shipping season; (3) monitoring spread of crop viruses; and (4) extent of damage to strip mined areas as well as success of efforts to rehabilitate such areas for agriculture.

  20. EFFECT OF THE DISTRIBUTION SYSTEM ON DRINKING WATER QUALITY

    EPA Science Inventory

    The SDWA and its amendments has focused interest on the factors that cause the deterioration of water between the treatment plant and the consumer. The distribution system itself can contribute to this deterioration. Numerous examples of waterborne outbreaks have demonstrated the...

  1. Modeling a hierarchical structure of factors influencing exploitation policy for water distribution systems using ISM approach

    NASA Astrophysics Data System (ADS)

    Jasiulewicz-Kaczmarek, Małgorzata; Wyczółkowski, Ryszard; Gładysiak, Violetta

    2017-12-01

    Water distribution systems are one of the basic elements of contemporary technical infrastructure of urban and rural areas. It is a complex engineering system composed of transmission networks and auxiliary equipment (e.g. controllers, checkouts etc.), scattered territorially over a large area. From the water distribution system operation point of view, its basic features are: functional variability, resulting from the need to adjust the system to temporary fluctuations in demand for water and territorial dispersion. The main research questions are: What external factors should be taken into account when developing an effective water distribution policy? Does the size and nature of the water distribution system significantly affect the exploitation policy implemented? These questions have shaped the objectives of research and the method of research implementation.

  2. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    PubMed

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  3. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems

    PubMed Central

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-01-01

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers’ taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies. PMID:28282914

  4. Study of hydraulic power recovery from New Mexico water distribution systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenmackers, R.

    1984-02-01

    The results of a survey of New Mexico water distribution systems suitable for hydroelectric power development are reported. The objectives of the survey were to determine the potential for hydraulic power recovery from existing and planned water systems, to identify potential sites, and to study and recommend promising sites for further development. The survey found eleven sites in New Mexico water distribution systems with a total hydroelectric power potential of 736 kilowatts. Seven of these sites, or 439 kilowatts, could be developed immediately, having everything necessary in place but the turbine generator. These sites are located in the Bonito pipelinemore » near Carrizozo (2 sites), Raton, Ruidoso, Santa Fe, Sugarite, and Taos. If all seven sites were developed, the annual energy production could reach 3,800,000 kilowatt hours.« less

  5. LEAK DETECTION AND WIRELESS TELEMETRY FOR WATER DISTRIBUTION AND SEWERAGE SYSTEMS - PHASE I

    EPA Science Inventory

    According to the study EPA 2000 Community Water System Survey Data on Pipe Assets, the infrastructure for water distribution and sewerage systems is aging and requires replacement.  In addition, in EPA’s September 2002 report Clean Water and Drinking Water Infr...

  6. Pesticides in ground water: distribution, trends, and governing factors

    USGS Publications Warehouse

    Barbash, Jack; Resek, Elizabeth A.

    1997-01-01

    A comprehensive review of published information on the distribution and behavior of pesticides and their transformation products in ground water indicates that pesticides from every chemical class have been detected in ground waters of the United States. Many of these compounds are commonly present at low concentrations in ground water beneath agricultural land. Little information is available on their occurrence beneath non-agricultural land, although the intensity of their use in such areas (on lawns, golf courses, rights of way, timberlands, etc.) is often comparable to, or greater than agricultural use. Information on pesticides in ground water is not sufficient to provide either a statistically representative view of pesticide occurrence in ground water across the United States, or an indication of long-term trends or changes in the severity or extent of this contamination over the past three decades. This is largely due to wide variations in analytical detection limits, well selection procedures, and other design features among studies conducted in different areas or at different times. Past approaches have not been well suited for distinguishing "point source" from "nonpoint source" pesticide contamination. Among the variety of natural and anthropogenic factors examined, those that appear to be most strongly associated with the intensity of pesticide contamination of ground water are the depth, construction and age of the sampled wells, the amount of recharge (by precipitation or irrigation), and the depth of tillage. Approaches commonly employed for predicting pesticide distributions in the subsurface--including computer simulations, indicator solutes (e.g., nitrate or tritium), and ground-water vulnerability assessments--generally provide unreliable predictions of pesticide occurrence in ground water. Such difficulties may arise largely from a general failure to account for the preferential transport of pesticides in the subsurface. Significant

  7. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system

    PubMed Central

    Ling, Fangqiong; Hwang, Chiachi; LeChevallier, Mark W; Andersen, Gary L; Liu, Wen-Tso

    2016-01-01

    Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a ‘core-satellite' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems. PMID:26251872

  8. Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system.

    PubMed

    Ling, Fangqiong; Hwang, Chiachi; LeChevallier, Mark W; Andersen, Gary L; Liu, Wen-Tso

    2016-03-01

    Drinking water distribution systems (DWDSs) harbor the microorganisms in biofilms and suspended communities, yet the diversity and spatiotemporal distribution have been studied mainly in the suspended communities. This study examined the diversity of biofilms in an urban DWDS, its relationship with suspended communities and its dynamics. The studied DWDS in Urbana, Illinois received conventionally treated and disinfected water sourced from the groundwater. Over a 2-year span, biomass were sampled from household water meters (n=213) and tap water (n=20) to represent biofilm and suspended communities, respectively. A positive correlation between operational taxonomic unit (OTU) abundance and occupancy was observed. Examined under a 'core-satellite' model, the biofilm community comprised 31 core populations that encompassed 76.7% of total 16 S rRNA gene pyrosequences. The biofilm communities shared with the suspended community highly abundant and prevalent OTUs, which related to methano-/methylotrophs (i.e., Methylophilaceae and Methylococcaceae) and aerobic heterotrophs (Sphingomonadaceae and Comamonadaceae), yet differed by specific core populations and lower diversity and evenness. Multivariate tests indicated seasonality as the main contributor to community structure variation. This pattern was resilient to annual change and correlated to the cyclic fluctuations of core populations. The findings of a distinctive biofilm community assemblage and methano-/methyltrophic primary production provide critical insights for developing more targeted water quality monitoring programs and treatment strategies for groundwater-sourced drinking water systems.

  9. Locating illicit connections in storm water sewers using fiber-optic distributed temperature sensing.

    PubMed

    Hoes, O A C; Schilperoort, R P S; Luxemburg, W M J; Clemens, F H L R; van de Giesen, N C

    2009-12-01

    A newly developed technique using distributed temperature sensing (DTS) has been developed to find illicit household sewage connections to storm water systems in the Netherlands. DTS allows for the accurate measurement of temperature along a fiber-optic cable, with high spatial (2m) and temporal (30s) resolution. We inserted a fiber-optic cable of 1300m in two storm water drains. At certain locations, significant temperature differences with an intermittent character were measured, indicating inflow of water that was not storm water. In all cases, we found that foul water from households or companies entered the storm water system through an illicit sewage connection. The method of using temperature differences for illicit connection detection in storm water networks is discussed. The technique of using fiber-optic cables for distributed temperature sensing is explained in detail. The DTS method is a reliable, inexpensive and practically feasible method to detect illicit connections to storm water systems, which does not require access to private property.

  10. Investigating the management performance of disinfection analysis of water distribution networks using data mining approaches.

    PubMed

    Zounemat-Kermani, Mohammad; Ramezani-Charmahineh, Abdollah; Adamowski, Jan; Kisi, Ozgur

    2018-06-13

    Chlorination, the basic treatment utilized for drinking water sources, is widely used for water disinfection and pathogen elimination in water distribution networks. Thereafter, the proper prediction of chlorine consumption is of great importance in water distribution network performance. In this respect, data mining techniques-which have the ability to discover the relationship between dependent variable(s) and independent variables-can be considered as alternative approaches in comparison to conventional methods (e.g., numerical methods). This study examines the applicability of three key methods, based on the data mining approach, for predicting chlorine levels in four water distribution networks. ANNs (artificial neural networks, including the multi-layer perceptron neural network, MLPNN, and radial basis function neural network, RBFNN), SVM (support vector machine), and CART (classification and regression tree) methods were used to estimate the concentration of residual chlorine in distribution networks for three villages in Kerman Province, Iran. Produced water (flow), chlorine consumption, and residual chlorine were collected daily for 3 years. An assessment of the studied models using several statistical criteria (NSC, RMSE, R 2 , and SEP) indicated that, in general, MLPNN has the greatest capability for predicting chlorine levels followed by CART, SVM, and RBF-ANN. Weaker performance of the data-driven methods in the water distribution networks, in some cases, could be attributed to improper chlorination management rather than the methods' capability.

  11. Perception of drinking water in the Quebec City region (Canada): the influence of water quality and consumer location in the distribution system.

    PubMed

    Turgeon, Steve; Rodriguez, Manuel J; Thériault, Marius; Levallois, Patrick

    2004-04-01

    The purpose of every water utility is to provide consumers with drinking water that is aesthetically acceptable and presents no risk to public health. Several studies have been carried out to analyze people's perception and attitude about the drinking water coming from their water distribution systems. The goal of the present study is to investigate the influence of water quality and the geographic location of consumers within a distribution system on consumer perception of tap water. The study is based on the data obtained from two surveys carried out in municipalities of the Quebec City area (Canada). Three perception variables were used to study consumer perception: general satisfaction, taste satisfaction and risk perception. Data analysis based on logistic regression indicates that water quality variations and geographic location in the distribution system have a significant impact on the consumer perception. This impact appears to be strongly associated with residual chlorine levels. The study also confirms the importance of socio-economic characteristics of consumers on their perception of drinking water quality.

  12. Spatial distribution of Cherenkov light from cascade showers in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khomyakov, V. A., E-mail: VAKhomyakov@mephi.ru; Bogdanov, A. G.; Kindin, V. V.

    2016-12-15

    The spatial distribution of the Cherenkov light generated by cascade showers is analyzed using the NEVOD Cherenkov water detector. The dependence of the Cherenkov light intensity on the depth of shower development at various distances from the shower axis is investigated for the first time. The experimental data are compared with the Cherenkov light distributions predicted by various models for the scattering of cascade particles.

  13. [Case study of red water phenomenon in drinking water distribution systems caused by water source switch].

    PubMed

    Wang, Yang; Zhang, Xiao-jian; Chen, Chao; Pan, An-jun; Xu, Yang; Liao, Ping-an; Zhang, Su-xia; Gu, Jun-nong

    2009-12-01

    Red water phenomenon occurred in some communities of a city in China after water source switch in recent days. The origin of this red water problem and mechanism of iron release were investigated in the study. Water quality of local and new water sources was tested and tap water quality in suffered area had been monitored for 3 months since red water occurred. Interior corrosion scales on the pipe which was obtained from the suffered area were analyzed by XRD, SEM, and EDS. Corrosion rates of cast iron under the conditions of two source water were obtained by Annular Reactor. The influence of different source water on iron release was studied by pipe section reactor to simulate the distribution systems. The results indicated that large increase of sulfate concentration by water source shift was regarded as the cause of red water problem. The Larson ratio increased from about 0.4 to 1.7-1.9 and the red water problem happened in the taps of some urban communities just several days after the new water source was applied. The mechanism of iron release was concluded that the stable shell of scales in the pipes had been corrupted by this kind of high-sulfate-concentration source water and it was hard to recover soon spontaneously. The effect of sulfate on iron release of the old cast iron was more significant than its effect on enhancing iron corrosion. The rate of iron release increased with increasing Larson ratio, and the correlation of them was nonlinear on the old cast-iron. The problem remained quite a long time even if the water source re-shifted into the blended one with only small ratio of the new source and the Larson ratio reduced to about 0.6.

  14. URBAN DRINKING WATER DISTRIBUTION SYSTEMS: A U.S. PERSPECTIVE

    EPA Science Inventory

    This paper will examine several case studies that illustrate the critical role drinking water treatment and distribution systems play in protecting public health. It will also present a case study that documents the dramatic impact that the regulations promulgated under the Safe...

  15. Impact of Arsenic Treatment Techniques on Distribution Water Quality

    EPA Science Inventory

    This presentation will summarize the results of the distribution water quality studies (arsenic, lead, and copper) of the demonstration program. The impact of the treatment systems by type of system (adsorptive media, coagulation/filtration, ion exchange, etc) will be shown by co...

  16. Monitoring Design for Source Identification in Water Distribution Systems

    EPA Science Inventory

    The design of sensor networks for the purpose of monitoring for contaminants in water distribution systems is currently an active area of research. Much of the effort has been directed at the contamination detection problem and the expression of public health protection objective...

  17. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network.

    PubMed

    El-Chakhtoura, Joline; Prest, Emmanuelle; Saikaly, Pascal; van Loosdrecht, Mark; Hammes, Frederik; Vrouwenvelder, Hans

    2015-05-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during drinking water distribution at high temporal resolution. Water samples (156 in total) were collected over short time-scales (minutes/hours/days) from the outlet of a treatment plant and a location in its corresponding distribution network. The drinking water is treated by biofiltration and disinfectant residuals are absent during distribution. The community was analyzed by 16S rRNA gene pyrosequencing and flow cytometry as well as conventional, culture-based methods. Despite a random dramatic event (detected with pyrosequencing and flow cytometry but not with plate counts), the bacterial community profile at the two locations did not vary significantly over time. A diverse core microbiome was shared between the two locations (58-65% of the taxa and 86-91% of the sequences) and found to be dependent on the treatment strategy. The bacterial community structure changed during distribution, with greater richness detected in the network and phyla such as Acidobacteria and Gemmatimonadetes becoming abundant. The rare taxa displayed the highest dynamicity, causing the major change during water distribution. This change did not have hygienic implications and is contingent on the sensitivity of the applied methods. The concept of biological stability therefore needs to be revised. Biostability is generally desired in drinking water guidelines but may be difficult to achieve in large-scale complex distribution systems that are inherently dynamic. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Water distribution at the root-soil interface: is there more water next to roots?

    NASA Astrophysics Data System (ADS)

    Carminati, A.; Moradi, A.; Oswald, S.; Vetterlein, D.; Weller, U.; Vogel, H.-J.

    2009-04-01

    Plants are big water movers and have a significant impact on soil water dynamics as well as on the global water cycle. Despite the relevance of root water uptake in terrestrial ecology, the movement of water from soil to roots still presents important open questions, e.g the following two. Which are the properties of the soil near the roots? And what effect do these properties have on soil plant water relations? Most models are based on brute-force spatial averaging of soil properties and assume that the bulk soil has the same properties as the rhizosphere. However, there is evidence in the literature that the rhizosphere has specific properties that may affect water and nutrient uptake (Young 1995, Gregory 2007). In order to investigate the rhizosphere hydraulic properties and their effect on soil plant water relations, we used neutron radiography and neutron tomography to image the water content distribution in soils during plant transpiration. Rectangular (quasi-2D) and cylindrical containers were filled with sandy soil and planted with lupins (Lupinus albus). Three weeks after planting, the samples were equilibrated at water potentials of -10 and 30 hPa and have been imaged for 5 days at intervals of 6 hours. At day 5 the samples were irrigated again via capillary rise and the water distribution was monitored for 4 more days. During the first day of the drying period, regions of water depletion formed around the central part of the tap root where first order laterals were present. As the soil dried up, the picture changed: instead of less water around the roots, as commonly supposed by models, we observed that more water was present around the lateral roots. Interestingly, these regions during drying were retaining high water content, but after irrigation remained markedly drier than the bulk soil. Our hypothesis is that high water content near roots during drying and lower water content during rewetting are explained by the presence of bio-polymers exuded by

  19. Experimental testing and modeling analysis of solute mixing at water distribution pipe junctions.

    PubMed

    Shao, Yu; Jeffrey Yang, Y; Jiang, Lijie; Yu, Tingchao; Shen, Cheng

    2014-06-01

    Flow dynamics at a pipe junction controls particle trajectories, solute mixing and concentrations in downstream pipes. The effect can lead to different outcomes of water quality modeling and, hence, drinking water management in a distribution network. Here we have investigated solute mixing behavior in pipe junctions of five hydraulic types, for which flow distribution factors and analytical equations for network modeling are proposed. First, based on experiments, the degree of mixing at a cross is found to be a function of flow momentum ratio that defines a junction flow distribution pattern and the degree of departure from complete mixing. Corresponding analytical solutions are also validated using computational-fluid-dynamics (CFD) simulations. Second, the analytical mixing model is further extended to double-Tee junctions. Correspondingly the flow distribution factor is modified to account for hydraulic departure from a cross configuration. For a double-Tee(A) junction, CFD simulations show that the solute mixing depends on flow momentum ratio and connection pipe length, whereas the mixing at double-Tee(B) is well represented by two independent single-Tee junctions with a potential water stagnation zone in between. Notably, double-Tee junctions differ significantly from a cross in solute mixing and transport. However, it is noted that these pipe connections are widely, but incorrectly, simplified as cross junctions of assumed complete solute mixing in network skeletonization and water quality modeling. For the studied pipe junction types, analytical solutions are proposed to characterize the incomplete mixing and hence may allow better water quality simulation in a distribution network. Published by Elsevier Ltd.

  20. The ConocoPhillips Center for a Sustainable WE2ST (Water-Energy Education, Science, and Technology): Lessons Learned from an Innovative Research-Education-Outreach Center at Colorado School of Mines

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; Blaine, A. C.; Martin, A. C.

    2016-12-01

    The ConocoPhillips Center for a Sustainable WE2ST (Water-Energy Education, Science, and Technology) is a testament to the power of collaboration and innovation. WE2ST began as a partnership between ConocoPhillips (foundation gift) and the Colorado School of Mines (CSM) with the goal of fostering solutions to water-energy challenges via education, research and outreach. The WE2ST center is a training ground for the next generation of water-energy-social scientists and engineers and is a natural fit for CSM, which is known for its expertise in water resources, water treatment technologies, petroleum engineering, geosciences, and hydrology. WE2ST has nine contributing faculty researchers that combine to create a web of expertise on sustainable energy and water resources. This research benefits unconventional energy producers, water-reliant stakeholders and the general public. Areas of focus for research include water sources (quality and quantity), integrated water-energy solution viability and risk, and social-corporate responsibility. The WE2ST Center currently provides annual support for 8-9 Graduate Fellows and 13 Undergraduate Scholars. Top-tier graduate students are recruited nationally and funded similar to an NSF Graduate Research Fellowship (GRF). Undergraduate Scholars are also recruited from across the CSM campus to gain experience in faculty laboratories and on research teams. All WE2ST students receive extensive professional skills training, leadership development, communication skills training, networking opportunities in the water-energy industries, and outreach opportunities in the community. The corner stone of the WE2ST Center is a focus on communication with the public. Both in social science research teams and in general interactions with the public, WE2ST seeks to be "an honest broker" amidst a very passionate and complex topic. WE2ST research is communicated by presentations at technical conferences, talking with people at public gatherings

  1. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S.; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  2. Characterization of Sphingomonas isolates from Finnish and Swedish drinking water distribution systems.

    PubMed

    Koskinen, R; Ali-Vehmas, T; Kämpfer, P; Laurikkala, M; Tsitko, I; Kostyal, E; Atroshi, F; Salkinoja-Salonen, M

    2000-10-01

    Sphingomonas species were commonly isolated from biofilms in drinking water distribution systems in Finland (three water meters) and Sweden (five water taps in different buildings). The Sphingomonas isolates (n = 38) were characterized by chemotaxonomic, physiological and phylogenetic methods. Fifteen isolates were designated to species Sphingomonas aromaticivorans, seven isolates to S. subterranea, two isolates to S. xenophaga and one isolate to S. stygia. Thirteen isolates represented one or more new species of Sphingomonas. Thirty-three isolates out of 38 grew at 5 degrees C on trypticase soy broth agar (TSBA) and may therefore proliferate in the Nordic drinking water pipeline where the temperature typically ranges from 2 to 12 degrees C. Thirty-three isolates out of 38 grew at 37 degrees C on TSBA and 15 isolates also grew on blood agar at 37 degrees C. Considering the potentially pathogenic features of sphingomonas, their presence in drinking water distribution systems may not be desirable.

  3. Dissociation energy and dynamics of water clusters

    NASA Astrophysics Data System (ADS)

    Ch'ng, Lee Chiat

    The state-to-state vibrational predissociation (VP) dynamics of water clusters were studied following excitation of a vibrational mode of each cluster. Velocity-map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated center-of-mass translational energy distributions. Product energy distributions and dissociation energies were determined. Following vibrational excitation of the HCl stretch fundamental of the HCl-H2O dimer, HCl fragments were detected by 2 + 1 REMPI via the f 3□2(nu' = 0) ← X 1Sigma+(nu'' = 0) and V1Sigma + (nu' = 11 and 12) ← X1Sigma+ (nu'' = 0) transitions. REMPI spectra clearly show HCl from dissociation produced in the ground vibrational state with J'' up to 11. The fragments' center-of-mass translational energy distributions were determined from images of selected rotational states of HCl and were converted to rotational state distributions of the water cofragment. All the distributions could be fit well when using a dimer dissociation energy of bond dissociation energy D0 = 1334 +/- 10 cm--1. The rotational distributions in the water cofragment pair-correlated with specific rotational states of HCl appear nonstatistical when compared to predictions of the statistical phase space theory. A detailed analysis of pair-correlated state distributions was complicated by the large number of water rotational states available, but the data show that the water rotational populations increase with decreasing translational energy. H2O fragments of this dimer were detected by 2 + 1 REMPI via the C˜1B1(000) ← X˜1A1(000) transition. REMPI clearly shows that H2O from dissociation is produced in the ground vibrational state. The fragment's center-of-mass translational energy distributions were determined from images of selected rotational states of H2O and were converted to rotational state distributions of the HCl cofragment. The distributions gave D0 = 1334 +/- 10 cm --1 and show a clear

  4. Data Information for Global Change Studies: NASA's Distributed Active Archive Centers and Cooperating Data Centers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Earth Observing System (EOS) is an integral part of the National Aeronautics and Space Administration's (NASA's) Earth Science Enterprise (ESE). ESE is a long-term global change research program designed to improve our understanding of the Earth's interrelated processes involving the atmosphere, oceans, land surfaces, and polar regions. Data from EOS instruments and other Earth science measurement systems are useful in understanding the causes and processes of global climate change and the consequences of human activities. The EOS Data and Information System (EOSDIS) provides a structure for data management and user services for products derived from EOS satellite instruments and other NASA Earth science data. Within the EOSDIS framework, the Distributed Active Archive Centers (DAACs) have been established to provide expertise in one or more Earth science disciplines. The DAACs and cooperating data centers provide data and information services to support the global change research community. Much of the development of the DAACs has been in anticipation of the enormous amount of data expected from EOS instruments to be launched within the next two decades. Terra, the EOS flagship launched in December 1999, is the first of a series of EOS satellites to carry several instruments with multispectral capabilities. Some data products from these instruments are now available from several of the DAACs. These and other data products can be ordered through the EOS Data Gateway (EDG) and DAAC-specific online ordering systems.

  5. Optimization of turbine positioning in water distribution networks. A Sicilian case study

    NASA Astrophysics Data System (ADS)

    Milici, Barbara; Messineo, Simona; Messineo, Antonio

    2017-11-01

    The potential energy of water in Water Distribution Networks (WDNs), is usually dissipated by Pressure Reduction Valves (PRVs), thanks to which water utilities manage the pressure level in selected nodes of the network. The present study explores the use of economic hydraulic machines, pumps as turbines (PATs), to produce energy in a small network with the aim to avoid dissipation in favour of renewable energy production. The proposed study is applied to a WDN located in a town close to Palermo (Sicily), where users often install private tanks, to collect water during the period of water scarcity conditions. As expected, the economic benefit of PATs installation in WDNs is affected by the presence of private tanks, whose presence deeply modifies the network from designed condition. The analysis is carried out by means of a mathematical model, which is able to simulate dynamically water distribution networks with private tanks and PATs. As expected, the advantage of PATs' installation in terms of renewable energy recovery is strictly conditioned by their placement in the WDN.

  6. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center

    NASA Astrophysics Data System (ADS)

    Kurz, C.; Mairani, A.; Parodi, K.

    2012-08-01

    Over the last decades, the application of proton and heavy-ion beams to external beam radiotherapy has rapidly increased. Due to the favourable lateral and depth dose profile, the superposition of narrow ion pencil beams may enable a highly conformal dose delivery to the tumour, with better sparing of the surrounding healthy tissue in comparison to conventional radiation therapy with photons. To fully exploit the promised clinical advantages of ion beams, an accurate planning of the patient treatments is required. The clinical treatment planning system (TPS) at the Heidelberg Ion-Beam Therapy Center (HIT) is based on a fast performing analytical algorithm for dose calculation, relying, among others, on laterally integrated depth dose distributions (DDDs) simulated with the FLUKA Monte Carlo (MC) code. Important input parameters of these simulations need to be derived from a comparison of the simulated DDDs with measurements. In this work, the first measurements of 16O ion DDDs at HIT are presented with a focus on the determined Bragg peak positions and the understanding of factors influencing the shape of the distributions. The measurements are compared to different simulation approaches aiming to reproduce the acquired data at best. A simplified geometrical model is first used to optimize important input parameters, not known a priori, in the simulations. This method is then compared to a more realistic, but also more time-consuming simulation approach better accounting for the experimental set-up and the measuring process. The results of this work contributed to a pre-clinical oxygen ion beam database, which is currently used by a research TPS for corresponding radio-biological cell experiments. A future extension to a clinical database used by the clinical TPS at HIT is foreseen. As a side effect, the performed investigations showed that the typical water equivalent calibration approach of experimental data acquired with water column systems leads to slight

  7. Estimates of microbial quality and concentration of copper in distributed drinking water are highly dependent on sampling strategy.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Hirvonen, Arja; Vartiainen, Terttu; Martikainen, Pertti J

    2007-12-01

    The numbers of bacteria generally increase in distributed water. Often household pipelines or water fittings (e.g., taps) represent the most critical location for microbial growth in water distribution systems. According to the European Union drinking water directive, there should not be abnormal changes in the colony counts in water. We used a pilot distribution system to study the effects of water stagnation on drinking water microbial quality, concentration of copper and formation of biofilms with two commonly used pipeline materials in households; copper and plastic (polyethylene). Water stagnation for more than 4h significantly increased both the copper concentration and the number of bacteria in water. Heterotrophic plate counts were six times higher in PE pipes and ten times higher in copper pipes after 16 h of stagnation than after only 40 min stagnation. The increase in the heterotrophic plate counts was linear with time in both copper and plastic pipelines. In the distribution system, bacteria originated mainly from biofilms, because in laboratory tests with water, there was only minor growth of bacteria after 16 h stagnation. Our study indicates that water stagnation in the distribution system clearly affects microbial numbers and the concentration of copper in water, and should be considered when planning the sampling strategy for drinking water quality control in distribution systems.

  8. The Benefit-Cost Relationship in Entry Job Training in Water Distribution.

    ERIC Educational Resources Information Center

    Reames, J. P. (Jim)

    The benefit-cost relationship analysis concerns the cost effectiveness of employment and training in the Water Distribution Division of the Dallas Water Utilities Department and deals specifically with 104 entry workers hired to become pipe fitters. Half of the entry workers were enrolled in the Public Service Careers (PSC) training program and…

  9. The NASA Lewis Research Center Water Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Wasserbauer, Charles A.

    1997-01-01

    A water tunnel facility specifically designed to investigate internal fluid duct flows has been built at the NASA Research Center. It is built in a modular fashion so that a variety of internal flow test hardware can be installed in the facility with minimal facility reconfiguration. The facility and test hardware interfaces are discussed along with design constraints for future test hardware. The inlet chamber flow conditioning approach is also detailed. Instrumentation and data acquisition capabilities are discussed. The incoming flow quality has been documented for about one quarter of the current facility operating range. At that range, there is some scatter in the data in the turbulent boundary layer which approaches 10 percent of the duct radius leading to a uniform core.

  10. Fresh Waters and Fish Diversity: Distribution, Protection and Disturbance in Tropical Australia

    PubMed Central

    Januchowski-Hartley, Stephanie R.; Pearson, Richard G.; Puschendorf, Robert; Rayner, Thomas

    2011-01-01

    Background Given the globally poor protection of fresh waters for their intrinsic ecological values, assessments are needed to determine how well fresh waters and supported fish species are incidentally protected within existing terrestrial protected-area networks, and to identify their vulnerability to human-induced disturbances. To date, gaps in data have severely constrained any attempt to explore the representation of fresh waters in tropical regions. Methodology and Results We determined the distribution of fresh waters and fish diversity in the Wet Tropics of Queensland, Australia. We then used distribution data of fresh waters, fish species, human-induced disturbances, and the terrestrial protected-area network to assess the effectiveness of terrestrial protected areas for fresh waters and fish species. We also identified human-induced disturbances likely to influence the effectiveness of freshwater protection and evaluated the vulnerability of fresh waters to these disturbances within and outside protected areas. The representation of fresh waters and fish species in the protected areas of the Wet Tropics is poor: 83% of stream types defined by order, 75% of wetland types, and 89% of fish species have less than 20% of their total Wet Tropics length, area or distribution completely within IUCN category II protected areas. Numerous disturbances affect fresh waters both within and outside of protected areas despite the high level of protection afforded to terrestrial areas in the Wet Tropics (>60% of the region). High-order streams and associated wetlands are influenced by the greatest number of human-induced disturbances and are also the least protected. Thirty-two percent of stream length upstream of protected areas has at least one human-induced disturbance present. Conclusions/Significance We demonstrate the need for greater consideration of explicit protection and off-reserve management for fresh waters and supported biodiversity by showing that, even in

  11. UNAVCO Data Center Initiatives in CyberInfrastructure for Discovery, Services, and Distribution of Data and Products

    NASA Astrophysics Data System (ADS)

    Boler, F.; Meertens, C.

    2012-04-01

    The UNAVCO Data Center in Boulder, Colorado, archives for preservation and distributes geodesy data and products in the GNSS, InSAR, and LiDAR domains to the scientific and education community. The GNSS data, which in addition to geodesy are useful for tectonic, volcanologic, ice mass, glacial isostatic adjustment, meteorological and other studies, come from 2,500 continuously operating stations and 8000 survey-mode observation points around the globe that are operated by over 100 U.S. and international members of the UNAVCO consortium. SAR data, which are in many ways complementary to the GNSS data collection have been acquired in concert with the WInSAR Consortium activities and with EarthScope, with a focus on the western United States. UNAVCO also holds a growing collection of terrestrial laser scanning data. Several partner US geodesy data centers, along with UNAVCO, have developed and are in the process of implementing the Geodesy Seamless Archive Centers, a web services based technology to facilitate the exchange of metadata and delivery of data and products to users. These services utilize a repository layer implemented at each data center, and a service layer to identify and present any data center-specific services and capabilities, allowing simplified vertical federation of metadata from independent data centers. UNAVCO also has built web services for SAR data discovery and delivery, and will partner with other SAR data centers and institutions to provide access for the InSAR scientist to SAR data and ancillary data sets, web services to produce interferograms, and mechanisms to archive and distribute resulting higher level products. Improved access to LiDAR data from space-based, airborne, and terrestrial platforms through utilization of web services is similarly currently under development. These efforts in cyberinfrastructure, while initially aimed at intra-domain data sharing and providing products for research and education, are envisioned as

  12. A three-dimensional conceptual model of the water quality distribution in the Albuquerque Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, D.

    1995-12-31

    It is possible to construct a conceptual model of the Albuquerque Basin`s geochemical characteristics and water quality distribution based on (1) the Hawley and Haase hydrogeological model, (2) water analyses from City of Albuquerque water wells, and (3) sound geological and chemical principles. Previous studies have characterized the water quality and geochemistry of the Albuquerque Basin from a two-dimensional perspective; however, to date, there has been no examination of the variation of water quality with depth within the Albuquerque Basin. The primary focus of this paper is to describe a first attempt at developing a conceptual understanding of the three-dimensionalmore » water quality distribution of the Albuquerque Basin based on the above three building blocks.« less

  13. Effect of water table fluctuations on phreatophytic root distribution.

    PubMed

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Geometry-dependent distributed polarizability models for the water molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loboda, Oleksandr; Ingrosso, Francesca; Ruiz-López, Manuel F.

    2016-01-21

    Geometry-dependent distributed polarizability models have been constructed by fits to ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set for the water molecule in the field of a point charge. The investigated models include (i) charge-flow polarizabilities between chemically bonded atoms, (ii) isotropic or anisotropic dipolar polarizabilities on oxygen atom or on all atoms, and (iii) combinations of models (i) and (ii). For each model, the polarizability parameters have been optimized to reproduce the induction energy of a water molecule polarized by a point charge successivelymore » occupying a grid of points surrounding the molecule. The quality of the models is ascertained by examining their ability to reproduce these induction energies as well as the molecular dipolar and quadrupolar polarizabilities. The geometry dependence of the distributed polarizability models has been explored by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For each considered model, the distributed polarizability components have been fitted as a function of the geometry by a Taylor expansion in monomer coordinate displacements up to the sum of powers equal to 4.« less

  15. EFFECTS OF MIXING AND AGING ON WATER QUALITY IN DISTRIBUTION SYSTEM STORAGE FACILITIES

    EPA Science Inventory

    Aging of water in distribution system storage facilities can lead to deterioration of the water quality due to loss of disinfectant residual and bacterial regrowth. Facilities should be operated to insure that the age of the water is not excessive taking into account the quality...

  16. Detection and Characterization of Malathion Adherence to Piping Materials Used in Water Distribution Systems

    DTIC Science & Technology

    2015-03-26

    photoelectron spectroscopy was also used in an effort to detect shifts in the adsorptive spectra that appeared to be attributable to the presence of trace ... DETECTION AND CHARACTERIZATION OF MALATHION ADHERENCE TO PIPING MATERIALS USED IN WATER DISTRIBUTION... DETECTION AND CHARACTERIZATION OF MALATHION ADHERENCE TO PIPING MATERIALS USED IN WATER DISTRIBUTION SYSTEMS THESIS Presented to the Faculty

  17. Better Water Demand and Pipe Description Improve the Distribution Network Modeling Results

    EPA Science Inventory

    Distribution system modeling simplifies pipe network in skeletonization and simulates the flow and water quality by using generalized water demand patterns. While widely used, the approach has not been examined fully on how it impacts the modeling fidelity. This study intends to ...

  18. Water Quality in Small Community Distribution Systems. A Reference Guide for Operators

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has developed this reference guide to assist the operators and managers of small- and medium-sized public water systems. This compilation provides a comprehensive picture of the impact of the water distribution system network on dist...

  19. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    PubMed

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  20. Bacterial composition in a metropolitan drinking water distribution system utilizing different source waters.

    PubMed

    Gomez-Alvarez, Vicente; Humrighouse, Ben W; Revetta, Randy P; Santo Domingo, Jorge W

    2015-03-01

    We investigated the bacterial composition of water samples from two service areas within a drinking water distribution system (DWDS), each associated with a different primary source of water (groundwater, GW; surface water, SW) and different treatment process. Community analysis based on 16S rRNA gene clone libraries indicated that Actinobacteria (Mycobacterium spp.) and α-Proteobacteria represented nearly 43 and 38% of the total sequences, respectively. Sequences closely related to Legionella, Pseudomonas, and Vibrio spp. were also identified. In spite of the high number of sequences (71%) shared in both areas, multivariable analysis revealed significant differences between the GW and SW areas. While the dominant phylotypes where not significantly contributing in the ordination of samples, the populations associated with the core of phylotypes (1-10% in each sample) significantly contributed to the differences between both service areas. Diversity indices indicate that the microbial community inhabiting the SW area is more diverse and contains more distantly related species coexisting with local assemblages as compared with the GW area. The bacterial community structure of SW and GW service areas were dissimilar, suggesting that their respective source water and/or water quality parameters shaped by the treatment processes may contribute to the differences in community structure observed.

  1. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin

  2. [Retrieve of red tide distributions from MODIS data based on the characteristics of water spectrum].

    PubMed

    Qiu, Zhong-Feng; Cui, Ting-Wei; He, Yi-Jun

    2011-08-01

    After comparing the spectral differences between red tide water and normal water, we developed a method to retrieve red tide distributions from MODIS data based on the characteristics of red tide water spectrum. The authors used the 119 series of in situ observations to validate the method and found that only one observation has not been detected correctly. The authors then applied this method to MODIS data on April 4, 2005. In the research areas three locations of red tide water were apparently detected with the total areas about 2 000 km2. The retrieved red tide distributions are in good agreement with the distributions of high chlorophyll a concentrations. The research suggests that the method is available to eliminating the influence of suspended sediments and can be used to retrieve the locations and areas of red tide water.

  3. Occurrence of contaminant accumulation in lead pipe scales from domestic drinking-water distribution systems.

    PubMed

    Schock, Michael R; Hyland, Robert N; Welch, Meghan M

    2008-06-15

    Previously, contaminants, such as AI, As, and Ra, have been shown to accumulate in drinking-water distribution system solids. Accumulated contaminants could be periodically released back into the water supply causing elevated levels at consumers taps, going undetected by most current regulatory monitoring practices and consequently constituting a hidden risk. The objective of this study was to determine the occurrence of over 40 major scale constituents, regulated metals, and other potential metallic inorganic contaminants in drinking-water distribution system Pb (lead) or Pb-lined service lines. The primary method of analysis was inductively coupled plasma-atomic emission spectroscopy, following complete decomposition of scale material. Contaminants and scale constituents were categorized by their average concentrations, and many metals of potential health concern were found to occur at levels sufficient to result in elevated levels at the consumer's taps if they were to be mobilized. The data indicate distinctly nonconservative behavior for many inorganic contaminants in drinking-water distribution systems. This finding suggests an imminent need for further research into the transport and fate of contaminants throughout drinking-water distribution system pipes, as well as a re-evaluation of monitoring protocols in order to more accurately determine the scope and levels of potential consumer exposure.

  4. Evaluation of Current Water Treatment and Distribution System Optimization to Provide Safe Drinking Water from Various Source Water Types and Conditions (Deliverable 5.2.C.1)

    EPA Science Inventory

    Increasingly, drinking water treatment plants (DWTPs) are being challenged by changes in the quality of their source waters and by their aging treatment and distribution system infrastructure. Individually or in combination, factors such as shrinking water and financial resources...

  5. Enabling data access and interoperability at the EOS Land Processes Distributed Active Archive Center

    NASA Astrophysics Data System (ADS)

    Meyer, D. J.; Gallo, K. P.

    2009-12-01

    The NASA Earth Observation System (EOS) is a long-term, interdisciplinary research mission to study global-scale processes that drive Earth systems. This includes a comprehensive data and information system to provide Earth science researchers with easy, affordable, and reliable access to the EOS and other Earth science data through the EOS Data and Information System (EOSDIS). Data products from EOS and other NASA Earth science missions are stored at Distributed Active Archive Centers (DAACs) to support interactive and interoperable retrieval and distribution of data products. ¶ The Land Processes DAAC (LP DAAC), located at the US Geological Survey’s (USGS) Earth Resources Observation and Science (EROS) Center is one of the twelve EOSDIS data centers, providing both Earth science data and expertise, as well as a mechanism for interaction between EOS data investigators, data center specialists, and other EOS-related researchers. The primary mission of the LP DAAC is stewardship for land data products from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua observation platforms. The co-location of the LP DAAC at EROS strengthens the relationship between the EOSDIS and USGS Earth science activities, linking the basic research and technology development mission of NASA to the operational mission requirements of the USGS. This linkage, along with the USGS’ role as steward of land science data such as the Landsat archive, will prove to be especially beneficial when extending both USGS and EOSDIS data records into the Decadal Survey era. ¶ This presentation provides an overview of the evolution of LP DAAC efforts over the years to improve data discovery, retrieval and preparation services, toward a future of integrated data interoperability between EOSDIS data centers and data holdings of the USGS and its partner agencies. Historical developmental

  6. [Outline and effectiveness of support system in the surgical center by supply, processing and distribution center (SPD)].

    PubMed

    Ito, Nobuko; Chinzei, Mieko; Fujiwara, Haruko; Usui, Hisako; Hanaoka, Kazuo; Saitoh, Eisho

    2006-04-01

    Supply, Processing and Distribution system had been introduced to surgical center (the University of Tokyo Hospital) since October of 2002. This system had reduced stock for medicine and materials and decreased medical cost dramatically. We designed some kits for therapeutic drugs related to anesthesia. They were prepared for general anesthesia, epidural and spinal anesthesia, and cardiovascular anesthesia, respectively. One kit had been used for one patient, and new kits were prepared in the anesthesia preparation room by pharmaceutical department staffs. Equipment, for general anesthesia as well as epidural and spinal anesthesia, and central catheter set were also designed and provided for each patient by SPD system. According to the questionnaire of anesthesia residents before and after introduction of SPD system, the time spent for anesthesia preparation had been reduced and 92.3% residents had answered that preparation for anesthesia on the previous day was getting easier. Most of the anesthesia residents had been less stressed after introduction of SPD system. Beside the dramatic economical effect, coordination with SPD system and pharmaceutical department reduced anesthesia preparation time and stress of the staff. Introduction of Support system of SPD to surgical center is important for safe and effective management of operating rooms.

  7. Identification of water-bearing fractures by the use of geophysical logs, May to July 1998, former Naval Air Warfare Center, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.; Bird, Philip H.

    1999-01-01

    Between May and July 1998, 10 monitor wells were drilled near the site of the former Naval Air Warfare Center (NAWC), Warminster, Bucks County, Pa., to monitor water levels and sample ground water in shallow and intermediate water-bearing fractures. The sampling will determine the horizontal and vertical distribution of contaminated ground water migrating from known or suspected sources. Three boreholes were drilled on the property at 960 Jacksonville Road, at the northwestern side of NAWC, along strike from Area A; seven boreholes were drilled in Area B in the southeastern corner of NAWC. Depths range from 40.5 to 150 feet below land surface.Borehole geophysical logging and video surveys were used to identify water-bearing fractures so that appropriate intervals could be screened in each monitor well. Geophysical logs were obtained at the 10 monitor wells. Video surveys were obtained at three monitor wells in the southeastern corner of the NAWC property.Caliper logs and video surveys were used to locate fractures. Inflections on fluid-temperature and fluid-resistivity logs were used to locate possible water-bearing fractures. Heatpulse-flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video surveys, and driller's logs, all wells were screened such that water-level fluctuations could be monitored and water samples collected from discrete water-bearing fractures in each monitor well.

  8. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR)

    NASA Astrophysics Data System (ADS)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul

    2017-01-01

    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  9. Water masses in the Humboldt Current System: Properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile

    NASA Astrophysics Data System (ADS)

    Silva, Nelson; Rojas, Nora; Fedele, Aldo

    2009-07-01

    Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.

  10. Development of Extended Period Pressure-Dependent Demand Water Distribution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judi, David R.; Mcpherson, Timothy N.

    2015-03-20

    Los Alamos National Laboratory (LANL) has used modeling and simulation of water distribution systems for N-1 contingency analyses to assess criticality of water system assets. Critical components considered in these analyses include pumps, tanks, and supply sources, in addition to critical pipes or aqueducts. A contingency represents the complete removal of the asset from system operation. For each contingency, an extended period simulation (EPS) is run using EPANET. An EPS simulates water system behavior over a time period, typically at least 24 hours. It assesses the ability of a system to respond and recover from asset disruption through distributed storagemore » in tanks throughout the system. Contingencies of concern are identified as those in which some portion of the water system has unmet delivery requirements. A delivery requirement is defined as an aggregation of water demands within a service area, similar to an electric power demand. The metric used to identify areas of unmet delivery requirement in these studies is a pressure threshold of 15 pounds per square inch (psi). This pressure threshold is used because it is below the required pressure for fire protection. Any location in the model with pressure that drops below this threshold at any time during an EPS is considered to have unmet service requirements and is used to determine cascading consequences. The outage area for a contingency is the aggregation of all service areas with a pressure below the threshold at any time during the EPS.« less

  11. MICROBIOLOGICAL CHARACTERIZATION OF BACTERIA INHABITING A WATER DISTRIBUTION SYSTEM SIMULATOR

    EPA Science Inventory

    The impact of chlorination and chloramination treatments on heterotrophic bacteria (HB) and ammonia oxidizing bacteria (AOB) inhabiting a water distribution system simulator was investigated. Notable changes in bacterial densities were observed during this monitoring study. For e...

  12. Overview of EPA Research on Drinking Water Distribution System Nitrification

    EPA Science Inventory

    Results from USEPA research investigating drinking water distribution system nitrification will be presented. The two research areas include: (1) monochloramine disinfection kinetics of Nitrosomonas europaea using Propidium Monoazide Quantitative Real-time PCR (PMA-qPCR) and (2...

  13. Pore-scale distribution of mucilage affecting water repellency in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Benard, Pascal; Zarebanadkouki, Mohsen; Hedwig, Clemens; Holz, Maire; Ahmed, Mutez; Carminati, Andrea

    2017-04-01

    The hydraulic properties of the rhizosphere are altered by plants, fungi and microorganism. Plant roots release different compounds into the soil. One of these substances is mucilage, a gel which turns water repellent upon drying. We introduce a conceptual model of mucilage deposition during soil drying and its impact on the soil wettability. As the soil dries, water menisci recede and draw mucilage towards the contact region between particles where it is deposited. At high mucilage content, mucilage deposits expand into the open pore space and finally block water infiltration when a critical fraction of the pore space is blocked. To test this hypothesis, we mixed mucilage and particles of different grain size, we let them dry and measured the contact angle using the sessile drop method. Mucilage deposition was visualized by light microscopy imaging. Contact angle measurements showed a distinct threshold-like behavior with a sudden increase in apparent contact angle at high mucilage concentrations. Particle roughness induced a more uniform distribution of mucilage. The observed threshold corresponds to the concentration when mucilage deposition occupies a critical fraction of the pore space, as visualized with the microscope images. In conclusion, water repellency is critically affected by the distribution of mucilage on the pore-scale. This microscopic heterogeneity has to be taken into account in the description of macroscopic processes, like water infiltration or rewetting of water repellent soil.

  14. IMPACT ON WATER DISTRIBUTION SYSTEM BIOFILM DENSITIES FROM REVERSE OSMOSIS MEMBRANE TREATMENT OF SUPPLY WATER

    EPA Science Inventory

    The quality of potable water is such that the concentration of nutrients available for growth of microorganisms within distribution systems is limited. In such systems carbon is often the growth limiting nutrient. Research conducted in the Netherlands has indicated that low level...

  15. Corrosion and scaling potential in drinking water distribution system of tabriz, northwestern iran.

    PubMed

    Taghipour, Hassan; Shakerkhatibi, Mohammad; Pourakbar, Mojtaba; Belvasi, Mehdi

    2012-01-01

    This paper discusses the corrosion and scaling potential of Tabriz drinking water distribution system in Northwest of Iran. Internal corrosion of piping is a serious problem in drinking water industry. Corrosive water can cause intrusion of heavy metals especially lead in to water, therefore effecting public health. The aim of this study was to determine corrosion and scaling potential in potable water distribution system of Tabriz during the spring and summer in 2011. This study was carried out using Langlier Saturation Index, Ryznar Stability Index, Puckorius Scaling Index, and Aggressiveness indices. Eighty samples were taken from all over the city within two seasons, spring, and summer. Related parameters including temperature, pH, total dissolved solids, calcium hardness, and total alkalinity in all samples were measured in laboratory according to standard method manual. For the statistical analysis of the results, SPSS software (version 11.5) was used The mean and standard deviation values of Langlier, Ryznar, Puckorius and Aggressiveness Indices were equal to -0.68 (±0.43), 8.43 (±0.55), 7.86 (±0.36) and 11.23 (±0.43), respectively. By survey of corrosion indices, it was found that Tabriz drinking water is corrosive. In order to corrosion control, it is suggested that laboratorial study with regard to the distribution system condition be carried out to adjust effective parameters such as pH.

  16. Distribution and Availability of State and Areawide Water Quality Reports in Oklahoma Libraries.

    ERIC Educational Resources Information Center

    McClure, Charles R.; Million, Anne

    This report examines the distribution and availability of water quality reports in the state of Oklahoma. Based on legislation from the Clean Water Act and regulations from the Environmental Protection Agency's "Public Participation Handbook for Water Quality Management," depository libraries must be established to provide citizen access to…

  17. Use of EPANET solver to manage water distribution in Smart City

    NASA Astrophysics Data System (ADS)

    Antonowicz, A.; Brodziak, R.; Bylka, J.; Mazurkiewicz, J.; Wojtecki, S.; Zakrzewski, P.

    2018-02-01

    Paper presents a method of using EPANET solver to support manage water distribution system in Smart City. The main task is to develop the application that allows remote access to the simulation model of the water distribution network developed in the EPANET environment. Application allows to perform both single and cyclic simulations with the specified step of changing the values of the selected process variables. In the paper the architecture of application was shown. The application supports the selection of the best device control algorithm using optimization methods. Optimization procedures are possible with following methods: brute force, SLSQP (Sequential Least SQuares Programming), Modified Powell Method. Article was supplemented by example of using developed computer tool.

  18. Using isotopes to quantify evaporation and non-stationary transit times distributions in lake water budgets

    NASA Astrophysics Data System (ADS)

    Smith, A. A.; Tetzlaff, D.; Soulsby, C.

    2017-12-01

    Evaporative fluxes from northern lakes are essential components of catchment water balances, providing large supplies of water to the atmosphere, and affecting downstream water availability. However, measurement of lake evaporation is difficult in many catchments due to remoteness and inaccessibility. Evaporative flux may also influence mean transit times of lakes and catchments, identified through water- and tracer mass-balance. We combined stable water isotopes (δ2H and δ18O), transit, and residence time distributions in a non-stationary transit time model to estimate the evaporative flux from two lakes in the Scottish Highlands. The lakes were in close proximity to each other ( 2km), shallow (mean depth, 1.5 m) with one large (0.88km2) and one small (0.4km2). Model calibration used measurements of precipitation, air temperature, water level, and isotopic stream compositions of lake inflow and outflows. Evaporation flux was identified using lake fractionation of δ2H and δ18O. Mixing patterns of the lakes and their respective outlet isotopic compositions were accounted for by comparing three probability distributions for discharge and evaporation. We found that the evaporation flux was strongly influenced by these discharge and evaporation distributions. Decreased mixing within the lake resulted in greater evaporation fluxes. One of the three distributions yielded similar mean daily evaporation and uncertainty for both lakes (max 5mm/day), while evaporation using the other two distributions was inconsistent between the lakes. Importantly, our approach also estimated distributions of evaporation age, which were significantly different between the lakes, reflecting a combination of inflow stream magnitude and the mixing regimes. The mean evaporation flux age of the large lake was 160 days, and 14 days for the small lake. Our integrated approach of stable isotopes, time variant transit time distributions has shown to be a useful tool for quantifying evaporative

  19. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  20. The EOSDIS Version 0 Distributed Active Archive Center for physical oceanography and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.

    1991-01-01

    The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.

  1. Drinking Water Quality and the Geospatial Distribution of Notified Gastro-Intestinal Infections

    PubMed Central

    GRILC, Eva; GALE, Ivanka; VERŠIČ, Aleš; ŽAGAR, Tina; SOČAN, Maja

    2015-01-01

    Introduction Even brief episodes of fecal contamination of drinking water can lead directly to illness in the consumers. In water-borne outbreaks, the connection between poor microbial water quality and disease can be quickly identified. The impact of non-compliant drinking water samples due to E. coli taken for regular monitoring on the incidence of notified acute gastrointestinal infections has not yet been studied. Methods The objective of this study was to analyse the geographical distribution of notified acute gastrointestinal infections (AGI) in Slovenia in 2010, with hotspot identification. The second aim of the study was to correlate the fecal contamination of water supply system on the settlement level with the distribution of notified AGI cases. Spatial analysis using geo-information technology and other methods were used. Results Hot spots with the highest proportion of notified AGI cases were mainly identified in areas with small supply zones. The risk for getting AGI was drinking water contaminated with E. coli from supply zones with 50–1000 users: RR was 1.25 and significantly greater than one (p-value less than 0.001). Conclusion This study showed the correlation between the frequency of notified AGI cases and non-compliant results in drinking water monitoring. PMID:27646727

  2. Prediction of corrosion rates of water distribution pipelines according to aggressive corrosive water in Korea.

    PubMed

    Chung, W S; Yu, M J; Lee, H D

    2004-01-01

    The drinking water network serving Korea has been used for almost 100 years. Therefore, pipelines have suffered various degrees of deterioration due to aggressive environments. The pipe breaks were caused by in-external corrosion, water hammer, surface loading, etc. In this paper, we focused on describing corrosion status in water distribution pipes in Korea and reviewing some methods to predict corrosion rates. Results indicate that corrosive water of lakes was more aggressive than river water and the winter was more aggressive compared to other seasons. The roughness growth rates of Dongbok lake showed 0.23 mm/year. The high variation of corrosion rates is controlled by the aging pipes and smaller diameter. Also the phenolphthalein test on a cementitious core of cement mortar lined ductile cast iron pipe indicated the pipes over 15 years old had lost 50-100% of their lime active cross sectional area.

  3. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    PubMed

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  4. Interpreting drinking water quality in the distribution system using Dempster-Shafer theory of evidence.

    PubMed

    Sadiq, Rehan; Rodriguez, Manuel J

    2005-04-01

    Interpreting water quality data routinely generated for control and monitoring purposes in water distribution systems is a complicated task for utility managers. In fact, data for diverse water quality indicators (physico-chemical and microbiological) are generated at different times and at different locations in the distribution system. To simplify and improve the understanding and the interpretation of water quality, methodologies for aggregation and fusion of data must be developed. In this paper, the Dempster-Shafer theory also called theory of evidence is introduced as a potential methodology for interpreting water quality data. The conceptual basis of this methodology and the process for its implementation are presented by two applications. The first application deals with the interpretation of spatial water quality data fusion, while the second application deals with the development of water quality index based on key monitored indicators. Based on the obtained results, the authors discuss the potential contribution of theory of evidence as a decision-making tool for water quality management.

  5. [Study for distribution level of disinfection byproducts in drinking water from six cities in China].

    PubMed

    Deng, Ying; Wei, Jianrong; E, Xueli; Wang, Wuyi; et al

    2008-03-01

    To find the distribution level and geographical variations of disinfection by-products (DBPs) in drinking water. The samples were selected from water utilities in six cities (Daqing, Beijing, Tianjin, Zhengzhou, Changsha and Shenzhen) of China. The water source and technology of water treatment were investigated and the indices including trihalomethanes (THMs) and haloacetic acids (HAAs) in main DBPs and natural organic materials (NOM), pH, chlorine dosage and temperature were determined. In six cities the highest concentrations of TTHMs and THAAs in the distribution system were 92.8 microg/L and 40.0 microg/L, respectively. The concentration of every compound of THMs and HAAs was under the limit of standards for drinking water quality, but the concentrations of 'TTHMs at some samples were higher than the maximum acceptable level (MAC) defined by standards for drinking water quality. The geographical variations of THMs and HAAs in six cities were Zhengzhou > Tianjin > Daqing > Beijing > Shenzhen > Changsha and Changsha > Tianjin > Shenzhen > Daqing > Zhengzhou > Beijing, respectively. The levels of THMs of drinking water at Tianjin and Zhengzhou were higher than the others and the levels of HAAs of drinking water at Changsha, Tianjin and Shenzhen were higher than the others. The seasonal variations of both groups of THMs and HAAs were high in summer and low in winter. The pollution level of DBPs in drinking water from Chinese six cities were low. The concentration of DBPs related to seasonal. THMs distributed mainly to the North and HAAs distributed mainly to the South.

  6. Spatial Distribution of Small Water Body Types in Indiana Ecoregions

    EPA Science Inventory

    Due to their large numbers and biogeochemical activity, small water bodies (SWBs), such as ponds and wetlands, can have substantial cumulative effects on hydrologic and biogeochemical processes. Using updated National Wetland Inventory data, we describe the spatial distribution o...

  7. Hotspots for selected metal elements and microbes accumulation and the corresponding water quality deterioration potential in an unchlorinated drinking water distribution system.

    PubMed

    Liu, Gang; Tao, Yu; Zhang, Ya; Lut, Maarten; Knibbe, Willem-Jan; van der Wielen, Paul; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-11-01

    Biofilm formation, loose deposit accumulation and water quality deterioration in drinking water distribution systems have been widely reported. However, the accumulation and distribution of harbored elements and microbes in the different niches (loose deposits, PVC-U biofilm, and HDPE biofilm) and their corresponding potential contribution to water quality deterioration remain unknown. This precludes an in-depth understanding of water quality deterioration and the development of proactive management strategies. The present study quantitatively evaluated the distribution of elements, ATP, Aeromonas spp., and bacterial communities in distribution pipes (PVC-U, D = 110 mm, loose deposit and biofilm niches) and household connection pipes (HDPE, D = 32 mm, HDPE biofilm niches) at ten locations in an unchlorinated distribution system. The results show that loose deposits in PVC-U pipes, acting as sinks, constitute a hotspot (highest total amount per meter pipe) for elements, ATP, and target bacteria groups (e.g., Aeromonas spp., Mycobacterium spp., and Legionella spp.). When drinking water distribution system niches with harbored elements and microbes become sources in the event of disturbances, the highest quality deterioration potential (QDP) is that of HDPE biofilm; this can be attributed to its high surface-to-volume ratio. 16s rRNA analysis demonstrates that, at the genus level, the bacterial communities in the water, loose deposits, PVC-U biofilm, and HDPE biofilm were dominated, respectively, by Polaromonas spp. (2-23%), Nitrosipra spp. (1-47%), Flavobacterium spp. (1-36%), and Flavobacterium spp. (5-67%). The combined results of elemental composition and bacterial community analyses indicate that different dominant bio-chemical processes might occur within the different niches-for example, iron-arsenic oxidizing in loose deposits, bio-calumniation in PVC-U biofilm, and methane oxidizing in HDPE biofilm. The release of 20% loose deposits, 20% PVC-U biofilm

  8. Regrowth of potential opportunistic pathogens and algae in reclaimed-water distribution systems.

    PubMed

    Jjemba, Patrick K; Weinrich, Lauren A; Cheng, Wei; Giraldo, Eugenio; Lechevallier, Mark W

    2010-07-01

    A study of the quality of reclaimed water in treated effluent, after storage, and at three points in the distribution system of four plants in California, Florida, Massachusetts, and New York was conducted for 1 year. The plants had different treatment processes (conventional versus membrane bioreactor), production capacities, and methods for storage of the water, and the intended end uses of the water were different. The analysis focused on the occurrence of indicator bacteria (heterotrophic bacteria, coliforms, Escherichia coli, and enterococci) and opportunistic pathogens (Aeromonas spp., enteropathogenic E. coli O157:H7, Legionella spp., Mycobacterium spp., and Pseudomonas spp.), as well as algae. Using immunological methods, E. coli O157:H7 was detected in the effluent of only one system, but it was not detected at the sampling points, suggesting that its survival in the system was poor. Although all of the treatment systems effectively reduced the levels of bacteria in the effluent, bacteria regrew in the reservoir and distribution systems because of the loss of residual disinfectant and high assimilable organic carbon levels. In the systems with open reservoirs, algal growth reduced the water quality by increasing the turbidity and accumulating at the end of the distribution system. Opportunistic pathogens, notably Aeromonas, Legionella, Mycobacterium, and Pseudomonas, occurred more frequently than indicator bacteria (enterococci, coliforms, and E. coli). The Mycobacterium spp. were very diverse and occurred most frequently in membrane bioreactor systems, and Mycobacterium cookii was identified more often than the other species. The public health risk associated with these opportunistic pathogens in reclaimed water is unknown. Collectively, our results show the need to develop best management practices for reclaimed water to control bacterial regrowth and degradation of water before it is utilized at the point of use.

  9. System analysis for the Huntsville Operation Support Center distributed computer system

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.

    1986-01-01

    A simulation model of the NASA Huntsville Operational Support Center (HOSC) was developed. This simulation model emulates the HYPERchannel Local Area Network (LAN) that ties together the various computers of HOSC. The HOSC system is a large installation of mainframe computers such as the Perkin Elmer 3200 series and the Dec VAX series. A series of six simulation exercises of the HOSC model is described using data sets provided by NASA. The analytical analysis of the ETHERNET LAN and the video terminals (VTs) distribution system are presented. An interface analysis of the smart terminal network model which allows the data flow requirements due to VTs on the ETHERNET LAN to be estimated, is presented.

  10. Bacterial community of iron tubercles from a drinking water distribution system and its occurrence in stagnant tap water.

    PubMed

    Chen, Lu; Jia, Rui-Bao; Li, Li

    2013-07-01

    Bacteria in drinking water distribution systems can cause deterioration of the water quality, and the microbial quality of tap water is closely related to consumer health. In the present study, the potential effects of bacteria attached to cast iron pipes on tap water in a distribution system were investigated. Comparison of the bacterial community composition of pipe tubercles with that of stagnant tap water samples based on a denaturing gradient gel electrophoresis analysis of the 16S rRNA gene revealed that the communities were related. Specifically, the main bacterial members were identical to each other. The bacterial community was found to be dominated by Firmicutes, Actinobacteria, and Proteobacteria, which included Rhizobium, Pseudomonas, Lactococcus, Brevundimonas, Rheinheimera, Arthrobacter, Bacillus, and Herbaspirillum. Heterotrophic bacteria proliferation was observed during the period of stagnation, followed by a decrease of assimilable organic carbon and a slight increase of microbially available phosphorus. These findings indicated that the regrowth of bacteria might be boosted by the release of nutrients such as phosphorus from the pipe walls, as well as the decline of residual chlorine during stagnation. Inorganic contaminants at low levels, including Al, Mn, Zn, Pb, Cr, Cu, and Ni, were detected in tubercles and were concentrated in particulates from tap water following the release of iron during stagnation.

  11. MANUFACTURING FACILITY FOR ACTIVATED CARBON AND CERAMIC WATER FILTERS AT THE SONGHAI CENTER, BENIN

    EPA Science Inventory

    Ceramic filters will be manufactured at the Songhai Center in Porto-Novo, Benin for cost-effective drinking water treatment. The efficiency of the ceramic filters will be improved by adding activated carbon cartridges to remove organic and inorganic impurities. The activate...

  12. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Brecht, A. S.; Urata, R.

    2015-01-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  13. The Mars Dust and Water Cycles: Investigating the Influence of Clouds on the Vertical Distribution and Meridional Transport of Dust and Water

    NASA Astrophysics Data System (ADS)

    Kahre, Melinda A.; Haberle, Robert M.; Hollingsworth, Jeffery L.; Brecht, Amanda S.; Urata, Richard A.

    2015-11-01

    The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  14. Occurrence and distribution of perfluoroalkyl substances (PFASs) in surface water and bottom water of the Shuangtaizi Estuary, China.

    PubMed

    Shao, Mihua; Ding, Guanghui; Zhang, Jing; Wei, Lie; Xue, Huanhuan; Zhang, Nannan; Li, Yang; Chen, Guanqun; Sun, Yeqing

    2016-09-01

    Perfluoroalkyl substances (PFASs) have been recognized as emerging environmental pollutants. However, there is limited information on the contamination level and spatial distribution of PFASs in the Shuangtaizi Estuary, where the Shuangtaizi Hekou Nature Reserve is located. In the present study, the contamination level and spatial distribution of PFASs in surface water (approximately 0.5 m below the surface) and bottom water (about 0.5 m above the bottom) of the Shuangtaizi Estuary were investigated. The data indicated that the Shuangtaizi Estuary was commonly contaminated by PFASs. The total concentration of PFASs in surface and bottom water of the Shuangtaizi Estuary ranged from 66.2 to 185 ng L(-1) and from 44.8 to 209 ng L(-1), respectively. The predominant PFASs were perfluorobutanoic acid (PFBA), perfluoropentanoic acid, perfluorooctanoic acid, perfluorohexanoic acid and perfluorobutane sulfonate (PFBS). In general, PFAS concentrations in surface water samples were lower than those in bottom water samples. The spatial distribution of PFASs in the Shuangtaizi Estuary was mainly affected by particular landform, tide and residual currents in Liaodong Bay. The total mass flux of 15 PFASs from the Shuangtaizi River to Liaodong Bay was estimated to be 352 kg year(-1), which was lower than the total flux from the Daling River and the Daliao River. As short-chain PFASs, such as PFBS and PFBA, have been the prevalent compounds in some places and are continuously produced and used, long-term monitoring and effective pollution controls are suggested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Spatial Distribution of Small Water Body Types across Indiana Ecoregions

    EPA Science Inventory

    Due to their large numbers and biogeochemical activity, small water bodies (SWB), such as ponds and wetlands, can have substantial cumulative effects on hydrologic, biogeochemical, and biological processes; yet the spatial distributions of various SWB types are often unknown. Usi...

  16. Online Toxicity Monitors (OTM) for Distribution System Water Quality Monitoring

    EPA Science Inventory

    Drinking water distribution systems in the U.S. are vulnerable to episodic contamination events (both unintentional and intentional). The U.S. Environmental Protection Agency (EPA) is conducting research to investigate the use of broad-spectrum online toxicity monitors (OTMs) in ...

  17. THE EPANET PROGRAMMER'S TOOLKIT FOR ANALYSIS OF WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    The EPANET Programmer's Toolkit is a collection of functions that helps simplify computer programming of water distribution network analyses. the functions can be used to read in a pipe network description file, modify selected component properties, run multiple hydraulic and wa...

  18. Voltage profile program for the Kennedy Space Center electric power distribution system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Kennedy Space Center voltage profile program computes voltages at all busses greater than 1 Kv in the network under various conditions of load. The computation is based upon power flow principles and utilizes a Newton-Raphson iterative load flow algorithm. Power flow conditions throughout the network are also provided. The computer program is designed for both steady state and transient operation. In the steady state mode, automatic tap changing of primary distribution transformers is incorporated. Under transient conditions, such as motor starts etc., it is assumed that tap changing is not accomplished so that transformer secondary voltage is allowed to sag.

  19. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    USGS Publications Warehouse

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  20. Water Purification, Distribution and Sewage Disposal. Appropriate Technologies for Development. Reprint R-29.

    ERIC Educational Resources Information Center

    1979

    This document, designed to serve as a training manual for technical instructors and as a field resource reference for Peace Corps volunteers, consists of nine units. Unit topics focus on: (1) water supply sources; (2) water treatment; (3) planning water distribution systems; (4) characteristics of an adequate system; (5) construction techniques;…

  1. A Visual Insight into the Degradation of Metals Used in Drinking Water Distribution Systems Using AFM

    EPA Science Inventory

    Evaluating the fundamental corrosion and passivation of metallic copper used in drinking water distribution materials is important in understanding the overall mechanism of the corrosion process. Copper pipes are widely used for drinking water distribution systems and although it...

  2. Gastrointestinal illness linked to incidents in drinking water distribution networks in Sweden.

    PubMed

    Säve-Söderbergh, Melle; Bylund, John; Malm, Annika; Simonsson, Magnus; Toljander, Jonas

    2017-10-01

    During recent years, knowledge gaps on drinking water-related gastrointestinal illness have been identified, especially for non-epidemic cases. Pathogen contamination of drinking water during distribution has been suggested to contribute to these cases, but the risk factors are not yet fully understood. During 2014-2015, we conducted an epidemiological study in five municipalities in Sweden, to assess whether incidents in the drinking water distribution system influence the risk of gastrointestinal illness. Telephone interviews were conducted in the affected areas and in reference areas 7-14 days after a reported incident. Symptoms of gastrointestinal illness occurring during the period were documented for each household member. The results showed a significantly elevated risk of vomiting and acute gastrointestinal illness (AGI) in the affected areas, compared to the reference areas (OR vom.  = 2.0, 95% CI: 1.2-3.3; OR AGI  = 1.9, 95% CI: 1.2-3.0). Certain conditions, or risk factors, during the incidents, such as sewage and drinking water pipelines at the same level in the trench, were associated with an elevated risk of AGI and vomiting. Safety measures taken during repair work, like flushing, were also associated with an elevated risk of AGI and vomiting. These results show that incidents in the drinking water distribution network contribute to endemic gastrointestinal illness, especially AGI and vomiting, and that external pathogen contamination of the drinking water is a likely cause of these cases of gastrointestinal illness. The results also indicate that safety measures used today may not be sufficient for eliminating the risk of gastrointestinal illness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. CO2 Data Distribution and Support from the Goddard Earth Science Data and Information Services Center (GES-DISC)

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Vollmer, Bruce; Albayrak, Arif; Theobald, Mike; Esfandiari, Ed; Wei, Jennifer

    2015-01-01

    This talk will describe the support and distribution of CO2 data products from OCO-2, AIRS, and ACOS, that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. We will provide a brief summary of the current online archive and distribution metrics for the OCO-2 Level 1 products and plans for the Level 2 products. We will also describe collaborative data sets and services (e.g., matchups with other sensors) and solicit feedback for potential future services.

  4. Channel-Island Connectivity Affects Water Exposure Time Distributions in a Coastal River Delta

    NASA Astrophysics Data System (ADS)

    Hiatt, Matthew; Castañeda-Moya, Edward; Twilley, Robert; Hodges, Ben R.; Passalacqua, Paola

    2018-03-01

    The exposure time is a water transport time scale defined as the cumulative amount of time a water parcel spends in the domain of interest regardless of the number of excursions from the domain. Transport time scales are often used to characterize the nutrient removal potential of aquatic systems, but exposure time distribution estimates are scarce for deltaic systems. Here we analyze the controls on exposure time distributions using a hydrodynamic model in two domains: the Wax Lake delta in Louisiana, USA, and an idealized channel-island complex. In particular, we study the effects of river discharge, vegetation, network geometry, and tides and use a simple model for the fractional removal of nitrate. In both domains, we find that channel-island hydrological connectivity significantly affects exposure time distributions and nitrate removal. The relative contributions of the island and channel portions of the delta to the overall exposure time distribution are controlled by island vegetation roughness and network geometry. Tides have a limited effect on the system's exposure time distribution but can introduce significant spatial variability in local exposure times. The median exposure time for the WLD model is 10 h under the conditions tested and water transport within the islands contributes to 37-50% of the network-scale exposure time distribution and 52-73% of the modeled nitrate removal, indicating that islands may account for the majority of nitrate removal in river deltas.

  5. GEOCHEMISTRY OF SULFUR IN IRON CORROSION SCALES FOUND IN DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Iron-sulfur geochemistry is important in many natural and engineered environments, including drinking water systems. In the anaerobic environment beneath scales of corroding iron drinking water distribution system pipes, sulfate reducing bacteria (SRB) produce sulfide from natu...

  6. Distribution of fluoride in ground water of West Virginia

    USGS Publications Warehouse

    Mathes, M.V.; Waldron, M.C.

    1993-01-01

    This report describes the results of a study by the U.S. Geological Survey, in cooperation with the West Virginia Geological and Economic Survey, to evaluate the distribution of fluoride in ground water of West Virginia. Fluoride is a natural chemical constituent in domestic and public water supplies in West Virginia. Fluoride concentrations of about 1.0 milligram per liter in drinking water are beneficial to dental health. Concentrations greater than 2.0 milligrams per liter, however, could harm teeth and bones. Fluoride concentra- tions in ground water of West Virginia range from less than 0.1 to 12 milligrams per liter. Fluoride concentrations that exceed 2.0 milligrams per liter are found in wells drilled to all depths, wells drilled in all topographic settings, and wells drilled into most geologic units. Most fluoride concentrations that exceed 2.0 milligrams per liter are located at sites clustered in the northwestern part of the State.

  7. Transformation rules and degradation of CAHs by Fentonlike oxidation in growth ring of water distribution network-A review

    NASA Astrophysics Data System (ADS)

    Zhong, D.; Ma, W. C.; Jiang, X. Q.; Yuan, Y. X.; Yuan, Y.; Wang, Z. Q.; Fang, T. T.; Huang, W. Y.

    2017-08-01

    Chlorinated hydrocarbons are widely used as organic solvent and chemical raw materials. After treatment, water polluted with trichloroethylene (TCE)/tetrachloroethylene (PCE) can reach the water quality requirements, while water with trace amounts of TCE/PCE is still harmful to humans, which will cause cancers. Water distribution network is an extremely complicated system, in which adsorption, desorption, flocculation, movement, transformation and reduction will occur, leading to changes of TCE/PCE concentrations and products. Therefore, it is important to investigate the transformation rules of TCE/PCE in water distribution network. What’s more, growth-ring, including drinking water pipes deposits, can act as catalysts in Fenton-like reagent (H2O2). This review summarizes the status of transformation rules of CAHs in water distribution network. It also evaluates the effectiveness and fruit of CAHs degradation by Fenton-like reagent based on growth-ring. This review is important in solving the potential safety problems caused by TCE/PCE in water distribution network.

  8. Stennis Space Center Conducts Water Flow Test On The B-2 Test Stand

    NASA Image and Video Library

    2018-05-04

    Stennis Space Center completed a water flow test of the refurbished B-2 Test Stand on May 4, 2018. This included both the deflector and the aspirator, individually and together. This test stand is being prepared for the testing of the Space Launch System's booster core, which will utilize four RS-25 rocket engines.

  9. Molybdenum distributions and variability in drinking water from England and Wales.

    PubMed

    Smedley, P L; Cooper, D M; Lapworth, D J

    2014-10-01

    An investigation has been carried out of molybdenum in drinking water from a selection of public supply sources and domestic taps across England and Wales. This was to assess concentrations in relation to the World Health Organization (WHO) health-based value for Mo in drinking water of 70 μg/l and the decision to remove the element from the list of formal guideline values. Samples of treated drinking water from 12 water supply works were monitored up to four times over an 18-month period, and 24 domestic taps were sampled from three of their supply areas. Significant (p < 0.05) differences were apparent in Mo concentration between sources. Highest concentrations were derived from groundwater from a sulphide-mineralised catchment, although concentrations were only 1.5 μg/l. Temporal variability within sites was small, and no seasonal effects (p > 0.05) were detected. Tap water samples collected from three towns (North Wales, the English Midlands, and South East England) supplied uniquely by upland reservoir water, river water, and Chalk groundwater, respectively, also showed a remarkable uniformity in Mo concentrations at each location. Within each, the variability was very small between houses (old and new), between pre-flush and post-flush samples, and between the tap water and respective source water samples. The results indicate that water distribution pipework has a negligible effect on supplied tap water Mo concentrations. The findings contrast with those for Cu, Zn, Ni, Pb, and Cd, which showed significant differences (p < 0.05) in concentrations between pre-flush and post-flush tap water samples. In two pre-flush samples, concentrations of Ni or Pb were above drinking water limits, although in all cases, post-flush waters were compliant. The high concentrations, most likely derived from metal pipework in the domestic distribution system, accumulated during overnight stagnation. The concentrations of Mo observed in British drinking water, in

  10. Decoding Size Distribution Patterns in Marine and Transitional Water Phytoplankton: From Community to Species Level

    PubMed Central

    Roselli, Leonilde; Basset, Alberto

    2015-01-01

    Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons) and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape). We tested the hypothesis focusing on resource availability (nutrients and light) and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism’s behavior which exploring patch resources in transitional and marine phytoplankton communities. PMID:25974052

  11. Reduced Efficiency of Chlorine Disinfection of Naegleria fowleri in a Drinking Water Distribution Biofilm.

    PubMed

    Miller, Haylea C; Wylie, Jason; Dejean, Guillaume; Kaksonen, Anna H; Sutton, David; Braun, Kalan; Puzon, Geoffrey J

    2015-09-15

    Naegleria fowleri associated with biofilm and biological demand water (organic matter suspended in water that consumes disinfectants) sourced from operational drinking water distribution systems (DWDSs) had significantly increased resistance to chlorine disinfection. N. fowleri survived intermittent chlorine dosing of 0.6 mg/L for 7 days in a mixed biofilm from field and laboratory-cultured Escherichia coli strains. However, N. fowleri associated with an attached drinking water distribution biofilm survived more than 30 times (20 mg/L for 3 h) the recommended concentration of chlorine for drinking water. N. fowleri showed considerably more resistance to chlorine when associated with a real field biofilm compared to the mixed laboratory biofilm. This increased resistance is likely due to not only the consumption of disinfectants by the biofilm and the reduced disinfectant penetration into the biofilm but also the composition and microbial community of the biofilm itself. The increased diversity of the field biofilm community likely increased N. fowleri's resistance to chlorine disinfection compared to that of the laboratory-cultured biofilm. Previous research has been conducted in only laboratory scale models of DWDSs and laboratory-cultured biofilms. To the best of our knowledge, this is the first study demonstrating how N. fowleri can persist in a field drinking water distribution biofilm despite chlorination.

  12. On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.

    PubMed

    Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T

    2017-08-01

    Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. MODELING THE IMPACTS OF FIRE FLOWS ON DISTRIBUTION SYSTEM WATER QUALITY, DESIGN AND OPERATION

    EPA Science Inventory

    In most water distribution systems, a significant amount of the piping and storage capacity is used to provide adequate quantities of water during fire conditions. This increased capacity results in higher capital costs and potential negative impacts on water quality due to longe...

  14. Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters

    DTIC Science & Technology

    2006-01-01

    Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of

  15. Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters

    DTIC Science & Technology

    2007-09-30

    Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean Sciences...G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA 02125-3393...phone: (617)287-7451 fax: (617)287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences University of

  16. Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters

    DTIC Science & Technology

    2008-09-30

    Predicting Chromophoric Dissolved Organic Matter Distributions in Coastal Waters Robert F. Chen Environmental , Earth and Ocean...umb.edu G. Bernard Gardner Environmental , Coastal and Ocean Sciences University of Massachusetts Boston 100 Morrissey Boulevard Boston, MA...02125-3393 phone: (617) 287-7451 fax: (617) 287-7474 email: bernie.gardner@umb.edu Yong Tian Environmental , Coastal and Ocean Sciences

  17. Sequential evaporation of water molecules from protonated water clusters: measurement of the velocity distributions of the evaporated molecules and statistical analysis.

    PubMed

    Berthias, F; Feketeová, L; Abdoul-Carime, H; Calvo, F; Farizon, B; Farizon, M; Märk, T D

    2018-06-22

    Velocity distributions of neutral water molecules evaporated after collision induced dissociation of protonated water clusters H+(H2O)n≤10 were measured using the combined correlated ion and neutral fragment time-of-flight (COINTOF) and velocity map imaging (VMI) techniques. As observed previously, all measured velocity distributions exhibit two contributions, with a low velocity part identified by statistical molecular dynamics (SMD) simulations as events obeying the Maxwell-Boltzmann statistics and a high velocity contribution corresponding to non-ergodic events in which energy redistribution is incomplete. In contrast to earlier studies, where the evaporation of a single molecule was probed, the present study is concerned with events involving the evaporation of up to five water molecules. In particular, we discuss here in detail the cases of two and three evaporated molecules. Evaporation of several water molecules after CID can be interpreted in general as a sequential evaporation process. In addition to the SMD calculations, a Monte Carlo (MC) based simulation was developed allowing the reconstruction of the velocity distribution produced by the evaporation of m molecules from H+(H2O)n≤10 cluster ions using the measured velocity distributions for singly evaporated molecules as the input. The observed broadening of the low-velocity part of the distributions for the evaporation of two and three molecules as compared to the width for the evaporation of a single molecule results from the cumulative recoil velocity of the successive ion residues as well as the intrinsically broader distributions for decreasingly smaller parent clusters. Further MC simulations were carried out assuming that a certain proportion of non-ergodic events is responsible for the first evaporation in such a sequential evaporation series, thereby allowing to model the entire velocity distribution.

  18. Safety of packaged water distribution limited by household recontamination in rural Cambodia.

    PubMed

    Holman, Emily J; Brown, Joe

    2014-06-01

    Packaged water treatment schemes represent a growing model for providing safer water in low-income settings, yet post-distribution recontamination of treated water may limit this approach. This study evaluates drinking water quality and household water handling practices in a floating village in Tonlé Sap Lake, Cambodia, through a pilot cross-sectional study of 108 households, approximately half of which used packaged water as the main household drinking water source. We hypothesized that households purchasing drinking water from local packaged water treatment plants would have microbiologically improved drinking water at the point of consumption. We found no meaningful difference in microbiological drinking water quality between households using packaged, treated water and those collecting water from other sources, including untreated surface water, however. Households' water storage and handling practices and home hygiene may have contributed to recontamination of drinking water. Further measures to protect water quality at the point-of-use may be required even if water is treated and packaged in narrow-mouthed containers.

  19. 75 FR 16513 - B&C Corporation, JR Engineering Division, Including B&C Distribution Center, Including On-Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... Engineering Division, Including B&C Distribution Center, Including On-Site Leased Workers From B&C Services, Inc., Barberton, OH; Amended Certification Regarding Eligibility To Apply for Worker Adjustment... Department of Labor issued a Certification of Eligibility to Apply for Worker Adjustment Assistance on...

  20. Teaming for success "TxDOT is here to help" : site selection and access for large distribution centers.

    DOT National Transportation Integrated Search

    2010-06-18

    These slides are intended to be used as a free-standing brief presentation or within larger presentations to describe and promote the advantages of involving TxDOT early in the distribution center site selection process. The purpose is to involve TxD...

  1. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir

    PubMed Central

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-01-01

    Background: The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Methods: Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Results: Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. Conclusion: This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies. PMID:26404350

  2. Using Amplicon Sequencing To Characterize and Monitor Bacterial Diversity in Drinking Water Distribution Systems

    PubMed Central

    Shaw, Jennifer L. A.; Weyrich, Laura S.; Sawade, Emma; Drikas, Mary; Cooper, Alan J.

    2015-01-01

    Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs. PMID:26162884

  3. Integrating a distributed hydrological model and SEEA-Water for improving water account and water allocation management under a climate change context.

    NASA Astrophysics Data System (ADS)

    Jauch, Eduardo; Almeida, Carina; Simionesei, Lucian; Ramos, Tiago; Neves, Ramiro

    2015-04-01

    The crescent demand and situations of water scarcity and droughts are a difficult problem to solve by water managers, with big repercussions in the entire society. The complexity of this question is increased by trans-boundary river issues and the environmental impacts of the usual adopted solutions to store water, like reservoirs. To be able to answer to the society requirements regarding water allocation in a sustainable way, the managers must have a complete and clear picture of the present situation, as well as being able to understand the changes in the water dynamics both in the short and long time period. One of the available tools for the managers is the System of Environmental-Economic Accounts for Water (SEEA-Water), a subsystem of SEEA with focus on water accounts, developed by the United Nations Statistical Division (UNSD) in collaboration with the London Group on Environmental Accounting, This system provides, between other things, with a set of tables and accounts for water and water related emissions, organizing statistical data making possible the derivation of indicators that can be used to assess the relations between economy and environment. One of the main issues with the SEEA-Water framework seems to be the requirement of large amounts of data, including field measurements of water availability in rivers/lakes/reservoirs, soil and groundwater, as also precipitation, irrigation and other water sources and uses. While this is an incentive to collecting and using data, it diminishes the usefulness of the system on countries where this data is not yet available or is incomplete, as it can lead to a poor understanding of the water availability and uses. Distributed hydrological models can be used to fill missing data required by the SEEA-Water framework. They also make it easier to assess different scenarios (usually soil use, water demand and climate changes) for a better planning of water allocation. In the context of the DURERO project (www

  4. Distributed sensor for water and pH measurements using fiber optics and swellable polymeric systems

    NASA Astrophysics Data System (ADS)

    Michie, W. C.; Culshaw, B.; McKenzie, I.; Konstantakis, M.; Graham, N. B.; Moran, C.; Santos, F.; Bergqvist, E.; Carlstrom, B.

    1995-01-01

    We report on the design, construction and test of a generic form of sensor for making distributed measurements of a range of chemical parameters. The technique combines optical time-domain reflectometry with chemically sensitive water-swellable polymers (hydrogels). Initial experiments have concentrated on demonstrating a distributed water detector; however, gels have been developed that enable this sensor to be

  5. ASSESSING AND PREVENTING THE SPREAD OF CONTAMINANTS IN A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Remote monitoring data, field studies, and the modeling software ? EPANET, can be used by drinking water utilities and consulting engineers to predict flow dynamics and information on the spatial distribution and concentration of contaminants in a drinking water system. A field ...

  6. Surface-water radon-222 distribution along the west-central Florida shelf

    USGS Publications Warehouse

    Smith, C.G.; Robbins, L.L.

    2012-01-01

    In February 2009 and August 2009, the spatial distribution of radon-222 in surface water was mapped along the west-central Florida shelf as collaboration between the Response of Florida Shelf Ecosystems to Climate Change project and a U.S. Geological Survey Mendenhall Research Fellowship project. This report summarizes the surface distribution of radon-222 from two cruises and evaluates potential physical controls on radon-222 fluxes. Radon-222 is an inert gas produced overwhelmingly in sediment and has a short half-life of 3.8 days; activities in surface water ranged between 30 and 170 becquerels per cubic meter. Overall, radon-222 activities were enriched in nearshore surface waters relative to offshore waters. Dilution in offshore waters is expected to be the cause of the low offshore activities. While thermal stratification of the water column during the August survey may explain higher radon-222 activities relative to the February survey, radon-222 activity and integrated surface-water inventories decreased exponentially from the shoreline during both cruises. By estimating radon-222 evasion by wind from nearby buoy data and accounting for internal production from dissolved radium-226, its radiogenic long-lived parent, a simple one-dimensional model was implemented to determine the role that offshore mixing, benthic influx, and decay have on the distribution of excess radon-222 inventories along the west Florida shelf. For multiple statistically based boundary condition scenarios (first quartile, median, third quartile, and maximum radon-222 inshore of 5 kilometers), the cross-shelf mixing rates and average nearshore submarine groundwater discharge (SGD) rates varied from 100.38 to 10-3.4 square kilometers per day and 0.00 to 1.70 centimeters per day, respectively. This dataset and modeling provide the first attempt to assess cross-shelf mixing and SGD on such a large spatial scale. Such estimates help scale up SGD rates that are often made at 1- to 10-meter

  7. WATER QUALITY MODELING AND SAMPLING STUDY IN A DISTRIBUTION SYSTEM

    EPA Science Inventory

    A variety of computer based models have been developed and used by the water industry to access the movement and fate of contaminants within the distribution system. uch models include: ynamic and steady state hydraulic models which simulate the flow quantity, flow direction, and...

  8. Comparing Vertical Distributions of Water Vapor Flux within Two Landfalling Atmospheric Rivers

    NASA Astrophysics Data System (ADS)

    Rutz, J. J.; Lavers, D. A.

    2015-12-01

    The West Coast of North America is frequently impacted by atmospheric rivers (ARs), regions of intense horizontal water vapor transport that often produce heavy rain, flooding, and landslides when they interact with near-coastal mountains. Recently, studies have shown that ARs penetrate farther inland on many occasions, with indications that the vertical distribution of vapor transport within the ARs may play a key role in this penetration (Alexander et al. 2015; Rutz et al. 2015). We hypothesize that the amount of near-coastal precipitation and the likelihood of AR penetration farther inland may be inversely linked by vertical distributions of vapor fluxes before, during, and after landfall. To explore whether differing vertical distributions of transport explain differing precipitation and penetration outcomes, we compare two landfalling ARs that had very similar spatial extents and rates of vertically integrated (total) vapor transport, but which nonetheless produced very different amounts of precipitation over northern California. The vertical distribution of water vapor flux, specific humidity, and wind speed during these two ARs are examined along several transects using cross-sectional analyses of the Climate Forecast System Reanalysis with a horizontal resolution of ~0.5° (~63 km) and a sigma-pressure hybrid coordinate at 64 vertical levels. In addition, we pursue similar analyses of forecasts from the NCEP Global Ensemble Forecast System GEFS to assess whether numerical weather prediction models accurately represent these distributions. Finally, we calculate backward trajectories from within each AR to examine whether or not the origins of their respective air parcels play a role in the resulting vertical distribution of water vapor flux. The results have major implications for two problems in weather prediction: (1) the near-coastal precipitation associated with landfalling ARs and (2) the likelihood of AR penetration farther inland.

  9. Modeling particle transport and discoloration risk in drinking water distribution networks

    NASA Astrophysics Data System (ADS)

    van Summeren, Joost; Blokker, Mirjam

    2017-10-01

    Discoloration of drinking water is a worldwide phenomenon caused by accumulation and subsequent remobilization of particulate matter in drinking water distribution systems (DWDSs). It contributes a substantial fraction of customer complaints to water utilities. Accurate discoloration risk predictions could improve system operation by allowing for more effective programs on cleaning and prevention actions and field measurements, but are challenged by incomplete understanding on the origins and properties of particles and a complex and not fully understood interplay of processes in distribution networks. In this paper, we assess and describe relevant hydraulic processes that govern particle transport in turbulent pipe flow, including gravitational settling, bed-load transport, and particle entrainment into suspension. We assess which transport mechanisms are dominant for a range of bulk flow velocities, particle diameters, and particle mass densities, which includes common conditions for DWDSs in the Netherlands, the UK, and Australia. Our analysis shows that the theoretically predicted particle settling velocity and threshold shear stresses for incipient particle motion are in the same range as, but more variable than, previous estimates from lab experiments, field measurements, and modeling. The presented material will be used in the future development of a numerical modeling tool to determine and predict the spatial distribution of particulate material and discoloration risk in DWDSs. Our approach is aimed at understanding specific causalities and processes, which can complement data-driven approaches.

  10. Diversity of free-living amoebae in a dual distribution (potable and recycled) water system

    EPA Science Inventory

    Free-living amoebae are known to facilitate the growth of water associated pathogens. This study, for the first time, explored the diversity of free-living amoebae in a dual distribution (potable and recycled) water system in Rouse Hill NSW, Australia. Water and biofilm samples w...

  11. Simulation of Ground-Water Flow in the Irwin Basin Aquifer System, Fort Irwin National Training Center, California

    USGS Publications Warehouse

    Densmore, Jill N.

    2003-01-01

    Ground-water pumping in the Irwin Basin at Fort Irwin National Training Center, California resulted in water-level declines of about 30 feet from 1941 to 1996. Since 1992, artificial recharge from wastewater-effluent infiltration and irrigation-return flow has stabilized water levels, but there is concern that future water demands associated with expansion of the base may cause a resumption of water-level declines. To address these concerns, a ground-water flow model of the Irwin Basin was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Historical data show that ground-water-level declines in the Irwin Basin between 1941 and 1996, caused the formation of a pumping depression near the pumped wells, and that recharge from the wastewater-treatment facility and disposal area caused the formation of a recharge mound. There have been two periods of water-level recovery in the Irwin Basin since the development of ground water in this basin; these periods coincide with a period of decreased pumpage from the basin and a period of increased recharge of water imported from the Bicycle Basin beginning in 1967 and from the Langford Basin beginning in 1992. Since 1992, artificial recharge has exceeded pumpage in the Irwin Basin and has stabilized water-level declines. A two-layer ground-water flow model was developed to help better understand the aquifer system, assess the long-term availability and quality of ground water, and evaluate ground-water conditions owing to current pumping and to plan for future water needs at the base. Boundary conditions, hydraulic conductivity, altitude of the bottom of the layers, vertical conductance, storage coefficient, recharge, and discharge were determined using existing geohydrologic data. Rates and distribution of recharge and discharge were determined from

  12. Estimation of distributional parameters for censored trace-level water-quality data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliom, R.J.; Helsel, D.R.

    1984-01-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water-sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations,more » for determining the best-performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least-squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification. 6 figs., 6 tabs.« less

  13. Evaluation of Irrigation Water Use Efficiency and Water-saving in the Middle Oasis of Heihe River Basin Using a Distributed Agro-hydrological Model

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Huang, G., Sr.; Xu, X.; Huang, Q.; Huo, Z.

    2015-12-01

    Severe water scarcity and unreasonable allocation are threatening the eco-environment in the Heihe River basin (HRB), an arid and semi-arid watershed in Northwest China. The water use in the middle oasis accounts for about 70% of the total water use in the HRB, in which over 85% are consumed by irrigated agriculture. Thus the regional assessment and improvement of irrigation water use are quite essential for water-saving and eco-environmental sustainability. This paper applied a distributed agro-hydrological model (SWAP-EPIC) integrated with ArcGIS to investigate the irrigation water use efficiency (WUE) in the middle oasis. The detailed distributed data in 2012, including soil properties, irrigation schedules, crop pattern and calendar, were collected and used in the regional simulation. The spatial-temporal distribution of LAI and evapotranspiration (ETa) from remote sensing were used as observations to calibrate the model. Results showed that the simulation data was in a good agreement with the observation one. The relative WUE (i.e. divided by the mean value) ranged from 0.77 to 1.33 in different canal command areas. Large spatial variations of WUE were mainly caused by the non-uniform distribution of irrigation water. The present irrigation performance was poor, and only 50% of total irrigation amount was finally utilized through evapotranspiration in the whole district. While nearly 24% of the irrigation water were lost through field deep percolation and 26% were wasted in canal conveyance. Further analysis of water-saving scenarios was conducted through applying the improved irrigation schedule for each crop-soil unites and increasing the canal conveyance efficiency. Prediction showed that 15% of total irrigation amount can be saved without reduction of crop yield.

  14. Global resilience analysis of water distribution systems.

    PubMed

    Diao, Kegong; Sweetapple, Chris; Farmani, Raziyeh; Fu, Guangtao; Ward, Sarah; Butler, David

    2016-12-01

    Evaluating and enhancing resilience in water infrastructure is a crucial step towards more sustainable urban water management. As a prerequisite to enhancing resilience, a detailed understanding is required of the inherent resilience of the underlying system. Differing from traditional risk analysis, here we propose a global resilience analysis (GRA) approach that shifts the objective from analysing multiple and unknown threats to analysing the more identifiable and measurable system responses to extreme conditions, i.e. potential failure modes. GRA aims to evaluate a system's resilience to a possible failure mode regardless of the causal threat(s) (known or unknown, external or internal). The method is applied to test the resilience of four water distribution systems (WDSs) with various features to three typical failure modes (pipe failure, excess demand, and substance intrusion). The study reveals GRA provides an overview of a water system's resilience to various failure modes. For each failure mode, it identifies the range of corresponding failure impacts and reveals extreme scenarios (e.g. the complete loss of water supply with only 5% pipe failure, or still meeting 80% of demand despite over 70% of pipes failing). GRA also reveals that increased resilience to one failure mode may decrease resilience to another and increasing system capacity may delay the system's recovery in some situations. It is also shown that selecting an appropriate level of detail for hydraulic models is of great importance in resilience analysis. The method can be used as a comprehensive diagnostic framework to evaluate a range of interventions for improving system resilience in future studies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Variation of levels and distribution of N-nitrosamines in different seasons in drinking waters of East China.

    PubMed

    Li, Ting; Yu, Dian; Xian, Qiming; Li, Aimin; Sun, Cheng

    2015-08-01

    We surveyed the occurrence of nine N-nitrosamine species in ten bottled drinking waters from supermarket and other water samples including raw waters, finished waters, and distribution system waters from nine municipal drinking water treatment plants in eight cities of Jiangsu Province, East China. N-nitrosodimethylamine (NDMA) was detected in one of ten bottled drinking water samples at concentration of 4.8 ng/L and N-nitrosomorpholine (NMor) was detected in four of the ten bottles with an average concentration and a standard deviation of 16 ± 15 ng/L. The levels of nitrosamines in the distribution system water samples collected during summer season ranged from below detection limit (BDL) to 5.4 ng/L for NDMA, BDL to 9.5 ng/L for N-nitrosomethylethylamine (NMEA), BDL to 2.7 ng/L for N-nitrosodiethylamine (NDEA) and BDL to 8.5 ng/L for N-nitrosopyrrolidine (NPyr). Samples of distribution system waters collected in winter season had levels of nitrosamines ranged from BDL to 45 ng/L for NDMA, BDL to 5.2 ng/L for NPyr, and BDL to 309 ng/L for N-nitrosopiperidine (NPip). A positive correlation of the concentration of NDMA as well as the total nine N-nitrosamines between finished waters and distribution system waters was observed. Both dissolved organic carbon and nitrite were found to correlate linearly with N-nitrosamine levels in raw waters.

  16. Mycobacteria in Water and Loose Deposits of Drinking Water Distribution Systems in Finland

    PubMed Central

    Torvinen, Eila; Suomalainen, Sini; Lehtola, Markku J.; Miettinen, Ilkka T.; Zacheus, Outi; Paulin, Lars; Katila, Marja-Leena; Martikainen, Pertti J.

    2004-01-01

    Drinking water distribution systems were analyzed for viable counts of mycobacteria by sampling water from waterworks and in different parts of the systems. In addition, loose deposits collected during mechanical cleaning of the main pipelines were similarly analyzed. The study covered 16 systems at eight localities in Finland. In an experimental study, mycobacterial colonization of biofilms on polyvinyl chloride tubes in a system was studied. The isolation frequency of mycobacteria increased from 35% at the waterworks to 80% in the system, and the number of mycobacteria in the positive samples increased from 15 to 140 CFU/liter, respectively. Mycobacteria were isolated from all 11 deposits with an accumulation time of tens of years and from all 4 deposits which had accumulated during a 1-year follow-up time. The numbers of mycobacteria were high in both old and young deposits (medians, 1.8 × 105 and 3.9 × 105 CFU/g [dry weight], respectively). Both water and deposit samples yielded the highest numbers of mycobacteria in the systems using surface water and applying ozonation as an intermediate treatment or posttreatment. The number and growth of mycobacteria in system waters correlated strongly with the concentration of assimilable organic carbon in the water leaving the waterworks. The densities of mycobacteria in the developing biofilms were highest at the distal sites of the systems. Over 90% of the mycobacteria isolated from water and deposits belonged to Mycobacterium lentiflavum, M. tusciae, M. gordonae, and a previously unclassified group of mycobacteria. Our results indicate that drinking water systems may be a source for recently discovered new mycobacterial species. PMID:15066787

  17. System Analysis for the Huntsville Operation Support Center, Distributed Computer System

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Massey, D.

    1985-01-01

    HOSC as a distributed computing system, is responsible for data acquisition and analysis during Space Shuttle operations. HOSC also provides computing services for Marshall Space Flight Center's nonmission activities. As mission and nonmission activities change, so do the support functions of HOSC change, demonstrating the need for some method of simulating activity at HOSC in various configurations. The simulation developed in this work primarily models the HYPERchannel network. The model simulates the activity of a steady state network, reporting statistics such as, transmitted bits, collision statistics, frame sequences transmitted, and average message delay. These statistics are used to evaluate such performance indicators as throughout, utilization, and delay. Thus the overall performance of the network is evaluated, as well as predicting possible overload conditions.

  18. A Comprehensive Investigation of Copper Pitting Corrosion in a Drinking Water Distribution System

    EPA Science Inventory

    Copper pipe pitting is a complicated corrosion process for which exact causes and solutions are uncertain. This paper presents the findings of a comprehensive investigation of a cold water copper pitting corrosion problem in a drinking water distribution system, including a refi...

  19. Direct numerical solution of the Ornstein-Zernike integral equation and spatial distribution of water around hydrophobic molecules

    NASA Astrophysics Data System (ADS)

    Ikeguchi, Mitsunori; Doi, Junta

    1995-09-01

    The Ornstein-Zernike integral equation (OZ equation) has been used to evaluate the distribution function of solvents around solutes, but its numerical solution is difficult for molecules with a complicated shape. This paper proposes a numerical method to directly solve the OZ equation by introducing the 3D lattice. The method employs no approximation the reference interaction site model (RISM) equation employed. The method enables one to obtain the spatial distribution of spherical solvents around solutes with an arbitrary shape. Numerical accuracy is sufficient when the grid-spacing is less than 0.5 Å for solvent water. The spatial water distribution around a propane molecule is demonstrated as an example of a nonspherical hydrophobic molecule using iso-value surfaces. The water model proposed by Pratt and Chandler is used. The distribution agrees with the molecular dynamics simulation. The distribution increases offshore molecular concavities. The spatial distribution of water around 5α-cholest-2-ene (C27H46) is visualized using computer graphics techniques and a similar trend is observed.

  20. 3. CONNECTING TUNNEL AT BOTTOM CENTER TO CENTER, CONTROL BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CONNECTING TUNNEL AT BOTTOM CENTER TO CENTER, CONTROL BUILDING B AT CENTER, WATER TANK TO UPPER LEFT, VIEW TOWARDS WEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Control Building B, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  1. Physical conditions, dynamics, and mass distribution in the center of the Galaxy

    NASA Technical Reports Server (NTRS)

    Genzel, R.; Townes, C. H.

    1987-01-01

    Recent observations and theoretical models of the Galactic center (GC) are reviewed. An overview of phenomena seen in the GC is given, including the stellar cluster, radio continuum emission and interstellar clouds, the Sgr A complex, and X-ray and gamma emission. Also discussed are the energetics and physical conditions in the central 4 pc (star burst or central source?); the circumnuclear ring, ionized streamers, and relativistic and hot gas in the cavity; the mass distribution and the possibility of a massive black hole, and the central 0.1 pc (Sgr A and IRS 16). Diagrams, graphs, photographs, and tables of numerical data are provided.

  2. Center for Adaptive Optics | Software

    Science.gov Websites

    Center for Adaptive Optics A University of California Science and Technology Center home Adaptive Optics Software The Center for Adaptive Optics acts as a clearing house for distributing Software to Institutes it gives specialists in Adaptive Optics a place to distribute their software. All software is

  3. Distribution of Vibrio alginolyticus-like species in Shenzhen coastal waters, China

    PubMed Central

    Chen, Ming-Xia; Li, He-Yang; Li, Gang; Zheng, Tian-Ling

    2011-01-01

    We investigated the distribution of vibrios in Shenzhen coastal waters in order to obtain valuable information for the aquaculture industry and a health warning system. Quantities of vibrios from surface waters ranged from 0 to 4.40×104 CFUs mL-1 in April (spring), while from 0 to 2.57×103 CFUs mL-1 in September (autumn); the abundance of V. alginolyticus-like species from surface water ranged from 0 to 6.72×103 CFUs mL-1 in April (spring) and from 0 to 1.28×103 CFUs mL-1 in September (autumn); higher counts were observed in spring. The V. alginolyticus-like species was dominant in Shenzhen coastal waters, with the highest abundance in the clean region (stations YMK001 and GDN064) in April, suggesting that Vibrio spp. were naturally occurring bacteria in marine environments. The correlation between the abundance of vibrios (including V. alginolyticus-like species) and environmental factors varied in different regions and different seasons. There were no vibrios detected when the salinity was less than 11.15‰ in the Zhujiang River estuary, which indicated that salinity played a key role in the distribution of vibrios and V. alginolyticus-like species. PMID:24031704

  4. Atmospheric water distribution in a midlatitude cyclone observed by the Seasat Scanning Multichannel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Mcmurdie, L. A.; Katsaros, K. B.

    1985-01-01

    Patterns in the horizontal distribution of integrated water vapor, integrated liquid water and rainfall rate derived from the Seasat Scanning Multichannel Microwave Radiometer (SMMR) during a September 10-12, 1978 North Pacific cyclone are studied. These patterns are compared with surface analyses, ship reports, radiosonde data, and GOES-West infrared satellite imagery. The SMMR data give a unique view of the large mesoscale structure of a midlatitude cyclone. The water vapor distribution is found to have characteristic patterns related to the location of the surface fronts throughout the development of the cyclone. An example is given to illustrate that SMMR data could significantly improve frontal analysis over data-sparse oceanic regions. The distribution of integrated liquid water agrees qualitatively well with corresponding cloud patterns in satellite imagery and appears to provide a means to distinguish where liquid water clouds exist under a cirrus shield. Ship reports of rainfall intensity agree qualitatively very well with SMMR-derived rainrates. Areas of mesoscale rainfall, on the order of 50 km x 50 km or greater are detected using SMMR derived rainrates.

  5. Accelerating the Integration of Distributed Water Solutions: A Conceptual Financing Model from the Electricity Sector

    NASA Astrophysics Data System (ADS)

    Quesnel, Kimberly J.; Ajami, Newsha K.; Wyss, Noemi

    2017-11-01

    Modern challenges require new approaches to urban water management. One solution in the portfolio of potential strategies is the integration of distributed water infrastructure, practices, and technologies into existing systems. However, many practical barriers have prevented the widespread adoption of these systems in the US. The objective of this paper is to address these challenges by developing a conceptual model encompassing regulatory, financial, and governance components that can be used to incorporate new distributed water solutions into our current network. To construct the model, case studies of successfully implemented distributed electricity systems, specifically energy efficiency and renewable energy technologies, were examined to determine how these solutions have become prominent in recent years and what lessons can be applied to the water sector in a similar pursuit. The proposed model includes four action-oriented elements: catalyzing change, establishing funding sources, using resource pathways, and creating innovative governance structures. As illustrated in the model, the water sector should use suite of coordinated policies to promote change, engage end users through fiscal incentives, and encourage research, development and dissemination of new technologies over time.

  6. Accelerating the Integration of Distributed Water Solutions: A Conceptual Financing Model from the Electricity Sector.

    PubMed

    Quesnel, Kimberly J; Ajami, Newsha K; Wyss, Noemi

    2017-11-01

    Modern challenges require new approaches to urban water management. One solution in the portfolio of potential strategies is the integration of distributed water infrastructure, practices, and technologies into existing systems. However, many practical barriers have prevented the widespread adoption of these systems in the US. The objective of this paper is to address these challenges by developing a conceptual model encompassing regulatory, financial, and governance components that can be used to incorporate new distributed water solutions into our current network. To construct the model, case studies of successfully implemented distributed electricity systems, specifically energy efficiency and renewable energy technologies, were examined to determine how these solutions have become prominent in recent years and what lessons can be applied to the water sector in a similar pursuit. The proposed model includes four action-oriented elements: catalyzing change, establishing funding sources, using resource pathways, and creating innovative governance structures. As illustrated in the model, the water sector should use suite of coordinated policies to promote change, engage end users through fiscal incentives, and encourage research, development and dissemination of new technologies over time.

  7. Optimization of pressure gauge locations for water distribution systems using entropy theory.

    PubMed

    Yoo, Do Guen; Chang, Dong Eil; Jun, Hwandon; Kim, Joong Hoon

    2012-12-01

    It is essential to select the optimal pressure gauge location for effective management and maintenance of water distribution systems. This study proposes an objective and quantified standard for selecting the optimal pressure gauge location by defining the pressure change at other nodes as a result of demand change at a specific node using entropy theory. Two cases are considered in terms of demand change: that in which demand at all nodes shows peak load by using a peak factor and that comprising the demand change of the normal distribution whose average is the base demand. The actual pressure change pattern is determined by using the emitter function of EPANET to reflect the pressure that changes practically at each node. The optimal pressure gauge location is determined by prioritizing the node that processes the largest amount of information it gives to (giving entropy) and receives from (receiving entropy) the whole system according to the entropy standard. The suggested model is applied to one virtual and one real pipe network, and the optimal pressure gauge location combination is calculated by implementing the sensitivity analysis based on the study results. These analysis results support the following two conclusions. Firstly, the installation priority of the pressure gauge in water distribution networks can be determined with a more objective standard through the entropy theory. Secondly, the model can be used as an efficient decision-making guide for gauge installation in water distribution systems.

  8. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system.

    PubMed

    Yang, Fan; Shi, Baoyou; Gu, Junnong; Wang, Dongsheng; Yang, Min

    2012-10-15

    The corrosion scales on iron pipes could have great impact on the water quality in drinking water distribution systems (DWDS). Unstable and less protective corrosion scale is one of the main factors causing "discolored water" issues when quality of water entering into distribution system changed significantly. The morphological and physicochemical characteristics of corrosion scales formed under different source water histories in duration of about two decades were systematically investigated in this work. Thick corrosion scales or densely distributed corrosion tubercles were mostly found in pipes transporting surface water, but thin corrosion scales and hollow tubercles were mostly discovered in pipes transporting groundwater. Magnetite and goethite were main constituents of iron corrosion products, but the mass ratio of magnetite/goethite (M/G) was significantly different depending on the corrosion scale structure and water source conditions. Thick corrosion scales and hard shell of tubercles had much higher M/G ratio (>1.0), while the thin corrosion scales had no magnetite detected or with much lower M/G ratio. The M/G ratio could be used to identify the characteristics and evaluate the performances of corrosion scales formed under different water conditions. Compared with the pipes transporting ground water, the pipes transporting surface water were more seriously corroded and could be in a relatively more active corrosion status all the time, which was implicated by relatively higher siderite, green rust and total iron contents in their corrosion scales. Higher content of unstable ferric components such as γ-FeOOH, β-FeOOH and amorphous iron oxide existed in corrosion scales of pipes receiving groundwater which was less corroded. Corrosion scales on groundwater pipes with low magnetite content had higher surface area and thus possibly higher sorption capacity. The primary trace inorganic elements in corrosion products were Br and heavy metals. Corrosion

  9. Atlantic salmon and eastern oyster breeding programs at the National Cold Water Marine Aquaculture Center

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) focuses on the coldwater marine aquaculture industry’s highest priority research needs including development of improved genetic stocks. Coldwater aquaculture production has potential for expansion, and both Atlantic salmon and Eas...

  10. Atlantic salmon and eastern oyster breeding programs at the National Cold Water Marine Aquaculture Center

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) focuses on the coldwater marine aquaculture industry's highest priority research needs including development of improved genetic stocks. Coldwater aquaculture production has potential for expansion, and both Atlantic salmon and East...

  11. Using Amplicon Sequencing To Characterize and Monitor Bacterial Diversity in Drinking Water Distribution Systems.

    PubMed

    Shaw, Jennifer L A; Monis, Paul; Weyrich, Laura S; Sawade, Emma; Drikas, Mary; Cooper, Alan J

    2015-09-01

    Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. RELATIONSHIPS BETWEEN LEVELS OF HETEROTROPHIC BACTERIA AND WATER QUALITY PARAMETERS IN A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    Conventional plating methods were used to quantify heterotrophic bacteria from a drinking water distribution system. Three media, plate count agar (PCA), R2A agar and sheep blood agar (TSA-SB) were used to determine heterotrophic plate count (HPC) levels. Grab samples were collec...

  13. Characterization of bacterial coliform occurrences in different zones of a drinking water distribution system.

    PubMed

    Blanch, A R; Galofré, B; Lucena, F; Terradillos, A; Vilanova, X; Ribas, F

    2007-03-01

    To compare the bacterial coliforms detected from occurrences in three zones of a water distribution system supplied by two separate water sources. Conventional and standardized protocols for identifying enterobacterial populations were applied. Additional tests to confirm isolates were included. Analyses of diversity and population similarity were performed using the Phene Plate System, a miniaturized biochemical phenotyping method. Isolates were identified by the API 20E system in tandem with biochemical phenotyping. A total of 16 576 samples were taken from the water distribution system, with 1416 isolates analysed. A low number of coliform occurrences were observed (2%). Escherichia coli was not detected in either water origin or in Zone 2 samples; however, in Zones 1 and 3 a low number of cases of E. coli were recorded. The percentages of E. coli depended on the identification criteria. Eight biochemical profiles for coliform populations were defined according to the results of the confirmative tests. There was a high diversity among these populations in the three zones studied, although no significant variations in their composition (associated with occurrences in the different zones) were observed. Klebsiella oxytoca was the most commonly detected species irrespective of zone, although seven other enterobacterial genera were also found. Analysis of the enzymatic activity of beta-glucuronidase or application of the criteria established in the norm ISO 9308-1, in tandem with thermotolerance was needed to evaluate the occurrence of E. coli in the distribution systems. Detected occurrences of bacterial coliforms could be associated with re-growth patterns for specific sampling points in the distribution system. Seasonal differences, independent of the studied zones, were observed. Biochemical phenotyping of bacterial coliforms was shown to be a useful method on the characterization of occurrences in water distribution systems.

  14. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    PubMed

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  15. From Policy to Practice: Implementation of Water Policies in Child Care Centers in Connecticut

    ERIC Educational Resources Information Center

    Middleton, Ann E.; Henderson, Kathryn E.; Schwartz, Marlene B.

    2013-01-01

    Objective: Child care policies may contribute to healthy beverage consumption patterns. This study documented availability and accessibility of water and correspondence with state and federal policy and accreditation standards in child care centers. Design: One-day observations were conducted in a random sample of 40 Child and Adult Care Food…

  16. The Use of Stable Isotope Tracers to Quantify the Transit Time Distribution of Water

    NASA Astrophysics Data System (ADS)

    Gray, T. M.; Troch, P. A. A.

    2016-12-01

    Water pollution is an important societal problem because it can have harmful effects on human and ecological health. In order to improve water quality, scientists must develop land management methods that can avoid or mitigate environmental pollution. State of the art tools to develop such methods are flow and transport models that trace water and other solutes through the landscape. These models deliver important information that can lead to remediation efforts, and improve the quality of water for humans, plants, and animals. However, these models may be difficult to apply since many details about the catchment may not be available. Instead, a lumped approach is often used to find the water transit time using stable isotope tracers such as 18O and 2H that are naturally applied by precipitation to a catchment. The transit time distribution of water is an important indicator for the amount of solutes soil water and groundwater can contain, and thus a predictor of water quality. We conducted a 2-week long experiment using a tilted weighing lysimeter at Biosphere 2 to observe the breakthrough curves of deuterium and specific artificial DNA particles. We show that hydrological parameters can be computed in order to provide an estimate for the transit time distribution of deuterium. The convolution integral is then used to determine the distribution of the water transit time in the system. Unfortunately, stable isotopes such as deuterium make it difficult to pinpoint a specific flowpath since they naturally occur in the environment. Recent studies have shown that DNA tracers are able to trace water through the landscape. We found that DNA has a similar breakthrough curve happening at similar timescales as the deuterium. Therefore, DNA tracers may be able to identify sources of nonpoint source pollution in the future.

  17. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    NASA Technical Reports Server (NTRS)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  18. Studies of a subarctic coastal marsh. III. Modelling the subsurface water fluxes and chloride distribution

    NASA Astrophysics Data System (ADS)

    Price, Jonathan S.; Woo, Ming-Ko

    1990-12-01

    A two-dimensional advection dispersion model of solute transport is used to simulate the long-term changes in the chloride distribution of the young isostatically raised beach ridge and depression sequences in a James Bay coastal marsh. The USGS-SUTRA model reproduces the hydraulic conditions in the wetland, causing recharge of freshwater to the ridges and discharge of saline water to the inter-ridge depressions, demonstrating the importance of vertical water fluxes of water and chloride. Even though water velocities are very low, molecular diffusion alone cannot explain the observed chloride distribution. Imposing the characteristics of a frozen surface during winter eliminated the vertical fluxes, and doubled the time required for the simulated chloride distribution to match the field data. The model correctly predicts the observed pattern of suppressed salinity beneath the ridges and a general decrease of salinity with distance inland. The results are useful in understanding the processes which operate in the first 100 years of marsh development.

  19. Sediment-water distribution of contaminants of emerging concern in a mixed use watershed

    USDA-ARS?s Scientific Manuscript database

    This study evaluated the occurrence and distribution of 15 contaminants of emerging concern (CEC) in stream water and sediments in the Zumbro River watershed in Minnesota and compared these with sub-watershed land uses. Sixty pairs of sediment and water samples were collected across all seasons from...

  20. Controlling Disinfection Residual Losses in Drinking Water Distribution Systems: Results from Experimental Studies

    EPA Science Inventory

    It is generally accepted that water quality can deteriorate in a distribution system through reactions in the bulk phase and/or at the pipe wall. These reactions may be physical, chemical and/or microbiological in nature. Perhaps one of the most serious aspects of water quality...

  1. Controlling Disinfection Residual Losses in Drinking Water Distribution Systems: Results from Experimental Studies

    EPA Science Inventory

    It has become generally accepted that water quality can deteriorate in a distribution system through reactions in the bulk phase and/or at the pipe wall. These reactions may be physical, chemical and/or microbiological in nature. Perhaps one of the most serious aspects of water...

  2. Carrier Mediated Distribution System (CAMDIS): a new approach for the measurement of octanol/water distribution coefficients.

    PubMed

    Wagner, Bjoern; Fischer, Holger; Kansy, Manfred; Seelig, Anna; Assmus, Frauke

    2015-02-20

    Here we present a miniaturized assay, referred to as Carrier-Mediated Distribution System (CAMDIS) for fast and reliable measurement of octanol/water distribution coefficients, log D(oct). By introducing a filter support for octanol, phase separation from water is facilitated and the tendency of emulsion formation (emulsification) at the interface is reduced. A guideline for the best practice of CAMDIS is given, describing a strategy to manage drug adsorption at the filter-supported octanol/buffer interface. We validated the assay on a set of 52 structurally diverse drugs with known shake flask log D(oct) values. Excellent agreement with literature data (r(2) = 0.996, standard error of estimate, SEE = 0.111), high reproducibility (standard deviation, SD < 0.1 log D(oct) units), minimal sample consumption (10 μL of 100 μM DMSO stock solution) and a broad analytical range (log D(oct) range = -0.5 to 4.2) make CAMDIS a valuable tool for the high-throughput assessment of log D(oc)t. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Ontology for Life-Cycle Modeling of Water Distribution Systems: Application of Model View Definition Attributes

    DTIC Science & Technology

    2013-06-01

    ER D C/ CE RL C R- 13 -5 Ontology for Life-Cycle Modeling of Water Distribution Systems : Application of Model View Definition...2013 Ontology for Life-Cycle Modeling of Water Distribution Systems : Application of Model View Definition Attributes Kristine K. Fallon, Robert A...interior plumbing systems and the information exchange requirements for every participant in the design. The findings were used to develop an

  4. A geochemical reconnaissance of the Alid volcanic center and geothermal system, Danakil depression, Eritrea

    USGS Publications Warehouse

    Lowenstern, J. B.; Janik, C.J.; Fournier, R.O.; Tesfai, T.; Duffield, W.A.; Clynne, M.A.; Smith, James G.; Woldegiorgis, L.; Weldemariam, K.; Kahsai, G.

    1999-01-01

    Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of ~10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression.Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of approx. 10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely

  5. Residence time distributions of artificially infiltrated groundwater used for drinking water production

    NASA Astrophysics Data System (ADS)

    Popp, A. L.; Marçais, J.; Moeck, C.; Brennwald, M. S.; Kipfer, R.

    2017-12-01

    Public drinking water supply in urban areas is often challenging due to exposure to potential contamination and high water demands. At our study site, a drinking water supply field in Switzerland, managed aquifer recharge (MAR) was implemented to overcome an increasing water demand and decreasing water quality. Water from the river Rhine is put on a system of channels and ponds to artificially infiltrate and hence, increase the natural groundwater availability. The groundwater system consists of two overlying aquifers, with hydraulic connections related to fractures and faults. The deeper aquifer contains contaminants, which possibly originate from nearby landfills and industrial areas. The operating water works aims to pump recently infiltrated water only. However, we suspect that the pumped water contains a fraction of old water due to the fractured zones which serve as hydraulic connection between the two aquifers. With this study, we aim to better understand the mixing patterns between recently infiltrated water and old groundwater to evaluate the risk for contamination of the system. To reach our objective, we used a set of gas tracers (222Rn, 3H/3He, 4He) from fifteen wells distributed throughout the area to estimate the residence time distribution (RTD) of each well. We calibrated the RTD with a Binary Mixing Model, where the fraction of young groundwater is assumed to follow a Piston Flow Model. The older groundwater fraction is calibrated with a Dispersion Model. Our results reflect the heterogeneity of the system with some abstraction wells containing young water only and others showing an admixture of old water which can only be explained by a connection to the deeper aquifer. We also show that our results on calibrated RTDs are in accordance with other geochemical data such as electrical conductivity, major ions and pH. Our results will contribute to a sound conceptual flow and transport understanding and will help to optimize the water supply system.

  6. [Distribution of polycyclic aromatic hydrocarbons in water and sediment from Zhoushan coastal area, China].

    PubMed

    Jiang, Min; Tuan, Le Huy; Mei, Wei-Ping; Ruan, Hui-Hui; Wu, Hao

    2014-07-01

    The spatial and temporal distribution of 16 polycyclic aromatic hydrocarbons (PAHs) has been investigated in water and sediments of Zhoushan coastal area every two months in 2012. The concentrations of total PAHs ranged from 382.3 to 816.9 ng x L(-1), with the mean value of 552.5 ng x L(-1) in water; whereas it ranged from 1017.9 to 3047.1 ng x g(-1), with the mean value of 2 022.4 ng x g(-1) in sediment. Spatial distribution showed that Yangshan and Yanwoshan offshore area had the maximum and minimum of total PAHs contents in water, while the maximum and minimum occurred at Yangshan and Zhujiajian Nansha offshore area in sediment. Temporal distribution revealed that total PAHs contents in water reached the maximum and minimum values in October and June, however in sediments these values were found in August and June, respectively. The PAHs pollution was affected by oil emission, charcoal and coal combustion. Using the biological threshold and exceeded coefficient method to assess the ecological risk of PAHs in Zhoushan coastal area, the result showed that sigma PAHs had a lower probability of potential risk, while there was a higher probability of potential risk for acenaphthylene monomer, and there might be ecological risk for acenaphthene and fluorene. Distribution of PAHs between sediment and water showed that Zhoushan coastal sediment enriched a lot of PAHs, meanwhile the enrichment coefficient (K(d) value) of sediment in Daishan island was larger than that in Zhoushan main island.

  7. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distributions

    USGS Publications Warehouse

    Wilkin, R.T.; Arthur, M.A.; Dean, W.E.

    1997-01-01

    A detailed study of size distributions of framboidal pyrite in Holocene Black Sea sediments establishes the timing of a change from deposition under an oxic water column to deposition under an anoxic and sulfidic water column. In the most recent carbonate-rich sediments (Unit I) and in the organic carbon-rich sapropel (Unit II), framboid size distributions are remarkably uniform (mean diameter= 5 ??m); over 95% of the framboids in Unit I and Unit II are < 7 ??m in diameter. These properties of framboidal pyrite are consistent with framboid nucleation and growth within an anoxic and sulfidic water column, followed by transport to the sediment-water interface, cessation of pyrite growth due to the exhaustion of reactive iron, and subsequent burial. In contrast, the organic carbon-poor sediments of lacustrine Unit III contain pyrite framboids that are generally much larger in size (mean diameter = 10 ??m). In Unit III, over 95% of the framboids are < 25 ??m in diameter, 40% of framboids are between 7 ??m and 25 ??m, and framboids up to 50 ??m in diameter are present. This distribution of sizes suggests framboid nucleation and growth within anoxic sediment porewaters. These new data on size distributions of framboidal pyrite confirm that the development of water-column anoxia in the Black Sea coincided with the initiation of deposition of laminated Unit II sapropels.

  8. A Framework for Developing pH Guidance for Drinking Water Treatment and Distribution

    EPA Science Inventory

    Worldwide, many agencies have historically limited the range of pH values of distributed water between 6.5 and 8.5. Although this range is not a regulatory limit, many jurisdictions have used it as one. In some cases, the range has been a barrier to optimizing distribution syste...

  9. Regrowth of Potential Opportunistic Pathogens and Algae in Reclaimed-Water Distribution Systems ▿

    PubMed Central

    Jjemba, Patrick K.; Weinrich, Lauren A.; Cheng, Wei; Giraldo, Eugenio; LeChevallier, Mark W.

    2010-01-01

    A study of the quality of reclaimed water in treated effluent, after storage, and at three points in the distribution system of four plants in California, Florida, Massachusetts, and New York was conducted for 1 year. The plants had different treatment processes (conventional versus membrane bioreactor), production capacities, and methods for storage of the water, and the intended end uses of the water were different. The analysis focused on the occurrence of indicator bacteria (heterotrophic bacteria, coliforms, Escherichia coli, and enterococci) and opportunistic pathogens (Aeromonas spp., enteropathogenic E. coli O157:H7, Legionella spp., Mycobacterium spp., and Pseudomonas spp.), as well as algae. Using immunological methods, E. coli O157:H7 was detected in the effluent of only one system, but it was not detected at the sampling points, suggesting that its survival in the system was poor. Although all of the treatment systems effectively reduced the levels of bacteria in the effluent, bacteria regrew in the reservoir and distribution systems because of the loss of residual disinfectant and high assimilable organic carbon levels. In the systems with open reservoirs, algal growth reduced the water quality by increasing the turbidity and accumulating at the end of the distribution system. Opportunistic pathogens, notably Aeromonas, Legionella, Mycobacterium, and Pseudomonas, occurred more frequently than indicator bacteria (enterococci, coliforms, and E. coli). The Mycobacterium spp. were very diverse and occurred most frequently in membrane bioreactor systems, and Mycobacterium cookii was identified more often than the other species. The public health risk associated with these opportunistic pathogens in reclaimed water is unknown. Collectively, our results show the need to develop best management practices for reclaimed water to control bacterial regrowth and degradation of water before it is utilized at the point of use. PMID:20453149

  10. VIIRS Data and Data Access at the NASA National Snow and Ice Data Center Distributed Active Archive Center

    NASA Astrophysics Data System (ADS)

    Moth, P.; Johnston, T.; Fowler, D. K.

    2017-12-01

    Working collaboratively, NASA and NOAA are producing data from the Visible Infrared Imaging Radiometer Suite (VIIRS). The National Snow and Ice Data Center (NSIDC), a NASA Distributed Active Archive Center (DAAC), is distributing VIIRS snow cover, ice surface temperature, and sea ice cover products. Data is available in .nc and HDF5 formats with a temporal coverage of 1 January 2012 and onward. VIIRS, NOAA's latest radiometer, was launched aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite on October 28, 2011. The instrument comprises 22 bands; five for high-resolution imagery, 16 at moderate resolution, and one panchromatic day/night band. VIIRS is a whiskbroom scanning radiometer that covers the spectrum between 0.412 μm and 12.01 μm and acquires spatial resolutions at nadir of 750 m, 375 m, and 750 m, respectively. One distinct advantage of VIIRS is to ensure continuity that will lead to the development of snow and sea ice climate data records with data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Combined with the Advanced Very-High-resolution Radiometer (AVHRR), the AVHRR-MODIS-VIIRS timeline will start in the early 1980s and span at least four decades-and perhaps beyond-enabling researchers to produce and gain valuable insight from long, high-quality Earth System Data Records (ESDRs). Several options are available to view and download VIIRS data: Direct download from NSIDC via HTTPS. Using NASA Earthdata Search, users can explore and download VIIRS data with temporal and/or spatial filters, re-format, re-project, and subset by spatial extent and parameter. API access is also available for all these options; Using NASA Worldview, users can view Global Imagery Browse Services (GIBS) from VIIRS data; Users can join a VIIRS subscription list to have new VIIRS data automatically ftp'd or staged on a local server as it is archived at NSIDC.

  11. Evidence for a Heterogeneous Distribution of Water in the Martian Interior

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis; Boyce, Jeremy W.; Srinvasan, Poorna; Santos, Alison R.; Elardo, Stephen M.; Filiberto, Justin; Steele, Andrew; Shearer, Charles K.

    2016-01-01

    The abundance and distribution of H2O within the terrestrial planets, as well as its timing of delivery, is a topic of vital importance for understanding the chemical and physical evolution of planets and their potential for hosting habitable environments. Analysis of planetary materials from Mars, the Moon, and the eucrite parent body (i.e., asteroid 4Vesta) have confirmed the presence of H2O within their interiors. Moreover, H and N isotopic data from these planetary materials suggests H2O was delivered to the inner solar system very early from a common source, similar in composition to the carbonaceous chondrites. Despite the ubiquity of H2O in the inner Solar System, the only destination with any prospects for past or present habitable environments at this time, outside of the Earth, is Mars. Although the presence of H2O within the martian interior has been confirmed, very little is known regarding its abundance and distribution within the martian interior and how the martian water inventory has changed over time. By combining new analyses of martian apatites within a large number of martian meteorite types with previously published volatile data and recently determined mineral-melt partition coefficients for apatite, we report new insights into the abundance and distribution of volatiles in the martian crust and mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite mantle source has 36-73 ppm H2O and the depleted shergottite mantle source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the martian mantle. We also estimated the H2O content of the martian crust using the revised mantle H2O abundances and known crust-mantle distributions of incompatible lithophile elements. We determined that the bulk martian crust has

  12. IRON TUBERCULATION: PHYSIO-CHEMICAL CHARACTERIZATION OF A SINGLE PIPE FROM A DRINKING WATER DISTRIBUTION SYSTEM

    EPA Science Inventory

    The nature of iron tubercles inside unlined iron pipes of drinking water distribution systems are influenced by water quality and therefore susceptible to changes in water chemistry. The underlying assumption is that tubercles in a system have similar physio-chemical properties. ...

  13. Water mass distributions and transports for the 2014 GEOVIDE cruise in the North Atlantic

    NASA Astrophysics Data System (ADS)

    García-Ibáñez, Maribel I.; Pérez, Fiz F.; Lherminier, Pascale; Zunino, Patricia; Mercier, Herlé; Tréguer, Paul

    2018-04-01

    We present the distribution of water masses along the GEOTRACES-GA01 section during the GEOVIDE cruise, which crossed the subpolar North Atlantic Ocean and the Labrador Sea in the summer of 2014. The water mass structure resulting from an extended optimum multiparameter (eOMP) analysis provides the framework for interpreting the observed distributions of trace elements and their isotopes. Central Waters and Subpolar Mode Waters (SPMW) dominated the upper part of the GEOTRACES-GA01 section. At intermediate depths, the dominant water mass was Labrador Sea Water, while the deep parts of the section were filled by Iceland-Scotland Overflow Water (ISOW) and North-East Atlantic Deep Water. We also evaluate the water mass volume transports across the 2014 OVIDE line (Portugal to Greenland section) by combining the water mass fractions resulting from the eOMP analysis with the absolute geostrophic velocity field estimated through a box inverse model. This allowed us to assess the relative contribution of each water mass to the transport across the section. Finally, we discuss the changes in the distribution and transport of water masses between the 2014 OVIDE line and the 2002-2010 mean state. At the upper and intermediate water levels, colder end-members of the water masses replaced the warmer ones in 2014 with respect to 2002-2010, in agreement with the long-term cooling of the North Atlantic Subpolar Gyre that started in the mid-2000s. Below 2000 dbar, ISOW increased its contribution in 2014 with respect to 2002-2010, with the increase being consistent with other estimates of ISOW transports along 58-59° N. We also observed an increase in SPMW in the East Greenland Irminger Current in 2014 with respect to 2002-2010, which supports the recent deep convection events in the Irminger Sea. From the assessment of the relative water mass contribution to the Atlantic Meridional Overturning Circulation (AMOC) across the OVIDE line, we conclude that the larger AMOC intensity in

  14. The inventory and distribution of water on Mars

    USGS Publications Warehouse

    Carr, M.H.

    1987-01-01

    Terrain softening, fretted channels, debris flows, and closed depressions indicate that at least the upper 2 km of the cratered uplands at high latitudes (>30??) contain ice in amounts that exceed the porosity, estimated to be 10-20 percent. Theoretical studies, and lack of these features in the cratered uplands at low latitudes, suggest that the upper 1 km of the uplands at low latitudes is ice poor. However, valley networks indicate that water was present near the surface early in the planet's history, although in amounts smaller than at high latitudes. On the basis of these observations, the entire upper 1 km, planet-wide is estimated to have contained 75-125 meters of water at the end of heavy bombardment. From the volume of water needed to cut the circum-Chryse channels, and assuming uniform planet-wide distribution of water, the deep megaregolith is estimated to have contained at least 350 meters of water at the end of heavy bombardment, thereby giving a total minimum inventory of 425-475 meters planet-wide. Most of the water lost from the low latitude uplands by diffusion and in cutting the valley networks is now believed to be in the polar layered terrains. Most of the water involved in cutting the outflow channels is in the low-lying northern plains where a variety of features that have been attributed to ground ice is present. Since the end of heavy bombardment, a large fraction of the planet's surface has been overplated with water-poor volcanics, of which we have samples in the SNC meteorites. The younger volcanics have reacted extensively with the old volatile-rich basement. Part of the 10-20 bars of CO2 and 0.1 to 0.3 bars of N2 outgassed with the water was lost during heavy bombardment by impact erosion of the atmosphere and other processes. The remaining was fixed carbonates and nitrates and folded deep into the megaregolith during heavy bombardment. ?? 1987.

  15. An Oil-Stream Photomicrographic Aeroscope for Obtaining Cloud Liquid-Water Content and Droplet Size Distributions in Flight

    NASA Technical Reports Server (NTRS)

    Hacker, Paul T.

    1956-01-01

    An airborne cloud aeroscope by which droplet size, size distribution, and liquid-water content of clouds can be determined has been developed and tested in flight and in wind tunnels with water sprays. In this aeroscope the cloud droplets are continuously captured in a stream of oil, which Is then photographed by a photomicrographic camera. The droplet size and size distribution can be determined directly from the photographs. With the droplet size distribution known, the liquid-water content of the cloud can be computed from the geometry of the aeroscope, the airspeed, and the oil-flow rate. The aeroscope has the following features: Data are obtained semi-automatically, and permanent data are taken in the form of photographs. A single picture usually contains a sufficient number of droplets to establish the droplet size distribution. Cloud droplets are continuously captured in the stream of oil, but pictures are taken at Intervals. The aeroscope can be operated in icing and non-icing conditions. Because of mixing of oil in the instrument, the droplet-distribution patterns and liquid-water content values from a single picture are exponentially weighted average values over a path length of about 3/4 mile at 150 miles per hour. The liquid-water contents, volume-median diameters, and distribution patterns obtained on test flights and in the Lewis icing tunnel are similar to previously published data.

  16. Temperature diagnostic to identify high risk areas and optimize Legionella pneumophila surveillance in hot water distribution systems.

    PubMed

    Bédard, Emilie; Fey, Stéphanie; Charron, Dominique; Lalancette, Cindy; Cantin, Philippe; Dolcé, Patrick; Laferrière, Céline; Déziel, Eric; Prévost, Michèle

    2015-03-15

    Legionella pneumophila is frequently detected in hot water distribution systems and thermal control is a common measure implemented by health care facilities. A risk assessment based on water temperature profiling and temperature distribution within the network is proposed, to guide effective monitoring strategies and allow the identification of high risk areas. Temperature and heat loss at control points (water heater, recirculation, representative points-of-use) were monitored in various sections of five health care facilities hot water distribution systems and results used to develop a temperature-based risk assessment tool. Detailed investigations show that defective return valves in faucets can cause widespread temperature losses because of hot and cold water mixing. Systems in which water temperature coming out of the water heaters was kept consistently above 60 °C and maintained above 55 °C across the network were negative for Legionella by culture or qPCR. For systems not meeting these temperature criteria, risk areas for L. pneumophila were identified using temperature profiling and system's characterization; higher risk was confirmed by more frequent microbiological detection by culture and qPCR. Results confirmed that maintaining sufficiently high temperatures within hot water distribution systems suppressed L. pneumophila culturability. However, the risk remains as shown by the persistence of L. pneumophila by qPCR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The global distribution of deep-water Antipatharia habitat

    NASA Astrophysics Data System (ADS)

    Yesson, Chris; Bedford, Faye; Rogers, Alex D.; Taylor, Michelle L.

    2017-11-01

    Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

  18. Heterotrophic bacteria in drinking water distribution system: a review.

    PubMed

    Chowdhury, Shakhawat

    2012-10-01

    The microbiological quality of drinking water in municipal water distribution systems (WDS) depends on several factors. Free residual chlorine and/or chloramines are typically used to minimize bacterial recontamination and/or regrowth in WDS. Despite such preventive measures, regrowth of heterotrophic (HPC) and opportunistic bacteria in bulk water and biofilms has yet to be controlled completely. No approach has shown complete success in eliminating biofilms or HPC bacteria from bulk water and pipe surfaces. Biofilms can provide shelter for pathogenic bacteria and protect these bacteria from disinfectants. Some HPC bacteria may be associated with aesthetic and non-life threatening diseases. Research to date has achieved important success in understanding occurrence and regrowth of bacteria in bulk water and biofilms in WDS. To achieve comprehensive understanding and to provide efficient control against bacteria regrowth, future research on bacteria regrowth dynamics and their implications is warranted. In this study, a review was performed on the literature published in this area. The findings and limitations of these papers are summarized. Occurrences of bacteria in WDS, factors affecting bacteria regrowth in bulk water and biofilms, bacteria control strategies, sources of nutrients, human health risks from bacterial exposure, modelling of bacteria regrowth and methods of bacteria sampling and detection and quantification are investigated. Advances to date are noted, and future research needs are identified. Finally, research directions are proposed to effectively control HPC and opportunistic bacteria in bulk water and biofilms in WDS.

  19. Business Activity Monitoring: Real-Time Group Goals and Feedback Using an Overhead Scoreboard in a Distribution Center

    ERIC Educational Resources Information Center

    Goomas, David T.; Smith, Stuart M.; Ludwig, Timothy D.

    2011-01-01

    Companies operating large industrial settings often find delivering timely and accurate feedback to employees to be one of the toughest challenges they face in implementing performance management programs. In this report, an overhead scoreboard at a retailer's distribution center informed teams of order selectors as to how many tasks were…

  20. DETERMINANTS AND OPTIONS FOR WATER DISTRIBUTION SYSTEM MANAGEMENT: A COST EVALUATION

    EPA Science Inventory

    This report deals with the problems associated with maintaining and replacing water supply distribution systems. Some of these problems are associated with public health, economic and spatial development of the community, and costs of repair and replacement of system components. ...

  1. Decision Support for Renewal of Wastewater Collections and Water Distribution Systems

    EPA Science Inventory

    The decision of how to accomplish the renewal of existing wastewater collection and water distribution systems involves the evaluation of many criteria and parameters. These criteria must be evaluated thoroughly to determine the best way of rehabilitating or replacing these sys...

  2. DECISION SUPPORT FOR RENEWAL OF WASTEWATER COLLECTIONS AND WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    The decision of how to accomplish the renewal of existing wastewater collection and water distribution systems involves the evaluation of many criteria and parameters. These criteria must be evaluated thoroughly to determine the best way of rehabilitating or replacing these syste...

  3. Methane Distribution In Plumes Of The South Mariana Back-arc Spreading Center

    NASA Astrophysics Data System (ADS)

    Toki, T.; Hirota, A.; Tsunogai, U.; Gamo, T.; Nakamura, K.; Noguchi, T.; Taira, N.; Oomori, T.; Ishibashi, J.; Utsumi, M.

    2004-12-01

    In the South Mariana Back-arc Spreading Center, two methane plumes were observed in water column based on analysis of methane in seawater samples collected during the R/V Thompson expeditions in 2003 around water depth of 2,700 m over the Fryer site on the ridge-axis seamount (12\\deg57.22N, 143\\deg37.16E, depth: 2,850 m). The estimated end-member isotopic compositions of methane in the two plumes are \\delta13C_{CH4} = -5‰ PDB and -50‰ PDB. These values indicated that the two plumes were originated from the different sources. During YK03-09 cruise using the submersible Shinkai 6500 from October to November in 2003, detailed seafloor observation discovered sulfide chimneys emitting black and clear hydrothermal fluid on the off-axis seamount at Pika site (12°55.15N, 143°36.96E, depth: 2,773 m). The result of analysis of isotopic composition of methane in the hydrothermal fluids recovered from the off-axis hydrothermal vents using WHATS (Water and Hydrothermal Atsuryoku Tight Sampler) was averaged value of -4‰ PDB (standard deviation = 1‰ PDB, n = 3). Hydrothermal fluids from the Fryer site were also sampled and were measured: average value = -6.7‰ PDB, standard deviation = 0.3‰ PDB, n = 3. During the R/V Thompson expeditions in March 2004 using ROV ROPOS, 11 ROPOS dives and CTD-RMS plume surveys were conducted, and newly discovered a huge hydrothermal structure with active fluid venting at Achaean site on the ridge skirt (12°56.37N, 143°37.92E, depth: 2,990 m). The δ ^{13}C_{CH4} value of the fluid sample from the site using ROCS (Rotary Clean Seawater sampler) was -14.7‰ PDB. Analysis of isotopic composition of methane in the plume samples collected using the CTD-hydrocast at water depth of 2,500 m over the Archaean site showed -45‰ PDB. Source of methane (δ ^{13}C_{CH4} = -50‰ PDB), however, in the two plumes of the South Mariana Back-arc Spreading Center has been missing. The δ ^{13}C of methane cannot be considered in sediment

  4. Ab initio simulation of particle momentum distributions in high-pressure water

    NASA Astrophysics Data System (ADS)

    Ceriotti, M.

    2014-12-01

    Applying pressure to water reduces the average oxygen-oxygen distance, and facilitates the delocalisation of protons along the hydrogen bond. This pressure-induced delocalisation is further enhanced by the quantum nature of hydrogen nuclei, which is very significant even well above room temperature. Here we will evaluate the quantum kinetic energy and the particle momentum distribution of hydrogen and oxygen nuclei in water at extreme pressure, using ab initio path integral molecular dynamics. We will show that (transient) dissociation of water molecules induce measurable changes in the kinetic energy hydrogen atoms, although current deep inelastic scattering experiments are probably unable to capture the heterogeneity of the sample.

  5. Permeability of bacterial spores. IV. Water content, uptake, and distribution.

    PubMed

    BLACK, S H; GERHARDT, P

    1962-05-01

    Black, S. H. (The University of Michigan, Ann Arbor) and Philipp Gerhardt. Permeability of bacterial spores. IV. Water content, uptake, and distribution. J. Bacteriol. 83:960-967. 1962.-Dormant and germinated spores of Bacillus cereus strain terminalis were examined for water properties. Respectively, they exhibited a mean density of 1.28 and 1.11 g/ml, a water content of 64.8 and 73.0%, and a total water uptake of 66.6 and 75.6%, based on spore weight, or 86.0 and 83.9%, based on spore volume. The results confirmed a previous report that internal and external water are in virtually complete equilibrium, but refuted a prevailing hypothesis that heat resistance is attributable to a dry core. A model of spore ultrastructure that evolved from the cumulative results pictures a moist, dense, heteroporous core. A new hypothesis is formulated as an explanation for thermostability in spores and possibly in other instances; it postulates the occurrence of an insolubly gelled core with cross-linking between macromolecules through stable but reversible bonds so as to form a high-polymer matrix with entrapped free water.

  6. Moment analysis description of wetting and redistribution plumes in wettable and water-repellent soils

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2012-02-01

    SummaryWater repellency has a significant impact on water flow patterns in the soil profile. Transient 2D flow in wettable and natural water-repellent soils was monitored in a transparent flow chamber. The substantial differences in plume shape and spatial water content distribution during the wetting and subsequent redistribution stages were related to the variation of contact angle while in contact with water. The observed plumes shape, internal water content distribution in general and the saturation overshoot behind the wetting front in particular in the repellent soils were associated with unstable flow. Moment analysis was applied to characterize the measured plumes during the wetting and subsequent redistribution. The center of mass and spatial variances determined for the measured evolving plumes were fitted by a model that accounts for capillary and gravitational driving forces in a medium of temporally varying wettability. Ellipses defined around the stable and unstable plumes' centers of mass and whose semi-axes represented a particular number of spatial variances were used to characterize plume shape and internal moisture distribution. A single probability curve was able to characterize the corresponding fractions of the total added water in the different ellipses for all measured plumes, which testify the competence and advantage of the moment analysis method.

  7. [Effects of submarine topography and water depth on distribution of pelagic fish community in minnan-taiwan bank fishing ground].

    PubMed

    Fang, Shuimei; Yang, Shengyun; Zhang, Chengmao; Zhu, Jinfu

    2002-11-01

    According to the fishing record of the light-seine information vessel in Minnan-Taiwan bank ground during 1989 to 1999, the effects of submarine topography and water depth on distribution of pelagic fish community in Minnan-Taiwan bank fishing ground was studied. The results showed that the pelagic fish distributed concentratively, while the submarine topography and water depth varied widely, but in different fishing regions, the distribution of pelagic fishes was uneven. The distribution of fishing yield increased from north to south, and closed up from sides of the bank to south or north in the regions. Pelagic fish distributed mainly in mixed water in the southern Taiwan Strait, and in warm water in the Taiwan Strait. The central fishing grounds were at high salt regions. Close gathering regions of pelagic fish or central fishing ground would be varied with the seasonal variation of mixed water in the southern Taiwan Strait and warm water in the Taiwan Strait. Central fishing ground was not only related to submarine topography and water depth, but also related to wind direction, wind-power and various water systems. In the fishing ground, the gathering depth of pelagic fish was 30-60 m in spring and summer, and 40-80 m in autumn and winter.

  8. Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China.

    PubMed

    Li, Wenhui; Gao, Lihong; Shi, Yali; Liu, Jiemin; Cai, Yaqi

    2015-09-01

    The occurrence and distribution of 22 antibiotics, including eight fluoroquinolones, nine sulfonamides and five macrolides, were investigated in the urban surface waters in Beijing, China. A total of 360 surface water samples were collected from the main rivers and lakes in the urban area of Beijing monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that antibiotics were widely used and extensively distributed in the surface water of Beijing, and sulfonamides and fluoroquinolones were the predominant antibiotics with the average concentrations of 136 and 132 ng L(-1), respectively. A significant difference of antibiotic concentrations from different sampling sites was observed, and the southern and eastern regions of Beijing showed higher concentrations of antibiotics. Seasonal variation of the antibiotics in the urban surface water was also studied, and the highest level of antibiotics was found in November, which may be due to the low temperature and flow of the rivers during the period of cold weather. Risk assessment showed that several antibiotics might pose high ecological risks to aquatic organisms (algae and plants) in surface water, and more attention should be paid to the risk of antibiotics to the aquatic environment in Beijing.

  9. The Historical Distribution of Main Malaria Foci in Spain as Related to Water Bodies

    PubMed Central

    Sousa, Arturo; García-Barrón, Leoncio; Vetter, Mark; Morales, Julia

    2014-01-01

    The possible connectivity between the spatial distribution of water bodies suitable for vectors of malaria and endemic malaria foci in Southern Europe is still not well known. Spain was one of the last countries in Western Europe to be declared free of malaria by the World Health Organization (WHO) in 1964. This study combines, by means of a spatial-temporal analysis, the historical data of patients and deceased with the distribution of water bodies where the disease-transmitting mosquitos proliferate. Therefore, data from historical archives with a Geographic Information System (GIS), using the Inverse Distance Weighted (IDW) interpolation method, was analyzed with the aim of identifying regional differences in the distribution of malaria in Spain. The reasons, why the risk of transmission is concentrated in specific regions, are related to worse socioeconomic conditions (Extremadura), the presence of another vector (Anopheles labranchiae) besides A. atroparvus (Levante) or large areas of water bodies in conditions to reproduce theses vectors (La Mancha and Western Andalusia). In the particular case of Western Andalusia, in 1913, the relatively high percentage of 4.73% of the surface, equal to 202362 ha, corresponds to wetlands and other unhealthy water bodies. These wetlands have been reduced as a result of desiccation policies and climate change such as the Little Ice Age and Global Climate Change. The comprehension of the main factors of these wetland changes in the past can help us interpret accurately the future risk of malaria re-emergence in temperate latitudes, since it reveals the crucial role of unhealthy water bodies on the distribution, endemicity and eradication of malaria in southern Europe. PMID:25101771

  10. The historical distribution of main malaria foci in Spain as related to water bodies.

    PubMed

    Sousa, Arturo; García-Barrón, Leoncio; Vetter, Mark; Morales, Julia

    2014-08-06

    The possible connectivity between the spatial distribution of water bodies suitable for vectors of malaria and endemic malaria foci in Southern Europe is still not well known. Spain was one of the last countries in Western Europe to be declared free of malaria by the World Health Organization (WHO) in 1964. This study combines, by means of a spatial-temporal analysis, the historical data of patients and deceased with the distribution of water bodies where the disease-transmitting mosquitos proliferate. Therefore, data from historical archives with a Geographic Information System (GIS), using the Inverse Distance Weighted (IDW) interpolation method, was analyzed with the aim of identifying regional differences in the distribution of malaria in Spain. The reasons, why the risk of transmission is concentrated in specific regions, are related to worse socioeconomic conditions (Extremadura), the presence of another vector (Anopheles labranchiae) besides A. atroparvus (Levante) or large areas of water bodies in conditions to reproduce theses vectors (La Mancha and Western Andalusia). In the particular case of Western Andalusia, in 1913, the relatively high percentage of 4.73% of the surface, equal to 202362 ha, corresponds to wetlands and other unhealthy water bodies. These wetlands have been reduced as a result of desiccation policies and climate change such as the Little Ice Age and Global Climate Change. The comprehension of the main factors of these wetland changes in the past can help us interpret accurately the future risk of malaria re-emergence in temperate latitudes, since it reveals the crucial role of unhealthy water bodies on the distribution, endemicity and eradication of malaria in southern Europe.

  11. Update to the Atlantic salmon breeding program at the National Cold Water Marine Aquaculture Center

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, ME has been supporting the U.S. coldwater marine aquaculture industry for the past thirteen years by developing a genetically improved North American Atlantic salmon. The St. John's River stock was chosen as the focal ...

  12. Investigation of water droplet trajectories within the NASA icing research tunnel

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Ibrahim, Mounir

    1995-01-01

    Water droplet trajectories within the NASA Lewis Research Center's Icing Research Tunnel (IRT) were studied through computer analysis. Of interest was the influence of the wind tunnel contraction and wind tunnel model blockage on the water droplet trajectories. The computer analysis was carried out with a program package consisting of a three-dimensional potential panel code and a three-dimensional droplet trajectory code. The wind tunnel contraction was found to influence the droplet size distribution and liquid water content distribution across the test section from that at the inlet. The wind tunnel walls were found to have negligible influence upon the impingement of water droplets upon a wing model.

  13. Nosocomial outbreak of legionellosis in a rehabilitation center. Demonstration of potable water as a source.

    PubMed

    Nechwatal, R; Ehret, W; Klatte, O J; Zeissler, H J; Prull, A; Lutz, H

    1993-01-01

    Ten patients from a rehabilitation center were admitted to hospital with serious respiratory infections within ten weeks. An outbreak of Legionnaire's disease was suspected based on the epidemic and atypical manifestation of pneumonia and could be proven microbiologically. Pulmonary and extrapulmonary complications included respiratory failure, lung abscess, transitory renal impairment in five patients and acute renal failure requiring dialysis in one, tetraparesis caused by peripheral neuropathy and acute psychosis. Three patients died despite immediate institution of therapy with erythromycin. Legionella pneumophila serogroup 1 subtype Pontiac was isolated from a bronchial lavage sample of one patient and from the water supply of the rehabilitation center. Monoclonal antibody subtyping and restriction endonuclease analysis were performed on both environmental and patient isolates. Potable water was identified as the source of the outbreak based on identical patterns on restriction endonuclease analysis. Despite thermic and chemical disinfection with chlorination (up to 15 ppm) in the rehabilitation clinic, an eleventh case of Legionnaire's disease was detected 11 months later.

  14. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems.

    PubMed

    Liu, Sanly; Gunawan, Cindy; Barraud, Nicolas; Rice, Scott A; Harry, Elizabeth J; Amal, Rose

    2016-09-06

    In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now

  15. Gravimetric water distribution assessment from geoelectrical methods (ERT and EMI) in municipal solid waste landfill.

    PubMed

    Dumont, Gaël; Pilawski, Tamara; Dzaomuho-Lenieregue, Phidias; Hiligsmann, Serge; Delvigne, Frank; Thonart, Philippe; Robert, Tanguy; Nguyen, Frédéric; Hermans, Thomas

    2016-09-01

    The gravimetric water content of the waste material is a key parameter in waste biodegradation. Previous studies suggest a correlation between changes in water content and modification of electrical resistivity. This study, based on field work in Mont-Saint-Guibert landfill (Belgium), aimed, on one hand, at characterizing the relationship between gravimetric water content and electrical resistivity and on the other hand, at assessing geoelectrical methods as tools to characterize the gravimetric water distribution in a landfill. Using excavated waste samples obtained after drilling, we investigated the influences of the temperature, the liquid phase conductivity, the compaction and the water content on the electrical resistivity. Our results demonstrate that Archie's law and Campbell's law accurately describe these relationships in municipal solid waste (MSW). Next, we conducted a geophysical survey in situ using two techniques: borehole electromagnetics (EM) and electrical resistivity tomography (ERT). First, in order to validate the use of EM, EM values obtained in situ were compared to electrical resistivity of excavated waste samples from corresponding depths. The petrophysical laws were used to account for the change of environmental parameters (temperature and compaction). A rather good correlation was obtained between direct measurement on waste samples and borehole electromagnetic data. Second, ERT and EM were used to acquire a spatial distribution of the electrical resistivity. Then, using the petrophysical laws, this information was used to estimate the water content distribution. In summary, our results demonstrate that geoelectrical methods represent a pertinent approach to characterize spatial distribution of water content in municipal landfills when properly interpreted using ground truth data. These methods might therefore prove to be valuable tools in waste biodegradation optimization projects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Spatial Description of Drinking Water Bacterial Community Structures in Bulk Water Samples Collected in a Metropolitan Distribution System

    EPA Science Inventory

    The description of microorganisms inhabiting drinking water distribution systems has commonly been performed using techniques that are biased towards easy to culture bacterial populations. As most environmental microorganisms cannot be grown on artificial media, our understanding...

  17. Real-time ArcGIS and heterotrophic plate count based chloramine disinfectant control in water distribution system.

    PubMed

    Bai, Xiaohui; Zhi, Xinghua; Zhu, Huifeng; Meng, Mingqun; Zhang, Mingde

    2015-01-01

    This study investigates the effect of chloramine residual on bacteria growth and regrowth and the relationship between heterotrophic plate counts (HPCs) and the concentration of chloramine residual in the Shanghai drinking water distribution system (DWDS). In this study, models to control HPCs in the water distribution system and consumer taps are also developed. Real-time ArcGIS was applied to show the distribution and changed results of the chloramine residual concentration in the pipe system by using these models. Residual regression analysis was used to get a reasonable range of the threshold values that allows the chloramine residual to efficiently inhibit bacteria growth in the Shanghai DWDS; the threshold values should be between 0.45 and 0.5 mg/L in pipe water and 0.2 and 0.25 mg/L in tap water. The low residual chloramine value (0.05 mg/L) of the Chinese drinking water quality standard may pose a potential health risk for microorganisms that should be improved. Disinfection by-products (DBPs) were detected, but no health risk was identified.

  18. Effects of oxygen and water content on microbial distribution in the polyurethane foam cubes of a biofilter for SO2 removal.

    PubMed

    Zhang, Jingying; Li, Lin; Liu, Junxin; Wang, Yanjie

    2018-01-01

    The performance of a biofilter for off-gas treatment relies on the activity of microorganisms and adequate O 2 and H 2 O. In present study, a microelectrode was applied to analyze O 2 in polyurethane foam cubes (PUFCs) packed in a biofilter for SO 2 removal. The O 2 distribution varied with the density and water-containing rate (WCR) of PUFCs. The O 2 concentration dropped sharply from 10.2 to 0.8mg/L from the surface to the center of a PUFC with 97.20% of WCR. The PUFCs with high WCR presented aerobic-anoxic-aerobic areas. Three-dimensional simulated images demonstrated that the structure of PUFCs with high WCR consisted of an aerobic "shell" and an anoxic "core", with high-density PUFCs featuring a larger anoxic area than low-density PUFCs. Moreover, the H 2 O distribution in the PUFC was uneven and affected the O 2 concentration. Whereas aerobic bacteria were observed in the PUFC surface, facultative anaerobic microorganisms were found at the PUFC core, where the O 2 concentration was relatively low. O 2 and H 2 O distributions differed in the PUFCs, and the distribution of microorganisms varied accordingly. Copyright © 2017. Published by Elsevier B.V.

  19. Unified Framework for Deriving Simultaneous Equation Algorithms for Water Distribution Networks

    EPA Science Inventory

    The known formulations for steady state hydraulics within looped water distribution networks are re-derived in terms of linear and non-linear transformations of the original set of partly linear and partly non-linear equations that express conservation of mass and energy. All of ...

  20. Release of accumulated arsenic from distribution pipes into tap water after arsenic treatment of source water- presentation

    EPA Science Inventory

    Toxic arsenic (As) is known to incorporate from source well water onto the scales of distribution system pipes such as iron, copper, galvanized steel and even plastic containing internal buildup of iron coatings (Lytle et al., 2010, 2004; Schock, 2015; Reiber and Dostal, 2000). W...

  1. ACTS data center

    NASA Technical Reports Server (NTRS)

    Syed, Ali; Vogel, Wolfhard J.

    1993-01-01

    Viewgraphs on ACTS Data Center status report are included. Topics covered include: ACTS Data Center Functions; data flow overview; PPD flow; RAW data flow; data compression; PPD distribution; RAW Data Archival; PPD Audit; and data analysis.

  2. 41 CFR 102-41.230 - May SASPs pick up or store donated drug paraphernalia in their distribution centers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false May SASPs pick up or store donated drug paraphernalia in their distribution centers? 102-41.230 Section 102-41.230 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...

  3. Photofragment slice imaging studies of pyrrole and the Xe{center_dot}{center_dot}{center_dot}pyrrole cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio-Lago, L.; Zaouris, D.; Sakellariou, Y.

    The photolysis of pyrrole has been studied in a molecular beam at wavelengths of 250, 240, and 193.3 nm, using two different carrier gases, He and Xe. A broad bimodal distribution of H-atom fragment velocities has been observed at all wavelengths. Near threshold at both 240 and 250 nm, sharp features have been observed in the fast part of the H-atom distribution. Under appropriate molecular beam conditions, the entire H-atom loss signal from the photolysis of pyrrole at both 240 and 250 nm (including the sharp features) disappear when using Xe as opposed to He as the carrier gas. Wemore » attribute this phenomenon to cluster formation between Xe and pyrrole, and this assumption is supported by the observation of resonance enhanced multiphoton ionization spectra for the (Xe{center_dot}{center_dot}{center_dot}pyrrole) cluster followed by photofragmentation of the nascent cation cluster. Ab initio calculations are presented for the ground states of the neutral and cationic (Xe{center_dot}{center_dot}{center_dot}pyrrole) clusters as a means of understanding their structural and energetic properties.« less

  4. Assimilation of ground and satellite snow observations in a distributed hydrologic model to improve water supply forecasts in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Day, G. N.; Quebbeman, J.; Carney, S.; Park, G. H.

    2016-12-01

    The Upper Colorado River Basin above Lake Powell is a major source of water supply for 25 million people and provides irrigation water for 3.5 million acres. Approximately 85% of the annual runoff is produced from snowmelt. Water supply forecasts of the April-July runoff produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC), are critical to basin water management. This project leverages advanced distributed models, datasets, and snow data assimilation techniques to improve operational water supply forecasts made by CBRFC in the Upper Colorado River Basin. The current work will specifically focus on improving water supply forecasts through the implementation of a snow data assimilation process coupled with the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM). Three types of observations will be used in the snow data assimilation system: satellite Snow Covered Area (MODSCAG), satellite Dust Radiative Forcing in Snow (MODDRFS), and SNOTEL Snow Water Equivalent (SWE). SNOTEL SWE provides the main source of high elevation snowpack information during the snow season, however, these point measurement sites are carefully selected to provide consistent indices of snowpack, and may not be representative of the surrounding watershed. We address this problem by transforming the SWE observations to standardized deviates and interpolating the standardized deviates using a spatial regression model. The interpolation process will also take advantage of the MODIS Snow Covered Area and Grainsize (MODSCAG) product to inform the model on the spatial distribution of snow. The interpolated standardized deviates are back-transformed and used in an Ensemble Kalman Filter (EnKF) to update the model simulated SWE. The MODIS Dust Radiative Forcing in Snow (MODDRFS) product will be used more directly through temporary adjustments to model snowmelt parameters, which should improve melt estimates in areas affected by dust on snow. In

  5. The Large Scale Distribution of Water Ice in the Polar Regions of the Moon

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Wilson, J. K.; Schwadron, N.; Spence, H. E.

    2017-12-01

    For in situ resource utilization, one must know where water ice is on the Moon. Many datasets have revealed both surface deposits of water ice and subsurface deposits of hydrogen near the lunar poles, but it has proved difficult to resolve the differences among the locations of these deposits. Despite these datasets disagreeing on how deposits are distributed on small scales, we show that most of these datasets do agree on the large scale distribution of water ice. We present data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO), LRO's Lunar Exploration Neutron Detector (LEND), the Neutron Spectrometer on Lunar Prospector (LPNS), LRO's Lyman Alpha Mapping Project (LAMP), LRO's Lunar Orbiter Laser Altimeter (LOLA), and Chandrayaan-1's Moon Mineralogy Mapper (M3). All, including those that show clear evidence for water ice, reveal surprisingly similar trends with latitude, suggesting that both surface and subsurface datasets are measuring ice. All show that water ice increases towards the poles, and most demonstrate that its signature appears at about ±70° latitude and increases poleward. This is consistent with simulations of how surface and subsurface cold traps are distributed with latitude. This large scale agreement constrains the origin of the ice, suggesting that an ancient cometary impact (or impacts) created a large scale deposit that has been rendered locally heterogeneous by subsequent impacts. Furthermore, it also shows that water ice may be available down to ±70°—latitudes that are more accessible than the poles for landing.

  6. Microbial Community Profile of a Lead Service Line Removed from a Drinking Water Distribution System

    EPA Science Inventory

    A corroded lead water pipe was removed from a drinking water distribution system and the microbial community was profiled using 16S rDNA techniques. This is the first report of the characterization of biofilm on a surface of a corroded lead drinking water pipe. The majority of ...

  7. Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems.

    PubMed

    Wang, Haibo; Shen, Yi; Hu, Chun; Xing, Xueci; Zhao, Dan

    2018-03-01

    Effects of sulfadiazine and ciprofloxacin on the occurrence of free-living and particle-associated opportunistic pathogens in bulk water of simulated drinking water distribution systems (DWDSs) were investigated. It was found that sulfadiazine and ciprofloxacin greatly promoted the occurrence of opportunistic pathogens including Pseudomonas aeruginosa, Legionella pneumophila, Mycobacterium avium and its broader genus Mycobacterium spp., as well as the amoebae Acanthamoeba spp. and Hartmanella vermiformis, in bulk water of DWDSs. Moreover, sulfadiazine and ciprofloxacin exhibited much stronger combined effects on the increase of these opportunistic pathogens. Based on the analysis of the antibiotic resistance genes (ARGs) and extracellular polymeric substances (EPS), it was verified that EPS production was increased by the antibiotic resistant bacteria arising from the effects of sulfadiazine/ciprofloxacin. The combined effects of sulfadiazine and ciprofloxacin induced the greatest increase of EPS production in DWDSs. Furthermore, the increased EPS with higher contents of proteins and secondary structure β-sheet led to greater bacterial aggregation and adsorption. Meanwhile, large numbers of suspended particles were formed, increasing the chlorine-resistance capability, which was responsible for the enhancement of the particle-associated opportunistic pathogens in bulk water of DWDSs with sulfadiazine/ciprofloxacin. Therefore, sulfadiazine and ciprofloxacin promoted the occurrence of particle-associated opportunistic pathogens in bulk water of DWDSs due to the role of EPS produced by the bacteria with ARGs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Global distribution of plant-extractable water capacity of soil

    USGS Publications Warehouse

    Dunne, K.A.; Willmott, C.J.

    1996-01-01

    Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. It is often assumed to be spatially invariant in large-scale computations of the soil-water balance. Empirical evidence, however, suggests that this assumption is incorrect. In this paper, we estimate the global distribution of the plant-extractable water capacity of soil. A representative soil profile, characterized by horizon (layer) particle size data and thickness, was created for each soil unit mapped by FAO (Food and Agriculture Organization of the United Nations)/Unesco. Soil organic matter was estimated empirically from climate data. Plant rooting depths and ground coverages were obtained from a vegetation characteristic data set. At each 0.5?? ?? 0.5?? grid cell where vegetation is present, unit available water capacity (cm water per cm soil) was estimated from the sand, clay, and organic content of each profile horizon, and integrated over horizon thickness. Summation of the integrated values over the lesser of profile depth and root depth produced an estimate of the plant-extractable water capacity of soil. The global average of the estimated plant-extractable water capacities of soil is 8??6 cm (Greenland, Antarctica and bare soil areas excluded). Estimates are less than 5, 10 and 15 cm - over approximately 30, 60, and 89 per cent of the area, respectively. Estimates reflect the combined effects of soil texture, soil organic content, and plant root depth or profile depth. The most influential and uncertain parameter is the depth over which the plant-extractable water capacity of soil is computed, which is usually limited by root depth. Soil texture exerts a lesser, but still substantial, influence. Organic content, except where concentrations are very high, has relatively little effect.

  9. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.

    PubMed

    Rathi, Shweta; Gupta, Rajesh

    2014-04-01

    Water quality is required to be monitored in the water distribution networks (WDNs) at salient locations to assure the safe quality of water supplied to the consumers. Such monitoring stations (MSs) provide warning against any accidental contaminations. Various objectives like demand coverage, time for detection, volume of water contaminated before detection, extent of contamination, expected population affected prior to detection, detection likelihood and others, have been independently or jointly considered in determining optimal number and location of MSs in WDNs. "Demand coverage" defined as the percentage of network demand monitored by a particular monitoring station is a simple measure to locate MSs. Several methods based on formulation of coverage matrix using pre-specified coverage criteria and optimization have been suggested. Coverage criteria is defined as some minimum percentage of total flow received at the monitoring stations that passed through any upstream node included then as covered node of the monitoring station. Number of monitoring stations increases with the increase in the value of coverage criteria. Thus, the design of monitoring station becomes subjective. A simple methodology is proposed herein which priority wise iteratively selects MSs to achieve targeted demand coverage. The proposed methodology provided the same number and location of MSs for illustrative network as an optimization method did. Further, the proposed method is simple and avoids subjectivity that could arise from the consideration of coverage criteria. The application of methodology is also shown on a WDN of Dharampeth zone (Nagpur city WDN in Maharashtra, India) having 285 nodes and 367 pipes.

  10. Earth Science Data Archive and Access at the NASA/Goddard Space Flight Center Distributed Active Archive Center (DAAC)

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    1999-01-01

    The Goddard Distributed Active Archive Center (DAAC), as an integral part of the Earth Observing System Data and Information System (EOSDIS), is the official source of data for several important earth remote sensing missions. These include the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) launched in August 1997, the Tropical Rainfall Measuring Mission (TRMM) launched in November 1997, and the Moderate Resolution Imaging Spectroradiometer (MODIS) scheduled for launch in mid 1999 as part of the EOS AM-1 instrumentation package. The data generated from these missions supports a host of users in the hydrological, land biosphere and oceanographic research and applications communities. The volume and nature of the data present unique challenges to an Earth science data archive and distribution system such as the DAAC. The DAAC system receives, archives and distributes a large number of standard data products on a daily basis, including data files that have been reprocessed with updated calibration data or improved analytical algorithms. A World Wide Web interface is provided allowing interactive data selection and automatic data subscriptions as distribution options. The DAAC also creates customized and value-added data products, which allow additional user flexibility and reduced data volume. Another significant part of our overall mission is to provide ancillary data support services and archive support for worldwide field campaigns designed to validate the results from the various satellite-derived measurements. In addition to direct data services, accompanying documentation, WWW links to related resources, support for EOSDIS data formats, and informed response to inquiries are routinely provided to users. The current GDAAC WWW search and order system is being restructured to provide users with a simplified, hierarchical access to data. Data Browsers have been developed for several data sets to aid users in ordering data. These Browsers allow users to specify

  11. Total Water-Vapor Distribution in the Summer Cloudless Atmosphere over the South of Western Siberia

    NASA Astrophysics Data System (ADS)

    Troshkin, D. N.; Bezuglova, N. N.; Kabanov, M. V.; Pavlov, V. E.; Sokolov, K. I.; Sukovatov, K. Yu.

    2017-12-01

    The spatial distribution of the total water vapor in different climatic zones of the south of Western Siberia in summer of 2008-2011 is studied on the basis of Envisat data. The correlation analysis of the water-vapor time series from the Envisat data W and radiosonde observations w for the territory of Omsk aerological station show that the absolute values of W and w are linearly correlated with a coefficient of 0.77 (significance level p < 0.05). The distribution functions of the total water vapor are calculated based on the number of its measurements by Envisat for a cloudless sky of three zones with different physical properties of the underlying surface, in particular, steppes to the south of the Vasyugan Swamp and forests to the northeast of the Swamp. The distribution functions are bimodal; each mode follows the lognormal law. The parameters of these functions are given.

  12. Second-Order Chlorine Decay and Trihalomethanes Formation in a Pilot-Scale Water Distribution Systems

    EPA Science Inventory

    It is well known that model-building of chlorine decay in real water distribution systems is difficult because chlorine decay is influenced by many factors (e.g., bulk water demand, pipe-wall demand, piping material, flow velocity, and residence time). In this paper, experiments ...

  13. Pre- and postfire distribution of soil water repellency in a steep chaparral watershed

    Treesearch

    K. R. Hubbert; P. M. Wohlgemuth; H. K. Preisler

    2008-01-01

    The development and nature of water repellent soils and their spatial distribution on the landscape are not well understood relative to evaluating hillslope response to fire. Soil water repellency is particularly common in chaparral communities, due in part to the coarse-textured soils, and the high resin content of the organic litter. Objectives of this study were 1)...

  14. A method for determining and exploring the distribution of organic matters and hardness salts in natural waters

    NASA Astrophysics Data System (ADS)

    Sargsyan, Suren

    2017-11-01

    A question regarding how organic matters in water are associated with hardness salts hasn't been completely studied. For partially clarifying this question, a water fractional separation and investigation method has been recommended. The experiments carried out by the recommended method showed that the dynamics of the distribution of total hardness and permanganate oxidation values in the fractions of frozen and melted water samples coincided completely based on which it has been concluded that organic matters in natural waters are associated with hardness salts and always distributed in this form. All these findings are useful information for the deep study of macro- and microelements in water.

  15. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Abstract)

    EPA Science Inventory

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  16. Fluorescence Sensors for Early Detection of Nitrification in Drinking Water Distribution Systems – Interference Corrections (Poster)

    EPA Science Inventory

    Nitrification event detection in chloraminated drinking water distribution systems (DWDSs) remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification eve...

  17. Developing Fluorescence Sensor Systems for Early Detection of Nitrification Events in Chloraminated Drinking Water Distribution Systems

    EPA Science Inventory

    Detection of nitrification events in chloraminated drinking water distribution systems remains an ongoing challenge for many drinking water utilities, including Dallas Water Utilities (DWU) and the City of Houston (CoH). Each year, these utilities experience nitrification events ...

  18. C II forbidden-line 158 micron mapping in Sagittarius A Rotation curve and mass distribution in the galactic center

    NASA Technical Reports Server (NTRS)

    Lugten, J. B.; Genzel, R.; Crawford, M. K.; Townes, C. H.

    1986-01-01

    Based on data obtained with the NASA Kuiper Airborne Observatory 91.4 cm telescope, the 158-micron fine structure line emission of C(+) is mapped near the galactic center. The strongest emission comes from a 10-pc FWHM diameter disk centered on Sgr A West whose dominant motion is rotation. Extended C(+) emission is also found from the +50 km/s galactic center molecular cloud, and a second cloud at v(LSR) of about -35 km/s. The rotation curve and mass distribution within 10 pc of the galactic center are derived, and the C(+) profiles show a drop-off of rotation velocity between 2 and 10 pc. A mass model is suggested with 2-4 million solar masses in a central point mass, and a M/L ratio of the central stellar cluster of 0.5 solar masses/solar luminosities, suggesting a large abundance of giants and relatively recent star formation in the center.

  19. Vulnerability of water distribution systems to pathogen intrusion: how effective is a disinfectant residual?

    PubMed

    Propato, Marco; Uber, James G

    2004-07-01

    Can the spread of infectious disease through water distribution systems be halted by a disinfectant residual? This question is overdue for an answer. Regulatory agencies and water utilities have long been concerned about accidental intrusions of pathogens into distribution system pipelines (i.e., cross-connections) and are increasingly concerned about deliberate pathogen contamination. Here, a simulation framework is developed and used to assess the vulnerability of a water system to microbiological contamination. The risk of delivering contaminated water to consumers is quantified by a network water quality model that includes disinfectant decay and disinfection kinetics. The framework is applied to two example networks under a worst-case deliberate intrusion scenario. Results show that the risk of consumer exposure is affected by the residual maintenance strategy employed. The common regulation that demands a "detectable" disinfectant residual may not provide effective consumer protection against microbial contamination. A chloramine residual, instead of free chlorine, may significantly weaken this final barrier against pathogen intrusions. Moreover, the addition of a booster station at storage tanks may improve consumer protection without requiring excessive disinfectant.

  20. Principles for scaling of distributed direct potable water reuse systems: a modeling study.

    PubMed

    Guo, Tianjiao; Englehardt, James D

    2015-05-15

    Scaling of direct potable water reuse (DPR) systems involves tradeoffs of treatment facility economy-of-scale, versus cost and energy of conveyance including energy for upgradient distribution of treated water, and retention of wastewater thermal energy. In this study, a generalized model of the cost of DPR as a function of treatment plant scale, assuming futuristic, optimized conveyance networks, was constructed for purposes of developing design principles. Fractal landscapes representing flat, hilly, and mountainous topographies were simulated, with urban, suburban, and rural housing distributions placed by modified preferential growth algorithm. Treatment plants were allocated by agglomerative hierarchical clustering, networked to buildings by minimum spanning tree. Simulations assume advanced oxidation-based DPR system design, with 20-year design life and capability to mineralize chemical oxygen demand below normal detection limits, allowing implementation in regions where disposal of concentrate containing hormones and antiscalants is not practical. Results indicate that total DPR capital and O&M costs in rural areas, where systems that return nutrients to the land may be more appropriate, are high. However, costs in urban/suburban areas are competitive with current water/wastewater service costs at scales of ca. one plant per 10,000 residences. This size is relatively small, and costs do not increase significantly until plant service areas fall below 100 to 1000 homes. Based on these results, distributed DPR systems are recommended for consideration for urban/suburban water and wastewater system capacity expansion projects. Copyright © 2015 Elsevier Ltd. All rights reserved.