Randomized central limit theorems: A unified theory
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Klafter, Joseph
2010-08-01
The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles’ aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles’ extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic—scaling all ensemble components by a common deterministic scale. However, there are “random environment” settings in which the underlying scaling schemes are stochastic—scaling the ensemble components by different random scales. Examples of such settings include Holtsmark’s law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)—in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes—and present “randomized counterparts” to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.
A Randomized Central Limit Theorem
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Klafter, Joseph
2010-05-01
The Central Limit Theorem (CLT), one of the most elemental pillars of Probability Theory and Statistical Physics, asserts that: the universal probability law of large aggregates of independent and identically distributed random summands with zero mean and finite variance, scaled by the square root of the aggregate-size (√{n}), is Gaussian. The scaling scheme of the CLT is deterministic and uniform - scaling all aggregate-summands by the common and deterministic factor √{n}. This Letter considers scaling schemes which are stochastic and non-uniform, and presents a "Randomized Central Limit Theorem" (RCLT): we establish a class of random scaling schemes which yields universal probability laws of large aggregates of independent and identically distributed random summands. The RCLT universal probability laws, in turn, are the one-sided and the symmetric Lévy laws.
Illustrating the Central Limit Theorem
ERIC Educational Resources Information Center
Corcoran, Mimi
2016-01-01
Statistics is enjoying some well-deserved limelight across mathematics curricula of late. Some statistical concepts, however, are not especially intuitive, and students struggle to comprehend and apply them. As an AP Statistics teacher, the author appreciates the central limit theorem as a foundational concept that plays a crucial role in…
Visualizing the Central Limit Theorem through Simulation
ERIC Educational Resources Information Center
Ruggieri, Eric
2016-01-01
The Central Limit Theorem is one of the most important concepts taught in an introductory statistics course, however, it may be the least understood by students. Sure, students can plug numbers into a formula and solve problems, but conceptually, do they really understand what the Central Limit Theorem is saying? This paper describes a simulation…
Torday, John S.
2015-01-01
The history of physiologic cellular–molecular interrelationships can be traced all the way back to the unicellular state by following the pathway formed by lipids ubiquitously accommodating calcium homeostasis, and its consequent adaptive effects on oxygen uptake by cells, tissues and organs. As a result, a cohesive, mechanistically integrated view of physiology can be formulated by recognizing the continuum comprising conception, development, physiologic homeostasis and death mediated by soluble growth factor signaling. Seeing such seemingly disparate processes as embryogenesis, chronic disease and dying as the gain and subsequent loss of cell–cell signaling provides a novel perspective for physiology and medicine. It is emblematic of the self-organizing, self-referential nature of life, starting from its origins. Such organizing principles obviate the pitfalls of teleologic evolution, conversely providing a way of resolving such seeming dichotomies as holism and reductionism, genotype and phenotype, emergence and contingence, proximate and ultimate causation in evolution, cells and organisms. The proposed approach is scale-free and predictive, offering a Central Theory of Biology. PMID:25911556
Continuum limit of quenched theories
Holdom, B.
1989-02-27
We study chiral-symmetry breaking in quenched gauge theories with ultraviolet cutoff ..lambda.., to all orders in the gauge coupling. For large ..lambda../kappa, where kappa is the chiral-symmetry-breaking scale, we derive ..lambda../kappaproportionalexp(const/ ..sqrt..(..cap alpha..-..cap alpha../sub c/) as ..cap alpha --> cap alpha../sub c/+. This is a gauge-invariant, universal consequence of quenched theories. But we argue that this relation does not define a ..beta.. function. We also obtain an explicit expression for the self-energy ..sigma..(p) which applies over most of the range kappa
FAST TRACK COMMUNICATION: Central limit theorem and deformed exponentials
NASA Astrophysics Data System (ADS)
Vignat, C.; Plastino, A.
2007-11-01
The central limit theorem (CLT) can be ranked among the most important ones in probability theory and statistics and plays an essential role in several basic and applied disciplines, notably in statistical thermodynamics. We show that there exists a natural extension of the CLT from exponentials to so-called deformed exponentials (also denoted as q-Gaussians). Our proposal applies exactly in the usual conditions in which the classical CLT is used.
Central limit theorems under special relativity
McKeague, Ian W.
2015-01-01
Several relativistic extensions of the Maxwell–Boltzmann distribution have been proposed, but they do not explain observed lognormal tail-behavior in the flux distribution of various astrophysical sources. Motivated by this question, extensions of classical central limit theorems are developed under the conditions of special relativity. The results are related to CLTs on locally compact Lie groups developed by Wehn, Stroock and Varadhan, but in this special case the asymptotic distribution has an explicit form that is readily seen to exhibit lognormal tail behavior. PMID:25798020
Central limit behavior of deterministic dynamical systems
NASA Astrophysics Data System (ADS)
Tirnakli, Ugur; Beck, Christian; Tsallis, Constantino
2007-04-01
We investigate the probability density of rescaled sums of iterates of deterministic dynamical systems, a problem relevant for many complex physical systems consisting of dependent random variables. A central limit theorem (CLT) is valid only if the dynamical system under consideration is sufficiently mixing. For the fully developed logistic map and a cubic map we analytically calculate the leading-order corrections to the CLT if only a finite number of iterates is added and rescaled, and find excellent agreement with numerical experiments. At the critical point of period doubling accumulation, a CLT is not valid anymore due to strong temporal correlations between the iterates. Nevertheless, we provide numerical evidence that in this case the probability density converges to a q -Gaussian, thus leading to a power-law generalization of the CLT. The above behavior is universal and independent of the order of the maximum of the map considered, i.e., relevant for large classes of critical dynamical systems.
Extensions of theories from soft limits
NASA Astrophysics Data System (ADS)
Cachazo, Freddy; Cha, Peter; Mizera, Sebastian
2016-06-01
We study a variety of field theories with vanishing single soft limits. In all cases, the structure of the soft limit is controlled by a larger theory, which provides an extension of the original one by adding more fields and interactions. Our main example is the U( N ) non-linear sigma model in its CHY representation. Its extension is a theory in which the NLSM Goldstone bosons interact with a cubic biadjoint scalar. Other theories we study and extend are the special Galileon and Born-Infeld theory, including its maximally supersymmetric version in four dimensions, the DBI-Volkov-Akulov theory. In all the cases, we propose the CHY representation of the complete tree-level S-matrix of the extended theories. In fact, CHY formulas are the key technique for studying the single soft limit behavior of the original theories. As a byproduct, we show that the tree-level S-matrix of the extended NLSM theory can be constructed using a very compact BCFW-like recursion relation, where physical poles are at most linear in the deformation parameter.
Central Limit Theorem: New SOCR Applet and Demonstration Activity
Dinov, Ivo D.; Christou, Nicolas; Sanchez, Juana
2011-01-01
Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem). PMID:21833159
Central Limit Theorem: New SOCR Applet and Demonstration Activity.
Dinov, Ivo D; Christou, Nicolas; Sanchez, Juana
2008-07-01
Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem). PMID:21833159
Orientifold limit of F-theory vacua
Sen, A. |
1997-06-01
We show how an F theory compactified on a Calabi-Yau (n+1)-fold in an appropriate weak coupling limit reduces formally to an orientifold of type IIB theory compactified on an auxiliary complex n-fold. In some cases (but not always) if the original (n+1)-fold is singular, then the auxiliary n-fold is also singular. We illustrate this by analyzing F theory on elliptically fibered Calabi-Yau three-folds on base F{sub n}. {copyright} {ital 1997} {ital The American Physical Society}
Kinetic theory of diffusion-limited nucleation
NASA Astrophysics Data System (ADS)
Philippe, T.; Bonvalet, M.; Blavette, D.
2016-05-01
We examine binary nucleation in the size and composition space {R,c} using the formalism of the multivariable theory [N. V. Alekseechkin, J. Chem. Phys. 124, 124512 (2006)]. We show that the variable c drops out of consideration for very large curvature of the new phase Gibbs energy with composition. Consequently nuclei around the critical size have the critical composition, which is derived from the condition of criticality for the canonical variables and is found not to depend on surface tension. In this case, nucleation kinetics can be investigated in the size space only. Using macroscopic kinetics, we determine the general expression for the condensation rate when growth is limited by bulk diffusion, which accounts for both diffusion and capillarity and exhibits a different dependence with the critical size, as compared with the interface-limited regime. This new expression of the condensation rate for bulk diffusion-limited nucleation is the counterpart of the classical interface-limited result. We then extend our analysis to multicomponent solutions.
Kinetic theory of diffusion-limited nucleation.
Philippe, T; Bonvalet, M; Blavette, D
2016-05-28
We examine binary nucleation in the size and composition space {R,c} using the formalism of the multivariable theory [N. V. Alekseechkin, J. Chem. Phys. 124, 124512 (2006)]. We show that the variable c drops out of consideration for very large curvature of the new phase Gibbs energy with composition. Consequently nuclei around the critical size have the critical composition, which is derived from the condition of criticality for the canonical variables and is found not to depend on surface tension. In this case, nucleation kinetics can be investigated in the size space only. Using macroscopic kinetics, we determine the general expression for the condensation rate when growth is limited by bulk diffusion, which accounts for both diffusion and capillarity and exhibits a different dependence with the critical size, as compared with the interface-limited regime. This new expression of the condensation rate for bulk diffusion-limited nucleation is the counterpart of the classical interface-limited result. We then extend our analysis to multicomponent solutions. PMID:27250310
Liouville theory with a central charge less than one
NASA Astrophysics Data System (ADS)
Ribault, Sylvain; Santachiara, Raoul
2015-08-01
We determine the spectrum and correlation functions of Liouville theory with a central charge less than (or equal) one. This completes the definition of Liouville theory for all complex values of the central charge. The spectrum is always spacelike, and there is no consistent timelike Liouville theory. We also study the non-analytic conformal field theories that exist at rational values of the central charge. Our claims are supported by numerical checks of crossing symmetry. We provide Python code for computing Virasoro conformal blocks, and correlation functions in Liouville theory and (generalized) minimal models.
The Limits of Subsistence: Agriculture and Industry in Central Appalachia.
ERIC Educational Resources Information Center
Pudup, Mary Beth
Current interpretations of central Appalachia's chronic poverty focus on the region's economic dependence on the bituminous coal industry, controlled by absentee investors and serving an external market. Such theories overlook the ways in which the agricultural sector shaped subsequent industrial development. By analyzing the farm economy of 16…
Simplifying Central Place Theory Using GIS and GPS
ERIC Educational Resources Information Center
Theo, Lisa
2011-01-01
A constant struggle for teachers at all levels is finding ways to successfully teach students complex theories and concepts. Student comprehension is often enhanced by applying these theories and concepts to real world situations. This project demonstrates central place theory by examining highway billboard signs along major Wisconsin highways. In…
Central limit theorem for reducible and irreducible open quantum walks
NASA Astrophysics Data System (ADS)
Sadowski, Przemysław; Pawela, Łukasz
2016-07-01
In this work we aim at proving central limit theorems for open quantum walks on {mathbb {Z}}^d. We study the case when there are various classes of vertices in the network. In particular, we investigate two ways of distributing the vertex classes in the network. First, we assign the classes in a regular pattern. Secondly, we assign each vertex a random class with a transition invariant distribution. For each way of distributing vertex classes, we obtain an appropriate central limit theorem, illustrated by numerical examples. These theorems may have application in the study of complex systems in quantum biology and dissipative quantum computation.
Central limit theorem for reducible and irreducible open quantum walks
NASA Astrophysics Data System (ADS)
Sadowski, Przemysław; Pawela, Łukasz
2016-04-01
In this work we aim at proving central limit theorems for open quantum walks on {{Z}}^d . We study the case when there are various classes of vertices in the network. In particular, we investigate two ways of distributing the vertex classes in the network. First, we assign the classes in a regular pattern. Secondly, we assign each vertex a random class with a transition invariant distribution. For each way of distributing vertex classes, we obtain an appropriate central limit theorem, illustrated by numerical examples. These theorems may have application in the study of complex systems in quantum biology and dissipative quantum computation.
Improving Conceptions in Analytical Chemistry: The Central Limit Theorem
ERIC Educational Resources Information Center
Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.
2006-01-01
This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)
Central Perspectives and Debates in Organization Theory.
ERIC Educational Resources Information Center
Astley, W. Graham; Van de Ven, Andrew H.
1983-01-01
Classifies organizational theories, by analytical level and assumptions about human nature, into four perspectives (system-structural, strategic choice, natural selection, collective action), each with different concepts of organizational structure, behavior, change, and managerial roles. Identifies six debates generated among the perspectives and…
Central Limit Theorems and Uniform Laws of Large Numbers for Arrays of Random Fields
Jenish, Nazgul; Prucha, Ingmar R.
2009-01-01
Over the last decades, spatial-interaction models have been increasingly used in economics. However, the development of a sufficiently general asymptotic theory for nonlinear spatial models has been hampered by a lack of relevant central limit theorems (CLTs), uniform laws of large numbers (ULLNs) and pointwise laws of large numbers (LLNs). These limit theorems form the essential building blocks towards developing the asymptotic theory of M-estimators, including maximum likelihood and generalized method of moments estimators. The paper establishes a CLT, ULLN, and LLN for spatial processes or random fields that should be applicable to a broad range of data processes. PMID:20161289
Neurodynamic system theory: scope and limits.
Erdi, P
1993-06-01
This paper proposes that neurodynamic system theory may be used to connect structural and functional aspects of neural organization. The paper claims that generalized causal dynamic models are proper tools for describing the self-organizing mechanism of the nervous system. In particular, it is pointed out that ontogeny, development, normal performance, learning, and plasticity, can be treated by coherent concepts and formalism. Taking into account the self-referential character of the brain, autopoiesis, endophysics and hermeneutics are offered as elements of a poststructuralist brain (-mind-computer) theory. PMID:8236061
Metasemantics: On the Limits of Semantic Theory
ERIC Educational Resources Information Center
Parent, T.
2009-01-01
METASEMANTICS is a wake-up call for semantic theory: It reveals that some semantic questions have no adequate answer. (This is meant to be the "epistemic" point that certain semantic questions cannot be "settled"--not a metaphysical point about whether there is a fact-of-the-matter.) METASEMANTICS thus checks our default "optimism" that any…
Range-limited centrality measures in complex networks
NASA Astrophysics Data System (ADS)
Ercsey-Ravasz, Mária; Lichtenwalter, Ryan N.; Chawla, Nitesh V.; Toroczkai, Zoltán
2012-06-01
Here we present a range-limited approach to centrality measures in both nonweighted and weighted directed complex networks. We introduce an efficient method that generates for every node and every edge its betweenness centrality based on shortest paths of lengths not longer than ℓ=1,...,L in the case of nonweighted networks, and for weighted networks the corresponding quantities based on minimum weight paths with path weights not larger than wℓ=ℓΔ, ℓ=1,2...,L=R/Δ. These measures provide a systematic description on the positioning importance of a node (edge) with respect to its network neighborhoods one step out, two steps out, etc., up to and including the whole network. They are more informative than traditional centrality measures, as network transport typically happens on all length scales, from transport to nearest neighbors to the farthest reaches of the network. We show that range-limited centralities obey universal scaling laws for large nonweighted networks. As the computation of traditional centrality measures is costly, this scaling behavior can be exploited to efficiently estimate centralities of nodes and edges for all ranges, including the traditional ones. The scaling behavior can also be exploited to show that the ranking top list of nodes (edges) based on their range-limited centralities quickly freezes as a function of the range, and hence the diameter-range top list can be efficiently predicted. We also show how to estimate the typical largest node-to-node distance for a network of N nodes, exploiting the afore-mentioned scaling behavior. These observations were made on model networks and on a large social network inferred from cell-phone trace logs (˜5.5×106 nodes and ˜2.7×107 edges). Finally, we apply these concepts to efficiently detect the vulnerability backbone of a network (defined as the smallest percolating cluster of the highest betweenness nodes and edges) and illustrate the importance of weight-based centrality measures in
Range-limited centrality measures in complex networks.
Ercsey-Ravasz, Mária; Lichtenwalter, Ryan N; Chawla, Nitesh V; Toroczkai, Zoltán
2012-06-01
Here we present a range-limited approach to centrality measures in both nonweighted and weighted directed complex networks. We introduce an efficient method that generates for every node and every edge its betweenness centrality based on shortest paths of lengths not longer than ℓ=1,...,L in the case of nonweighted networks, and for weighted networks the corresponding quantities based on minimum weight paths with path weights not larger than w(ℓ)=ℓΔ, ℓ=1,2...,L=R/Δ. These measures provide a systematic description on the positioning importance of a node (edge) with respect to its network neighborhoods one step out, two steps out, etc., up to and including the whole network. They are more informative than traditional centrality measures, as network transport typically happens on all length scales, from transport to nearest neighbors to the farthest reaches of the network. We show that range-limited centralities obey universal scaling laws for large nonweighted networks. As the computation of traditional centrality measures is costly, this scaling behavior can be exploited to efficiently estimate centralities of nodes and edges for all ranges, including the traditional ones. The scaling behavior can also be exploited to show that the ranking top list of nodes (edges) based on their range-limited centralities quickly freezes as a function of the range, and hence the diameter-range top list can be efficiently predicted. We also show how to estimate the typical largest node-to-node distance for a network of N nodes, exploiting the afore-mentioned scaling behavior. These observations were made on model networks and on a large social network inferred from cell-phone trace logs (∼5.5×10(6) nodes and ∼2.7×10(7) edges). Finally, we apply these concepts to efficiently detect the vulnerability backbone of a network (defined as the smallest percolating cluster of the highest betweenness nodes and edges) and illustrate the importance of weight-based centrality
On the quenched central limit theorem for random dynamical systems
NASA Astrophysics Data System (ADS)
Abdelkader, Mohamed; Aimino, Romain
2016-06-01
We provide a necessary and sufficient condition under which the quenched central limit theorem without random centering holds for one-dimensional random systems that are uniformly expanding. This condition holds in particular when all the maps preserve a common measure. We also give a counter example which shows that this condition is not necessarily satisfied when the maps do not preserve a common measure.
Pushing Higgs effective theory to its limits
NASA Astrophysics Data System (ADS)
Brehmer, Johann; Freitas, Ayres; López-Val, David; Plehn, Tilman
2016-04-01
At the LHC, an effective theory of the Higgs sector allows us to analyze kinematic distributions in addition to inclusive rates, although there is no clear hierarchy of scales. We systematically analyze how well dimension-6 operators describe LHC observables in comparison to the full theory, and in a range where the LHC will be sensitive. The key question is how the breakdown of the dimension-6 description affects Higgs measurements during the upcoming LHC run for weakly interacting models. We cover modified Higgs sectors with a singlet and doublet extension, new top partners, and a vector triplet. First, weakly interacting models only generate small relevant subsets of dimension-6 operators. Second, the dimension-6 description tends to be justified at the LHC. Scanning over model parameters, significant discrepancies can nevertheless arise; their main source is the matching procedure in the absence of a well-defined hierarchy of scales. While these issues require vigilance, they should not present a major problem for future LHC analyses.
The AdS central charge in string theory
NASA Astrophysics Data System (ADS)
Troost, Jan
2011-11-01
We evaluate the vacuum expectation value of the central charge operator in string theory in an AdS3 vacuum. Our calculation provides a rare non-zero one-point function on a spherical worldsheet. The evaluation involves the regularization both of a worldsheet ultraviolet divergence (associated to the infinite volume of the conformal Killing group), and a space-time infrared divergence (corresponding to the infinite volume of space-time). The two divergences conspire to give a finite result, which is the classical general relativity value for the central charge, corrected in bosonic string theory by an infinite series of tree level higher derivative terms.
Central charge bounds in 4D conformal field theory
Rattazzi, Riccardo; Vichi, Alessandro; Rychkov, Slava
2011-02-15
We derive model-independent lower bounds on the stress tensor central charge C{sub T} in terms of the operator content of a 4-dimensional conformal field theory. More precisely, C{sub T} is bounded from below by a universal function of the dimensions of the lowest and second-lowest scalars present in the conformal field theory. The method uses the crossing symmetry constraint of the 4-point function, analyzed by means of the conformal block decomposition.
Central Limit Theorems for the Shrinking Target Problem
NASA Astrophysics Data System (ADS)
Haydn, Nicolai; Nicol, Matthew; Vaienti, Sandro; Zhang, Licheng
2013-12-01
Suppose B i := B( p, r i ) are nested balls of radius r i about a point p in a dynamical system ( T, X, μ). The question of whether T i x∈ B i infinitely often (i.o.) for μ a.e. x is often called the shrinking target problem. In many dynamical settings it has been shown that if diverges then there is a quantitative rate of entry and for μ a.e. x∈ X. This is a self-norming type of strong law of large numbers. We establish self-norming central limit theorems (CLT) of the form (in distribution) for a variety of hyperbolic and non-uniformly hyperbolic dynamical systems, the normalization constants are . Dynamical systems to which our results apply include smooth expanding maps of the interval, Rychlik type maps, Gibbs-Markov maps, rational maps and, in higher dimensions, piecewise expanding maps. For such central limit theorems the main difficulty is to prove that the non-stationary variance has a limit in probability.
Ardenghi, Juan S.; Castagnino, M.; Campoamor-Stursberg, R.
2009-10-15
The nonrelativistic limit of the centrally extended Poincare group is considered and their consequences in the modal Hamiltonian interpretation of quantum mechanics are discussed [O. Lombardi and M. Castagnino, Stud. Hist. Philos. Mod. Phys 39, 380 (2008); J. Phys, Conf. Ser. 128, 012014 (2008)]. Through the assumption that in quantum field theory the Casimir operators of the Poincare group actualize, the nonrelativistic limit of the latter group yields to the actualization of the Casimir operators of the Galilei group, which is in agreement with the actualization rule of previous versions of modal Hamiltonian interpretation [Ardenghi et al., Found. Phys. (submitted)].
lambdaphi/sup 4/ theory in the nonrelativistic limit
Beg, M.A.B.; Furlong, R.C.
1985-03-15
We show that the nonrelativistic limit of the lambdaphi/sup 4/ theory is trivial in 1+3 dimensions; the renormalized coupling constant vanishes and the S matrix reduces to the unit matrix. Our result is consistent with, though not sufficient to establish, the triviality of the Lorentz-invariant theory.
Central charge and renormalization in supersymmetric theories with vortices
Shizuya, K.
2005-03-15
Some quantum features of vortices in supersymmetric theories in 1+2 dimensions are studied in a manifestly supersymmetric setting of the superfield formalism. A close examination of the supercurrent that accommodates the central charge and super-Poincare charges in a supermultiplet reveals that there is no genuine quantum anomaly in the supertrace identity and in the supercharge algebra, with the central-charge operator given by the bare Fayet-Iliopoulos term alone. The central charge and the vortex spectrum undergo renormalization on taking the expectation value of the central-charge operator. It is shown that the vortex spectrum is exactly determined at one-loop while the spectrum of the elementary excitations receives higher-order corrections.
Effective Field Theories from Soft Limits of Scattering Amplitudes.
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav
2015-06-01
We derive scalar effective field theories-Lagrangians, symmetries, and all-from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We propose a natural classification of all scalar effective field theories according to two numbers which encode the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where there is no consistent amplitude, the corresponding theory does not exist. PMID:26196613
Continuous-variable entanglement distillation and noncommutative central limit theorems
NASA Astrophysics Data System (ADS)
Campbell, Earl T.; Genoni, Marco G.; Eisert, Jens
2013-04-01
Entanglement distillation transforms weakly entangled noisy states into highly entangled states, a primitive to be used in quantum repeater schemes and other protocols designed for quantum communication and key distribution. In this work, we present a comprehensive framework for continuous-variable entanglement distillation schemes that convert noisy non-Gaussian states into Gaussian ones in many iterations of the protocol. Instances of these protocols include (a) the recursive-Gaussifier protocol, (b) the temporally reordered recursive-Gaussifier protocol, and (c) the pumping-Gaussifier protocol. The flexibility of these protocols gives rise to several beneficial trade-offs related to success probabilities or memory requirements, which can be adjusted to reflect experimental demands. Despite these protocols involving measurements, we relate the convergence in this protocol to new instances of noncommutative central limit theorems, in a formalism that we lay out in great detail. Implications of the findings for quantum repeater schemes are discussed.
Planar Limit of Orientifold Field Theories and Emergent Center Symmetry
Armoni, Adi; Shifman, Mikhail; Unsal, Mithat
2007-12-05
We consider orientifold field theories (i.e. SU(N) Yang-Mills theories with fermions in the two-index symmetric or antisymmetric representations) on R{sub 3} x S{sub 1} where the compact dimension can be either temporal or spatial. These theories are planar equivalent to supersymmetric Yang-Mills. The latter has Z{sub N} center symmetry. The famous Polyakov criterion establishing confinement-deconfinement phase transition as that from Z{sub N} symmetric to Z{sub N} broken phase applies. At the Lagrangian level the orientifold theories have at most a Z{sub 2} center. We discuss how the full Z{sub N} center symmetry dynamically emerges in the orientifold theories in the limit N {yields} {infinity}. In the confining phase the manifestation of this enhancement is the existence of stable k-strings in the large-N limit of the orientifold theories. These strings are identical to those of supersymmetric Yang-Mills theories. We argue that critical temperatures (and other features) of the confinement-deconfinement phase transition are the same in the orientifold daughters and their supersymmetric parent up to 1/N corrections. We also discuss the Abelian and non-Abelian confining regimes of four-dimensional QCD-like theories.
Effective Field Theories from Soft Limits of Scattering Amplitudes
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav
2015-06-01
We derive scalar effective field theories—Lagrangians, symmetries, and all—from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We propose a natural classification of all scalar effective field theories according to two numbers which encode the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where there is no consistent amplitude, the corresponding theory does not exist.
Tate form and weak coupling limits in F-theory
NASA Astrophysics Data System (ADS)
Esole, Mboyo; Savelli, Raffaele
2013-06-01
We consider the weak coupling limit of F-theory in the presence of non-Abelian gauge groups implemented using the traditional ansatz coming from Tate's algorithm. We classify the types of singularities that could appear in the weak coupling limit and explain their resolution. In particular, the weak coupling limit of SU( n) gauge groups leads to an orientifold theory which suffers from conifold singulaties that do not admit a crepant resolution compatible with the orientifold involution. We present a simple resolution to this problem by introducing a new weak coupling regime that admits singularities compatible with both a crepant resolution and an orientifold symmetry. We also comment on possible applications of the new limit to model building. We finally discuss other unexpected phenomena as for example the existence of several non-equivalent directions to flow from strong to weak coupling leading to different gauge groups.
Planetary Accretion, Oxygen Isotopes and the Central Limit Theorem
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Hill, Hugh G. M.; Vondrak, Richard R. (Technical Monitor)
2001-01-01
The accumulation of presolar dust into increasingly larger aggregates (CAIs and Chondrules, Asteroids, Planets) should result in a very drastic reduction in the numerical spread in oxygen isotopic composition between bodies of similar size, in accord with the Central Limit Theorem. Observed variations in oxygen isotopic composition are many orders of magnitude larger than would be predicted by a simple, random accumulation model that begins in a well-mixed nebula - no matter which size-scale objects are used as the beginning or end points of the calculation. This discrepancy implies either that some as yet unspecified process acted on the solids in the Solar Nebula to increase the spread in oxygen isotopic composition during each and every stage of accumulation or that the nebula was heterogeneous and maintained this heterogeneity throughout most of nebular history. Large-scale nebular heterogeneity would have significant consequences for many areas of cosmochemistry, including the application of some well-known isotopic systems to the dating of nebular events or the prediction of bulk compositions of planetary bodies on the basis of a uniform cosmic abundance.
Open string Regge trajectory and its field theory limit
NASA Astrophysics Data System (ADS)
Rojas, Francisco; Thorn, Charles B.
2011-07-01
We study the properties of the leading Regge trajectory in open string theory including the open string planar one-loop corrections. With SU(N) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the ’t Hooft limit N→∞ with Ngs2 fixed. Our motivation is to improve the understanding of open string theory at finite α' as a model of gauge field theories. SU(N) gauge theories in D space-time dimensions are described by requiring open strings to end on a stack of N Dp-branes of space-time dimension D=p+1. The large N leading trajectory α(t)=1+α't+Σ(t) can be extracted, through order g2, from the s→-∞ limit, at fixed t, of the four open string tree and planar loop diagrams. We analyze the t→0 behavior with the result that Σ(t)˜-Cg2(-α't)(D-4)/2/(D-4). This result precisely tracks the 1-loop Reggeized gluon of gauge theory in D>4 space-time dimensions. In particular, for D→4 it reproduces the known infrared divergences of gauge theory in 4 dimensions with a Regge trajectory behaving as -ln(-α't). We also study Σ(t) in the limit t→-∞ and show that, when D<8, it behaves as α't/(ln(-α't))γ, where γ>0 depends on D and the number of massless scalars. Thus, as long as 4
Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications
NASA Astrophysics Data System (ADS)
Cardy, John
2013-12-01
We describe an approach to logarithmic conformal field theories as limits of sequences of ordinary conformal field theories with varying central charge c. Logarithmic behaviour arises from degeneracies in the spectrum of scaling dimensions at certain values of c. The theories we consider are all invariant under some internal symmetry group, and logarithmic behaviour occurs when the decomposition of the physical observables into irreducible operators becomes singular. Examples considered are quenched random magnets using the replica formalism, self-avoiding walks as the n → 0 limit of the O(n) model, and percolation as the limit Q → 1 of the Potts model. In these cases we identify logarithmic operators and pay particular attention to how the c → 0 paradox is resolved and how the b-parameter is evaluated. We also show how this approach gives information on logarithmic behaviour in the extended Ising model, uniform spanning trees and the O( - 2) model. Most of our results apply to general dimensionality. We also consider massive logarithmic theories and, in two dimensions, derive sum rules for the effective central charge and the b-parameter.
Some steps toward a central theory of ecosystem dynamics.
Ulanowicz, Robert E
2003-12-01
Ecology is said by many to suffer for want of a central theory, such as Newton's laws of motion provide for classical mechanics or Schroedinger's wave equation provides for quantum physics. From among a plurality of contending laws to govern ecosystem behavior, the principle of increasing ascendency shows some early promise of being able to address the major questions asked of a theory of ecosystems, including, "How do organisms come to be distributed in time and space?, what accounts for the log-normal distribution of species numbers?, and how is the diversity of ecosystems related to their stability, resilience and persistence?" While some progress has been made in applying the concept of ascendency to the first issue, more work is needed to articulate exactly how it relates to the latter two. Accordingly, seven theoretical tasks are suggested that could help to establish these connections and to promote further consideration of the ascendency principle as the kernel of a theory of ecosystems. PMID:14667780
Bed-limited cracks in effective medium theory
NASA Astrophysics Data System (ADS)
Tod, S. R.
2003-02-01
An effective medium theory typically requires the description of a mean crack shape. In general, for simplicity, this is taken to be a flat, circular (`penny-shaped') crack. However, this places an unnecessary limitation on the theory, when it is perhaps more realistic to describe a crack in terms of having a bounded width and an otherwise ellipsoidal shape. The generalization of the method of smoothing, as proposed by Hudson (1994, Geophys. J. Int.,117, 555-561) , to extend his original model (Hudson, 1980. Math. proc. Camb. phil. Soc.,88, 371-384), has been used to study the role of the crack width and the ratio of the two larger dimensions in determining the properties of the effective medium. In general, this leads to a description of the medium as having orthorhombic symmetry, and provides a suitable description of a material where the crack dimensions are restricted in one direction owing to, for example, bed-limiting effects, while remaining unconfined in other directions. An elliptical flat crack limit is determined, analoguous to the circular crack description of the original Hudson model. In addition to the isolated crack description, the theory is extended to include the fluid flow mechanism of Tod (2001, Geophys. J. Int.,146, 249-263) that models the flow as being dominated by crack-to-crack flow and is valid for low matrix porosities and over a large range of frequencies, provided that the wavelength is much greater than the crack dimensions.
On the limits of psychoanalytic theory: a cautionary perspective.
Horner, Althea J
2006-01-01
Citing the complexities of the human mind with respect to early development and its functioning in later life, the author cautions against the reliance on any individual psychoanalytic theory in clinical work. Psychoanalytic theories, in general, do not take into account many factors such as the patient's constitutional givens, his or her inborn temperament, family system factors, the impact of the autonomous functions on development, the limits of the child in Piagetian terms, or post-oedipal learning. The analyst's favorite theory may become a belief system that shapes his or her understanding of the patient leading to an imposition of the theory on the data. The analyst's sense of certainty about his or her favorite theory may be based on a transference to the author of the theory or from its fit with his or her own psychological makeup. Cited is Greenson's position (1969/1978) that if he tries to imagine an analytic session with a "true believer" analyst repeating the catechism of his school, he would find it "hard to see this as a living creative experience for either the patient or the therapist" (p. 354). Ultimately, not accountable in terms of any psychoanalytic theory, there is something ineffable, which is the persistent and basically indestructible essence of the person that cannot be explained on the basis of good mothering or on the basis of a facilitating environment. Whether this is thought of as "soul" or "spirit," or even a Winnicottian "true self," it is not something the psychotherapist can omnipotently create. It can only be discovered - unearthed, unburied, cleared away of emotional clutter. PMID:17274735
THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY
WONG,SK; CHAN,VS
2002-11-01
OAK B202 THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY. This article presents a comprehensive description of neoclassical transport theory in the banana regime for large aspect ratio flux surfaces of arbitrary shapes. The method of matched asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method provides justification for retaining only the part of the Fokker-Planck operator that involves the second derivative with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the freely circulating particles with boundary conditions that embody a discontinuity separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by generalizing an existing boundary layer analysis. The system of moment and field equations is consistently taken in the cylinder limit, which facilitates discussion of the treatment of dynamical constraints. it is shown that the nonlocal nature of Ohm's law in neoclassical theory renders the mathematical problem of plasma transport with changing flux surfaces nonstandard.
Limits on Higgs boson couplings in Effective field theory
NASA Astrophysics Data System (ADS)
Belyaev, N.; Reid, T.
2016-02-01
We review the Effective Field Theory (EFT) to make projections on physics beyond the Standard Model in the Higgs sector. We provide relations between the non-Standard Model couplings of the Strongly-Interacting Light Higgs (SILH) effective Lagrangian implemented in the eHDecay package and the corresponding terms of the spin-0 Higgs Characterisation model's effective Lagrangian used with the aMC@NLO Monte Carlo generator. Constraints on BSM couplings are determined on the basis of existing experimental limits on Higgs boson width and branching ratios.
Theory and practice: Science for undergraduates of limited English proficiency
NASA Astrophysics Data System (ADS)
Rosenthal, Judith W.
1993-06-01
Between 1980 and 1990, the total number of Asian, Hispanic, American Indian, and foreign undergraduates increased by more than 50% at public and private, four-year and two-year colleges. Many of these students may be of limited English proficiency, suggesting that the traditional science lecture/lab format may need modification to incorporate the theory of second language acquisition as it pertains to the practice of content instruction. Various methods exist to improve science instruction for limited English proficient undergraduates. These included the adjunct and tutorial models, sheltered or bridge science instruction, faculty development, and science instruction in the students' native language. Any plan for science education reform at the collegiate level or for increasing minority participation in science must address the needs of the growing population of undergraduates who speak English as a second language.
Limit Theory for Panel Data Models with Cross Sectional Dependence and Sequential Exogeneity
Kuersteiner, Guido M.; Prucha, Ingmar R.
2013-01-01
The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample moments related to panel data models with large n. The results allow for the data to be cross sectionally dependent, while at the same time allowing the regressors to be only sequentially rather than strictly exogenous. The setup is sufficiently general to accommodate situations where cross sectional dependence stems from spatial interactions and/or from the presence of common factors. The latter leads to the need for random norming. The limit theorem for sample moments is derived by showing that the moment conditions can be recast such that a martingale difference array central limit theorem can be applied. We prove such a central limit theorem by first extending results for stable convergence in Hall and Hedye (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML) estimators that can be analyzed using our CLT. PMID:23794781
Einstein - Cartan - Dirac theory in the low-energy limit
NASA Astrophysics Data System (ADS)
Singh, P.; Ryder, L. H.
1997-12-01
We look for manifestations of the effects of torsion in the low-energy limit in the context of Einstein - Cartan - Dirac theory (or any theory of gravity in which the torsion tensor is purely axial). To proceed, we introduce the mathematical law governing the transport of orthonormal bases or tetrads in a spacetime with torsion. This law is applied to compute the metric and connection in a rotating and accelerating frame, or laboratory. A spin-0264-9381/14/12/031/img1 particle is placed in this rotating and accelerating frame and the low-energy limit of the Dirac equation is taken by means of the Foldy - Wouthuysen transformation. In addition to obtaining the Bonse - Wroblewski phase shift due to acceleration, Sagnac-type effects, rotation - spin couplings of the Mashhoon type, redshift of the kinetic energy and the spin - orbit coupling term of Hehl and Ni, we also obtain several interesting and significant terms as a consequence of introducing torsion into spacetime. We give a detailed interpretation of these additional terms and discuss their observability in the light of current well-known experimental techniques.
Reščič, J; Kalyuzhnyi, Y V; Cummings, P T
2016-10-19
The approach developed earlier to describe the dimerizing shielded attractive shell (SAS) primitive model of chemical association due to Cummings and Stell is generalized and extended to include a description of a polymerizing SAS model. Our extension is based on the combination of the resummed thermodynamic perturbation theory for central force (RTPT-CF) associating potential and self consistent scheme, which takes into account the changes in the system free volume due to association. Theoretical results for thermodynamical properties of the model at different bonding length, density and temperature are compared against newly generated computer simulation results. The theory gives very accurate predictions for the model with bonding length L (*) from the range 0 < L (*) < 0.6 at all values of the density and temperature studied, including the limit of infinitely large temperature. PMID:27545613
Scaling theory for the quasideterministic limit of continuous bifurcations.
Kessler, David A; Shnerb, Nadav M
2012-05-01
Deterministic rate equations are widely used in the study of stochastic, interacting particles systems. This approach assumes that the inherent noise, associated with the discreteness of the elementary constituents, may be neglected when the number of particles N is large. Accordingly, it fails close to the extinction transition, when the amplitude of stochastic fluctuations is comparable with the size of the population. Here we present a general scaling theory of the transition regime for spatially extended systems. We demonstrate this through a detailed study of two fundamental models for out-of-equilibrium phase transitions: the Susceptible-Infected-Susceptible (SIS) that belongs to the directed percolation equivalence class and the Susceptible-Infected-Recovered (SIR) model belonging to the dynamic percolation class. Implementing the Ginzburg criteria we show that the width of the fluctuation-dominated region scales like N^{-κ}, where N is the number of individuals per site and κ=2/(d_{u}-d), d_{u} is the upper critical dimension. Other exponents that control the approach to the deterministic limit are shown to be calculable once κ is known. The theory is extended to include the corrections to the front velocity above the transition. It is supported by the results of extensive numerical simulations for systems of various dimensionalities. PMID:23004734
Orbit Limited Theory in the Solar Wind - kappa Distributions
NASA Astrophysics Data System (ADS)
Martinović, M. M.
2016-06-01
When a solid object is immersed into ionized gas it gets brought to a certain value of electrostatic potential and surrounded by a space charge region called `plasma sheath'. Through this region, particles are attracted or repelled from the surface of the charge collecting object. For collisionless plasma, this process is described by the so-called orbit limited theory, which explains how the collection of particles is determined by the collector geometry and plasma velocity distribution function (VDF). In this article, we provide explicit orbit-limited currents expressions for generalized Lorentzian (κ) distributions. This work is useful to describe the charging processes of objects in non-collisional plasmas like the solar wind, where the electrons VDF is often observed to exhibit quasi power-law populations of suprathermal particles. It is found that these 'suprathermals' considerably increase the charge collection. Since the surface charging process that determines the value of electrostatic potential is also affected by the plasma VDF, calculation of the collector potential in the solar wind is described along with some quantitative predictions.
Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.
1984-10-19
A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.
Theory of Space Charge Limited Current in Fractional Dimensional Space
NASA Astrophysics Data System (ADS)
Zubair, Muhammad; Ang, L. K.
The concept of fractional dimensional space has been effectively applied in many areas of physics to describe the fractional effects on the physical systems. We will present some recent developments of space charge limited (SCL) current in free space and solid in the framework of fractional dimensional space which may account for the effect of imperfectness or roughness of the electrode surface. For SCL current in free space, the governing law is known as the Child-Langmuir (CL) law. Its analogy in a trap-free solid (or dielectric) is known as Mott-Gurney (MG) law. This work extends the one-dimensional CL Law and MG Law for the case of a D-dimensional fractional space with 0 < D <= 1 where parameter D defines the degree of roughness of the electrode surface. Such a fractional dimensional space generalization of SCL current theory can be used to characterize the charge injection by the imperfectness or roughness of the surface in applications related to high current cathode (CL law), and organic electronics (MG law). In terms of operating regime, the model has included the quantum effects when the spacing between the electrodes is small.
Hydrodynamic limit of Wigner-Poisson kinetic theory: Revisited
Akbari-Moghanjoughi, M.
2015-02-15
In this paper, we revisit the hydrodynamic limit of the Langmuir wave dispersion relation based on the Wigner-Poisson model in connection with that obtained directly from the original Lindhard dielectric function based on the random-phase-approximation. It is observed that the (fourth-order) expansion of the exact Lindhard dielectric constant correctly reduces to the hydrodynamic dispersion relation with an additional term of fourth-order, beside that caused by the quantum diffraction effect. It is also revealed that the generalized Lindhard dielectric theory accounts for the recently discovered Shukla-Eliasson attractive potential (SEAP). However, the expansion of the exact Lindhard static dielectric function leads to a k{sup 4} term of different magnitude than that obtained from the linearized quantum hydrodynamics model. It is shown that a correction factor of 1/9 should be included in the term arising from the quantum Bohm potential of the momentum balance equation in fluid model in order for a correct plasma dielectric response treatment. Finally, it is observed that the long-range oscillatory screening potential (Friedel oscillations) of type cos(2k{sub F}r)/r{sup 3}, which is a consequence of the divergence of the dielectric function at point k = 2k{sub F} in a quantum plasma, arises due to the finiteness of the Fermi-wavenumber and is smeared out in the limit of very high electron number-densities, typical of white dwarfs and neutron stars. In the very low electron number-density regime, typical of semiconductors and metals, where the Friedel oscillation wavelength becomes much larger compared to the interparticle distances, the SEAP appears with a much deeper potential valley. It is remarked that the fourth-order approximate Lindhard dielectric constant approaches that of the linearized quantum hydrodynamic in the limit if very high electron number-density. By evaluation of the imaginary part of the Lindhard dielectric function, it is shown that the
Cohen, Samuel A.; Hosea, Joel C.; Timberlake, John R.
1986-01-01
A limiter with a specially contoured front face accommodates the various power scrape-off distances .lambda..sub.p, which depend on the parallel velocity, V.sub..parallel., of the impacting particles. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution.
Central Limit Theorems for Linear Statistics of Heavy Tailed Random Matrices
NASA Astrophysics Data System (ADS)
Benaych-Georges, Florent; Guionnet, Alice; Male, Camille
2014-07-01
We show central limit theorems (CLT) for the linear statistics of symmetric matrices with independent heavy tailed entries, including entries in the domain of attraction of α-stable laws and entries with moments exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For the second model, we also prove a central limit theorem of the moments of its empirical eigenvalues distribution. The limit laws are Gaussian, but unlike the case of standard Wigner matrices, the normalization is the one of the classical CLT for independent random variables.
Assessment of the statistics of the Strehl ratio: predictions of central limit theorem analysis
NASA Astrophysics Data System (ADS)
Tyler, Glenn A.
2006-11-01
For a beam propagating through turbulence, the statistics of the Strehl ratio are determined by recognizing that the real and imaginary parts of the on-axis far-field pattern can be represented as the sum of many contributions from the aperture. With this in mind, the central limit theorem (CLT) can be used to develop the statistics of the real and imaginary parts of the optical field, which through the appropriate mathematical manipulations as described here can then be used to develop the probability distribution of the far-field irradiance. The results obtained in this way (which we call the CLT theory or analysis) provide an analytic expression that agrees with the results of detailed wave-optics simulations. This provides an approach by which the statistics of the Strehl ratio can be rapidly determined. A key feature of this work is that the analytic results depend on the values of a few relevant turbulence parameters that include r0,fG, and σ2l. Therefore, a measurement of these parameters at various sites of interest allows us to rapidly assess the detailed nature of the statistical fluctuations of the far-field irradiance that will be experienced at these locations.
String theories as the adiabatic limit of Yang-Mills theory
NASA Astrophysics Data System (ADS)
Popov, Alexander D.
2015-08-01
We consider Yang-Mills theory with a matrix gauge group G on a direct product manifold M =Σ2×H2 , where Σ2 is a two-dimensional Lorentzian manifold and H2 is a two-dimensional open disc with the boundary S1=∂H2 . The Euler-Lagrange equations for the metric on Σ2 yield constraint equations for the Yang-Mills energy-momentum tensor. We show that in the adiabatic limit, when the metric on H2 is scaled down, the Yang-Mills equations plus constraints on the energy-momentum tensor become the equations describing strings with a world sheet Σ2 moving in the based loop group Ω G =C∞(S1,G )/G , where S1 is the boundary of H2. By choosing G =Rd -1 ,1 and putting to zero all parameters in Ω Rd -1 ,1 besides Rd -1 ,1 , we get a string moving in Rd -1 ,1 . In another paper of the author, it was described how one can obtain the Green-Schwarz superstring action from Yang-Mills theory on Σ2×H2 while H2 shrinks to a point. Here we also consider Yang-Mills theory on a three-dimensional manifold Σ2×S1 and show that in the limit when the radius of S1 tends to zero, the Yang-Mills action functional supplemented by a Wess-Zumino-type term becomes the Green-Schwarz superstring action.
Theory-independent limits on correlations from generalized Bayesian networks
NASA Astrophysics Data System (ADS)
Henson, Joe; Lal, Raymond; Pusey, Matthew F.
2014-11-01
Bayesian networks provide a powerful tool for reasoning about probabilistic causation, used in many areas of science. They are, however, intrinsically classical. In particular, Bayesian networks naturally yield the Bell inequalities. Inspired by this connection, we generalize the formalism of classical Bayesian networks in order to investigate non-classical correlations in arbitrary causal structures. Our framework of ‘generalized Bayesian networks’ replaces latent variables with the resources of any generalized probabilistic theory, most importantly quantum theory, but also, for example, Popescu-Rohrlich boxes. We obtain three main sets of results. Firstly, we prove that all of the observable conditional independences required by the classical theory also hold in our generalization; to obtain this, we extend the classical d-separation theorem to our setting. Secondly, we find that the theory-independent constraints on probabilities can go beyond these conditional independences. For example we find that no probabilistic theory predicts perfect correlation between three parties using only bipartite common causes. Finally, we begin a classification of those causal structures, such as the Bell scenario, that may yield a separation between classical, quantum and general-probabilistic correlations.
Theory of Mind and Central Coherence in Adults with High-Functioning Autism or Asperger Syndrome
ERIC Educational Resources Information Center
Beaumont, Renae; Newcombe, Peter
2006-01-01
The study investigated theory of mind and central coherence abilities in adults with high-functioning autism (HFA) or Asperger syndrome (AS) using naturalistic tasks. Twenty adults with HFA/AS correctly answered significantly fewer theory of mind questions than 20 controls on a forced-choice response task. On a narrative task, there were no…
The Free Will Theorem and Limits on Realistic Theories
NASA Astrophysics Data System (ADS)
Godfrey, Christopher
2010-03-01
The rGRWf model (Tumulka 2006) is a proposed solution of the measurement problem of quantum mechanics involving a stochastic nonlinear wave equation embedded in a relativistic framework. Its primary feature is a mechanism that suppresses superpositions of macroscopically different states for macroscopic systems. However, the Free Will Theorem (FWT) proposed by Conway and Kochen (Conway and Kochen 2007, 2009) purports to prove that no theory that is both non-deterministic and relativistic can reproduce all possible measurement results on a system of two entangled spin-one particles. Here we examine both the rGRWf model and the FWT. It is demonstrated that underlying assumptions in the postulates of the FWT rule out certain classes of realistic physical theories. These underlying assumptions and the characteristics of physical theories permitted by the FWT axioms are discussed.
Limits to Fourier theory in high thermal conductivity single crystals
NASA Astrophysics Data System (ADS)
Wilson, R. B.; Cahill, David G.
2015-11-01
We report the results of time-domain thermoreflectance (TDTR) experiments that examine the ability of Fourier theory to predict the thermal response in single crystals when heater dimensions are small. We performed TDTR measurements on Al-coated diamond, 6H-SiC, GaP, Ge, MgO, GaAs, and GaSb single crystals with a wide range of laser spot size radii, 0.7 μm < w 0 < 12 μm. When the laser spot-size is large, w 0 ≈ 12 μm, TDTR data for all crystals are in agreement with predictions of Fourier theory with bulk thermal conductivity values. When the laser spot-size is small, w 0 < 2 μm, there are significant differences between the predictions of Fourier theory and TDTR data for all crystals except MgO.
The solar cycle - A central-source wave theory
NASA Technical Reports Server (NTRS)
Bracewell, R. N.
1989-01-01
Studies stimulated by the interpretation of the Elatina formation in South Australia as a fossil record of solar activity have led to discoveries of previously unnoticed features of the sunspot cycle record and to a theory of origin of the sunspot cycle that postulates a solar core in torsional motion and a magnetomechanical wave that couples to the photosphere. The considerations supporting the solar interpretation of the Elatina formation are gathered together.
Renormalized perturbation theory - Vlasov-Poisson system, weak turbulence limit, and gyrokinetics
NASA Astrophysics Data System (ADS)
Zhang, Y. Z.; Mahadjan, S. M.
1988-10-01
The self-consistency of the renormalized perturbation theory of Zhang and Mahajan (1985) is demonstrated by applying it to the Vlasov-Poisson system and showing that the theory has the correct weak turbulence limit. Energy conservation is proved to arbitrary high order for the electrostatic drift waves. The theory is applied to derive renormalized equations for a low-beta gyrokinetic system. Comparison of this theory with other current theories is presented.
Reopening the Black Box: Toward a Limited Effects Theory.
ERIC Educational Resources Information Center
Gans, Herbert J.
1993-01-01
Discusses eight limiting factors on media effects, identifying and raising research questions about agents and structures that limit the potential effects of the mass media on the behavior and attitudes of people and on the actions of institutions. Discusses the ignorance of researchers about how people use, and live with, the mass media. (SR)
Cognitive Adaptation Theory and Breast Cancer Recurrence: Are There Limits?
ERIC Educational Resources Information Center
Tomich, Patricia L.; Helgeson, Vicki S.
2006-01-01
Relations of the components of cognitive adaptation theory (self-esteem, optimism, control) to quality of life and benefit finding were examined for 70 women (91% Caucasian) diagnosed with Stage I, II, or III breast cancer over 5 years ago. Half of these women experienced a recurrence within the 5 years; the other half remained disease free. Women…
The Power of Doing: A Learning Exercise That Brings the Central Limit Theorem to Life
ERIC Educational Resources Information Center
Price, Barbara A.; Zhang, Xiaolong
2007-01-01
This article demonstrates an active learning technique for teaching the Central Limit Theorem (CLT) in an introductory undergraduate business statistics class. Groups of students carry out one of two experiments in the lab, tossing a die in sets of 5 rolls or tossing a die in sets of 10 rolls. They are asked to calculate the sample average of each…
NASA Astrophysics Data System (ADS)
Biskup, M.; Salvi, M.; Wolff, T.
2014-06-01
Given a resistor network on with nearest-neighbor conductances, the effective conductance in a finite set with a given boundary condition is the minimum of the Dirichlet energy over functions with the prescribed boundary values. For shift-ergodic conductances, linear (Dirichlet) boundary conditions and square boxes, the effective conductance scaled by the volume of the box converges to a deterministic limit as the box-size tends to infinity. Here we prove that, for i.i.d. conductances with a small ellipticity contrast, also a (non-degenerate) central limit theorem holds. The proof is based on the corrector method and the Martingale Central Limit Theorem; a key integrability condition is furnished by the Meyers estimate. More general domains, boundary conditions and ellipticity contrasts will be addressed in a subsequent paper.
Gender, Education, and Society: The Limits and Possibilities of Feminist Reproduction Theory.
ERIC Educational Resources Information Center
Dillabough, Jo-Anne
2003-01-01
Reviews the current place of reproduction theory within larger debates about gender in education. Focuses on the issue of what limits feminist reproduction theory in the study of gender inequality in schools. Argues that gender theories may fail because they sometimes emerge as political and sensational rather than public and ethical. (CAJ)
Quantum theory of space charge limited current in solids
González, Gabriel
2015-02-28
We present a quantum model of space charge limited current transport inside trap-free solids with planar geometry in the mean field approximation. We use a simple transformation which allows us to find the exact analytical solution for the steady state current case. We use our approach to find a Mott-Gurney like behavior and the mobility for single charge carriers in the quantum regime in solids.
Limits to northward drift of the Paleocene Cantwell Formation, central Alaska.
Hillhouse, J.W.; Gromme, C.S.
1982-01-01
Volcanic rocks of the Paleocene Cantwell Formation in central Alaska apparently originated at a paleolatitude of 83oN (alpha 95 = 9.7o), as indicated by paleomagnetic results. When compared with the Paleocene pole for the North American craton, the 95% confidence limits of the results suggest that terranes N of the Denali fault have moved no more than 550km northward relative to the North American craton since Paleocene time.-Authors
Central limit behavior in the Kuramoto model at the “edge of chaos”
NASA Astrophysics Data System (ADS)
Miritello, Giovanna; Pluchino, Alessandro; Rapisarda, Andrea
2009-12-01
We study the relationship between chaotic behavior and the Central Limit Theorem (CLT) in the Kuramoto model. We calculate sums of angles at equidistant times along deterministic trajectories of single oscillators and we show that, when chaos is sufficiently strong, the Pdfs of the sums tend to a Gaussian, consistently with the standard CLT. On the other hand, when the system is at the “edge of chaos” (i.e. in a regime with vanishing Lyapunov exponents), robust q-Gaussian-like limit distributions naturally emerge, consistently with recently proved generalizations of the CLT.
Magnetic Separations with Magnetite: Theory, Operation, and Limitations
G. B. Cotten
2000-08-01
This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable.
Thermodynamic limit in number theory: Riemann-Beurling gases
NASA Astrophysics Data System (ADS)
Julia, B. L.
1994-03-01
We study the grand canonical version of a solved statistical model, the Riemann gas: a collection of bosonic oscillators with energies the logarithms of the prime numbers. The introduction of a chemical potential μ amounts to multiply each prime by e -μ, the corresponding gases could be called Beurling gases because they are defined by the choice of appropriate generalized primes when considered as canonical ensembles; one finds generalized Hagedorn singularities in the temperature. The discrete spectrum can be treated as continuous in its high energy region; this approximation allows us to study the high energy level density and is applied to Beurling gases. It is expected to be accurate for the high temperature behaviour. One model (the logarithmic gases) will be studied in more detail, it corresponds to the choice of all the integers strictly larger than one as Beurling primes; we give an explicit formula for its grand canonical thermodynamic potential F - μ N in terms of a hypergeometric function and check the approximation on the Hagedorn phenomenon. Related physical situations include string theories and quark deconfinement where one needs a better understanding of the nature of the Hagedorn transitions.
On a CFT limit of planar γi-deformed N = 4 SYM theory
NASA Astrophysics Data System (ADS)
Sieg, Christoph; Wilhelm, Matthias
2016-05-01
We show that an integrable four-dimensional non-unitary field theory that was recently proposed as a certain limit of the γi-deformed N = 4 SYM theory is incomplete and not conformal - not even in the planar limit. We complete this theory by double-trace couplings and find conformal one-loop fixed points when admitting respective complex coupling constants. These couplings must not be neglected in the planar limit, as they can contribute to planar multi-point functions. Based on our results for certain two-loop planar anomalous dimensions, we propose tests of integrability.
Zipf's law is not a consequence of the central limit theorem
NASA Astrophysics Data System (ADS)
Troll, G.; Beim Graben, P.
1998-02-01
It has been observed that the rank statistics of string frequencies of many symbolic systems (e.g., word frequencies of natural languages) follows Zipf's law in good approximation. We show that, contrary to claims in the literature, Zipf's law cannot be realized by the central limit theorem(s). The observation that a log-normal distribution of string frequencies yields an approximately Zipf-like rank statistics is actually misleading. Indeed, Zipf's law for the rank statistics is strictly equivalent to a power law distribution of frequencies. There are two natural ways to perform the infinite size limit for the vocabulary. The first one is the method of choice in the literature; it makes the upper word length bound tend to infinity and leads in the case of a multistate Bernoulli process via a central limit theorem to a log-normal frequency distribution. An alternative and for text samples actually better realizable way is to make the lower frequency bound tend to zero. This limit procedure leads to a power law distribution and hence to Zipf's law-at least for Bernoulli processes and to a very good approximation for natural languages where it passes the χ2 test. For the Bernoulli case we will give a heuristic proof.
ERIC Educational Resources Information Center
Le Sourn-Bissaoui, Sandrine; Caillies, Stephanie; Gierski, Fabien; Motte, Jacques
2011-01-01
The aim of this study was to investigate the role of central coherence skills and theory of mind competences in ambiguity detection in adolescents with Asperger syndrome (AS). We sought to pinpoint the level at which AS individuals experience difficulty detecting semantic ambiguity and identify the factors that account for their problems. We…
NASA Astrophysics Data System (ADS)
Bresme, Fernando; Abascal, José L. F.; Lomba, Enrique
1996-12-01
Structure and thermodynamics of fluids made of particles that interact via a central force model potential are studied by means of Monte Carlo simulations and integral equation theories. The Hamiltonian has two terms, an intramolecular component represented by a harmonic oscillatorlike potential and an intermolecular interaction of the Lennard-Jones type. The potential does not fulfill the steric saturation condition so it leads to a polydisperse system. First, we investigate the association (clustering) and thermodynamic properties as a function of the potential parameters, such as the intramolecular potential depth, force constant, and bond length. It is shown that the atomic hypernetted chain (HNC) integral equation provides a correct description of the model as compared with simulation results. The calculation of the HNC pseudospinodal curve indicates that the stability boundaries between the vapor and liquid phases are strongly dependent on the bond length and suggests that there might be a direct gas-solid transition for certain elongations. On the other hand, we have assessed the ability of the model to describe the thermodynamics and structure of diatomic liquids such as N2 and halogens. To this end we have devised a procedure to model the intramolecular potential depth to reproduce the complete association limit (i.e., an average number of bonds per particle equal to one). This constraint is imposed on the Ornstein-Zernike integral equation in a straightforward numerical way. The structure of the resulting fluid is compared with results from molecular theories. An excellent agreement between the HNC results for the associating fluid and the reference interaction site model (RISM)-HNC computations for the atom-atom model of the same fluid is obtained. There is also a remarkable coincidence between the simulation results for the molecular and the associating liquids, despite the polydisperse character of the latter. The stability boundaries in the complete
Kriz, Igor; Loebl, Martin; Somberg, Petr
2013-05-15
We study various mathematical aspects of discrete models on graphs, specifically the Dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. We also obtain partial results regarding conjectured limits realized by fermions in rational conformal field theories.
Non-normalizable densities in strong anomalous diffusion: beyond the central limit theorem.
Rebenshtok, Adi; Denisov, Sergey; Hänggi, Peter; Barkai, Eli
2014-03-21
Strong anomalous diffusion, where ⟨|x(t)|(q)⟩ ∼ tqν(q) with a nonlinear spectrum ν(q) ≠ const, is wide spread and has been found in various nonlinear dynamical systems and experiments on active transport in living cells. Using a stochastic approach we show how this phenomenon is related to infinite covariant densities; i.e., the asymptotic states of these systems are described by non-normalizable distribution functions. Our work shows that the concept of infinite covariant densities plays an important role in the statistical description of open systems exhibiting multifractal anomalous diffusion, as it is complementary to the central limit theorem. PMID:24702341
Slaves, embryos, and nonhuman animals: moral status and the limitations of common morality theory.
Lindsay, Ronald A
2005-12-01
Common morality theory must confront apparent counterexamples from the history of morality, such as the widespread acceptance of slavery in prior eras, that suggest core norms have changed over time. A recent defense of common morality theory addresses this problem by drawing a distinction between the content of the norms of the common morality and the range of individuals to whom these norms apply. This distinction is successful in reconciling common morality theory with practices such as slavery, but only at the cost of underscoring the limits of common morality theory, in particular its inability to resolve disputes about the moral status of entities. Given that many controversies in bioethics center on the disputed status of various entities, such as embryos and nonhuman animals, this is an important limitation. Nonetheless, common morality theory still can be a useful resource in diminishing moral conflict on issues that do not involve disputes over moral status. PMID:16453948
Influence of global correlations on central limit theorems and entropic extensivity
NASA Astrophysics Data System (ADS)
Marsh, John A.; Fuentes, Miguel A.; Moyano, Luis G.; Tsallis, Constantino
2006-12-01
We consider probabilistic models of N identical distinguishable, binary random variables. If these variables are strictly or asymptotically independent, then, for N→∞, (i) the attractor in distribution space is, according to the standard central limit theorem, a Gaussian, and (ii) the Boltzmann-Gibbs-Shannon entropy S≡-∑i=1Wpln pi (where W=2 N) is extensive, meaning that S BGS( N)∼ N. If these variables have any nonvanishing global (i.e., not asymptotically independent) correlations, then the attractor deviates from the Gaussian. The entropy appears to be more robust, in the sense that, in some cases, SBGS remains extensive even in the presence of strong global correlations. In other cases, however, even weak global correlations make the entropy deviate from the normal behavior. More precisely, in such cases the entropic form Sq≡{1}/{q-1} (1-∑i=1Wpiq) (with S 1tbnd6 S BGS) can become extensive for some value of q≠1. This scenario is illustrated with several new as well as previously described models. The discussion illuminates recent progress into q-describable nonextensive probabilistic systems, and the conjectured q-Central Limit Theorem ( q-CLT) which posses a q-Gaussian attractor.
Muscle Strength, Physical Activity, and Functional Limitations in Older Adults with Central Obesity
Germain, Cassandra M.; Batsis, John A.; Vasquez, Elizabeth; McQuoid, Douglas R.
2016-01-01
Background. Obesity and muscle weakness are independently associated with increased risk of physical and functional impairment in older adults. It is unknown whether physical activity (PA) and muscle strength combined provide added protection against functional impairment. This study examines the association between muscle strength, PA, and functional outcomes in older adults with central obesity. Methods. Prevalence and odds of physical (PL), ADL, and IADL limitation were calculated for 6,388 community dwelling adults aged ≥ 60 with central obesity. Individuals were stratified by sex-specific hand grip tertiles and PA. Logistic models were adjusted for age, education, comorbidities, and body-mass index and weighted. Results. Overall prevalence of PL and ADL and IADL limitations were progressively lower by grip category. Within grip categories, prevalence was lower for individuals who were active than those who were inactive. Adjusted models showed significantly lower odds of PL OR 0.42 [0.31, 0.56]; ADL OR 0.60 [0.43, 0.84], and IADL OR 0.46 [0.35, 0.61] for those in the highest grip strength category as compared to those in the lowest grip category. Conclusion. Improving grip strength in obese elders who are not able to engage in traditional exercise is important for reducing odds of physical and functional impairment. PMID:27034833
The Star Forming Main Sequence and its Scatter as Conequences of the Central Limit Theorem
NASA Astrophysics Data System (ADS)
Kelson, Daniel
2015-01-01
Star formation rates of disk galaxies strongly correlate with stellar mass, with a small dispersion in specific star formation rate at fixed mass. With such small scattter this main sequence of star formation has been interpreted as deterministic and fundamental. Here it is demonstrated that it is a simple consequence off he central limit theorem. Treating the star formation histories of galaxies as integrable, non-differentiable functions, where stochastic changes in star formation rate in a galaxy's history are not fully independent of each other, we derive the median specific star formation rate for the flat part of the main sequence from 0
Nonergodicity and central-limit behavior for long-range Hamiltonians
NASA Astrophysics Data System (ADS)
Pluchino, A.; Rapisarda, A.; Tsallis, C.
2007-10-01
We present a molecular dynamics test of the Central-Limit Theorem (CLT) in a paradigmatic long-range-interacting many-body classical Hamiltonian system, the HMF model. We calculate sums of velocities at equidistant times along deterministic trajectories for different sizes and energy densities. We show that, when the system is in a chaotic regime (specifically, at thermal equilibrium), ergodicity is essentially verified, and the Pdfs of the sums appear to be Gaussians, consistently with the standard CLT. When the system is, instead, only weakly chaotic (specifically, along longstanding metastable Quasi-Stationary States), nonergodicity (i.e., discrepant ensemble and time averages) is observed, and robust q-Gaussian attractors emerge, consistently with recently proved generalizations of the CLT.
Upper limits to the magnetic field in central stars of planetary nebulae
Asensio Ramos, A.; Martínez González, M. J.; Manso Sainz, R.; Corradi, R. L. M.; Leone, F.
2014-06-01
More than about 20 central stars of planetary nebulae (CSPNs) have been observed spectropolarimetrically, yet no clear, unambiguous signal of the presence of a magnetic field in these objects has been found. We perform a statistical (Bayesian) analysis of all the available spectropolarimetric observations of CSPN to constrain the magnetic fields in these objects. Assuming that the stellar field is dipolar and that the dipole axis of the objects is oriented randomly (isotropically), we find that the dipole magnetic field strength is smaller than 400 G with 95% probability using all available observations. The analysis introduced allows integration of future observations to further constrain the parameters of the distribution, and it is general, so that it can be easily applied to other classes of magnetic objects. We propose several ways to improve the upper limits found here.
Central limit theorem for a class of globally correlated random variables
NASA Astrophysics Data System (ADS)
Budini, Adrián A.
2016-06-01
The standard central limit theorem with a Gaussian attractor for the sum of independent random variables may lose its validity in the presence of strong correlations between the added random contributions. Here, we study this problem for similar interchangeable globally correlated random variables. Under these conditions, a hierarchical set of equations is derived for the conditional transition probabilities. This result allows us to define different classes of memory mechanisms that depend on a symmetric way on all involved variables. Depending on the correlation mechanisms and statistics of the single variables, the corresponding sums are characterized by distinct probability densities. For a class of urn models it is also possible to characterize their domain of attraction, which, as in the standard case, is parametrized by the probability density of each random variable. Symmetric and asymmetric q -Gaussian attractors (q <1 ) arise in a particular two-state case of these urn models.
A central-limit theorem for a single-false match rate
NASA Astrophysics Data System (ADS)
Dietz, Zachariah; Schuckers, Michael E.
2010-04-01
In this paper, we present a central limit theorem (CLT) for the estimation of a false match rate for a single matching system. The false match rate is often a significant factor in an evaluation of such a matching system. To achieve the main result here we utilize the covariance/correlation structure for matching proposed by Schuckers. Along with the main result we present an illustration of the methodology here on biometric authentication data from Ross and Jain. This illustration is from resampling match decisions on three different biometric modalities: hand geometry, fingerprint and facial recognition and shows that as the number of matching pairs grows the sampling distribution for an FMR approaches a Gaussian distribution. These results suggest that statistical inference for a FMR based upon a Gaussian distribution is appropriate.
Marra, Vincenzo; Burden, Jemima J.; Thorpe, Julian R.; Smith, Ikuko T.; Smith, Spencer L.; Häusser, Michael; Branco, Tiago; Staras, Kevin
2012-01-01
Summary At small central synapses, efficient turnover of vesicles is crucial for stimulus-driven transmission, but how the structure of this recycling pool relates to its functional role remains unclear. Here we characterize the organizational principles of functional vesicles at native hippocampal synapses with nanoscale resolution using fluorescent dye labeling and electron microscopy. We show that the recycling pool broadly scales with the magnitude of the total vesicle pool, but its average size is small (∼45 vesicles), highly variable, and regulated by CDK5/calcineurin activity. Spatial analysis demonstrates that recycling vesicles are preferentially arranged near the active zone and this segregation is abolished by actin stabilization, slowing the rate of activity-driven exocytosis. Our approach reveals a similarly biased recycling pool distribution at synapses in visual cortex activated by sensory stimulation in vivo. We suggest that in small native central synapses, efficient release of a limited pool of vesicles relies on their favored spatial positioning within the terminal. PMID:23141069
On the deconfining limit in (2+1)-dimensional Yang-Mills theory
NASA Astrophysics Data System (ADS)
Abe, Yasuhiro
2010-03-01
We consider (2+1)-dimensional Yang-Mills theory on S×S×R in the framework of a Hamiltonian approach developed by Karabali, Kim and Nair. The deconfining limit in the theory can be discussed in terms of one of the S radii of the torus ( S×S), while the other radius goes to infinity. We find that the limit agrees with the previously known result for a dynamical propagator mass of a gluon. We also make comparisons with numerical data.
Supergrassmannian and large N limit of quantum field theory with bosons and fermions
Konechny, Anatoly; Turgut, O. Teoman
2002-03-01
We study a large N{sub c} limit of a two-dimensional Yang-Mills theory coupled to bosons and fermions in the fundamental representation. Extending an approach due to Rajeev we show that the limiting theory can be described as a classical Hamiltonian system whose phase space is an infinite-dimensional supergrassmannian. The linear approximation to the equations of motion and the constraint yields the 't Hooft equations for the mesonic spectrum. Two other approximation schemes to the exact equations are discussed.
Life-history variation of a neotropical thrush challenges food limitation theory
Ferretti, V.; Llambias, P.E.; Martin, T.E.
2005-01-01
Since David Lack first proposed that birds rear as many young as they can nourish, food limitation has been accepted as the primary explanation for variation in clutch size and other life-history traits in birds. The importance of food limitation in life-history variation, however, was recently questioned on theoretical grounds. Here, we show that clutch size differences between two populations of a neotropical thrush were contrary to expectations under Lack's food limitation hypothesis. Larger clutch sizes were found in a population with higher nestling starvation rate (i.e. greater food limitation). We experimentally equalized clutches between populations to verify this difference in food limitation. Our experiment confirmed greater food limitation in the population with larger mean clutch size. In addition, incubation bout length and nestling growth rate were also contrary to predictions of food limitation theory. Our results demonstrate the inability of food limitation to explain differences in several life-history traits: clutch size, incubation behaviour, parental feeding rate and nestling growth rate. These life-history traits were better explained by inter-population differences in nest predation rates. Food limitation may be less important to life history evolution in birds than suggested by traditional theory. ?? 2005 The Royal Society.
HARD X-RAY FLUX UPPER LIMITS OF CENTRAL COMPACT OBJECTS IN SUPERNOVA REMNANTS
Erdeve, I.; Kalemci, E.; Alpar, M. A.
2009-05-10
We searched for hard X-ray (20-300 keV) emission from nine central compact objects (CCOs) 1E 1207.4-5209, 1WGA J1713-3949, J082157.5-430017, J085201.4-461753, J160103.1-513353, J1613483-5055, J181852.0-150213, J185238.6+004020, and J232327.9+584843 with the International Gamma-Ray Astrophysics Laboratory observatory. We applied spectral imaging analysis and did not detect any of the sources with luminosity upper limits in the range of 10{sup 33}-10{sup 34} erg s{sup -1} in the 20-75 keV band. For nearby CCOs (less than 4 kpc), the upper-limit luminosities are an order of magnitude lower than the measured persistent hard X-ray luminosities of anomalous X-ray pulsars. This may indicate that the CCOs are low magnetic field systems with fallback disks around them.
Tau leaping of stiff stochastic chemical systems via local central limit approximation
Yang, Yushu; Rathinam, Muruhan
2013-06-01
Stiffness manifests in stochastic dynamic systems in a more complex manner than in deterministic systems; it is not only important for a time-stepping method to remain stable but it is also important for the method to capture the asymptotic variances accurately. In the context of stochastic chemical systems, time stepping methods are known as tau leaping. Well known existing tau leaping methods have shortcomings in this regard. The implicit tau method is far more stable than the trapezoidal tau method but underestimates the asymptotic variance. On the other hand, the trapezoidal tau method which estimates the asymptotic variance exactly for linear systems suffers from the fact that the transients of the method do not decay fast enough in the context of very stiff systems. We propose a tau leaping method that possesses the same stability properties as the implicit method while it also captures the asymptotic variance with reasonable accuracy at least for the test system S{sub 1}↔S{sub 2}. The proposed method uses a central limit approximation (CLA) locally over the tau leaping interval and is referred to as the LCLA-τ. The CLA predicts the mean and covariance as solutions of certain differential equations (ODEs) and for efficiency we solve these using a single time step of a suitable low order method. We perform a mean/covariance stability analysis of various possible low order schemes to determine the best scheme. Numerical experiments presented show that LCLA-τ performs favorably for stiff systems and that the LCLA-τ is also able to capture bimodal distributions unlike the CLA itself. The proposed LCLA-τ method uses a split implicit step to compute the mean update. We also prove that any tau leaping method employing a split implicit step converges in the fluid limit to the implicit Euler method as applied to the fluid limit differential equation.
Tau leaping of stiff stochastic chemical systems via local central limit approximation
NASA Astrophysics Data System (ADS)
Yang, Yushu; Rathinam, Muruhan
2013-06-01
Stiffness manifests in stochastic dynamic systems in a more complex manner than in deterministic systems; it is not only important for a time-stepping method to remain stable but it is also important for the method to capture the asymptotic variances accurately. In the context of stochastic chemical systems, time stepping methods are known as tau leaping. Well known existing tau leaping methods have shortcomings in this regard. The implicit tau method is far more stable than the trapezoidal tau method but underestimates the asymptotic variance. On the other hand, the trapezoidal tau method which estimates the asymptotic variance exactly for linear systems suffers from the fact that the transients of the method do not decay fast enough in the context of very stiff systems. We propose a tau leaping method that possesses the same stability properties as the implicit method while it also captures the asymptotic variance with reasonable accuracy at least for the test system S1↔S2. The proposed method uses a central limit approximation (CLA) locally over the tau leaping interval and is referred to as the LCLA-τ. The CLA predicts the mean and covariance as solutions of certain differential equations (ODEs) and for efficiency we solve these using a single time step of a suitable low order method. We perform a mean/covariance stability analysis of various possible low order schemes to determine the best scheme. Numerical experiments presented show that LCLA-τ performs favorably for stiff systems and that the LCLA-τ is also able to capture bimodal distributions unlike the CLA itself. The proposed LCLA-τ method uses a split implicit step to compute the mean update. We also prove that any tau leaping method employing a split implicit step converges in the fluid limit to the implicit Euler method as applied to the fluid limit differential equation.
Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian
2016-06-01
Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-02
... October 1, 1998 (63 FR 52642), and the LLP was implemented on January 1, 2000. The LLP for groundfish... Economic Zone Off Alaska; Central Gulf of Alaska License Limitation Program; Amendment 86 AGENCY: National... endorsement on licenses issued under the license limitation program (LLP) if those licenses have been used...
A Grounded Theory of Connectivity and Persistence in a Limited Residency Doctoral Program
ERIC Educational Resources Information Center
Terrell, Steven R.; Snyder, Martha M.; Dringus, Laurie P.; Maddrey, Elizabeth
2012-01-01
Limited-residency and online doctoral programs have an attrition rate significantly higher than traditional programs. This grounded-theory study focused on issues pertaining to communication between students, their peers and faculty and how interpersonal communication may affect persistence. Data were collected from 17 students actively working on…
Revising an Extension Education Website for Limited Resource Audiences Using Social Marketing Theory
ERIC Educational Resources Information Center
Francis, Sarah L.; Martin, Peggy; Taylor, Kristin
2011-01-01
Spend Smart Eat Smart (SSES), a unique website combining nutrition and food buying education for limited resource audiences (LRAs), was revised using social marketing theory to make it more appealing and relevant to LRAs (25-40 years). Focus groups and surveys identified the needs and preferences of LRAs. Needs were cooking, basic health, and…
Theoretical frameworks for testing relativistic gravity. 5: Post-Newtonian limit of Rosen's theory
NASA Technical Reports Server (NTRS)
Lee, D. L.; Caves, C. M.
1974-01-01
The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the PPN parameter alpha sub 2, which is related to the difference in propagation speeds for gravitational and electromagnetic waves. Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific but presumably special form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity--and standard solar system experiments cannot distinguish between the two theories.
Theoretical frameworks for testing relativistic gravity. V - Post-Newtonian limit of Rosen's theory
NASA Technical Reports Server (NTRS)
Lee, D. L.; Ni, W.-T.; Caves, C. M.; Will, C. M.
1976-01-01
The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the post-Newtonian parameter alpha sub 2 (which is related to the difference in propagation speeds for gravitational and electromagnetic waves). Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific (but presumably special) form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity - and standard solar system experiments cannot distinguish between the two theories.
Food limitation of sea lion pups and the decline of forage off central and southern California
McClatchie, Sam; Field, John; Thompson, Andrew R.; Gerrodette, Tim; Lowry, Mark; Fiedler, Paul C.; Watson, William; Nieto, Karen M.; Vetter, Russell D.
2016-01-01
California sea lions increased from approximately 50 000 to 340 000 animals in the last 40 years, and their pups are starving and stranding on beaches in southern California, raising questions about the adequacy of their food supply. We investigated whether the declining sea lion pup weight at San Miguel rookery was associated with changes in abundance and quality of sardine, anchovy, rockfish and market squid forage. In the last decade off central California, where breeding female sea lions from San Miguel rookery feed, sardine and anchovy greatly decreased in biomass, whereas market squid and rockfish abundance increased. Pup weights fell as forage food quality declined associated with changes in the relative abundances of forage species. A model explained 67% of the variance in pup weights using forage from central and southern California and 81% of the variance in pup weights using forage from the female sea lion foraging range. A shift from high to poor quality forage for breeding females results in food limitation of the pups, ultimately flooding animal rescue centres with starving sea lion pups. Our study is unusual in using a long-term, fishery-independent dataset to directly address an important consequence of forage decline on the productivity of a large marine predator. Whether forage declines are environmentally driven, are due to a combination of environmental drivers and fishing removals, or are due to density-dependent interactions between forage and sea lions is uncertain. However, declining forage abundance and quality was coherent over a large area (32.5–38° N) for a decade, suggesting that trends in forage are environmentally driven. PMID:27069651
Food limitation of sea lion pups and the decline of forage off central and southern California.
McClatchie, Sam; Field, John; Thompson, Andrew R; Gerrodette, Tim; Lowry, Mark; Fiedler, Paul C; Watson, William; Nieto, Karen M; Vetter, Russell D
2016-03-01
California sea lions increased from approximately 50 000 to 340 000 animals in the last 40 years, and their pups are starving and stranding on beaches in southern California, raising questions about the adequacy of their food supply. We investigated whether the declining sea lion pup weight at San Miguel rookery was associated with changes in abundance and quality of sardine, anchovy, rockfish and market squid forage. In the last decade off central California, where breeding female sea lions from San Miguel rookery feed, sardine and anchovy greatly decreased in biomass, whereas market squid and rockfish abundance increased. Pup weights fell as forage food quality declined associated with changes in the relative abundances of forage species. A model explained 67% of the variance in pup weights using forage from central and southern California and 81% of the variance in pup weights using forage from the female sea lion foraging range. A shift from high to poor quality forage for breeding females results in food limitation of the pups, ultimately flooding animal rescue centres with starving sea lion pups. Our study is unusual in using a long-term, fishery-independent dataset to directly address an important consequence of forage decline on the productivity of a large marine predator. Whether forage declines are environmentally driven, are due to a combination of environmental drivers and fishing removals, or are due to density-dependent interactions between forage and sea lions is uncertain. However, declining forage abundance and quality was coherent over a large area (32.5-38° N) for a decade, suggesting that trends in forage are environmentally driven. PMID:27069651
Experimental and theoretical examples of the value and limitations of transition state theory
NASA Technical Reports Server (NTRS)
Golden, D. M.
1979-01-01
Value and limitations of transition-state theory (TST) are reviewed. TST analyses of the temperature dependence of the 'direct' reactions CH3 + CH3CHO yields CH4 + CH3CO(1) and O + CH4 yields OH + CH3(2) are presented in detail, and other examples of TST usefulness are recalled. Limitations are discussed for bimolecular processes in terms of 'complex' vs. 'direct' mechanisms. The reaction OH + CO yields CO2 + H is discussed in this context. Limitations for unimolecular processes seem to arise only for simple bond fission processes, and recent advances are noted.
F-theory on Spin(7) manifolds: weak-coupling limit
NASA Astrophysics Data System (ADS)
Bonetti, Federico; Grimm, Thomas W.; Palti, Eran; Pugh, Tom G.
2014-02-01
F-theory on appropriately fibered Spin(7) holonomy manifolds is defined to arise as the dual of M-theory on the same space in the limit of a shrinking fiber. A class of Spin(7) orbifolds can be constructed as quotients of elliptically fibered Calabi-Yau fourfolds by an anti-holomorphic involution. The F-theory dual then exhibits one macroscopic dimension that has the topology of an interval. In this work we study the weak-coupling limit of a subclass of such constructions and identify the objects that arise in this limit. On the Type IIB side we find space-time filling O7-planes as well as O5- planes and orbifold five-planes with a (-1) FL factor localised on the interval boundaries. These orbifold planes are referred to as X5-planes and are S-dual to a D5-O5 system. For other involutions exotic O3-planes and X3-planes on top of a six-dimensional orbifold singularity can appear. We show that the objects present preserve a mutual supersymmetry of four supercharges in the bulk of the interval and two supercharges on the boundary. It follows that in the infinite-interval and weak-coupling limit full four-dimensional = 1 supersymmetry is restored, which on the Type IIA side corresponds to an enhancement of supersymmetry by winding modes in the vanishing interval limit.
A new VLA/e-MERLIN limit on central images in the gravitational lens system CLASS B1030+074
NASA Astrophysics Data System (ADS)
Quinn, Jonathan; Jackson, Neal; Tagore, Amitpal; Biggs, Andrew; Birkinshaw, Mark; Chapman, Scott; De Zotti, Gianfranco; McKean, John; Pérez-Fournon, Ismael; Scott, Douglas; Serjeant, Stephen
2016-07-01
We present the new Very Large Array 22 GHz and extended Multi-Element Remote-Linked Interferometer Network 5 GHz observations of CLASS B1030+074, a two-image strong gravitational lens system whose background source is a compact flat-spectrum radio quasar. In such systems we expect a third image of the background source to form close to the centre of the lensing galaxy. The existence and brightness of such images is important for investigation of the central mass distributions of lensing galaxies, but only one secure detection has been made so far in a galaxy-scale lens system. The noise levels achieved in our new B1030+074 images reach 3 μJy beam-1 and represent an improvement in central image constraints of nearly an order of magnitude over previous work, with correspondingly better resulting limits on the shape of the central mass profile of the lensing galaxy. Simple models with an isothermal outer power-law slope now require either the influence of a central supermassive black hole (SMBH), or an inner power-law slope very close to isothermal, in order to suppress the central image below our detection limit. Using the central mass profiles inferred from light distributions in Virgo galaxies, moved to z = 0.5, and matching to the observed Einstein radius, we now find that 45 per cent of such mass profiles should give observable central images, 10 per cent should give central images with a flux density still below our limit, and the remaining systems have extreme demagnification produced by the central SMBH. Further observations of similar objects will therefore allow proper statistical constraints to be placed on the central properties of elliptical galaxies at high redshift.
A volume-limited sample of X-ray galaxy groups and clusters - III. Central abundance drops
NASA Astrophysics Data System (ADS)
Panagoulia, E. K.; Sanders, J. S.; Fabian, A. C.
2015-02-01
We present the results of a search and study of central abundance drops in a volume-limited sample (z ≤ 0.071) of 101 X-ray galaxy groups and clusters. These are best observed in nearby, and so best resolved, groups and clusters, making our sample ideal for their detection. Out of the 65 groups and clusters in our sample for which we have abundance profiles, 8 of them have certain central abundance drops, with possible central abundance drops in another 6. All sources with central abundance drops have X-ray cavities, and all bar one exception have a central cooling time of ≤1 Gyr. These central abundance drops can be generated if the iron injected by stellar mass-loss processes in the core of these sources is in grains, which then become incorporated in the central dusty filaments. These, in turn, are dragged outwards by the bubbling feedback process in these sources. We find that data quality significantly affects the detection of central abundance drops, inasmuch as a higher number of counts in the central 20 kpc of a source makes it easier to detect a central abundance drop, as long as these counts are more than ˜13 000. On the other hand, the magnitude of the central abundance drop does not depend on the number of these counts, though the statistical significance of the measured drop does. Finally, in line with the scenario briefly outlined above, we find that, for most sources, the location of X-ray cavities acts as an upper limit to the location of the peak in the radial metallicity distribution.
Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea
NASA Astrophysics Data System (ADS)
Ziegler, Maren; Roder, Cornelia M.; Büchel, Claudia; Voolstra, Christian R.
2014-12-01
Many coral species display changing distribution patterns across coral reef depths. While changes in the underwater light field and the ability to associate with different photosynthetic symbionts of the genus Symbiodinium explain some of the variation, the limits to physiological plasticity are unknown for most corals. In the central Red Sea, colonies of the branching coral Pocillopora verrucosa are most abundant in shallow high light environments and become less abundant in water depths below 10 m. To further understand what determines this narrow distribution, we conducted a cross-depths transplant experiment looking at physiological plasticity and acclimation in regard to depth. Colonies from 5, 10, and 20 m were collected, transplanted to all depths, and re-investigated after 30 and 210 d. All coral colonies transplanted downward from shallow to deep water displayed an increase in photosynthetic light-harvesting pigments, which resulted in higher photosynthetic efficiency. Shallow-water specimens transplanted to deeper water showed a significant decrease in total protein content after 30 and 210 d under low light conditions compared to specimens transplanted to shallow and medium depths. Stable isotope data suggest that heterotrophic input of carbon was not increased under low light, and consequently, decreasing protein levels were symptomatic of decreasing photosynthetic rates that could not be compensated for through higher light-harvesting efficiency. Our results provide insights into the physiological plasticity of P. verrucosa in changing light regimes and explain the observed depth distribution pattern. Despite its high abundance in shallow reef waters, P. verrucosa possesses limited heterotrophic acclimation potential, i.e., the ability to support its mainly photoautotrophic diet through heterotrophic feeding. We conclude that P. verrucosa might be a species vulnerable to sudden changes in underwater light fields resulting from processes such as
Orbital-motion-limited theory of dust charging and plasma response
Tang, Xian-Zhu Luca Delzanno, Gian
2014-12-15
The foundational theory for dusty plasmas is the dust charging theory that provides the dust potential and charge arising from the dust interaction with a plasma. The most widely used dust charging theory for negatively charged dust particles is the so-called orbital motion limited (OML) theory, which predicts the dust potential and heat collection accurately for a variety of applications, but was previously found to be incapable of evaluating the dust charge and plasma response in any situation. Here, we report a revised OML formulation that is able to predict the plasma response and hence the dust charge. Numerical solutions of the new OML model show that the widely used Whipple approximation of dust charge-potential relationship agrees with OML theory in the limit of small dust radius compared with plasma Debye length, but incurs large (order-unity) deviation from the OML prediction when the dust size becomes comparable with or larger than plasma Debye length. This latter case is expected for the important application of dust particles in a tokamak plasma.
Sanov and central limit theorems for output statistics of quantum Markov chains
Horssen, Merlijn van; Guţă, Mădălin
2015-02-15
In this paper, we consider the statistics of repeated measurements on the output of a quantum Markov chain. We establish a large deviations result analogous to Sanov’s theorem for the multi-site empirical measure associated to finite sequences of consecutive outcomes of a classical stochastic process. Our result relies on the construction of an extended quantum transition operator (which keeps track of previous outcomes) in terms of which we compute moment generating functions, and whose spectral radius is related to the large deviations rate function. As a corollary to this, we obtain a central limit theorem for the empirical measure. Such higher level statistics may be used to uncover critical behaviour such as dynamical phase transitions, which are not captured by lower level statistics such as the sample mean. As a step in this direction, we give an example of a finite system whose level-1 (empirical mean) rate function is independent of a model parameter while the level-2 (empirical measure) rate is not.
Limited preparation contextuality in quantum theory and its relation to the Cirel'son bound
NASA Astrophysics Data System (ADS)
Banik, Manik; Bhattacharya, Some Sankar; Mukherjee, Amit; Roy, Arup; Ambainis, Andris; Rai, Ashutosh
2015-09-01
The Kochen-Specker (KS) theorem lies at the heart of the foundations of quantum mechanics. It establishes the impossibility of explaining predictions of quantum theory by any noncontextual ontological model. Spekkens generalized the notion of KS contextuality in [Phys. Rev. A 71, 052108 (2005), 10.1103/PhysRevA.71.052108] for arbitrary experimental procedures (preparation, measurement, and transformation procedures). Interestingly, later on it was shown that preparation contextuality powers parity-oblivious multiplexing [Phys. Rev. Lett. 102, 010401 (2009), 10.1103/PhysRevLett.102.010401], a two-party information theoretic game. Thus, using resources of a given operational theory, the maximum success probability achievable in such a game suffices as a bona fide measure of preparation contextuality for the underlying theory. In this work we show that preparation contextuality in quantum theory is more restricted compared to a general operational theory known as box world. Moreover, we find that this limitation of quantum theory implies the quantitative bound on quantum nonlocality as depicted by the Cirel'son bound.
Can quantum transition state theory be defined as an exact t = 0+ limit?
Jang, Seogjoo; Voth, Gregory A
2016-02-28
The definition of the classical transition state theory (TST) as a t → 0+ limit of the flux-side time correlation function relies on the assumption that simultaneous measurement of population and flux is a well defined physical process. However, the noncommutativity of the two measurements in quantum mechanics makes the extension of such a concept to the quantum regime impossible. For this reason, quantum TST (QTST) has been generally accepted as any kind of quantum rate theory reproducing the TST in the classical limit, and there has been a broad consensus that no unique QTST retaining all the properties of TST can be defined. Contrary to this widely held view, Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)] recently suggested that a true QTST can be defined as the exact t → 0+ limit of a certain kind of quantum flux-side time correlation function and that it is equivalent to the ring polymer molecular dynamics (RPMD) TST. This work seeks to question and clarify certain assumptions underlying these suggestions and their implications. First, the time correlation function used by HA as a starting expression is not related to the kinetic rate constant by virtue of linear response theory, which is the first important step in relating a t = 0+ limit to a physically measurable rate. Second, a theoretical analysis calls into question a key step in HA's proof which appears not to rely on an exact quantum mechanical identity. The correction of this makes the true t = 0+ limit of HA's QTST different from the RPMD-TST rate expression, but rather equal to the well-known path integral quantum transition state theory rate expression for the case of centroid dividing surface. An alternative quantum rate expression is then formulated starting from the linear response theory and by applying a recently developed formalism of real time dynamics of imaginary time path integrals [S. Jang, A. V. Sinitskiy, and G. A. Voth, J. Chem. Phys. 140, 154103 (2014)]. It is shown
Can quantum transition state theory be defined as an exact t = 0+ limit?
NASA Astrophysics Data System (ADS)
Jang, Seogjoo; Voth, Gregory A.
2016-02-01
The definition of the classical transition state theory (TST) as a t → 0+ limit of the flux-side time correlation function relies on the assumption that simultaneous measurement of population and flux is a well defined physical process. However, the noncommutativity of the two measurements in quantum mechanics makes the extension of such a concept to the quantum regime impossible. For this reason, quantum TST (QTST) has been generally accepted as any kind of quantum rate theory reproducing the TST in the classical limit, and there has been a broad consensus that no unique QTST retaining all the properties of TST can be defined. Contrary to this widely held view, Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)] recently suggested that a true QTST can be defined as the exact t → 0+ limit of a certain kind of quantum flux-side time correlation function and that it is equivalent to the ring polymer molecular dynamics (RPMD) TST. This work seeks to question and clarify certain assumptions underlying these suggestions and their implications. First, the time correlation function used by HA as a starting expression is not related to the kinetic rate constant by virtue of linear response theory, which is the first important step in relating a t = 0+ limit to a physically measurable rate. Second, a theoretical analysis calls into question a key step in HA's proof which appears not to rely on an exact quantum mechanical identity. The correction of this makes the true t = 0+ limit of HA's QTST different from the RPMD-TST rate expression, but rather equal to the well-known path integral quantum transition state theory rate expression for the case of centroid dividing surface. An alternative quantum rate expression is then formulated starting from the linear response theory and by applying a recently developed formalism of real time dynamics of imaginary time path integrals [S. Jang, A. V. Sinitskiy, and G. A. Voth, J. Chem. Phys. 140, 154103 (2014)]. It is shown
Kinetic theory of a two-dimensional magnetized plasma. II - Balescu-Lenard limit.
NASA Technical Reports Server (NTRS)
Vahala, G.
1972-01-01
The kinetic theory of a two-dimensional one-species plasma in a uniform dc magnetic field is investigated in the small plasma parameter limit. The plasma consists of charged rods interacting through the logarithmic Coulomb potential. Vahala and Montgomery earlier (1971) derived a Fokker-Planck equation for this system, but it contained a divergent integral, which had to be cut off on physical grounds. This cutoff is compared to the standard cutoff introduced in the two-dimensional unmagnetized Fokker-Planck equation. In the small plasma parameter limit, it is shown that the Balescu-Lenard collision term is zero in the long time average limit if only two-body interactions are considered. The energy transfer from a test particle to an equilibrium plasma is discussed and is also shown to be zero in the long time average limit. This supports the unexpected result of zero Balescu-Lenard collision term.
Chiral Lagrangians from lattice gauge theories in the strong coupling limit
Nagao, Taro; Nishigaki, Shinsuke M.
2001-07-01
We derive nonlinear {sigma} models (chiral Lagrangians) over symmetric spaces U(n), U(2n)/Sp(2n), and U(2n)/O(2n) from U(N), O(N), and Sp(2N) lattice gauge theories coupled to n flavors of staggered fermions, in the large-N and g{sup 2}N limit. To this end, we employ Zirnbauer{close_quote}s color-flavor transformation. We prove the spatial homogeneity of the vacuum configurations of mesons by explicitly solving the large-N saddle point equations, and thus establish these patterns of spontaneous chiral symmetry breaking in the above limit.
Beyond Orbital-Motion-Limited theory effects for dust transport in tokamaks
Delzanno, Gian Luca; Tang, Xianzhu
2015-05-29
Dust transport in tokamaks is very important for ITER. Can many kilograms of dust really accumulate in the device? Can the dust survive? The conventional dust transport model is based on Orbital-Motion-Limited theory (OML). But OML can break in the limit where the dust grain becomes positively charged due to electron emission processes because it overestimates the dust collected power. An OML^{+} approximation of the emitted electrons trapped/passing boundary is shown to be in good agreement with PIC simulations.
Living with limited time: Socioemotional selectivity theory in the context of health adversity.
Sullivan-Singh, Sarah J; Stanton, Annette L; Low, Carissa A
2015-06-01
The current research was designed to test the applicability of socioemotional selectivity theory (SST; Carstensen, 2006), a life span theory that posits that perceived time remaining in life (time perspective) is a critical determinant of motivation, to individuals who face foreshortened futures (limited time perspective) due to life-limiting medical illness. In Study 1, we investigated whether life goals and biases in attention and memory for valenced emotional stimuli differed between women living with metastatic breast cancer (n = 113; theoretically living under greater limited time perspective than peers without cancer) and similarly aged women without a cancer diagnosis (n = 50; theoretically living under greater expansive time perspective than peers with cancer) in accordance with SST. As hypothesized, metastatic group goals reflected greater emphasis on limited versus expansive time perspective relative to comparison group goals. Hypotheses regarding biases in attention and memory were not supported. Study 2 followed metastatic group participants over 3 months and revealed that, consistent with hypotheses, whereas limited time perspective goals predicted decreased intrusive thoughts about cancer, expansive time perspective goals predicted decreased perceived cancer-related benefits. Together, these studies suggest that SST is a useful lens through which to view some components of motivation and psychological adjustment among individuals confronting medically foreshortened futures. PMID:25984789
Living With Limited Time: Socioemotional Selectivity Theory in the Context of Health Adversity
Sullivan-Singh, Sarah J.; Stanton, Annette L.; Low, Carissa A.
2016-01-01
The current research was designed to test the applicability of socioemotional selectivity theory (SST; Carstensen, 2006), a life span theory that posits that perceived time remaining in life (time perspective) is a critical determinant of motivation, to individuals who face foreshortened futures (limited time perspective) due to life-limiting medical illness. In Study 1, we investigated whether life goals and biases in attention and memory for valenced emotional stimuli differed between women living with metastatic breast cancer (n = 113; theoretically living under greater limited time perspective than peers without cancer) and similarly aged women without a cancer diagnosis (n = 50; theoretically living under greater expansive time perspective than peers with cancer) in accordance with SST. As hypothesized, metastatic group goals reflected greater emphasis on limited versus expansive time perspective relative to comparison group goals. Hypotheses regarding biases in attention and memory were not supported. Study 2 followed metastatic group participants over 3 months and revealed that, consistent with hypotheses, whereas limited time perspective goals predicted decreased intrusive thoughts about cancer, expansive time perspective goals predicted decreased perceived cancer-related benefits. Together, these studies suggest that SST is a useful lens through which to view some components of motivation and psychological adjustment among individuals confronting medically foreshortened futures. PMID:25984789
Taylor's power law and fluctuation scaling explained by a central-limit-like convergence
NASA Astrophysics Data System (ADS)
Kendal, Wayne S.; Jørgensen, Bent
2011-06-01
A power function relationship observed between the variance and the mean of many types of biological and physical systems has generated much debate as to its origins. This Taylor's law (or fluctuation scaling) has been recently hypothesized to result from the second law of thermodynamics and the behavior of the density of states. This hypothesis is predicated on physical quantities like free energy and an external field; the correspondence of these quantities with biological systems, though, remains unproven. Questions can be posed as to the applicability of this hypothesis to the diversity of observed phenomena as well as the range of spatial and temporal scales observed with Taylor's law. We note that the cumulant generating functions derived from this thermodynamic model correspond to those derived over a quarter century earlier for a class of probabilistic models known as the Tweedie exponential dispersion models. These latter models are characterized by variance-to-mean power functions; their phenomenological basis rests with a central-limit-theorem-like property that causes many statistical systems to converge mathematically toward a Tweedie form. We review evaluations of the Tweedie Poisson-gamma model for Taylor's law and provide three further cases to test: the clustering of single nucleotide polymorphisms (SNPs) within the horse chromosome 1, the clustering of genes within human chromosome 8, and the Mertens function. This latter case is a number theoretic function for which a thermodynamic model cannot explain Taylor's law, but where Tweedie convergence remains applicable. The Tweedie models are applicable to diverse biological, physical, and mathematical phenomena that express power variance functions over a wide range of measurement scales; they provide a probabilistic description for Taylor's law that allows mechanistic insight into complex systems without the assumption of a thermodynamic mechanism.
The Star-Forming Main Sequence as a Natural Consequence of the Central Limit Theorem
NASA Astrophysics Data System (ADS)
Kelson, Daniel David
2015-08-01
Star-formation rates (SFR) of disk galaxies correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here I demonstrate that such a correlation arises naturally from the central limit theorem. The derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk, where the expectation of SFR at any time is equal to the SFR at the previous time. The SFRs of real galaxies, however, do not experience wholly random stochastic changes over time, but change in a highly correlated fashion due to the long reach of gravity and the correlation of structure in the universe. We therefore generalize the results for star-formation as a stochastic process that has random correlations over random and potentially infinite timescales. For unbiased samples of (disk) galaxies we derive expectation values for SSFR and its scatter, such that
On gauge enhancement and singular limits in G 2 compactifications of M-theory
NASA Astrophysics Data System (ADS)
Halverson, James; Morrison, David R.
2016-04-01
We study the physics of singular limits of G 2 compactifications of M-theory, which are necessary to obtain a compactification with non-abelian gauge symmetry or massless charged particles. This is more difficult than for Calabi-Yau compactifications, due to the absence of calibrated two-cycles that would have allowed for direct control of W-boson masses as a function of moduli. Instead, we study the relationship between gauge enhancement and singular limits in G 2 moduli space where an associative or coassociative submanifold shrinks to zero size; this involves the physics of topological defects and sometimes gives indirect control over particle masses, even though they are not BPS. We show how a lemma of Joyce associates the class of a three-cycle to any U(1) gauge theory in a smooth G 2 compactification. If there is an appropriate associative submanifold in this class then in the limit of nonabelian gauge symmetry it may be interpreted as a gauge theory worldvolume and provides the location of the singularities associated with non-abelian gauge or matter fields. We identify a number of gauge enhancement scenarios related to calibrated submanifolds, including Coulomb branches and non-isolated conifolds, and also study examples that realize them.
Symmetry limit theory for cantilever beam-columns subjected to cyclic reversed bending
NASA Astrophysics Data System (ADS)
Uetani, K.; Nakamura, Tsuneyoshi
THE BEHAVIOR of a linear strain-hardening cantilever beam-column subjected to completely reversed plastic bending of a new idealized program under constant axial compression consists of three stages: a sequence of symmetric steady states, a subsequent sequence of asymmetric steady states and a divergent behavior involving unbounded growth of an anti-symmetric deflection mode. A new concept "symmetry limit" is introduced here as the smallest critical value of the tip-deflection amplitude at which transition from a symmetric steady state to an asymmetric steady state can occur in the response of a beam-column. A new theory is presented for predicting the symmetry limits. Although this transition phenomenon is phenomenologically and conceptually different from the branching phenomenon on an equilibrium path, it is shown that a symmetry limit may theoretically be regarded as a branching point on a "steady-state path" defined anew. The symmetry limit theory and the fundamental hypotheses are verified through numerical analysis of hysteretic responses of discretized beam-column models.
Soutschek, Alexander; Taylor, Paul C J; Schubert, Torsten
2016-09-01
When humans perform two tasks simultaneously, responses to the second task are increasingly delayed as the interval between the two tasks decreases (psychological refractory period). This delay of the second task is thought to reflect a central processing limitation at the response selection stage. However, the neural mechanisms underlying this central processing limitation remain unclear. Using transcranial magnetic stimulation (TMS), we examined the role of the dorsal medial frontal cortex (dMFC) in a dual-task paradigm in which participants performed an auditory task 1 and a visual task 2. We found that dMFC TMS, relative to control conditions, reduced the psychological refractory period for task 2 processing, whereas we observed no dMFC TMS effects on task 1 processing. This suggests a causal role of the dMFC in coordinating response selection processes at the central bottleneck. PMID:27083589
ERIC Educational Resources Information Center
Yu, Chong Ho; And Others
Central limit theorem (CLT) is considered an important topic in statistics, because it serves as the basis for subsequent learning in other crucial concepts such as hypothesis testing and power analysis. There is an increasing popularity in using dynamic computer software for illustrating CLT. Graphical displays do not necessarily clear up…
Toward a limited realism for psychiatric nosology based on the coherence theory of truth.
Kendler, K S
2015-04-01
A fundamental debate in the philosophy of science is whether our central concepts are true or only useful instruments to help predict and manipulate the world. The first position is termed 'realism' and the second 'instrumentalism'. Strong support for the instrumentalist position comes from the 'pessimistic induction' (PI) argument. Given that many key scientific concepts once considered true (e.g., humors, ether, epicycles, phlogiston) are now considered false, how, the argument goes, can we assert that our current concepts are true? The PI argument applies strongly to psychiatric diagnoses. Given our long history of abandoned diagnoses, arguments that we have finally 'gotten it right' and developed definitive psychiatric categories that correspond to observer-independent reality are difficult to defend. For our current diagnostic categories, we should settle for a less ambitious vision of truth. For this, the coherence theory, which postulates that something is true when it fits well with the other things we confidently know about the world, can serve us well. Using the coherence theory, a diagnosis is real to the extent that it is well integrated into our accumulating scientific data base. Furthermore, the coherence theory establishes a framework for us to evaluate our diagnostic categories and can provide a set of criteria, closely related to our concept of validators, for deciding when they are getting better. Finally, we need be much less skeptical about the truth status of the aggregate concept of psychiatric illness than we are regarding the specific categories in our current nosology. PMID:25181016
Chandrasekhar limit: an elementary approach based on classical physics and quantum theory
NASA Astrophysics Data System (ADS)
Pinochet, Jorge; Van Sint Jan, Michael
2016-05-01
In a brief article published in 1931, Subrahmanyan Chandrasekhar made public an important astronomical discovery. In his article, the then young Indian astrophysicist introduced what is now known as the Chandrasekhar limit. This limit establishes the maximum mass of a stellar remnant beyond which the repulsion force between electrons due to the exclusion principle can no longer stop the gravitational collapse. In the present article, we create an elemental approximation to the Chandrasekhar limit, accessible to non-graduate science and engineering students. The article focuses especially on clarifying the origins of Chandrasekhar’s discovery and the underlying physical concepts. Throughout the article, only basic algebra is used as well as some general notions of classical physics and quantum theory.
Detailed numerical investigation of the Bohm limit in cosmic ray diffusion theory
Hussein, M.; Shalchi, A. E-mail: andreasm4@yahoo.com
2014-04-10
A standard model in cosmic ray diffusion theory is the so-called Bohm limit in which the particle mean free path is assumed to be equal to the Larmor radius. This type of diffusion is often employed to model the propagation and acceleration of energetic particles. However, recent analytical and numerical work has shown that standard Bohm diffusion is not realistic. In the present paper, we perform test-particle simulations to explore particle diffusion in the strong turbulence limit in which the wave field is much stronger than the mean magnetic field. We show that there is indeed a lower limit of the particle mean free path along the mean field. In this limit, the mean free path is directly proportional to the unperturbed Larmor radius like in the traditional Bohm limit, but it is reduced by the factor δB/B {sub 0} where B {sub 0} is the mean field and δB the turbulent field. Although we focus on parallel diffusion, we also explore diffusion across the mean field in the strong turbulence limit.
Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory
Nielsen, H.B.; Rugh, H.H.; Rugh, S.E.
1996-12-31
We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a {open_quote}no go{close_quotes} for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a {open_quotes}continuum limit{close_quotes} in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined.
NASA Astrophysics Data System (ADS)
Rowe, D. J.; McCoy, A. E.; Caprio, M. A.
2016-03-01
The nuclear collective models introduced by Bohr, Mottelson and Rainwater, together with the Mayer-Jensen shell model, have provided the central framework for the development of nuclear physics. This paper reviews the microscopic evolution of the collective models and their underlying foundations. In particular, it is shown that the Bohr-Mottelson models have expressions as macroscopic limits of microscopic models that have precisely defined expressions in many-nucleon quantum mechanics. Understanding collective models in this way is especially useful because it enables the analysis of nuclear properties in terms of them to be revisited and reassessed in the light of their microscopic foundations.
Occupancy of phase space, extensivity of Sq, and q-generalized central limit theorem
NASA Astrophysics Data System (ADS)
Tsallis, Constantino
2006-06-01
Increasing the number N of elements of a system typically makes the entropy to increase. The question arises on what particular entropic form we have in mind and how it increases with N. Thermodynamically speaking it makes sense to choose an entropy which increases linearly with N for large N, i.e., which is extensive. If the N elements are probabilistically independent (no interactions) or quasi-independent (e.g., short-range interacting), it is known that the entropy which is extensive is that of Boltzmann-Gibbs-Shannon, SBG≡-k∑i=1Wpilnpi. If they are, however, globally correlated (e.g., through long-range interactions), the answer depends on the particular nature of the correlations. There is a large class of correlations (in one way or another related to scale-invariance) for which an appropriate entropy is that on which nonextensive statistical mechanics is based, i.e., Sq≡k(1-∑i=1Wpiq)/q-1 ( S1=SBG), where q is determined by the specific correlations. We briefly review and illustrate these ideas through simple examples of occupation of phase space. A very similar scenario emerges with regard to the central limit theorem (CLT). If the variables that are being summed are independent (or quasi-independent, in the sense that they gradually become independent if N→∞), two basic possibilities exist: if the variance of the random variables that are being composed is finite, the N→∞ attractor in the space of distributions is a Gaussian, whereas if it diverges, it is a Lévy distribution. If the variables that are being summed are however globally correlated, there is no reason to expect the usual CLTs to hold. The N→∞ attractor is expected to depend on the nature of the correlations. That class of correlations (or part of it) that makes Sq to be extensive for q≠1 is expected to have a qe-Gaussian as its N→∞ attractor, where qe depends on q [ qe(q) such that qe(1)=1], and where qe-Gaussians are proportional to [1-(1-qe)β x2] ( β>0; qe<3
Advantages and limitations of density functional theory in block copolymer directed self-assembly
NASA Astrophysics Data System (ADS)
Liu, Jimmy; Laachi, Nabil; Delaney, Kris T.; Fredrickson, Glenn H.
2015-03-01
A major challenge in the application of block copolymer directed self-assembly (DSA) to advanced lithography is the exploration of large design spaces, including the selection of confinement shape and size, surface chemistry to affect wetting conditions, copolymer chain length and block fraction. To sweep such large spaces, a computational model is ideally both fast and accurate. In this study, we investigate various incarnations of the density functional theory (DFT) approach and evaluate their suitability to DSA applications. We introduce a new optimization scheme to capitalize on the speed advantages of DFT, while minimizing loss of accuracy relative to the benchmark of self-consistent field theory (SCFT). Although current DFT models afford a 100-fold reduction in computational complexity over SCFT, even the best optimized models fail to match SCFT density profiles and make extremely poor predictions of commensurability windows and defect energetics. These limitations suggest that SCFT will remain the gold standard for DSA simulations in the near future.
Theory of cylindrical and spherical Langmuir probes in the limit of vanishing Debye number
Parrot, M.J.M.; Storey, L.R.O.; Parker, L.W.; Laframboise, J.G.
1982-12-01
A theory has been developed for cylindrical and spherical probes and other collectors in collisionless plasmas, in the limit where the ratio of Debye length to probe radius (the Debye number lambda/sub D/) vanishes. Results are presented for the case of equal electron and ion temperatures. On the scale of the probe radius, the distributions of potential and density in the presheath appear to have infinite slope at the probe surface. The dimensionless current--voltage characteristic is the same for the cylinder as for the sphere, within the limits of error of the numerical results, although no physical reason for this is evident. As the magnitude of probe potential (relative to space) increases, the current does not saturate abruptly but only asymptotically; its limiting value is about 45% larger than at space potential. Probe currents for small nonzero lambda/sub D/ approach those for zero lambda/sub D/ only very slowly, showing power-law behavior as function of lambda/sub D/ in the limit as lambda/sub D/ ..-->.. 0, with power-law exponents less than unity, resulting in infinite limiting derivatives with respect to lambda/sub D/.
Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A
Nunes Bastos, Ricardo; Gandhi, Sapan R.; Baron, Ryan D.; Gruneberg, Ulrike; Nigg, Erich A.
2013-01-01
Anaphase central spindle formation is controlled by the microtubule-stabilizing factor PRC1 and the kinesin KIF4A. We show that an MKlp2-dependent pool of Aurora B at the central spindle, rather than global Aurora B activity, regulates KIF4A accumulation at the central spindle. KIF4A phosphorylation by Aurora B stimulates the maximal microtubule-dependent ATPase activity of KIF4A and promotes its interaction with PRC1. In the presence of phosphorylated KIF4A, microtubules grew more slowly and showed long pauses in growth, resulting in the generation of shorter PRC1-stabilized microtubule overlaps in vitro. Cells expressing only mutant forms of KIF4A lacking the Aurora B phosphorylation site overextended the anaphase central spindle, demonstrating that this regulation is crucial for microtubule length control in vivo. Aurora B therefore ensures that suppression of microtubule dynamic instability by KIF4A is restricted to a specific subset of microtubules and thereby contributes to central spindle size control in anaphase. PMID:23940115
NASA Technical Reports Server (NTRS)
Ni, W.-T.
1972-01-01
Metric theories of gravity are compiled and classified according to the types of gravitational fields they contain, and the modes of interaction among those fields. The gravitation theories considered are classified as (1) general relativity, (2) scalar-tensor theories, (3) conformally flat theories, and (4) stratified theories with conformally flat space slices. The post-Newtonian limit of each theory is constructed and its Parametrized Post-Newtonian (PPN) values are obtained by comparing it with Will's version of the formalism. Results obtained here, when combined with experimental data and with recent work by Nordtvedt and Will and by Ni, show that, of all theories thus far examined by our group, the only currently viable ones are general relativity, the Bergmann-Wagoner scalar-tensor theory and its special cases (Nordtvedt; Brans-Dicke-Jordan), and a recent, new vector-tensor theory by Nordtvedt, Hellings, and Will.
Energy Densities in the Strong-Interaction Limit of Density Functional Theory.
Mirtschink, André; Seidl, Michael; Gori-Giorgi, Paola
2012-09-11
We discuss energy densities in the strong-interaction limit of density functional theory, deriving an exact expression within the definition (gauge) of the electrostatic potential of the exchange-correlation hole. Exact results for small atoms and small model quantum dots (Hooke's atoms) are compared with available approximations defined in the same gauge. The idea of a local interpolation along the adiabatic connection is discussed, comparing the energy densities of the Kohn-Sham, the physical, and the strong-interacting systems. We also use our results to analyze the local version of the Lieb-Oxford bound, widely used in the construction of approximate exchange-correlation functionals. PMID:26605721
Unique laminar-flow stability limit based shallow-water theory
Chen, Cheng-lung
1993-01-01
Two approaches are generally taken in deriving the stability limit for the Froude member (Fs) for laminar sheet flow. The first approach used the Orr-Sommerfeld equation, while the second uses the cross-section-averaged equations of continuity and motion. Because both approaches are based on shallow-water theory, the values of Fs obtained from both approaches should be identical, yet in the literature they are not. This suggests that a defect exists in at least one of the two approaches. After examining the governing equations used in both approaches, one finds that the existing cross-section -averaged equation of motion is dependent on the frame of reference.
Ecological optimality in water-limited natural soil-vegetation systems. I - Theory and hypothesis
NASA Technical Reports Server (NTRS)
Eagleson, P. S.
1982-01-01
The solution space of an approximate statistical-dynamic model of the average annual water balance is explored with respect to the hydrologic parameters of both soil and vegetation. Within the accuracy of this model it is shown that water-limited natural vegetation systems are in stable equilibrium with their climatic and pedologic environments when the canopy density and species act to minimize average water demand stress. Theory shows a climatic limit to this equilibrium above which it is hypothesized that ecological pressure is toward maximization of biomass productivity. It is further hypothesized that natural soil-vegetation systems will develop gradually and synergistically, through vegetation-induced changes in soil structure, toward a set of hydraulic soil properties for which the minimum stress canopy density of a given species is maximum in a given climate. Using these hypotheses, only the soil effective porosity need be known to determine the optimum soil and vegetation parameters in a given climate.
Theory of deviations from the limiting near-dissociation behavior of diatomic molecules
NASA Astrophysics Data System (ADS)
Le Roy, R. J.
1980-12-01
The nature of the deviations from the limiting near-dissociation behavior of diatomic molecule properties is investigated. It is shown that for strongly bound species the leading deviations from the limiting behavior associated with the asymptotically dominant potential energy term can be quantitatively attributed to the higher inverse power terms contributing to the long-range potential. The properties of the derived expressions show that experimental vibrational energies should often obey the limiting near-dissociation equation even when the dominant potential energy term is responsible for only a fraction of the potential strength at the levels' outer turning points. In contrast, rotational constant values (and other properties) are quite sensitive to the presence of additional contributions to the long-range potential, and deviations from their predicted limiting behavior should provide a sensitive new means of determining values of higher-order potential coefficients. The theory is illustrated by and tested against results for B(3 Pi Ou +) state I2 and for simple model potentials.
Forecasting sales of new vehicle with limited data using Bass diffusion model and Grey theory
NASA Astrophysics Data System (ADS)
Abu, Noratikah; Ismail, Zuhaimy
2015-02-01
New product forecasting is a process that determines a reasonable estimate of sales attainable under a given set of conditions. There are several new products forecasting method in practices and Bass Diffusion Model (BDM) is one of the most common new product diffusion model used in many industries to forecast new product and technology. Hence, this paper proposed a combining BDM with Grey theory to forecast sales of new vehicle in Malaysia that certainly have limited data to build a model on. The aims of this paper is to examine the accuracy of different new product forecasting models and thus identify which is the best among the basic BDM and combining BDM with Grey theory. The results show that combining BDM with Grey theory performs better than the basic BDM based on in-sample and out-sample mean absolute percentage error (MAPE). Results also reveals combining model forecast more effectively and accurately even with insufficient previous data on the new vehicle in Malaysia.
Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations
Delzanno, Gian Luca Tang, Xian-Zhu
2015-11-15
The Orbital-Motion-Limited (OML) theory has been modified to predict the dust charge and the results were contrasted with the Whipple approximation [X. Z. Tang and G. L. Delzanno, Phys. Plasmas 21, 123708 (2014)]. To further establish its regime of applicability, in this paper, the OML predictions (for a non-electron-emitting, spherical dust grain at rest in a collisionless, unmagnetized plasma) are compared with particle-in-cell simulations that retain the absorption radius effect. It is found that for large dust grain radius r{sub d} relative to the plasma Debye length λ{sub D}, the revised OML theory remains a very good approximation as, for the parameters considered (r{sub d}/λ{sub D} ≤ 10, equal electron and ion temperatures), it yields the dust charge to within 20% accuracy. This is a substantial improvement over the Whipple approximation. The dust collected currents and energy fluxes, which remain the same in the revised and standard OML theories, are accurate to within 15%–30%.
NASA Astrophysics Data System (ADS)
Gainutdinov, A. M.; Read, N.; Saleur, H.; Vasseur, R.
2015-05-01
The periodic sℓ(2|1) alternating spin chain encodes (some of) the properties of hulls of percolation clusters, and is described in the continuum limit by a logarithmic conformal field theory (LCFT) at central charge c = 0. This theory corresponds to the strong coupling regime of a sigma model on the complex projective superspace CP 1|1 = U(2|1) /(U(1) × U(1|1)), and the spectrum of critical exponents can be obtained exactly. In this paper we push the analysis further, and determine the main representation theoretic (logarithmic) features of this continuum limit by extending to the periodic case the approach of [1] [N. Read and H. Saleur, Nucl. Phys. B 777 (2007) 316]. We first focus on determining the representation theory of the finite size spin chain with respect to the algebra of local energy densities provided by a representation of the affine Temperley-Lieb algebra at fugacity one. We then analyze how these algebraic properties carry over to the continuum limit to deduce the structure of the space of states as a representation over the product of left and right Virasoro algebras. Our main result is the full structure of the vacuum module of the theory, which exhibits Jordan cells of arbitrary rank for the Hamiltonian.
Padmanabhan, Hamsa; Padmanabhan, T.
2011-10-15
We discuss the nonrelativistic limit of quantum field theory in an inertial frame, in the Rindler frame and in the presence of a weak gravitational field, and attempt to highlight and clarify several subtleties. In particular, we study the following issues: (a) While the action for a relativistic free particle is invariant under the Lorentz transformation, the corresponding action for a nonrelativistic free particle is not invariant under the Galilean transformation, but picks up extra contributions at the end points. This leads to an extra phase in the nonrelativistic wave function under a Galilean transformation, which can be related to the rest energy of the particle even in the nonrelativistic limit. We show that this is closely related to the peculiar fact that the relativistic action for a free particle remains invariant even if we restrict ourselves to O(1/c{sup 2}) in implementing the Lorentz transformation. (b) We provide a brief critique of the principle of equivalence in the quantum mechanical context. In particular, we show how solutions to the generally covariant Klein-Gordon equation in a noninertial frame, which has a time-dependent acceleration, reduce to the nonrelativistic wave function in the presence of an appropriate (time-dependent) gravitational field in the c{yields}{infinity} limit, and relate this fact to the validity of the principle of equivalence in a quantum mechanical context. We also show that the extra phase acquired by the nonrelativistic wave function in an accelerated frame, actually arises from the gravitational time dilation and survives in the nonrelativistic limit. (c) While the solution of the Schroedinger equation can be given an interpretation as being the probability amplitude for a single particle, such an interpretation fails in quantum field theory. We show how, in spite of this, one can explicitly evaluate the path integral using the (nonquadratic) action for a relativistic particle (involving a square root) and
NASA Astrophysics Data System (ADS)
Salgado-García, R.; Maldonado, Cesar
2013-12-01
We study the diffusion of an ensemble of overdamped particles sliding over a tilted random potential (produced by the interaction of a particle with a random polymer) with long-range correlations. We found that the diffusion properties of such a system are closely related to the correlation function of the corresponding potential. We model the substrate as a symbolic trajectory of a shift space which enables us to obtain a general formula for the diffusion coefficient when normal diffusion occurs. The total time that the particle takes to travel through n monomers can be seen as an ergodic sum to which we can apply the central limit theorem. The latter can be implemented if the correlations decay fast enough in order for the central limit theorem to be valid. On the other hand, we presume that when the central limit theorem breaks down the system give rise to anomalous diffusion. We give two examples exhibiting a transition from normal to anomalous diffusion due to this mechanism. We also give analytical expressions for the diffusion exponents in both cases by assuming convergence to a stable law. Finally we test our predictions by means of numerical simulations.
Salgado-García, R; Maldonado, Cesar
2013-12-01
We study the diffusion of an ensemble of overdamped particles sliding over a tilted random potential (produced by the interaction of a particle with a random polymer) with long-range correlations. We found that the diffusion properties of such a system are closely related to the correlation function of the corresponding potential. We model the substrate as a symbolic trajectory of a shift space which enables us to obtain a general formula for the diffusion coefficient when normal diffusion occurs. The total time that the particle takes to travel through n monomers can be seen as an ergodic sum to which we can apply the central limit theorem. The latter can be implemented if the correlations decay fast enough in order for the central limit theorem to be valid. On the other hand, we presume that when the central limit theorem breaks down the system give rise to anomalous diffusion. We give two examples exhibiting a transition from normal to anomalous diffusion due to this mechanism. We also give analytical expressions for the diffusion exponents in both cases by assuming convergence to a stable law. Finally we test our predictions by means of numerical simulations. PMID:24483421
Pine (Pinus sylvestris L. ) tree-limit surveillance during recent decades, central Sweden
Kullman, L. )
1993-02-01
The altitudinal tree-limit of Scots pine (Pinus sylvestris L.) has been surveyed at the population level since the early- and mid-1970s in the Swedish Scandes. Elevational tree-limit advance was recorded for the majority of sites, despite statistically stable, although highly fluctuating climate with clusters of exceptionally cold winters and many relatively cool summers. The new tree-limit derived from pines established in the late 1950s. Tree-limit rise was concurrent with net population decline for the period 1972 to 1991, mainly as a result of failing regeneration. The main factor of individual vitality depression and mortality was deduced to be winter desiccation. The progressive tree-limit has a tendency for slow upslope advance during periods of climatic stability, even if punctuated by shorter events of unfavorable climate. Pine tree-limit dynamics is suggested to be a complex of climate/age/disturbance interactions. The tree-limit may decline altitudinally mainly in response to secular climate cooling, which makes it best suited for surveying sustained climatic trends and analogous paleoclimatic reconstruction. 51 refs., 12 figs., 1 tabs.
ERIC Educational Resources Information Center
Pellicano, Elizabeth
2010-01-01
There is strong evidence to suggest that individuals with autism show atypicalities in multiple cognitive domains, including theory of mind (ToM), executive function (EF), and central coherence (CC). In this study, the longitudinal relationships among these 3 aspects of cognition in autism were investigated. Thirty-seven cognitively able children…
Strings on AdS2 and the high-energy limit of noncritical M-theory
Horava, Petr; Horava, Petr; Keeler, Cynthia A.
2007-04-16
Abstract. Noncritical M-theory in 2+1 dimensions has been defined as a double-scaling limit of a nonrelativistic Fermi liquid on a flat two-dimensional plane. Here we study this noncritical M-theory in the limit of high energies, analogous to the alpha' --> infinity limit of string theory. In the related case of two-dimensional Type 0A strings, it has been argued that the conformal alpha' --> infinity limit leads to AdS_2 with a propagating fermion whose mass is set by the value of the RR flux. Here we provide evidence that in the high-energy limit, the natural ground state of noncritical M-theory similarly describes the AdS_2 x S1 spacetime, with a massless propagating fermion. We argue that the spacetime effective theory in this background is captured by a topological higher-spin extension of conformal Chern-Simons gravity in 2+1 dimensions, consistently coupled to a massless Dirac field. Intriguingly, the two-dimensional plane populated by the original nonrelativistic fermions is essentially the twistor space associated with the symmetry group of the AdS_2 x S1 spacetime; thus, at least in the high-energy limit, noncritical M-theory can be nonperturbatively described as a"Fermi liquid on twistor space.''
Drivers' compliance with speed limits: an application of the theory of planned behavior.
Elliott, Mark A; Armitage, Christopher J; Baughan, Christopher J
2003-10-01
The theory of planned behavior (TPB; I. Ajzen, 1985) was applied to drivers' compliance with speed limits. Questionnaire data were collected for 598 drivers at 2 time points separated by 3 months. TPB variables, demographic information, and self-reported prior behavior were measured at Time 1, and self-reported subsequent behavior was measured at Time 2. In line with the TPB, attitude, subjective norm, and perceived control were positively associated with behavioral intention, and intention and perceived control were positively associated with subsequent behavior. TPB variables mediated the effects of age and gender on behavior. Prior behavior was found to moderate the perceived control-intention and perceived control-subsequent behavior relationships. Practical implications of the findings for road safety and possible avenues for further research are discussed. PMID:14516256
Mitchell, Katharyne; Elwood, Sarah
2015-01-01
Reflecting wider debates in the discipline, recent scholarship in children’s geographies has focused attention on the meanings of the political. While supportive of work that opens up new avenues for conceptualizing politics beyond the liberal rational subject, we provide a critique of research methods which delink politics from historical context and relations of power. Focusing on the use of nonrepresentational theory as a research methodology, the paper points to the limits of this approach for children’s political formation as well as for sustained scholarly collaboration. We argue instead for a politics of articulation, in the double sense of communication and connection. An empirical case study is used as an illustrative example. PMID:25635154
Coarse-grained spin density-functional theory: Infinite-volume limit via the hyperfinite
NASA Astrophysics Data System (ADS)
Lammert, Paul E.
2013-06-01
Coarse-grained spin density functional theory (SDFT) is a version of SDFT which works with number/spin densities specified to a limited resolution — averages over cells of a regular spatial partition — and external potentials constant on the cells. This coarse-grained setting facilitates a rigorous investigation of the mathematical foundations which goes well beyond what is currently possible in the conventional formulation. Problems of existence, uniqueness, and regularity of representing potentials in the coarse-grained SDFT setting are here studied using techniques of (Robinsonian) nonstandard analysis. Every density which is nowhere spin-saturated is V-representable, and the set of representing potentials is the functional derivative, in an appropriate generalized sense, of the Lieb internal energy functional. Quasi-continuity and closure properties of the set-valued representing potentials map are also established. The extent of possible non-uniqueness is similar to that found in non-rigorous studies of the conventional theory, namely non-uniqueness can occur for states of collinear magnetization which are eigenstates of Sz.
Search for grand-unified-theory magnetic monopoles at a flux level below the Parker limit
NASA Astrophysics Data System (ADS)
Price, P. B.; Guo, S.-L.; Ahlen, S. P.; Fleischer, R. L.
1984-04-01
Results are presented from the first directs search for grand-unified-theory magnetic monopoles with adequate sensitivity to detect a flux as small as the Parker flux (Turner et al., 1983). It is pointed out that if stable monopole-nucleus bound states exist, then the observed absence of monopole tracks in the 4.6 x 10 to the 8th-yr-old mica detector places an upper limit of 10 to the -17th to 10 to the-16th/sq cm-sr-sec on the flux of grand-unified-theory monopoles having a velocity of 3 x 10 to the -4th c to 1.5 x 10 to the -3rd c. The scenario treated here has four aspects. The first is that monopoles enter the earth's atmosphere with a net electric charge less than or equal to zero. The second is that as the monopoles pass through the earth they eventually capture nuclei in bound states through magnetic dipole-magnetic monopole interaction. The third is that the nucleus-monopole composite passes through a naturally occurring underground sample of muscovite mica, undergoing elastic nuclear collisions that result in the formation of a trail of lattice defects in the mica. The fourth is that the track survives as long as the mica remains unheated and may be enlarged to macroscopic dimensions by retrieving the mica and etching it in hydrofluoric acid.
Credibility theory based dynamic control bound optimization for reservoir flood limited water level
NASA Astrophysics Data System (ADS)
Jiang, Zhiqiang; Sun, Ping; Ji, Changming; Zhou, Jianzhong
2015-10-01
The dynamic control operation of reservoir flood limited water level (FLWL) can solve the contradictions between reservoir flood control and beneficial operation well, and it is an important measure to make sure the security of flood control and realize the flood utilization. The dynamic control bound of FLWL is a fundamental key element for implementing reservoir dynamic control operation. In order to optimize the dynamic control bound of FLWL by considering flood forecasting error, this paper took the forecasting error as a fuzzy variable, and described it with the emerging credibility theory in recent years. By combining the flood forecasting error quantitative model, a credibility-based fuzzy chance constrained model used to optimize the dynamic control bound was proposed in this paper, and fuzzy simulation technology was used to solve the model. The FENGTAN reservoir in China was selected as a case study, and the results show that, compared with the original operation water level, the initial operation water level (IOWL) of FENGTAN reservoir can be raised 4 m, 2 m and 5.5 m respectively in the three division stages of flood season, and without increasing flood control risk. In addition, the rationality and feasibility of the proposed forecasting error quantitative model and credibility-based dynamic control bound optimization model are verified by the calculation results of extreme risk theory.
Sustaining Irrigated Agriculture In The Central High Plains With Limited Irrigation Water
Technology Transfer Automated Retrieval System (TEKTRAN)
Increasing demands on limited water supplies will require maximizing crop production per unit water. Field studies are being carried out to develop water production functions for crops grown in the Great Plains. Irrigation water is applied through drip irrigation systems; precipitation and reference...
Central limit theorem for the solution to the heat equation with moving time
NASA Astrophysics Data System (ADS)
Liu, Junfeng; Tudor, Ciprian A.
2016-03-01
We consider the solution to the stochastic heat equation driven by the time-space white noise and study the asymptotic behavior of its spatial quadratic variations with “moving time”, meaning that the time variable is not fixed and its values are allowed to be very big or very small. We investigate the limit distribution of these variations via Malliavin calculus.
Limited irrigation of corn-based no-till crop rotations in west central Great Plains.
Technology Transfer Automated Retrieval System (TEKTRAN)
Identifying the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 2, 3, and 4 yr. limited irrigation corn (Zea mays L.) based crop rotations for grain yield, available soil water, crop water productivity, and profitability in co...
Limited irrigation of corn-based no-till crop rotations in West Central Great Plains
Technology Transfer Automated Retrieval System (TEKTRAN)
Due to numerous alternatives in crop sequence and changes in crop yield and price, finding the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 1-, 2-, 3-, and 4-yr limited irrigation corn (Zea mays L.)-based crop rotations for...
Sardiñas, Hillary S; Tom, Kathleen; Ponisio, Lauren Catherine; Rominger, Andrew; Kremen, Claire
2016-03-01
The delivery of ecosystem services by mobile organisms depends on the distribution of those organisms, which is, in turn, affected by resources at local and landscape scales. Pollinator-dependent crops rely on mobile animals like bees for crop production, and the spatial relationship between floral resources and nest location for these central-place foragers influences the delivery of pollination services. Current models that map pollination coverage in agricultural regions utilize landscape-level estimates of floral availability and nesting incidence inferred from expert opinion, rather than direct assessments. Foraging distance is often derived from proxies of bee body size, rather than direct measurements of foraging that account for behavioral responses to floral resource type and distribution. The lack of direct measurements of nesting incidence and foraging distances may lead to inaccurate mapping of pollination services. We examined the role of local-scale floral resource presence from hedgerow plantings on nest incidence of ground-nesting bees in field margins and within monoculture, conventionally managed sunflower fields in California's Central Valley. We tracked bee movement into fields using fluorescent powder. We then used these data to simulate the distribution of pollination services within a crop field. Contrary to expert opinion, we found that ground-nesting native bees nested both in fields and edges, though nesting rates declined with distance into field. Further, we detected no effect of field-margin floral enhancements on nesting. We found evidence of an exponential decay rate of bee movement into fields, indicating that foraging predominantly occurred in less than 1% of medium-sized bees' predicted typical foraging range. Although we found native bees nesting within agricultural fields, their restricted foraging movements likely centralize pollination near nest sites. Our data thus predict a heterogeneous distribution of pollination services
Band limited emission with central frequency around 2 Hz accompanying powerful cyclones
NASA Technical Reports Server (NTRS)
Troitskaia, V. A.; Shepetnov, K. S.; Dvobnia, B. D.
1992-01-01
It has been found that powerful cyclones are proceeded, accompanied and followed by narrow band electromagnetic emission with central frequency around 2 Hz. It is shown that the signal from this emission is unique and clearly distinguishable from known types of magnetic pulsations, spectra of local thunderstorms, and signals from industrial sources. This emission was first observed during an unusually powerful cyclone with tornadoes in the western European part of the Soviet Union, which passed by the observatory of Borok from south to north-east. The emission has been confirmed by analysis of similar events in Antarctica. The phenomenon described presents a new aspect of interactions of processes in the lower atmosphere and the ionosphere.
Siddiqui, Adeel M; Harris, Gregory S; Movahed, Assad; Chiang, Karl S; Chelu, Mihail G; Nekkanti, Rajasekhar
2015-01-01
The end-stage renal disease population poses a challenge for obtaining venous access required for life-saving invasive cardiac procedures. In this case report, we describe an adult patient with end-stage renal disease in whom the hepatic vein was the only available access to implant a single-lead permanent cardiac pacemaker. A 63-year-old male with end-stage renal disease on maintenance hemodialysis and permanent atrial fibrillation/atrial flutter presented with symptomatic bradycardia. Imaging studies revealed all traditional central venous access sites to be occluded/non-accessible. With the assistance of vascular interventional radiology, a trans-hepatic venous catheter was placed. This was then used to place a right ventricular pacing lead with close attention to numerous technical aspects. The procedure was completed successfully with placement of a single-lead permanent cardiac pacemaker. PMID:26380831
Nakagawa, Shunsuke; Shinkoda, Yuichi; Hazeki, Daisuke; Imamura, Mari; Okamoto, Yasuhiro; Kawakami, Kiyoshi; Kawano, Yoshifumi
2016-07-01
Central diabetes insipidus (CDI) and relapse are frequently seen in multifocal Langerhans cell histiocytosis (LCH). We present two females with multifocal LCH who developed CDI 9 and 5 years after the initial diagnosis, respectively, as a relapse limited to the pituitary stalk. Combination chemotherapy with cytarabine reduced the mass in the pituitary stalk. Although CDI did not improve, there has been no anterior pituitary hormone deficiency (APHD), neurodegenerative disease in the central nervous system (ND-CNS) or additional relapse for 2 years after therapy. It was difficult to predict the development of CDI in these cases. CDI might develop very late in patients with multifocal LCH, and therefore strict follow-up is necessary, especially with regard to symptoms of CDI such as polydipsia and polyuria. For new-onset CDI with LCH, chemotherapy with cytarabine might be useful for preventing APHD and ND-CNS. PMID:27089406
Interplay of the sign problem and the infinite volume limit: Gauge theories with a theta term
NASA Astrophysics Data System (ADS)
Cai, Yiming; Cohen, Thomas; Goldbloom-Helzner, Ari; McPeak, Brian
2016-06-01
QCD and related gauge theories have a sign problem when a θ term is included; this complicates the extraction of physical information from Euclidean-space calculations as one would do in lattice studies. The sign problem arises in this system because the partition function for configurations with fixed topological charge Q , ZQ, are summed weighted by exp (i Q θ ) to obtain the partition function for fixed θ , Z (θ ). The sign problem gets exponentially worse numerically as the space-time volume is increased. Here it is shown that, apart from the practical numerical issues associated with large volumes, there are some interesting issues of principle. A key quantity is the energy density as a function of θ , ɛ (θ )=-log (Z (θ ) )/V . This is expected to be well defined in the large four-volume limit. Similarly, one expects the energy density for a fixed topological density ɛ ˜(Q /V )=-log (ZQ )/V to be well defined in the limit of large four volumes. Intuitively, one might expect that if one had the infinite volume expression for ɛ ˜(Q /V ) to arbitrary accuracy, then one could reconstruct ɛ (θ ) by directly summing over the topological sectors of the partition function. We show here that there are circumstances where this is not the case. In particular, this occurs in regions where the curvature of ɛ (θ ) is negative.
NASA Astrophysics Data System (ADS)
Fesen, R. A.; Pavlov, G. G.; Sanwal, D.
2006-01-01
We set new near-infrared and optical magnitude limits for the central X-ray point source (XPS) in the Cassiopeia A supernova remnant based on HST images. Near-infrared images of the center of Cas A taken with the NICMOS 2 camera in combination with the F110W and F160W filters (~J and H bands) have magnitude limits >=26.2 and >=24.6, respectively. These images reveal no sources within a 1.2" radius (corresponding to a 99% confidence limit) of the Chandra XPS position. The NICMOS data, taken together with broadband optical magnitude limits (R~28 mag) obtained from a deep STIS CCD exposure taken with a clear filter (50CCD), indicate that the XPS luminosities are very low in the optical/NIR bands (e.g., LH<3×1029 ergs s-1) with no optical, J-, or H-band counterpart to the XPS easily detectable by HST. The closest detected object lies 1.8" from the XPS's nominal coordinates, with magnitudes R=25.7, mF110W=21.9, and mF160W=20.6, and is a foreground, late-type star as suggested by Kaplan, Kulkarni, and Murray. We discuss the nature of the Cas A central compact object on the basis of these near-infrared and optical flux limits. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with programs GO-8692 and GO-9798.
Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems
NASA Astrophysics Data System (ADS)
Takayasu, Misako; Watanabe, Hayafumi; Takayasu, Hideki
2014-04-01
We introduce a solvable model of randomly growing systems consisting of many independent subunits. Scaling relations and growth rate distributions in the limit of infinite subunits are analysed theoretically. Various types of scaling properties and distributions reported for growth rates of complex systems in a variety of fields can be derived from this basic physical model. Statistical data of growth rates for about 1 million business firms are analysed as a real-world example of randomly growing systems. Not only are the scaling relations consistent with the theoretical solution, but the entire functional form of the growth rate distribution is fitted with a theoretical distribution that has a power-law tail.
Maheshwari, Anurag; Janssens, Kris; Bogie, Jeroen; Van Den Haute, Chris; Struys, Tom; Lambrichts, Ivo; Baekelandt, Veerle; Stinissen, Piet; Hendriks, Jerome J A; Slaets, Helena; Hellings, Niels
2013-01-01
Demyelination is one of the pathological hallmarks of multiple sclerosis (MS). To date, no therapy is available which directly potentiates endogenous remyelination. Interleukin-11 (IL-11), a member of the gp130 family of cytokines, is upregulated in MS lesions. Systemic IL-11 treatment was shown to ameliorate clinical symptoms in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. IL-11 modulates immune cells and protects oligodendrocytes in vitro. In this study, the cuprizone-induced demyelination mouse model was used to elucidate effects of IL-11 on de- and remyelination, independent of the immune response. Prophylactic-lentiviral- (LV-) mediated overexpression of IL-11 in mouse brain significantly limited acute demyelination, which was accompanied with the preservation of CC1(+) mature oligodendrocytes (OLs) and a decrease in microglial activation (Mac-2(+)). We further demonstrated that IL-11 directly reduces myelin phagocytosis in vitro. When IL-11 expressing LV was therapeutically applied in animals with extensive demyelination, a significant enhancement of remyelination was observed as demonstrated by Luxol Fast Blue staining and electron microscopy imaging. Our results indicate that IL-11 promotes maturation of NG2(+) OPCs into myelinating CC1(+) OLs and may thus explain the enhanced remyelination. Overall, we demonstrate that IL-11 is of therapeutic interest for MS and other demyelinating diseases by limiting demyelination and promoting remyelination. PMID:23818742
Maheshwari, Anurag; Janssens, Kris; Bogie, Jeroen; Van Den Haute, Chris; Struys, Tom; Lambrichts, Ivo; Baekelandt, Veerle; Stinissen, Piet; Hendriks, Jerome J. A.; Hellings, Niels
2013-01-01
Demyelination is one of the pathological hallmarks of multiple sclerosis (MS). To date, no therapy is available which directly potentiates endogenous remyelination. Interleukin-11 (IL-11), a member of the gp130 family of cytokines, is upregulated in MS lesions. Systemic IL-11 treatment was shown to ameliorate clinical symptoms in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. IL-11 modulates immune cells and protects oligodendrocytes in vitro. In this study, the cuprizone-induced demyelination mouse model was used to elucidate effects of IL-11 on de- and remyelination, independent of the immune response. Prophylactic-lentiviral- (LV-) mediated overexpression of IL-11 in mouse brain significantly limited acute demyelination, which was accompanied with the preservation of CC1+ mature oligodendrocytes (OLs) and a decrease in microglial activation (Mac-2+). We further demonstrated that IL-11 directly reduces myelin phagocytosis in vitro. When IL-11 expressing LV was therapeutically applied in animals with extensive demyelination, a significant enhancement of remyelination was observed as demonstrated by Luxol Fast Blue staining and electron microscopy imaging. Our results indicate that IL-11 promotes maturation of NG2+ OPCs into myelinating CC1+ OLs and may thus explain the enhanced remyelination. Overall, we demonstrate that IL-11 is of therapeutic interest for MS and other demyelinating diseases by limiting demyelination and promoting remyelination. PMID:23818742
Carbon balance indicates a time limit for cultivation of organic soils in central Switzerland
NASA Astrophysics Data System (ADS)
Paul, Sonja; Ammann, Christof; Alewell, Christine; Leifeld, Jens
2016-04-01
Peatlands serve as important carbon sinks. Globally, more than 30% of the soil organic carbon is stored in organic soils, although they cover only 3% of the land surface. The agricultural use of organic soils usually requires drainage thereby transforming these soils from a net carbon sink into a net source. Currently, about 2 to 3 Gt CO2 are emitted world-wide from degrading organic soils (Joosten 2011; Parish et al. 2008) which is ca. 5% of the total anthropogenic emissions. Besides these CO2 emissions, the resulting subsidence of drained peat soils during agricultural use requires that drainage system are periodically renewed and finally to use pumping systems after progressive subsidence. In Switzerland, the Seeland region is characterised by fens which are intensively used for agriculture since 1900. The organic layer is degrading and subsequently getting shallower and the underlying mineral soil, as lake marl or loam, is approaching the surface. The questions arises for how long and under which land use practises and costs these soils can be cultivated in the near future. The study site was under crop rotation until 2009 when it was converted to extensively used grassland with the water regime still being regulated. The soil is characterised by a degraded organic horizon of 40 to 70 cm. Since December 2014 we are measuring the carbon exchange of this grassland using the Eddy-Covariance method. For 2015, the carbon balance indicates that the degraded fen is a strong carbon source, with approximately 500 g C m‑2 a‑1. The carbon balance is dominated by CO2 emissions and harvest. Methane emissions are negligible. With the gained emission factors different future scenarios are evaluated for the current cultivation practise of organic soils in central Switzerland. Joosten, H., 2011: Neues Geld aus alten Mooren: Über die Erzeugung von Kohlenstoffzertifikaten aus Moorwiedervernässungen. Telma Beiheft 4, 183-202. Parish, F., A. Sirin, D. Charman, H. Joosten, T
Ratz, David; Hofer, Timothy; Flanders, Scott A; Saint, Sanjay; Chopra, Vineet
2016-07-01
BACKGROUND The number of peripherally inserted central catheter (PICC) lumens is associated with thrombotic and infectious complications. Because multilumen PICCs are not necessary in all patients, policies that limit their use may improve safety and cost. OBJECTIVE To design a simulation-based analysis to estimate outcomes and cost associated with a policy that encourages single-lumen PICC use. METHODS Model inputs, including risk of complications and costs associated with single- and multilumen PICCs, were obtained from available literature and a multihospital collaborative quality improvement project. Cost savings and reduction in central line-associated bloodstream infection and deep vein thrombosis events from institution of a single-lumen PICC default policy were reported. RESULTS According to our model, a hospital that places 1,000 PICCs per year (25% of which are single-lumen and 75% multilumen) experiences annual PICC-related maintenance and complication costs of $1,228,598 (95% CI, $1,053,175-$1,430,958). In such facilities, every 5% increase in single-lumen PICC use would prevent 0.5 PICC-related central line-associated bloodstream infections and 0.5 PICC-related deep vein thrombosis events, while saving $23,500. Moving from 25% to 50% single-lumen PICC utilization would result in total savings of $119,283 (95% CI, $74,030-$184,170) per year. Regardless of baseline prevalence, a single-lumen default PICC policy would be associated with approximately 10% cost savings. Findings remained robust in multiway sensitivity analyses. CONCLUSION Hospital policies that limit the number of PICC lumens may enhance patient safety and reduce healthcare costs. Studies measuring intended and unintended consequences of this approach, followed by rapid adoption, appear necessary. Infect Control Hosp Epidemiol 2016;37:811-817. PMID:27033138
Self-organized criticality attributed to a central limit-like convergence effect
NASA Astrophysics Data System (ADS)
Kendal, Wayne S.
2015-03-01
Self-organized criticality is a hypothesis used to explain the origin of 1 / f noise and other scaling behaviors. Despite being proposed nearly 30 years ago, no consensus exists as to its exact definition or mathematical mechanism(s). Recently, a model for 1 / f noise was proposed based on a family of statistical distributions known as the Tweedie exponential dispersion models. These distributions are characterized by an inherent scale invariance that manifests as a variance to mean power law, called fluctuation scaling; they also serve as foci of convergence in a limit theorem on independent and identically distributed distributions. Fluctuation scaling can be modeled by self-similar stochastic processes that relate the variance to mean power law to 1 / f noise through their correlation structure. A hypothesis is proposed whereby the effects of self-organized criticality are mathematically modeled by the Tweedie distributions and their convergence behavior as applied to self-similar stochastic processes. Sandpile model fluctuations are shown to manifest 1 / f noise, fluctuation scaling, and to conform to the Tweedie compound Poisson distribution. The Tweedie models and their convergence theorem allow for a mechanistic explanation of 1 / f noise and fluctuation scaling in phenomena conventionally attributed to self-organized criticality, thus providing a paradigm shift in our understanding of these phenomena.
Limitations of selective deltamethrin application for triatomine control in central coastal Ecuador
2011-01-01
Background This year-long study evaluated the effectiveness of a strategy involving selective deltamethrin spraying and community education for control of Chagas disease vectors in domestic units located in rural communities of coastal Ecuador. Results Surveys for triatomines revealed peridomestic infestation with Rhodnius ecuadoriensis and Panstrongylus howardi, with infestation indices remaining high during the study (13%, 17%, and 10%, at initial, 6-month, and 12-month visits, respectively), which indicates a limitation of this strategy for triatomine population control. Infestation was found 6 and 12 months after spraying with deltamethrin. In addition, a large number of previously vector-free domestic units also were found infested at the 6- and 12-month surveys, which indicates new infestations by sylvatic triatomines. The predominance of young nymphs and adults suggests new infestation events, likely from sylvatic foci. In addition, infection with Trypanosoma cruzi was found in 65%, 21% and 29% at initial, 6-month and 12-month visits, respectively. All parasites isolated (n = 20) were identified as TcI. Conclusion New vector control strategies need to be devised and evaluated for reduction of T. cruzi transmission in this region. PMID:21332985
Al-Air Batteries: Fundamental Thermodynamic Limitations from First Principles Theory
NASA Astrophysics Data System (ADS)
Chen, Leanne D.; Noerskov, Jens K.; Luntz, Alan C.
2015-03-01
The Al-air battery possesses high theoretical specific energy (4140 Wh/kg) and is therefore an attractive candidate for vehicle propulsion applications. However, the experimentally observed open-circuit potential is much lower than what thermodynamics predicts, and this potential loss is widely believed to be an effect of corrosion. We present a detailed study of the Al-air battery using density functional theory. The results suggest that the difference between bulk thermodynamic and surface potentials is due to both the effects of asymmetry in multi-electron transfer reactions that define the anodic dissolution of Al and, more importantly, a large chemical step inherent to the formation of bulk Al(OH)3 from surface intermediates. The former results in an energy loss of 3%, while the latter accounts for 14 -29% of the total thermodynamic energy depending on the surface site where dissolution occurs. Therefore, the maximum open-circuit potential of the Al anode is only -1.87 V vs. SHE in the absence of thermal excitations, contrary to -2.34 V predicted by bulk thermodynamics at pH 14.6. This is a fundamental limitation of the system and governs the maximum output potential, which cannot be improved even if corrosion effects were completely suppressed. Supported by the Natural Sciences and Engineering Research Council of Canada and the ReLiable Project (#11-116792) funded by the Danish Council for Strategic Research.
Development of the new approach to the diffusion-limited reaction rate theory
Veshchunov, M. S.
2012-04-15
The new approach to the diffusion-limited reaction rate theory, recently proposed by the author, is further developed on the base of a similar approach to Brownian coagulation. The traditional diffusion approach to calculation of the reaction rate is critically analyzed. In particular, it is shown that the traditional approach is applicable only in the special case of reactions with a large reaction radius and the mean inter-particle distances, and become inappropriate in calculating the reaction rate in the case of a relatively small reaction radius. In the latter case, most important for chemical reactions, particle collisions occur not in the diffusion regime but mainly in the kinetic regime characterized by homogeneous (random) spatial distribution of particles on the length scale of the mean inter-particle distance. The calculated reaction rate for a small reaction radius in three dimensions formally (and fortuitously) coincides with the expression derived in the traditional approach for reactions with a large reaction radius, but notably deviates at large times from the traditional result in the planar two-dimensional geometry. In application to reactions on discrete lattice sites, new relations for the reaction rate constants are derived for both three-dimensional and two-dimensional lattices.
Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory.
Chen, Leanne D; Nørskov, Jens K; Luntz, Alan C
2015-01-01
The Al-air battery possesses high theoretical specific energy (4140 W h/kg) and is therefore an attractive candidate for vehicle propulsion. However, the experimentally observed open-circuit potential is much lower than what bulk thermodynamics predicts, and this potential loss is typically attributed to corrosion. Similarly, large Tafel slopes associated with the battery are assumed to be due to film formation. We present a detailed thermodynamic study of the Al-air battery using density functional theory. The results suggest that the maximum open-circuit potential of the Al anode is only -1.87 V versus the standard hydrogen electrode at pH 14.6 instead of the traditionally assumed -2.34 V and that large Tafel slopes are inherent in the electrochemistry. These deviations from the bulk thermodynamics are intrinsic to the electrochemical surface processes that define Al anodic dissolution. This has contributions from both asymmetry in multielectron transfers and, more importantly, a large chemical stabilization inherent to the formation of bulk Al(OH)3 from surface intermediates. These are fundamental limitations that cannot be improved even if corrosion and film effects are completely suppressed. PMID:26263108
Vergeles, S. N.
2008-01-15
The problem of the doubling of states is investigated in the framework of the theory of discrete quantum gravity under the assumption that the theory has a continuum (macroscopic) limit. It is demonstrated that irregular (in some sense) modes of fields (i.e., modes that change abruptly on scales of a lattice step and have a finite energy when the lattice step tends to zero) are separated from the normal modes. Some cosmological consequences of this finding are discussed.
Nakashima, Shinya; Hayashi, Yuzuru
2016-01-01
The aim of this paper is to propose a stochastic method for estimating the detection limits (DLs) and quantitation limits (QLs) of compounds registered in a database of a GC/MS system and prove its validity with experiments. The approach described in ISO 11843 Part 7 is adopted here as an estimation means of DL and QL, and the decafluorotriphenylphosphine (DFTPP) tuning and retention time locking are carried out for adjusting the system. Coupled with the data obtained from the system adjustment experiments, the information (noise and signal of chromatograms and calibration curves) stored in the database is used for the stochastic estimation, dispensing with the repetition measurements. Of sixty-six pesticides, the DL values obtained by the ISO method were compared with those from the statistical approach and the correlation between them was observed to be excellent with the correlation coefficient of 0.865. The accuracy of the method proposed was also examined and concluded to be satisfactory as well. The samples used are commercial products of pesticides mixtures and the uncertainty from sample preparation processes is not taken into account. PMID:27162706
Nakashima, Shinya; Hayashi, Yuzuru
2016-01-01
The aim of this paper is to propose a stochastic method for estimating the detection limits (DLs) and quantitation limits (QLs) of compounds registered in a database of a GC/MS system and prove its validity with experiments. The approach described in ISO 11843 Part 7 is adopted here as an estimation means of DL and QL, and the decafluorotriphenylphosphine (DFTPP) tuning and retention time locking are carried out for adjusting the system. Coupled with the data obtained from the system adjustment experiments, the information (noise and signal of chromatograms and calibration curves) stored in the database is used for the stochastic estimation, dispensing with the repetition measurements. Of sixty-six pesticides, the DL values obtained by the ISO method were compared with those from the statistical approach and the correlation between them was observed to be excellent with the correlation coefficient of 0.865. The accuracy of the method proposed was also examined and concluded to be satisfactory as well. The samples used are commercial products of pesticides mixtures and the uncertainty from sample preparation processes is not taken into account. PMID:27162706
Ray, Biswajit; Baradwaj, Aditya G; Khan, Mohammad Ryyan; Boudouris, Bryan W; Alam, Muhammad Ashraful
2015-09-01
The bulk heterojunction (BHJ) organic photovoltaic (OPV) architecture has dominated the literature due to its ability to be implemented in devices with relatively high efficiency values. However, a simpler device architecture based on a single organic semiconductor (SS-OPV) offers several advantages: it obviates the need to control the highly system-dependent nanoscale BHJ morphology, and therefore, would allow the use of broader range of organic semiconductors. Unfortunately, the photocurrent in standard SS-OPV devices is typically very low, which generally is attributed to inefficient charge separation of the photogenerated excitons. Here we show that the short-circuit current density from SS-OPV devices can be enhanced significantly (∼100-fold) through the use of inverted device configurations, relative to a standard OPV device architecture. This result suggests that charge generation may not be the performance bottleneck in OPV device operation. Instead, poor charge collection, caused by defect-induced electric field screening, is most likely the primary performance bottleneck in regular-geometry SS-OPV cells. We justify this hypothesis by: (i) detailed numerical simulations, (ii) electrical characterization experiments of functional SS-OPV devices using multiple polymers as active layer materials, and (iii) impedance spectroscopy measurements. Furthermore, we show that the collection-limited photocurrent theory consistently interprets typical characteristics of regular SS-OPV devices. These insights should encourage the design and OPV implementation of high-purity, high-mobility polymers, and other soft materials that have shown promise in organic field-effect transistor applications, but have not performed well in BHJ OPV devices, wherein they adopt less-than-ideal nanostructures when blended with electron-accepting materials. PMID:26290582
Ray, Biswajit; Baradwaj, Aditya G.; Khan, Mohammad Ryyan; Boudouris, Bryan W.; Alam, Muhammad Ashraful
2015-01-01
The bulk heterojunction (BHJ) organic photovoltaic (OPV) architecture has dominated the literature due to its ability to be implemented in devices with relatively high efficiency values. However, a simpler device architecture based on a single organic semiconductor (SS-OPV) offers several advantages: it obviates the need to control the highly system-dependent nanoscale BHJ morphology, and therefore, would allow the use of broader range of organic semiconductors. Unfortunately, the photocurrent in standard SS-OPV devices is typically very low, which generally is attributed to inefficient charge separation of the photogenerated excitons. Here we show that the short-circuit current density from SS-OPV devices can be enhanced significantly (∼100-fold) through the use of inverted device configurations, relative to a standard OPV device architecture. This result suggests that charge generation may not be the performance bottleneck in OPV device operation. Instead, poor charge collection, caused by defect-induced electric field screening, is most likely the primary performance bottleneck in regular-geometry SS-OPV cells. We justify this hypothesis by: (i) detailed numerical simulations, (ii) electrical characterization experiments of functional SS-OPV devices using multiple polymers as active layer materials, and (iii) impedance spectroscopy measurements. Furthermore, we show that the collection-limited photocurrent theory consistently interprets typical characteristics of regular SS-OPV devices. These insights should encourage the design and OPV implementation of high-purity, high-mobility polymers, and other soft materials that have shown promise in organic field-effect transistor applications, but have not performed well in BHJ OPV devices, wherein they adopt less-than-ideal nanostructures when blended with electron-accepting materials. PMID:26290582
Töllner, Thomas; Strobach, Tilo; Schubert, Torsten; Müller, Hermann J.
2012-01-01
In classic Psychological-Refractory-Period (PRP) dual-task paradigms, decreasing stimulus onset asynchronies (SOA) between the two tasks typically lead to increasing reaction times (RT) to the second task and, when task order is non-predictable, to prolonged RTs to the first task. Traditionally, both RT effects have been advocated to originate exclusively from the dynamics of a central bottleneck. By focusing on two specific electroencephalographic brain responses directly linkable to perceptual or motor processing stages, respectively, the present study aimed to provide a more detailed picture as to the origin(s) of these behavioral PRP effects. In particular, we employed 2-alternative forced-choice (2AFC) tasks requiring participants to identify the pitch of a tone (high versus low) in the auditory, and the orientation of a target object (vertical versus horizontal) in the visual, task, with task order being either predictable or non-predictable. Our findings show that task order predictability (TOP) and inter-task SOA interactively determine the speed of (visual) perceptual processes (as indexed by the PCN timing) for both the first and the second task. By contrast, motor response execution times (as indexed by the LRP timing) are influenced independently by TOP for the first, and SOA for the second, task. Overall, this set of findings complements classical as well as advanced versions of the central bottleneck model by providing electrophysiological evidence for modulations of both perceptual and motor processing dynamics that, in summation with central capacity limitations, give rise to the behavioral PRP outcome. PMID:22973208
Novick, Kimberly A; Miniat, Chelcy F; Vose, James M
2016-03-01
We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species. PMID:26466749
Expansive Learning: Benefits and Limitations of Subject-Scientific Learning Theory
ERIC Educational Resources Information Center
Grotluschen, Anke
2005-01-01
One critical learning theory that has survived is once again being acclaimed. Subject-scientific theory requires learners to be taken seriously. Their reasons and resistance need to be brought into the open. This requirement was too radical for schools since it does not allow a fixed syllabus. It has borne fruit, however, in continuing education.…
ERIC Educational Resources Information Center
Kohoutek, Jan
2013-01-01
The article adopts a comparative approach to review three periods of theory development in research into higher education policy implementation. Given the conceptual affinity between Cerych and Sabatier's 1986 seminal study into higher education policy implementation and public policy implementation theory, the field of public policy is chosen for…
Rogers, H.; Birch, P. J.; Harrison, S. M.; Palmer, E.; Manchee, G. R.; Judd, D. B.; Naylor, A.; Scopes, D. I.; Hayes, A. G.
1992-01-01
1. The pharmacological profile of GR94839, a kappa-opioid agonist with limited access to the central nervous system, has been investigated. Its antinociceptive activity has been compared with that of GR103545, a centrally-penetrating kappa-agonist and ICI204448, the previously described peripherally-selective kappa-agonist. 2. GR94839 was a potent agonist in the rabbit vas deferens in vitro assay for kappa-opioid receptors (IC50: 1.4 +/- 0.3 nM; n = 6), but had limited activity at mu- or delta-opioid receptors. 3. In the mouse abdominal constriction test, GR94839 was 238 fold more potent when given i.c.v. (ED50: 0.008 (0.004-0.029) mg kg-1; n = 18) than when s.c. (ED50: 1.9 (0.7-3.1) mg kg-1; n = 30). In comparison, GR103545 was equipotent when given i.c.v. or s.c. 4. After intravenous administration, the maximum plasma to brain concentration-ratio attained by GR94839 was 18 compared with 2 for GR85571, a structurally-related kappa-agonist that is centrally-penetrating. 5. GR94839 inhibited the 2nd phase of the rat formalin response at doses 7 fold lower than those required to inhibit the 1st phase (ED50 vs 1st phase: 10.2 (6.7-17.1) mg kg-1, s.c.; ED50 vs 2nd phase: 1.4 (1.0-1.8) mg kg-1, s.c.; n = 18). GR103545 was equipotent against the two phases. 6. Intraplantar administration of the opioid antagonists, norbinaltorphimine (100 micrograms) or naltrexone (1 microgram), reversed the antinociceptive effect of systemic GR94839 (3 mg kg-1, s.c.) against the 2nd phase of the formalin response and intraplantar injection of GR94839 (30-100 micrograms) selectively inhibited the 2nd phase.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1327387
ERIC Educational Resources Information Center
Banta, Sarah; Cool, Mary; Hansen, Mary; Heckler, Jessica; Masker, Trish; Plavchan, Krista; Sobol, Michele; Blessing, Lew; Starzynski, Mary; Carr, Melissa
2013-01-01
From an informal discussion to being awarded the National Association for Professional Development School's Award for Exemplary Professional Development School Achievement, this article presents the story of the Timbercrest Elementary/University of Central Florida Professional Development School Partnership's journey. As the authors shared their…
Fischer, Sean A; Cramer, Christopher J; Govind, Niranjan
2016-04-01
Optical-limiting materials are capable of attenuating light to protect delicate equipment from high-intensity light sources. Phthalocyanines have attracted a lot of attention for optical-limiting applications due to their versatility and large nonlinear absorption. With excited-state absorption (ESA) being the primary mechanism for optical limiting behavior in phthalocyanines, the ability to tune the optical absorption of ground and excited states in phthalocyanines would allow for the development of advanced optical limiters. We recently developed a method for the calculation of ESA based on real-time time-dependent density functional theory propagation of an excited-state density. In this work, we apply the approach to zinc phthalocyanine, demonstrating the ability of our method to efficiently identify the optical limiting potential of a molecular complex. PMID:27007445
NASA Astrophysics Data System (ADS)
Xu, S.; Rezvanian, O.; Peters, K.; Zikry, M. A.
2013-04-01
A new modeling method has been proposed to investigate how the electrical conductivity of carbon nanotube (CNT) reinforced polymer composites are affected by tunneling distance, volume fraction, and tube aspect ratios. A search algorithm and an electrical junction identification method was developed with a percolation approach to determine conductive paths for three-dimensional (3D) carbon nanotube arrangements and to account for electron tunneling effects. The predicted results are used to understand the limitations of percolation theory and experimental measurements and observations, and why percolation theory breaks down for specific CNT arrangements.
ERIC Educational Resources Information Center
Marcotte, Ronald E.
2005-01-01
This physical chemistry lecture demonstration is designed to aid the understanding of intramolecular energy transfer processes as part of the presentation of the theory of unimolecular reaction rates. Coupled pendulums are used to show the rate of migration of energy between oscillators under resonant and nonresonant conditions with varying…
Event Schemas in Autism Spectrum Disorders: The Role of Theory of Mind and Weak Central Coherence
ERIC Educational Resources Information Center
Loth, Eva; Gomez, Juan Carlos; Happe, Francesca
2008-01-01
Event schemas (generalized knowledge of what happens at common real-life events, e.g., a birthday party) are an important cognitive tool for social understanding: They provide structure for social experiences while accounting for many variable aspects. Using an event narratives task, this study tested the hypotheses that theory of mind (ToM)…
Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.
Lei, Wenwen; McKenzie, David R
2016-07-21
Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks. PMID:27336652
Droessler, T.D.
1992-03-01
The proposed research will quantify white spruce growth and document its latitudinal stability at the tree limit in the central Brooks Range over the life span of the living trees. The goal is to link tree growth and tree position to summer temperature and precipitation. Historical records from 1929 to 1938 from work by Robert Marshall have been used to identify tree limit sites and provide information to interpret the present location of the tree limit.
NASA Astrophysics Data System (ADS)
Gillaspy, J. D.
2014-11-01
Atomic spectroscopy results from the electron beam ion trap at the National Institute of Standards and Technology have generally agreed with the predictions of theory extremely well. An interesting exception is our recent result on the helium isoelectronic sequence at Z = 22, which agrees instead with a meta-analysis of all prior measurements above Z = 15, but disagrees with both theory and a contemporaneous report of an independent measurement at Z = 18 which claims to validate theory to high accuracy. Here, a potential systematic shift involving high-n satellite lines induced by double charge exchange is quantitatively estimated and shown to be potentially significant in experiments involving gasses. Suggestions for further refinements in estimating the magnitude of this systematic shift are given.
Chand, Priyanka; Amit, Sonal; Gupta, Raghvendra; Agarwal, Asha
2016-01-01
Context: Intraoperative cytology and frozen section play an important role in the diagnosis of neurosurgical specimens. There are limitations in both these procedures but understanding the errors and pitfalls may help in increasing the diagnostic yield. Aims: To find the diagnostic accuracy of intraoperative cytology and frozen section for central and peripheral nervous system (PNS) lesions and analyze the errors, pitfalls, and limitations in these procedures. Settings and Design: Eighty cases were included in this prospective study in a span of 1.5 years. Materials and Methods: The crush preparations and the frozen sections were stained with hematoxylin and eosin method. The diagnosis of crush smears and the frozen sections were compared with the diagnosis in the paraffin section, which was considered as the gold standard. Statistical Analyses Used: Diagnostic accuracy, sensitivity, and specificity. Results: The diagnostic accuracy of crush smears was 91.25% with a sensitivity of 95.5% and specificity of 100%. In the frozen sections, the overall diagnostic accuracy was 95%, sensitivity was 96.8%, and specificity was 100%. The categories of pitfalls noted in this study were categorization of spindle cell lesions, differentiation of oligodendroglioma from astrocytoma in frozen sections, differentiation of coagulative tumor necrosis of glioblastoma multiforme (GBM) from the caseous necrosis of tuberculosis, grading of gliomas in frozen section, and differentiation of the normal granular cells of the cerebellum from the lymphocytes in cytological smears. Conclusions: Crush smear and frozen section are complimentary procedures. When both are used together, the diagnostic yield is substantially increased. PMID:27279685
Chandrasekhar Limit: An Elementary Approach Based on Classical Physics and Quantum Theory
ERIC Educational Resources Information Center
Pinochet, Jorge; Van Sint Jan, Michael
2016-01-01
In a brief article published in 1931, Subrahmanyan Chandrasekhar made public an important astronomical discovery. In his article, the then young Indian astrophysicist introduced what is now known as the "Chandrasekhar limit." This limit establishes the maximum mass of a stellar remnant beyond which the repulsion force between electrons…
Yin, Weikai; Qin, Ying; Fowler, W Beall; Stavola, Michael; Boatner, Lynn A
2016-10-01
The introduction of a large concentration of H into VO2 is known to suppress the insulating phase of the metal-insulator transition that occurs upon cooling below 340 K. We have used infrared spectroscopy and complementary theory to study the properties of interstitial H and D in VO2 in the dilute limit to determine the vibrational frequencies, thermal stabilities, and equilibrium positions of isolated interstitial H and D centers. The vibrational lines of several OH and OD centers were observed to have thermal stabilities similar to that of the hydrogen that suppresses the insulating phase. Theory associates two of the four possible OH configurations for Hi in the insulating VO2 monoclinic phase with OH lines seen by experiment. Furthermore, theory predicts the energies and vibrational frequencies for configurations with Hi trapped near a substitutional impurity and suggests such defects as candidates for additional OH centers that have been observed. PMID:27465290
Yin, W.; Qin, Ying; Fowler, W. B.; Stavola, M.; Boatner, Lynn A.
2016-07-28
The introduction of a large concentration of H into VO2 is known to suppress the insulating phase of the metal-insulator transition that occurs upon cooling below 340 K. We have used infrared spectroscopy and complementary theory to study the properties of interstitial H and D in VO2 in the dilute limit to determine the vibrational frequencies, thermal stabilities, and equilibrium positions of isolated interstitial H and D centers. The vibrational lines of several OH and OD centers were observed to have thermal stabilities similar to that of the hydrogen that suppresses the insulating phase. Theory associates two of the fourmore » possible OH configurations for Hi in the insulating VO2 monoclinic phase with OH lines seen by experiment. Furthermore, theory predicts the energies and vibrational frequencies for configurations with Hi trapped near a substitutional impurity and suggests such defects as candidates for additional OH centers that have been observed.« less
NASA Astrophysics Data System (ADS)
Dzheparov, F. S.; Lvov, D. V.
2016-02-01
Multiple small-angle neutron scattering by a high-density system of inhomogeneities has been considered. A combined approach to the analysis of multiple small-angle neutron scattering has been proposed on the basis of the synthesis of the Zernike-Prince and Moliére formulas. This approach has been compared to the existing multiple small-angle neutron scattering theory based on the eikonal approximation. This comparison has shown that the results in the diffraction limit coincide, whereas differences exist in the refraction limit because the latter theory includes correlations between successive scattering events. It has been shown analytically that the existence of correlations in the spatial position of scatterers results in an increase in the number of unscattered neutrons. Thus, the narrowing of spectra of multiple small-angle neutron scattering observed experimentally and in numerical simulation has been explained.
Do Deaf Adults with Limited Language Have Advanced Theory of Mind?
ERIC Educational Resources Information Center
Hao, Jian; Su, Yanjie; Chan, Raymond C. K.
2010-01-01
Previous studies show that deaf children have deficits in false belief understanding due to their language impairment. However, it is not clear whether deaf adults still have problems in advanced theory of mind (ToM). The present study examined deaf adults' performance on three aspects of advanced ToM. All of the deaf groups lacking mental state…
Analysis and correlation with theory of rotor lift-limit test data
NASA Technical Reports Server (NTRS)
Sheffler, M.
1979-01-01
A wind tunnel test program to define the cruise performance and determine any limitations to lift and propulsive force of a conventional helicopter rotor is described. A 2.96 foot radius model rotor was used. The maximum lift and propulsive force obtainable from an articulated rotor for advance ratios of 0.4 to 0.67, and the blade load growth as the lift approaches the limit are determined. Cruise rotor performance for advance ratios of 0.4 to 0.67 and the sensitivity of the rotor forces and moments to rotor control inputs as the lift limit is approached are established.
Accurate integral equation theory for the central force model of liquid water and ionic solutions
NASA Astrophysics Data System (ADS)
Ichiye, Toshiko; Haymet, A. D. J.
1988-10-01
The atom-atom pair correlation functions and thermodynamics of the central force model of water, introduced by Lemberg, Stillinger, and Rahman, have been calculated accurately by an integral equation method which incorporates two new developments. First, a rapid new scheme has been used to solve the Ornstein-Zernike equation. This scheme combines the renormalization methods of Allnatt, and Rossky and Friedman with an extension of the trigonometric basis-set solution of Labik and co-workers. Second, by adding approximate ``bridge'' functions to the hypernetted-chain (HNC) integral equation, we have obtained predictions for liquid water in which the hydrogen bond length and number are in good agreement with ``exact'' computer simulations of the same model force laws. In addition, for dilute ionic solutions, the ion-oxygen and ion-hydrogen coordination numbers display both the physically correct stoichiometry and good agreement with earlier simulations. These results represent a measurable improvement over both a previous HNC solution of the central force model and the ex-RISM integral equation solutions for the TIPS and other rigid molecule models of water.
The light asymptotic limit of conformal blocks in Toda field theory
NASA Astrophysics Data System (ADS)
Poghosyan, Hasmik; Poghossian, Rubik; Sarkissian, Gor
2016-05-01
We compute the light asymptotic limit of A n-1 Toda conformal blocks by using the AGT correspondence. We show that for certain class of CFT blocks the corresponding Nekrasov partition functions in this limit are simplified drastically being represented as a sum of a restricted class of Young diagrams. In the particular case of A 2 Toda we also compute the corresponding conformal blocks using conventional CFT techniques finding a perfect agreement with the results obtained from the Nekrasov partition functions.
Djurović, S; Cirisan, M; Demura, A V; Demchenko, G V; Nikolić, D; Gigosos, M A; González, M A
2009-04-01
Experimental measurements of the center of the H_{beta} Stark profile on three different installations have been done to study its asymmetry in wide ranges of electron density, temperature, and plasma conditions. Theoretical calculations for the analysis of experimental results have been performed using the standard theory and computer simulations and included separately quadrupolar and quadratic Stark effects. Earlier experimental results and theoretical calculations of other authors have been reviewed as well. The experimental results are well reproduced by the calculations at high and moderate densities. PMID:19518354
Scacchi, Alberto; Krüger, Matthias; Brader, Joseph M
2016-06-22
The classical dynamical density functional theory (DDFT) provides an approximate extension of equilibrium DFT to treat nonequilibrium systems subject to Brownian dynamics. However, the method fails when applied to driven systems, such as sheared colloidal dispersions. The breakdown of DDFT can be traced back to an inadequate treatment of the flow-induced distortion of the pair correlation functions. By considering the distortion of the pair correlations to second order in the flow-rate we show how to systematically correct the DDFT for driven systems. As an application of our approach we consider Poiseuille flow. The theory predicts that the particles will accumulate in spatial regions where the local shear rate is small, an effect known as shear-induced migration. We compare these predictions to Brownian dynamics simulations with generally good agreement. PMID:27115521
NASA Astrophysics Data System (ADS)
Scacchi, Alberto; Krüger, Matthias; Brader, Joseph M.
2016-06-01
The classical dynamical density functional theory (DDFT) provides an approximate extension of equilibrium DFT to treat nonequilibrium systems subject to Brownian dynamics. However, the method fails when applied to driven systems, such as sheared colloidal dispersions. The breakdown of DDFT can be traced back to an inadequate treatment of the flow-induced distortion of the pair correlation functions. By considering the distortion of the pair correlations to second order in the flow-rate we show how to systematically correct the DDFT for driven systems. As an application of our approach we consider Poiseuille flow. The theory predicts that the particles will accumulate in spatial regions where the local shear rate is small, an effect known as shear-induced migration. We compare these predictions to Brownian dynamics simulations with generally good agreement.
Kinetic limitations on the diffusional control theory of the ablation rate of carbon.
NASA Technical Reports Server (NTRS)
Maahs, H. G.
1971-01-01
It is shown that the theoretical maximum oxidation rate is limited in many cases even at temperatures much higher than 1650 deg K, not by oxygen transport, but by the kinetics of the carbon-oxygen reaction itself. Mass-loss rates have been calculated at air pressures of 0.01 atm, 1 atm, and 100 atm. It is found that at high temperatures the rate of the oxidation reaction is much slower than has generally been assumed on the basis of a simple linear extrapolation of Scala's 'fast' and 'slow' rate expressions. Accordingly it cannot be assumed that a transport limitation inevitably must be reached at high temperatures.
Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin
2008-01-21
Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view. PMID:18205484
NASA Astrophysics Data System (ADS)
Kutzelnigg, W.
1989-03-01
After a discussion of the problems associated with the non-relativistic limit of the Dirac equation and of the expansion of the exact eigenvalues and eigenfunctions of the H atom in powers of c -2 the traditional approaches for a perturbation theory of relativistic effects are critically reviewed. Then a direct perturbation theory is presented, that is characterized by a change of the metric in 4-component spinor space such that the Lévy-Leblond equation appears as the straightforward non-relativistic limit of the Dirac equation. The various orders in perturbation theory of the energy and the wave function are derived first in a direct way, then in a resolvent formalism. The formulas are very compact and easily generalizeable to arbitrary order. All integrals that arise to any order exist, and no controlled cancellation of divergent terms (as in other approaches) is necessary. In the same philosophy an iterative approach towards the solution of the Dirac equation is derived, in which the solution of the Schrödinger equation is the first iteration step.
NASA Astrophysics Data System (ADS)
Roos, Wouter; Gibbons, Melissa; Klug, William; Wuite, Gijs
2009-03-01
We report nanoindentation experiments by atomic force microscopy on capsids of the Hepatitis B Virus (HBV). HBV is investigated because its capsids can form in either a smaller T=3 or a bigger T=4 configuration, making it an ideal system to test the predictive power of continuum elastic theory to describe nanometre-sized objects. It is shown that for small, consecutive indentations the particles behave reversibly linear and no material fatigue occurs. For larger indentations the particles start to deform non-linearly. The experimental force response fits very well with finite element simulations on coarse grained models of HBV capsids. Furthermore, this also fits with thin shell simulations guided by the F"oppl- von K'arm'an (FvK) number (the dimensionless ratio of stretching and bending stiffness of a thin shell). Both the T=3 and T=4 morphology are very well described by the simulations and the capsid material turns out to have the same Young's modulus, as expected. The presented results demonstrate the surprising strength of continuum elastic theory to describe indentation of viral capsids.
Dmitriev, Andrey I.; Voll, Lars B.; Psakhie, Sergey G.; Popov, Valentin L.
2016-01-01
We consider multiple-mode fretting wear in a frictional contact of elastic bodies subjected to a small-amplitude oscillation, which may include in-plane and out-of-plane translation, torsion and tilting (“periodic rolling”). While the detailed kinetics of wear depends on the particular loading history and wear mechanism, the final worn shape, under some additional conditions, occurs to be universal for all types and loading and wear mechanisms. This universal form is determined solely by the radius of the permanent stick region and the maximum indentation depth during the loading cycle. We provide experimental evidence for the correctness of the theoretically predicted limiting shape. The existence of the universal limiting shape can be used for designing joints which are resistant to fretting wear. PMID:26979092
Dmitriev, Andrey I; Voll, Lars B; Psakhie, Sergey G; Popov, Valentin L
2016-01-01
We consider multiple-mode fretting wear in a frictional contact of elastic bodies subjected to a small-amplitude oscillation, which may include in-plane and out-of-plane translation, torsion and tilting ("periodic rolling"). While the detailed kinetics of wear depends on the particular loading history and wear mechanism, the final worn shape, under some additional conditions, occurs to be universal for all types and loading and wear mechanisms. This universal form is determined solely by the radius of the permanent stick region and the maximum indentation depth during the loading cycle. We provide experimental evidence for the correctness of the theoretically predicted limiting shape. The existence of the universal limiting shape can be used for designing joints which are resistant to fretting wear. PMID:26979092
NASA Astrophysics Data System (ADS)
Dmitriev, Andrey I.; Voll, Lars B.; Psakhie, Sergey G.; Popov, Valentin L.
2016-03-01
We consider multiple-mode fretting wear in a frictional contact of elastic bodies subjected to a small-amplitude oscillation, which may include in-plane and out-of-plane translation, torsion and tilting (“periodic rolling”). While the detailed kinetics of wear depends on the particular loading history and wear mechanism, the final worn shape, under some additional conditions, occurs to be universal for all types and loading and wear mechanisms. This universal form is determined solely by the radius of the permanent stick region and the maximum indentation depth during the loading cycle. We provide experimental evidence for the correctness of the theoretically predicted limiting shape. The existence of the universal limiting shape can be used for designing joints which are resistant to fretting wear.
Ring-polymer instanton theory of electron transfer in the nonadiabatic limit
Richardson, Jeremy O.
2015-10-07
We take the golden-rule instanton method derived in the previous paper [J. O. Richardson, R. Bauer, and M. Thoss, J. Chem. Phys. 143, 134115 (2015)] and reformulate it using a ring-polymer instanton approach. This gives equations which can be used to compute the rates of electron-transfer reactions in the nonadiabatic (golden-rule) limit numerically within a semiclassical approximation. The multidimensional ring-polymer instanton trajectories are obtained efficiently by minimization of the action. In this form, comparison with Wolynes’ quantum instanton method [P. G. Wolynes, J. Chem. Phys. 87, 6559 (1987)] is possible and we show that our semiclassical approach is the steepest-descent limit of this method. We discuss advantages and disadvantages of both methods and give examples of where the new approach is more accurate.
Speakman, John R; Król, Elzbieta
2010-11-01
A major factor influencing life-history strategies of endotherms is body size. Larger endotherms live longer, develop more slowly, breed later and less frequently, and have fewer offspring per attempt at breeding. The classical evolutionary explanation for this pattern is that smaller animals experience greater extrinsic mortality, which favors early reproduction at high intensity. This leads to a short lifespan and early senescence by three suggested mechanisms. First, detrimental late-acting mutations cannot be removed because of the low force of selection upon older animals (mutation accumulation). Second, genes that promote early reproduction will be favored in small animals, even if they have later detrimental effects (antagonistic pleiotropy). Third, small animals may be forced to reduce their investment in longevity assurance mechanisms (LAMs) in favor of investment in reproduction (the disposable soma theory, DST). The DST hinges on three premises: that LAMs exist, that such LAMs are energetically expensive and that the supply of energy is limited. By contrast, the heat dissipation limit (HDL) theory provides a different conceptual perspective on the evolution of life histories in relation to body size. We suggest that rather than being limited, energy supplies in the environment are often unlimited, particularly when animals are breeding, and that animals are instead constrained by their maximum capacity to dissipate body heat, generated as a by-product of their metabolism. Because heat loss is fundamentally a surface-based phenomenon, the low surface-to-volume ratio of larger animals generates significant problems for dissipating the body heat associated with reproductive effort, which then limits their current reproductive investment. We suggest that this is the primary reason why fecundity declines as animal size increases. Because large animals are constrained by their capacity for heat dissipation, they have low reproductive rates. Consequently, only
ERIC Educational Resources Information Center
See, Lai-Chu; Huang, Yu-Hsun; Chang, Yi-Hu; Chiu, Yeo-Ju; Chen, Yi-Fen; Napper, Vicki S.
2010-01-01
This study examines the timing using computer-enriched instruction (CEI), before or after a traditional lecture to determine cross-over effect, period effect, and learning effect arising from sequencing of instruction. A 2 x 2 cross-over design was used with CEI to teach central limit theorem (CLT). Two sequences of graduate students in nursing…
ERIC Educational Resources Information Center
Moen, David H.; Powell, John E.
2008-01-01
Using Microsoft® Excel, several interactive, computerized learning modules are developed to illustrate the Central Limit Theorem's appropriateness for comparing the difference between the means of any two populations. These modules are used in the classroom to enhance the comprehension of this theorem as well as the concepts that provide the…
Barber, Sarah J; Opitz, Philipp C; Martins, Bruna; Sakaki, Michiko; Mather, Mara
2016-08-01
Compared with younger adults, older adults have a relative preference to attend to and remember positive over negative information. This is known as the "positivity effect," and researchers have typically evoked socioemotional selectivity theory to explain it. According to socioemotional selectivity theory, as people get older they begin to perceive their time left in life as more limited. These reduced time horizons prompt older adults to prioritize achieving emotional gratification and thus exhibit increased positivity in attention and recall. Although this is the most commonly cited explanation of the positivity effect, there is currently a lack of clear experimental evidence demonstrating a link between time horizons and positivity. The goal of the current research was to address this issue. In two separate experiments, we asked participants to complete a writing activity, which directed them to think of time as being either limited or expansive (Experiments 1 and 2) or did not orient them to think about time in a particular manner (Experiment 2). Participants were then shown a series of emotional pictures, which they subsequently tried to recall. Results from both studies showed that regardless of chronological age, thinking about a limited future enhanced the relative positivity of participants' recall. Furthermore, the results of Experiment 2 showed that this effect was not driven by changes in mood. Thus, the fact that older adults' recall is typically more positive than younger adults' recall may index naturally shifting time horizons and goals with age. PMID:27112461
Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory
Wohlfeld, K.; Chen, Cheng-Chien; van Veenendaal, M. ; Devereaux, T. P.
2015-02-01
Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation [Phys. Rev. B 91, 165102 (2015)], we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to N=2 in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstances be regarded as more complex than the physics of a spin-orbital chain.
Limitations of effective medium theory in multilayer graphite/hBN heterostructures
NASA Astrophysics Data System (ADS)
Petersen, René; Pedersen, Thomas Garm; Gjerding, Morten Niklas; Thygesen, Kristian Sommer
2016-07-01
We apply effective medium theory (EMT) to metamaterials consisting of a varying number of consecutive sheets of graphene and hexagonal boron nitride, and compare this with a full calculation of the permittivity and the reflection based on the tight binding method and the transfer matrix method in order to study the convergence to EMT. We find that convergence is reached for both in-plane and out-of-plane directions already for five sheets but that for ≈30 sheets multiple reflection effects causes the reflection spectrum to differ from EMT. We show that modes that are evanescent in air are extremely sensitive to the electronic details of the sheets near the structure boundary and that EMT estimates poorly the reflection of these modes, causing an overestimation of the Purcell factor. Finally, we offer an improved EMT, which gives far better convergence in the low-energy regime.
Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory
Wohlfeld, K.; Chen, Cheng-Chien; van Veenendaal, M.; Devereaux, T. P.
2015-02-01
Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation [Phys. Rev. B 91, 165102 (2015)], we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to N=2 in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstancesmore » be regarded as more complex than the physics of a spin-orbital chain.« less
Quantum limits on optical phase estimation accuracy from classical rate-distortion theory
Nair, Ranjith
2014-12-04
The classical information-theoretic lower bound on the distortion of a random variable upon transmission through a noisy channel is applied to quantum-optical phase estimation. An approach for obtaining Bayesian lower bounds on the phase estimation accuracy is described that employs estimates of the classical capacity of the relevant quantum-optical channels. The Heisenberg limit for lossless phase estimation is derived for arbitrary probe state and prior distributions of the phase, and shot-noise scaling of the phase accuracy is established in the presence of nonzero loss for a parallel entanglement-assisted strategy with a single probe mode.
Theory of factors limiting high gradient operation of warm accelerating structures
Nusinovich, Gregory S.
2014-07-22
This report consists of two parts. In the first part we describe a study of the heating of microprotrusions on surfaces of accelerating structures. This ;process is believed to lead to breakdown in these structures. Our study revealed that for current accelerator parameters melting should not occur due to space charge limitations of the current emitted by a protrusion. The second part describes a novel concept to develop THz range sources based on harmonic cyclotron masers for driving future colliders. This work was stimulated by a recent request of SLAC to develop high power, high-efficiency sources of sub-THz radiation for future high-gradient accelerators.
Basis set limit geometries for ammonia at the SCF and MP2 levels of theory
NASA Technical Reports Server (NTRS)
Defrees, D. J.; Mclean, A. D.
1984-01-01
The controversy over the Hartree-Fock bond angle of NH3 is resolved and the convergence of the geometry for the molecule as the basis set is systematically improved with both SCF and correlated MP2 wave functions. The results of the geometrical optimizations, carried out in four stages with a series of uncontracted bases sets, are shown. The obtained structure for NH3 supports the results of Radom and Rodwell (1980) that the Hartree-Fock limit angle is significantly greater than was previously believed.
Bogolubov-Hartree-Fock Theory for Strongly Interacting Fermions in the Low Density Limit
NASA Astrophysics Data System (ADS)
Bräunlich, Gerhard; Hainzl, Christian; Seiringer, Robert
2016-06-01
We consider the Bogolubov-Hartree-Fock functional for a fermionic many-body system with two-body interactions. For suitable interaction potentials that have a strong enough attractive tail in order to allow for two-body bound states, but are otherwise sufficiently repulsive to guarantee stability of the system, we show that in the low-density limit the ground state of this model consists of a Bose-Einstein condensate of fermion pairs. The latter can be described by means of the Gross-Pitaevskii energy functional.
Anisotropy in the lowermost mantle: to the limits of ray theory (and beyond)
NASA Astrophysics Data System (ADS)
Nowacki, A.; Walker, A.; Wookey, J. M.; Kendall, J. M.
2013-12-01
It seems that the Earth's mantle flows on the order of centimetres per year, but it has thus far been impossible to directly constrain details of flow direction or magnitude through our primary means of probing the deep interior--seismic waves. Yet the presence of anisotropy in the upper and lowermost mantle presents an intriguing possibility: if this is due to lattice preferred orientation (LPO) of anisotropic minerals in response to flow, one may be able to ';invert' for the recent strain history in these regions. New mineral physics experiments and numerical modelling will help define slip systems for mantle minerals and under which conditions LPO develops, eventually removing two key current unknowns. Homogenisation techniques (e.g., viscoplastic self-consistent method) to model LPO development from strain history exist and are in active development. Models of mantle convection are increasingly complex and will in future include viscosity which depends on strain history and LPO. The key step in retrieving flow from seismic observables, therefore, is to obtain enough information about the type of anisotropy present in order to relate it to the alignment of mineral grains. Here we focus on the seismological ';worst case' of the lowermost mantle--D″--where surface waves are not available, giving the most pessimistic view of progress. The infinite frequency (ray theory) assumption is often made when forward modelling wave propagation because it allows for rapid computation. Any inversion for flow must be computationally tractable, so we must assess the applicability of this assumption. To do so, we compute the wave field making no assumptions about the symmetry of elasticity in the Earth; i.e., we permit all 21 elastic constants to vary. Calculations are performed at the same frequency as observations (0.01-0.2 Hz). We use the spectral element method, which scales well for very large calculations. In particular we use a modified version of SPECFEM3D_GLOBE which
Shot-Noise Limited Single-Molecule FRET Histograms: Comparison between Theory and Experiments†
Nir, Eyal; Michalet, Xavier; Hamadani, Kambiz M.; Laurence, Ted A.; Neuhauser, Daniel; Kovchegov, Yevgeniy; Weiss, Shimon
2011-01-01
We describe a simple approach and present a straightforward numerical algorithm to compute the best fit shot-noise limited proximity ratio histogram (PRH) in single-molecule fluorescence resonant energy transfer diffusion experiments. The key ingredient is the use of the experimental burst size distribution, as obtained after burst search through the photon data streams. We show how the use of an alternated laser excitation scheme and a correspondingly optimized burst search algorithm eliminates several potential artifacts affecting the calculation of the best fit shot-noise limited PRH. This algorithm is tested extensively on simulations and simple experimental systems. We find that dsDNA data exhibit a wider PRH than expected from shot noise only and hypothetically account for it by assuming a small Gaussian distribution of distances with an average standard deviation of 1.6 Å. Finally, we briefly mention the results of a future publication and illustrate them with a simple two-state model system (DNA hairpin), for which the kinetic transition rates between the open and closed conformations are extracted. PMID:17078646
NASA Astrophysics Data System (ADS)
Sun, Jielun; Lenschow, Donald; LeMone, Margaret; Mahrt, Larry
2015-04-01
Turbulent fluxes from the Cooperative Atmosphere-Surface Exchange Study in 1999 (CASES-99) field experiment are further analyzed for both day- and nighttime as a follow-on to the investigation of the nighttime turbulence in Sun et al. (2012). The behavior of momentum and heat fluxes is investigated as functions of wind speed and the bulk temperature difference between observation heights and the surface. Vertical variations of momentum and heat flux at a given height z are correlated and are explained in terms of the energy and heat balance in a layer above the ground surface in which the surface heating/cooling and momentum sink need to be included. In addition, the surface also plays an important role in constraining the size of the dominant turbulent eddies, which is directly related to turbulence strength and the length scale of turbulence generation. The turbulence generation is not related to local vertical gradients especially under neutral condition as assumed in Monin-Obukhov similarity theory. Based on the observed relationships between momentum and heat fluxes, a new bulk formula for turbulence parameterization is developed to mainly examine the above-mentioned surface effects on vertical variation of turbulent momentum and heat fluxes. The new understanding of the observed relationships between these turbulent variables and mean variables explains the observed nighttime turbulence regime change observed in Sun et al. (2012) as well as the daytime momentum and heat flux variations with height up to the maximum observation height of 55 m.
Limitations on K-T mass extinction theories based upon the vertebrate record
NASA Technical Reports Server (NTRS)
Archibald, J. David; Bryant, Laurie J.
1988-01-01
Theories of extinction are only as good as the patterns of extinction that they purport to explain. Often such patterns are ignored. For the terminal Cretaceous events, different groups of organisms in different environments show different patterns of extinction that to date cannot be explained by a single causal mechanism. Several patterns of extinction (and/or preservational bias) can be observed for the various groups of vertebrates from the uppermost Cretaceous Hell Creek Formation and lower Paleocene Tullock Formation in eastern Montana. The taxonomic level at which the percentage of survivals (or extinctions) is calculated will have an effect upon the perception of faunal turnover. In addition to the better known mammals and better publicized dinosaurs, there are almost 60 additional species of reptiles, birds, amphibians, and fish in the HELL Creek Formation. Simple arithmetic suggests only 33 percent survival of these vertebrates from the Hell Creek Fm. into the Tullock Fm. A more critical examination of the data shows that almost all Hell Creek species not found in the Tullock are represented in one of the following categories; extremely rare forms, elasmobranch fish that underwent rapid speciation taxa that although not known or rare in the Tullock, are found elsewhere. Each of the categories is largely the result of the following biases: taphonomy, ecological differences, taxonomic artifact paleogeography. The two most important factors appear to be the possible taphonomic biases and the taxonomic artifacts. The extinction patterns among the vertebrates do not appear to be attributable to any single cause, catastrophic or otherwise.
Levitt, D G
1985-01-01
The solution for the ion flux through a membrane channel that incorporates the electrolyte nature of the aqueous solution is a difficult theoretical problem that, until now, has not been properly formulated. The difficulty arises from the complicated electrostatic problem presented by a high dielectric aqueous channel piercing a low dielectric lipid membrane. The problem is greatly simplified by assuming that the ratio of the dielectric constant of the water to that of the lipid is infinite. It is shown that this is a good approximation for most channels of biological interest. This assumption allows one to derive simple analytical expressions for the Born image potential and the potential from a fixed charge in the channel, and it leads to a differential equation for the potential from the background electrolyte. This leads to a rigorous solution for the ion flux or the equilibrium potential based on a combination of the Nernst-Planck equation and strong electrolyte theory (i.e., Gouy-Chapman or Debye-Huckel). This approach is illustrated by solving the system of equations for the specific case of a large channel containing fixed negative charges. The following characteristics of this channels are discussed: anion and mono- and divalent cation conductance, saturation of current with increasing concentration, current-voltage relationship, influence of location and valence of fixed charge, and interaction between ions. The qualitative behavior of this channel is similar to that of the acetylcholine receptor channel. PMID:2410048
Rate- and Extent-Limiting Factors of Oral Drug Absorption: Theory and Applications.
Sugano, Kiyohiko; Terada, Katsuhide
2015-09-01
The oral absorption of drugs has been represented by various concepts such as the absorption potential, the maximum absorbable dose, the biopharmaceutics classification system, and in vitro-in vivo correlation. The aim of this article is to provide an overview of the theoretical relationships between these concepts. It shows how a simple analytical solution for the fraction of a dose absorbed (Fa equation) can offer a theoretical base to tie together the various concepts, and discusses how this solution relates to the rate-limiting cases of oral drug absorption. The article introduces the Fa classification system as a framework in which all the above concepts were included, and discusses its applications for food effect prediction, active pharmaceutical ingredient form selection, formulation design, and biowaiver strategy. PMID:25712830
Theory of remote entanglement via quantum-limited phase-preserving amplification
NASA Astrophysics Data System (ADS)
Silveri, Matti; Zalys-Geller, Evan; Hatridge, Michael; Leghtas, Zaki; Devoret, Michel H.; Girvin, S. M.
2016-06-01
We show that a quantum-limited phase-preserving amplifier can act as a which-path information eraser when followed by heterodyne detection. This "beam splitter with gain" implements a continuous joint measurement on the signal sources. As an application, we propose heralded concurrent remote entanglement generation between two qubits coupled dispersively to separate cavities. Dissimilar qubit-cavity pairs can be made indistinguishable by simple engineering of the cavity driving fields providing further experimental flexibility and the prospect for scalability. Additionally, we find an analytic solution for the stochastic master equation, a quantum filter, yielding a thorough physical understanding of the nonlinear measurement process leading to an entangled state of the qubits. We determine the concurrence of the entangled states and analyze its dependence on losses and measurement inefficiencies.
NASA Astrophysics Data System (ADS)
Zope, Rajendra R.; Dunlap, Brett I.
2006-01-01
Our recent formulation of the analytic and variational Slater-Roothaan (SR) method, which uses Gaussian basis sets to variationally express the molecular orbitals, electron density, and the one-body effective potential of density-functional theory, is reviewed. Variational fitting can be extended to the resolution of identity method, where variationality then refers to the error in each two-electron integral and not to the total energy. However, a Taylor-series analysis shows that all analytic ab initio energies calculated with variational fits to two-electron integrals are stationary. It is proposed that the appropriate fitting functions be charge neutral and that all ab initio energies be evaluated using two-center fits of the two-electron integrals. The SR method has its root in Slater's Xα method and permits an arbitrary scaling of the Slater-Gàspàr-Kohn-Sham exchange-correlation potential around each atom in the system. The scaling factors are Slater's exchange parameters α. Of several ways of choosing these parameters, two most obvious are the Hartree-Fock (HF) αHF values and the exact atomic αEA values. The former are obtained by equating the self-consistent Xα energy and the HF energies, while the latter set reproduces exact atomic energies. In this work, we examine the performance of the SR method for predicting atomization energies, bond distances, and ionization potentials using the two sets of α parameters. The atomization energies are calculated for the extended G2 set of 148 molecules for different basis-set combinations. The mean error (ME) and mean absolute error (MAE) in atomization energies are about 25 and 33kcal /mol, respectively, for the exact atomic αEA values. The HF values of exchange parameters αHF give somewhat better performance for the atomization energies with ME and MAE being about 15 and 26kcal/mol, respectively. While both sets give performance better than the local-density approximation or the HF theory, the errors in
A Theory for the RF Surface Field for Various Metals at the Destructive Breakdown Limit
Wilson, Perry B.
2006-11-27
By destructive breakdown we mean a breakdown event that results in surface melting over a macroscopic area in a high E-field region of an accelerator structure. A plasma forms over the molten area, bombarding the surface with an intense ion current ({approx}108 A/cm2), equivalent to a pressure of about a thousand Atmospheres. This pressure in turn causes molten copper to migrate away from the iris tip, resulting in measurable changes in the iris shape. The breakdown process can be roughly divided into four stages: (1) the formation of ''plasma spots'' at field emission sites, each spot leaving a crater-like footprint; (2) crater clustering, and the formation of areas with hundreds of overlapping craters; (3) surface melting in the region of a crater cluster; (4) the process after surface melting that leads to destructive breakdown. The physics underlying each of these stages is developed, and a comparison is made between the theory and experimental evidence whenever possible. The key to preventing breakdown lies in stage (3). A single plasma spot emits a current of several amperes, a portion of which returns to impact the surrounding area with a power density on the order 107 Watt/cm2. This power density is not quite adequate to melt the surrounding surface on a time scale short compared to the rf pulse length. In a crater field, however, the impact areas from multiple plasma spots overlap to provide sufficient power density for surface melting over an area on the order of 0.1 mm2 or more. The key to preventing breakdown is to choose an iris tip material that requires the highest power density (proportional to the square of the rf surface field) for surface melting, taking into account the penetration depth of the impacting electrons. The rf surface field required for surface melting (relative to copper) has been calculated for a large number elementary metals, plus stainless-steel and carbon.
NASA Technical Reports Server (NTRS)
Tessler, Alexander; DiSciuva, Marco; Gherlone, marco
2010-01-01
The Refined Zigzag Theory (RZT) for homogeneous, laminated composite, and sandwich plates is presented from a multi-scale formalism starting with the inplane displacement field expressed as a superposition of coarse and fine contributions. The coarse kinematic field is that of first-order shear-deformation theory, whereas the fine kinematic field has a piecewise-linear zigzag distribution through the thickness. The condition of limiting homogeneity of transverse-shear properties is proposed and yields four distinct sets of zigzag functions. By examining elastostatic solutions for highly heterogeneous sandwich plates, the best-performing zigzag functions are identified. The RZT predictive capabilities to model homogeneous and highly heterogeneous sandwich plates are critically assessed, demonstrating its superior efficiency, accuracy ; and a wide range of applicability. The present theory, which is derived from the virtual work principle, is well-suited for developing computationally efficient CO-continuous finite elements, and is thus appropriate for the analysis and design of high-performance load-bearing aerospace structures.
Evans, Catrin; Lambert, Helen
2008-01-01
This paper uses ethnographic data from a sex workers' HIV project in India to consider the appropriateness of individual, social/group and structural theories of health behaviour when applied to HIV-prevention initiatives. Existing theories are critiqued for their modernist representation of behaviour as determined by individual rational decision-making processes or by external structural forces, with inadequate recognition being given to the roles that human agency, subjective meaning and local context play in everyday actions. Analysis of sex workers' accounts of their sexual practices suggests that existing theories of health behaviour can only partially account for sexual behaviour change retrospectively and that they have limited predictive value with respect to the outcomes of individual sexual encounters. Our data show that these outcomes were, in fact, highly context dependent, while possibilities for action were ultimately strongly constrained by structural forces. Findings suggest that interventions need to adopt an integrated, structurally-oriented approach for promoting safer sexual practices in sex work settings. Recognising that no one model of health behaviour is likely to be adequate in explaining or predicting behaviour change encourages responsiveness to local people's agency, recognises the different (health- and non-health-related) registers of risk with which people operate and encourages flexibility according to local contingencies and contexts. PMID:18038279
NASA Astrophysics Data System (ADS)
Young, Eliot F.; Olkin, Catherine B.; Young, Leslie A.; Howell, Robert R.; French, Richard G.
2014-11-01
We report a new analysis of occultation lightcurves observed in 2007 (from Mt John Observatory) and 2011 (from San Pedro Martir Observatory). In both cases, lightcurves were observed simultaneously in two wavelengths, and in the 2007 case, a double-peaked central flash was observed. In contrast to the wavelength-dependent opacities reported by Elliot et al. (Nature 2003; 424:165) in 2002, we see no evidence for an opacity source in Pluto's atmosphere that has greater extinction at shorter wavelengths. From the separation of the peaks in the 2007 central flash lightcurves, we find the oblateness of Pluto's atmosphere (equatorial vs. polar radii of pressure contours near R = 1215 km) of 1.03 ± 0.002. If this oblateness were caused solely by zonal winds, the wind speed at the equator would have to be 206 km/s; an alternative explanation is that the equatorial bulge is caused by warmer temperatures above the equator than the poles. Finally, the amplitudes of the central flash peaks are very sensitive to the surface pressure. If that pressure is driven by the vapor pressure of nitrogen ice, then the ice temperature of 42 ± 2 K reported by Tryka et al. (Icarus 1994; 212:513) is too high and produces central flash amplitudes that are much too bright. We find that the observed central flash peak amplitudes are consistent with nitrogen ice temperatures near 37 K, closer to the alpha-beta transition temperature (35.6 K) of nitrogen ice.
A Theory for the RF Surface Field for Various Metals at the Destructive Breakdown Limit
Wilson, Perry B.; /SLAC
2007-03-06
By destructive breakdown we mean a breakdown event that results in surface melting over a macroscopic area in a high E-field region of an accelerator structure. A plasma forms over the molten area, bombarding the surface with an intense ion current ({approx} 10{sup 8} A/cm{sup 2}), equivalent to a pressure of about a thousand Atmospheres. This pressure in turn causes molten copper to migrate away from the iris tip, resulting in measurable changes in the iris shape. The breakdown process can be roughly divided into four stages: (1) the formation of ''plasma spots'' at field emission sites, each spot leaving a crater-like footprint; (2) crater clustering, and the formation of areas with hundreds of overlapping craters; (3) surface melting in the region of a crater cluster; (4) the process after surface melting that leads to destructive breakdown. The physics underlying each of these stages is developed, and a comparison is made between the theory and experimental evidence whenever possible. The key to preventing breakdown lies in stage (3). A single plasma spot emits a current of several amperes, a portion of which returns to impact the surrounding area with a power density on the order 10{sup 7} Watt/cm{sup 2}. This power density is not quite adequate to melt the surrounding surface on a time scale short compared to the rf pulse length. In a crater field, however, the impact areas from multiple plasma spots overlap to provide sufficient power density for surface melting over an area on the order of 0.1 mm{sup 2} or more. The key to preventing breakdown is to choose an iris tip material that requires the highest power density (proportional to the square of the rf surface field) for surface melting, taking into account the penetration depth of the impacting electrons. The rf surface field required for surface melting (relative to copper) has been calculated for a large number elementary metals, plus stainless-steel and carbon.
NASA Astrophysics Data System (ADS)
Schmitz, Matthias; Tavan, Paul
2004-12-01
Hybrid molecular dynamics (MD) simulations, which combine density functional theory (DFT) descriptions of a molecule with a molecular mechanics (MM) modeling of its solvent environment, have opened the way towards accurate computations of solvation effects in the vibrational spectra of molecules. Recently, Wheeler et al. [ChemPhysChem 4, 382 (2002)] have suggested to compute these spectra from DFT/MM-MD trajectories by diagonalizing the covariance matrix of atomic fluctuations. This so-called principal mode analysis (PMA) allegedly can replace the well-established approaches, which are based on Fourier transform methods or on conventional normal mode analyses. By scrutinizing and revising the PMA approach we identify five conditions, which must be guaranteed if PMA is supposed to render exact vibrational frequencies. Besides specific choices of (a) coordinates and (b) coordinate systems, these conditions cover (c) a harmonic intramolecular potential, (d) a complete thermal equilibrium within the molecule, and (e) a molecular Hamiltonian independent of time. However, the PMA conditions [(c)-(d)] and [(c)-(e)] are generally violated in gas phase DFT-MD and liquid phase DFT/MM-MD trajectories, respectively. Based on a series of simple analytical model calculations and on the analysis of MD trajectories calculated for the formaldehyde molecule in the gas phase (DFT) and in liquid water (DFT/MM) we show that in both phases the violation of condition (d) can cause huge errors in PMA frequency computations, whereas the inevitable violations of conditions (c) and (e), the latter being generic to the liquid phase, imply systematic and sizable underestimates of the vibrational frequencies by PMA. We demonstrate that the huge errors, which are caused by an incomplete thermal equilibrium violating (d), can be avoided if one introduces mode-specific temperatures Tj and calculates the frequencies from a "generalized virial" (GV) expression instead from PMA. Concerning ways to
Theory of factors limiting high gradient operation of warm accelerating structures
Nusinovich, Gregory S.; Antonsen, Thomas M.; Kishek, Rami
2014-07-25
This final report summarizes the research performed during the time period from 8/1/2010 to 7/31/2013. It consists of two parts describing our studies in two directions: (a) analysis of factors limiting operation of dielectric-loaded accelerating (DLA) structures where the main problem is the occurrence of multipactor on dielectric surfaces, and (b) studies of effects associated with either RF magnetic or RF electric fields which may cause the RF breakdown in high-gradient metallic accelerating structures. In the studies of DLA structures, at least, two accomplishments should be mentioned: the development of a 3D non-stationary, self-consistent code describing the multipactor phenomena and yielding very good agreement with some experimental data obtained in joint ANL/NRL experiments. In the metallic structures, such phenomena as the heating and melting of micro-particles (metallic dust) by RF electric and magnetic fields in single-shot and rep-rate regimes is analyzed. Also, such processes in micro-protrusions on the structure surfaces as heating and melting due to the field emitted current and the Nottingham effect are thoroughly investigated with the account for space charge of emitted current on the field emission from the tip.
Technology Transfer Automated Retrieval System (TEKTRAN)
The era of expanding irrigated agriculture in the central high plains has come to an end, and we are likely entering a period of contraction. Contraction has begun in Colorado where the state estimates that current consumptive use exceeds sustainable supplies by about 10%. Groundwater pumping has ...
ERIC Educational Resources Information Center
Van Duzer, Eric
2011-01-01
This report introduces a short, hands-on activity that addresses a key challenge in teaching quantitative methods to students who lack confidence or experience with statistical analysis. Used near the beginning of the course, this activity helps students develop an intuitive insight regarding a number of abstract concepts which are key to…
ERIC Educational Resources Information Center
Boerner, Kathrin; Jopp, Daniela
2007-01-01
This article focuses on the common and unique contributions of three major life-span theories in addressing improvement/maintenance and reorientation, which represent central processes of coping with major life change and loss. For this purpose, we review and compare the dual-process model of assimilative and accommodative coping, the model of…
Jones, Dean P
2016-04-01
When Rafael Radi and I wrote about Helmut Sies for the Redox Pioneer series, I was disappointed that the Editor restricted us to the use of "Pioneer" in the title. My view is that Helmut was always ahead of the pioneers: He was a scout discovering paths for exploration and a trailblazer developing strategies and methods for discovery. I have known him for nearly 40 years and greatly enjoyed his collegiality as well as brilliance in scientific scholarship. He made monumental contributions to 20th century physiological chemistry beginning with his first measurement of H2O2 in rat liver. While continuous H2O2 production is dogma today, the concept of H2O2 production in mammalian tissues was largely buried for half a century. He continued this leadership in research on oxidative stress, GSH, selenium, and singlet oxygen, during the timeframe when physiological chemistry and biochemistry transitioned to contemporary 21st century systems biology. His impact has been extensive in medical and health sciences, especially in nutrition, aging, toxicology and cancer. I briefly summarize my interactions with Helmut, stressing our work together on the redox code, a set of principles to link mitochondrial respiration, bioenergetics, H2O2 metabolism, redox signaling and redox proteomics into central redox theory. PMID:27095208
Pellicano, Elizabeth
2010-03-01
There is strong evidence to suggest that individuals with autism show atypicalities in multiple cognitive domains, including theory of mind (ToM), executive function (EF), and central coherence (CC). In this study, the longitudinal relationships among these 3 aspects of cognition in autism were investigated. Thirty-seven cognitively able children with an autism spectrum condition were assessed on tests targeting ToM (false-belief prediction), EF (planning ability, cognitive flexibility, and inhibitory control), and CC (local processing) at intake and again 3 years later. Time 1 EF and CC skills were longitudinally predictive of change in children's ToM test performance, independent of age, language, nonverbal intelligence, and early ToM skills. Predictive relations in the opposite direction were not significant, and there were no developmental links between EF and CC. Rather than showing problems in ToM, EF and CC as co-occurring and independent atypicalities in autism, these findings suggest that early domain-general skills play a critical role in shaping the developmental trajectory of children's ToM. PMID:20210511
Normal theory procedures for calculating upper confidence limits (UCL) on the risk function for continuous responses work well when the data come from a normal distribution. However, if the data come from an alternative distribution, the application of the normal theory procedure...
NASA Astrophysics Data System (ADS)
Spjeldvik, W. N.
1981-11-01
Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Rice, Edward J.; Mankbadi, Reda R.
1988-01-01
The limitations of single frequency plane wave excitation in mixing enhancement are investigated for a circular jet. Measurements made in an 8.8 cm diameter jet are compared with a theoretical model. The measurements are made to quantify mixing at excitation amplitudes up to 2 percent of the jet exit velocity. The initial boundary layer state, the exit mean and fluctuating velocity profiles and spectra are documented for all cases considered. The amplitude of the fundamental wave is recorded along the jet axis for various levels of excitation. As the amplitude of excitation is increased the jet spreading rate is increased, but beyond a saturation amplitude further increases have no effect on the spreading. The experimental results are compared with theoretical estimates. In the theory the flow is split into the mean flow, large scale motions, and fine scale turbulence. Shape assumptions for the mean flow, and fine scale turbulence along with the shape for the large scale motions obtained from a linear stability theory provide the closure. The experimental results compare reasonably well with predictions.
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Rice, Edward J.; Mankbadi, Reda R.
1988-01-01
The limitations of single frequency plane wave excitation in mixing enhancement are investigated for a circular jet. Measurements made in an 8.8 cm diameter jet are compared with a theoretical model. The measurements are made to quantify mixing at excitation amplitudes up to 2 percent of the jet exit velocity. The initial boundary layer state, the exit mean and fluctuating velocity profiles and spectra are documented for all cases considered. The amplitude of the fundamental wave is recorded along the jet axis for various levels of excitation. As the amplitude of excitation is increased the jet spreading rate is increased, but beyond a saturation amplitude further increases have no effect on the spreading. The experimental results are compared with theoretical estimates. In the theory the flow is split into the mean flow, large scale motions, and fine scale turbulence. Shape assumptions for the mean flow, and fine scale turbulence along with the shape for the large scale motions obtained from a linear stability theory provide the closure. The experimental results compare reasonably well with predictions.
Szabo, B. J.; Lindsey, D.A.
1986-01-01
Analysis of three travertine samples from the southeast side of The Park (central Montana) yield an average uranium-thorium age of 73 000 yr. Another sample from the west side of The Park is 320 000 yr old. These results indicate that travertine deposits may have formed at several intervals. The surface beneath The Park travertine is older than about 320 000 yr. Number 2 pediment gravels that contain travertine downslope from the oldest dated sample may be younger than about 320 000 yr. -Authors
NASA Astrophysics Data System (ADS)
Wang, Yizhi; Zhang, Yi; Hu, Jianming; Li, Li
2012-09-01
One frequently observed congested traffic flow pattern is wide moving jam (WMJ), in which the average vehicle speed is very low and the density is very high. In some recent studies, variable speed limits (VSL) were proposed as effective measures to eliminate or abate the influence of jam waves. However, in most of these studies, the stochastic features of driving behaviors and the resulting uncertainty of traffic flow dynamics were not fully considered. In this paper, we use cellular automaton (CA) model-based simulations to test the performances of different VSL control strategies and apply the three-phase traffic theory to further analyze the obtained results. Based on the simulation results, we got two novel findings. Firstly, we observed seven, instead of the previously assumed six, states of traffic flow in the evolution process of WMJ, when VSL were applied. Secondly and more importantly, we found that inappropriate speed limit may induce new WMJ and exaggerate congestions in two ways: one way corresponds to an F → J transition and the other corresponds to an F → S → J transition. Based on these findings, the appropriate lower bound of VSL was finally discussed in this paper.
ERIC Educational Resources Information Center
DeMars, Christine E.
2012-01-01
In structural equation modeling software, either limited-information (bivariate proportions) or full-information item parameter estimation routines could be used for the 2-parameter item response theory (IRT) model. Limited-information methods assume the continuous variable underlying an item response is normally distributed. For skewed and…
Donor hyperfine Stark shift and the role of central-cell corrections in tight-binding theory.
Usman, Muhammad; Rahman, Rajib; Salfi, Joe; Bocquel, Juanita; Voisin, Benoit; Rogge, Sven; Klimeck, Gerhard; Hollenberg, Lloyd L C
2015-04-22
Atomistic tight-binding (TB) simulations are performed to calculate the Stark shift of the hyperfine coupling for a single arsenic (As) donor in silicon (Si). The role of the central-cell correction is studied by implementing both the static and the non-static dielectric screenings of the donor potential, and by including the effect of the lattice strain close to the donor site. The dielectric screening of the donor potential tunes the value of the quadratic Stark shift parameter (η2) from -1.3 × 10(-3) µm(2) V(-2) for the static dielectric screening to -1.72 × 10(-3) µm(2) V(-2) for the non-static dielectric screening. The effect of lattice strain, implemented by a 3.2% change in the As-Si nearest-neighbour bond length, further shifts the value of η2 to -1.87 × 10(-3) µm(2) V(-2), resulting in an excellent agreement of theory with the experimentally measured value of -1.9 ± 0.2 × 10(-3) µm(2) V(-2). Based on our direct comparison of the calculations with the experiment, we conclude that the previously ignored non-static dielectric screening of the donor potential and the lattice strain significantly influence the donor wave function charge density and thereby leads to a better agreement with the available experimental data sets. PMID:25783758
Hahn, Noemi; Snedeker, Jesse; Rabagliati, Hugh
2015-12-01
Individuals with autism spectrum disorders (ASD) have often been reported to have difficulty integrating information into its broader context, which has motivated the Weak Central Coherence theory of ASD. In the linguistic domain, evidence for this difficulty comes from reports of impaired use of linguistic context to resolve ambiguous words. However, recent work has suggested that impaired use of linguistic context may not be characteristic of ASD, and is instead better explained by co-occurring language impairments. Here, we provide a strong test of these claims, using the visual world eye tracking paradigm to examine the online mechanisms by which children with autism resolve linguistic ambiguity. To address concerns about both language impairments and compensatory strategies, we used a sample whose verbal skills were strong and whose average age (7; 6) was lower than previous work on lexical ambiguity resolution in ASD. Participants (40 with autism and 40 controls) heard sentences with ambiguous words in contexts that either strongly supported one reading or were consistent with both (John fed/saw the bat). We measured activation of the unintended meaning through implicit semantic priming of an associate (looks to a depicted baseball glove). Contrary to the predictions of weak central coherence, children with ASD, like controls, quickly used context to resolve ambiguity, selecting appropriate meanings within a second. We discuss how these results constrain the generality of weak central coherence. PMID:25820816
NASA Astrophysics Data System (ADS)
Izmailov, Ramil; Potapov, Alexander A.; Filippov, Alexander I.; Ghosh, Mithun; Nandi, Kamal K.
2015-03-01
We investigate the stability of circular material orbits in the analytic galactic metric recently derived by Harko et al., Mod. Phys. Lett. A29, 1450049 (2014). It turns out that stability depends more strongly on the dark matter central density ρ0 than on other parameters of the solution. This property then yields an upper limit on ρ0 for each individual galaxy, which we call here ρ 0 upper, such that stable circular orbits are possible only when the constraint ρ 0<= ρ 0 upper is satisfied. This is our new result. To approximately quantify the upper limit, we consider as a familiar example our Milky Way galaxy that has a projected dark matter radius RDM 180 kpc and find that ρ 0 upper ˜ 2.37× 1011 M⊙ kpc-3. This limit turns out to be about four orders of magnitude larger than the latest data on central density ρ0 arising from the fit to the Navarro-Frenk-White (NFW) and Burkert density profiles. Such consistency indicates that the Eddington-inspired Born-Infeld (EiBI) solution could qualify as yet another viable alternative model for dark matter.
NASA Astrophysics Data System (ADS)
Contreras Aburto, Claudio; Nägele, Gerhard
2013-10-01
We develop a general method for calculating conduction-diffusion transport properties of strong electrolyte mixtures, including specific conductivities, steady-state electrophoretic mobilities, and self-diffusion coefficients. The ions are described as charged Brownian spheres, and the solvent-mediated hydrodynamic interactions (HIs) are also accounted for in the non-instantaneous ion atmosphere relaxation effect. A linear response expression relating long-time partial mobilities to associated dynamic structure factors is employed in our derivation of a general mode coupling theory (MCT) method for the conduction-diffusion properties. A simplified solution scheme for the MCT method is discussed. Analytic results are obtained for transport coefficients of pointlike ions which, for very low ion concentrations, reduce to the Deby-Falkenhagen-Onsager-Fuoss limiting law expressions. As an application, an unusual non-monotonic concentration dependence of the polyion electrophoretic mobility in a mixture of two binary electrolytes is discussed. In addition, leading-order extensions of the limiting law results are derived with HIs included. The present method complements a related MCT method by the authors for the electrolyte viscosity and shear relaxation function [C. Contreras-Aburto and G. Nägele, J. Phys.: Condens. Matter 24, 464108 (2012)], so that a unifying scheme for conduction-diffusion and viscoelastic properties is obtained. We present here the general framework of the method, illustrating its versatility for conditions where fully analytic results are obtainable. Numerical results for conduction-diffusion properties and the viscosity of concentrated electrolytes are presented in Paper II [C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134110 (2013)].
Contreras Aburto, Claudio; Nägele, Gerhard
2013-10-01
We develop a general method for calculating conduction-diffusion transport properties of strong electrolyte mixtures, including specific conductivities, steady-state electrophoretic mobilities, and self-diffusion coefficients. The ions are described as charged Brownian spheres, and the solvent-mediated hydrodynamic interactions (HIs) are also accounted for in the non-instantaneous ion atmosphere relaxation effect. A linear response expression relating long-time partial mobilities to associated dynamic structure factors is employed in our derivation of a general mode coupling theory (MCT) method for the conduction-diffusion properties. A simplified solution scheme for the MCT method is discussed. Analytic results are obtained for transport coefficients of pointlike ions which, for very low ion concentrations, reduce to the Deby-Falkenhagen-Onsager-Fuoss limiting law expressions. As an application, an unusual non-monotonic concentration dependence of the polyion electrophoretic mobility in a mixture of two binary electrolytes is discussed. In addition, leading-order extensions of the limiting law results are derived with HIs included. The present method complements a related MCT method by the authors for the electrolyte viscosity and shear relaxation function [C. Contreras-Aburto and G. Nägele, J. Phys.: Condens. Matter 24, 464108 (2012)], so that a unifying scheme for conduction-diffusion and viscoelastic properties is obtained. We present here the general framework of the method, illustrating its versatility for conditions where fully analytic results are obtainable. Numerical results for conduction-diffusion properties and the viscosity of concentrated electrolytes are presented in Paper II [C. Contreras Aburto and G. Nägele, J. Chem. Phys. 139, 134110 (2013)]. PMID:24116554
Baur, Hannes
2015-01-01
Abstract Two new species, Pteromalus briani sp. n. and Pteromalus janstai sp. n., with unusual characters are described from the Central Plateau and the Alps in Switzerland, respectively. Pteromalus briani sp. n. is remarkable in that it has the metatibia quite abruptly expanded before the middle. This type of modification of the hind tibia is unique within the Pteromalidae and probably also the entire Chalcidoidea. It is also very rare in other parasitic wasps, where it is suspected to be associated with pheromone glands. The species is a gregarious endoparasitoid of pupae of Vanessa atalanta (Linnaeus) and Aglais urticae (Linnaeus), two common butterflies (Lepidoptera: Nymphalidae) in Europe. It is furthermore a koinobiont parasitoid ovipositing in an early larval stage of the host. The other species, Pteromalus janstai sp. n., shows a flattened mesosoma. A dorsoventrally depressed body is a unique feature within the genus Pteromalus, but known from a number species in unrelated genera and subfamilies. The two records demonstrate that it is possible to discover entirely new species with extraordinary characters even in one of the taxonomically most thoroughly explored parts of the world. PMID:26261432
Aouad, Maya; Zell, Vivien; Juif, Pierre-Eric; Lacaud, Adrien; Goumon, Yannick; Darbon, Pascal; Lelievre, Vincent; Poisbeau, Pierrick
2014-02-01
Inflammatory and degenerative diseases of the joint are major causes of chronic pain. Long-lasting pain symptoms are thought to result from a central sensitization of nociceptive circuits. These processes include activation of microglia and spinal disinhibition. Using a monoarthritic rat model of pain, we tried to potentiate neural inhibition by using etifoxine (EFX), a nonbenzodiazepine anxiolytic that acts as an allosteric-positive modulator of gamma-aminobutyric acid type A (GABAA) receptor function. Interestingly, EFX also can bind to the mitochondrial translocator protein (TSPO) complex and stimulate the synthesis of 3α-reduced neurosteroids, the most potent positive allosteric modulator of GABAA receptor function. Here we show that a curative and a preventive treatment with 50mg/kg of EFX efficiently reduced neuropathic pain symptoms. In the spinal cord, EFX analgesia was accompanied by a reduction in microglial activation and in the levels of proinflammatory mediators. Using electrophysiological tools, we found that EFX treatment not only amplified spinal GABAergic inhibition, but also prevented prostaglandin E2-induced glycinergic disinhibition and restored a "normal" spinal pain processing. Because EFX is already distributed in several countries under the trade name of Stresam for its anxiolytic actions in humans, new clinical trials are now required to further extend its therapeutic indications as pain killer. PMID:24239672
Ferretti, G; Antonutto, G; Denis, C; Hoppeler, H; Minetti, A E; Narici, M V; Desplanches, D
1997-01-01
1. The effects of bed rest on the cardiovascular and muscular parameters which affect maximal O2 consumption (VO2,max) were studied. The fractional limitation of VO2,max imposed by these parameters after bed rest was analysed. 2. The VO2,max, by standard procedure, and the maximal cardiac output (Qmax), by the pulse contour method, were measured during graded cyclo-ergometric exercise on seven subjects before and after a 42-day head-down tilt bed rest. Blood haemoglobin concentration ([Hb]) and arterialized blood gas analysis were determined at the highest work load. 3. Muscle fibre types, oxidative enzyme activities, and capillary and mitochondrial densities were measured on biopsy samples from the vastus lateralis muscle before and at the end of bed rest. The measure of muscle cross-sectional area (CSA) by NMR imaging at the level of biopsy site allowed computation of muscle oxidative capacity and capillary length. 4. The VO2,max was reduced after bed rest (-16.6%). The concomitant decreases in Qmax (-30.8%), essentially due to a change in stroke volume, and in [Hb] led to a huge decrease in O2 delivery (-39.7%). 5. Fibre type distribution was unaffected by bed rest. The decrease in fibre area corresponded to the significant reduction in muscle CSA (-17%). The volume density of mitochondria was reduced after bed rest (-16.6%), as were the oxidative enzyme activities (-11%). The total mitochondrial volume was reduced by 28.5%. Capillary density was unchanged. Total capillary length was 22.2% lower after bed rest, due to muscle atrophy. 6. The interaction between these muscular and cardiovascular changes led to a smaller reduction in VO2,max than in cardiovascular O2 transport. Yet the latter appears to play the greatest role in limiting VO2,max after bed rest (> 70% of overall limitation), the remaining fraction being shared between peripheral O2 diffusion and utilization. PMID:9218227
NASA Astrophysics Data System (ADS)
Pluchino, Alessandro; Rapisarda, Andrea; Tsallis, Constantino
2008-05-01
We give a closer look at the Central Limit Theorem (CLT) behavior in quasi-stationary states of the Hamiltonian Mean Field model, a paradigmatic one for long-range-interacting classical many-body systems. We present new calculations which show that, following their time evolution, we can observe and classify three kinds of long-standing quasi-stationary states (QSS) with different correlations. The frequency of occurrence of each class depends on the size of the system. The different microscopic nature of the QSS leads to different dynamical correlations and therefore to different results for the observed CLT behavior.
NASA Astrophysics Data System (ADS)
Norton, Michael; Ross, Frances; Bau, Haim
2015-11-01
Using a hermetically sealed liquid cell, we observed the growth and migration of bubbles (tens to hundreds of nanometers in diameter) in a tapered conduit and supersaturated solution with a transmission electron microscope. To better understand bubble shape and migration dynamics, we developed simple 2D and 3D models valid in the limit of zero capillary and Bond numbers. The 3D model is restricted to small taper slope, weakly non-circular contact line geometries and large bubble aspect ratio (high confinement), and was solved using a pseudo-spectral decomposition. Both models utilize the Blake-Haynes mechanism to relate dynamic contact angle to local contact line velocity The influence of pinning of a portion of the contact line on bubble geometry is also considered. Contact line dissipation controls curvature and regulates growth rate. Our 2D and 3D models predict growth rates in agreement with experimental observations, but several orders of magnitude lower than predicted by the classical Epstein - Plesset theory. The work was supported, in part, by NSF CBET grant 1066573.
Neuwirth, Ales; Economopoulou, Matina; Chatzigeorgiou, Antonios; Chung, Kyoung-Jin; Bittner, Stefan; Lee, Seung-Hwan; Langer, Harald; Samus, Maryna; Kim, Hyesoon; Cho, Geum-Sil; Ziemssen, Tjalf; Bdeir, Khalil; Chavakis, Emmanouil; Koh, Jae-Young; Boon, Louis; Hosur, Kavita; Bornstein, Stefan R.; Meuth, Sven G.; Hajishengallis, George; Chavakis, Triantafyllos
2014-01-01
Inflammation in the central nervous system (CNS) and disruption of its immune privilege are major contributors to the pathogenesis of multiple sclerosis (MS) and of its rodent counterpart, experimental autoimmune encephalomyelitis (EAE). We have previously identified developmental endothelial locus-1 (Del-1) as an endogenous anti-inflammatory factor, which inhibits integrin-dependent leukocyte adhesion. Here we show that Del-1 contributes to the immune privilege status of the CNS. Intriguingly, Del-1 expression decreased in chronic active MS lesions and in the inflamed CNS in the course of EAE. Del-1-deficiency was associated with increased EAE severity, accompanied by increased demyelination and axonal loss. As compared to control mice, Del-1−/− mice displayed enhanced disruption of the blood brain barrier and increased infiltration of neutrophil granulocytes in the spinal cord in the course of EAE, accompanied by elevated levels of inflammatory cytokines, including IL-17. The augmented levels of IL-17 in Del-1-deficiency derived predominantly from infiltrated CD8+ T cells. Increased EAE severity and neutrophil infiltration due to Del-1-deficiency was reversed in mice lacking both Del-1 and IL-17-receptor, indicating a crucial role for the IL-17/neutrophil inflammatory axis in EAE pathogenesis in Del-1−/− mice. Strikingly, systemic administration of Del-1-Fc ameliorated clinical relapse in relapsing-remitting EAE. Therefore, Del-1 is an endogenous homeostatic factor in the CNS protecting from neuroinflammation and demyelination. Our findings provide mechanistic underpinnings for the previous implication of Del-1 as a candidate MS susceptibility gene and suggest that Del-1-centered therapeutic approaches may be beneficial in neuroinflammatory and demyelinating disorders. PMID:25385367
Choi, E Y; Lim, J-H; Neuwirth, A; Economopoulou, M; Chatzigeorgiou, A; Chung, K-J; Bittner, S; Lee, S-H; Langer, H; Samus, M; Kim, H; Cho, G-S; Ziemssen, T; Bdeir, K; Chavakis, E; Koh, J-Y; Boon, L; Hosur, K; Bornstein, S R; Meuth, S G; Hajishengallis, G; Chavakis, T
2015-07-01
Inflammation in the central nervous system (CNS) and disruption of its immune privilege are major contributors to the pathogenesis of multiple sclerosis (MS) and of its rodent counterpart, experimental autoimmune encephalomyelitis (EAE). We have previously identified developmental endothelial locus-1 (Del-1) as an endogenous anti-inflammatory factor, which inhibits integrin-dependent leukocyte adhesion. Here we show that Del-1 contributes to the immune privilege status of the CNS. Intriguingly, Del-1 expression decreased in chronic-active MS lesions and in the inflamed CNS in the course of EAE. Del-1-deficiency was associated with increased EAE severity, accompanied by increased demyelination and axonal loss. As compared with control mice, Del-1(-/-) mice displayed enhanced disruption of the blood-brain barrier and increased infiltration of neutrophil granulocytes in the spinal cord in the course of EAE, accompanied by elevated levels of inflammatory cytokines, including interleukin-17 (IL-17). The augmented levels of IL-17 in Del-1-deficiency derived predominantly from infiltrated CD8(+) T cells. Increased EAE severity and neutrophil infiltration because of Del-1-deficiency was reversed in mice lacking both Del-1 and IL-17 receptor, indicating a crucial role for the IL-17/neutrophil inflammatory axis in EAE pathogenesis in Del-1(-/-) mice. Strikingly, systemic administration of Del-1-Fc ameliorated clinical relapse in relapsing-remitting EAE. Therefore, Del-1 is an endogenous homeostatic factor in the CNS protecting from neuroinflammation and demyelination. Our findings provide mechanistic underpinnings for the previous implication of Del-1 as a candidate MS susceptibility gene and suggest that Del-1-centered therapeutic approaches may be beneficial in neuroinflammatory and demyelinating disorders. PMID:25385367
NASA Astrophysics Data System (ADS)
Eddy, I. M. S.; Gergel, S. E.
2015-12-01
Grazing is the most extensive land use on Earth. Widespread consequences of overgrazing pastures include long-term decreases in plant biomass and limited recovery of vegetation. Remotely-sensed vegetation indices linked to biomass (e.g. NDVI) are routinely used to monitor pasture health over broad areas to track pasture degradation and recovery over time. Unfortunately, overgrazing can impact vegetation in various other ways not easily evaluated using satellite imagery, such as by altering species composition. Furthermore, the response of vegetation to grazing may be influenced by underlying terrain and topographic gradients. We examined multi-decadal trends in pasture condition in Kyrgyzstan, a country where pasture degradation is of serious concern. Using a chronosequence of Moderate-Resolution Imaging Spectroradiometer (MODIS) imagery, we compared fifteen-year trends in NDVI with contemporary field-based measurements of pasture health in thirty 1-km 2 sites. Multivariate regression was used to discern the relationship between long-term NDVI trends and pasture health in pastures of differing terrain (areas of varying topographic wetness index and solar insolation). Preliminary results suggest that pasture degradation can be correlated with either positive or negative changes in NDVI depending upon the topographic position of the pasture. Furthermore, terrain characteristics explained a considerable portion of the observed variance in NDVI trends across the region. Improving our understanding of grazing impacts in montane systems is critical given their vulnerability to impending climate change.
Limits for the central production of Theta+ and Xi(--)pentaquarks in 920-GeV pA collisions.
Abt, I; Adams, M; Agari, M; Albrecht, H; Aleksandrov, A; Amaral, V; Amorim, A; Aplin, S J; Aushev, V; Bagaturia, Y; Balagura, V; Bargiotti, M; Barsukova, O; Bastos, J; Batista, J; Bauer, C; Bauer, Th S; Belkov, A; Belkov, Ar; Belotelov, I; Bertin, A; Bobchenko, B; Böcker, M; Bogatyrev, A; Bohm, G; Bräuer, M; Bruinsma, M; Bruschi, M; Buchholz, P; Buran, T; Carvalho, J; Conde, P; Cruse, C; Dam, M; Danielsen, K M; Danilov, M; Castro, S De; Deppe, H; Dong, X; Dreis, H B; Egorytchev, V; Ehret, K; Eisele, F; Emeliyanov, D; Essenov, S; Fabbri, L; Faccioli, P; Feuerstack-Raible, M; Flammer, J; Fominykh, B; Funcke, M; Garrido, Ll; Giacobbe, B; Gläss, J; Goloubkov, D; Golubkov, Y; Golutvin, A; Golutvin, I; Gorbounov, I; Gorisek, A; Gouchtchine, O; Goulart, D C; Gradl, S; Gradl, W; Grimaldi, F; Groth-Jensen, J; Guilitsky, Yu; Hansen, J D; Hernández, J M; Hofmann, W; Hott, T; Hulsbergen, W; Husemann, U; Igonkina, O; Ispiryan, M; Jagla, T; Jiang, C; Kapitza, H; Karabekyan, S; Karpenko, N; Keller, S; Kessler, J; Khasanov, F; Kiryushin, Yu; Klinkby, E; Knöpfle, K T; Kolanoski, H; Korpar, S; Krauss, C; Kreuzer, P; Krizan, P; Krücker, D; Kupper, S; Kvaratskheliia, T; Lanyov, A; Lau, K; Lewendel, B; Lohse, T; Lomonosov, B; Männer, R; Masciocchi, S; Massa, I; Matchikhilian, I; Medin, G; Medinnis, M; Mevius, M; Michetti, A; Mikhailov, Yu; Mizuk, R; Muresan, R; Zur Nedden, M; Negodaev, M; Nörenberg, M; Nowak, S; Núñez Pardo de Vera, M T; Ouchrif, M; Ould-Saada, F; Padilla, C; Peralta, D; Pernack, R; Pestotnik, R; Piccinini, M; Pleier, M A; Poli, M; Popov, V; Pose, A; Pose, D; Prystupa, S; Pugatch, V; Pylypchenko, Y; Pyrlik, J; Reeves, K; Ressing, D; Rick, H; Riu, I; Robmann, P; Rostovtseva, I; Rybnikov, V; Sánchez, F; Sbrizzi, A; Schmelling, M; Schmidt, B; Schreiner, A; Schröder, H; Schwartz, A J; Schwarz, A S; Schwenninger, B; Schwingenheuer, B; Sciacca, F; Semprini-Cesari, N; Shuvalov, S; Silva, L; Smirnov, K; Sözüer, L; Solunin, S; Somov, A; Somov, S; Spengler, J; Spighi, R; Spiridonov, A; Stanovnik, A; Staric, M; Stegmann, C; Subramania, H S; Symalla, M; Tikhomirov, I; Titov, M; Tsakov, I; Uwer, U; van Eldik, C; Vassiliev, Yu; Villa, M; Vitale, A; Vukotic, I; Wahlberg, H; Walenta, A H; Walter, M; Wang, J J; Wegener, D; Werthenbach, U; Wolters, H; Wurth, R; Wurz, A; Zaitsev, Yu; Zavertyaev, M; Zech, G; Zeuner, T; Zhelezov, A; Zheng, Z; Zimmermann, R; Zivko, T; Zoccoli, A
2004-11-19
We have searched for Theta+(1540) and Xi(--)(1862) pentaquark candidates in proton-induced reactions on C, Ti, and W targets at midrapidity and square root of s = 41.6 GeV. In 2 x 10(8) inelastic events we find no evidence for narrow (sigma approximately 5 MeV) signals in the Theta+ --> pK0(S) and Xi(--) --> Xi- pi- channels; our 95% C.L. upper limits (UL) for the inclusive production cross section times branching fraction B dsigma/dy/(y approximately 0) are (4-16) mub/N for a Theta+ mass between 1521 and 1555 MeV, and 2.5 mub/N for the Xi(--). The UL of the yield ratio of Theta+/Lambda(1520) < (3-12)% is significantly lower than model predictions. Our UL of B Xi(--)/Xi(1530)0 < 4% is at variance with the results that have provided the first evidence for the Xi(--). PMID:15600999
NASA Astrophysics Data System (ADS)
Sæther, O. M.; Reimann, C.; Hilmo, B. O.; Taushani, E.
1995-10-01
Groundwaters from crystalline and metamorphic rocks (hardrocks) and from Quaternary deposits, i.e., alluvial and glacial deposits (softrocks) from the counties of Nord-Trøndelag and Sør-Trøndelag were analyzed for major and minor elements and ions including fluoride. The median concentration of F- in water from the hardrock aquifers is 0.28 mg/l (14.7 μeq/l) in contrast to water from softrock aquifers in which it is found to be 0.05 mg/1 (2.6 μeq/l). More importantly, ca. 15% of the locations where water was abstracted from hardrock wells contain 1.5 mg/l (78.9 μeq/l) F- or more. Thus, 15% of all hardrock wells returned F- results that are at or above the maximum recommended value for drinking water. Of the softrock wells, none are above 1 mg/l. Geologists would normally expect higher F-contents in groundwaters derived from acid rocks, e.g., in granitic or gneissic areas. When comparing the host lithology with the observed F-contents, however, no clear relationship between F- content and lithology is visible. The highest observed F- values actually occur in gneissic host rocks. However, wells drilled in amphibolites/greenstones, mica schists, calcareous rocks, and sedimentary rocks all returned some analytical results above 1.5 mg/l F-. These results suggest that all hardrock wells drilled should be tested for F- and the users informed about the results and advised to take any necessary precautions. When applying the recently proposed Norwegian drinking water limits to our data, 51% of all softrock well waters and 56% of all hardrock well waters are unfit for consumption without prior treatment, although we analyzed only for about half of the proposed elements/parameters. This result seriously questions the concept of fixed action levels—many of them with totally unproven health implications—for so many parameters/elements for hardrock groundwaters.
ERIC Educational Resources Information Center
Ireland, Ruby
2009-01-01
Edouard Lock's dance film "Amelia" (2002) is the focus of this essay. Second-wave feminist and poststructuralist perspectives inform the analysis of this piece of contemporary dance. Laura Mulvey's male gaze theory and Julia Kristeva's theory of the semiotic and symbolic realms of representation are explored and critiqued, whilst Jacques Derrida's…
String Theory and Gauge Theories
Maldacena, Juan
2009-02-20
We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.
NASA Astrophysics Data System (ADS)
Parisi, Laura; Ferreira, Ana M. G.
2016-04-01
The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of surface waves. It combines the concept of local modes with exact ray tracing as a function of frequency, providing a more complete description of surface wave propagation than the widely used great circle approximation (GCA). The purpose of this study is to evaluate the ability of the FRT approach to model teleseismic long-period surface waveforms (T ˜ 45-150 s) in the context of current 3-D Earth models to empirically assess its validity domain and its scope for future studies in seismic tomography. To achieve this goal, we compute vertical and horizontal component fundamental mode synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the highly accurate spectral element method. We use 13 global earth models including 3-D crustal and mantle structure, which are derived by successively varying the strength and lengthscale of heterogeneity in current tomographic models. For completeness, GCA waveforms are also compared with the spectral element method. We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh waves (T ˜ 45-150 s) for almost all the models considered, with errors in the modelling of the phase (amplitude) of Rayleigh waves being smaller than 5 per cent (10 per cent) in most cases. The largest errors in phase and amplitude are observed for T ˜ 45 s and for the three roughest earth models considered that exhibit shear wave anomalies of up to ˜20 per cent, which is much larger than in current global tomographic models. In addition, we find that overall the GCA does not predict Rayleigh wave amplitudes well, except for the longest wave periods (T ˜ 150 s) and the smoothest models considered. Although the GCA accurately predicts Rayleigh wave phase for current earth models such as S20RTS and S40RTS, FRT's phase errors are smaller, notably for the shortest wave periods considered (T ˜ 45 s and
Brigham-Grette, J.; Gualtieri, L.M.; Glushkova, O.Y.; Hamilton, T.D.; Mostoller, D.; Kotov, A.
2003-01-01
The Pekulney Mountains and adjacent Tanyurer River valley are key regions for examining the nature of glaciation across much of northeast Russia. Twelve new cosmogenic isotope ages and 14 new radiocarbon ages in concert with morphometric analyses and terrace stratigraphy constrain the timing of glaciation in this region of central Chukotka. The Sartan Glaciation (Last Glacial Maximum) was limited in extent in the Pekulney Mountains and dates to ???20,000 yr ago. Cosmogenic isotope ages > 30,000 yr as well as non-finite radiocarbon ages imply an estimated age no younger than the Zyryan Glaciation (early Wisconsinan) for large sets of moraines found in the central Tanyurer Valley. Slope angles on these loess-mantled ridges are less than a few degrees and crest widths are an order of magnitude greater than those found on the younger Sartan moraines. The most extensive moraines in the lower Tanyurer Valley are most subdued implying an even older, probable middle Pleistocene age. This research provides direct field evidence against Grosswald's Beringian ice-sheet hypothesis. ?? 2003 Elsevier Science (USA). All rights reserved.
Morsanyi, Kinga; Primi, Caterina; Handley, Simon J; Chiesi, Francesca; Galli, Silvia
2012-11-01
In two experiments, we tested some of the central claims of the empathizing-systemizing (E-S) theory. Experiment 1 showed that the systemizing quotient (SQ) was unrelated to performance on a mathematics test, although it was correlated with statistics-related attitudes, self-efficacy, and anxiety. In Experiment 2, systemizing skills, and gender differences in these skills, were more strongly related to spatial thinking styles than to SQ. In fact, when we partialled the effect of spatial thinking styles, SQ was no longer related to systemizing skills. Additionally, there was no relationship between the Autism Spectrum Quotient (AQ) and the SQ, or skills and interest in mathematics and mechanical reasoning. We discuss the implications of our findings for the E-S theory, and for understanding the autistic cognitive profile. PMID:23034108
NASA Astrophysics Data System (ADS)
Adam, C.; Naya, C.; Sanchez-Guillen, J.; Vazquez, R.; Wereszczynski, A.
2015-08-01
Using a solitonic model of nuclear matter, the Bogomol'nyi-Prasad-Sommerfield (BPS) Skyrme model, we compare neutron stars obtained in the full field theory, where gravitational backreaction is completely taken into account, with calculations in a mean-field approximation using the Tolman-Oppenheimer-Volkoff approach. In the latter case, a mean-field-theory equation of state is derived from the original BPS field theory. We show that in the full field theory, where the energy density is nonconstant even at equilibrium, there is no universal and coordinate-independent equation of state of nuclear matter, in contrast to the mean-field approximation. We also study how neutron star properties are modified by going beyond mean-field theory and find that the differences between mean-field theory and exact results can be considerable. Further, we compare both exact and mean-field results with some theoretical and phenomenological constraints on neutron star properties, demonstrating thus the relevance of our model even in its most simple version.
Yin, Hai-wei; Kong, Fan-hua; Luo, Zhen-dong; Yan, Wei-jiao; Sun, Chang-feng; Xu, Feng
2013-08-01
The suitability assessment of regional construction land is one of the important prerequisites for the spatial arrangement in regional planning, and also, the important foundation for the reasonable utilization of regional land resources. With the support of GIS, and by using the regional comprehensive strength and spatial accessibility analysis and the eco-environmental sensitivity analysis, this paper quantitatively analyzed the development potential and its ecological limitation of the central and southern parts of Hebei Province. Besides, based on the cost-benefit analysis, the potential-limitation model was accordingly developed, and the three land suitability scenarios under different developmental concepts were captured through the interaction matrix. The results indicated that both the comprehensive strength and the development potential of the study area showed a primacy distribution pattern, and presented an obvious pole-axis spatial pattern. The areas with higher eco-environmental sensitivity were mainly distributed in the west regions, while those with lower eco-environmental sensitivity were in the east regions. Regional economic development concept had important effects on the regional ecological security pattern and urban growth. The newly developed principles and methods for the land suitability assessment in this paper could not only scientifically realize the spatial grid of regional development potential and capture the future land development trend and spatial distribution, but also provide scientific basis and effective ways for urban and regional planning to realize region 'smart growth' and 'smart conservation'. PMID:24380348
Sandow, M J; Fisher, T J; Howard, C Q; Papas, S
2014-05-01
This study was part of a larger project to develop a (kinetic) theory of carpal motion based on computationally derived isometric constraints. Three-dimensional models were created from computed tomography scans of the wrists of ten normal subjects and carpal spatial relationships at physiological motion extremes were assessed. Specific points on the surface of the various carpal bones and the radius that remained isometric through range of movement were identified. Analysis of the isometric constraints and intercarpal motion suggests that the carpus functions as a stable central column (lunate-capitate-hamate-trapezoid-trapezium) with a supporting lateral column (scaphoid), which behaves as a 'two gear four bar linkage'. The triquetrum functions as an ulnar translation restraint, as well as controlling lunate flexion. The 'trapezoid'-shaped trapezoid places the trapezium anterior to the transverse plane of the radius and ulna, and thus rotates the principal axis of the central column to correspond to that used in the 'dart thrower's motion'. This study presents a forward kinematic analysis of the carpus that provides the basis for the development of a unifying kinetic theory of wrist motion based on isometric constraints and rules-based motion. PMID:24072199
ERIC Educational Resources Information Center
De Souza, Denise E.
2016-01-01
This article focuses on the design of a critical realist review that deployed Bhaskar's resolution, redescribing, retroduction, eliminating, identifying, and correcting schema and Pawson and Tilley's Context-Mechanism-Outcome configuration underpinned by realist social theory. Methodologically, the review examined the relationship between…
ERIC Educational Resources Information Center
Tarlau, Rebecca
2014-01-01
In this article, Rebecca Tarlau attempts to build a more robust theory of the relationship between education and social change by drawing on the conceptual tools offered in the critical pedagogy and social movement literatures. Tarlau argues that while critical pedagogy has been largely disconnected from its roots in political organizing, social…
Visciano, Pierina; Scortichini, Giampiero; Suzzi, Giovanna; Diletti, Gianfranco; Schirone, Maria; Martino, Giuseppe
2015-09-01
Concentrations of pollutants with regulatory limits were determined in specimens of Chamelea gallina, a species of clam collected along the Abruzzi coastal region of the central Adriatic Sea. Nine sampling sites were selected to evaluate the distribution of contaminants in the environment and the health risk for consumers. The concentrations of all the examined compounds were lower than the maximums set by European legislation. Polycyclic aromatic hydrocarbons and total mercury were below the detection limit (0.18 μg/kg for benzo[a]anthracene, 0.30 μg/kg for chrysene, 0.12 μg/kg for benzo[b]fluoranthene, 0.08 μg/kg for benzo[a]pyrene, and 0.0050 mg/kg for total mercury) in all the analyzed samples. Mean concentrations of lead and cadmium were 0.104 and 0.110 mg/kg, respectively. Of the non-dioxin-like polychlorinated biphenyls, PCB-153, PCB-180, and PCB-138 were the most abundant at all sampling sites (1a to 9a) at 0.25 mi (ca. 0.4 km) and at some sampling sites (1b, 2b, 3b, 5b and 7b) at 0.35 mi (ca. 0.56 km). Principal component analysis revealed that the concentrations of dioxin-like polychlorinated biphenyls were similar at the majority of sampling sites, and O8CDD and 2,3,7,8-T4CDF were the predominant dioxin congeners. PMID:26319726
Stephan, Carl N
2014-03-01
By pooling independent study means (x¯), the T-Tables use the central limit theorem and law of large numbers to average out study-specific sampling bias and instrument errors and, in turn, triangulate upon human population means (μ). Since their first publication in 2008, new data from >2660 adults have been collected (c.30% of the original sample) making a review of the T-Table's robustness timely. Updated grand means show that the new data have negligible impact on the previously published statistics: maximum change = 1.7 mm at gonion; and ≤1 mm at 93% of all landmarks measured. This confirms the utility of the 2008 T-Table as a proxy to soft tissue depth population means and, together with updated sample sizes (8851 individuals at pogonion), earmarks the 2013 T-Table as the premier mean facial soft tissue depth standard for craniofacial identification casework. The utility of the T-Table, in comparison with shorths and 75-shormaxes, is also discussed. PMID:24313424
Pilkiewicz, Kevin R.; Andersen, Hans C.
2014-01-01
A diagrammatic kinetic theory of density fluctuations in simple dense liquids at long times, described in Paper I, is applied to a high density Lennard-Jones liquid to calculate various equilibrium time correlation functions. The calculation starts from the general theory and makes two approximations. (1) The general diagrammatic expression for an irreducible memory kernel is approximated using a one-loop approximation. (2) The generalized Enskog projected propagator, which is required for the calculation, is approximated using a simple kinetic model for the hard sphere memory function. The coherent intermediate scattering function (CISF), the longitudinal current correlation function (LCCF), the transverse current correlation function (TCCF), the incoherent intermediate scattering function (IISF), and the incoherent longitudinal current correlation function are calculated and compared with simulation results for the Lennard-Jones liquid at high density. The approximate theoretical results are in good agreement with the simulation data for the IISF for all wave vectors studied and for the CISF and LCCF for large wave vector. The approximate results are in poor agreement with the simulation data for the CISF, LCCF, and TCCF for small wave vectors because these functions are strongly affected by hydrodynamic fluctuations at small wave vector that are not well described by the simple kinetic model used. The possible implications of this approach for the study of liquids are discussed.
Graviton time delay and a speed limit for small black holes in Einstein-Gauss-Bonnet theory
NASA Astrophysics Data System (ADS)
Papallo, Giuseppe; Reall, Harvey S.
2015-11-01
Camanho, Edelstein, Maldacena and Zhiboedov have shown that gravitons can experience a negative Shapiro time delay, i.e. a time advance, in Einstein-Gauss-Bonnet theory. They studied gravitons propagating in singular "shock-wave" geometries. We study this effect for gravitons propagating in smooth black hole spacetimes. For a small enough black hole, we find that gravitons of appropriate polarisation, and small impact parameter, can experience time advance. Such gravitons can also exhibit a deflection angle less than π, characteristic of a repulsive short-distance gravitational interaction. We discuss problems with the suggestion that the time advance can be used to build a "time machine". In particular, we argue that a small black hole cannot be boosted to a speed arbitrarily close to the speed of light, as would be required in such a construction.
NASA Astrophysics Data System (ADS)
Gaines, K.; Meinzer, F. C.; Duffy, C.; Thomas, E.; Eissenstat, D. M.
2014-12-01
Water uptake and retention by trees affects their ability to cope with drought, as well as influences ground water recharge and stream flow. Historically, water has not often been limiting in Eastern U.S. forests. As a result, very little work has been done to understand the basics of timing of water use by vegetation in these systems. As droughts are projected to increase in length and severity in future decades, this focus is increasingly important, particularly for informing hydrologic models. We used deuterium tracer and sap flux techniques to study tree water transport on a forested ridge top with shallow soil in central Pennsylvania. Three trees of each of the species, Acer saccharum, Carya tomentosa, Quercus prinus, and Quercus rubrum were accessed by tree climbing and scaffolding towers. We hypothesized that contrasting vessel size of the tree species would affect the efficiency of water transport (tracer velocity) and contrasting tree size would affect tracer storage as estimated by tracer residence times. Trees were injected with deuterated water in July 2012. Leaves were sampled 15 times over 35 days, initially daily for the first week, then at regular intervals afterwards. The tracer arrived in the canopy of the study trees between 1 and 7 days after injection, traveling at a velocity of 2 to 19 m d-1. The tracer residence time was between 7 and 33 days. Although there was variation in tracer velocity and residence time in individual trees, there were no significant differences among wood types or species (P>0.05). The general patterns in timing of water use were similar to other studies on angiosperm trees in tropical and arid ecosystems. There was no evidence of longer residence times in the larger trees. Sap flux-based estimates of sap velocity were much lower than tracer estimates, which was consistent with other studies. Levels of sap flux and midday water potential measurements suggested that the trees were water-stressed. We observed relatively
Simons, Mirre J P; Reimert, Inonge; van der Vinne, Vincent; Hambly, Catherine; Vaanholt, Lobke M; Speakman, John R; Gerkema, Menno P
2011-01-01
The heat dissipation limit theory suggests that heat generated during metabolism limits energy intake and, thus, reproductive output. Experiments in laboratory strains of mice and rats, and also domestic livestock generally support this theory. Selection for many generations in the laboratory and in livestock has increased litter size or productivity in these animals. To test the wider validity of the heat dissipation limit theory, we studied common voles (Microtus arvalis), which have small litter sizes by comparison with mice and rats, and regular addition of wild-caught individuals of this species to our laboratory colony ensures a natural genetic background. A crossover design of ambient temperatures (21 and 30°C) during pregnancy and lactation was used. High ambient temperature during lactation decreased milk production, slowing pup growth. The effect on pup growth was amplified when ambient temperature was also high during pregnancy. Shaving fur off dams at 30°C resulted in faster growth of pups; however, no significant increase in food intake and or milk production was detected. With increasing litter size (natural and enlarged), asymptotic food intake during lactation levelled off in the largest litters at both 21 and 30°C. Interestingly, the effects of lactation temperature on pup growth where also observed at smaller litter sizes. This suggests that vole dams trade-off costs associated with hyperthermia during lactation with the yield from investment in pup growth. Moreover, pup survival was higher at 30°C, despite lower growth, probably owing to thermoregulatory benefits. It remains to be seen how the balance is established between the negative effect of high ambient temperature on maternal milk production and pup growth (and/or future reproduction of the dam) and the positive effect of high temperatures on pup survival. This balance ultimately determines the effect of different ambient temperatures on reproductive success. PMID:21147967
Glenn A Roth; Fatih Aydogan
2014-09-01
This is Part II of two articles describing the details of thermal-hydraulic sys- tem codes. In this second part of the article series, the system code closure relationships (used to model thermal and mechanical non-equilibrium and the coupling of the phases) for the governing equations are discussed and evaluated. These include several thermal and hydraulic models, such as heat transfer coefficients for various flow regimes, two phase pressure correlations, two phase friction correlations, drag coefficients and interfacial models be- tween the fields. These models are often developed from experimental data. The experiment conditions should be understood to evaluate the efficacy of the closure models. Code verification and validation, including Separate Effects Tests (SETs) and Integral effects tests (IETs) is also assessed. It can be shown from the assessments that the test cases cover a significant section of the system code capabilities, but some of the more advanced reactor designs will push the limits of validation for the codes. Lastly, the limitations of the codes are discussed by considering next generation power plants, such as Small Modular Reactors (SMRs), analyz- ing not only existing nuclear power plants, but also next generation nuclear power plants. The nuclear industry is developing new, innovative reactor designs, such as Small Modular Reactors (SMRs), High-Temperature Gas-cooled Reactors (HTGRs) and others. Sub-types of these reactor designs utilize pebbles, prismatic graphite moderators, helical steam generators, in- novative fuel types, and many other design features that may not be fully analyzed by current system codes. This second part completes the series on the comparison and evaluation of the selected reactor system codes by discussing the closure relations, val- idation and limitations. These two articles indicate areas where the models can be improved to adequately address issues with new reactor design and development.
NASA Astrophysics Data System (ADS)
Mignan, A.
2007-12-01
The hypothesis that Accelerating Moment Release (AMR) is a precursor to large earthquakes is still debated. On one hand, AMR has been claimed to be observed in many cases and on the other hand, it has been proposed that apparent AMR is only due to data-fitting. The debate is in general focused on the validity of the c-value (curvature parameter), which permits to quantify AMR (i.e. cumulative Benioff strain through time), or more generally precursory accelerating seismicity (PAS, i.e. cumulative number of events through time). Contrary to previous studies, which compare c-value optimization in real seismicity catalogues and in random synthetic catalogues, I test c-value optimization in theoretical synthetic catalogues. In that particular case, I assume that PAS exists and that it can be explained by the Non-Critical Precursory Accelerating Seismicity Theory (NC PAST). This theory demonstrates that PAS can emerge from the background seismicity because of the decrease, due to loading, of the size of a stress shadow due to a previous earthquake. I improve the NC PAST by integrating effects of the background seismicity, 1) the density of random events outside the stress shadow and 2) the noise ratio between the density of random events inside and outside the stress shadow. Then I perform a spatiotemporal search of PAS using the power-law fit methodology (i.e. c-value) and compare the optimal signal to the expected spatiotemporal extent of the theoretical signal. First I show that the optimal starting time and spatial extent of PAS are poorly controlled, due in part to the intrinsic properties of the c-value, but also to the random character of background seismicity. Second I show that theoretical PAS is identified by an optimal c-value (clear acceleration) only if the regional seismic activity is high and the noise ratio is low. Otherwise the signal tends to disappear and the c-value becomes unstable. By consequence, even if the power- law fit methodology is a simple
NASA Astrophysics Data System (ADS)
Mignan, A.
2008-06-01
The hypothesis that Accelerating Moment Release (AMR) is a precursor to large earthquakes is still debated. On one hand, AMR has been claimed to be observed in many cases and on the other hand, it has been proposed that apparent AMR is only due to data-fitting. The debate is in general focused on the validity of the c-value (curvature parameter), which permits to quantify AMR (i.e. cumulative Benioff strain through time), or more generally Precursory Accelerating Seismicity (PAS, i.e. cumulative number of events through time). Contrary to previous studies, which compare c-value optimization in real seismicity catalogues and in random synthetic catalogues, I test c-value optimization in theoretical synthetic catalogues. In that particular case, I assume that PAS exists and that it can be explained by the Non-Critical Precursory Accelerating Seismicity Theory (NC PAST). This theory demonstrates that PAS can emerge from the background seismicity because of the decrease, due to loading, of the size of a stress shadow due to a previous earthquake. I improve the NC PAST by integrating the following characteristics of the background seismicity, (1) the density of random events outside the stress shadow δb0 and (2) the noise ratio δb-/ δb0, with δb- being the density of random events inside the stress shadow. Then I perform a spatiotemporal search of PAS using the power-law fit methodology (i.e. c-value) and compare the optimal signal to the expected spatiotemporal extent of the theoretical signal. First I show that the optimal starting time and spatial extent of PAS are poorly controlled, due in part to the intrinsic properties of the c-value, but also to the random behavior of background seismicity. Second I show that theoretical PAS is identified by an optimal c-value (clear acceleration) only if the regional seismic activity (~ δb0) is high and the noise ratio ( δb-/ δb0) is low. Otherwise the signal tends to disappear and the c-value becomes unstable. As a
Mean-field theory of baryonic matter for QCD in the large Nc and heavy quark mass limits
NASA Astrophysics Data System (ADS)
Adhikari, Prabal; Cohen, Thomas D.
2013-11-01
We discuss theoretical issues pertaining to baryonic matter in the combined heavy-quark and large Nc limits of QCD. Witten's classic argument that baryons and interacting systems of baryons can be described in a mean-field approximation with each of the quarks moving in an average potential due to the remaining quarks is heuristic. It is important to justify this heuristic description for the case of baryonic matter since systems of interacting baryons are intrinsically more complicated than single baryons due to the possibility of hidden color states—states in which the subsystems making up the entire baryon crystal are not color-singlet nucleons but rather colorful states coupled together to make a color-singlet state. In this work, we provide a formal justification of this heuristic prescription. In order to do this, we start by taking the heavy quark limit, thus effectively reducing the problem to a many-body quantum mechanical system. This problem can be formulated in terms of integrals over coherent states, which for this problem are simple Slater determinants. We show that for the many-body problem, the support region for these integrals becomes narrow at large Nc, yielding an energy which is well approximated by a single coherent state—that is a mean-field description. Corrections to the energy are of relative order 1/Nc. While hidden color states are present in the exact state of the heavy quark system, they only influence the interaction energy below leading order in 1/Nc.
NASA Astrophysics Data System (ADS)
van Enter, Aernout C. D.; Fernández, Roberto; Sokal, Alan D.
1993-09-01
We reconsider the conceptual foundations of the renormalization-group (RG) formalism, and prove some rigorous theorems on the regularity properties and possible pathologies of the RG map. Our main results apply to local (in position space) RG maps acting on systems of bounded spins (compact single-spin space). Regarding regularity, we show that the RG map, defined on a suitable space of interactions (=formal Hamiltonians), is always single-valued and Lipschitz continuous on its domain of definition. This rules out a recently proposed scenario for the RG description of first-order phase transitions. On the pathological side, we make rigorous some arguments of Griffiths, Pearce, and Israel, and prove in several cases that the renormalized measure is not a Gibbs measure for any reasonable interaction. This means that the RG map is ill-defined, and that the conventional RG description of first-order phase transitions is not universally valid. For decimation or Kadanoff transformations applied to the Ising model in dimension d⩾3, these pathologies occur in a full neighborhood { β> β 0, ¦h¦< ɛ( β)} of the low-temperature part of the first-order phase-transition surface. For block-averaging transformations applied to the Ising model in dimension d⩾2, the pathologies occur at low temperatures for arbitrary magnetic field strength. Pathologies may also occur in the critical region for Ising models in dimension d⩾4. We discuss the heuristic and numerical evidence on RG pathologies in the light of our rigorous theorems. In addition, we discuss critically the concept of Gibbs measure, which is at the heart of present-day classical statistical mechanics. We provide a careful, and, we hope, pedagogical, overview of the theory of Gibbsian measures as well as (the less familiar) non-Gibbsian measures, emphasizing the distinction between these two objects and the possible occurrence of the latter in different physical situations. We give a rather complete catalogue of
NASA Astrophysics Data System (ADS)
Rayback, S. A.; Shrestha, K. B.; Hofgaard, A.
2015-12-01
Recent evidence indicates changing climatological conditions in the Nepalese Himalayas including decreasing precipitation, a weakening Indian monsoon and rising temperatures. Trees and shrubs found at treeline are considered to be highly sensitive to climate, but the climatic effects on these ecotone species in the Himalayas are not well understood. Dendrochronological techniques applied to co-occurring shrubs and trees up-and down-slope of treeline extend our understanding of vegetation response at range margins and into tree-less environments. We developed tree-ring width and annual height increment chronologies for Abies spectabilis (Himalayan fir) and the first annual growth increment and annual production of leaves chronologies for Cassiope fastigata (Himalayan heather) at a high elevation site in central Nepal. C. fastigata chronologies showed moisture availability in late pre-monsoon and monsoon seasons of the previous year are critical to stem elongation and leaf production (AGI and previous May-August SPEI-12, r = 0.790; LEAF and previous June-September SPEI-12, r = 0.708) A. spectabilis chronologies were significantly and negatively correlated with monsoon season temperature during the current year (tree-ring width and June mean temperature, r = -0.677; height-increment and Sept maximum temperature, r = -0.605). In addition to both long-term and recent declines in moisture in the Himalayas, moisture deficit may be further exacerbated at high elevation sites via run-off and higher levels of evapotranspiration resulting in growth reductions, dieback and even death of these species. These results highlight that not all mid-latitude, high elevation treelines are limited by temperature as previously thought and that severe drought stress may initiate downslope treeline retraction. Understanding the response of co-occurring tree and shrub species to climate, now and in the future, may help to elucidate the physiological mechanisms controlling local and
NASA Astrophysics Data System (ADS)
Park, Yeonok; Je, Uikyu; Cho, Hyosung; Hong, Daeki; Park, Chulkyu; Cho, Heemoon; Choi, Sungil; Woo, Taeho
2015-03-01
In this work, we performed a feasibility study for image reconstruction in a circular digital tomosynthesis (CDTS) from limited-scan angle data based on compressed-sensing (CS) theory. Here, the X-ray source moves along an arc within a limited-scan angle (≤ 180°) on a circular path set perpendicularly to the axial direction during the image acquisition. This geometry, compared to full-angle (360°) scan geometry, allows imaging system to be designed more compactly and gives better tomographic quality than conventional linear digital tomosynthesis (DTS). We implemented an efficient CS-based reconstruction algorithm for the proposed geometry and performed systematic simulations to investigate the image characteristics. We successfully reconstructed CDTS images with incomplete projections acquired at several selected limited-scan angles of 45°, 90°, 135°, and 180° for a given tomographic angle of 80° and evaluated the reconstruction quality. Our simulation results indicate that the proposed method can provide superior tomographic quality for axial view and even for the other views (i.e., sagittal and coronal), as in computed tomography, to conventional DTS.
NASA Astrophysics Data System (ADS)
Brown, Eric G.; Louko, Jorma
2015-08-01
We present and utilize a simple formalism for the smooth creation of boundary conditions within relativistic quantum field theory. We consider a massless scalar field in (1 + 1)-dimensional flat spacetime and imagine smoothly transitioning from there being no boundary condition to there being a two-sided Dirichlet mirror. The act of doing this, expectantly, generates a flux of real quanta that emanates from the mirror as it is being created. We show that the local stress-energy tensor of the flux is finite only if an infrared cutoff is introduced, no matter how slowly the mirror is created, in agreement with the perturbative results of Obadia and Parentani. In the limit of instaneous mirror creation the total energy injected into the field becomes ultraviolet divergent, but the response of an Unruh-DeWitt particle detector passing through the infinite burst of energy nevertheless remains finite. Implications for vacuum entanglement extraction and for black hole firewalls are discussed.
NASA Astrophysics Data System (ADS)
Je, Uikyu; Cho, Hyosung; Lee, Minsik; Oh, Jieun; Park, Yeonok; Hong, Daeki; Park, Cheulkyu; Cho, Heemoon; Choi, Sungil; Koo, Yangseo
2014-06-01
Recently, reducing radiation doses has become an issue of critical importance in the broader radiological community. As a possible technical approach, especially, in dental cone-beam computed tomography (CBCT), reconstruction from limited-angle view data (< 360°) would enable fast scanning with reduced doses to the patient. In this study, we investigated and implemented an efficient reconstruction algorithm based on compressed-sensing (CS) theory for the scan geometry and performed systematic simulation works to investigate the image characteristics. We also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in incomplete data problems. We successfully reconstructed CBCT images with incomplete projections acquired at selected scan angles of 120, 150, 180, and 200° with a fixed angle step of 1.2° and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from limited-angle view data show that the algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.
NASA Astrophysics Data System (ADS)
Leys, F. E.; March, N. H.; Lamoen, D.
2003-02-01
There is considerable current interest in the equations of state (EOS) of the two heavy metals, tantalum and plutonium. For the former, Boettger [Phys. Rev. B 64, 035103 (2001)] has recently carried out calculations based on the Dirac relativistic wave equation. Our purpose here is different, namely, it is to work with the simplest form of relativistic density-functional theory which is the relativistic Thomas-Fermi (TF) method. The predictions of this approach should come into their own at sufficiently high pressures (we work throughout at T=0) and direct contact has been made, for Ta, with the (lower-pressure) predictions of Boettger’s study. Similar results for the high-pressure limiting form of the T=0 EOS for Pu are presented. Because the relativistic TF method is purely “local density” in character, the results on Ta and Pu are preceded by a full study of the relativistic homogeneous electron gas, including the relativistic exchange contribution to its EOS. An important finding there is that in the high-density limit the relativistic exchange contribution to the pressure becomes proportional to the kinetic contribution, the proportionality constant being linear in the fine-structure constant.
Godey, S.; Snieder, R.; Villasenor, A.; Benz, H.M.
2003-01-01
We present phase velocity maps of fundamental mode Rayleigh waves across the North American and Caribbean plates. Our data set consists of 1846 waveforms from 172 events recorded at 91 broad-band stations operating in North America. We compute phase velocity maps in four narrow period bands between 50 and 150 s using a non-linear waveform inversion method that solves for phase velocity perturbations relative to a reference Earth model (PREM). Our results show a strong velocity contrast between high velocities beneath the stable North American craton, and lower velocities in the tectonically active western margin, in agreement with other regional and global surface wave tomography studies. We perform detailed comparisons with global model results, which display good agreement between phase velocity maps in the location and amplitude of the anomalies. However, forward modelling shows that regional maps are more accurate for predicting waveforms. In addition, at long periods, the amplitude of the velocity anomalies imaged in our regional phase velocity maps is three time larger than in global phase velocity models. This amplitude factor is necessary to explain the data accurately, showing that regional models provide a better image of velocity structures. Synthetic tests show that the raypath coverage used in this study enables one to resolve velocity features of the order of 800-1000 km. However, only larger length-scale features are observed in the phase velocity maps. The limitation in resolution of our maps can be attributed to the wave propagation theory used in the inversion. Ray theory does not account for off-great-circle ray propagation effects, such as ray bending or scattering. For wavelengths less than 1000 km, scattering effects are significant and may need to be considered.
NASA Astrophysics Data System (ADS)
Perico, Angelo; La Ferla, Roberto; Freed, Karl F.
1987-05-01
Numerical calculations are presented for the frequency dependent Huggins coefficient based on the formal derivation provided in paper I using the dynamical multiple scattering theory for discrete Gaussian chains. The calculations employ fast Fourier transform methods and confirm the analytic complexity of this frequency dependence as previously anticipated from our calculations of the concentration dependence of the normal mode autocorrelation function. The harmonic spring model is considered because this simple limit is amenable to closed form solution, displaying the frequency dependence of the relaxation rates and providing a useful check on the difficult numerical computations for higher numbers n of beads. The steady state Huggins coefficient is also calculated with carefully optimized Gauss-Laguerre quadrature methods which permit extrapolation to n→∞. The calculated steady state value of 0.33 lies below experimental data for theta solutions, and an extensive discussion of the experimental data is provided to understand the discrepancy. One major factor, suggested by Schrag, arises from a strong concentration dependence of the individual bead friction coefficient.
NASA Astrophysics Data System (ADS)
Schindler, Matthias R.; Springer, Roxanne P.; Vanasse, Jared
2016-02-01
The symmetries of the standard model dictate that for very low energies, where nucleon dynamics can be described in terms of a pionless effective field theory ( EFT(π / ) ) , the leading-order parity-violating nucleon-nucleon Lagrangian contains five independent unknown low-energy constants (LECs). We find that imposing the approximate symmetry of QCD that appears when the number of colors Nc becomes large reduces the number of independent LECs to two at leading order in the combined EFT(π / ) and large-Nc expansions. We also find a relation between the two isoscalar LECs in the large-Nc limit. This has important implications for the number of experiments and/or lattice calculations necessary to confirm this description of physics. In particular, we find that a future measurement of the parity-violating asymmetry in γ ⃗d →n p together with the existing result for parity-violating p ⃗p scattering would constrain all leading-order (in the combined expansion) LECs. This is a considerable improvement on the previous understanding of the system.
A Teaching Experiment in Constructing the Limit of a Sequence
ERIC Educational Resources Information Center
Nam, Pham Sy; Stephens, Max
2014-01-01
"Limit" is a difficult mathematical concept, even for good students. It is also a key foundational idea for the study of advanced mathematics. It holds a central position as a foundation of the theory of approximation, of continuity, and of differential and integral calculus. However, the difficulty for teachers is how to organise…
NASA Astrophysics Data System (ADS)
Hinkey, Robert T.; Yang, Rui Q.
2013-09-01
A theoretical framework for studying signal and noise in multiple-stage interband infrared photovoltaic devices is presented. The theory flows from a general picture of electrons transitioning between thermalized reservoirs. Making the assumption of bulk-like absorbers, we show how the standard semiconductor transport and recombination equations can be extended to the case of multiple-stage devices. The electronic noise arising from thermal fluctuations in the transition rates between reservoirs is derived using the Shockley-Ramo and Wiener-Khinchin theorems. This provides a unified noise treatment accounting for both the Johnson and shot noise. Using a Green's function formalism, we derive consistent analytic expressions for the quantum efficiency and thermal noise in terms of the design parameters and macroscopic material properties of the absorber. The theory is then used to quantify the potential performance improvement from the use of multiple stages. We show that multiple-stage detectors can achieve higher sensitivities for applications requiring a fast temporal response. This is shown by deriving an expression for the optimal number of stages in terms of the absorption coefficient and absorber thicknesses for a multiple-stage detector with short absorbers. The multiple-stage architecture may also be useful for improving the sensitivity of high operating temperature detectors in situations where the quantum efficiency is limited by a short diffusion length. The potential sensitivity improvement offered by a multiple-stage architecture can be judged from the product of the absorption coefficient, α, and diffusion length, Ln, of the absorber material. For detector designs where the absorber lengths in each of the stages are equal, the multiple-stage architecture offers the potential for significant detectivity improvement when αLn ≤ 0.2. We also explore the potential of multiple-stage detectors with photocurrent-matched absorbers. In this architecture, the
Schliesser, Joshua A; Gallimore, Gary; Kunjukunju, Nancy; Sabates, Nelson R; Koulen, Peter; Sabates, Felix N
2014-01-01
Purpose While identifying functional and structural parameters of the retina in central serous chorioretinopathy (CSCR) patients, this study investigated how an optical coherence tomography (OCT)-based diagnosis can be significantly supplemented with functional diagnostic tools and to what degree the determination of disease severity and therapy outcome can benefit from diagnostics complementary to OCT. Methods CSCR patients were evaluated prospectively with microperimetry (MP) and spectral domain optical coherence tomography (SD-OCT) to determine retinal sensitivity function and retinal thickness as outcome measures along with measures of visual acuity (VA). Patients received clinical care that involved focal laser photocoagulation or pharmacotherapy targeting inflammation and neovascularization. Results Correlation of clinical parameters with a focus on functional parameters, VA, and mean retinal sensitivity, as well as on the structural parameter mean retinal thickness, showed that functional measures were similar in diagnostic power. A moderate correlation was found between OCT data and the standard functional assessment of VA; however, a strong correlation between OCT and MP data showed that diagnostic measures cannot always be used interchangeably, but that complementary use is of higher clinical value. Conclusion The study indicates that integrating SD-OCT with MP provides a more complete diagnosis with high clinical relevance for complex, difficult to quantify diseases such as CSCR. PMID:25473259
NASA Astrophysics Data System (ADS)
Lemoine, X.; Iancu, A.; Ferron, G.
2011-05-01
Nowadays, an accurate determination of the true stress-strain curve is a key-element for all finite element (FE) forming predictions. Since the introduction of Advanced High Strength Steels (AHSS) for the automotive market, the standard uniaxial tension test suffers the drawback of relatively low uniform elongations. The extrapolation of the uniaxial stress-strain curve up to large strains is not without consequence in forming predictions—especially formability and springback. One of the means to solve this problem is to use experimental tests where large plastic strain levels can be reached. The hydraulic bulge test is one of these tests. The effective plastic strain levels reached in the bulge test are of about 0.7. From an experimental standpoint, the biaxial flow stress is estimated using measurement of fluid pressure, and calculation of thickness and curvature at the pole, via appropriate measurements and assumptions. The biaxial stress at the pole is determined using the membrane equilibrium equation. The analysis proposed in this paper consists of performing "virtual experiments" where the results obtained by means of FE calculations are used as input data for determining the biaxial stress-strain law in agreement with the experimental procedure. In this way, a critical discussion of the experimental procedure can be made, by comparing the "experimental" stress-strain curve (Membrane theory curve) with the "reference" one introduced in the simulations. In particular, the influences of the "(die diameter)/thickness" ratio and of the plastic anisotropy are studied, and limitations of the hydraulic bulge test analysis are discussed.
NASA Astrophysics Data System (ADS)
Zouaghi, Taher; Bédir, Mourad; Hédi Inoubli, Mohamed
2005-05-01
The Albian-Maastrichtian seismic horizon analysis in central Tunisia (Gafsa-Sidi Bouzid area) using the reflection seismic sections calibrated to the well data, shows buried structures with deposit distributions and sedimentation geometries varying from the depressive to uplifted zones. Pinch outs, unconformities and hiatuses recognized on the folded high structures are caused by reactivation of the bordering faults. The Turonian-Maastrichtian unconformities correspond to the palaeogeographic limits that outline the Kasserine Islets and correspond to the N120, N180 major wrench-salt-intruded corridors and associated N90, N60 strike-slip faults. Formation of the different structures and evolution of the basins and platforms were controlled by conjugate dextral and sinistral strike-slip movements. These structures allow new palaeogeographic limits of the Kasserine Islets to be identified. To cite this article: T. Zouaghi et al., C. R. Geoscience 337 (2005).
Neba, Godlove Ambe; Newbery, David McClintock; Chuyong, George Bindeh
2016-01-01
In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and
Torres-Peralta, Rafael; Morales-Alamo, David; González-Izal, Miriam; Losa-Reyna, José; Pérez-Suárez, Ismael; Izquierdo, Mikel; Calbet, José A. L.
2016-01-01
To determine whether task failure during incremental exercise to exhaustion (IE) is principally due to reduced neural drive and increased metaboreflex activation eleven men (22 ± 2 years) performed a 10 s control isokinetic sprint (IS; 80 rpm) after a short warm-up. This was immediately followed by an IE in normoxia (Nx, PIO2:143 mmHg) and hypoxia (Hyp, PIO2:73 mmHg) in random order, separated by a 120 min resting period. At exhaustion, the circulation of both legs was occluded instantaneously (300 mmHg) during 10 or 60 s to impede recovery and increase metaboreflex activation. This was immediately followed by an IS with open circulation. Electromyographic recordings were obtained from the vastus medialis and lateralis. Muscle biopsies and blood gases were obtained in separate experiments. During the last 10 s of the IE, pulmonary ventilation, VO2, power output and muscle activation were lower in hypoxia than in normoxia, while pedaling rate was similar. Compared to the control sprint, performance (IS-Wpeak) was reduced to a greater extent after the IE-Nx (11% lower P < 0.05) than IE-Hyp. The root mean square (EMGRMS) was reduced by 38 and 27% during IS performed after IE-Nx and IE-Hyp, respectively (Nx vs. Hyp: P < 0.05). Post-ischemia IS-EMGRMS values were higher than during the last 10 s of IE. Sprint exercise mean (IS-MPF) and median (IS-MdPF) power frequencies, and burst duration, were more reduced after IE-Nx than IE-Hyp (P < 0.05). Despite increased muscle lactate accumulation, acidification, and metaboreflex activation from 10 to 60 s of ischemia, IS-Wmean (+23%) and burst duration (+10%) increased, while IS-EMGRMS decreased (−24%, P < 0.05), with IS-MPF and IS-MdPF remaining unchanged. In conclusion, close to task failure, muscle activation is lower in hypoxia than in normoxia. Task failure is predominantly caused by central mechanisms, which recover to great extent within 1 min even when the legs remain ischemic. There is dissociation between the
NASA Astrophysics Data System (ADS)
Wood, Adrienne; Niedenthal, Paula
2015-06-01
Emotions are phylogenetically ancient and involve complex interactions of neural, behavioral, and physiological processes. A complete theory of emotions must incorporate, or at least be informed by, current knowledge from neurobiology and comparative psychology [1]. The Quartet Theory of Human Emotions by Koelsch and colleagues [2] is therefore a welcome step towards a more integrative affective science.
NASA Astrophysics Data System (ADS)
Afeyan, Bedros; Hüller, Stefan; Montgomery, David; Moody, John; Froula, Dustin; Hammer, James; Jones, Oggie; Amendt, Peter
2014-10-01
In mid-Z and high-Z plasmas, it is possible to control crossed bean energy transfer (CBET) and subsequently occurring single or multiple beam instabilities such as Stimulated Raman Scattering (SRS) by novel means. These new techniques are inoperative when the ion acoustic waves are in their strong damping limit, such as occurs in low Z plasmas with comparable electron and ion temperatures. For mid-Z plasmas, such as Z = 10, and near the Mach 1 surface, the strong coupling regime (SCR) can be exploited for LPI mitigation. While at higher Z values, it is thermal filamentation in conjunction with nonlocal heat transport that are useful to exploit. In both these settings, the strategy is to induce laser hot spot intensity dependent, and thus spatially dependent, frequency shifts to the ion acoustic waves in the transient response of wave-wave interactions. The latter is achieved by the on-off nature of spike trains of uneven duration and delay, STUD pulses. The least taxing use of STUD pulses is to modulate the beams at the 10 ps time scale and to choose which crossing beams are overlapping in time and which are not. Work supported by a grant from the DOE NNSA-OFES joint program on HEDP
Sonder, E.; Ahmed, A.B.
1991-12-01
A value for ``average background radiation`` of 0.75 mR/week has been determined from a total of 1680 thermoluminescent dosimeters (TLD`s) exposed in 70 houses for periods up to one year. The distribution of results indicates a rather large variation among houses, with a few locations exhibiting backgrounds double the general average. Some discrepancies in the short-term background accumulation of TLD`s have been explained as being due to light leakage through the dosimeter cases. In addition the lower limit of detection (L{sub D}) for deep and shallow dose equivalents has been determined for these dosimeters. The L{sub D} for occupational exposure depends strongly on the time a dosimeter is exposed to background radiation in the field. The L{sub D} can vary from a low of 2.4 mrem for high energy gamma rays when the background accumulation period is less than a few weeks to values as high as 66 mrem for uranium beta particles when background has been allowed to accumulate for more than 21 weeks.
ERIC Educational Resources Information Center
Beevers, Christopher G.; Strong, David R.; Meyer, Bjorn; Pilkonis, Paul A.; Miller, Ivan R.
2007-01-01
Despite a central role for dysfunctional attitudes in cognitive theories of depression and the widespread use of the Dysfunctional Attitude Scale, form A (DAS-A; A. Weissman, 1979), the psychometric development of the DAS-A has been relatively limited. The authors used nonparametric item response theory methods to examine the DAS-A items and…
Central obscuration effects on optical synthetic aperture imaging
NASA Astrophysics Data System (ADS)
Wang, Xue-wen; Luo, Xiao; Zheng, Li-gong; Zhang, Xue-jun
2014-02-01
Due to the central obscuration problem exists in most optical synthetic aperture systems, it is necessary to analyze its effects on their image performance. Based on the incoherent diffraction limited imaging theory, a Golay-3 type synthetic aperture system was used to study the central obscuration effects on the point spread function (PSF) and the modulation transfer function (MTF). It was found that the central obscuration does not affect the width of the central peak of the PSF and the cutoff spatial frequency of the MTF, but attenuate the first sidelobe of the PSF and the midfrequency of the MTF. The imaging simulation of a Golay-3 type synthetic aperture system with central obscuration proved this conclusion. At last, a Wiener Filter restoration algorithm was used to restore the image of this system, the images were obviously better.
Schwarz, Doreen; Orf, Isabel; Kopka, Joachim; Hagemann, Martin
2014-01-01
Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis. Non-diazotrophic strains such as the model Synechocystis sp. PCC 6803 depend on a balanced uptake and assimilation of inorganic carbon and nitrogen sources. The internal C/N ratio is sensed via the PII protein (GlnB). We analyzed metabolic changes of the ΔglnB mutant of Synechocystis sp. PCC 6803 under different CO2 availability. The identified metabolites provided a snapshot of the central C/N metabolism. Cells of the ΔglnB mutant shifted to carbon-limiting conditions, i.e. a decreased C/N ratio, showed changes in intermediates of the sugar storage and particularly of the tricarboxylic acid cycle, arginine, and glutamate metabolism. The changes of the metabolome support the notion that the PII protein is primarily regulating the N-metabolism whereas the changes in C-metabolism are probably secondary effects of the PII deletion. PMID:24957024
Vlasov versus reduced kinetic theories for helically symmetric equilibria
Tasso, H.; Throumoulopoulos, G. N.
2013-04-15
A new constant of motion for helically symmetric equilibria in the vicinity of the magnetic axis is obtained in the framework of Vlasov theory. In view of this constant of motion the Vlasov theory is compared with drift kinetic and gyrokinetic theories near axis. It turns out that as in the case of axisymmetric equilibria [H. Tasso and G. N. Throumoulopoulos, Phys. Plasmas 18, 064507 (2011)] the Vlasov current density thereon can differ appreciably from the drift kinetic and gyrokinetic current densities. This indicates some limitation on the implications of reduced kinetic theories, in particular, as concerns the physics of energetic particles in the central region of magnetically confined plasmas.
Decidability of formal theories and hyperincursivity theory
NASA Astrophysics Data System (ADS)
Grappone, Arturo G.
2000-05-01
This paper shows the limits of the Proof Standard Theory (briefly, PST) and gives some ideas of how to build a proof anticipatory theory (briefly, PAT) that has no such limits. Also, this paper considers that Gödel's proof of the undecidability of Principia Mathematica formal theory is not valid for axiomatic theories that use a PAT to build their proofs because the (hyper)incursive functions are self-representable.
ERIC Educational Resources Information Center
Angus, Douglas Jozef; de Rosnay, Marc; Lunenburg, Patty; Meerum Terwogt, Mark; Begeer, Sander
2015-01-01
Anticipating future interactions is characteristic of our everyday social experiences, yet has received limited empirical attention. Little is known about how children with autism spectrum disorder, known for their limitations in social interactive skills, engage in "social anticipation." We asked children with autism spectrum disorder…
Offord, S.J.
1986-01-01
Researchers are suggesting unipolar affective disorders may be related to an abnormality in biogenic amine receptor-sensitivity. This abnormality may be a result of a dysfunction in central serotonin (5-HT) release mechanisms. 5-HT neurotransmission is modulated by presynaptic autoreceptors, which are members of the 5-HT/sub 1/ receptor subtype. The autoreceptor is thought to play an important role in the homeostasis of the central 5-HT synapse and could be a site at which some antidepressants mediate their therapeutic effect. The number of 5-HT/sub 1/ type receptor binding sites are reduced and behavior mediated by this receptor is abolished following repeated injections of monoamine oxidase inhibitor type antidepressants. These changes did not occur following a single injection. It was hypothesized that repeated treatment with a monoamine oxidase inhibitor would reduce the sensitivity of 5-HT autoreceptors and enhance 5-HT release. Rats were pretreated with single or repeated (twice daily for 7 days) intraperitoneal injections of nialamide (40 mg/kg) or chlorimipramine (10 mg/kg) and the ability of the autoreceptor agonist to inhibit potassium-induced /sup 3/H-5-HT release was evaluated using an in vitro superfusion system. These changes in 5-HT autoreceptor activity are consistent with other reports evaluating monoamine oxidase inhibitors on 5-HT/sub 1/ type receptors. It is hypothesized that the changes in 5-HT neurotransmission are related to the antidepressant mechanism of monoamine oxidase inhibitors.
Ibrahim, N. B. N.
1981-01-01
This appears to be the first report of a case of central pontine myelinolysis associated with chronic alcoholism and liver cirrhosis in the United Kingdom. The pathological features and theories of aetiology are briefly discussed. ImagesFig. 1 PMID:7329883
NASA Technical Reports Server (NTRS)
Stoeger, W. R.
1978-01-01
Since Rosen's bimetric theory of gravity provides at present a worthy devil's advocate for the black hole hypothesis, it is important for eventual observational work to elaborate the astrophysical consequences and possibilities peculiar to it. This work is begun by deriving the orbital topography of the spherically symmetric solution to Rosen's field equations - which is relevant to the behavior of relativistic axisymmetric accretion flows - and calculating predicted accretion disk efficiencies, which can be as much as 2.5 times higher than for a disk in Schwarzschild. Thereafter, a brief treatment of the shortest kinematic time scale and the time dilations for in-falling material is given. Finally it is shown that Birkhoff's theorem does not hold in Rosen's theory, and, therefore, that genuine gravitational monopole radiation is possible. The energy it carries, however, is not positive definite.
From the Law of Large Numbers to Large Deviation Theory in Statistical Physics: An Introduction
NASA Astrophysics Data System (ADS)
Cecconi, Fabio; Cencini, Massimo; Puglisi, Andrea; Vergni, Davide; Vulpiani, Angelo
This contribution aims at introducing the topics of this book. We start with a brief historical excursion on the developments from the law of large numbers to the central limit theorem and large deviations theory. The same topics are then presented using the language of probability theory. Finally, some applications of large deviations theory in physics are briefly discussed through examples taken from statistical mechanics, dynamical and disordered systems.
2014-01-01
Background Knowledge regarding the best approaches to improving the quality of healthcare and their implementation is lacking in many resource-limited settings. The Medical Department of Kamuzu Central Hospital in Malawi set out to improve the quality of care provided to its patients and establish itself as a recognized centre in teaching, operations research and supervision of district hospitals. Efforts in the past to achieve these objectives were short-lived, and largely unsuccessful. Against this background, a situational analysis was performed to aid the Medical Department to define and prioritize its quality improvement activities. Methods A mix of quantitative and qualitative methods was applied using checklists for observed practice, review of registers, key informant interviews and structured patient interviews. The mixed methods comprised triangulation by including the perspectives of the clients, healthcare providers from within and outside the department, and the field researcher’s perspectives by means of document review and participatory observation. Results Human resource shortages, staff attitudes and shortage of equipment were identified as major constraints to patient care, and the running of the Medical Department. Processes, including documentation in registers and files and communication within and across cadres of staff were also found to be insufficient and thus undermining the effort of staff and management in establishing a sustained high quality culture. Depending on their past experience and knowledge, the stakeholder interviewees revealed different perspectives and expectations of quality healthcare and the intended quality improvement process. Conclusions Establishing a quality improvement process in resource-limited settings is an enormous task, considering the host of challenges that these facilities face. The steps towards changing the status quo for improved quality care require critical self-assessment, the willingness to change
Shirakata, Yukari; Fujita, Tomoyoshi; Nakano, Yuki; Shiraga, Fumio; Tsujikawa, Akitaka
2016-01-01
Objective To evaluate the efficacy of pars plana vitrectomy (PPV) combined with internal limiting membrane (ILM) peeling in cases of ischemic central retinal vein occlusion (CRVO) where macular edema (ME) persisted after anti-vascular endothelial growth factor (anti-VEGF) treatment. Methods Fifteen eyes with ischemic CRVO-related ME were included in the study. Nine were treated with panretinal photocoagulation after initial examination. Anti-VEGF agents were injected intravitreally. Persistent ME was treated with PPV combined with ILM peeling. During surgery, laser photocoagulation was further applied to the non-perfused area. Results Mean retinal thickness gradually decreased after surgery (p = 0.024 at 6 months), although visual acuity did not improve significantly during the follow-up period (14.7 ± 11.6 months). Neovascular glaucoma subsequently developed in three cases and a trabeculectomy was performed in one case. Conclusion In eyes with ischemic CRVO, PPV combined with ILM peeling contributed to a reduction in persistent ME. However, there was no significant improvement in visual acuity. PMID:26889152
Mao, Yuezhi; Horn, Paul R; Mardirossian, Narbe; Head-Gordon, Teresa; Skylaris, Chris-Kriton; Head-Gordon, Martin
2016-07-28
Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set produces <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals. PMID:27475350
NASA Astrophysics Data System (ADS)
Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe; Head-Gordon, Teresa; Skylaris, Chris-Kriton; Head-Gordon, Martin
2016-07-01
Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set produces <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.
Dobbin, K R
2001-03-01
Learning, as defined by Alspach, is "a change in cognitive, psychomotor, and/or affective behaviors." The teaching strategies reviewed in this article have focused on ones that can affect all three learner behaviors if carefully planned and executed by the instructor. It is also key to provide the content in a manner that will appeal to the autonomy and self-direction of the adult learner, keeping in mind the importance of relating new information to previously learned material. Realizing that learners have different learning styles, the instructor also should assess learning styles and vary teaching methods accordingly. Incorporating some of the learner assessments and teaching strategies discussed here can be a change for both the learner and instructor, but it is consistent with modern learning theory where the focus is on the learner. PMID:11863132
Optimal Low-Thrust Limited-Power Transfers between Arbitrary Elliptic Coplanar Orbits
NASA Technical Reports Server (NTRS)
daSilvaFernandes, Sandro; dasChagasCarvalho, Francisco
2007-01-01
In this work, a complete first order analytical solution, which includes the short periodic terms, for the problem of optimal low-thrust limited-power transfers between arbitrary elliptic coplanar orbits in a Newtonian central gravity field is obtained through Hamilton-Jacobi theory and a perturbation method based on Lie series.
Theory of active galactic nuclei
NASA Technical Reports Server (NTRS)
Shields, G. A.
1986-01-01
The involvement of accretion disks around supermassive black holes in the theory of active galactic nuclei (AGN) is discussed. The physics of thin and thick accretion disks is discussed and the partition between thermal and nonthermal energy production in supermassive disks is seen as uncertain. The thermal limit cycle may operate in supermassive disks (Shields, 1985), with accumulation of gas in the disk for periods of 10 to the 4th to 10 to the 7th years, punctuated by briefer outbursts during which the mass is rapidly transferred to smaller radii. An extended X-ray source in AGN is consistent with observations (Tennant and Mushotsky, 1983), and a large wind mass loss rate exceeding the central accretion rate means that only a fraction of the mass entering the disk will reach the central object; the rest being lost to the wind. Controversy in the relationship between the broad lines and the disk is also discussed.
NASA Astrophysics Data System (ADS)
Ausilia Paparo, Maria; Tinti, Stefano
2013-04-01
Stability charts represent a graphical solution to derive the safety factor (F) without incurring the difficulties of mathematical and numerical methods for the analysis of slope stability, widely used in the engineering field: employed in a preliminary phase of analysis, the consultation of charts allows one to determine the approximate equilibrium conditions. The first to develop this method is Taylor (1948) who made them of common use: his stability charts are the relationships between the height and the inclination of a schematic slope, for particular types of failure surface (toe circle, circle slope, and midpoint circle) and for different values of friction angle. Thereafter the charts have become more detailed and complete (Janbu, 1968), thanks to the continuous introduction of new methods, like the limit equilibrium method (LEM), the limit analysis method and the finite element method (FEM). The aim of this work is to compare sets of stability charts found in literature (Michalowski, 1997; 2002; Li et alii, 2009; Steward et alii, 2011; Zhang et alii, 2011) with new charts obtained with the results obtained by means of the method of minimum lithostatic deviation (MLD) introduced by Tinti and Manucci (2006 and 2008) for 2D problems: the slope is a homogenous body and we analyze different cases, by varying the geometry (e.g. the slope angle and height), the geotechnical parameters (such as cohesion and angle of friction), the pore pressure and the external loads (as seismic or hydrostatic loadings) treated as quasi-static forcing.
NASA Astrophysics Data System (ADS)
Dervaux, Julien; Ciarletta, Pasquale; Ben Amar, Martine
2009-03-01
The shape of plants and other living organisms is a crucial element of their biological functioning. Morphogenesis is the result of complex growth processes involving biological, chemical and physical factors at different temporal and spatial scales. This study aims at describing stresses and strains induced by the production and reorganization of the material. The mechanical properties of soft tissues are modeled within the framework of continuum mechanics in finite elasticity. The kinematical description is based on the multiplicative decomposition of the deformation gradient tensor into an elastic and a growth term. Using this formalism, the authors have studied the growth of thin hyperelastic samples. Under appropriate assumptions, the dimensionality of the problem can be reduced, and the behavior of the plate is described by a two-dimensional surface. The results of this theory demonstrate that the corresponding equilibrium equations are of the Föppl-von Kármán type where growth acts as a source of mean and Gaussian curvatures. Finally, the cockling of paper and the rippling of a grass blade are considered as two examples of growth-induced pattern formation.
Madiba, Sphiwe; Mokwena, Kebogile
2012-01-01
We used a grounded theory approach to explore how a sample of caregivers of children on antiretroviral treatment (ART) experience HIV disclosure to their infected children. This paper explores caregivers' barriers to disclosing HIV to infected children. Caregivers of children aged 6–13 years who were receiving ART participated in four focus-group interviews. Three main themes, caregiver readiness to tell, right time to tell, and the context of disclosure, emerged. Disclosure was delayed because caregivers had to first deal with personal fears which influenced their readiness to disclose; disclosure was also delayed because caregivers did not know how to tell. Caregivers lacked disclosure skills because they had not been trained on how to tell their children about their diagnosis, on how to talk to their children about HIV, and on how to deal with a child who reacts negatively to the disclosure. Caregivers feared that the child might tell others about the diagnosis and would be discriminated and socially rejected and that children would live in fear of death and dying. Health care providers have a critical role to play in HIV disclosure to infected children, considering the caregivers' expressed desire to be trained and prepared for the disclosure. PMID:23304469
Singh, Rama S
2015-09-01
Mendel is credited for discovering Laws of Heredity, but his work has come under criticism on three grounds: for possible falsification of data to fit his expectations, for getting undue credit for the laws of heredity without having ideas of segregation and independent assortment, and for being interested in the development of hybrids rather than in the laws of heredity. I present a brief review of these criticisms and conclude that Mendel deserved to be called the father of genetics even if he may not, and most likely did not, have clear ideas of segregation and particulate determiners as we know them now. I argue that neither Mendel understood the evolutionary significance of his findings for the problem of genetic variation, nor would Darwin have understood their significance had he read Mendel's paper. I argue that the limits to imagination, in both cases, came from their mental framework being shaped by existing paradigms-blending inheritance in the case of Darwin, hybrid development in the case of Mendel. Like Einstein, Darwin's natural selection was deterministic; like Niels Bohr, Mendel's Laws were probabilistic-based on random segregation of trait-determining "factors". Unlike Einstein who understood quantum mechanics, Darwin would have been at a loss with Mendel's paper with no guide to turn to. Geniuses in their imaginations are like heat-seeking missiles locked-in with their targets of deep interests and they generally see things in one dimension only. Imagination has limits; unaided imagination is like a bird without wings--it goes nowhere. PMID:26372894
Central line infections - hospitals
... infection; CVC - infection; Central venous device - infection; Infection control - central line infection; Nosocomial infection - central line infection; Hospital acquired infection - central line infection; Patient safety - central ...
Statistical behavior of ten million experimental detection limits
NASA Astrophysics Data System (ADS)
Voigtman, Edward; Abraham, Kevin T.
2011-02-01
Using a lab-constructed laser-excited fluorimeter, together with bootstrapping methodology, the authors have generated many millions of experimental linear calibration curves for the detection of rhodamine 6G tetrafluoroborate in ethanol solutions. The detection limits computed from them are in excellent agreement with both previously published theory and with comprehensive Monte Carlo computer simulations. Currie decision levels and Currie detection limits, each in the theoretical, chemical content domain, were found to be simply scaled reciprocals of the non-centrality parameter of the non-central t distribution that characterizes univariate linear calibration curves that have homoscedastic, additive Gaussian white noise. Accurate and precise estimates of the theoretical, content domain Currie detection limit for the experimental system, with 5% (each) probabilities of false positives and false negatives, are presented.
Harvey, Pierre D; Brégier, Frédérique; Aly, Shawkat M; Szmytkowski, Jędrzej; Paige, Matthew F; Steer, Ronald P
2013-03-25
Two dendrimers consisting of a cofacial free-base bisporphyrin held by a biphenylene spacer and functionalized with 4-benzeneoxomethane (5-(4-benzene)tri-10,15,20-(4-n-octylbenzene)zinc(II)porphyrin) using either five or six of the six available meso-positions, have been synthesized and characterized as models for the antenna effect in Photosystems I and II. The presence of the short linkers, -CH2O-, and long C8H17 soluble side chains substantially reduces the number of conformers (foldamers) compared with classic dendrimers built with longer flexible chains. This simplification assists in their spectroscopic and photophysical analysis, notably with respect to fluorescence resonance energy transfer (FRET). Both steady-state and time-resolved spectroscopic measurements indicate that the cofacial free bases and the flanking zinc(II)-porphyrin antennas act as energy acceptor and donor, respectively, following excitation in either the Q or Soret bands of the dendrimers. The rate constants for singlet electronic energy transfer (k(EET)) extracted from the S1 and S2 fluorescence lifetimes of the donor in the presence and absence of the acceptor are ≤ (0.1-0.3)×10(9) and ∼2×10(9) s(-1) for S1→S1 (range from a bi-exponential decay model) and about 1.5×10(12) s(-1) for S2→S(n) (n>1). Comparisons of these experimental data with those calculated from Förster theory using orientation factors and donor-acceptor distances extracted from computer modeling suggest that a highly restricted number of the many foldamers facilitate energy transfer. These foldamers have the lowest energy by molecular modeling and consist of one or at most two of the flanking zinc porphyrin antennas folded so they lie near the central artificial special pair core with the remaining antennas located almost parallel to and far from it. PMID:23371815
Balanced Centrality of Networks.
Debono, Mark; Lauri, Josef; Sciriha, Irene
2014-01-01
There is an age-old question in all branches of network analysis. What makes an actor in a network important, courted, or sought? Both Crossley and Bonacich contend that rather than its intrinsic wealth or value, an actor's status lies in the structures of its interactions with other actors. Since pairwise relation data in a network can be stored in a two-dimensional array or matrix, graph theory and linear algebra lend themselves as great tools to gauge the centrality (interpreted as importance, power, or popularity, depending on the purpose of the network) of each actor. We express known and new centralities in terms of only two matrices associated with the network. We show that derivations of these expressions can be handled exclusively through the main eigenvectors (not orthogonal to the all-one vector) associated with the adjacency matrix. We also propose a centrality vector (SWIPD) which is a linear combination of the square, walk, power, and degree centrality vectors with weightings of the various centralities depending on the purpose of the network. By comparing actors' scores for various weightings, a clear understanding of which actors are most central is obtained. Moreover, for threshold networks, the (SWIPD) measure turns out to be independent of the weightings. PMID:27437494
Balanced Centrality of Networks
Sciriha, Irene
2014-01-01
There is an age-old question in all branches of network analysis. What makes an actor in a network important, courted, or sought? Both Crossley and Bonacich contend that rather than its intrinsic wealth or value, an actor's status lies in the structures of its interactions with other actors. Since pairwise relation data in a network can be stored in a two-dimensional array or matrix, graph theory and linear algebra lend themselves as great tools to gauge the centrality (interpreted as importance, power, or popularity, depending on the purpose of the network) of each actor. We express known and new centralities in terms of only two matrices associated with the network. We show that derivations of these expressions can be handled exclusively through the main eigenvectors (not orthogonal to the all-one vector) associated with the adjacency matrix. We also propose a centrality vector (SWIPD) which is a linear combination of the square, walk, power, and degree centrality vectors with weightings of the various centralities depending on the purpose of the network. By comparing actors' scores for various weightings, a clear understanding of which actors are most central is obtained. Moreover, for threshold networks, the (SWIPD) measure turns out to be independent of the weightings.
NASA Astrophysics Data System (ADS)
Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin
2016-05-01
With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.
Witte, Jonathon; Neaton, Jeffrey B; Head-Gordon, Martin
2016-05-21
With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions-noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms-with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems. PMID:27208948
Rider control of a motorcycle near to its cornering limits
NASA Astrophysics Data System (ADS)
Sharp, R. S.
2012-08-01
Optimal linear quadratic control theory is applied to longitudinal and lateral control of a high-performance motorcycle. Central to the story is the use of sufficient preview of the road to obtain the full benefit available from it. The focus is on effective control near to the cornering limits of the machine, and gain scheduling according to speed and lateral acceleration is employed to ensure that the linear controller used at any time is the most appropriate to the running conditions. The motorcycle model employed and the control theory background are described briefly. Selected optimal controls and closed-loop system frequency responses are illustrated. Path-tracking simulations are discussed and results are shown. Excellent machine control near to the feasible cornering limit is demonstrated. Further work is needed to provide similarly excellent control under limit braking.
Relative entropies in conformal field theory.
Lashkari, Nima
2014-08-01
Relative entropy is a measure of distinguishability for quantum states, and it plays a central role in quantum information theory. The family of Renyi entropies generalizes to Renyi relative entropies that include, as special cases, most entropy measures used in quantum information theory. We construct a Euclidean path-integral approach to Renyi relative entropies in conformal field theory, then compute the fidelity and the relative entropy of states in one spatial dimension at zero and finite temperature using a replica trick. In contrast to the entanglement entropy, the relative entropy is free of ultraviolet divergences, and is obtained as a limit of certain correlation functions. The relative entropy of two states provides an upper bound on their trace distance. PMID:25126908
Cognitive Load Theory, Educational Research, and Instructional Design: Some Food for Thought
ERIC Educational Resources Information Center
de Jong, Ton
2010-01-01
Cognitive load is a theoretical notion with an increasingly central role in the educational research literature. The basic idea of cognitive load theory is that cognitive capacity in working memory is limited, so that if a learning task requires too much capacity, learning will be hampered. The recommended remedy is to design instructional systems…
ERIC Educational Resources Information Center
Cahan, Sorel; Mor, Yaniv
2007-01-01
Narrow Window theory, suggested by Y. Kareev ten years ago, has so far focused on one central implication of the limited capacity of working memory on intuitive correlation estimation, namely, overestimation of the distal population correlation. This paper points to additional and perhaps more dramatic implications due to the large dispersion of…
Loescher, D.H.; Noren, K.
1996-09-01
The current that flows between the electrical test equipment and the nuclear explosive must be limited to safe levels during electrical tests conducted on nuclear explosives at the DOE Pantex facility. The safest way to limit the current is to use batteries that can provide only acceptably low current into a short circuit; unfortunately this is not always possible. When it is not possible, current limiters, along with other design features, are used to limit the current. Three types of current limiters, the fuse blower, the resistor limiter, and the MOSFET-pass-transistor limiters, are used extensively in Pantex test equipment. Detailed failure mode and effects analyses were conducted on these limiters. Two other types of limiters were also analyzed. It was found that there is no best type of limiter that should be used in all applications. The fuse blower has advantages when many circuits must be monitored, a low insertion voltage drop is important, and size and weight must be kept low. However, this limiter has many failure modes that can lead to the loss of over current protection. The resistor limiter is simple and inexpensive, but is normally usable only on circuits for which the nominal current is less than a few tens of milliamperes. The MOSFET limiter can be used on high current circuits, but it has a number of single point failure modes that can lead to a loss of protective action. Because bad component placement or poor wire routing can defeat any limiter, placement and routing must be designed carefully and documented thoroughly.
Gorney, J E
1994-01-01
This article investigates the role of limit and limit setting within the psychoanalytic situation. Limit is understood to be a boundary between self and others, established as an interactional dimension of experience. Disorders of limit are here understood within the context of Winnicott's conception of the "anti-social tendency." Limit setting is proposed as a necessary and authentic response to the patient's acting out via holding and empathic responsiveness, viewed here as a form of boundary delineation. It is proposed that the patient attempts to repair his or her boundary problem through a seeking of secure limits within the analyst. The setting of secure and appropriate limits must arise from a working through of the analyst's own countertransference response to the patient. It is critical that this response be evoked by, and arise from, the immediate therapeutic interaction so that the patient can experience limit setting as simultaneously personal and authentic. PMID:7972580
NASA Technical Reports Server (NTRS)
1981-01-01
Clouds and haze cover most of the Italian peninsula in this view of central Italy (41.5N, 14.0E) but the Bay of Naples region with Mt. Vesuvius and the island of Capri are clear. The Adriatic Sea in the background separates Italy from the cloud covered Balkans of eastern Europe and the Tyrrhenian Sea in the foreground lies between the Italian mainland and the off scene islands of Corsica and Sardinia. Several aircraft contrails can also be seen.
Testing the Predictions of the Central Capacity Sharing Model
ERIC Educational Resources Information Center
Tombu, Michael; Jolicoeur, Pierre
2005-01-01
The divergent predictions of 2 models of dual-task performance are investigated. The central bottleneck and central capacity sharing models argue that a central stage of information processing is capacity limited, whereas stages before and after are capacity free. The models disagree about the nature of this central capacity limitation. The…
NASA Astrophysics Data System (ADS)
Bommier, Véronique
2016-06-01
Context. The spectrum of the linear polarization, which is formed by scattering and observed on the solar disk close to the limb, is very different from the intensity spectrum and thus able to provide new information, in particular about anisotropies in the solar surface plasma and magnetic fields. In addition, a large number of lines show far wing polarization structures assigned to partial redistribution (PRD), which we prefer to denote as Rayleigh/Raman scattering. The two-level or two-term atom approximation without any lower level polarization is insufficient for many lines. Aims: In the previous paper of this series, we presented our theory generalized to the multilevel and multiline atom and comprised of statistical equilibrium equations for the atomic density matrix elements and radiative transfer equation for the polarized radiation. The present paper is devoted to applying this theory to model the second solar spectrum of the Na i D1 and D2 lines. Methods: The solution method is iterative, of the lambda-iteration type. The usual acceleration techniques were considered or even applied, but we found these to be unsuccessful, in particular because of nonlinearity or large number of quantities determining the radiation at each depth. Results: The observed spectrum is qualitatively reproduced in line center, but the convergence is yet to be reached in the far wings and the observed spectrum is not totally reproduced there. Conclusions: We need to investigate noniterative resolution methods. The other limitation lies in the one-dimensional (1D) atmosphere model, which is unable to reproduce the intermittent matter structure formed of small loops or spicules in the chromosphere. This modeling is rough, but the computing time in the presence of hyperfine structure and PRD prevents us from envisaging a three-dimensional (3D) model at this instant.
Self Psychology as Feminist Theory.
ERIC Educational Resources Information Center
Gardiner, Judith Kegan
1987-01-01
Although the "self psychology" theories of Heinz Kohut tend to neglect gender, they hold promise for feminist theory because they avoid some problems and limitations of the object-relations theory, especially its conflation of femininity with heterosexuality and apparent closure to historical change. Feminist self-psychology theory, in contrast,…
NASA Technical Reports Server (NTRS)
Ni, W.
1972-01-01
A new relativistic theory of gravity is presented. This theory agrees with all experiments to date. It is a metric theory, it is Lagrangian-based, and it possesses a preferred frame with conformally-flat space slices. With an appropriate choice of certain adjustable functions and parameters, this theory possesses precisely the same post-Newtonian limit as general relativity.
Central pain and dysesthesia syndrome.
Berić, A
1998-11-01
This article presents recent observations about different recognized central pain syndromes (CPS) and discusses them in light of contemporary microelectrode and imaging findings. Different theories regarding the generation of CPS are reviewed, with an emphasis on difficulties in diagnosis and treatment. The author discourages destructive procedures for treatment of CPS, favoring, instead, reversible procedures such as stimulation techniques and drug delivery systems. PMID:9767069
Limits of detection and decision. Part 3
NASA Astrophysics Data System (ADS)
Voigtman, E.
2008-02-01
It has been shown that the MARLAP (Multi-Agency Radiological Laboratory Analytical Protocols) for estimating the Currie detection limit, which is based on 'critical values of the non-centrality parameter of the non-central t distribution', is intrinsically biased, even if no calibration curve or regression is used. This completed the refutation of the method, begun in Part 2. With the field cleared of obstructions, the true theory underlying Currie's limits of decision, detection and quantification, as they apply in a simple linear chemical measurement system (CMS) having heteroscedastic, Gaussian measurement noise and using weighted least squares (WLS) processing, was then derived. Extensive Monte Carlo simulations were performed, on 900 million independent calibration curves, for linear, "hockey stick" and quadratic noise precision models (NPMs). With errorless NPM parameters, all the simulation results were found to be in excellent agreement with the derived theoretical expressions. Even with as much as 30% noise on all of the relevant NPM parameters, the worst absolute errors in rates of false positives and false negatives, was only 0.3%.
Delving into Limits of Sequences
ERIC Educational Resources Information Center
Cory, Beth; Smith, Ken W.
2011-01-01
Limits are foundational to the central concepts of calculus. However, the authors' experiences with students and educational research abound with examples of students' misconceptions about limits and infinity. The authors wanted calculus students to understand, appreciate, and enjoy their first introduction to advanced mathematical thought. Thus,…
Flux-limited diffusion with relativistic corrections
Pomraning, G.C.
1983-03-15
A recently reported flux-limited diffusion theory is extended to include relativistic terms, correct to first order in the fluid velocity. We show that this diffusion theory is fully flux limited, and yields the correct result for the radiative flux in the classical diffusion limit, namely a Fick's law component plus a v/c convective term.
Chowdhuri, Susmita; Badr, M Safwan
2010-02-01
Central sleep apnoea (CSA) is characterized by the cessation of breathing during sleep due to absent ventilatory drive and may be associated with symptoms of insomnia, excessive daytime sleepiness or frequent arousals. Central apnoeas occur through two pathophysiologic patterns, either post- hyperventilation or post-hypoventilation. The prevalence of CSA is dependent on the population being studied, the predominant risk factors being elderly age group and co-morbid conditions.Data regarding the racial distribution of this disorder are very limited. CSA may be a clinical marker of underlying medical disorders, including cardiac or neurological disease, with resultant significant morbidity and mortality. Given that the underlying pathogenesis remains poorly understood, therapeutic options are currently limited to empiric treatment with PAP devices and rudimentary attempts at pharmacologic therapy with respiratory stimulant drugs and/or oxygen/carbon dioxide gas supplementation as well as treating the underlying cause. The long-term impact of CSA on health and mortality needs further clarification. Future research should be aimed at elucidating the physiologic determinants and consequences of central breathing instability in populations of different age groups, gender and racial descent, as a prerequisite to the development of novel therapeutic interventions in the different populations. PMID:20308740
U-duality between NCOS theory and matrix theory
NASA Astrophysics Data System (ADS)
Hyun, Seungjoon
2001-03-01
We show that the NCOS (noncommutative open string) theories on torus T p ( p⩽5) are U-dual to matrix theory on torus with electric flux background. Under U-duality, the number of D-branes and the number of units of electric flux get interchanged. Furthermore, under the same U-duality the decoupling limit taken in the NCOS theory maps to the decoupling limit taken in the matrix theory, thus ensure the U-duality between those two class of theories. We consider the energy needed for Higgsing process and some bound states with finite energy and find agreements in both theories.
Relevance theory: pragmatics and cognition.
Wearing, Catherine J
2015-01-01
Relevance Theory is a cognitively oriented theory of pragmatics, i.e., a theory of language use. It builds on the seminal work of H.P. Grice(1) to develop a pragmatic theory which is at once philosophically sensitive and empirically plausible (in both psychological and evolutionary terms). This entry reviews the central commitments and chief contributions of Relevance Theory, including its Gricean commitment to the centrality of intention-reading and inference in communication; the cognitively grounded notion of relevance which provides the mechanism for explaining pragmatic interpretation as an intention-driven, inferential process; and several key applications of the theory (lexical pragmatics, metaphor and irony, procedural meaning). Relevance Theory is an important contribution to our understanding of the pragmatics of communication. PMID:26263065
Attachment Theory and Mindfulness
ERIC Educational Resources Information Center
Snyder, Rose; Shapiro, Shauna; Treleaven, David
2012-01-01
We initiate a dialog between two central areas in the field of psychology today: attachment theory/research and mindfulness studies. The impact of the early mother-infant relationship on child development has been well established in the literature, with attachment theorists having focused on the correlation between a mother's capacity for…
ERIC Educational Resources Information Center
Cooper, Wesley
2003-01-01
James's moral theory, primarily as set out in "The Moral Philosopher and the Moral Life" (in his "The Will To Believe" (1897)), is presented here as having a two-level structure, an empirical or historical level where progress toward greater moral inclusiveness is central, and a metaphysical or end-of-history level--James's "kingdom of…
Zhou, Huan-Xiang
2012-01-01
Some of the rate theories that are most useful for modeling biological processes are reviewed. By delving into some of the details and subtleties in the development of the theories, the review will hopefully help the reader gain a more than superficial perspective. Examples are presented to illustrate how rate theories can be used to generate insight at the microscopic level into biomolecular behaviors. Attempt is made to clear up a number of misconceptions in the literature regarding popular rate theories, including the appearance of Planck’s constant in the transition-state theory and the Smoluchowski result as an upper limit for protein-protein and protein-DNA association rate constants. Future work in combining the implementation of rate theories through computer simulations with experimental probes of rate processes, and in modeling effects of intracellular environments so theories can be used for generating rate constants for systems biology studies is particularly exciting. PMID:20691138
NASA Technical Reports Server (NTRS)
Holzmann, Gerard J.
2008-01-01
In the last 3 decades or so, the size of systems we have been able to verify formally with automated tools has increased dramatically. At each point in this development, we encountered a different set of limits -- many of which we were eventually able to overcome. Today, we may have reached some limits that may be much harder to conquer. The problem I will discuss is the following: given a hypothetical machine with infinite memory that is seamlessly shared among infinitely many CPUs (or CPU cores), what is the largest problem size that we could solve?
ERIC Educational Resources Information Center
Grogger, Jeffrey
2004-01-01
Time limits represent a substantial departure from previous welfare policy. Theory suggests that their effects should vary according to the age of the youngest child of the family. I test this prediction using data from the Current Population Survey and find that time limits indeed have larger effects on families with younger children. I further…
Physical Theory of the Immune System
NASA Astrophysics Data System (ADS)
Deem, Michael
2012-10-01
I will discuss to theories of the immune system and describe a theory of the immune response to vaccines. I will illustrate this theory by application to design of the annual influenza vaccine. I will use this theory to explain limitations in the vaccine for dengue fever and to suggest a transport-inspired amelioration of these limitations.
Vector field theories in cosmology
Tartaglia, A.; Radicella, N.
2007-10-15
Recently proposed theories based on the cosmic presence of a vectorial field are compared and contrasted. In particular the so-called Einstein aether theory is discussed in parallel with a recent proposal of a strained space-time theory (cosmic defect theory). We show that the latter fits reasonably well the cosmic observed data with only one, or at most two, adjustable parameters, while other vector theories use much more. The Newtonian limits are also compared. Finally we show that the cosmic defect theory may be considered as a special case of the aether theories, corresponding to a more compact and consistent paradigm.
Feminist Film Theory and Criticism.
ERIC Educational Resources Information Center
Mayne, Judith
1985-01-01
Discusses Laura Mulvey's 1975 essay, "Visual Pleasure and Narrative Cinema," and the ideas about feminist film theory and psychoanalysis as a critical tool which it raises. Suggests contradiction is the central issue in feminist film theory. Explores definitions of women's cinema. (SA)
Smith, Robert
1966-01-01
Dr Robert Smith surveys the history of birth control and sounds a warning for the future of mankind, if the population explosion is allowed to continue unchecked. He stresses the importance of the role of the general practitioner in the limitation of births. Sir Theodore Fox describes the work of the Family Planning Association and stresses that, increasingly, this is a specialist service covering all aspects of fertility. He also feels that the general practitioner has a role in family planning. PMID:5954261
Boltzmann, Darwin and Directionality theory
NASA Astrophysics Data System (ADS)
Demetrius, Lloyd A.
2013-09-01
Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and
Separation-individuation theory and attachment theory.
Blum, Harold P
2004-01-01
Separation-individuation and attachment theories are compared and assessed in the context of psychoanalytic developmental theory and their application to clinical work. As introduced by Margaret Mahler and John Bowlby, respectively, both theories were initially regarded as diverging from traditional views. Separation-individuation theory, though it has had to be corrected in important respects, and attachment theory, despite certain limitations, have nonetheless enriched psychoanalytic thought. Without attachment an infant would die, and with severely insecure attachment is at greater risk for serious disorders. Development depends on continued attachment to a responsive and responsible caregiver. Continued attachment to the primary object was regarded by Mahler as as intrinsic to the process of separation-individuation. Attachment theory does not account for the essential development of separateness, and separation-individuation is important for the promotion of autonomy, independence, and identity. Salient historical and theoretical issues are addressed, including the renewed interest in attachment theory and the related decline of interest in separation-individuation theory. PMID:15222460
Report of the theory panel. [space physics
NASA Technical Reports Server (NTRS)
Ashourabdalla, Maha; Rosner, Robert; Antiochos, Spiro; Curtis, Steven; Fejer, B.; Goertz, Christoph K.; Goldstein, Melvyn L.; Holzer, Thomas E.; Jokipii, J. R.; Lee, Lou-Chuang
1991-01-01
The ultimate goal of this research is to develop an understanding which is sufficiently comprehensive to allow realistic predictions of the behavior of the physical systems. Theory has a central role to play in the quest for this understanding. The level of theoretical description is dependent on three constraints: (1) the available computer hardware may limit both the number and the size of physical processes the model system can describe; (2) the fact that some natural systems may only be described in a statistical manner; and (3) the fact that some natural systems may be observable only through remote sensing which is intrinsically limited by spatial resolution and line of sight integration. From this the report discusses present accomplishments and future goals of theoretical space physics. Finally, the development and use of new supercomputer is examined.
Garces, Yolanda I. . E-mail: garces.yolanda@Mayo.edu; Okuno, Scott H.; Schild, Steven E.; Mandrekar, Sumithra J.; Bot, Brian M.; Martens, John M.; Wender, Donald B.; Soori, Gamini S.; Moore, Dennis F.; Kozelsky, Timothy F.; Jett, James R.
2007-03-15
Purpose: The primary goal was to identify the maximum tolerable dose (MTD) of thoracic radiation therapy (TRT) that can be given with chemotherapy and amifostine for patients with limited-stage small-cell lung cancer (LSCLC). Methods and Materials: Treatment began with two cycles of topotecan (1 mg/m{sup 2}) Days 1 to 5 and paclitaxel (175 mg/m{sup 2}) Day 5 (every 3 weeks) given before and after TRT. The TRT began at 6 weeks. The TRT was given in 120 cGy fractions b.i.d. and the dose escalation (from 4,800 cGy, dose level 1, to 6,600 cGy, dose level 4) followed the standard 'cohorts of 3' design. The etoposide (E) (50 mg/day) and cisplatin (C) (3 mg/m{sup 2}) were given i.v. before the morning TRT and amifostine (500 mg/day) was given before the afternoon RT. This was followed by prophylactic cranial irradiation (PCI). The dose-limiting toxicities (DLTs) were defined as Grade {>=}4 hematologic, febrile neutropenia, esophagitis, or other nonhematologic toxicity, Grade {>=}3 dyspnea, or Grade {>=}2 pneumonitis. Results: Fifteen patients were evaluable for the Phase I portion of the trial. No DLTs were seen at dose levels 1 and 2. Two patients on dose level 4 experienced DLTs: 1 patient had a Grade 4 pneumonitis, dyspnea, fatigue, hypokalemia, and anorexia, and 1 patient had a Grade 5 hypoxia attributable to TRT. One of 6 patients on dose level 3 had a DLT, Grade 3 esophagitis. The Grade {>=}3 toxicities seen in at least 10% of patients during TRT were esophagitis (53%), leukopenia (33%), dehydration (20%), neutropenia (13%), and fatigue (13%). The median survival was 14.5 months. Conclusion: The MTD of b.i.d. TRT was 6000 cGy (120 cGy b.i.d.) with EP and amifostine.
Geometric perturbation theory and plasma physics
Omohundro, S.M.
1985-04-04
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.
Migration Intentions and Illicit Substance Use among Youth in Central Mexico
Marsiglia, Flavio Francisco; Kulis, Stephen; Hoffman, Steven; Calderón-Tena, Carlos Orestes; Becerra, David; Alvarez, Diana
2011-01-01
This study explored intentions to emigrate and substance use among youth (ages 14–24) from a central Mexico state with high emigration rates. Questionnaires were completed in 2007 by 702 students attending a probability sample of alternative secondary schools serving remote or poor communities. Linear and logistic regression analyses indicated that stronger intentions to emigrate predicted greater access to drugs, drug offers, and use of illicit drugs (marijuana, cocaine, inhalants), but not alcohol or cigarettes. Results are related to the healthy migrant theory and its applicability to youth with limited educational opportunities. The study’s limitations are noted. PMID:21955065
THEORY IN RELIGION AND AGING: AN OVERVIEW
Levin, Jeff; Chatters, Linda M.; Taylor, Robert Joseph
2011-01-01
This paper provides an overview of theory in religion, aging, and health. It offers both a primer on theory and a roadmap for researchers. Four “tenses” of theory are described—distinct ways that theory comes into play in this field: grand theory, mid-range theory, use of theoretical models, and positing of constructs which mediate or moderate putative religious effects. Examples are given of both explicit and implicit uses of theory. Sources of theory for this field are then identified, emphasizing perspectives of sociologists and psychologists, and discussion is given to limitations of theory. Finally, reflections are offered as to why theory matters. PMID:20087662
Logarithmic conformal field theory
NASA Astrophysics Data System (ADS)
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
show how to carry out the construction of the bulk space in the category of modules over a factorisable ribbon Hopf algebra, which shares many properties with the braided categories arising from logarithmic chiral theories. The authors proceed to construct the analogue of all-genus correlators in their setting and establish invariance under the mapping class group, i.e. locality of the correlators. Gainutdinov, Jacobsen, Read, Saleur and Vasseur review their approach based on the assumption that certain classes of logarithmic CFTs admit lattice regularisations with local degrees of freedom, for example quantum spin chains (with local interactions). They therefore study the finite-dimensional algebras generated by the hamiltonian densities (typically the Temperley-Lieb algebras and their extensions) that describe the dynamics of these lattice models. The authors then argue that the lattice algebras exhibit, in finite size, mathematical properties that are in correspondence with those of their continuum limits, allowing one to predict continuum structures directly from the lattice. Moreover, the lattice models considered admit quantum group symmetries that play a central role in the algebraic analysis (representation structure and fusion). Grumiller, Riedler, Rosseel and Zojer review the role that logarithmic CFTs may play in certain versions of the AdS/CFT correspondence, particularly for what is known as topologically massive gravity (TMG). This has been a very active subject over the last five years and the article takes great care to disentangle the contributions from the many groups that have participated. They begin with some general remarks on logarithmic behaviour, much in the spirit of Cardyrsquo;s review, before detailing the distinction between the chiral (no logs) and logarithmic proposals for critical TMG. The latter is then subjected to various consistency checks before discussing evidence for logarithmic behaviour in more general classes of gravity
Density limit disruptions in tokamaks
NASA Astrophysics Data System (ADS)
Kleva, Robert G.; Drake, J. F.
1991-02-01
Magnetohydrodynamic simulations are presented which reproduce the rapid drop in the central temperature observed during density limit disruptions in tokamaks. The loss of central confinement is triggered by edge radiation which destabilizes a q=1 kink mode. A bubble of cold plasma is injected from the edge into the center by the q=1 kink. This bubble bears a striking resemblance to the cold plasma that is observed to move from the edge into the center during density limit disruptions on the JET tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (IAEA, Vienna, 1987), Vol. 1, p. 433], initiating the loss of central confinement. The bubble profile produced by the q=1 kink is unstable to a broad spectrum of modes which progressively reduce the magnetic shear between the q=2 surface and the center. The q=2 mode then grows across the center, broadening the current and throwing the hot plasma to the wall.
77 FR 75445 - Notice of Public Meeting; Central Montana Resource Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-20
... Main, Lewistown, Montana. FOR FURTHER INFORMATION CONTACT: Gary L. ``Stan'' Benes, Central Montana... oral comments may be limited. Gary L. ``Stan'' Benes, Central Montana District Manager. BILLING...
NASA Technical Reports Server (NTRS)
Ni, W.-T.
1973-01-01
A new relativistic theory of gravity is presented. This theory agrees with all experiments to date. It is a metric theory; it is Lagrangian-based; and it possesses a preferred frame with conformally flat space slices. With an appropriate choice of certain adjustable functions and parameters and of the cosmological model, this theory possesses precisely the same post-Newtonian limit as general relativity.
Personality Theories for the 21st Century
ERIC Educational Resources Information Center
McCrae, Robert R.
2011-01-01
Classic personality theories, although intriguing, are outdated. The five-factor model of personality traits reinvigorated personality research, and the resulting findings spurred a new generation of personality theories. These theories assign a central place to traits and acknowledge the crucial role of evolved biology in shaping human…
Coverage centralities for temporal networks*
NASA Astrophysics Data System (ADS)
Takaguchi, Taro; Yano, Yosuke; Yoshida, Yuichi
2016-02-01
Structure of real networked systems, such as social relationship, can be modeled as temporal networks in which each edge appears only at the prescribed time. Understanding the structure of temporal networks requires quantifying the importance of a temporal vertex, which is a pair of vertex index and time. In this paper, we define two centrality measures of a temporal vertex based on the fastest temporal paths which use the temporal vertex. The definition is free from parameters and robust against the change in time scale on which we focus. In addition, we can efficiently compute these centrality values for all temporal vertices. Using the two centrality measures, we reveal that distributions of these centrality values of real-world temporal networks are heterogeneous. For various datasets, we also demonstrate that a majority of the highly central temporal vertices are located within a narrow time window around a particular time. In other words, there is a bottleneck time at which most information sent in the temporal network passes through a small number of temporal vertices, which suggests an important role of these temporal vertices in spreading phenomena. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-60498-7
The unitary conformal field theory behind 2D Asymptotic Safety
NASA Astrophysics Data System (ADS)
Nink, Andreas; Reuter, Martin
2016-02-01
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d > 2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c = 25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d > 2 dimensions and Polyakov's induced gravity action in two dimensions.
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2011-01-01
In this communication we establish stochastic limit laws leading from Zipf's law to Pareto's and Heaps' laws. We consider finite ensembles governed by Zipf's law and study their asymptotic statistics as the ensemble size tends to infinity. A Lorenz-curve analysis establishes three types of limit laws for the ensembles' statistical structure: 'communist', 'monarchic', and Paretian. Further considering a dynamic setting in which the ensembles grow stochastically in time, a functional central limit theorem analysis establishes a Gaussian approximation for the ensembles' stochastic growth. The Gaussian approximation provides a generalized and corrected formulation of Heaps' law.
Limitations of inclusive fitness.
Allen, Benjamin; Nowak, Martin A; Wilson, Edward O
2013-12-10
Until recently, inclusive fitness has been widely accepted as a general method to explain the evolution of social behavior. Affirming and expanding earlier criticism, we demonstrate that inclusive fitness is instead a limited concept, which exists only for a small subset of evolutionary processes. Inclusive fitness assumes that personal fitness is the sum of additive components caused by individual actions. This assumption does not hold for the majority of evolutionary processes or scenarios. To sidestep this limitation, inclusive fitness theorists have proposed a method using linear regression. On the basis of this method, it is claimed that inclusive fitness theory (i) predicts the direction of allele frequency changes, (ii) reveals the reasons for these changes, (iii) is as general as natural selection, and (iv) provides a universal design principle for evolution. In this paper we evaluate these claims, and show that all of them are unfounded. If the objective is to analyze whether mutations that modify social behavior are favored or opposed by natural selection, then no aspect of inclusive fitness theory is needed. PMID:24277847
Limitations of inclusive fitness
Allen, Benjamin; Nowak, Martin A.; Wilson, Edward O.
2013-01-01
Until recently, inclusive fitness has been widely accepted as a general method to explain the evolution of social behavior. Affirming and expanding earlier criticism, we demonstrate that inclusive fitness is instead a limited concept, which exists only for a small subset of evolutionary processes. Inclusive fitness assumes that personal fitness is the sum of additive components caused by individual actions. This assumption does not hold for the majority of evolutionary processes or scenarios. To sidestep this limitation, inclusive fitness theorists have proposed a method using linear regression. On the basis of this method, it is claimed that inclusive fitness theory (i) predicts the direction of allele frequency changes, (ii) reveals the reasons for these changes, (iii) is as general as natural selection, and (iv) provides a universal design principle for evolution. In this paper we evaluate these claims, and show that all of them are unfounded. If the objective is to analyze whether mutations that modify social behavior are favored or opposed by natural selection, then no aspect of inclusive fitness theory is needed. PMID:24277847
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Basu, Rudranil; Kakkar, Ashish; Mehra, Aditya
2016-04-01
We investigate the symmetry structure of the non-relativistic limit of Yang-Mills theories. Generalising previous results in the Galilean limit of electrodynamics, we discover that for Yang-Mills theories there are a variety of limits inside the Galilean regime. We first explicitly work with the SU(2) theory and then generalise to SU( N) for all N, systematising our notation and analysis. We discover that the whole family of limits lead to different sectors of Galilean Yang-Mills theories and the equations of motion in each sector exhibit hitherto undiscovered infinite dimensional symmetries, viz. infinite Galilean Conformal symmetries in D = 4. These provide the first examples of interacting Galilean Conformal Field Theories (GCFTs) in D > 2.
ERIC Educational Resources Information Center
Williams, Jeffrey
1994-01-01
Considers the recent flood of anthologies of literary criticism and theory as exemplifications of the confluence of pedagogical concerns, economics of publishing, and other historical factors. Looks specifically at how these anthologies present theory. Cites problems with their formatting theory and proposes alternative ways of organizing theory…
Chen, Jun
2011-10-01
The concept of pain has remained a topic of long debate since its emergence in ancient times. The initial ideas of pain were formulated in both the East and the West before 1800. Since 1800, due to the development of experimental sciences, different theories of pain have emerged and become central topics of debate. However, the existing theories of pain may be appropriate for the interpretation of some aspects of pain, but are not yet comprehensive. The history of pain problems is as long as that of human beings; however, the understanding of pain mechanisms is still far from sufficient. Thus, intensive research is required. This historical review mainly focuses on the development of pain theories and the fundamental discoveries in this field. Other historical events associated with pain therapies and remedies are beyond the scope of this review. PMID:21934730
From Behavior to Neural Dynamics: An Integrated Theory of Attention.
Buschman, Timothy J; Kastner, Sabine
2015-10-01
The brain has a limited capacity and therefore needs mechanisms to selectively enhance the information most relevant to one's current behavior. We refer to these mechanisms as "attention." Attention acts by increasing the strength of selected neural representations and preferentially routing them through the brain's large-scale network. This is a critical component of cognition and therefore has been a central topic in cognitive neuroscience. Here we review a diverse literature that has studied attention at the level of behavior, networks, circuits, and neurons. We then integrate these disparate results into a unified theory of attention. PMID:26447577
Pedagogical Simulation of Sampling Distributions and the Central Limit Theorem
ERIC Educational Resources Information Center
Hagtvedt, Reidar; Jones, Gregory Todd; Jones, Kari
2007-01-01
Students often find the fact that a sample statistic is a random variable very hard to grasp. Even more mysterious is why a sample mean should become ever more Normal as the sample size increases. This simulation tool is meant to illustrate the process, thereby giving students some intuitive grasp of the relationship between a parent population…
Central Limit Theorem: New SOCR Applet and Demonstration Activity
ERIC Educational Resources Information Center
Dinov, Ivo D.; Christou, Nicholas; Sanchez, Juana
2008-01-01
Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multi-faceted learning environments, which may facilitate student comprehension and information…
Resolving Semantic Interference During Word Production Requires Central Attention
Kleinman, Daniel
2013-01-01
The semantic picture-word interference task has been used to diagnose how speakers resolve competition while selecting words for production. The attentional demands of this resolution process were assessed in two dual-task experiments (tone classification followed by picture naming). In Experiment 1, when pictures and distractor words were presented simultaneously, semantic interference was not observed when tasks maximally overlapped. This replicates a key finding from the literature that suggested that semantic picture-word interference does not require capacity-limited central attentional resources and occurs prior to lexical selection, an interpretation that runs counter to the claims of all major theories of word production. In another Experiment 1 condition, when distractors were presented 250 ms after pictures, interference emerged when tasks maximally overlapped. Together, these findings support an account in which interference resolution and lexical selection both require central resources, but the activation of lexical representations from written words does not. Subsequent analysis revealed that discrepant results obtained in previous replication attempts may be attributable to differences in phonological (ir)regularity between languages. In Experiment 2, degree of semantic interference was manipulated using the cumulative semantic interference paradigm. Interference was observed regardless of task overlap, confirming that lexical selection requires central resources. Together, these findings indicate that a lexical selection locus of semantic picture-word interference – and models of word production that assume such a locus – may be retained. PMID:23773184
Peng, Qing; De, Suvranu
2014-10-21
Silicane is a fully hydrogenated silicene-a counterpart of graphene-having promising applications in hydrogen storage with capacities larger than 6 wt%. Knowledge of its elastic limit is critical in its applications as well as tailoring its electronic properties by strain. Here we investigate the mechanical response of silicane to various strains using first-principles calculations based on density functional theory. We illustrate that non-linear elastic behavior is prominent in two-dimensional nanomaterials as opposed to bulk materials. The elastic limits defined by ultimate tensile strains are 0.22, 0.28, and 0.25 along armchair, zigzag, and biaxial directions, respectively, an increase of 29%, 33%, and 24% respectively in reference to silicene. The in-plane stiffness and Poisson ratio are reduced by a factor of 16% and 26%, respectively. However, hydrogenation/dehydrogenation has little effect on its ultimate tensile strengths. We obtained high order elastic constants for a rigorous continuum description of the nonlinear elastic response. The limitation of second, third, fourth, and fifth order elastic constants are in the strain range of 0.02, 0.08, and 0.13, and 0.21, respectively. The pressure effect on the second order elastic constants and Poisson's ratio were predicted from the third order elastic constants. Our results could provide a safe guide for promising applications and strain-engineering the functions and properties of silicane monolayers. PMID:25190587
Improved central confidence intervals for the ratio of Poisson means
NASA Astrophysics Data System (ADS)
Cousins, R. D.
The problem of confidence intervals for the ratio of two unknown Poisson means was "solved" decades ago, but a closer examination reveals that the standard solution is far from optimal from the frequentist point of view. We construct a more powerful set of central confidence intervals, each of which is a (typically proper) subinterval of the corresponding standard interval. They also provide upper and lower confidence limits which are more restrictive than the standard limits. The construction follows Neyman's original prescription, though discreteness of the Poisson distribution and the presence of a nuisance parameter (one of the unknown means) lead to slightly conservative intervals. Philosophically, the issue of the appropriateness of the construction method is similar to the issue of conditioning on the margins in 2×2 contingency tables. From a frequentist point of view, the new set maintains (over) coverage of the unknown true value of the ratio of means at each stated confidence level, even though the new intervals are shorter than the old intervals by any measure (except for two cases where they are identical). As an example, when the number 2 is drawn from each Poisson population, the 90% CL central confidence interval on the ratio of means is (0.169, 5.196), rather than (0.108, 9.245). In the cited literature, such confidence intervals have applications in numerous branches of pure and applied science, including agriculture, wildlife studies, manufacturing, medicine, reliability theory, and elementary particle physics.
Force Limited Vibration Testing Monograph
NASA Technical Reports Server (NTRS)
Scharton, Terry D.
1997-01-01
The practice of limiting the shaker force in vibration tests was investigated at the NASA Jet Propulsion Laboratory (JPL) in 1990 after the mechanical failure of an aerospace component during a vibration test. Now force limiting is used in almost every major vibration test at JPL and in many vibration tests at NASA Goddard Space Flight Center (GSFC) and at many aerospace contractors. The basic ideas behind force limiting have been in the literature for several decades, but the piezo-electric force transducers necessary to conveniently implement force limiting have been available only in the last decade. In 1993, funding was obtained from the NASA headquarters Office of Chief Engineer to develop and document the technology needed to establish force limited vibration testing as a standard approach available to all NASA centers and aerospace contractors. This monograph is the final report on that effort and discusses the history, theory, and applications of the method in some detail.
Liu, Yongsheng; Li, Xiuju
2016-01-01
We comment on a recent paper by Rama Singh, who concludes that Mendel deserved to be called the father of genetics, and Darwin would not have understood the significance of Mendel's paper had he read it. We argue that Darwin should have been regarded as the father of genetics not only because he was the first to formulate a unifying theory of heredity, variation, and development -- Pangenesis, but also because he clearly described almost all genetical phenomena of fundamental importance, including what he called "prepotency" and what we now call "dominance" or "Mendelian inheritance". The word "gene" evolved from Darwin's imagined "gemmules", instead of Mendel's so-called "factors". PMID:26651239
NASA Astrophysics Data System (ADS)
Cheng, Hsin-Chia; Thaler, Jesse; Wang, Lian-Tao
2006-09-01
Using the language of theory space, i.e. moose models, we develop a unified framework for studying composite Higgs models at the LHC. This framework — denoted little M-theory — is conveniently described by a theoretically consistent three-site moose diagram which implements minimal flavor and isospin violation. By taking different limits of the couplings, one can interpolate between simple group-like and minimal moose-like models with and without T-parity. In this way, little M-theory reveals a large model space for composite Higgs theories. We argue that this framework is suitable as a starting point for a comprehensive study of composite Higgs scenarios. The rich collider phenomenology of this framework is briefly discussed.
The origin of life on earth: A new general dynamic theory
NASA Astrophysics Data System (ADS)
Snooks, Graeme Donald
It is well known by those concerned with the origin of life on Earth that Darwinian evolutionary theory has significant limitations. The most important of these, it is argued here, is a mismatch between the central dogma of natural selection and the competitive conditions associated not only with the emergence of life but also with its recovery from major extinction episodes. To resolve this problem, a new general dynamic theory - the "dynamic-strategy theory" - has been proposed. This realist theory not only casts light on the way life first emerged on earth, it also explains and predicts the systematically fluctuating fortunes of both nature and human society. The Snooks-Panov algorithm is employed to justify this integrated approach.
Sanfilippo, Antonio P.
2005-12-27
Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for the representation of grammar formalisms.
NASA Astrophysics Data System (ADS)
Solari, Soren; Smith, Andrew; Minnett, Rupert; Hecht-Nielsen, Robert
2008-06-01
Confabulation Theory [Hecht-Nielsen R. Confabulation theory. Springer-Verlag; 2007] is the first comprehensive theory of human and animal cognition. Here, we briefly describe Confabulation Theory and discuss experimental results that suggest the theory is correct. Simply put, Confabulation Theory proposes that thinking is like moving. In humans, the theory postulates that there are roughly 4000 thalamocortical modules, the “muscles of thought”. Each module performs an internal competition ( confabulation) between its symbols, influenced by inputs delivered via learned axonal associations with symbols in other modules. In each module, this competition is controlled, as in an individual muscle, by a single graded (i.e., analog) thought control signal. The final result of this confabulation process is a single active symbol, the expression of which also results in launching of action commands that trigger and control subsequent movements and/or thought processes. Modules are manipulated in groups under coordinated, event-contingent control, in a similar manner to our 700 muscles. Confabulation Theory hypothesizes that the control of thinking is a direct evolutionary outgrowth of the control of movement. Establishing a complete understanding of Confabulation Theory will require launching and sustaining a massive new phalanx of confabulation neuroscience research.
The decoupling approach to quantum information theory
NASA Astrophysics Data System (ADS)
Dupuis, Frédéric
2010-04-01
Quantum information theory studies the fundamental limits that physical laws impose on information processing tasks such as data compression and data transmission on noisy channels. This thesis presents general techniques that allow one to solve many fundamental problems of quantum information theory in a unified framework. The central theorem of this thesis proves the existence of a protocol that transmits quantum data that is partially known to the receiver through a single use of an arbitrary noisy quantum channel. In addition to the intrinsic interest of this problem, this theorem has as immediate corollaries several central theorems of quantum information theory. The following chapters use this theorem to prove the existence of new protocols for two other types of quantum channels, namely quantum broadcast channels and quantum channels with side information at the transmitter. These protocols also involve sending quantum information partially known by the receiver with a single use of the channel, and have as corollaries entanglement-assisted and unassisted asymptotic coding theorems. The entanglement-assisted asymptotic versions can, in both cases, be considered as quantum versions of the best coding theorems known for the classical versions of these problems. The last chapter deals with a purely quantum phenomenon called locking. We demonstrate that it is possible to encode a classical message into a quantum state such that, by removing a subsystem of logarithmic size with respect to its total size, no measurement can have significant correlations with the message. The message is therefore "locked" by a logarithmic-size key. This thesis presents the first locking protocol for which the success criterion is that the trace distance between the joint distribution of the message and the measurement result and the product of their marginals be sufficiently small.
Trautmann, Stefan T; van de Kuilen, Gijs
2012-01-01
Attitudes toward risks are central to organizational decisions. These attitudes are commonly modeled by prospect theory. Construal level theory has been proposed as an alternative theory of risky choice, accounting for psychological distance deriving from temporal, spatial and social aspects of risk that are typical of agency situations. Unnoticed in the literature, the two theories make contradicting predictions. The current study investigates which theory provides a better description of risky decisions in the presence of temporal, spatial, and social factors. We find that the psychophysical effects modeled by prospect theory dominate the psychological distance effects of construal level theory. PMID:22011526
NASA Astrophysics Data System (ADS)
Gaiotto, Davide; Razamat, Shlomo S.
2015-07-01
We construct classes of superconformal theories elements of which are labeled by punctured Riemann surfaces. Degenerations of the surfaces correspond, in some cases, to weak coupling limits. Different classes are labeled by two integers ( N, k). The k = 1 case coincides with A N - 1 theories of class and simple examples of theories with k > 1 are orbifolds of some of the A N - 1 class theories. For the space of theories to be complete in an appropriate sense we find it necessary to conjecture existence of new strongly coupled SCFTs. These SCFTs when coupled to additional matter can be related by dualities to gauge theories. We discuss in detail the A 1 case with k = 2 using the supersymmetric index as our analysis tool. The index of theories in classes with k > 1 can be constructed using eigenfunctions of elliptic quantum mechanical models generalizing the Ruijsenaars-Schneider integrable model. When the elliptic curve of the model degenerates these eigenfunctions become polynomials with coefficients being algebraic expressions in fugacities, generalizing the Macdonald polynomials with rational coefficients appearing when k = 1.
Eye Movement Correlates of Acquired Central Dyslexia
ERIC Educational Resources Information Center
Schattka, Kerstin I.; Radach, Ralph; Huber, Walter
2010-01-01
Based on recent progress in theory and measurement techniques, the analysis of eye movements has become one of the major methodological tools in experimental reading research. Our work uses this approach to advance the understanding of impaired information processing in acquired central dyslexia of stroke patients with aphasia. Up to now there has…
... pressure (CPAP) , bilevel positive airway pressure (BiPAP) or adaptive servo-ventilation (ASV). Some types of central sleep ... et al. The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based ...
Central venous catheters - ports
Central venous catheter - subcutaneous; Port-a-Cath; InfusaPort; PasPort; Subclavian port; Medi - port; Central venous line - port ... catheter is attached to a device called a port that will be under your skin. The port ...
Central Neuropathic Pain Syndromes.
Watson, James C; Sandroni, Paola
2016-03-01
Chronic pain is common in patients with neurologic complications of a central nervous system insult such as stroke. The pain is most commonly musculoskeletal or related to obligatory overuse of neurologically unaffected limbs. However, neuropathic pain can result directly from the central nervous system injury. Impaired sensory discrimination can make it challenging to differentiate central neuropathic pain from other pain types or spasticity. Central neuropathic pain may also begin months to years after the injury, further obscuring recognition of its association with a past neurologic injury. This review focuses on unique clinical features that help distinguish central neuropathic pain. The most common clinical central pain syndromes-central poststroke pain, multiple sclerosis-related pain, and spinal cord injury-related pain-are reviewed in detail. Recent progress in understanding of the pathogenesis of central neuropathic pain is reviewed, and pharmacological, surgical, and neuromodulatory treatments of this notoriously difficult to treat pain syndrome are discussed. PMID:26944242
The foundation of Piaget's theories: mental and physical action.
Beilin, H; Fireman, G
1999-01-01
Piaget's late theory of action and action implication was the realization of a long history of development. A review of that history shows the central place of action in all of his theoretical assertions, despite the waxing and waning of other important features of his theories. Action was said to be the primary source of knowledge with perception and language in secondary roles. Action is for the most part not only organized but there is logic in action. Action, which is at first physical, becomes internalized and transformed into mental action and mental representation, largely in the development of the symbolic or semiotic function in the sensorimotor period. A number of alternative theories of cognitive development place primary emphasis on mental representation. Piaget provided it with an important place as well, but subordinated it to mental action in the form of operations. In this, as Russell claims, he paralleled Schopenhauer's distinction between representation and will. Piaget's theory of action was intimately related to the gradual development of intentionality in childhood. Intentions were tied to actions by way of the conscious awareness of goals and the means to achieve them. Mental action, following the sensorimotor period, was limited in its logical form to semilogical or one-way functions. These forms were said by Piaget to lack logical reversibility, which was achieved only in the sixth or seventh year, in concrete operations. Mental action was not to be fully realized until the development of formal operations, with hypothetical reasoning, in adolescence, according to the classical Piagetian formulation. This view of the child's logical development, which relied heavily on truth-table (extensional) logic, underwent a number of changes. First from the addition of other logics: category theory and the theory of functions among them. In his last theory, however, an even more radical change occurred. With the collaboration of R. Garcia, he proposed
ERIC Educational Resources Information Center
McEneaney, John E.
2006-01-01
The purpose of this theoretical essay is to explore the limits of traditional conceptualizations of reader and text and to propose a more general theory based on the concept of a literacy agent. The proposed theoretical perspective subsumes concepts from traditional theory and aims to account for literacy online. The agent-based literacy theory…
[From the cell theory to the neuron theory].
Tixier-Vidal, Andrée
2010-01-01
The relationship between the cell theory formulated by Schwann (1839) and by Virchow (1855) on the one hand, and, on the other hand, the neuron theory, as formulated by Waldeyer (1891) and by Cajal (1906), are discussed from a historical point of view. Both of them are the result of technical and conceptuel progress. Both of them had to fight against the dominant dogma before being accepted. The cell theory opposed the school of Bichat, the vitalist philosophy and the positivist philosophy of Auguste Comte. The neuron theory, which is clearly based on the cell theory, was mostly concerned with the mode of interneuronal communication; it opposed the concept of contiguity to Golgi's concept of continuity. At present, the cell theory remains central in every field of Biology. By contrast, the neuron theory, which until the middle of the XXth century opened the study of the nervous system to a necessary reductionnist approach, is no longer central to recent developments of neurosciences. PMID:21215242
Idris, Zamzuri
2014-07-01
Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on 'the origin' based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of "from God back to God". PMID:25977615
IDRIS, Zamzuri
2014-01-01
Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on ‘the origin’ based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of “from God back to God”. PMID:25977615
NASA Technical Reports Server (NTRS)
Broussard, J. R.; Halyo, N.
1984-01-01
This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.
Ahmadi, Elaheh; Mishra, Umesh K.; Chalabi, Hamidreza; Kaun, Stephen W.; Shivaraman, Ravi; Speck, James S.
2014-10-07
The influence of alloy clustering on fluctuations in the ground state energy of the two-dimensional electron gas (2DEG) in AlGaN/GaN and InAlN/GaN heterostructures is studied. We show that because of these fluctuations, alloy clustering degrades the mobility even when the 2DEG wavefunction does not penetrate the alloy barrier unlike alloy disorder scattering. A comparison between the results obtained for AlGaN/GaN and InAlN/GaN heterostructures shows that alloy clustering limits the 2DEG mobility to a greater degree in InAlN/GaN heterostructures. Our study also reveals that the inclusion of an AlN interlayer increases the limiting mobility from alloy clustering. Moreover, Atom probe tomography is used to demonstrate the random nature of the fluctuations in the alloy composition.
Antenna factorization in strongly ordered limits
Kosower, David A.
2005-02-15
When energies or angles of gluons emitted in a gauge-theory process are small and strongly ordered, the emission factorizes in a simple way to all orders in perturbation theory. I show how to unify the various strongly ordered soft, mixed soft-collinear, and collinear limits using antenna factorization amplitudes, which are generalizations of the Catani-Seymour dipole factorization function.
Practice Theory in Language Learning
ERIC Educational Resources Information Center
Young, Richard F.; Astarita, Alice C.
2013-01-01
Ortega (2011) has argued that second language acquisition is stronger and better after the social turn. Of the post-cognitive approaches she reviews, several focus on the social context of language learning rather than on language as the central phenomenon. In this article, we present Practice Theory not as yet another approach to language…
Introducing Group Theory through Music
ERIC Educational Resources Information Center
Johnson, Craig M.
2009-01-01
The central ideas of postcalculus mathematics courses offered in college are difficult to introduce in middle and secondary schools, especially through the engineering and sciences examples traditionally used in algebra, geometry, and trigonometry textbooks. However, certain concepts in music theory can be used to expose students to interesting…
Generalized teleparallel theory
NASA Astrophysics Data System (ADS)
Junior, Ednaldo L. B.; Rodrigues, Manuel E.
2016-07-01
We construct a theory in which the gravitational interaction is described only by torsion, but that generalizes the teleparallel theory still keeping the invariance of local Lorentz transformations in one particular case. We show that our theory falls, in a certain limit of a real parameter, under f(bar{R}) gravity or, in another limit of the same real parameter, under modified f( T) gravity; on interpolating between these two theories it still can fall under several other theories. We explicitly show the equivalence with f(bar{R}) gravity for the cases of a Friedmann-Lemaître-Robertson-Walker flat metric for diagonal tetrads, and a metric with spherical symmetry for diagonal and non-diagonal tetrads. We study four applications, one in the reconstruction of the de Sitter universe cosmological model, for obtaining a static spherically symmetric solution of de Sitter type for a perfect fluid, for evolution of the state parameter ω _{DE}, and for the thermodynamics of the apparent horizon.
Semianalytical Propagation of Satellite Orbits about an Arbitrary Central Body
NASA Technical Reports Server (NTRS)
Cefola, Paul J.
2007-01-01
Precision mean element (PME) satellite theories play a key role in orbit dynamics analyses. These theories employ: nonsingular orbital elements comprehensive force models Generalized Method of Averaging Numerical interpolation concepts The Draper Semianalytical Satellite Theory (DSST) (Refs. 1 - 6), whose development was led by the author, and the independently-developed Universal Semianalytical Method (USM) (Ref. 7) are examples of such theories. These theories provide the capability to tailor the force modeling to meet the desired computational speed vs. accuracy trade-off. The flexibility of such theories is demonstrated by their ability to include complicated atmosphere density models and spacecraft models in the perturbation theory context. The value of high speed satellite theories, in this era of computational plenty, is that they allow new ways of looking at astrodynamical problems such as orbit design (Refs. 8, 9) and atmosphere density updating (Refs. 10, 11). In the mid to late-1980 s, the geodynamics community led the development of very precise geopotential models such as GEM T2 and GEM T3 (Ref. 12), and with the subsequent analysis of the TOPEX flight data, JGM-2 and JGM-3 (Ref. 13). These were high degree and order geopotentials, at least 50 x 50. In 1993, the DSST implementation in the GTDS program was extended to include the 50 x 50 geopotential models (Ref. 14). The 50 x 50 geopotential, J2000 integration coordinate system, and solid Earth tide capabilities were integrated in GTDS by Scott Carter (Ref. 15). This capability demonstrated 1 m accuracy versus the TOPEX Precise Orbit Ephemerides. Subsequently the DSST Standalone program was also extended to include high degree and order geopotential models (Ref. 5). More recently GTDS has been hosted in the Linux PC environment. However, all of these efforts have been limited to modeling the motion of an artificial Earth satellite. They did not consider the additional complexities associated with lunar
A geometric theory for Lévy distributions
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2014-08-01
Lévy distributions are of prime importance in the physical sciences, and their universal emergence is commonly explained by the Generalized Central Limit Theorem (CLT). However, the Generalized CLT is a geometry-less probabilistic result, whereas physical processes usually take place in an embedding space whose spatial geometry is often of substantial significance. In this paper we introduce a model of random effects in random environments which, on the one hand, retains the underlying probabilistic structure of the Generalized CLT and, on the other hand, adds a general and versatile underlying geometric structure. Based on this model we obtain geometry-based counterparts of the Generalized CLT, thus establishing a geometric theory for Lévy distributions. The theory explains the universal emergence of Lévy distributions in physical settings which are well beyond the realm of the Generalized CLT.
A geometric theory for Lévy distributions
Eliazar, Iddo
2014-08-15
Lévy distributions are of prime importance in the physical sciences, and their universal emergence is commonly explained by the Generalized Central Limit Theorem (CLT). However, the Generalized CLT is a geometry-less probabilistic result, whereas physical processes usually take place in an embedding space whose spatial geometry is often of substantial significance. In this paper we introduce a model of random effects in random environments which, on the one hand, retains the underlying probabilistic structure of the Generalized CLT and, on the other hand, adds a general and versatile underlying geometric structure. Based on this model we obtain geometry-based counterparts of the Generalized CLT, thus establishing a geometric theory for Lévy distributions. The theory explains the universal emergence of Lévy distributions in physical settings which are well beyond the realm of the Generalized CLT.
Resource limitation drives spatial organization in microbial groups.
Mitri, Sara; Clarke, Ellen; Foster, Kevin R
2016-06-01
Dense microbial groups such as bacterial biofilms commonly contain a diversity of cell types that define their functioning. However, we have a limited understanding of what maintains, or purges, this diversity. Theory suggests that resource levels are key to understanding diversity and the spatial arrangement of genotypes in microbial groups, but we need empirical tests. Here we use theory and experiments to study the effects of nutrient level on spatio-genetic structuring and diversity in bacterial colonies. Well-fed colonies maintain larger well-mixed areas, but they also expand more rapidly compared with poorly-fed ones. Given enough space to expand, therefore, well-fed colonies lose diversity and separate in space over a similar timescale to poorly fed ones. In sum, as long as there is some degree of nutrient limitation, we observe the emergence of structured communities. We conclude that resource-driven structuring is central to understanding both pattern and process in diverse microbial communities. PMID:26613343
[Central auditory prosthesis].
Lenarz, T; Lim, H; Joseph, G; Reuter, G; Lenarz, M
2009-06-01
Deaf patients with severe sensory hearing loss can benefit from a cochlear implant (CI), which stimulates the auditory nerve fibers. However, patients who do not have an intact auditory nerve cannot benefit from a CI. The majority of these patients are neurofibromatosis type 2 (NF2) patients who developed neural deafness due to growth or surgical removal of a bilateral acoustic neuroma. The only current solution is the auditory brainstem implant (ABI), which stimulates the surface of the cochlear nucleus in the brainstem. Although the ABI provides improvement in environmental awareness and lip-reading capabilities, only a few NF2 patients have achieved some limited open set speech perception. In the search for alternative procedures our research group in collaboration with Cochlear Ltd. (Australia) developed a human prototype auditory midbrain implant (AMI), which is designed to electrically stimulate the inferior colliculus (IC). The IC has the potential as a new target for an auditory prosthesis as it provides access to neural projections necessary for speech perception as well as a systematic map of spectral information. In this paper the present status of research and development in the field of central auditory prostheses is presented with respect to technology, surgical technique and hearing results as well as the background concepts of ABI and AMI. PMID:19517084
Folsom, James Patrick
2015-01-01
Escherichia coli physiological, biomass elemental composition and proteome acclimations to ammonium-limited chemostat growth were measured at four levels of nutrient scarcity controlled via chemostat dilution rate. These data were compared with published iron- and glucose-limited growth data collected from the same strain and at the same dilution rates to quantify general and nutrient-specific responses. Severe nutrient scarcity resulted in an overflow metabolism with differing organic byproduct profiles based on limiting nutrient and dilution rate. Ammonium-limited cultures secreted up to 35 % of the metabolized glucose carbon as organic byproducts with acetate representing the largest fraction; in comparison, iron-limited cultures secreted up to 70 % of the metabolized glucose carbon as lactate, and glucose-limited cultures secreted up to 4 % of the metabolized glucose carbon as formate. Biomass elemental composition differed with nutrient limitation; biomass from ammonium-limited cultures had a lower nitrogen content than biomass from either iron- or glucose-limited cultures. Proteomic analysis of central metabolism enzymes revealed that ammonium- and iron-limited cultures had a lower abundance of key tricarboxylic acid (TCA) cycle enzymes and higher abundance of key glycolysis enzymes compared with glucose-limited cultures. The overall results are largely consistent with cellular economics concepts, including metabolic tradeoff theory where the limiting nutrient is invested into essential pathways such as glycolysis instead of higher ATP-yielding, but non-essential, pathways such as the TCA cycle. The data provide a detailed insight into ecologically competitive metabolic strategies selected by evolution, templates for controlling metabolism for bioprocesses and a comprehensive dataset for validating in silico representations of metabolism. PMID:26018546
Folsom, James Patrick; Carlson, Ross P
2015-08-01
Escherichia coli physiological, biomass elemental composition and proteome acclimations to ammonium-limited chemostat growth were measured at four levels of nutrient scarcity controlled via chemostat dilution rate. These data were compared with published iron- and glucose-limited growth data collected from the same strain and at the same dilution rates to quantify general and nutrient-specific responses. Severe nutrient scarcity resulted in an overflow metabolism with differing organic byproduct profiles based on limiting nutrient and dilution rate. Ammonium-limited cultures secreted up to 35% of the metabolized glucose carbon as organic byproducts with acetate representing the largest fraction; in comparison, iron-limited cultures secreted up to 70 % of the metabolized glucose carbon as lactate, and glucose-limited cultures secreted up to 4% of the metabolized glucose carbon as formate. Biomass elemental composition differed with nutrient limitation; biomass from ammonium-limited cultures had a lower nitrogen content than biomass from either iron- or glucose-limited cultures. Proteomic analysis of central metabolism enzymes revealed that ammonium- and iron-limited cultures had a lower abundance of key tricarboxylic acid (TCA) cycle enzymes and higher abundance of key glycolysis enzymes compared with glucose-limited cultures. The overall results are largely consistent with cellular economics concepts, including metabolic tradeoff theory where the limiting nutrient is invested into essential pathways such as glycolysis instead of higher ATP-yielding, but non-essential, pathways such as the TCA cycle. The data provide a detailed insight into ecologically competitive metabolic strategies selected by evolution, templates for controlling metabolism for bioprocesses and a comprehensive dataset for validating in silico representations of metabolism. PMID:26018546
The Psychology of Working Theory.
Duffy, Ryan D; Blustein, David L; Diemer, Matthew A; Autin, Kelsey L
2016-03-01
In the current article, we build on research from vocational psychology, multicultural psychology, intersectionality, and the sociology of work to construct an empirically testable Psychology of Working Theory (PWT). Our central aim is to explain the work experiences of all individuals, but particularly people near or in poverty, people who face discrimination and marginalization in their lives, and people facing challenging work-based transitions for which contextual factors are often the primary drivers of the ability to secure decent work. The concept of decent work is defined and positioned as the central variable within the theory. A series of propositions is offered concerning (a) contextual predictors of securing decent work, (b) psychological and economic mediators and moderators of these relations, and (c) outcomes of securing decent work. Recommendations are suggested for researchers seeking to use the theory and practical implications are offered concerning counseling, advocacy, and public policy. PMID:26937788
DNA Barcoding Works in Practice but Not in (Neutral) Theory
2014-01-01
Background DNA barcode differences within animal species are usually much less than differences among species, making it generally straightforward to match unknowns to a reference library. Here we aim to better understand the evolutionary mechanisms underlying this usual “barcode gap” pattern. We employ avian barcode libraries to test a central prediction of neutral theory, namely, intraspecific variation equals 2 Nµ, where N is population size and µ is mutations per site per generation. Birds are uniquely suited for this task: they have the best-known species limits, are well represented in barcode libraries, and, most critically, are the only large group with documented census population sizes. In addition, we ask if mitochondrial molecular clock measurements conform to neutral theory prediction of clock rate equals µ. Results Intraspecific COI barcode variation was uniformly low regardless of census population size (n = 142 species in 15 families). Apparent outliers reflected lumping of reproductively isolated populations or hybrid lineages. Re-analysis of a published survey of cytochrome b variation in diverse birds (n = 93 species in 39 families) further confirmed uniformly low intraspecific variation. Hybridization/gene flow among species/populations was the main limitation to DNA barcode identification. Conclusions/Significance To our knowledge, this is the first large study of animal mitochondrial diversity using actual census population sizes and the first to test outliers for population structure. Our finding of universally low intraspecific variation contradicts a central prediction of neutral theory and is not readily accounted for by commonly proposed ad hoc modifications. We argue that the weight of evidence–low intraspecific variation and the molecular clock–indicates neutral evolution plays a minor role in mitochondrial sequence evolution. As an alternate paradigm consistent with empirical data, we propose extreme purifying
NASA Astrophysics Data System (ADS)
Susskind, Leonard
2013-01-01
After reviewing the original motivation for the formulation of string theory and what we learned from it, I discuss some of the implications of the holographic principle and of string dualities for the question of the building blocks of nature.
Applying Film Theory in Teaching Fiction.
ERIC Educational Resources Information Center
Ostrander, Tammy
2003-01-01
Proposes the use of film theory to help students analyze literary texts. Finds that film theory concepts appeal to highly visual students and provide a framework for discussing images. Suggests that central themes, primary symbols, and character development are underscored by the images constructed by the author. (Contains 13 references.) (CAK)
Do Infants Have a Theory of Mind?
ERIC Educational Resources Information Center
Rakoczy, Hannes
2012-01-01
The central question debated in current research on infant social cognition is "do infants have a theory of mind?" It is argued here that this question is understood and treated in radically different ways by different participants of the debate arguing either for (e.g., Onishi & Baillargeon, 2005) or against early competence in theory of mind…
The ideomotor recycling theory for language.
Badets, Arnaud
2016-01-01
For language acquisition and processing, the ideomotor theory predicts that the comprehension and the production of language are functionally based on their expected perceptual effects (i.e., linguistic events). This anticipative mechanism is central for action-perception behaviors in human and nonhuman animals, but a recent ideomotor recycling theory has emphasized a language account throughout an evolutionary perspective. PMID:27561952
Chaos Theory, Philosophically Old, Scientifically New.
ERIC Educational Resources Information Center
Butz, Michael R.
1995-01-01
Chaos theory has recently become a central area of scientific interest in psychology. This article explores the psychological meaning and deeper philosophical issues and cultural roots surrounding various views of chaos and provides a multicultural perspective of origins and development of the idea of chaos and its relationship to chaos theory.…
A Balance Theory Interpretation of Dissonance
ERIC Educational Resources Information Center
Insko, Chester; And Others
1975-01-01
The central thesis of the present article is that balance theory (Heider, 1946, 1958) or affective-cognitive consistency theory (Rosenberg, 1956, 1965; Rosenberg & Abelson, 1960) provides a framework that can be used to account for all dissonance results . (Author/RK)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A theory based on the premise that, on the microscopic scale, physical quantities have discrete, rather than a continuous range of, values. The theory was devised in the early part of the twentieth century to account for certain phenomena that could not be explained by classical physics. In 1900, the German physicist, Max Planck (1858-1947), was able precisely to describe the previously unexplaine...
Chiral logarithms in the massless limit tamed.
Kivel, Nikolai; Polyakov, Maxim V; Vladimirov, Alexei
2008-12-31
We derive nonlinear recursion relations for the leading chiral logarithms (LLs) in massless theories. These relations not only provide a very efficient method of computation of LLs (e.g., the 33-loop contribution is calculated in a dozen of seconds on a PC) but also equip us with a powerful tool for the summation of the LLs. Our method is not limited to chiral perturbation theory only; it is pertinent to any nonrenormalizable effective field theory such as, for instance, the theory of critical phenomena, low-energy quantum gravity, etc. PMID:19437635
ERIC Educational Resources Information Center
Lopez, Beatriz; Leekam, Susan R.; Arts, Gerda R. J.
2008-01-01
This study aimed to test the assumption drawn from weak central coherence theory that a central cognitive mechanism is responsible for integrating information at both conceptual and perceptual levels. A visual semantic memory task and a face recognition task measuring use of holistic information were administered to 15 children with autism and 16…
Kornbau, Craig; Lee, Kathryn C; Hughes, Gwendolyn D; Firstenberg, Michael S
2015-01-01
Central venous access is a common procedure performed in many clinical settings for a variety of indications. Central lines are not without risk, and there are a multitude of complications that are associated with their placement. Complications can present in an immediate or delayed fashion and vary based on type of central venous access. Significant morbidity and mortality can result from complications related to central venous access. These complications can cause a significant healthcare burden in cost, hospital days, and patient quality of life. Advances in imaging, access technique, and medical devices have reduced and altered the types of complications encountered in clinical practice; but most complications still center around vascular injury, infection, and misplacement. Recognition and management of central line complications is important when caring for patients with vascular access, but prevention is the ultimate goal. This article discusses common and rare complications associated with central venous access, as well as techniques to recognize, manage, and prevent complications. PMID:26557487
Investigation of physical processes limiting plasma density in H-mode on DIII-D
Maingi, R.; Mahdavi, M.A.; Jernigan, T.C.
1996-12-01
A series of experiments was conducted on the DIII-D tokamak to investigate the physical processes which limit density in high confinement mode (H-mode) discharges. The typical H-mode to low confinement mode (L-mode) transition limit at high density near the empirical Greenwald density limit was avoided by divertor pumping, which reduced divertor neutral pressure and prevented formation of a high density, intense radiation zone (MARFE) near the X-point. It was determined that the density decay time after pellet injection was independent of density relative to the Greenwald limit and increased non-linearly with the plasma current. Magnetohydrodynamic (MHD) activity in pellet-fueled plasmas was observed at all power levels, and often caused unacceptable confinement degradation, except when the neutral beam injected (NBI) power was {le} 3 MW. Formation of MARFEs on closed field lines was avoided with low safety factor (q) operation but was observed at high q, qualitatively consistent with theory. By using pellet fueling and optimizing discharge parameters to avoid each of these limits, an operational space was accessed in which density {approximately} 1.5 {times} Greenwald limit was achieved for 600 ms, and good H-mode confinement was maintained for 300 ms of the density flattop. More significantly, the density was successfully increased to the limit where a central radiative collapse was observed, the most fundamental density limit in tokamaks.
NASA Astrophysics Data System (ADS)
Aharony, Ofer; Komargodski, Zohar; Yankielowicz, Shimon
2016-04-01
We consider Euclidean Conformal Field Theories perturbed by quenched disorder, namely by random fluctuations in their couplings. Such theories are relevant for second-order phase transitions in the presence of impurities or other forms of disorder. Theories with quenched disorder often flow to new fixed points of the renormalization group. We begin with disorder in free field theories. Imry and Ma showed that disordered free fields can only exist for d > 4. For d > 4 we show that disorder leads to new fixed points which are not scale-invariant. We then move on to large- N theories (vector models or gauge theories in the `t Hooft limit). We compute exactly the beta function for the disorder, and the correlation functions of the disordered theory. We generalize the results of Imry and Ma by showing that such disordered theories exist only when disorder couples to operators of dimension Δ > d/4. Sometimes the disordered fixed points are not scale-invariant, and in other cases they have unconventional dependence on the disorder, including non-trivial effects due to irrelevant operators. Holography maps disorder in conformal theories to stochastic differential equations in a higher dimensional space. We use this dictionary to reproduce our field theory results. We also study the leading 1 /N corrections, both by field theory methods and by holography. These corrections are particularly important when disorder scales with the number of degrees of freedom.
Limits: The Keystone of Emotional Growth.
ERIC Educational Resources Information Center
Poarch, John E.
The concept of limits on child and teenage behavior is discussed in this book. Section I includes the core hypothesis of the theory of limits and discusses these essential concepts: (1) the pleasure/pain principle (the need to increase tolerance for stimulation in the pain center of the brain in order to be able to tolerate more stimulation in the…
Oncoplastic central quadrantectomies
Pasta, Vittorio; D’Orazi, Valerio; Merola, Raffaele; Frusone, Federico; Amabile, Maria Ida; Buè, Rosanna; Monti, Marco
2016-01-01
Tumors localized in the central quadrant (centrally located breast tumors) have always represented a challenge for the surgeon because of the critical aesthetical matters related to the nipple-areola complex (NAC). Many years of experience with breast cancer patients treated by using various oncoplastic techniques, has allowed us to develop the modified hemibatwing for the treatment of central breast tumors, where the NAC is involved. Modified hemibatwing—along with the removal of the NAC—is a useful oncoplastic technique and it represents an ideal option for the treatment of central tumors because it assures oncological safety, a reduced surgical timetable and greater aesthetical results. PMID:27563564
NASA Technical Reports Server (NTRS)
Hsu, C. H.; Lan, C. E.
1984-01-01
A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.
Long-time limit of correlation functions
NASA Astrophysics Data System (ADS)
Franosch, Thomas
2014-08-01
Auto-correlation functions in an equilibrium stochastic process are well-characterized by Bochner's theorem as Fourier transforms of a finite symmetric Borel measure. The existence of a long-time limit of these correlation functions depends on the spectral properties of the measure. Here we provide conditions applicable to a wide class of dynamical theories guaranteeing the existence of the long-time limit. We discuss the implications in the context of the mode-coupling theory of the glass transition where a non-trivial long-time limit signals an idealized glass state.
Effective theories of universal theories
NASA Astrophysics Data System (ADS)
Wells, James D.; Zhang, Zhengkang
2016-01-01
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. In the effective field theory (EFT) framework, the oblique parameters should not be associated with Wilson coefficients in a particular operator basis, unless restrictions have been imposed on the EFT so that it describes universal theories. We work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16 parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hf f , hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order y f 2 . All these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.
Novel central nervous system drug delivery systems.
Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz
2014-05-01
For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases. PMID:24325540
... from one nerve to another. The most common cause of central pontine myelinolysis is a quick change in the body's sodium ... The nerve damage caused by central pontine myelinolysis is usually ... The disorder can cause serious long-term (chronic) disability.
NASA Astrophysics Data System (ADS)
Moraru, Gheorghe; Mursa, Condrat
2006-12-01
In this book we present the basic concepts of the theory of elasticity: stress and deformation states (plane and three-dimensional) and generalized Hooke's law. We present a number of problems which have applications in strength analysis. The book includes a synthesis of the theory of elasticity and modern methods of applied mathematics. This book is designed for students, post graduate students and specialists in strength analysis. the book contains a number of appendixes which includes: elements of matrix-calculation, concepts of tensorial calculation, the Fourier transform, the notion of improper integrals,singular and hypersingular integrals, generalized functions, the Dirac Delta function
NASA Astrophysics Data System (ADS)
Lämsä, J. W.; Orava, R.
2011-02-01
The ALICE experiment is shown to be well suited for studies of exclusive final states from central diffractive reactions. The gluon-rich environment of the central system allows detailed QCD studies and searches for exotic meson states, such as glueballs, hybrids and new charmonium-like states. It would also provide a good testing ground for detailed studies of heavy quarkonia. Due to its central barrel performance, ALICE can accurately measure the low-mass central systems with good purity. The efficiency of the Forward Multiplicity Detector (FMD) and the Forward Shower Counter (FSC) system for detecting rapidity gaps is shown to be adequate for the proposed studies. With this detector arrangement, valuable new data can be obtained by tagging central diffractive processes.
Limit Theorems for Dispersing Billiards with Cusps
NASA Astrophysics Data System (ADS)
Bálint, P.; Chernov, N.; Dolgopyat, D.
2011-12-01
Dispersing billiards with cusps are deterministic dynamical systems with a mild degree of chaos, exhibiting "intermittent" behavior that alternates between regular and chaotic patterns. Their statistical properties are therefore weak and delicate. They are characterized by a slow (power-law) decay of correlations, and as a result the classical central limit theorem fails. We prove that a non-classical central limit theorem holds, with a scaling factor of {sqrt{nlog n}} replacing the standard {sqrt{n}} . We also derive the respective Weak Invariance Principle, and we identify the class of observables for which the classical CLT still holds.
Theory of superconductivity in oxides
NASA Astrophysics Data System (ADS)
Anderson, Philip W.
1991-11-01
During the period of this grant the theory of superconductivity in high Technetium cuprates matured into a reasonable, consistent, complete theory which has the capability, often realized, of confronting all of the puzzling experimental properties of the materials. During the period of the grant occurred the Cargese NATO Summer School (June 1990) attended by several of us who were being funded by the grant, and at that school I summarized progress up to that time. B. Doucot who had been one of our group was the local organizer. Perhaps the best summary of the situation at that time was given in my Chapter 2 setting out what I called the Central Dogmas of the theory, which is enclosed. At that meeting was formulated the justification of the Luttinger liquid hypothesis via a finite Fermi surface phase shift which led to several papers, especially the PRL and 'response' on the subject showing how the Fermi liquid theory breaks down.
Chivukula, R. Sekhar; Simmons, Elizabeth H.; Di Chiara, Stefano; Foadi, Roshan
2009-11-01
We introduce a toy model implementing the proposal of using a custodial symmetry to protect the Zb{sub L}b{sub L} coupling from large corrections. This 'doublet-extended standard model' adds a weak doublet of fermions (including a heavy partner of the top quark) to the particle content of the standard model in order to implement an O(4)xU(1){sub X}{approx}SU(2){sub L}xSU(2){sub R}xP{sub LR}xU(1){sub X} symmetry in the top-quark mass generating sector. This symmetry is softly broken to the gauged SU(2){sub L}xU(1){sub Y} electroweak symmetry by a Dirac mass M for the new doublet; adjusting the value of M allows us to explore the range of possibilities between the O(4)-symmetric (M{yields}0) and standard-model-like (M{yields}{infinity}) limits. In this simple model, we find that the experimental limits on the Zb{sub L}b{sub L} coupling favor smaller M while the presence of a potentially sizable negative contribution to {alpha}T strongly favors large M. Comparison with precision electroweak data shows that the heavy partner of the top quark must be heavier than about 3.4 TeV, making it difficult to search for at LHC. This result demonstrates that electroweak data strongly limit the amount by which the custodial symmetry of the top-quark mass generating sector can be enhanced relative to the standard model. Using an effective field theory calculation, we illustrate how the leading contributions to {alpha}T, {alpha}S, and the Zb{sub L}b{sub L} coupling in this model arise from an effective operator coupling right-handed top quarks to the Z boson, and how the effects on these observables are correlated. We contrast this toy model with extradimensional models in which the extended custodial symmetry is invoked to control the size of additional contributions to {alpha}T and the Zb{sub L}b{sub L} coupling, while leaving the standard model contributions essentially unchanged.
Fully dynamical simulation of central nuclear collisions.
van der Schee, Wilke; Romatschke, Paul; Pratt, Scott
2013-11-27
We present a fully dynamical simulation of central nuclear collisions around midrapidity at LHC energies. Unlike previous treatments, we simulate all phases of the collision, including the equilibration of the system. For the simulation, we use numerical relativity solutions to anti-de Sitter space/conformal field theory for the preequilibrium stage, viscous hydrodynamics for the plasma equilibrium stage, and kinetic theory for the low-density hadronic stage. Our preequilibrium stage provides initial conditions for hydrodynamics, resulting in sizable radial flow. The resulting light particle spectra reproduce the measurements from the ALICE experiment at all transverse momenta. PMID:24329444
The classical limit of quantum optics: not what it seems at first sight
NASA Astrophysics Data System (ADS)
Aharonov, Yakir; Botero, Alonso; Nussinov, Shmuel; Popescu, Sandu; Tollaksen, Jeff; Vaidman, Lev
2013-09-01
What light is and how to describe it has always been a central subject in physics. As our understanding has increased, so have our theories changed: geometrical optics, wave optics and quantum optics are increasingly sophisticated descriptions, each referring to a larger class of phenomena than its predecessor. But how exactly are these theories related? How and when wave optics reduces to geometric optics is a rather simple problem. Similarly, how quantum optics reduces to wave optics has also been considered to be a very simple business. It is not so. As we show here the classical limit of quantum optics is a far more complicated issue; it is in fact dramatically more involved and it requires a complete revision of all our intuitions. The revised intuitions can then serve as a guide to finding novel quantum effects.
ERIC Educational Resources Information Center
Moorman, Thomas
1992-01-01
Students experience the distinction between observable fact and scientific theory by taking a critical look at how spaghetti can be sucked up into the mouth. A demonstration shows that air is needed to suck up the spaghetti but that the scientific explanation is not as simple. (MDH)
ERIC Educational Resources Information Center
Toso, Robert B.
2000-01-01
Inspired by William Glasser's Reality Therapy ideas, Control Theory (CT) is a disciplinary approach that stresses people's ability to control only their own behavior, based on internal motivations to satisfy five basic needs. At one North Dakota high school, CT-trained teachers are the program's best recruiters. (MLH)
NASA Astrophysics Data System (ADS)
Paschos, E. A.
2005-01-01
The electroweak theory unifies two basic forces of nature: the weak force and electromagnetism. This book is a concise introduction to the structure of the electroweak theory and its applications. It describes the structure and properties of field theories with global and local symmetries, leading to the construction of the standard model. It describes the new particles and processes predicted by the theory, and compares them with experimental results. It also covers neutral currents, the properties of W and Z bosons, the properties of quarks and mesons containing heavy quarks, neutrino oscillations, CP-asymmetries in K, D, and B meson decays, and the search for Higgs particles. Each chapter contains problems, stemming from the long teaching experience of the author, to supplement the text. This will be of great interest to graduate students and researchers in elementary particle physics. Password protected solutions are available to lecturers at www.cambridge.org/9780521860987. Each chapter has an introduction highlighting its contents and giving a historical perspective. Chapters are cross-referenced, interrelating concepts and sections of the book. Contains 49 exercises
Community centrality and social science research.
Allman, Dan
2015-12-01
Community centrality is a growing requirement of social science. The field's research practices are increasingly expected to conform to prescribed relationships with the people studied. Expectations about community centrality influence scholarly activities. These expectations can pressure social scientists to adhere to models of community involvement that are immediate and that include community-based co-investigators, advisory boards, and liaisons. In this context, disregarding community centrality can be interpreted as failure. This paper considers evolving norms about the centrality of community in social science. It problematises community inclusion and discusses concerns about the impact of community centrality on incremental theory development, academic integrity, freedom of speech, and the value of liberal versus communitarian knowledge. Through the application of a constructivist approach, this paper argues that social science in which community is omitted or on the periphery is not failed science, because not all social science requires a community base to make a genuine and valuable contribution. The utility of community centrality is not necessarily universal across all social science pursuits. The practices of knowing within social science disciplines may be difficult to transfer to a community. These practices of knowing require degrees of specialisation and interest that not all communities may want or have. PMID:26440071
Community centrality and social science research
Allman, Dan
2015-01-01
Community centrality is a growing requirement of social science. The field's research practices are increasingly expected to conform to prescribed relationships with the people studied. Expectations about community centrality influence scholarly activities. These expectations can pressure social scientists to adhere to models of community involvement that are immediate and that include community-based co-investigators, advisory boards, and liaisons. In this context, disregarding community centrality can be interpreted as failure. This paper considers evolving norms about the centrality of community in social science. It problematises community inclusion and discusses concerns about the impact of community centrality on incremental theory development, academic integrity, freedom of speech, and the value of liberal versus communitarian knowledge. Through the application of a constructivist approach, this paper argues that social science in which community is omitted or on the periphery is not failed science, because not all social science requires a community base to make a genuine and valuable contribution. The utility of community centrality is not necessarily universal across all social science pursuits. The practices of knowing within social science disciplines may be difficult to transfer to a community. These practices of knowing require degrees of specialisation and interest that not all communities may want or have. PMID:26440071
Extended Horava gravity and Einstein-aether theory
Jacobson, Ted
2010-05-15
Einstein-aether theory is general relativity coupled to a dynamical, unit timelike vector. If this vector is restricted in the action to be hypersurface orthogonal, the theory is identical to the IR limit of the extension of Horava gravity proposed by Blas, Pujolas and Sibiryakov. Hypersurface orthogonal solutions of Einstein-aether theory are solutions to the IR limit of this theory, hence numerous results already obtained for Einstein-aether theory carry over.
Bell's Inequalities, Superquantum Correlations, and String Theory
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu; Tze, Chia-Hsiung
2011-01-01
We offermore » an interpretation of superquantum correlations in terms of a “doubly” quantum theory. We argue that string theory, viewed as a quantum theory with two deformation parameters, the string tension α ' , and the string coupling constant g s , is such a superquantum theory that transgresses the usual quantum violations of Bell's inequalities. We also discuss the ℏ → ∞ limit of quantum mechanics in this context. As a superquantum theory, string theory should display distinct experimentally observable supercorrelations of entangled stringy states.« less
Central Asia Active Fault Database
NASA Astrophysics Data System (ADS)
Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah
2014-05-01
The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late
Field-theory methods in coagulation theory
Lushnikov, A. A.
2011-08-15
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W(Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = (n{sub 1}, n{sub 2}, ..., n{sub g}, ...), where n{sub g} is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional {Psi} for the probability W(Q, t). The time evolution of {Psi} is described by an equation that is similar to the Schroedinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.
Field-theory methods in coagulation theory
NASA Astrophysics Data System (ADS)
Lushnikov, A. A.
2011-08-01
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W( Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = { n 1, n 2, ..., n g , ...}, where n g is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional Ψ for the probability W( Q, t). The time evolution of Ψ is described by an equation that is similar to the Schrödinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.
Objectification Theory: Of Relevance for Eating Disorder Researchers and Clinicians?
ERIC Educational Resources Information Center
Tiggemann, Marika
2013-01-01
Background: There is a large and expanding body of research on Objectification Theory. Central to the theory is the proposition that self-objectification results in shame and anxiety surrounding the body, and as a consequence, the development of eating disorders. However, the theory and research have been developed and reported in the gender and…
A Contribution to the Political Theory of Organizational Democracy
ERIC Educational Resources Information Center
Pateman, Carole
1975-01-01
The theoretical changes required to encompass organizational democracy cannot be contained within liberal democratic theory itself. Thus, the logic of some of the central arguments of the theory leads to its transformation into a theory of participatory or self-managing democracy. (Author)
Theory, Technology, and Creative Practice: Using Pixton Comics to Teach Communication Theory
ERIC Educational Resources Information Center
Meyers, Erin A.
2014-01-01
As a central area of study within the discipline, theories of interpersonal communication are the bedrock of many introductory textbooks designed for use in undergraduate courses on communication and communication theory (Griffin, 2012; Littlejohn & Foss, 2010; Miller, 2004; West & Turner, 2010). Though undergraduate students are, of…
ERIC Educational Resources Information Center
Bowman, Paul
2013-01-01
Culture has been theorized as pedagogy. In several languages and many contexts "culture" and "education" can be used interchangeably. This issue of the journal "Educational Philosophy and Theory" seeks to explore the dual proposition (1) that pedagogy is central to politicized cultural theory, but (2) that it has been…
Evolutionary theories of aging and longevity.
Gavrilov, Leonid A; Gavrilova, Natalia S
2002-02-01
The purpose of this article is to provide students and researchers entering the field of aging studies with an introduction to the evolutionary theories of aging, as well as to orient them in the abundant modern scientific literature on evolutionary gerontology. The following three major evolutionary theories of aging are discussed: 1) the theory of programmed death suggested by August Weismann, 2) the mutation accumulation theory of aging suggested by Peter Medawar, and 3) the antagonistic pleiotropy theory of aging suggested by George Williams. We also discuss a special case of the antagonistic pleiotropy theory, the disposable soma theory developed by Tom Kirkwood and Robin Holliday. The theories are compared with each other as well as with recent experimental findings. At present the most viable evolutionary theories are the mutation accumulation theory and the antagonistic pleiotropy theory; these theories are not mutually exclusive, and they both may become a part of a future unifying theory of aging. Evolutionary theories of aging are useful because they open new opportunities for further research by suggesting testable predictions, but they have also been harmful in the past when they were used to impose limitations on aging studies. At this time, the evolutionary theories of aging are not ultimate completed theories, but rather a set of ideas that themselves require further elaboration and validation. This theoretical review article is written for a wide readership. PMID:12806021
Theory Survey or Survey Theory?
ERIC Educational Resources Information Center
Dean, Jodi
2010-01-01
Matthew Moore's survey of political theorists in U.S. American colleges and universities is an impressive contribution to political science (Moore 2010). It is the first such survey of political theory as a subfield, the response rate is very high, and the answers to the survey questions provide new information about how political theorists look…
Polymer quantum mechanics and its continuum limit
Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2007-08-15
A rather nonstandard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation, has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle, and a simple cosmological model.
Statistical computation of tolerance limits
NASA Technical Reports Server (NTRS)
Wheeler, J. T.
1993-01-01
Based on a new theory, two computer codes were developed specifically to calculate the exact statistical tolerance limits for normal distributions within unknown means and variances for the one-sided and two-sided cases for the tolerance factor, k. The quantity k is defined equivalently in terms of the noncentral t-distribution by the probability equation. Two of the four mathematical methods employ the theory developed for the numerical simulation. Several algorithms for numerically integrating and iteratively root-solving the working equations are written to augment the program simulation. The program codes generate some tables of k's associated with the varying values of the proportion and sample size for each given probability to show accuracy obtained for small sample sizes.
Lacey, Nicola; Pickard, Hanna
2015-01-01
The concept of proportionality has been central to the retributive revival in penal theory, and underlies desert theory’s normative and practical commitment to limiting punishment. Theories of punishment combining desert-based and consequentialist considerations also appeal to proportionality as a limiting condition. In this paper we argue that these claims are founded on an exaggerated idea of what proportionality can offer, and in particular fail properly to consider the institutional conditions needed to foster robust limits on the state’s power to punish. The idea that appeals to proportionality as an abstract ideal can help to limit punishment is, we argue, a chimera: what has been thought of as proportionality is not a naturally existing relationship, but a product of political and social construction, cultural meaning-making, and institution-building. Drawing on evolutionary psychology and comparative political economy, we argue that philosophers and social scientists need to work together to understand how the appeal of the idea of proportionality can best be realised through substantive institutional frameworks under particular conditions. PMID:25937675
A succession of theories: purging redundancy from disturbance theory.
Pulsford, Stephanie A; Lindenmayer, David B; Driscoll, Don A
2016-02-01
The topics of succession and post-disturbance ecosystem recovery have a long and convoluted history. There is extensive redundancy within this body of theory, which has resulted in confusion, and the links among theories have not been adequately drawn. This review aims to distil the unique ideas from the array of theory related to ecosystem change in response to disturbance. This will help to reduce redundancy, and improve communication and understanding between researchers. We first outline the broad range of concepts that have developed over the past century to describe community change in response to disturbance. The body of work spans overlapping succession concepts presented by Clements in 1916, Egler in 1954, and Connell and Slatyer in 1977. Other theories describing community change include state and transition models, biological legacy theory, and the application of functional traits to predict responses to disturbance. Second, we identify areas of overlap of these theories, in addition to highlighting the conceptual and taxonomic limitations of each. In aligning each of these theories with one another, the limited scope and relative inflexibility of some theories becomes apparent, and redundancy becomes explicit. We identify a set of unique concepts to describe the range of mechanisms driving ecosystem responses to disturbance. We present a schematic model of our proposed synthesis which brings together the range of unique mechanisms that were identified in our review. The model describes five main mechanisms of transition away from a post-disturbance community: (i) pulse events with rapid state shifts; (ii) stochastic community drift; (iii) facilitation; (iv) competition; and (v) the influence of the initial composition of a post-disturbance community. In addition, stabilising processes such as biological legacies, inhibition or continuing disturbance may prevent a transition between community types. Integrating these six mechanisms with the functional
Algebraic Theories and (Infinity,1)-Categories
NASA Astrophysics Data System (ADS)
Cranch, James
2010-11-01
We adapt the classical framework of algebraic theories to work in the setting of (infinity,1)-categories developed by Joyal and Lurie. This gives a suitable approach for describing highly structured objects from homotopy theory. A central example, treated at length, is the theory of E_infinity spaces: this has a tidy combinatorial description in terms of span diagrams of finite sets. We introduce a theory of distributive laws, allowing us to describe objects with two distributing E_infinity stuctures. From this we produce a theory of E_infinity ring spaces. We also study grouplike objects, and produce theories modelling infinite loop spaces (or connective spectra), and infinite loop spaces with coherent multiplicative structure (or connective ring spectra). We use this to construct the units of a grouplike E_infinity ring space in a natural manner. Lastly we provide a speculative pleasant description of the K-theory of monoidal quasicategories and quasicategories with ring-like structures.
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.
The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.
1997-01-01
The purpose of this paper is to present the CENTRAL BALLAST TANKER Design. This design is intended to reduce the volume of oil spilled from tankers by giving the crew a tanker properly designed and equipped to allow large quantities of oil from ruptured tank(s) to flow safely to a fully-inerted central ballast tank. In addition to reducing the volume of oil spilled, the design also addresses many of the shortcomings of the DOUBLE HULL DESIGN which are increasingly becoming a concern. The following is a brief review of the development of the CENTRAL BALLAST TANKER. The simple operational features, stability, low cost and ease of maintenance of the single hull tanker were important and can be retained with the CENTRAL BALLAST DESIGN.
Central line infections - hospitals
... risk is higher if you: Are in the intensive care unit (ICU) Have a weakened immune system or serious ... unless you have washed your hands. Tell your nurse if your central line: Gets dirty Is coming ...
... insipidus is caused by a genetic problem. Symptoms Symptoms of central diabetes insipidus include: Increased urine production Excessive thirst Confusion and changes in alertness due to dehydration and higher than normal sodium level in the ...
Higgs central exclusive production
NASA Astrophysics Data System (ADS)
Cudell, J. R.; Dechambre, A.; Hernández, O. F.
2012-01-01
Using the CHIDe model, we tune the calculation of central exclusive Higgs production to the recent CDF central exclusive dijet data, and predict the cross section for the exclusive production of Higgs boson at the LHC. In this model, due to different choices of the scale in the Sudakov form factor for dijet and Higgs production, it is always below 1 fb, and below 0.3 fb after experimental cuts.
Central centrifugal cicatricial alopecia
Blattner, Collin; Polley, Dennis C.; Ferritto, Frank; Elston, Dirk M.
2013-01-01
Central centrifugal cicatricial alopecia is a common cause of progressive permanent apical alopecia. This unique form of alopecia includes entities previously know as “hot comb alopecia,” “follicular degeneration syndrome,” “pseudopelade” in African Americans and “central elliptical pseudopelade” in Caucasians. The etiology appears to be multifactorial and the condition occurs in all races. PMID:23440368
Constructing Amplitudes from Their Soft Limits
Boucher-Veronneau, Camille; Larkoski, Andrew J.; /SLAC
2011-12-09
The existence of universal soft limits for gauge-theory and gravity amplitudes has been known for a long time. The properties of the soft limits have been exploited in numerous ways; in particular for relating an n-point amplitude to an (n-1)-point amplitude by removing a soft particle. Recently, a procedure called inverse soft was developed by which 'soft' particles can be systematically added to an amplitude to construct a higher-point amplitude for generic kinematics. We review this procedure and relate it to Britto-Cachazo-Feng-Witten recursion. We show that all tree-level amplitudes in gauge theory and gravity up through seven points can be constructed in this way, as well as certain classes of NMHV gauge-theory amplitudes with any number of external legs. This provides us with a systematic procedure for constructing amplitudes solely from their soft limits.
Structure of a viscoplastic theory
NASA Technical Reports Server (NTRS)
Freed, Alan D.
1988-01-01
The general structure of a viscoplastic theory is developed from physical and thermodynamical considerations. The flow equation is of classical form. The dynamic recovery approach is shown to be superior to the hardening function approach for incorporating nonlinear strain hardening into the material response through the evolutionary equation for back stress. A novel approach for introducing isotropic strain hardening into the theory is presented, which results in a useful simplification. In particular, the limiting stress for the kinematic saturation of state (not the drag stress) is the chosen scalar-valued state variable. The resulting simplification is that there is no coupling between dynamic and thermal recovery terms in each evolutionary equation. The derived theory of viscoplasticity has the structure of a two-surface plasticity theory when the response is plasticlike, and the structure of a Bailey-Orowan creep theory when the response is creeplike.
NASA Technical Reports Server (NTRS)
Chiu, Huei-Huang
1989-01-01
A theoretical method is being developed by which the structure of a radiation field can be predicted by a radiation potential theory, similar to a classical potential theory. The introduction of a scalar potential is justified on the grounds that the spectral intensity vector is irrotational. The vector is also solenoidal in the limits of a radiation field in complete radiative equilibrium or in a vacuum. This method provides an exact, elliptic type equation that will upgrade the accuracy and the efficiency of the current CFD programs required for the prediction of radiation and flow fields. A number of interesting results emerge from the present study. First, a steady state radiation field exhibits an optically modulated inverse square law distribution character. Secondly, the unsteady radiation field is structured with two conjugate scalar potentials. Each is governed by a Klein-Gordon equation with a frictional force and a restoring force. This steady potential field structure and the propagation of radiation potentials are consistent with the well known results of classical electromagnetic theory. The extension of the radiation potential theory for spray combustion and hypersonic flow is also recommended.
Origin of Abelian gauge symmetries in heterotic/F-theory duality
NASA Astrophysics Data System (ADS)
Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; Poretschkin, Maximilian; Song, Peng
2016-04-01
We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U( m) × U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU( m) × Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically massless U(1)'s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)'s is found by taking into account a Stückelberg mechanism in the lower-dimensional effective theory. In geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.
ANSI Standard: Complying with Background Noise Limits.
ERIC Educational Resources Information Center
Schaffer, Mark E.
2003-01-01
Discusses the new classroom acoustics standard, ANSI Standard S12.60, which specifies maximum sound level limits that are significantly lower than currently typical for classrooms. Addresses guidelines for unducted HVAC systems, ducted single-zone systems, and central VAV or multizone systems. (EV)
Integral Turbulence Statistics Over a Central European City Centre
NASA Astrophysics Data System (ADS)
Fortuniak, Krzysztof; Pawlak, Włodzimierz; Siedlecki, Mariusz
2013-02-01
Atmospheric measurements over 5 years (2005-2010) at two sites in Łódź, central Poland have been analyzed to develop a better understanding of turbulence in urban areas. Fast response wind velocity, temperature, humidity and CO2 concentration were measured using sonic anemometers and gas analyzers, placed on narrow masts at 37 and 42 m above the ground. The measurements were used to calculate standard deviations of each parameter, and were then normalized according to local Monin-Obukhov similarity theory and plotted as a function of stability parameter ζ = z'/ L. Results for the wind components show typical scaling with a power law with exponent ±1/3 in the free convection limit, and that approaches a constant value close to neutral stratification. For stable conditions, the constant value in the neutral limit remains the same for stability parameters lower than 0.1-0.2, then increases. The normalized standard deviation of temperature fits the -1/3 law in the free convection limit, approaching a constant value within a stable limit. However, it exhibits hyperbolic characteristics for close to neutral stratification. The normalized standard deviations for humidity and CO2 concentration exhibit scaling similar to the wind components in the unstable regime and remain constant in the stable domain. The results for the wind components and for temperature are in the range of various functions found in other studies. The absolute values for humidity and CO2 concentration seem to be slightly higher, but only single examples of such investigations can be found in the literature.
Sadowska, Edyta T; Król, Elżbieta; Chrzascik, Katarzyna M; Rudolf, Agata M; Speakman, John R; Koteja, Paweł
2016-03-01
Understanding factors limiting sustained metabolic rate (SusMR) is a central issue in ecological physiology. According to the heat dissipation limit (HDL) theory, the SusMR at peak lactation is constrained by the maternal capacity to dissipate body heat. To test that theory, we shaved lactating bank voles (Myodes glareolus) to experimentally elevate their capacity for heat dissipation. The voles were sampled from lines selected for high aerobic exercise metabolism (A; characterized also by increased basal metabolic rate) and unselected control lines (C). Fur removal significantly increased the peak-lactation food intake (mass-adjusted least square means ± s.e.; shaved: 16.3 ± 0.3 g day(-1), unshaved: 14.4 ± 0.2 g day(-1); P<0.0001), average daily metabolic rate (shaved: 109 ± 2 kJ day(-1), unshaved: 97 ± 2 kJ day(-1); P<0.0001) and metabolisable energy intake (shaved: 215 ± 4 kJ day(-1), unshaved: 185 ± 4 kJ day(-1); P<0.0001), as well as the milk energy output (shaved: 104 ± 4 kJ day(-1); unshaved: 93 ± 4 kJ day(-1); P=0.021) and litter growth rate (shaved: 9.4 ± 0.7 g 4 days(-1), unshaved: 7.7 ± 0.7 g 4 days(-1); P=0.028). Thus, fur removal increased both the total energy budget and reproductive output at the most demanding period of lactation, which supports the HDL theory. However, digestive efficiency was lower in shaved voles (76.0 ± 0.3%) than in unshaved ones (78.5 ± 0.2%; P<0.0001), which may indicate that a limit imposed by the capacity of the alimentary system was also approached. Shaving similarly affected the metabolic and reproductive traits in voles from the A and C lines. Thus, the experimental evolution model did not reveal a difference in the limiting mechanism between animals with inherently different metabolic rates. PMID:26747907
ERIC Educational Resources Information Center
Upton, Matthew G.; Egan, Toby Marshall
2007-01-01
The established limitations of career development (CD) theory and human resource development (HRD) theory building are addressed by expanding the framing of these issues to multilevel contexts. Multilevel theory building is an approach most effectively aligned with HRD literature and CD and HRD practice realities. An innovative approach multilevel…
Activity Theory and Situated Learning Theory: Contrasting Views of Educational Practice
ERIC Educational Resources Information Center
Arnseth, Hans Christian
2008-01-01
The purpose of this article is to offer a critical discussion of the practice turn in contemporary educational research. In order to make the discussion specific, I use two influential theories, namely activity theory and situated learning theory. They both turn to the notion of practice in order to overcome the limitations of mentalist and…
NASA Astrophysics Data System (ADS)
Correa, Diego H.; Silva, Guillermo A.
2008-07-01
We discuss how geometrical and topological aspects of certain 1/2-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.
Correa, Diego H.; Silva, Guillermo A.
2008-07-28
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.
Panarchy: theory and application
Allen, Craig R.; Angeler, David G.; Garmestani, Ahjond S.; Gunderson, Lance H.; Holling, Crawford S.
2014-01-01
The concept of panarchy provides a framework that characterizes complex systems of people and nature as dynamically organized and structured within and across scales of space and time. It has been more than a decade since the introduction of panarchy. Over this period, its invocation in peer-reviewed literature has been steadily increasing, but its use remains primarily descriptive and abstract. Here, we discuss the use of the concept in the literature to date, highlight where the concept may be useful, and discuss limitations to the broader applicability of panarchy theory for research in the ecological and social sciences. Finally, we forward a set of testable hypotheses to evaluate key propositions that follow from panarchy theory.
Domain Specificity and the Limits of Creativity Theory
ERIC Educational Resources Information Center
Baer, John
2012-01-01
A growing body of research evidence suggests that creativity is very domain-specific and that domain-general skills or traits contribute little to creative performance. The term "creativity" is a convenient term for collecting many interesting artifacts, processes, and people into a single category, and the term "creative thinking skills" may be a…
Effect of limiter end loss in finite Larmor radius theory
Berk, H.L.; Kotelnikov, I.A.
1993-08-01
We have examined the effect of incomplete line tying on the MHD flute mode with FLR (finite Larmor radius) effects. We show that the combination of line tying and FLR effects can slow down MHD instability, but cannot produce complete stabilization.
Observational limitations of the Doppler theory of quasars
NASA Astrophysics Data System (ADS)
Narlikar, J. V.; Subramanian, K.
1982-09-01
The viability of the hypothesis that the redshift of a quasar is due entirely to the Doppler effect which arises from its high ejection speed in a nearby center of explosion is examined in light of data on the aligned triplets of quasars discovered by Arp and Hazard (1980). In view of a physical association of the quasars in a triplet, the computation of the various parameters of the Doppler problem is illustrated and constraints are placed on quasar ejection scenarios in order to critically examine Holyle's recent (1980) hypothesis that quasars emit the bulk of their radiation in a specified backward cone. It is found that the four triplets provide prima facie evidence for such a hypothesis, and further checks on the Doppler model are suggested. A very small, but nonzero fraction of blueshifted quasars is predicted by the model.
Verberk, Willem J.; Cheng, Hao-min; Huang, Li-Chih; Lin, Chia-Ming; Teng, Yao-Pin; Chen, Chen-Huan
2016-01-01
Accumulating evidence indicates that central blood pressure (CBP) is a better cardiovascular risk predictor than brachial blood pressure (BP). Although more additional benefits of CBP-based treatment above usual hypertension treatment are to be demonstrated, the demand for implementing CBP assessment in general clinical practice is increasing. For this, the measurement procedure must be noninvasive, easy to perform, and cost- and time-efficient. Therefore, oscillometric devices with the possibility to assess CBP seem the best option. Recently, such an oscillometric BP monitor, the Microlife WatchBP Office Central, was developed, which demonstrated its high accuracy in a validation study against invasive BP measurement. Calibration errors of this device are limited because the procedure is automated, standardized, and performed at the same place of and within 30 s from pulse wave assessment. The transformation from the peripheral pulse wave to CBP is done by means of an individual-based pulse wave analysis according to a theory of arterial compliance and wave reflections. In addition, the device has demonstrated to enable a more reliable diagnosis of hypertension by CBP than by peripheral BP, with a lower frequency of over- and underdiagnosis. Altogether, the available clinical evidence suggests that the Microlife WatchBP Office Central fulfills the criteria for general clinical use. PMID:27195242
Verberk, Willem J; Cheng, Hao-Min; Huang, Li-Chih; Lin, Chia-Ming; Teng, Yao-Pin; Chen, Chen-Huan
2016-04-01
Accumulating evidence indicates that central blood pressure (CBP) is a better cardiovascular risk predictor than brachial blood pressure (BP). Although more additional benefits of CBP-based treatment above usual hypertension treatment are to be demonstrated, the demand for implementing CBP assessment in general clinical practice is increasing. For this, the measurement procedure must be noninvasive, easy to perform, and cost- and time-efficient. Therefore, oscillometric devices with the possibility to assess CBP seem the best option. Recently, such an oscillometric BP monitor, the Microlife WatchBP Office Central, was developed, which demonstrated its high accuracy in a validation study against invasive BP measurement. Calibration errors of this device are limited because the procedure is automated, standardized, and performed at the same place of and within 30 s from pulse wave assessment. The transformation from the peripheral pulse wave to CBP is done by means of an individual-based pulse wave analysis according to a theory of arterial compliance and wave reflections. In addition, the device has demonstrated to enable a more reliable diagnosis of hypertension by CBP than by peripheral BP, with a lower frequency of over- and underdiagnosis. Altogether, the available clinical evidence suggests that the Microlife WatchBP Office Central fulfills the criteria for general clinical use. PMID:27195242
Optical spectrum analyzer with quantum-limited noise floor.
Bishof, M; Zhang, X; Martin, M J; Ye, Jun
2013-08-30
Interactions between atoms and lasers provide the potential for unprecedented control of quantum states. Fulfilling this potential requires detailed knowledge of frequency noise in optical oscillators with state-of-the-art stability. We demonstrate a technique that precisely measures the noise spectrum of an ultrastable laser using optical lattice-trapped 87Sr atoms as a quantum projection noise-limited reference. We determine the laser noise spectrum from near dc to 100 Hz via the measured fluctuations in atomic excitation, guided by a simple and robust theory model. The noise spectrum yields a 26(4) mHz linewidth at a central frequency of 429 THz, corresponding to an optical quality factor of 1.6×10(16). This approach improves upon optical heterodyne beats between two similar laser systems by providing information unique to a single laser and complements the traditionally used Allan deviation which evaluates laser performance at relatively long time scales. We use this technique to verify the reduction of resonant noise in our ultrastable laser via feedback from an optical heterodyne beat. Finally, we show that knowledge of our laser's spectrum allows us to accurately predict the laser-limited stability for optical atomic clocks. PMID:24033036
ROMINE, L.D.
2006-02-01
A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.
Central depression of nuclear charge density distribution
Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang
2010-08-15
The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of {sup 46}Ar and {sup 44}S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in {sup 46}Ar and {sup 44}S prefer to occupy the 1d{sub 3/2} state rather than the 2s{sub 1/2} state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of {sup 46}Ar and {sup 44}S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.
Large D limit of dimensionally continued gravity
NASA Astrophysics Data System (ADS)
Giribet, Gaston
2013-05-01
In a recent paper Emparan et al. [arXiv:1302.6382] studied general relativity in the limit in which the number of spacetime dimensions D tends to infinity. They showed that, in such limit, the theory simplifies notably. It reduces to a theory whose fundamental objects, black holes and black branes, behave as noninteracting particles. Here, we consider a different way of extending gravity to D dimensions. We present a special limit of dimensionally continued gravity in which black holes retain their gravitational interaction at large D and still have entropy proportional to the mass. The similarities and differences with the limit considered in Emparan et al. [arXiv:1302.6382] are discussed.
Health challenges in Kazakhstan and Central Asia.
Adambekov, Shalkar; Kaiyrlykyzy, Aiym; Igissinov, Nurbek; Linkov, Faina
2016-01-01
The Central Asian region, which encompasses Kazakhstan, Uzbekistan, Tajikistan, Turkmenistan and Kyrgyzstan, is an interesting geographic region with a rich history dating back to the Silk Road, Mongol conquests and expansion of the Russian Empire. However, from a public health viewpoint, the Central Asian region is under-investigated, and many public health challenges exist, as countries of Central Asia inherited the centralised medical systems practiced in the Soviet Union, and are currently undergoing rapid transitions. A large number of low and middle-income countries around the world, including countries of Central Asia, face a double burden of chronic and infectious disease. This essay focuses on the exploration of the most important public health challenges in the Central Asian region, including limited scientific productivity, the double burden of chronic and infectious disease, the need for healthcare reform and the reduction in care variation. Central Asia has a large number of medical schools, medical centres, and emerging research institutes that can be used to foster a change in medical and public health practice in the region. PMID:26254293
Zhou, Shurong; Peng, Zechen; Zhang, Da-Yong
2015-05-01
Demographic equivalence is the central assumption of the neutral theory of species diversity and has attracted much criticism, since species clearly differ from each other in many traits. Two simple answers--that is, dispersal limitation and demographic trade-offs--have been suggested to resolve this problem. Both processes are considered to be capable of making interspecific differences in fitness smaller on their own, thus potentially reconciling neutrality with reality. However, when the two mechanisms operate simultaneously, as they must do in natural communities, we are surprised to find that they interfere with each other in such a way that dispersal limitation favors more fecund species. Fitness equivalence is no longer guaranteed by a perfect trade-off, and contrary to popular belief, dispersal limitation is found to impede rather than facilitate the stochastic coexistence of species. Still, more species can coexist than allowed through demographic equivalence, providing a potentially alternative explanation for biodiversity maintenance in nature. PMID:25905505
Theory of Gas Injection: Interaction of Phase Behavior and Flow
NASA Astrophysics Data System (ADS)
Dindoruk, B.
2015-12-01
The theory of gas injection processes is a central element required to understand how components move and partition in the reservoir as one fluid is displacing another (i.e., gas is displacing oil). There is significant amount of work done in the area of interaction of phase-behavior and flow in multiphase flow conditions. We would like to present how the theory of gas injection is used in the industry to understand/design reservoir processes in various ways. The tools that are developed for the theory of gas injection originates from the fractional flow theory, as the first solution proposed by Buckley-Leveret in 1940's, for water displacing oil in porous media. After 1960's more and more complex/coupled equations were solved using the initial concept(s) developed by Buckley-Leverett, and then Welge et al. and others. However, the systematic use of the fractional flow theory for coupled set of equations that involves phase relationships (EOS) and phase appearance and disappearance was mainly due to the theory developed by Helfferich in early 80's (in petroleum literature) using method of characteristics primarily for gas injection process and later on by the systematic work done by Orr and his co-researchers during the last two decades. In this talk, we will present various cases that use and extend the theory developed by Helfferich and others (Orr et al., Lake et al. etc.). The review of various injection systems reveals that displacement in porous media has commonalities that can be represented with a unified theory for a class of problems originating from the theory of gas injection (which is in a way generalized Buckley-Leverett problem). The outcome of these solutions can be used for (and are not limited to): 1) Benchmark solutions for reservoir simulators (to quantify numerical dispersion, test numerical algorithms) 2) Streamline simulators 3) Design of laboratory experiments and their use (to invert the results) 4) Conceptual learning and to investigate
NASA Astrophysics Data System (ADS)
Bartlett, D. F.
2005-12-01
The cover of the August issue of the Astronomical Journal is stunningly simple. The basic structure of the Milky Way appears as a central bar surrounded by four evenly-spaced logarithmic spirals. (Vallée 2005). Modern density wave theory can accommodate such spirals, but only by using arbitrary functions of time (Bertin 2000). Perhaps the problem is Newton's gravitational law itself. With or without dark matter, this law allows the potential to have only two kinds of extrema: dimples and saddle points. In contrast, the proposed sinusoidal potential also permits potential maxima or pimples. (In the sinusoidal potential φ (r)=-(GM/r) cos(ko r) where ko = 2 π /λ o and the universal 'wavelength' λ o is 425 pc (Bartlett 2004). I will show how the sinusoidal potential permits the spiral structure of the Galaxy to be stable. Deep ridges in the radial direction confine stars to circular orbits. A broad potential maximum in the z-direction suppresses the normally deep minimum at z=0 caused by matter in the local disk. Alternating minima and maxima in the φ -direction give spirals that are keyed to the central bar.
NASA Technical Reports Server (NTRS)
2004-01-01
19 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the mountains that make up the central peak region of Hale Crater, located near 35.8oS, 36.5oW. Dark, smooth-surfaced sand dunes are seen to be climbing up the mountainous slopes. The central peak of a crater consists of rock brought up during the impact from below the crater floor. This autumn image is illuminated from the upper left and covers an area approximately 3 km (1.9 mi) across.
Density functional theory for Yukawa fluids
NASA Astrophysics Data System (ADS)
Hatlo, Marius M.; Banerjee, Priyanka; Forsman, Jan; Lue, Leo
2012-08-01
We develop an approximate field theory for particles interacting with a generalized Yukawa potential. This theory improves and extends a previous splitting field theory, originally developed for counterions around a fixed charge distribution. The resulting theory bridges between the second virial approximation, which is accurate at low particle densities, and the mean-field approximation, accurate at high densities. We apply this theory to charged, screened ions in bulk solution, modeled to interact with a Yukawa potential; the theory is able to accurately reproduce the thermodynamic properties of the system over a broad range of conditions. The theory is also applied to "dressed counterions," interacting with a screened electrostatic potential, contained between charged plates. It is found to work well from the weak coupling to the strong coupling limits. The theory is able to reproduce the counterion profiles and force curves for closed and open systems obtained from Monte Carlo simulations.