Science.gov

Sample records for central oklahoma aquifer

  1. Ground-water-quality assessment of the Central Oklahoma Aquifer, Oklahoma : results of investigations

    USGS Publications Warehouse

    Christenson, Scott C.; Havens, John S.

    1998-01-01

    This is a collection of five papers intended to summarize the results of an assessment of the ground-water quality of the Central Oklahoma Aquifer. The papers include a summary of investigations, the diagenetic history of Permian rocks in the aquifer, a geochemical characterization of solid-phase materials, a summary of geochemical and geohydrologic investigations of the Central Oklahoma Aquifer, and a summary on naturally occurring trace substances that contaminated many wells completed in the aquifer.

  2. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium, selenium, and gross-alpha activity that exceed drinking-water standards. Suspected problems include possible contamination of the aquifer by oil-field brines and drilling fluids, pesticides, industrial chemicals, septic-tank effluent, fertilizers, and leakage from sewage systems and underground tanks used for storage of hydrocarbons. There are four major components of the Central Oklahoma aquifer project. The first component is the collection and analysis of existing information, including chemical, hydrologic, and land-use data. The second component is the geohydrologic and geochemical investigations of the aquifer flow system. The third component is the sampling for a wide variety of inorganic, organic, and radioactive constituents as part a regional survey that will produce a consistent set of data among all ground-water pilot projects. These data can be used to: (1) Define regional ground-water quality within the Central Oklahoma aquifer, and (2) compare water quality in the Central Oklahoma aquifer to the water quality in the other ground-water study units of the NAWQA program. The fourth component is topical studies that will address, in more detail, some of the major water-quality issues pertaining to the aquifer.

  3. Three-dimensional geologic model of the Arbuckle-Simpson aquifer, south-central Oklahoma

    USGS Publications Warehouse

    Faith, Jason R.; Blome, Charles D.; Pantea, Michael P.; Puckette, James O.; Halihan, Todd; Osborn, Noel; Christenson, Scott; Pack, Skip

    2010-01-01

    The Arbuckle-Simpson aquifer of south-central Oklahoma encompasses more than 850 square kilometers and is the principal water resource for south-central Oklahoma. Rock units comprising the aquifer are characterized by limestone, dolomite, and sandstones assigned to two lower Paleozoic units: the Arbuckle and Simpson Groups. Also considered to be part of the aquifer is the underlying Cambrian-age Timbered Hills Group that contains limestone and sandstone. The highly faulted and fractured nature of the Arbuckle-Simpson units and the variable thickness (600 to 2,750 meters) increases the complexity in determining the subsurface geologic framework of this aquifer. A three-dimensional EarthVision (Trademark) geologic framework model was constructed to quantify the geometric relationships of the rock units of the Arbuckle-Simpson aquifer in the Hunton anticline area. This 3-D EarthVision (Trademark) geologic framework model incorporates 54 faults and four modeled units: basement, Arbuckle-Timbered Hills Group, Simpson Group, and post-Simpson. Primary data used to define the model's 54 faults and four modeled surfaces were obtained from geophysical logs, cores, and cuttings from 126 water and petroleum wells. The 3-D framework model both depicts the volumetric extent of the aquifer and provides the stratigraphic layer thickness and elevation data used to construct a MODFLOW version 2000 regional groundwater-flow model.

  4. Relation of Shallow Water Quality in the Central Oklahoma Aquifer to Geology, Soils, and Land Use

    USGS Publications Warehouse

    Rea, Alan H.; Christenson, Scott C.; Andrews, William J.

    2001-01-01

    The purpose of this report is to identify, describe, and explain relations between natural and land-use factors and ground-water quality in the Central Oklahoma aquifer NAWQA study unit. Natural factors compared to water quality included the geologic unit in which the sampled wells were completed and the properties of soils in the areas surrounding the wells. Land-use factors included types of land use and population densities surrounding sampled wells. Ground-water quality was characterized by concentrations of inorganic constituents, and by frequencies of detection of volatile organic compounds and pesticides. Water-quality data were from samples collected from wells 91 meters (300 feet) or less in depth as part of Permian and Quaternary geologic unit survey networks and from an urban survey network. Concentrations of many inorganic constituents were significantly related to geology. In addition, concentrations of many inorganic constituents were greater in water from wells from the Oklahoma City urban sampling network than in water from wells from low-density survey networks designed to evaluate ambient water quality in the Central Oklahoma aquifer study unit. However, sampling bias may have been induced by differences in hydrogeologic factors between sampling networks, limiting the ability to determine land-use effects on concentrations of inorganic constituents. Frequencies of detection of pesticide and volatile organic compounds (VOC's) in ground-water samples were related to land use and population density, with these compounds being more frequently detected in densely-populated areas. Geology and soil properties were not significantly correlated to pesticide or VOC occurrence in ground water. Lesser frequencies of detection of pesticides in water from wells in rural areas may be due to low to moderate use of those compounds on agricultural lands in the study unit, with livestock production being the primary agricultural activity. There are many possible sources of pesticides and VOC's in the urban areas of Central Oklahoma. Because only existing water-supply wells were sampled, it is not clear from the data collected whether pesticides and VOC's: (1) occur in low concentrations throughout upper portions of the aquifer in urban areas, or (2) are present in ground water only in the immediate vicinity of the wells due to back-flow of those chemicals into the wells or to inflow around cement seals and through gravel packs surrounding well casings of surface runoff containing those compounds.

  5. Hydrogeology and simulation of groundwater flow in the Arbuckle-Simpson aquifer, south-central Oklahoma

    USGS Publications Warehouse

    Christenson, Scott; Osborn, Noel I.; Neel, Christopher R.; Faith, Jason R.; Blome, Charles D.; Puckette, James; Pantea, Michael P.

    2011-01-01

    Groundwater in the aquifer moves from areas of high head (altitude) to areas of low head along streams and springs. The potentiometric surface in the eastern Arbuckle-Simpson aquifer generally slopes from a topographic high from northwest to the southeast, indicating that regional groundwater flow is predominantly toward the southeast. Freshwater is known to extend beyond the aquifer outcrop near the City of Sulphur, Oklahoma, and Chickasaw National Recreation Area, where groundwater flows west from the outcrop of the eastern Arbuckle-Simpson aquifer and becomes confin

  6. Chemical analysis of water samples and geophysical logs from cored test holes drilled in the central Oklahoma Aquifer, Oklahoma

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Funkhouser, Ron A.

    1991-01-01

    Chemical analyses of water from eight test holes and geophysical logs for nine test holes drilled in the Central Oklahoma aquifer are presented. The test holes were drilled to investigate local occurrences of potentially toxic, naturally occurring trace substances in ground water. These trace substances include arsenic, chromium, selenium, residual alpha-particle activities, and uranium. Eight of the nine test holes were drilled near wells known to contain large concentrations of one or more of the naturally occurring trace substances. One test hole was drilled in an area known to have only small concentrations of any of the naturally occurring trace substances. Water samples were collected from one to eight individual sandstone layers within each test hole. A total of 28 water samples, including four duplicate samples, were collected. The temperature, pH, specific conductance, alkalinity, and dissolved-oxygen concentrations were measured at the sample site. Laboratory determinations included major ions, nutrients, dissolved organic carbon, and trace elements (aluminum, arsenic, barium, beryllium, boron, cadmium, chromium, hexavalent chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, selenium, silver, strontium, vanadium, and zinc). Radionuclide activities and stable isotope d values also were determined, including: gross-alpha-particle activity, gross-beta-particle activity, radium-226, radium-228, radon-222, uranium-234, uranium-235, uranium-238, total uranium, carbon-13/carbon-12, deuterium/hydrogen-1, oxygen-18/oxygen-16, and sulfur-34/sulfur-32. Additional analyses of arsenic and selenium species are presented for selected samples as well as analyses of density and iodine for two samples, tritium for three samples, and carbon-14 for one sample. Geophysical logs for most test holes include caliper, neutron, gamma-gamma, natural-gamma logs, spontaneous potential, long- and short-normal resistivity, and single-point resistance. Logs for test-hole NOTS 7 do not include long- and short-normal resistivity, spontaneous-potential, or single-point resistivity. Logs for test-hole NOTS 7A include only caliper and natural-gamma logs.

  7. Airborne and Ground Electrical Surveys for Subsurface Mapping of the Arbuckle Aquifer, Central Oklahoma

    NASA Astrophysics Data System (ADS)

    Smith, D.; Smith, B. D.; Blome, C. D.; Osborn, N.

    2008-12-01

    Airborne and ground electrical surveys have been conducted to map the subsurface hydrogeologic character of the Arbuckle-Simpson aquifer in south central Oklahoma. An understanding of the geologic framework and hydrogeologic characteristics is necessary to evaluate groundwater flow through the highly faulted, structurally complex, carbonate aquifer. Results from this research will further understanding of the aquifer and will assist in managing the water resources of the region. The major issues include water quality, the allocation of water rights, and the potential impacts of pumping on springs and stream. Four areas in the Hunton anticline area, with distinctly different geology, were flown with a frequency domain helicopter electromagnetic system (HEM) in March, 2007. Ground electrical studies include dc resistivity imaging and natural field audiomagnetotelluric (AMT), and magnetotelluric (MT) surveys. The HEM resistivity and total field magnetic survey was flown in four blocks, A through D, mostly with a line spacing of 400 m. Block A extends from the Chickasaw National Recreational Area (CHIC) to Mill Creek on the west side of the anticline. The surface geology of this block is mostly dolomitic limestone of the Arbuckle Group that is in fault contact with younger Paleozoic clastic rocks. The flight line spacing was 800 meters in the western half of the block and 400 meters in the eastern part. Airborne magnetic data indicate that the Sulphur fault bends south to merge with the Mill Creek fault which substantiates an earlier hypothesis first made from interpretation of gravity data. Block B, located on the north side of the anticline consists of mostly of Arbuckle and Simpson Group rocks. Block C, covering most of the Clarita horst on the east side of the anticline, consists of the Upper Ordovician to the Lower Pennsylvanian shales. Block D, which was flown to include a deep test well site at Spears ranch, consisted of eight lines spaced at 400 meters. The HEM data are being used to more precisely locate faults, refine the lithostratigraphic units, and to map the depth and extent of shallow epikarst. The MT and AMT data revealed deep structural contacts and a transition between fresh and highly mineralized ground water between springs in the CHIC. The dc resistivity survey has greatly helped in mapping major faults both within dolomitic limestone and clastic units. Ground resistivity surveys also suggest that, in places, the faults within limestone are zones of lower resistivity and map low resistivity surficial epikarst a several meters thick. Ground penetrometer data also has been used to define the depth extent of epikarst in selected areas and the data correlate well with the dc resistivity and HEM resistivity depth sections.

  8. SUBSURFACE WELL-LOG CORRELATION OF ARSENIC-BEARING LITHOFACIES IN THE PERMIAN GARBER SANDSTONE AND WELLINGTON FORMATION, CENTRAL OKLAHOMA AQUIFER (COA), CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    The fluvial Garber Sandstone and the underlying Wellington Formation are important sources of drinking water in central Oklahoma. These formations, which make up much of the COA, consist of amalgamated sandstones with some interbedded mudstones, siltstones, and local mudstone- a...

  9. Comparison of ground-water quality in samples from selected shallow and deep wells in the central Oklahoma aquifer, 2003-2005

    USGS Publications Warehouse

    Becker, Carol J.

    2006-01-01

    The aquifer units of the Central Oklahoma aquifer underlie about 2,890 square miles of central Oklahoma and are used extensively to supply water for municipal, domestic, industrial, and agricultural needs. The Central Oklahoma aquifer also is commonly referred to as the Garber-Wellington aquifer because the Garber Sandstone and Wellington Formation yield the greatest quantities of usable water for domestic and high-capacity wells. The major water-quality concerns for the Central Oklahoma aquifer described by the U.S. Geological Survey National Water Quality Assessment Program (1987 to 1992) were elevated concentrations of nitrate nitrogen in shallow water and the occurrence of arsenic, chromium, and selenium in parts of the aquifer. The quality of water from deep public-water supply wells in the Central Oklahoma aquifer is monitored by the State of Oklahoma. The chemical quality of water from shallow domestic wells is not monitored, and, therefore, there is a concern that well owners may be unknowingly ingesting water with nitrate nitrogen, arsenic, chromium, selenium, and other chemical constituents at concentrations that are considered harmful. As a result of this concern, the Oklahoma Department of Environmental Quality and the U.S. Geological Survey collaborated on a study to sample water during June 2003 through August 2005 from 23 shallow wells (less than 200 feet in depth) and 28 deep wells (200 feet or greater in depth) completed in the bedrock aquifer units of the Central Oklahoma aquifer. The objectives of the study were to describe the chemical quality of water from shallow and deep wells and to determine if the differences in constituent concentrations are statistically significant. Water from shallow wells had significantly higher concentrations of calcium, magnesium, bicarbonate, sulfate, chloride, and nitrate nitrogen than water from deep wells. There were no significant differences between concentrations of dissolved solids, sodium, and fluoride in water from shallow and deep wells. Water from 9 shallow wells had nitrate nitrogen concentrations greater than 2 milligrams per liter, suggesting nitrogen sources at land surface have had an effect on water from these wells. Water from three shallow wells (13 percent) exceeded the nitrate nitrogen maximum contaminant level of 10 milligrams per liter in drinking water. Water from shallow wells had significantly lower concentrations of arsenic, chromium, iron, and selenium than water from deep wells, whereas, concentrations of barium, copper, manganese, and zinc were similar. Water-quality data indicate that arsenic frequently occurs in shallow ground water from the Central Oklahoma aquifer, but at low concentrations (<10 micrograms per liter). The occurrence of chromium and selenium in water from shallow wells was infrequent and at low concentrations in this study. It does not appear that the quality of water from a shallow well can be predicted based on the quality of water from a nearby deep well. The results show that in general terms, shallow ground water has significantly higher concentrations of most major ions and significantly lower concentrations of arsenic, chromium, and selenium than water from deep wells.

  10. Ground-water-quality assessment of the Central Oklahoma aquifer, Oklahoma; hydrologic, water-quality, and quality-assurance data 1987-90

    USGS Publications Warehouse

    Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.

    1992-01-01

    This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable, ranging from below the reporting level to concentrations over the Maximum Contaminant Levels for several constituents (arsenic, barium, cadmium, chromium, lead, and selenium). Radionuclide activities also were highly variable. Gross alpha radioactivity ranged from 0.1 to 210 picocuries per liter as 230thorium. Of the wells sampled, 20 percent exceeded the proposed Maximum Contaminant Level of 15 picocuries per liter for gross alpha radioactivity. Organic constituents were detected in 39 percent of the 170 wells sampled for organic constituents; in most cases concentrations were at or near the laboratory minimum reporting levels. Ten of the wells sampled for organic constituents had one or more constituents (chlordane, dieldrin, heptachlor epoxide, trichloroethylene, 1,1-dichloroethylene, 1,1,1-trichloroethane) at concentrations equal to or greater than the Maximum Contaminant Level or acceptable concentrations as suggested in the Environmental Protection Agency's Health Advisory Summaries. Quality-assurance sampling included duplicate samples, repeated samples, blanks, spikes, and blind samples. These samples proved to be essential in evaluating the accuracy of the data, particularly in the case of volatile organic constituents.

  11. OUTCROP-BASED HIGH RESOLUTION GAMMA-RAY CHARACTERIZATION OF ARSENIC-BEARING LITHOFACIES IN THE PERMIAN GARBER SANDSTONE AND WELLINGTON FORMATION, CENTRAL OKLAHOMA AQUIFER (COA). CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    The COA supplies drinking water to a number of municipalities in central Oklahoma. Two major stratigraphic units in the COA, the Garber Sandstone and Wellington Formation, contain naturally occurring arsenic that exceeds government mandated drinking-water standards (EPA, 2001). ...

  12. Hydrology of the Arbuckle Mountains area, south-central Oklahoma

    USGS Publications Warehouse

    Fairchild, Roy W.; Hanson, Ronald L.; Davis, Robert E.

    1990-01-01

    Rocks that make up the Arbuckle-Simpson aquifer crop out over ~500 mi2 in the Arbuckle Mountains province in south-central Oklahoma. The aquifer consists of limestone, dolomite, and sandstone of the Arbuckle and Simpson Groups of Late Cambrian to Middle Ordovician age and is about 5,000-9,000 ft thick. The rocks were subjected to intensive folding and faulting associated with major uplift of the area during Early to Late Pennsylvanian time.

  13. Groundwater quality and water-well characteristics in the Kickapoo Tribe of Oklahoma Jurisdictional Area, central Oklahoma, 1948--2011

    USGS Publications Warehouse

    Becker, Carol J.

    2013-01-01

    In 2012, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, compiled historical groundwater-quality data collected from 1948 to 2011 and water-well completion information in parts of Lincoln, Oklahoma, and Pottawatomie Counties in central Oklahoma to support the development of a comprehensive water-management plan for the Tribe’s jurisdictional area. In this study, water-quality data from 155 water wells, collected from 1948 to 2011, were retrieved from the U.S. Geological Survey National Water Information System database; these data include measurements of pH, specific conductance, and hardness and concentrations of the major ions, trace elements, and radionuclides that have Maximum Contaminant Levels or Secondary Maximum Contaminant Levels in public drinking-water supplies. Information about well characteristics includes ranges of well yield and well depth of private water wells in the study area and was compiled from the Oklahoma Water Resources Board Multi-Purpose Well Completion Report database. This report also shows depth to water from land surface by using shaded 30-foot contours that were created by using a geographic information system and spatial layers of a 2009 potentiometric surface (groundwater elevation) and land-surface elevation. Wells in the study area produce water from the North Canadian River alluvial and terrace aquifers, the underlying Garber Sandstone and Wellington Formation that compose the Garber–Wellington aquifer, and the Chase, Council Grove, and Admire Groups. Water quality varies substantially between the alluvial and terrace aquifers and bedrock aquifers in the study area. Water from the alluvial aquifer has relatively high concentrations of dissolved solids and generally is used for livestock only, whereas water from the terrace aquifer has low concentrations of dissolved solids and is used extensively by households in the study area. Water from the bedrock aquifer also is used extensively by households but may have high concentrations of trace elements, including uranium, in some areas where groundwater pH is above 8.0. Well yields vary and are dependent on aquifer characteristics and well-completion practices. Well yields in the unconsolidated alluvial and terrace aquifers generally are higher than yields from bedrock aquifers but are limited by the thickness and extent of these river deposits. Well yields in the alluvium and terrace aquifers commonly range from 50 to 150 gallons per minute and may exceed 300 gallons per minute, whereas well yields in the bedrock aquifers commonly range from 25 to 50 gallons per minute in the western one-third of study area (Oklahoma County) and generally less than 25 gallons per minute in the eastern two-thirds of the study area (Lincoln and Pottawatomie Counties).

  14. Analysis of regional aquifers in the central Midwest of the United States in Kansas, Nebraska, and parts of Arkansas, Colorado, Missouri, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming :summary

    USGS Publications Warehouse

    Jorgensen, Donald G.; Helgesen, J.O.; Signor, D.C.; Leonard, R.B.; Imes, J.L.; Christenson, S.C.

    1996-01-01

    Large quantities of ground water are available for use from three regional aquifer systems in the central Midwest of the United States. Parts of the lowermost aquifer contain nearly immobile brine and may be hydrologically suitable for material storage or waste disposal. Results of numerical modeling and geochemical analyses confirm general concepts of ground-water flow in the regional aquifer systems.

  15. Digital data sets that describe aquifer characteristics of the Enid isolated terrace aquifer in northwestern Oklahoma

    USGS Publications Warehouse

    Becker, C.J.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files The data sets in this report include digitized aquifer boundaries and maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the Enid isolated terrace aquifer in northwestern Oklahoma. The Enid isolated terrace aquifer covers approximately 82 square miles and supplies water for irrigation, domestic, municipal, and industrial use for the City of Enid and western Garfield County. The Quaternary-age Enid isolated terrace aquifer is composed of terrace deposits that consist of discontinuous layers of clay, sandy clay, sand, and gravel. The aquifer is unconfined and is bounded by the underlying Permian-age Hennessey Group on the east and the Cedar Hills Sandstone Formation of the Permian-age El Reno Group on the west. The Cedar Hills Sandstone Formation fills a channel beneath the thickest section of the Enid isolated terrace aquifer in the midwestern part of the aquifer. All of the data sets were digitized and created from information and maps in a ground-water modeling thesis and report of the Enid isolated terrace aquifer. The maps digitized were published at a scale of 1:62,500. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  16. Parasitism of aphids in canola fields in central Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter canola, Brassica napus L., production in Oklahoma has increased from essentially 0 ha in 2001 to 40,500 ha in 2011, and acreage is expected to continue to increase. Three aphid species typically infest canola fields in central Oklahoma, the turnip aphid Lypaphis erysimi (Kaltenbach), the cab...

  17. Microgravity monitoring of recharge in a karst aquifer in southwestern Oklahoma

    SciTech Connect

    Young, R.A.; Ahern, J.L. . School of Geology and Geophysics)

    1993-02-01

    Natural and artificial recharge of a shallow karst aquifer in Harmon County, Oklahoma, is being studied by the Oklahoma Water Resources Board and the US Bureau of Reclamation. The aquifer, the Permian Blaine Formation, consists of interbedded gypsum, shale, and dolomite. It is the only significant fresh water aquifer developed in evaporite rocks in the USA. The Blaine Formation forms major cave systems locally and generally consists of an intricate network of caves, cavities, sinks, and dissolution-collapse structures affecting the five gypsum bed subunits. At the recharge-demonstration sites, the Blaine is roughly 200 feet thick. At each site, observations wells cluster about a central recharge well which injects rainfall runoff at the depth of maximum void space (approximately 100 to 200 feet) determining from drilling. Annual variation in water level is up to 50 feet. Local storms can cause a rise of several tens of feet in a few days and a gradual decrease over several weeks. This may lead to a regional increase in water table elevation near the recharge well ( mounding'), and localized filling of voids in the gypsum. Both of these effects are expected to cause changes in the local gravity field following a heavy rainfall. For example, the filling of a 5 meter radius cylindrical void at a depth of 25 meters would produce a 46 microgal anomaly, easily detectable by a microgravity meter after instrumental and tidal drift corrections are made. To look for these changes, microgravity profiles will be conducted across the recharge zones. If correlation of gravity with measured water levels and recharge volume is demonstrated, microgravity surveys may prove useful in siting recharge wells from surface measurements alone.

  18. Digital map of hydraulic conductivity for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, J.R.; Becker, M.F.

    1998-01-01

    This digital data set consists of hydraulic conductivity contours and polygons for the High Plains aquifer in the central United States. The High Plains aquifer extends from south of 32 degrees to almost 45 degrees north latitude and from 96 degrees 30 minutes to almost 104 degrees west longitude. The area covers 174,000 square miles and is present in Texas, Oklahoma, New Mexico, Kansas, Colorado, Nebraska, Wyoming, and South Dakota.

  19. Saturated thickness of the High Plains regional aquifer in 1980, northwestern Oklahoma

    USGS Publications Warehouse

    Havens, John S.

    1982-01-01

    During 1978, the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop computer models for prediction of aquifer response to alternative changes in ground-water management (Weeks, 1978). This report is one of a series presenting hydrologic information of the High Plains aquifer in Oklahoma. The 1980 saturated thickness of the High Plains regional aquifer in Oklahoma is shown for the eastern area (plate 1), consisting of Harper, Ellis, Woodward, Dewey, and Roger Mills Counties, and for the Panhandle area (plate 2), consisting of Cimarron, Texas, and Beaver Counties.

  20. A preliminary appraisal of the Garber-Wellington Aquifer, southern Logan and northern Oklahoma counties, Oklahoma

    USGS Publications Warehouse

    Carr, Jerry E.; Marcher, Melvin V.

    1977-01-01

    The Garber-Wellington aquifer, which dips westward at 30 to 40 feet per mile, consists of about 900 feet of interbedded sandstone, shale, and siltstone. Sandstone comprises 35 to 75 percent of the aquifer and averages about 50 percent. Water-table conditions generally exist in the upper 200 feet in the outcrop area of the aquifer; semi-artesian or artesian conditions exist below a depth of 200 feet and beneath rocks of the Hennessey Group (predominantly shale) where the aquifer is fully saturated. Water containing more than 1,000 milligrams per liter dissolved solids occurs at various depths through the area. The altitude of the base of fresh water ranges from 250 feet above sea level in the south-central part of the area to 950 feet in the northwestern part. The thickness of the fresh-water zone ranges from less than 150 feet in the northern part of the area to about 850 feet in the southern part. The total amount of water stored in the fresh-water zone is estimated to be 21 million acre-feet based on specific yield of 0.20. Minimum recharge to the aquifer in 1975 is estimated to be 190 acre-feet per square mile or about 10 percent of the annual precipitation. Total minimum recharge to the aquifer in the study area in 1975 is estimated to be 129,000 acre-feet. Streams in the area are the principal means of ground-water discharge; the amount of discharge is essentially the same as recharge. The amount of groundwater used for municipal and rural water supply in 1975 is estimated to have been 5,000 acre-feet; a similar amount may have been used for industrial purposes. As a result of pumping, the potentiometric surface in 1975 had been lowered about 200 feet in the vicinity of Edmond and about 100 feet in the vicinity of Nichols Hills. Chemical analyses of water from the aquifer indicates that hardness is greater in the upper part of the aquifer than in the lower part, and that sulfate, chloride, and dissolved solids increase with depth. Reported yields of wells more than 250 feet deep range from 70 to 475 gallons per minute and average 240 gallons per minute. Potential well yields range from 225 gallons per minute when the fresh-water zone is 350 feet thick to about 550 gallons per minute where the fresh water zone is 850 feet thick. These estimates of potential yield are based on an available drawdown of half the thickness of the fresh-water zone and a specific capacity of 1.3 gallons per minute per foot. Intrusion of saline water into the fresh-water zone is a potential threat to water quality in the aquifer if the pressure head in the fresh-water zone is reduced sufficiently to allow upconing of saline water. One way to avoid the problem of upconing is by steady pumping at low rates from widely spaced wells; however, information required to determine pumping rates and well spacing is not available. For proper aquifer management the distribution of wells and rates of withdrawals should be designed to capture maximum recharge to the ground-water system. This may be accomplished by developing regional ground-water gradients that are sufficiently large to move water to pumpage centers but not so steep as to cause upconing of saline water or excessive water-level declines.

  1. Generalized altitude and configuration of the base of the High Plains regional aquifer, northwestern Oklahoma

    USGS Publications Warehouse

    Havens, John S.

    1981-01-01

    During 1978, the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop computer models for prediction of aquifer response to alternative changes in ground-water management (Weeks, 1978). This report is one of a series presenting hydrologic information of the High Plains aquifer in Oklahoma. This report consists of two maps showing the altitude and configuration of the eroded pre-Ogallala bedrock surface (sheets 1 and 2) that forms the base of the aquifer. Bedrock slopes generally from west to east and is composed of rocks of Permian, Triassic-Jurassic, and Cretaceous age. The subcrop extent of these rocks is shown by Morton (1973) for Oklahoma and by Weeks and Gutentag (1981) for the entire High Plains study area. Altitudes of the aquifer base were determined from drillers' logs provided by the Oklahoma Water Resources Board and from published and unpublished information in the files of the U.S. Geological Survey. Where data were sparse, the total well depth was used as the aquifer base under the assumption that wells generally are not drilled very deep into non-water yielding bedrock.

  2. Altitude and configuration of the 1980 water table in the High Plains regional aquifer, northwestern Oklahoma

    USGS Publications Warehouse

    Havens, John S.

    1982-01-01

    During 1978, the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop computer models for prediction of aquifer response to alternative changes in ground-water management (Weeks, 1978). This report is one of a series presenting hydrologic information of the High Plains aquifer in Oklahoma. The altitude and configuration of the water table are shown for the eastern area, consisting of Harper, Ellis, Woodward, Dewey, and Roger Mills Counties (sheet 1), and for the Panhandle area, consisting of Cimarron, Texas, and Beaver Counties (sheet 2). Water levels were measured in January, February, and March 1980 by the Oklahoma Water Resources Board.

  3. Records of wells and water quality for the Garber-Wellington Aquifer, northern Oklahoma and southern Logan Counties, Oklahoma

    USGS Publications Warehouse

    Carr, Jerry E.; Havens, John S.

    1976-01-01

    The U.S. Geological Survey has collected data on Oklahoma's ground-water resources since 1934. Most of these data were collected as part of specific ground-water studies conducted in cooperation with various Federal, State, and local agencies. In 1972, at the request of the U.S. Bureau of Reclamation, the Geological Survey undertook a study of the Garber-Wellington aquifer in northern Oklahoma and southern Logan Counties. As a part of this project, records of about 120 wells were collected and 12 samples of ground water from the aquifer were analyzed in the laboratories of the Geological Survey; these records are included in this report. In addition, records of about 302 wells and analyses of 60 water samples were taken from a report by Wood and Burton (1966) and from the files of the Geological Survey. Also included in this report are selected references for those desiring more information on the area's ground-water resources. The stratigraphic nomenclature and age determinations used in this report are those accepted by the Oklahoma Geological Survey and do not necessarily agree with those of the U.S. Geological Survey. Acknowledgment is extended to the many hundred of individuals who have provided the data compiled in this report.

  4. Digital map of aquifer boundary for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Qi, Sharon

    2010-01-01

    This digital data set represents the extent of the High Plains aquifer in the central United States. The extent of the High Plains aquifer covers 174,000 square miles in eight states: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This data set represents a compilation of information from digital and paper sources and personal communication. This boundary is an update to the boundary published in U.S. Geological Survey Professional Paper 1400-B, and this report supersedes Open-File Report 99-267. The purpose of this data set is to refine and update the extent of the High Plains aquifer based on currently available information. This data set represents a compilation of arcs from a variety of sources and scales that represent the 174,000 square-mile extent of the High Plains aquifer within the eight states. Where updated information was not available, the original boundary extent defined by OFR 99-267 was retained. The citations for the sources in each State are listed in the 00README.txt file. The boundary also contains internal polygons, or 'islands', that represent the areas within the aquifer boundary where the aquifer is not present due to erosion or non-deposition. The datasets that pertain to this report can be found on the U.S. Geological Survey's NSDI (National Spatial Data Infrastructure) Node, the links are provided on the sidebar.

  5. Water type and concentration of dissolved solids, chloride, and sulfate in water from the Ozark aquifer in Missouri, Arkansas, Kansas, and Oklahoma

    USGS Publications Warehouse

    Imes, Jeffrey L.; Davis, J.V.

    1991-01-01

    The Ozark aquifer is a thick sequence of water-bearing dolostone, limestone, and sandstone of latest Cambrian through Middle Devonian age that is widely used as a source of water throughout the Ozark Plateaus province (index map). The Ozark aquifer is the largest of three aquifers that form part of the Ozark Plateaus aquifer system. The aquifer was studied as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA; Jorgensen and Signor, 1981), a study of regional aquifer systems in the midcontinent United States that includes parts of 10States. Because of its significance as a source of freshwater in parts of Missouri, Arkansas, Kansas, and Oklahoma, a subregional project was established to investigate the Ozark Plateaus aquifer system in more detail than the regional study could provide.The geologic and hydrologic relation between the Ozark Plateaus aquifer system and other regional aquifer systems of the Midwest is presented in Jorgensen and others (in press). The relation of the Ozark aquifer to the Ozark Plateaus aquifer system is explained in Imes [in press (a)]. A companion publication, Imes [1990 (b)], contains contour maps of the altitude of the top, thickness, and potentiometric surface of the Ozark aquifer. This report contains maps that show water type and concentrations of dissolved solids, chloride, and sulfate in water from the Ozark aquifer. Most of the data from which these maps are compiled is stored in the CMRASA hydrochemical data base (R.B. Leonard, U.S. Geological Survey, written commun., 1986). Data for Oklahoma were also taken from data published by Havens (1978). The maps in this report on the Ozark subregion may contain small differences from maps in other CMRASA publications because the criteria for data selection may be different and the subregional maps may contain additional data. However, regional trends in these maps are consistent with other maps published as part of the regional project.

  6. CHARACTERIZATION OF SUBSURFACE BACTERIA ASSOCIATED WITH TWO SHALLOW AQUIFERS IN OKLAHOMA

    EPA Science Inventory

    The bacterial microflora of two shallow aquifers in Oklahoma was characterized by direct observation with light (LM) and electron microscopy (EM), by plating, and by examination of colony morphology and distribution. Total cell counts varied only slightly from sample to sample, w...

  7. Aquifer Tests and Characterization of Transmissivity, Ada-Vamoosa Aquifer on the Osage Reservation, Osage County, Oklahoma, 2006

    USGS Publications Warehouse

    Abbott, Marvin M.; DeHay, Kelli

    2008-01-01

    The Ada-Vamoosa aquifer of northeastern Oklahoma is a sedimentary bedrock aquifer of Pennsylvanian age that crops out over 800 square miles of the Osage Reservation. The Osage Nation needed additional information regarding the production potential of the aquifer to aid them in future development planning. To address this need, the U.S. Geological Survey, in cooperation with the Osage Nation, conducted a study of aquifer properties in the Ada-Vamoosa aquifer. This report presents the results of the aquifer tests from 20 wells in the Ada-Vamoosa aquifer and one well in a minor aquifer east of the Ada-Vamoosa outcrop on the Osage Reservation. Well information for 17 of the 21 wells in this report was obtained from the Indian Health Service. Data collected by the U.S. Geological Survey during this investigation are pumping well data from four domestic wells collected during the summer of 2006. Transmissivity values were calculated from well pumping data or were estimated from specific capacity values depending on the reliability of the data. The estimated transmissivity values are 1.1 to 4.3 times greater than the calculated transmissivity values. The calculated and estimated transmissivity values range from 5 to 1,000 feet squared per day.

  8. Digital Map of Saturated Thickness in the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1996 to 1997

    USGS Publications Warehouse

    Fischer, Brian C.; Kollasch, Keith M.; McGuire, Virginia L.

    2000-01-01

    This digital data set consists of saturated thickness contours for the High Plains aquifer in Central United States, 1996-97. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This data set was based on 10,085 water-level measurements, 49 stream elevations, (March 1997) and 10,036 water-level elevations from wells (1,370 from 1996 and 8,666 from 1997) and the base of aquifer value for each measurement location. The saturated thickness at each measurement location was determined by subtracting the water-level elevation from the base of aquifer at that location.

  9. Water type and concentration of dissolved solids, chloride, and sulfate in water from the St. Francois aquifer in Missouri, Arkansas, Kansas, and Oklahoma

    USGS Publications Warehouse

    Imes, Jeffrey L.; Davis, J.V.

    1990-01-01

    The St. Francois aquifer, the lowermost of three regional aquifers that form part of the Ozark Plateaus aquifer system, is composed of water-bearing sandstone and dolostone of Late Cambrian age. The aquifer was studied as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA, Jorgensen and Signor, 1981), a study of regional aquifer systems in the midcontinent United States that includes parts of 10 States. Because of its significance as a source of freshwater in and adjacent to the Ozark Plateaus province (index map) of Missouri, Arkansas, Kansas, and Oklahoma, a subregional project was established to investigate the Ozark Plateaus aquifer system in more detail than the regional study could provide.The geologic and hydrologic relation between the Ozark Plateaus aquifer system and other regional aquifer systems of the Midwest is presented in Jorgensen an others (in press). The relation of the St. Francois aquifer to the Ozark Plateaus aquifer system is explained in Imes [in press (a)]. A companion publication, Imes [in press (b)], contains contour maps of the altitude of the top, thickness, and potentiometric surface of the St. Francois aquifer. This report contains maps that show water type and concentration of dissolved solids, chloride, and sulfate in water from the St. Francois aquifer. Most of the data from which these maps are compiled is stored in the CMRASA hydrochemical data base (R.B. Leonard, U.S. Geological Survey, written commun., 1986). Only water quality analyses that ionically balanced to within 10 percent are included in this report. Because few water wells are completed in the St. Francois aquifer beyond the vicinity of the St. Francois Mountains in southeastern Missouri (index map), water-quality data, with few exceptions, are limited to a relatively small area near the outcrop of the aquifer.

  10. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma...

  11. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma...

  12. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma...

  13. 40 CFR 81.47 - Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.47 Central Oklahoma Intrastate Air Quality Control Region. The Metropolitan Oklahoma Intrastate Air Quality Control Region has been renamed the Central Oklahoma...

  14. Digital map of base of aquifer for High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1998-01-01

    This report contains digital data and accompanying documentation for base of aquifer contours of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The original data are from the 1:1,000,000-scale mylar source map for Gutentag and others (1984).

  15. Helicopter electromagnetic and magnetic geophysical survey data, Hunton anticline, south-central Oklahoma

    USGS Publications Warehouse

    Smith, Bruce D.; Smith, David V.; Deszcz-Pan, Maryla; Blome, Charles D.; Hill, Patricia

    2011-01-01

    This report is a digital data release for multiple geophysical surveys conducted in the Hunton anticline area of south-central Oklahoma. The helicopter electromagnetic and magnetic surveys were flown on March 16–17, 2007, in four areas of the Hunton anticline in south-central Oklahoma. The objective of this project is to improve the understanding of the geohydrologic framework of the Arbuckle-Simpson aquifer. The electromagnetic sensor for the helicopter electromagnetic survey consisted of six different transmitter-receiver orientations that measured the earth's electrical response at six distinct frequencies from approximately 500 Hertz to approximately 115,000 Hertz. The electromagnetic measurements were converted to electrical resistivity values, which were gridded and plotted on georeferenced maps. The map from each frequency represents a different depth of investigation for each area. The range of subsurface investigation is comparable to the depth of shallow groundwater. The four areas selected for the helicopter electromagnetic study, blocks A–D, have different geologic and hydrologic settings. Geophysical and hydrologic information from U.S. Geological Survey studies are being used by modelers and resource managers to develop groundwater resource plans for the Arbuckle-Simpson aquifer.

  16. Numerical simulation of the High Plains regional aquifer, northwestern Oklahoma

    USGS Publications Warehouse

    Havens, J.S.; Christenson, S.C.

    1984-01-01

    The High Plains aquifer consists of the Tertiary Ogallala Formation and overlying Quaternary alluvium and terrace deposits together with parts of underlying rocks. Before extensive irrigation in the 1960's, recharge from precipitation was balanced by natural discharge. Baseflow was estimated as approximately 118 cubic feet per second in 1980. A finite-difference digital model simulated flow in the aquifer. Recharge was adjusted so that 1980 baseflow was 118 cubic feet per second. Recharge in the eastern half of the modeled area was 0.45 inch per year and one-half this value in the western half. Three hydraulic conductivity zones were used: 19.3 feet per day in the east; 16.2 feet per day in the center; and 8.28 feet per day in the west. A specific yield of 14.7 percent was used. The calibrated model gave a mean difference between predevelopment modeled and measured heads of -0.044 foot. Using 1980 pumping rates, the model was used to predict 1993 and 2020 water in storage and saturated thickness. The calculated water in storage , in million acre-feet, in 1941 (predevelopment) was 135.2; in 1980, 121.9; in 1993, 112.7; and in 2020, 96.2. (USGS)

  17. Variable seismic response to fluid injection in central Oklahoma

    NASA Astrophysics Data System (ADS)

    Keranen, K. M.; Hogan, C.; Savage, H. M.; Abers, G. A.; van der Elst, N.

    2013-12-01

    Seismicity in Oklahoma since 2009 has been concentrated in the central portion of the state, in the areas of Jones, Prague, and Luther. These three regions account for ~75% of earthquakes in the 2009-2013 Oklahoma Geological Survey catalog. A swarm in the Jones region began in late 2008, with a maximum magnitude of 4.0, and activity continuing to the present. After relocation, the initially diffuse earthquakes in the Jones swarm delineate multiple subparallel faults. The Wilzetta fault zone ruptured in the Prague region in 2010 and again in 2011, with magnitudes up to Mw5.7, and the Luther region experienced two earthquakes of M4.4 and M4.2, with related aftershocks, in 2013. The earthquakes near Prague have previously been linked to wastewater disposal; here we show that the earthquakes near Jones and Luther may also be induced by deep disposal based on the upsurge in seismicity in central Oklahoma coupled with local relationships to pumping and reservoir structure. The timing of each sequence with respect to injection and the distribution of seismic activity differs, highlighting the variability in seismic response to fluid injection related to local permeability structure.

  18. Altitude and configuration of the predevelopment water table in the High Plains regional aquifer, northwestern Oklahoma

    USGS Publications Warehouse

    Havens, John S.

    1982-01-01

    During 1978, the U.S. Geological Survey began a 5-year study of the High Plains regional aquifer system to provide hydrologic information for evaluation of the effects of long-term development of the aquifer and to develop computer models for prediction of aquifer response to alternative changes in ground-water management (Weeks, 1978). This report is one of a series presenting hydrologic information of the High Plains aquifer in Oklahoma. The altitude and configuration of the water table are shown for the eastern area (sheet 1) and for the Panhandle area (sheet 2). In the eastern area, consisting of Harper, Ellis, Woodward, Dewey, and Roger Mills Counties, water levels measured from the 1950's to the 1970's represent predevelopment conditions and were obtained from published and unpublished data in the files of the U.S. Geological Survey. In the Panhandle, predevelopment contours were based on measurements made from 1937 to 1940. Some water levels in Beaver County were measured as late as 1959 in areas where significant development had not occurred previously.

  19. Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A report on the research activities at the USDA-ARS, Plant Science Research Laboratory in Stillwater, Oklahoma, were compiled for WERA-066 Meeting that was held in Ft. Collins, Colorado, February 13, 2008. Research presentations included barley breeding research, sorghum breeding research, wheat br...

  20. Aquifer characteristics, water availability, and water quality of the Quaternary aquifer, Osage County, northeastern Oklahoma, 2001-2002

    USGS Publications Warehouse

    Mashburn, Shana L.; Cope, Caleb C.; Abbott, Marvin M.

    2003-01-01

    Additional sources of water are needed on the Osage Reservation for future growth and development. The Quaternary aquifer along the Arkansas River in the Osage Reservation may represent a substantial water resource, but limited amounts of hydrogeologic data were available for the aquifer. The study area is about 116 square miles of the Quaternary aquifer in the Arkansas River valley and the nearby upland areas along the Osage Reservation. The study area included the Arkansas River reach downstream from Kaw Lake near Ponca City, Oklahoma to upstream from Keystone Lake near Cleveland, Oklahoma. Electrical conductivity logs were produced for 103 test holes. Water levels were determined for 49 test holes, and 105 water samples were collected for water-quality field analyses at 46 test holes. Water-quality data included field measurements of specific conductance, pH, water temperature, dissolved oxygen, and nitrate (nitrite plus nitrate as nitrogen). Sediment cores were extracted from 20 of the 103 test holes. The Quaternary aquifer consists of alluvial and terrace deposits of sand, silt, clay, and gravel. The measured thickness of the alluvium ranged from 13.7 to 49.8 feet. The measured thickness of the terrace sediments ranged from 7 to 93.8 feet. The saturated thickness of all sediments ranged from 0 to 38.2 feet with a median of 24.8 feet. The weighted-mean grain size for cores from the alluvium ranged from 3.69 to 0.64 f, (0.08- 0.64 millimeter), and ranged from 4.02 to 2.01 f (0.06-0.25 millimeter) for the cores from terrace deposits. The mean of the weighted-mean grain sizes for cores from the alluvium was 1.67 f (0.31 millimeter), and the terrace deposits was 2.73 f (0.15 millimeter). The hydraulic conductivity calculated from grain size of the alluvium ranged from 2.9 to 6,000 feet per day and of the terrace deposits ranged from 2.9 to 430 feet per day. The calculated transmissivity of the alluvium ranged from 2,000 to 26,000 feet squared per day with a median of 5,100 feet squared per day. Water in storage in the alluvium was estimated to be approximately 200,000 acre-feet. The amount of water annually recharging the aquifer was estimated to be approximately 4,800 acre-feet. Specific conductance for all water samples ranged from 161 to 6,650 microsiemens per centimeter. Median specific conductance for the alluvium was 683 microsiemens per centimeter and for the terrace deposits was 263 microsiemens per centimeter. Dissolved-solids concentrations, estimated from specific conductance, for water samples from the aquifer ranged from 88 to 3,658 milligrams per liter. Estimated median dissolved- solids concentration for the alluvium was 376 milligrams per liter and for the terrace deposits was 145 milligrams per liter. More than half of the samples from the Quaternary aquifer were estimated to contain less than 500 milligrams per liter dissolved solids. Field-screened nitrate concentrations for the sampling in December 2001-August 2002 ranged from 0 to 15 milligrams per liter. The field-screened nitrate concentrations for the second sampling in September 2002 were less than corresponding laboratory reported values.

  1. Summary of U.S. Geological Survey studies conducted in cooperation with the Citizen Potawatomi Nation, central Oklahoma, 2011–14

    USGS Publications Warehouse

    Andrews, William J.; Becker, Carol J.; Ryter, Derek W.; Smith, S. Jerrod

    2016-01-01

    Numerical groundwater-flow models were created to characterize flow systems in aquifers underlying this study area and areas of particular interest within the study area. Those models were used to estimate sustainable groundwater yields from parts of the North Canadian River alluvial aquifer, characterize groundwater/surface-water interactions, and estimate the effects of a 10-year simulated drought on streamflows and water levels in alluvial and bedrock aquifers. Pumping of wells at the Iron Horse Industrial Park was estimated to cause negligible infiltration of water from the adjoining North Canadian River. A 10-year simulated drought of 50 percent of normal recharge was tested for the period 1990–2000. For this period, the total amount of groundwater in storage was estimated to decrease by 8.6 percent in the North Canadian River alluvial aquifer and approximately 0.2 percent in the Central Oklahoma aquifer, and groundwater flow to streams was estimated to decrease by 28–37 percent. This volume of groundwater loss showed that the Central Oklahoma aquifer is a bedrock aquifer that has relatively low rates of recharge from the land surface. The simulated drought decreased simulated streamflow, composed of base flow, in the North Canadian River at Shawnee, Okla., which did not recover to predrought conditions until the relatively wet year of 2007 after the simulated drought period.

  2. Digital map of aquifer boundary for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for aquifer boundaries for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was compiled from a digital coverage that was created for publication of paper maps in McGrath and Dugan (1993, Water-level changes in the High Plains aquifer -- predevelopment to 1991: U.S. Geological Survey Water-Resources Investigations Report 93-4088, 53 p.) The data are not intended for use at scales larger than 1:1,000,000.

  3. Recharge processes in an alluvial aquifer riparian zone, Norman Landfill, Norman, Oklahoma, 1998-2000

    USGS Publications Warehouse

    Scholl, Martha; Christenson, Scott; Cozzarelli, Isabelle; Ferree, Dale; Jaeshke, Jeanne

    2005-01-01

    Analyses of stable isotope profiles (d2H and d18O) in the saturated zone, combined with water-table fluctuations, gave a comprehensive picture of recharge processes in an alluvial aquifer riparian zone. At the Norman Landfill U.S. Geological Survey Toxic Substances Hydrology research site in Norman, Oklahoma, recharge to the aquifer appears to drive biodegradation, contributing fresh supplies of electron acceptors for the attenuation of leachate compounds from the landfill. Quantifying recharge is a first step in studying this process in detail. Both chemical and physical methods were used to estimate recharge. Chemical methods included measuring the increase in recharge water in the saturated zone, as defined by isotopic signature, specific conductance or chloride measurements; and infiltration rate estimates using storm event isotopic signatures. Physical methods included measurement of water-table rise after individual rain events and on an approximately monthly time scale. Evapotranspiration rates were estimated using diurnal watertable fluctuations; outflux of water from the alluvial aquifer during the growing season had a large effect on net recharge at the site. Evaporation and methanogenesis gave unique isotopic signatures to different sources of water at the site, allowing the distinction of recharge using the offset of the isotopic signature from the local meteoric water line. The downward movement of water from large, isotopically depleted rain events in the saturated zone yielded recharge rate estimates (2.2 - 3.3 mm/day), and rates also were determined by observing changes in thickness of the layer of infiltrated recharge water at the top of the saturated zone (1.5 - 1.6 mm/day). Recharge measured over 2 years (1998-2000) in two locations at the site averaged 37 percent of rainfall, however, part of this water had only a short residence time in the aquifer. Isotopes showed recharge water entering the ground-water system in winter and spring, then being removed during the growing season by phreatophyte transpiration. Recharge timing was variable over the course of the study; July and August were the only months that had no recharge in both years. Recharge to the aquifer from the slough (wetland pond) was estimated at one location using the isotopic signature of water affected by evaporation. Recharge was correlated with the rainfall amount over the period of estimation, suggesting that recharge from the slough to the downgradient aquifer was an episodic process, corresponding to elevated water levels in the slough after large rain events.

  4. Geohydrology of the alluvial and terrace deposits of the North Canadian River from Oklahoma City to Eufaula Lake, central Oklahoma

    USGS Publications Warehouse

    Havens, J.S.

    1989-01-01

    This investigation was undertaken to describe the geohydrology of the alluvial and terrace deposits along the North Canadian River between Lake Overholser and Eufaula Lake, an area of about 1,835 square miles, and to determine the maximum annual yield of ground water. A 1982 water-level map of the alluvial and terrace aquifer was prepared using field data and published records. Data from test holes and other data from the files of the U.S. Geological Survey and the Oklahoma Water Resources Board were used to establish the approximate thickness of the alluvial and terrace deposits. The North Canadian River from Lake Overholser, near Oklahoma City, to Eufaula Lake is paralleled by a 2- to 3-mile wide band of alluvium. Scattered terrace deposits on either side of the alluvium reach an extreme width of 8 miles. Rocks of Permian age bound the alluvial and terrace deposits from the west to the midpoint of the study area; Pennsylvanian rocks bound the alluvial and terrace deposits from that point eastward. Three major aquifers are present in the study area: the alluvial and terrace aquifer, consisting of alluvium and terrace deposits of Quaternary age in a narrow band on either side of the North Canadian River; the Garber-Wellington aquifer of Permian age, consisting of an upper unconfined zone and a lower confined zone separated by relatively impermeable shales; and the Ada-Vamoosa aquifer of Pennsylvanian age. At locations were the alluvial and terrace aquifer overlies either of the other aquifers, there is hydraulic continuity between the alluvial and terrace aquifer and the other aquifers, and water levels are the same. Most large-scale municipal and industrial pumping from the Garber-Wellington aquifer is from the lower zone and has little discernible effect upon the alluvial and terrace aquifer. The total estimated base flow of the North Canadian River for the studied reach is 264 cubic feet per second. Evapotranspiration from the basin in August is about 60 cubic feet per second for the North Canadian River from Lake Overholser to a measuring station above Eufaula Lake. Estimated recharge rates to the alluvial and terrace aquifer in the basin range from 1.7 inches at the west edge of the study area to 7.0 inches at the east edge. Total permitted withdrawal from the aquifer, according to records of the Oklahoma Water Resources Board, ranged from 2,107 acre-feet per year in 1942 to about 21,415 acre-feet per year in 1982. Simulations of the alluvial and terrace aquifer from Lake Overholser to Eufaula Lake were made using a finite-difference model developed by McDonald and Harbaugh (1984). The area of the aquifers was subdivided into a finite-difference grid having 30 rows and 57 columns with cells measuring 1 mile in the north-south direction and 2 miles in the east-west direction. The model was calibrated in two steps: A steady-state calibration simulated head distribution prior to extensive pumping of the aquifer in 1942, and a transient calibration simulated head distribution after extensive pumpage. The final horizontal hydraulic conductivity used for the alluvial and terrace aquifer was 0.0036 feet per second (310 feet per day) at all locations. The recharge rate for the alluvial and terrace aquifer ranged from 1.7 inch per year in the west to 7.0 inches per year in the east, and averaged about 3.3 inches per year. A specific yield of 15 percent was used for the transient simulation. Permitted pumpage for 1942 through 1982 was used in the digital model to estimate the annual volume of water in storage in the alluvial and terrace aquifer for the years for this time period. The 1982 permitted pumpage rates were used for projections for 1983 to 2020. The estimated volume of water in storage was 1,940,000 acre-feet in 1982. Because the estimated recharge rate is equal to the allowed pumpage rate in 1982, the projected volume of water in storage in both 1993 and 2020 was 1,890,000 acre-feet.

  5. Aquifer tests in west-central Florida, 1952-76

    USGS Publications Warehouse

    Wolansky, R.M.; Corral, M.A.

    1985-01-01

    The ground-water system in west-central Florida is composed of, in descending order, the surficial (usually unconfined) aquifer, intermediate aquifer and confining beds, Floridan aquifer, and lower confining bed. Aquifer test data were analyzed to determine transmissivity, storage coefficient, leakance, and vertical hydraulic conductivity of the aquifers and confining beds. Transmissivities obtained from 29 aquifer tests range from 1,900 to 920,000 feet squared per day for parts of the Floridan aquifer, about 740 to 7,800 feet squared per day for the intermediate aquifer, and about 220 to 600 feet squared per day for the surficial aquifer. Storage coefficients obtained from aquifer tests range from 0.00013 to 0.0015 for the Floridan aquifer, 0.00005 to 0.00017 for the intermediate aquifer, and 0.004 to 0.02 for the surficial aquifer. The values of leakance obtained from aquifer tests range from 0.00005 to 0.009 feet per day per foot for the Floridan and 0.0002 to 0.0007 feet per day per foot for the intermediate aquifer. (USGS)

  6. Steady-state simulation of ground-water flow in the Rush Springs Aquifer, western Oklahoma

    USGS Publications Warehouse

    Becker, M.F.

    1998-01-01

    A simplified steady-state ground-water flow model was prepared for the Rush Springs aquifer in western Oklahoma. A 3-kilometer square grid was established over the area containing two layers with 674 active nodes simulated in the model. The steady-state model simulation used a mean recharge rate of 3.05 x 10-4 feet per day and a hydraulic conductivity range from 0.8 to 10 feet per day. The error at each node in the model is defined as the difference between the measured and simulated water levels.The arithmetic mean error for 170 of the 674 active nodes was -0.11 feet, the absolute value mean error was 7.55 feet, and the standard deviation of the error was 10.21 feet. A net simulated recharge of 231 cubic feet per second is balanced by a discharge to drains and seeps of 190.6 cubic feet per second about 82 percent of the total recharge. Discharge to the main stem of the Washita River is about 41 cubic feet per second about 18 percent of the recharge.

  7. Gravity investigations of the Chickasaw National Recreation Area, south-central Oklahoma

    USGS Publications Warehouse

    Scheirer, Daniel S.; Scheirer, Allegra Hosford

    2006-01-01

    The geological configuration of the Arbuckle Uplift in the vicinity of Chickasaw National Recreation Area in south-central Oklahoma plays a governing role in the distribution of fresh and mineral springs within the park and in the existence of artesian wells in and around the park. A confining layer of well-cemented conglomerate lies immediately below the surface of the recreation area, and groundwater migrates from an area of meteoric recharge where rocks of the Arbuckle-Simpson Aquifer crop out as close as two kilometers to the east of the park. Prominent, Pennsylvanian-aged faults are exposed in the aquifer outcrop, and two of the fault traces project beneath the conglomerate cover toward two groups of springs within the northern section of the park. We conducted gravity fieldwork and analysis to investigate the subsurface extensions of these major faults beneath Chickasaw National Recreation Area. By defining gravity signatures of the faults where they are exposed, we infer that the Sulphur and Mill Creek Faults bend to the south-west where they are buried. The South Sulphur Fault may project westward linearly if it juxtaposes rocks that have a density contrast opposite that of that fault's density configuration in the Sulphur Syncline area. The Sulphur Syncline, whose eastern extent is exposed in the outcrop area of the Arbuckle-Simpson Aquifer, does not appear to extend beneath Chickasaw National Recreation Area nor the adjacent City of Sulphur. The South Sulphur Fault dips steeply northward, and its normal sense of offset suggests that the Sulphur Syncline is part of a graben. The Mill Creek Fault dips vertically, and the Reagan Fault dips southward, consistent with its being mapped as a thrust fault. The Sulphur and Mill Creek Synclines may have formed as pull-apart basins in a left-lateral, left-stepping strike-slip environment. The character of the gravity field of Chickasaw National Recreation Area is different from the lineated gravity field in the area of Arbuckle-Simpson Aquifer outcrop. This change in character is not due to the presence of the overlying conglomerate layer, which is quite thin (<100 m) in the area of the park with the springs. The presence of relatively high-density Precambrian basement rocks in a broader region suggests that significant gravity anomalies may arise from variations in basement topography. Understanding of the geological configuration of Chickasaw National Recreation Area can be improved by expanding the study area and by investigating complementary geophysical and borehole constraints of the subsurface.

  8. Risk across disciplines: An interdisciplinary examination of water and drought risk in South-Central Oklahoma

    NASA Astrophysics Data System (ADS)

    Lazrus, H.; Paimazumder, D.; Towler, E.; McPherson, R. A.

    2013-12-01

    Drought is a challenge faced by communities across the United States, exacerbated by growing demands on water resources and climate variability and change. The Arbuckle-Simpson Aquifer (ASA) in south-central Oklahoma, situated in the heart of the Chickasaw Nation, is the state's only sole-source groundwater basin and sustains the Blue River, the state's only free-flowing river. The recent comprehensive hydrological studies of the aquifer indicate the need for sustainable management of the amount of water extracted. However, the question of how to deal with that management in the face of increasing drought vulnerability, diverse demands, and climate variability and change remains. Water management carries a further imperative to be inclusive of tribal and non-tribal interests. To examine this question, we are conducting an investigation of drought risk from multiple disciplines. Anthropological data comes from stakeholder interviews that were designed to investigate conflict over water management by understanding how people perceive risk differently based on different opinions about the structure of the resource, varying levels of trust in authorities, and unequal access to resources. . The Cultural Theory of Risk is used to explain how people view risks as part of their worldviews and why people who hold different worldviews disagree about risks associated with water availability. Meteorological analyses of longitudinal data indicate periods of drought that are noted in stakeholder interviews. Analysis of stream gauge data investigates the influence of climate variability on local hydrologic impacts, such as changing groundwater levels and streamflows, that are relevant to planning and management decisions in the ASA. Quantitative assessment of future drought risk and associated uncertainty and their effect on type and scale of future economic and social impacts are achieved by combining elements of statistical and dynamical downscaling to improve predictions of local impacts using Hybrid Statistical-Dynamical Downscaling Technique.

  9. Steady-state simulation of ground-water flow in the Blaine Aquifer, southwestern Oklahoma and northwestern Texas

    USGS Publications Warehouse

    Runkle, Donna L.; McLean, J.S.

    1995-01-01

    A generalized finite-difference model was prepared for the Blaine aquifer in southwestern Oklahoma and northwestern Texas. This report releases the model for use and modification. A grid of 1-square-mile nodes was established over the area, with 1,030 of the nodes actively simulated in the model. The steady-state model simulation used a uniform recharge rate of 2.2 inches per year and three values of hydraulic conductivity: 80, 19, and 4.7 feet per day. About 44 percent of the recharge is discharged as pumpage from wells, and the remainder is discharged to rivers and creeks within and adjacent to the study area.

  10. Digital Map of Water-Level Changes in the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1980 to 1997

    USGS Publications Warehouse

    Fischer, Brian C.; Kollasch, Keith M.; McGuire, Virginia L.

    2000-01-01

    This data set consists of digital water-level-change contours for the High Plains aquifer in the central United States, 1980 to 1997. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created from 5,233 wells measured in both 1980 and 1997. The water-level-change contours were drawn manually on mylar at a scale of 1:1,000,000. The contours then were converted to a digital map.

  11. Digital map of predevelopment water levels for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for aquifer boundaries of contours for predevelopment water-level elevations for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created by digitizing the contours for predevelopment water-level elevations from a 1:1,000,000-scale base map created by the U.S. Geological Survey High Plains Regional Aquifer-System Analysis (RASA) project (Gutentag, E.D., Heimes, F.J., Krothe, N.C., Luckey, R.R., and Weeks, J.B., 1984, Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey Professional Paper 1400-B, 63 p.) The data should not be used at scales larger than 1:1,000,000.

  12. STUDY OF THE ARBUCKLE-SIMPSON AQUIFER

    EPA Science Inventory

    A study directed by the Oklahoma Water Resources Board and funded by the U.S. Bureau of Reclamation will investigate the hydrogeology of the Arbuckle-Simpson Aquifer in south-central Oklahoma. The five year study will involve field investigations including the installation of ne...

  13. Aphids and parasitoids in wheat and nearby canola fields in central Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In central Oklahoma, winter canola has recently become the primary rotational winter crop with wheat. Annual aphid pest outbreaks in canola have resulted in widespread insecticide applications. Insect parasitoids, which frequently suppress aphids in nearby wheat, may move to canola due to the larg...

  14. LITTLE BLUESTEM [SCHIZACHYRIUM SCOPARIUM (MICHX.) NASH]: USEFUL FORAGE FOR GRAZING ANIMALS IN CENTRAL OKLAHOMA?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little bluestem (Schizachyrium scoparium, SCSC) and big bluestem (Andropogon gerardii, ANGE) are among the dominant species of tallgrass prairie in central Oklahoma. Little bluestem is considered less valuable for grazing due to its tussock growth form and perceived lower forage quality. Productiv...

  15. Effects of climate variations and soil conservation on sedimentation of a west-central Oklahoma reservoir

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the second half of the 20th century, extensive soil conservation practices were implemented on the Fort Cobb Reservoir watershed in West-Central Oklahoma. Sediment and flow observations were made on major tributaries in 1943-1950 (pre-conservation time period), and again in 2004-2008 (post-co...

  16. 40 CFR 81.124 - North Central Oklahoma Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of... North Central Oklahoma Intrastate Air Quality Control Region consists of the territorial area encompassed by the boundaries of the following jurisdictions or described area (including the territorial...

  17. A Systematic Approach to Process Evaluation in the Central Oklahoma Turning Point (COTP) Partnership

    ERIC Educational Resources Information Center

    Tolma, Eleni L.; Cheney, Marshall K.; Chrislip, David D.; Blankenship, Derek; Troup, Pam; Hann, Neil

    2011-01-01

    Formation is an important stage of partnership development. Purpose: To describe the systematic approach to process evaluation of a Turning Point initiative in central Oklahoma during the formation stage. The nine-month collaborative effort aimed to develop an action plan to promote health. Methods: A sound planning framework was used in the…

  18. Watershed sediment yield reduction through soil conservation in a west-central Oklahoma watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil conservation practices on the Fort Cobb Reservoir watershed in West-Central Oklahoma were few before the 1950s. In the second half of the 20th century, extensive soil conservation measures were implemented to protect agriculturally fertile but erosion-prone soils. Fortuitously, the U.S. Geolo...

  19. Distribution and variability of nitrogen and phosphorus in the alluvial, High Plains, Rush Springs, and Blaine aquifers in western Oklahoma

    USGS Publications Warehouse

    Becker, C.J.

    1994-01-01

    Aquifers are the primary source of water for drinking and agricultural purposes in western Oklahoma. Health concerns about consuming nitrogen and an increased reliance on ground water for drinking necessitate a better understanding of the cause and effect of contamination from nutrients. The purpose of this project was to compile nutrients data from the National Water Information System data base for the alluvial aquifers west of longitude 98 degrees W. and from three bedrock aquifers, High Plains, Rush Springs, and Blaine, and provide this information in a report for future projects and for the facilitation of nutrient source management. The scope of the work consisted of (1) compiling ground-water quality data concerning nitrogen and phosphorus ions, (2) constructing boxplots illustrating data variability, (3) maps for each aquifer showing locations of wells when nitrogen and phosphorus ions were measured in ground water and where concentrations of nitrate and nitrite, reported as nitrogen, exceed the maximum contaminant level, and (4) calculating summary statistics. Nutrient data were obtained from the U.S. Geological Survey data base called the National Water Information System. Data were restricted to ground-water samples, but no restrictions were placed on well and water use or date and time of sampling. Compiled nutrient data consist of dissolved and total concentrations of the common nitrogen and phosphorus ions measured in ground water. For nitrogen these ions include nitrate, nitrite, ammonium, and nitrite plus nitrate. All concentrations are reported in milligrams per liter as nitrogen. Phosphorus in ground water is measured as the orthophosphate ion, and is reported in milligrams per liter as phosphorus. Nutrient variability is illustrated by a standard boxplot. The data are presented by aquifer or hydrologic subregion for alluvial aquifers, with one boxplot constructed for each nutrient compound if more than four analyses are present. Maps for each aquifer show where nitrogen and phosphorus have been measured in ground water and where the concentrations of nitrate and nitrite exceed the maximum contaminant level. A statistical summary for each aquifer and subregion show if censored data were present, number of samples in each data set, largest minimum reporting level for each nutrient compound, percentiles used to construct boxplots, and minimum and maximum values. Also given are the number of wells sampled in each aquifer and the number of wells exceeding the maximum contaminant level.

  20. Digital map of geologic faults for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for faults of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created by digitizing the faults from a 1:1,000,000-scale base map created by the U.S. Geological Survey High Plains Regional Aquifer-System Analysis (RASA) project (Gutentag, E.D., Heimes, F.J., Krothe, N.C., Luckey, R.R., and Weeks, J.B., 1984, Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey Professional Paper 1400-B, 63 p.) The data are not intended for use at scales larger than 1:1,000,000.

  1. Contamination of wells completed in the Roubidoux aquifer by abandoned zinc and lead mines, Ottawa County, Oklahoma

    USGS Publications Warehouse

    Christenson, Scott C.

    1995-01-01

    The Roubidoux aquifer in Ottawa County Oklahoma is used extensively as a source of water for public supplies, commerce, industry, and rural water districts. Water in the Roubidoux aquifer in eastern Ottawa County has relatively low dissolved-solids concentrations (less than 200 mg/L) with calcium, magnesium, and bicarbonate as the major ions. The Boone Formation is stratigraphically above the Roubidoux aquifer and is the host rock for zinc and lead sulfide ores, with the richest deposits located in the vicinity of the City of Picher. Mining in what became known as the Picher mining district began in the early 1900's and continued until about 1970. The water in the abandoned zinc and lead mines contains high concentrations of calcium, magnesium, bicarbonate, sulfate, fluoride, cadmium, copper, iron, lead, manganese, nickel, and zinc. Water from the abandoned mines is a potential source of contamination to the Roubidoux aquifer and to wells completed in the Roubidoux aquifer. Water samples were collected from wells completed in the Roubidoux aquifer in the Picher mining district and from wells outside the mining district to determine if 10 public supply wells in the mining district are contaminated. The chemical analyses indicate that at least 7 of the 10 public supply wells in the Picher mining district are contaminated by mine water. Application of the Mann-Whitney test indicated that the concentrations of some chemical constituents that are indicators of mine-water contamination are different in water samples from wells in the mining area as compared to wells outside the mining area. Application of the Wilcoxon signed-rank test showed that the concentrations of some chemical constituents that are indicators of mine-water contamination were higher in current (1992-93) data than in historic (1981-83) data, except for pH, which was lower in current than in historic data. pH and sulfate, alkalinity, bicarbonate, magnesium, iron, and tritium concentrations consistently indicate that the Cardin, Commerce 1, Commerce 3, Picher 2, Picher 3, Picher 4, and Quapaw 2 wells are contaminated.

  2. Hydrologic data for the alluvium and terrace aquifer of the Beaver north Canadian River from the Panhandle to Canton Reservoir, northwestern Oklahoma

    USGS Publications Warehouse

    Davis, R.E.; Christenson, S.C.; Blumer, S.P.

    1981-01-01

    The U.S. Geological Survey has collected data on Oklahoma's ground-water resources since 1934. The data in this report were collected as part of a study in cooperation with the Oklahoma Water Resources Board to evaluate the geohydrology of the alluvium and terrace aquifer of the Beaver-North Canadian River in northwestern Oklahoma. (Footnote: Above the confluence with Wolf Creek, the main channel of the river is known as the Beaver River; below it is known as the North Canadian River. Therefore, the main channel is generally referred to in this report as the Beaver-North Canadian River.) The data include records of approximately 900 wells, test-holes, and springs, results of chemical analyses of water from 30 wells tapping the aquifer, monthly water-level measurements for selected wells, and low-flow discharge measurements of the Beaver-North Canadian River and its tributaries (plate 1). All of the data were collected in the field during the period 1977-79. Information prior to this period is not included in this report but is contained in reports by Wood and Stacy (1965) and Morton (in press). The stratigraphic nomenclature is that of the Oklahoma Geological Survey and does not necessarily agree with that of the U.S. Geological Survey. Acknowledgment is extended to the residents of the study area for their cooperation in obtaining the data in this report.

  3. Plan of study for the High Plains regional aquifer-system analysis in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Weeks, John B.

    1978-01-01

    The Ogallala Formation and associated Tertiary and Quarternary deposits from the principal aquifers supporting irrigation in the High Plains of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The volume of water in storage within the aquifers is declining in most of the High Plains because water is being withdrawn in excess of the rate of replenishment. The U.S. Geological Survey has initiated a 5-year study of the High Plains aquifer system to develop the geohydrologic data base and computer models of the ground-water flow system needed to evaluate the response of the aquifer system to ground-water management alternatives. This report describes the objectives, plan, and organization of the study and outlines the work to be accomplished in each State in the study area. (Woodard-USGS)

  4. Current distribution of North American river otters in central and eastern Oklahoma, with seven new county records

    USGS Publications Warehouse

    Barrett, Dominic A.; Leslie, David M., Jr.

    2010-01-01

    In 1984 and 1985, the Oklahoma Department of Wildlife Conservation reintroduced North American river otters (Lontra canadensis) from coastal Louisiana into eastern Oklahoma. Those reintroductions and immigration from Arkansas and possibly northeastern Texas allowed river otters to become reestablished in eastern Oklahoma. Our goals were to determine the contemporary distribution of river otters in central and eastern Oklahoma with voucher specimens, sign surveys, and mail surveys and to compare proportion of positive detections among watersheds. We report new distributional records with voucher specimens from seven counties (Adair, Bryan, Coal, Johnston, McIntosh, Okfuskee, Tulsa) in Oklahoma. We also provide locality information for specimens collected from four counties (Haskell, McCurtain, Muskogee, Wagoner) where river otters were described in published literature but no voucher specimens existed. During winter and spring 2006 and 2007, we visited 340 bridge sites in 28 watersheds in eastern and central Oklahoma and identified river otter signs in 16 counties where river otters were not previously documented in published literature or by voucher specimens. Proportion of positive sites within each watershed ranged 0–100%. Mail surveys suggested that river otters occurred in eight additional counties where they were not previously documented by published literature, voucher specimens, or sign-survey efforts.

  5. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, Donna; Rea, Alan; Cederstrand, J.R.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries, maps of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma. Ground water in 1,305 square miles of Quaternary-age alluvial and terrace deposits along the the Cimarron River from Freedom to Guthrie is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. Alluvial and terrace deposits are composed of interfingering lenses of clay, sandy clay, and cross-bedded poorly sorted sand and gravel. The aquifer is composed of hydraulically connected alluvial and terrace deposits that unconformably overlie the Permian-age Formations. The aquifer boundaries are from a ground-water modeling report on the alluvial and terrace aquifer along the Cimarron River from Freedom to Guthrie in northwestern Oklahoma and published digital surficial geology data sets. The aquifer boundary data set was created from digital geologic data sets from maps published at a scale of 1:250,000. The hydraulic conductivity values, recharge rates, and ground-water level elevation contours are from the ground-water modeling report. Water-level elevation contours were digitized from a map at a scale of 1:250,000. The maps were published at a scale of 1:900,000. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  6. Enhanced recharge and karst, Edwards aquifer, south central Texas

    SciTech Connect

    Hammond, W.W. Jr. . Center for Water Research)

    1993-02-01

    Enhanced recharge is a water management strategy which can add significant quantities of ground water to the available water resources of the San Antonio region by utilizing the immense storage capacity of the unconfined zone of the Edwards aquifer. The Edwards aquifer presently is the sole source of water for a population of over 1,200,000, meeting public supply, industrial, and irrigation demands over a wide area of south central Texas. Valdina Farms Sinkhole is located adjacent to Seco Creek in Medina County and is in the recharge zone of the aquifer. Initial studies indicated that the sinkholes was capable of taking flood flows from Seco Creek and functioning as a recharge structure. Stream channels in the cavern system associated with Valdina Farms Sinkhole were incised into cave deposits and flood debris was present in the caverns at some distance from the sinkhole. Chemical analyses of samples of water from the cave and from nearby wells showed nitrate concentrations that decreased with distance from the cavern. Gradient of the potentiometric surface in the vicinity of the cave was very low, indicating high values of hydraulic conductivity for the aquifer. Based on evidence from these field studies a dam was constructed in 1982 on Seco Creek and a flood diversion channel was excavated to the sinkhole. Reservoir capacity is 2 acre-feet and design recharge rate is 3.8-6.7 m[sup 3]/sec. Annual recharge at the sinkhole has varied from 0 during periods of low runoff to 12,915 acre-feet.

  7. Earthquake hypocenters and focal mechanisms in central Oklahoma reveal a complex system of reactivated subsurface strike-slip faulting

    USGS Publications Warehouse

    McNamara, Daniel E.; Benz, Harley M.; Herrmann, Robert B.; Bergman, Eric A.; Earle, Paul; Holland, Austin F.; Baldwin, Randy W.; Gassner, A.

    2015-01-01

    The sharp increase in seismicity over a broad region of central Oklahoma has raised concern regarding the source of the activity and its potential hazard to local communities and energy industry infrastructure. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma in order to record the evolving seismicity. In this study, we apply a multiple-event relocation method to produce a catalog of 3,639 central Oklahoma earthquakes from late 2009 through 2014. RMT source parameters were determined for 195 of the largest and best-recorded earthquakes. Combining RMT results with relocated seismicity enabled us to determine the length, depth and style-of-faulting occurring on reactivated subsurface fault systems. Results show that the majority of earthquakes occur on near vertical, optimally oriented (NE-SW and NW-SE), strike-slip faults in the shallow crystalline basement. These are necessary first order observations required to assess the potential hazards of individual faults in Oklahoma.

  8. Earthquake hypocenters and focal mechanisms in central Oklahoma reveal a complex system of reactivated subsurface strike-slip faulting

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Benz, H. M.; Herrmann, R. B.; Bergman, E. A.; Earle, P.; Holland, A.; Baldwin, R.; Gassner, A.

    2015-04-01

    The sharp increase in seismicity over a broad region of central Oklahoma has raised concern regarding the source of the activity and its potential hazard to local communities and energy industry infrastructure. Since early 2010, numerous organizations have deployed temporary portable seismic stations in central Oklahoma in order to record the evolving seismicity. In this study, we apply a multiple-event relocation method to produce a catalog of 3639 central Oklahoma earthquakes from late 2009 through 2014. Regional moment tensor (RMT) source parameters were determined for 195 of the largest and best recorded earthquakes. Combining RMT results with relocated seismicity enabled us to determine the length, depth, and style of faulting occurring on reactivated subsurface fault systems. Results show that the majority of earthquakes occur on near-vertical, optimally oriented (NE-SW and NW-SE), strike-slip faults in the shallow crystalline basement. These are necessary first-order observations required to assess the potential hazards of individual faults in Oklahoma.

  9. Regional behavior and evolution of the Edwards aquifer (South-Central Texas).

    NASA Astrophysics Data System (ADS)

    Cabeza Diaz de Cerio, Yoar; Carrera Ramírez, Jesús; Green, Ronald T.; Fratesi, Beth; Bertetti, Paul

    2015-04-01

    Karst aquifers are highly heterogeneous systems where flow regime is dominated by dissolution conduits. It is important to know the behavior of these conduit networks in order to being able to manage them correctly. In this work we focus on the Edwards aquifer, one of the most prolific artesian aquifers in the world, that is located in south-central Texas, USA, and included in the Trinity-Edwards system. A regional flow model for the Edwards aquifer has been developed using the code TRANSIN IV. For this purpose, It was necessary a reconceptualization of previous conceptual models of Edwards aquifer in order to include the contributing zone and evaluate the role that this area plays in the Edwards aquifer recharge. Chemical data for major and trace elements in the study area have been used for evaluating the relations between Trinity and Edwards aquifers and the evolution of dissolution within the Edwards aquifer.

  10. Groundwater modeling of the Calera Aquifer region in Central Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Calera Aquifer is the main source of water for irrigated agriculture, industrial, and drinking water purposes in the Calera Aquifer Region (CAR) in the state of Zacatecas, Mexico. Irrigated agriculture accounts for 80% of the total groundwater extracted from the Calera Aquifer. In recent years, ...

  11. Growth of Cities and Loss of Streams: Land Cover Change Impacts on Stream Channel Loss in Central Oklahoma from 1874 to 2010

    EPA Science Inventory

    Central Oklahoma has undergone substantial land cover changes since the 1800’s. Accordingly, regional watersheds have been covered by impervious surfaces, peripheral agricultural areas have been subdivided or intensified, and large reservoirs have been constructed. Here, we...

  12. Growth of Cities and Loss of Streams: Land Cover Change Impacts on Stream Channel Loss in Central Oklahoma from 1874 to 2010

    EPA Science Inventory

    Central Oklahoma has undergone substantial land cover changes since the 1800s. Accordingly, regional watersheds have been covered by impervious surfaces, peripheral agricultural areas have been subdivided or intensified, and large reservoirs have been constructed. Here, we...

  13. An aquifer vulnerability assessment of the Paluxy Aquifer, central Texas, USA, using GIS and a modified DRASTIC approach

    SciTech Connect

    Fritch, T.G.; McKnight, C.L.; Yelderman, J.C. Jr.; Arnold, J.G.

    2000-03-01

    The Paluxy aquifer in north-central Texas is composed primarily of Lower Cretaceous clastics. This aquifer provides water for both domestic and agricultural purposes in the region. The study area for this investigation incorporates the outcrop and recharge areas, as well as the confined and unconfined portions of the aquifer. The purpose of this investigation is to perform a groundwater vulnerability assessment on the Paluxy aquifer using the GRASS 4.1 geographic information system combined with a modified DRASTIC approach. DRASTIC is an acronym for the variables that control the groundwater pollution potential (Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, and Conductivity of the aquifer). Using such an approach allows one to investigate the potential for groundwater contamination on a regional, rather than site-specific, scale. Based upon data from variables such as soil permeability, depth to water, aquifer hydraulic conductivity, and topography, subjective numerical weightings have been assigned according to the variable's relative importance in regional groundwater quality. The weights for each variable comprise a GIS map layer. These map layers are combined to formulate the final groundwater pollution potential map. Using this method of investigation, the pollution potential map for the study area classified 47% of the area as having low pollution potential, 26% as having moderate pollution potential, 22% as having high pollution potential, and 5% as having very high pollution potential.

  14. ENVIRONMENTAL AUDITING: An Aquifer Vulnerability Assessment of the Paluxy Aquifer, Central Texas, USA, Using GIS and a Modified DRASTIC Approach.

    PubMed

    Fritch; McKnight; Yelderman; Arnold

    2000-03-01

    / The Paluxy aquifer in north-central Texas is composed primarily of Lower Cretaceous clastics. This aquifer provides water for both domestic and agricultural purposes in the region. The study area for this investigation incorporates the outcrop and recharge areas, as well as the confined and unconfined portions of the aquifer. The purpose of this investigation is to perform a groundwater vulnerability assessment on the Paluxy aquifer using the GRASS 4.1 geographic information system combined with a modified DRASTIC approach. DRASTIC is an acronym for the variables that control the groundwater pollution potential (Depth to water, net Recharge, Aquifer media, Soil media,Topography, Impact of the vadose zone, andConductivity of the aquifer). Using such an approach allows one to investigate the potential for groundwater contamination on a regional, rather than site-specific, scale. Based upon data from variables such as soil permeability, depth to water, aquifer hydraulic conductivity, and topography, subjective numerical weightings have been assigned according to the variable's relative importance in regional groundwater quality. The weights for each variable comprise a GIS map layer. These map layers are combined to formulate the final groundwater pollution potential map. Using this method of investigation, the pollution potential map for the study area classifies 47% of the area as having low pollution potential, 26% as having moderate pollution potential, 22% as having high pollution potential, and 5% as having very high pollution potential. PMID:10629314

  15. Ground-water flow in the Gulf Coast aquifer systems, south-central United States

    USGS Publications Warehouse

    Williamson, A.K.; Grubb, H.F.

    2001-01-01

    The Gulf Coast regional aquifer systems constitute one of the largest, most complicated, and most interdependent aquifer systems in the United States. Ground-water flow in a 230,000-square-mile area of the south-central United States was modeled for the effect of withdrawing freshwater at the rate of nearly 10 billion gallons per day in 1985 from regional aquifers in the Mississippi Embayment, the Texas coastal uplands, and the coastal lowlands aquifer systems. The 1985 rate of pumping was three times the average rate of recharge to the aquifers before development. The report also estimates the effects of even greater withdrawal rates in the aquifer systems. About two-thirds of the water in the aquifers is saline to brine, which complicates the modeling. Land subsidence due to water withdrawal also was modeled.

  16. Digital map of changes in water levels from predevelopment to 1980 for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for contours of predevelopment to 1980 water-level elevation changes for the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created by digitizing the contours for predevelopment to 1980 water-level elevation change from a 1:1,000,000-scale base map created by the U.S. Geological Survey High Plains Regional Aquifer-System Analysis (RASA) project (Gutentag, E.D., Heimes, F.J., Krothe, N.C., Luckey, R.R., and Weeks, J.B., 1984, Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey Professional Paper 1400-B, 63 p.) The data are not intended for use at scales larger than 1:1,000,000.

  17. P and S Travel Time Tomography Using a Dense Array of Portable Seismographs and Earthquake Sources in Central Oklahoma

    NASA Astrophysics Data System (ADS)

    Toth, C. R.; Holland, A. A.; Keller, G. R.; Holloway, S. D.

    2012-12-01

    Two pockets of increased seismicity rates in Central Oklahoma provide a unique opportunity to study the deep crustal structure of the area using passive travel-time tomography to analyze data from 156 single-channel seismic recorders with spacings between 0.4 and 0.8 km. The consistency of the seismicity in these areas provided the equivalent of a detailed, reversed seismic refraction/wide-angle reflection profile. The November 5, 2011, M5.6 earthquake in Lincoln County, Oklahoma, was followed by a series of aftershocks, which provided the sources on the eastern end of the profile, and an earthquake swarm 50km to the west, which has been ongoing since October 2009 in Oklahoma County, provided the western sources. Previous studies of these earthquake sequences, using the Oklahoma Geological Survey's Regional Seismic Network, aided by additional stations from the U. S. Geological Survey, provided reasonably well-constrained velocity models and double-differenced relocations for each earthquake. During the four nights the instruments were recording, eight earthquakes with magnitudes between M0.9 and M2.3 were recorded for this study: two were a part of the Oklahoma County swarm, and the other six were of the Lincoln County sequence. These earthquakes yielded a combined total of approximately 2,500 travel times for direct and refracted P and S phases, and provided ray coverage into the Conrad discontinuity, as well as arrivals that appear to be deep reflections. The earthquake sources also provided strong S-wave arrivals.

  18. Geohydrology and numerical simulation of the alluvium and terrace aquifer along the Beaver-North Canadian River from the Panhandle to Canton Lake, northwestern Oklahoma

    USGS Publications Warehouse

    Davis, Robert E.; Christenson, Scott C.

    1981-01-01

    A quantitative description of the hydrologic system in alluvium and terrace deposits along the Beaver-North Canadian River in northwestern Oklahoma is needed as a aid for planning and management of the aquifer. A two-dimensional finite-difference model was used to describe the aquifer and to predict the effects of future ground-water withdrawals. The aquifer principally consists of three geologic units: Alluvium with an average thickness of 30 feet, low terrace deposits with an average thickness of 50 feet, and high terrace deposits with an average thickness of 70 feet. A thin cover of dune sand overlies much of the area and provides an excellent catchment for recharge, but is generally unsaturated. Hydraulic conductivity of the aquifer ranges from 0 to 160 feet per day and average 59 feet per day. Specific yield is estimated to be 0.29. Recharge to the aquifer is approximately 1 inch annually. Under present conditions (1978), most discharge is the result of ground-water flow to the Beaver-North Canadian River at a rate of 36 cubic feet per second and to pumpage for public-supply, industrial, and irrigation use at a rate of 28 cubic feet per second. In 1978, the aquifer had an average saturated thickness of 31 feet and contained 4.07 million acre-feet of water. The model was used to predict future head response in the aquifer to various pumping stresses. For any one area, the pumping stress was applied until the saturated thickness for that area was less than 5 feet, at which time the pumping ceased. The results of the modeled projections show that if the aquifer is stressed from 1978 to 1993 at the 1977 pumpage rates and well distribution, the average saturated thickness will decrease 1.0 foot and the volume of water in storage will be 3.94 million acre-feet, or 97 percent of the 1978 volume. If the aquifer is stressed at this same rate until 2020, the average saturated thickness will decrease an additional 0.7 foot and the volume of water in storage will be 3.84 million acre-feet, or 94 percent of the 1978 volume. If all areas of the aquifer having a 1978 saturated thickness of 5 feet or more are stressed from 1978 to 1993 at a rate of approximately 1.4 acre-feet per acre per year, the average saturated thickness will decrease by 20.9 feet and the volume of water in storage will be 1.28 million acre-feet, or 31 percent of the 1978 volume. If the aquifer is stressed at this same rate until 2020, the average saturated thickness will decrease an additional 2.2 feet and the volume of water in storage will be 980,000 acre-feet, or 24 percent of the 1978 volume. The water in the aquifer is generally of the calcium bicarbonate type and is suitable for most uses. Most of the 30 water samples analyzed contained less than 500 milligrams of dissolved solids per liter.

  19. Aquifers in Cretaceous rocks of the central Coastal Plain of North Carolina

    USGS Publications Warehouse

    Winner, M.D., Jr.; Lyke, W.L.

    1989-01-01

    Aquifers in rocks of Cretaceous age are the major source of groundwater for public supplies in the central Coastal Plain. These aquifers consist of sand, gravel, and limestone beds of the Peedee, Black Creek, and the upper and lower Cape Fear aquifers, each separated by a confining unit composed of clay and silt beds. The aquifers and confining units (1) rest upon crystalline basement rocks; (2) dip and thicken to the east-southeast; and (3) are overlain by younger aquifers and confining units in deposits of Quaternary and Tertiary age. The top of the uppermost aquifer, the Peedee, ranges from 122 ft above to 595 ft below sea level. The maximum thickness of all aquifers and confining units in Cretaceous rocks is more than 1,600 ft. Aquifers and confining units were defined and correlated for this report using 125 geophysical logs and accompanying drillers ' logs, water level data, and water quality information regarding chloride concentrations in water. This analysis allowed the construction of seven hydrogeologic cross sections that depict the continuity of all the aquifers and confining units. These cross sections also show water levels and chloride concentrations in water from various test intervals and describe where chloride concentration in water exceeds 250 mg/L within each aquifer. Detailed maps of each Cretaceous aquifer show altitude of its top, thickness, areas of selected sand percentages, transition zones from fresh to saltwater, and the thickness of the confining unit.

  20. Geohydrology and simulation of steady-state flow conditions in regional aquifer systems in Cretaceous and older rocks underlying Kansas, Nebraska, and parts of Arkansas, Colorado, Missouri, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Signor, D.C.; Helgesen, J.O.; Jorgensen, D.G.; Leonard, R.B.

    1997-01-01

    Three regional aquifers systems are the basis for describing the geohydrology of bedrock aquifers in the central United States. The Great Plains aquifer system, composed of Lower Cretaceous sandstone, generally contains brackish water (1,000 to 10,000 milligrams per liter dissolved solids); the Western Interior Plains aquifer system of lower Paleozoic rocks contains saline water and is laterally adjacent to the freshwater-bearing Ozark Plateaus aquifer system composed of rocks of the same age.

  1. Geologic logs for selected deep wells in parts of Oklahoma, Texas, and New Mexico

    USGS Publications Warehouse

    Christenson, Scott C.; Morton, R.B.; Havens, J.S.; Fairchild, R.W.

    1988-01-01

    A computerized data base of geologic logs for selected deep wells in parts of Oklahoma, Texas, and New Mexico was prepared by the U.S. Geological Survey as part of the Central Midwest Regional Aquifer-System Analysis. At least one well per county in the study area was selected, and the geologic logs for the wells were entered into the data base. Summaries of the geologic logs are presented in this report. Geophysical logs were used for interpretation of the geologic logs, and a list of these geophysical logs also is presented. These geophysical logs are available for inspection at the U.S. Geological Survey office in Oklahoma City, Oklahoma.

  2. Investigating groundwater flow between Edwards and Trinity aquifers in central Texas.

    PubMed

    Wong, C I; Kromann, J S; Hunt, B B; Smith, B A; Banner, J L

    2014-01-01

    Understanding the nature of communication between aquifers can be challenging when using traditional physical and geochemical groundwater sampling approaches. This study uses two multiport wells completed within Edwards and Trinity aquifers in central Texas to determine the degree of groundwater inter-flow between adjacent aquifers. Potentiometric surfaces, hydraulic conductivities, and groundwater major ion concentrations and Sr isotope values were measured from multiple zones within three hydrostratigraphic units (Edwards and Upper and Middle Trinity aquifers). Physical and geochemical data from the multiport wells were combined with historical measurements of groundwater levels and geochemical compositions from the region to characterize groundwater flow and identify controls on the geochemical compositions of the Edwards and Trinity aquifers. Our results suggest that vertical groundwater flow between Edwards and Middle Trinity aquifers is likely limited by low permeability, evaporite-rich units within the Upper and Middle Trinity. Potentiometric surface levels in both aquifers vary with changes in wet vs. dry conditions, indicating that recharge to both aquifers occurs through distinct recharge areas. Geochemical compositions in the Edwards, Upper, and Middle Trinity aquifers are distinct and likely reflect groundwater interaction with different lithologies (e.g., carbonates, evaporites, and siliceous sediments) as opposed to mixing of groundwater between the aquifers. These results have implications for the management of these aquifers as they indicate that, under current conditions, pumping of either aquifer will likely not induce vertical cross-formational flow between the aquifers. Inter-flow between the Trinity and the Edwards aquifers, however, should be reevaluated as pumping patterns and hydrogeologic conditions change. PMID:24033308

  3. Generalized thickness and configuration of the top of the intermediate aquifer, west-central Florida

    USGS Publications Warehouse

    Corral, Miguel A., Jr.; Wolansky, Richard M.

    1984-01-01

    Generalized map show the thickness and top of the intermediate aquifer in west-central Florida within the boundaries of the Southwest Florida Water Management District. The intermediate aquifer consists of a series of water-bearing units and confining beds between the surficial aquifer (water table) and the Floridan aquifer. This aquifer contains from one to several water-bearing units in west-central Florida. The aquifer and confining beds consist of the Tamiami and Hawthorn Formations of late and middle Miocene age and parts of the Tampa Limestone of early Miocene age. The top of the intermediate aquifer is about 100 feet above sea level in the north and slopes to about 100 feet below sea level in the south. The thickness ranges from zero in the north to more than 600 feet in the south. Despite the high mineral content of the water in some areas, the intermediate aquifer offers the best source of ground water to the coastal and southern areas of west-central Florida. (USGS)

  4. Climatology of aerosol optical depth in north‐central Oklahoma: 1992–2008

    SciTech Connect

    Michalsky, Joseph J.; Denn, Frederick; Flynn, Connor J.; Hodges, G. B.; Kiedron, Piotr; Koontz, Annette S.; Schlemmer, James; Schwartz, Stephen E.

    2010-04-13

    Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow‐band, interference‐filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloudscreening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun’s elevation is greater than 9.25°. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month‐by‐month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

  5. Climatology of aerosol optical depth in North-Central Oklahoma: 1992-2008

    SciTech Connect

    Michalsky, J.; Schwartz, S.; Denn, F.; Flynn, C.; Hodges, G.; Kiedron, P.; Koontz, A.; Schlemmer, J., and Schwartz, S. E

    2010-04-01

    Aerosol optical depth (AOD) has been measured at the Atmospheric Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most of the data presented are from the multifilter rotating shadowband radiometer, a narrow-band, interference-filter Sun radiometer with five aerosol bands in the visible and near infrared; however, AOD measurements have been made simultaneously and routinely at the site by as many as three different types of instruments, including two pointing Sun radiometers. Scatterplots indicate high correlations and small biases consistent with earlier comparisons. The early part of this 16 year record had a disturbed stratosphere with residual Mt. Pinatubo aerosols, followed by the cleanest stratosphere in decades. As such, the last 13 years of the record reflect changes that have occurred predominantly in the troposphere. The field calibration technique is briefly described and compared to Langley calibrations from Mauna Loa Observatory. A modified cloud-screening technique is introduced that increases the number of daily averaged AODs retrieved annually to about 250 days compared with 175 days when a more conservative method was employed in earlier studies. AODs are calculated when the air mass is less than six; that is, when the Sun's elevation is greater than 9.25{sup o}. The more inclusive cloud screen and the use of most of the daylight hours yield a data set that can be used to more faithfully represent the true aerosol climate for this site. The diurnal aerosol cycle is examined month-by-month to assess the effects of an aerosol climatology on the basis of infrequent sampling such as that from satellites.

  6. Groundwater quality and the relation between pH values and occurrence of trace elements and radionuclides in water samples collected from private wells in part of the Kickapoo Tribe of Oklahoma Jurisdictional Area, central Oklahoma, 2011

    USGS Publications Warehouse

    Becker, Carol J.

    2013-01-01

    From 1999 to 2007, the Indian Health Service reported that gross alpha-particle activities and concentrations of uranium exceeded the Maximum Contaminant Levels for public drinking-water supplies in water samples from six private wells and two test wells in a rural residential neighborhood in the Kickapoo Tribe of Oklahoma Jurisdictional Area, in central Oklahoma. Residents in this rural area use groundwater from Quaternary-aged terrace deposits and the Permian-aged Garber-Wellington aquifer for domestic purposes. Uranium and other trace elements, specifically arsenic, chromium, and selenium, occur naturally in rocks composing the Garber-Wellington aquifer and in low concentrations in groundwater throughout its extent. Previous studies have shown that pH values above 8.0 from cation-exchange processes in the aquifer cause selected metals such as arsenic, chromium, selenium, and uranium to desorb (if present) from mineral surfaces and become mobile in water. On the basis of this information, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, conducted a study in 2011 to describe the occurrence of selected trace elements and radionuclides in groundwater and to determine if pH could be used as a surrogate for laboratory analysis to quickly and inexpensively identify wells that might contain high concentrations of uranium and other trace elements. The pH and specific conductance of groundwater from 59 private wells were measured in the field in an area of about 18 square miles in Lincoln and Pottawatomie Counties. Twenty of the 59 wells also were sampled for dissolved concentrations of major ions, trace elements, gross alpha-particle and gross beta-particle activities, uranium, radium-226, radium-228, and radon-222 gas. Arsenic concentrations exceeded the Maximum Contaminant Level of 10 micrograms per liter in one sample having a concentration of 24.7 micrograms per liter. Selenium concentrations exceeded the Maximum Contaminant Level of 50 micrograms per liter in one sample having a concentration of 147 micrograms per liter. Both samples had alkaline pH values, 8.0 and 8.4, respectively. Uranium concentrations ranged from 0.02 to 383 micrograms per liter with 5 of 20 samples exceeding the Maximum Contaminant Level of 30 micrograms per liter; the five wells with uranium concentrations exceeding 30 micrograms per liter had pH values ranging from 8.0 to 8.5. Concentrations of uranium and radon-222 and gross alpha-particle activity showed a positive relation to pH, with the highest concentrations and activity in samples having pH values of 8.0 or above. The groundwater samples contained dissolved oxygen and high concentrations of bicarbonate; these characteristics are also factors in increasing uranium solubility. Concentrations of radium-226 and radium-228 (combined) ranged from 0.03 to 1.7 picocuries per liter, with a median concentration of 0.45 picocuries per liter for all samples. Radon-222 concentrations ranged from 95 to 3,600 picocuries per liter with a median concentration of 261 picocuries per liter. Eight samples having pH values ranging from 8.0 to 8.7 exceeded the proposed Maximum Contaminant Level of 300 picocuries per liter for radon-222. Eight samples exceeded the 15 picocuries per liter Maximum Contaminant Level for gross alpha-particle activity at 72 hours (after sample collection) and at 30 days (after the initial count); those samples had pH values ranging from 8.0 to 8.5. Gross beta-particle activity increased in 15 of 21 samples during the interval from 72 hours to 30 days. The increase in gross beta-particle activity over time probably was caused by the ingrowth and decay of uranium daughter products that emit beta particles. Water-quality data collected for this study indicate that pH values above 8.0 are associated with potentially high concentrations of uranium and radon-222 and high gross alpha-particle activity in the study area. High pH values also are associated with potentially high concentrations of arsenic, chromium, and selenium in groundwater when these elements occur in the aquifer matrix along groundwater-flow paths.

  7. Digital map of areas of little or no saturated thickness for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for boundaries of areas of little or no saturated thickness within the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was compiled from a digital coverage that was created for publication of paper maps in McGrath and Dugan (1993, Water-level changes in the High Plains aquifer -- predevelopment to 1991: U.S. Geological Survey Water-Resources Investigations Report 93-4088, 53 p.) The data are not intended for use at scales larger than 1:1,000,000.

  8. Distribution of soil bulk density and organic matter along an elevation gradient in central Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native rangeland and winter wheat are among the primary forage resources used to graze cattle in Oklahoma. Understanding the response of soil characteristics to stressors caused by pasture management is crucial to sustainable use of these resources. This study compared soil responses of 1.6 ha pastu...

  9. Ethnic Identity and the Boarding School Experience of West-Central Oklahoma American Indians.

    ERIC Educational Resources Information Center

    McBeth, Sally J.

    This book reports on a study of the perceptions of Oklahoma American Indians about their childhood experiences in government and church-sponsored boarding schools. Drawing on symbolic anthropology, the boarding school experience is interpreted to be a complex cultural symbol and symbolic process that contributes to group collectivity and belonging…

  10. Predicting carbon mass of central Oklahoma soils with near infrared reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in carbon (C) storage within agricultural soils of Oklahoma as an aid in reducing atmospheric greenhouse gasses, and cash flow land managers might access, has increased recently. Description of C mass requires measurement of both bulk density and C concentration, but the techniques used ar...

  11. Preliminary evaluation of the Central Basin aquifer system in Tennessee for receiving injected wastes

    USGS Publications Warehouse

    Bradley, M.W.

    1985-01-01

    An aquifer may be allowed to receive injected wastes where the aquifer meets criteria established in the Environmental Protection Agency 's Underground Injection Control program. The Central Basin aquifer system in Tennessee consists of Ordovician to Devonian carbonate rocks and it occurs from the Valley and Ridge province to west of the Tennessee River. This aquifer system is currently used for drinking water in the Central Basin and western Highland Rim, but is not used for drinking water in the northern Highland Rim nor the Cumberland Plateau provinces. Part of the northern Highland Rim and the Cumberland Plateau, according to the Environmental Protection Agency 's Underground Injection Control criteria, will not be used as a source of drinking water in the future and may be eligible to receive injected wastes. (USGS)

  12. Carbonate aquifer of the Central Roswell Basin: recharge estimation by numerical modeling

    SciTech Connect

    Rehfeldt, K.R.; Gross, G.W.

    1982-02-01

    The flow of ground water in the Roswell, New Mexico, Artesian Basin, has been studied since the early 1900s and varied ideas have been proposed to explain different aspects of the ground water flow system. The purpose of the present study was to delineate the spatial distribution and source, or sources, of recharge to the carbonate aquifer of the central Roswell Basin. A computer model was used to simulate ground water flow in the carbonate aquifer, beneath and west of Roswell and in the Glorieta Sandstone and Yeso Formation west of the carbonate aquifer.

  13. First Two Years of Observations NASA ACTS Propagation Experiment Central Oklahoma Site

    NASA Technical Reports Server (NTRS)

    Crane, Robert K.

    1996-01-01

    Continuous observations from December 1, 1993 through November 30, 1995 were made at the ACTS Propagation Terminal on the roof of the Sarkeys Energy Center at the University of Oklahoma in Norman, Oklahoma. Beacon and radiometer observations were combined to calibrate the beacon system for the estimation of total attenuation (attenuation relative to free space) and attenuation relative to clear sky (gaseous absorption component removed). Empirical cumulative distributions (edf's) were compiled for each month of observation and for each year. The annual edf's are displayed in the figures, the monthly and annual edf's are listed in the tables. The tables are organized by blocks and pages within a block. The blocks correspond to the headings in the edf files generated by the ACTS Preprocessing (actspp) software and contained in the fourth disk in the set of ACTS Propagation Experiment CD-ROMs generated by the University of Texas.

  14. Nitrate in the Columbia Aquifer, central Delmarva Peninsula, Maryland

    USGS Publications Warehouse

    Bachman, L.J.

    1984-01-01

    A study of nitrate in water from 604 wells tapping the Columbia aquifer on the Delmarva Peninsula in eastern Maryland describes the factors that affect nitrate variability. Samples were collected from 196 randomly selected wells and analyzed for nitrogen species. Many were also analyzed for major ions. In addition, results of 313 nitrate analyses were randomly selected from county health department files. About 95 analyses of water samples collected from 1945 to 1978 were also evaluated. The frequency distribution of the nitrate analyses is bimodal, with 25 percent of the sample ranging from 0 to about 0.42 milligrams per liter (mg/L) nitrate as nitrogen (N), and the median is about 0.1 mg/L; the rest ranges from 0.42 to 58 mg/L, and the median is about 5.9 mg/L. The overall median nitrate concentration is about 3.5 mg/L as N. Over half of the samples had nitrate concentrations of 3 mg/L as N or higher, indicating that the water in the aquifer has been affected by human activity. Nitrate-nitrogen concentrations exceeded the water-quality standard of 10 mg/L in 15 percent of the samples established by the U.S. Environmental Protection Agency. The major factors affecting nitrate concentration are the presence of a nitrogen source, hydrogeological conditions, and the soil drainage. Sites with poorly drained soils may have a lower nitrate concentration either because the soils block the entrance of nitrate into the aquifer or because the aquifer under a poorly drained soil is associated with a chemical environment that promotes denitrification. (USGS)

  15. Estimation of aquifer hydraulic parameters from surface geophysical measurements: a case study of the Upper Cretaceous aquifer, central Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Massoud, Usama; Santos, Fernando; Khalil, Mohamed A.; Taha, Ayman; Abbas, Abbas M.

    2010-05-01

    The integration of geophysical data with direct hydrogeological measurements can provide a minimally invasive approach to characterize the subsurface at a variety of resolutions and over many spatial scales. The field of hydrogeophysics has attracted much attention during the last two decades. In this domain, the geophysical data inverted to geophysical models are interpreted in terms of the hydrogeology to serve as a basis for the definition of hydraulic models in the areas of interest. The hydraulic conductivity ( K) value measured in a reference borehole has been combined with the electrical conductivity obtained from nearby geo-electromagnetic sounding data in the Cenomanian (Upper Cretaceous) aquifer, central Sinai, Egypt. The resulting relation was interpreted with Dar Zarrouk parameters to infer the transmissivity variations at other vertical electrical sounding locations, where K values are unknown. Coincident transient electromagnetic data have been adopted to increase accuracy while interpreting the aquifer geoelectrical properties. The results indicate that the transmissivity values in the aquifer of interest vary from 2,446 to 9,694 m2/day, and K varies from 12.9 to 57.0 m/day throughout the studied area.

  16. Occurrence of nitrous oxide in the central High Plains aquifer, 1999

    USGS Publications Warehouse

    McMahon, P.B.; Bruch, B.W.; Becker, M.F.; Pope, L.M.; Dennehy, K.F.

    2000-01-01

    Nitrogen-enriched groundwater has been proposed as an important anthropogenic source of atmospheric nitrous oxide (N2O), yet few measurements of N2O in large aquifer systems have been made. Concentrations of N2O in water samples collected from the 124 000 km2 central High Plains aquifer in 1999 ranged from < 1 to 940 nM, with a median concentration of 29 nM (n = 123). Eighty percent of the N20 concentrations exceeded the aqueous concentration expected from equilibration with atmospheric N2O. Measurements of N2O, NO3-, and 3H in unsaturated-zone sediments, recently recharged groundwater, and older groundwater indicate that concentrations of N2O in groundwater increased over time and will likely continue to increase in the future as N-enriched water recharges the aquifer. Large concentrations of O2 and NO3- and small concentrations of NH4+ and dissolved organic carbon in the aquifer indicate that N2O in the central High Plains aquifer was produced primarily by nitrification. Calculations indicate that the flux of N2O from the central High Plains aquifer to the atmosphere from well pumping and groundwater discharge to streams was not a significant source of atmospheric N2O.Nitrogen-enriched groundwater has been proposed as an important anthropogenic source of atmospheric nitrous oxide (N2O), yet few measurements of N2O in large aquifer systems have been made. Concentrations of N2O in water samples collected from the 124000 km2 central High Plains aquifer in 1999 ranged from < 1 to 940 nM, with a median concentration of 29 nM (n = 123). Eighty percent of the N2O concentrations exceeded the aqueous concentration expected from equilibration with atmospheric N2O. Measurements of N2O, NO3-, and 3H in unsaturated-zone sediments, recently recharged groundwater, and older groundwater indicate that concentrations of N2O in groundwater increased over time and will likely continue to increase in the future as N-enriched water recharges the aquifer. Large concentrations of O2 and NO3- and small concentrations of NH4+ and dissolved organic carbon in the aquifer indicate that N2O in the central High Plains aquifer was produced primarily by nitrification. Calculations indicate that the flux of N2O from the central High Plains aquifer to the atmosphere from well pumping and groundwater discharge to streams was not a significant source of atmospheric N2O.Water samples were collected from 92 domestic wells, 16 monitoring wells and 15 public-supply wells in the High Plains Aquifer in 1999, and concentrations of nitrous oxide were measured. The groundwater concentrations ranged from less than 1 to 940 nM. Concentrations expressed as a percent of saturation in water ranged from less than 10 to 9690%. A significant decrease was noted in N2O concentrations with increasing depth of the well screen below the water table, and a significant positive correlation was found between the concentrations of N2O and nitrate. The small area-averaged N2O emission rate for the aquifer indicated that it was not an important component of the atmospheric N2O budget, but the importance could increase as groundwater N2O concentrations increase.

  17. A Reconnaissance of selected organic compounds in streams in tribal lands in Central Oklahoma, January-February 2009

    USGS Publications Warehouse

    Becker, Carol J.

    2010-01-01

    The U.S. Geological Survey worked in cooperation with the U.S. Environmental Protection Agency and the Kickapoo Tribe of Oklahoma on two separate reconnaissance projects carried out concurrently. Both projects entailed the use of passive samplers as a sampling methodology to investigate the detection of selected organic compounds at stream sites in jurisdictional areas of several tribes in central Oklahoma during January-February 2009. The focus of the project with the U.S. Environmental Protection Agency was the detection of pesticides and pesticide metabolites using Semipermeable Membrane Devices at five stream sites in jurisdictional areas of several tribes. The project with the Kickapoo Tribe of Oklahoma focused on the detection of pesticides, pesticide metabolites, polycyclic aromatic hydrocarbons, polychlorinated biphenyl compounds, and synthetic organic compounds using Semipermeable Membrane Devices and Polar Organic Chemical Integrative Samplers at two stream sites adjacent to the Kickapoo tribal lands. The seven stream sites were located in central Oklahoma on the Cimarron River, Little River, North Canadian River, Deep Fork, and Washita River. Extracts from SPMDs submerged at five stream sites, in cooperation with the U.S. Environmental Protection Agency, were analyzed for 46 pesticides and 6 pesticide metabolites. Dacthal, a pre-emergent herbicide, was detected at all five sites. Pendimethalin, also a pre-emergent, was detected at one site. The insecticides chlorpyrifos and dieldrin were detected at three sites and p,p'-DDE, a metabolite of the insecticide DDT, also was detected at three sites. SPMDs and POCIS were submerged at the upstream edge and downstream edge of the Kickapoo tribal boundaries. Both sites are downstream from the Oklahoma City metropolitan area and multiple municipal wastewater treatment plants. Extracts from the passive samplers were analyzed for 62 pesticides, 10 pesticide metabolites, 3 polychlorinated biphenyl compounds, 35 polycyclic aromatic hydrocarbons, and 49 synthetic organic compounds. Ten pesticides and four pesticide metabolites were detected at the upstream site and seven pesticides and four pesticide metabolites were detected at the downstream site. Pesticides detected at both sites were atrazine, chlorpyrifos, dacthal, dieldrin, metolachlor, pendimethalin, and trans-nonachlor. Additionally at the upstream site, heptachlor, pentachlorophenol, and prometon were detected. The pesticide metabolites p,p'-DDE, cis-chlordane, and trans-chlordane also were detected at both sites. Polychlorinated biphenyl compounds aroclor-1016/1242, aroclor-1254, and aroclor-1260 were detected at both sites. The upstream site had 16 polycyclic aromatic hydrocarbon detections and the downstream site had 8 detections. Because of chromatographic interference during analysis, a positive identification of 17 polycyclic aromatic hydrocarbons could not be made. Consequently, there may have been a greater number of these compounds detected at both sites. A total of 36 synthetic organic compounds were detected at the two sites adjacent to the Kickapoo tribal lands. The upstream site had 21 synthetic organic compound detections: three detergent metabolites, two fecal indicators, three flame retardants, seven industrial compounds, five compounds related to personal care products, and beta-sitosterol, a plant sterol. Fifteen synthetic organic compounds were detected at the downstream site and included: one fecal indicator, three flame retardants, six industrial compounds, and five compounds related to personal care products.

  18. Cenomanian-Turonian aquifer of central Israel, its development and possible use as a storage reservoir

    USGS Publications Warehouse

    Schneider, Robert

    1964-01-01

    The Cenomanian-Turonian formations constitute a highly permeable dolomite and limestone aquifer in central Israel. The aquifer is on the west limb of an anticlinorium that trends north-northeast. In places it may be as much as 800 meters thick, but in the report area, largely the foothills of the Judean-Ephraim Mountains where the water development is most intensive, its thickness is generally considerably less. In some places the aquifer occurs at or near the land surface, or it is covered by sandy and gravelly coastal-plain deposits. However, in a large part of the area, it is overlain by as much as 400 meters of relatively impermeable strata, and it is probably underlain by less permeable Lower Cretaceous strata. In general the aquifer water is under artesian pressure. The porosity of the aquifer is characterized mainly by solution channels and cavities produced by jointing and faulting. In addition to the generally high permeability of the aquifer, some regions, which probably coincide with ancient drainage patterns and (or) fault zones, have exceptionally high permeabilities. The source of most of the water in the aquifer is believed to be rain that falls on the foothills area. The westward movement of ground water from the mountainous outcrop areas appears to be impeded by a zone of low permeability which is related to structural and stratigraphic conditions along the western side of the mountains. Gradients of the piezometric surface are small, and the net direction of water movement is westward and northwestward under natural conditions. Locally, however, the flow pattern may be in other directions owing to spatial variations in permeability in the aquifer, the location of natural discharge outlets, and the relation of the aquifer to adjacent geologic formations. There probably is also a large vertical component of flow. Pumping has modified the flow pattern by producing several irregularly shaped shallow depressions in the piezometric surface although, to date, no unwatering of the aquifer has occurred. In the central part of the area, pumping has induced some infiltration from overlying coastal-plain formations. Injecting and storing surplus water seasonally in the aquifer should be feasible at almost any place. However, the movement and recovery of the injected water probably could be controlled most easily if the water were injected where depressions have been formed in the piezometric surface.

  19. Saltwater in shallow aquifers in east-central and northeastern Louisiana and southeastern Arkansas

    USGS Publications Warehouse

    Huff, G.F.; Bonck, J.P.

    1993-01-01

    The chemistry of water from irrigation and monitor wells in east-central Louisiana indicates the presence of saltwater in the Mississippi River alluvial aquifer and the uppermost part of the Jasper aquifer system. The salinity of this groundwater makes it unsuitable for use in irrigation of salt-sensitive crops. The geochemistry of bromide (Br) and chloride (Cl) ions and strontium (Sr) isotopes indicated that this saltwater could have originated from the mixing of freshwater with briny water originating from the Carrizo-Wilcox aquifer at altitudes from 5,800 to 6,800 feet below sea level. However, in the absence of data on the concentrations of Br and Cl ions and the values of (87)Sr/(86)Sr in water from the Catahoula, Cockfield, and Sparta aquifers within the study area, no conclusive statement can be made on the origin of saltwater in the alluvial aquifer and the uppermost part of the Jasper aquifer system. Analyses of water from irrigation wells in northeastern Louisiana and southeastern Arkansas indicated the presence of saltwater in the Mississippi River alluvial aquifer. Saltwater probably moves from southern Chicot County, Arkansas, into northeastern Louisiana by flowing to the southwest along a fluvial channel eroded into the Cockfield Formation. Saltwater in the Mississippi River alluvial aquifer in northeastern Louisiana and southeastern Arkansas can be hazardous to salt-sensitive crops, such as rice, when used for irrigation. The geochemistry of Br and Cl ions indicated that saltwater in the Mississippi River alluvial aquifer of southern Chicot County in southeastern Arkansas has two geochemically distinct sources. One source, which has Br/Cl ratios less than that of modern seawater, could be derived from saltwater present in aquifers of Tertiary age; this saltwater could enter the alluvial aquifer by upward flow from below as part of the natural regional groundwater flow pattern. The other source, which has Br/Cl ratios greater than that of modern sea- water, could be derived, in part, from briny water present in the Smackover Formation at altitudes from 5,500 to 6,500 feet below sea level. This briny water could enter the alluvial aquifer by upward migration along a fault that penetrates from near land surface into the Smackover Formation.

  20. Generalized potentiometric surface of the Catahoula aquifer in central Louisiana, 1980

    USGS Publications Warehouse

    Martin, Angel, Jr.; Whiteman, Charles D., Jr.

    1986-01-01

    Generalized contours of the altitude of water levels in wells completed in the Catahoula aquifer in central Louisiana, are illustrated by this map. Most water level measurements used in compiling the map were made in 1980; however, in parts of the State where water levels from 1980 were unavailable and where evidence indicated little change in water level, some measurements from as early as 1961 and as late as 1982 were used. Groundwater levels in and near the outcrop areas fluctuate 2 ft or less yearly and no significant long-term declines have occurred. The slow downward trend in water level altitude since early 1976 may be caused by pumpage from the Catahoula aquifer by a rural water system approximately 3 miles away. Recharge to the Catahoula aquifer occurs by rainfall on the upland outcrop-subcrop areas. Saltwater occurs throughout the Catahoula aquifer downgradient from the outcrop area. The ' approximate limit of freshwater ' line on the map indicates the downgradient limit of water with a concentration of chloride < 250 mg/L; the line was determined using water quality data and analysis of resistivity curves from geophysical well logs. Water from the Catahoula aquifer is used for municipal, industrial, and domestic purposes. Total pumpage from the aquifer in Louisiana was slightly over 1.1 million gallons/day in 1980. Local cones of depression result from pumpage just east of Anacoco in Vernon Parish and northwest of Jonesville in Catahoula Parish. (Lantz-PTT)

  1. Artificial recharge to the Floridan aquifer system, Orlando Area, Central Florida

    USGS Publications Warehouse

    German, E.R.; Bradner, L.A.

    1989-01-01

    Approximately 400 drainage wells exist in Orange County, central Florida. The rate of recharge through drainage wells is limited by the rate of surface flow to the wells; the hydraulic properties of weirs, overflow pipes, and well casings; or the water level above the top of the casing. The rate commonly is not limited by the hydraulic properties of the very transmissive aquifer system.

  2. The Mahomet aquifer: A transboundary resource in east-central Illinois

    USGS Publications Warehouse

    Larson, D.R.; Mehnert, E.; Herzog, B.L.

    2003-01-01

    Emerging intrastate transboundary issues focus on use of the Mahomet aquifer, which underlies about fifteen counties and many other political entities in east-central Illinois. This sand and gravel aquifer in the lower part of the buried Mahomet Bedrock Valley ranges between four and fourteen miles wide and from about 50 to 200 feet thick. Much of the region's rural population, several large communities, and many small towns obtain water from the Mahomet aquifer, as do industrial, agricultural, and commercial users. Increased development of the Mahomet aquifer to meet growing demands for water has caused conflicts over real or perceived adverse effects. One result has been the creation of fifteen resource protection zones and twelve water authorities. For groundwater supplies, resource protection zones help municipalities protect water-supply wells from potential adverse impacts. Many resource protection zones overlap one another, however, so this situation could lead to disputes over use of the resource. The reason that several of the twelve water authorities were organized was to meet a challenge perceived from a demand to be placed on the aquifer, in other words, a potential for conflict of use. Complicating the situation is that some of the water authorities overlap the resource protection zones. This could lead to disputes not only about water use, but also over which jurisdiction has the authority to settle a dispute. The Mahomet Aquifer Consortium was recently organized by concerned people representing diverse groundwater interests at the local level, including the private sector, professional organizations, and various governmental units. The consortium brings together representatives of some groups that typically did not communicate with each other in the past. The consortium may provide a forum through which emerging transboundary issues pertaining to use of the Mahomet aquifer can be addressed. Because the consortium is a voluntary organization that relies on Consensus building, the success it may achieve in resolving future conflicts over groundwater use from the Mahomet aquifer remains to be seen.

  3. Hydrologic data; North Canadian River from Lake Overholser to Lake Eufaula, central Oklahoma

    USGS Publications Warehouse

    Havens, J.S.

    1984-01-01

    The data contained in this report were gathered during the period 1982 to 1984 for use in constructing a digital model of the North Canadian River from Lake Overholser, in the western part of Oklahoma City, to Lake Eufaula, in eastern Oklahoma. Locations of test holes and sampling sites are show in figure 1. Information on well depths and water levels in table 1 was gathered in the summer of 1982. Some information in the table was reported by well owners. Field water-quality data for water temperatures, specific conductance, and pH were measured at the time the wells were inventoried in 1982 and appear in table 2. Forty-nine test holes were augered to provide more comprehensive lithologic and water-level data along the North Canadian River. Lithologic logs of these test holes appear in table 3. Thirty-eight of the test holes were completed as observations wells by placing perforated plastic casing in the holes. Water levels were measured in these observations wells from the time of completion in mid-1982 through mid-1984. Hydrographs of the observation wells are shown in figures 2 through 15. The data are presented graphically for clarity. Hydrographs of water-level fluctuations in two wells equipped with continuous water-level recorders and hydrographs of stage fluctuations on the North Canadian River at nearby gaging stations are shown in figures 16 and 17. Two sets of low-flow measurements for the North Canadian River showing gains and losses in flow between measuring sites in the reach from Lake Overholser to Lake Eufaula are given in table 4. Measurements of flow on tributary streams are also given in this table. Analyses of water-quality samples collected at the time of the low-flow measurements are given in table 5.

  4. Potentiometric surface of the Upper Floridan aquifer, west-central Florida, September 2005

    USGS Publications Warehouse

    Ortiz, A.G.

    2006-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing freshwater are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District (SWFWMD) and is used for major public supply, domestic use, irrigation, and brackish-water desalination in coastal communties (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2005. The potentiometric surface is an imaginary surface, connecting points of equal altitude to which water will rise in a tightly cased well that taps a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 55.19 inches for west-central Florida (from October 2004 through September 2005) was 2.00 inches above the historical cumulative average of 53.19 inches (Southwest Florida Water Management District, 2005). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to the most recent calendar year) and are updated monthly by the SWFWMD. This report, prepared by the U.S. Geological Survey (USGS) in cooperation with the SWFWMD, is part of a semiannual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the USGS during September 19-23, 2005. Suppplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the SWFWMD boundary by the USGS office in Altamonte Springs, Florida (Kinnaman, 2006). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal low water-level condition.

  5. Potentiometric Surface of the Upper Floridan Aquifer, West-Central Florida, September 2007

    USGS Publications Warehouse

    Ortiz, A.G.

    2008-01-01

    The Floridan aquifer system consists of the Upper and Lower Floridan aquifers separated by the middle confining unit. The middle confining unit and the Lower Floridan aquifer in west-central Florida generally contain highly mineralized water. The water-bearing units containing fresh water are herein referred to as the Upper Floridan aquifer. The Upper Floridan aquifer is the principal source of water in the Southwest Florida Water Management District and is used for major public supply, domestic use, irrigation, and brackish water desalination in coastal communities (Southwest Florida Water Management District, 2000). This map report shows the potentiometric surface of the Upper Floridan aquifer measured in September 2007. The potentiometric surface is an imaginary surface connecting points of equal altitude to which water will rise in tightly-cased wells that tap a confined aquifer system (Lohman, 1979). This map represents water-level conditions near the end of the wet season, when ground-water levels usually are at an annual high and withdrawals for agricultural use typically are low. The cumulative average rainfall of 39.50 inches for west-central Florida (from October 2006 through September 2007) was 13.42 inches below the historical cumulative average of 52.92 inches (Southwest Florida Water Management District, 2007). Historical cumulative averages are calculated from regional rainfall summary reports (1915 to most recent complete calendar year) and are updated monthly by the Southwest Florida Water Management District. This report, prepared by the U.S. Geological Survey in cooperation with the Southwest Florida Water Management District, is part of a semi-annual series of Upper Floridan aquifer potentiometric-surface map reports for west-central Florida. Potentiometric-surface maps have been prepared for January 1964, May 1969, May 1971, May 1973, May 1974, and for each May and September since 1975. Water-level data are collected in May and September each year to show the approximate annual low and high water-level conditions, respectively. Most of the water-level data for this map were collected by the U.S. Geological Survey during the period September 17-21, 2007. Supplemental water-level data were collected by other agencies and companies. A corresponding potentiometric-surface map was prepared for areas east and north of the Southwest Florida Water Management District boundary by the U.S. Geological Survey office in Orlando, Florida (Kinnaman and Dixon, 2008). Most water-level measurements were made during a 5-day period; therefore, measurements do not represent a 'snapshot' of conditions at a specific time, nor do they necessarily coincide with the seasonal high water-level condition.

  6. Structural constraints on the groundwater regime of the Cretaceous aquifers in Central Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Shalaby, A.; Embaby, A.; Seiam, A.

    2012-10-01

    The Lower Cretaceous aquifer is one of the most important water bearing formations not only in Sinai but also in the Middle East because of its high hydraulic parameters and good water quality. This aquifer is dominated by a thick sequence of well sorted and permeable sandstones The Lower Cretaceous aquifer is generally crossed by two main E-W trending, down to the north normal right-lateral oblique-slip faults; the Ragabet El-Naam Fault (RANF) to the south and Minsherih-Abu Kandu Shear Zone (MAKZ) further north. In Central Sinai, the water flow pattern and hydrochemistry of the Lower Cretaceous aquifer are controlled by the fault-fold patterns. Across the RANF the water flow is retarded behind the fault zone and deviates toward its central segment where the groundwater spills-out northward at Nekhel City. In contrast, the MAKZ defines a barrier for the northward flowing groundwater where the Lower Cretaceous aquifer south of the fault is blocked by the Upper Cretaceous to Eocene limestone and shale to the north. The water type changes across the fault zones from meteoric water to water of marine origin at the RANF and north of MAKZ respectively with sporadic occurrences of old marine water types limited to NW-trending structural lows. Generally the northward flow pattern of the Lower Cretaceous aquifer shows an eastward deviation to Gulf of Aqaba-Dead Sea rift and southwestward deviation to Gulf of Suez rift. Such deviations are controlled by the fault patterns characterizing north and west Sinai provinces.

  7. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the Beaver-North Canadian River from the panhandle to Canton Lake in northwestern Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Runkle, D.L.; Rea, Alan

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the alluvial and terrace deposits along the Beaver-North Canadian River from the panhandle to Canton Lake in northwestern Oklahoma. Ground water in 830 square miles of the Quaternary-age alluvial and terrace aquifer is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer consists of poorly sorted, fine to coarse, unconsolidated quartz sand with minor amounts of clay, silt, and basal gravel. The hydraulically connected alluvial and terrace deposits unconformably overlie the Tertiary-age Ogallala Formation and Permian-age formations. Most of the lines in the aquifer boundary and recharge data sets and some of the lines in the hydraulic conductivity data set were extracted from a published digital surficial geology data set based on a scale of 1:250,000. The ground-water elevation contours and some of the lines for the aquifer boundary, hydraulic conductivity, and recharge data sets were digitized from a ground-water modeling report about the aquifer published at a scale of 1:250,000. The hydraulic conductivity values and recharge rates also are from the ground-water modeling report. The data sets are provided in both nonproprietary and ARC/INFO export file formats. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  8. Appraisal of the Pelican River sand-plain aquifer, west-central Minnesota

    USGS Publications Warehouse

    Miller, R.T.

    1982-01-01

    The Pelican River sand-plain area includes approximately 200 squares miles of outwash deposits in parts of Becker, Otter Trail, and Clay Counties in west-central Minnesota. Saturated thickness of the outwash is as much as 140 feet and yields and properly constructed wells locally may exceed 1,200 gallons per minute. Recharge to the outwash from snowmelt and rain ranged from 3.2 to 6.1 inches in 1979-80. Discharge from the aquifer, as base flow of the Pelican River averaged 2.0 inches for 1979-80. Evapotranspiration is 22.4 inches per year. The chemical quality of ground-water is suitable for irrigation as measured by sodium-adsorption ratios, but locally high concentrations of calcium, magnesium, and bicarbonate may cause clogging of well screens. Mathematical models of parts of the ground-water-flow system indicate that lake levels and streamflow may decline due to pumping wells. The exact water-level decline is dependent on the total number of wells, pumping rates, location of pumping wells with respect to one another and surface-water bodies, duration of pumping, and the amount of ground-water recharge. Sensitivity analyses of the models indicates that additional data on hydraulic conductivity, evapotranspiration, and recharge may increase the reliability of model results. Buried aquifers are known to be present in the area. Aquifer-test results showed that pumping from a buried aquifer had no effect on water levels in the unconfined aquifer. (USGS)

  9. Configuration of the limestone aquifers in the central part of Egypt using electrical measurements

    NASA Astrophysics Data System (ADS)

    Abou Heleika, M. M.; Niesner, E.

    2009-03-01

    The Western Desert of Egypt is an area of natural expansion for agricultural, industrial, and civil activities. This expansion has led to a great demand for groundwater. In the central part of Egypt, on the western limestone plateau, vertical electrical sounding and borehole geophysical logging were conducted to delineate aquifer boundaries. The measurements were interpreted using the lithological information from the drilled wells as a constraining factor. Fractured chalky limestone sediments represent the main aquifer, which is covered by sand and gravel deposits and which rests directly on partially saturated and highly resistive massive limestone. Discontinuous clay layers, which overlie the aquifer unit, were detected in the southern part of the study area as well as a relatively thin marly limestone layer in the northern part. The integrated analyses carried out represent a significant and cost-effective method for delineating the main aquifer in this area. In turn, future well locations can be placed with more confidence than before, in accordance with the evaluation of the potentiality of the groundwater aquifers in the area. Although the groundwater is normally brackish, it can serve the acute demands for water, especially for agricultural purposes.

  10. Potentiometric surface, 2012, and water-level differences, 2005-12, of the Sparta Aquifer in north-central Louisiana

    USGS Publications Warehouse

    McGee, Benton D.; Brantly, Jeffrey A.

    2015-01-01

    The Sparta aquifer is used in 15 parishes in north-central Louisiana, primarily for public supply and industrial purposes. Of those parishes, eight (Bienville, Claiborne, Jackson, Lincoln, Ouachita, Union, Webster, and Winn) rely on the Sparta aquifer as their principal source of groundwater. In 2010, withdrawals from the Sparta aquifer in Louisiana totaled 63.11 million gallons per day (Mgal/d), a reduction of more than 11 percent from 1995, when the highest rate of withdrawals (71.32 Mgal/d) from the Sparta aquifer were documented. The Sparta aquifer provides water for a variety of purposes which include public supply (34.61 Mgal/d), industrial (25.60 Mgal/d), rural domestic (1.50 Mgal/d), and various agricultural (1.40 Mgal/d). Of the 13 major aquifers or aquifer systems in Louisiana, the Sparta aquifer is currently (2012) the sixth most heavily pumped. The Sparta aquifer is the second most heavily pumped aquifer in Arkansas, which borders Louisiana to the north. In 2005, 170 Mgal/d were withdrawn from the Sparta aquifer in eastern and southern Arkansas; of that total, about 15.55 Mgal/d were withdrawn from the aquifer in Union County, which borders Claiborne and Union Parishes to the north. By 1997, a large cone of depression (a cone-shaped depression in the potentiometric surface caused by and centered on a pumping well or wells) in the Sparta aquifer centered over Union County had merged with the cone of depression at West Monroe. In 2004, the rate of withdrawal from the Sparta aquifer in Union County began to decline and water levels in the aquifer began to rise in nearby areas of Arkansas and Louisiana.

  11. Water-level changes in the high plains aquifer underlying parts of South Dakota, Wyoming, Nebraska, Colorado, Kansas, New Mexico, Oklahoma, and Texas; predevelopment through nonirrigation season 1987-88

    USGS Publications Warehouse

    Kastner, W.M.; Schild, D.E.; Spahr, D.S.

    1989-01-01

    The changes in water levels in the High Plains aquifer from the nonirrigation season 1986-87 through the nonirrigation season 1987-88 and from the nonirrigation season 1979-80 through the nonirrigation season 1987-88 are presented in maps for the entire High Plains aquifer area. Water level changes are caused by interacting changes in precipitation, land use, and annual pumpage. Water levels declined from conditions prior to development until 1980 through parts of the High Plains of Nebraska, Colorado, New Mexico, Oklahoma, and Texas. From 1980 through 1987 water level changes were mixed, with declines of more than 10 ft in the highly developed areas of Kansas, New Mexico, Oklahoma, and Texas and relatively stable to rising water tables throughout the remaining aquifer area. The net change was a rise of 0.8 ft. The 1981-87 period was generally wetter than normal and pumping for irrigated agriculture was therefore reduced. Water level changes were mixed during 1987. Declines continued in some highly developed areas, but water levels generally rose throughout most of the aquifer. The average area-weighted change was a rise of 0.28 ft. This rise was due to the generally greater than normal precipitation, decreased acreage under irrigation, and decreased pumpage for those areas irrigated. At the end of the growing season, the drought in the Midwest in 1988 affected only limited areas of the High Plains. The effects of the drought on water levels can not be assessed until the water-level measurements for the nonirrigation season of 1988-89 are compiled. (USGS)

  12. Effects of brine on the chemical quality of water in parts of Creek, Lincoln, Okfuskee, Payne, Pottawatomie, and Seminole Counties, Oklahoma

    USGS Publications Warehouse

    Morton, Robert B.

    1986-01-01

    A study of water-quality degradation due to brine contamination was made in an area of ~1,700 mi2 in east-central Oklahoma. The study area coincides in part with the outcrop of the Vamoosa-Ada aquifer of Pennsylvanian age.

  13. Digital model of predevelopment flow in the Tertiary limestone (Floridan) aquifer system in West-Central Florida

    USGS Publications Warehouse

    Ryder, Paul D.

    1982-01-01

    A computer model was calibrated to approximate predevelopment flow conditions in a multilayered aquifer system in 10,600 square miles in west-central Floria. The lowermost aquifer, called the Floridan aquifer, is confined in most of the study area and consists of carbonate rocks ranging up to 1,300 feet thick. The Floridan aquifer is the chief source for large withdrawals and natural springflow in the study area. Daily springflows within the study area have averaged about 2.4 billion gallons. The secondary artesian and the surficial aquifers are much less permeable than the Floridan aquifer. Where they are present and have heads higher than those in the Floridan aquifer, they provide recharge to the Floridan. Initial estimates of recharge to the Floridan aquifer were from water-balance calculations for surface-water basins; initial estimates of transmissivity were from aquifer tests and flow-net analyses. The model was calibrated for the predevelopment era, wherein steady-state flow conditions were assumed. Calibrated transmissivities for the Floridan aquifer range from less than 15,000 to several million feet squared per day. Recharge to the system was about 3,700 cubic feet per second. About 90% was discharged as springflow, and 10% was upward leakage. (USGS)

  14. Development of a Unified Hydrostratigraphic Framework for the Floridan Aquifer System in Central and Southern Florida

    NASA Astrophysics Data System (ADS)

    Reese, R. S.

    2008-05-01

    The mostly carbonate Floridan aquifer system (FAS) of central and southern Florida is a widely used resource with a complex hydrostratigraphic framework that is managed primarily in a subregional context according to water management jurisdictional boundaries. As use of the FAS increases, a consistent regional hydrostratigraphic framework is needed for effective management across these boundaries. Stratigraphic marker horizons within and near the top of FAS were delineated and mapped to develop a preliminary, correlative stratigraphic framework. This framework was used to identify and determine aquifers, subaquifers, and confining units and map their spatial distribution. These horizons are based on lithologic changes and geophysical log signatures identified in previous studies, and they were extended throughout the study area primarily by correlation of natural gamma-ray logs. The FAS consists of the Upper Floridan aquifer, middle confining unit, and Lower Floridan aquifer. A regional, productive zone is delineated and informally referred to as the Avon Park permeable zone. This zone is present over most of the study area and is characterized by thick units of dolostone with interbedded limestone and high fracture permeability. The zone has been identified in different regions in previous studies, either as the upper part of the Lower Floridan aquifer or as the lower part of the Upper Floridan aquifer. In this study it is generally considered to be within the middle confining unit. Transmissivity of the Avon Park permeable zone, a major source of water supply, generally ranges from less than 1x104 up to 1.6x106 ft2/day, and is greatest in central Florida where dolomite is developed as a major component of the zone. A large area of low transmissivity (less than 105 ft2/day) in southern Florida coincides with an area where limestone is the predominant lithology within the zone. Major uses of the FAS now include withdrawal for public and agricultural supply, including treatment with reverse osmosis, aquifer storage and recovery, and disposal of treated wastewater. Water-level and water-quality conflicts could arise between these competing uses, and delineating the extent and hydraulic connectivity of the Avon Park permeable zone within the FAS may help managers and others predict and minimize such conflicts.

  15. Potential for downward leakage to the Floridan Aquifer, Green Swamp area, central Florida

    USGS Publications Warehouse

    Grubb, H.F.

    1977-01-01

    A qualitative evaluation of the potential for downward leakage from the surficial sand aquifer to the underlying Floridan aquifer was made for the Green Swamp area (about 870 sq mi) in central Florida. Downward leakage, or recharge, is limited under natural conditions owing to the nearness to land surface of the potentiometric surface of both the sand aquifer and the underlying Floridan aquifer. Continuous cores of the unconsolidated section were obtained at 74 sites in the study area and were evaluated for downward leakage potential based on grain-size distribution. Sand percentage was estimated for each interval or bed from microscopic examination of the core samples. The four maps prepared from this data show sand thickness, clay thickness, relative vertical hydraulic conductivity of the confining beds and the relative potential for downward leakage. About 20 percent (178 sq mi) of the area classified has a relatively good potential for downward leakage; almost 50 percent of the area has a relatively poor potential. (Woodard-USGS)

  16. Modeling saltwater upconing in a freshwater aquifer in south-central Kansas

    USGS Publications Warehouse

    Ma, T.-S.; Sophocleous, M.; Yu, Y.-S.; Buddemeier, R.W.

    1997-01-01

    The Great Bend Prairie freshwater alluvial aquifer in south-central Kansas overlies a bedrock brine aquifer of Permian age. The continuous extraction of freshwater mainly for irrigation in this area has accelerated the upward movement of the saltwater, resulting in the deterioration of water quality. Predicting saltwater upconing is critical for maintaining a long-term supply of water of good quality to the Groundwater Management District No. 5. This paper uses a numerical model to predict the effect of saltwater upconing on the salinity of pumped water. A sensitivity analysis was conducted for estimating the effects of uncertainties in model parameters on the numerical results. The most important factors affecting the salinity of discharged water are found to be the location and nature of clay layers in the aquifer, the pumping rate, the location of the well screen, and the hydraulic conductivities of the medium. The effect of uncertainties in aquifer porosity and dispersivity on salinity is appreciable but not substantial, whereas that of recharge from precipitation in the study area is relatively insignificant. In addition, a numerical model based on the field conditions observed at the Siefkes site was constructed and calibrated to reproduce and project the variation of measured water levels and discharged groundwater concentration. Finally, a number of practical management recommendations based on this study are presented.

  17. Regional Groundwater Flow in Quaternary Aquifers in the Kanto Plain, central Japan

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Miyakoshi, A.; Yasuhara, M.; Sakura, Y.

    2006-12-01

    The Kanto Plain located in the Pacific side of central Japan is the largest groundwater basin in Japan. Tokyo metropolitan district is situated in this plain, and approximately 30 % of the whole population of Japan lives here. Urbanization and various human activities have affected groundwater environment in each part of the plain; e.g. land subsidence, decline of piezometric head and pollution. It is necessary to make clear the present groundwater environment and the process of environmental changes to maintain and manage groundwater environment. In this study, groundwater samples were taken in Quaternary aquifers (shallower than GL-400m) and analyzed major dissolved ions and delta-18O, D to clarify the present regional groundwater flow system. Also, long term data of piezometric head in various aquifers observed by the local administrations were collected. From the three dimensional distribution of groundwater quality and delta-18O, D, groundwater with relatively high Cl- concentration (up to about 200mg/l) and low isotopic ratios was found in the aquifer that was situated between 200m and 400m depth of the central part. This groundwater area was distributed in the direction of northwest-southeast, and boundary of it was clear. Considering the hydrogeological setting and isotopic ratios of precipitation, the groundwater was considered to have been supplied to this area by regional groundwater flow. On the other hand, the southwestern boundary was well corresponded to the location of Ayasegawa fault system that deformed Quaternary sediments approximately 100m at the depth GL-200m. In addition, piezometric head in each aquifer differed bordering on the fault. These differences strongly suggested the fault system divides the regional groundwater flow system, that is, the fault system acts as barrier to groundwater flow from southwestern part to central part of the plain. Also, this barrier was fully functioning in the period when the groundwater was pumped in large quantities.

  18. Investigating Vertical Mixing Between Two Carbonate Aquifers Using a Multiport Well, Central Texas

    NASA Astrophysics Data System (ADS)

    Kromann, J.; Wong, C. I.; Hunt, B.; Smith, B.; Banner, J. L.

    2011-12-01

    Determining the occurrence and extent of mixing between vertically-adjacent aquifers is critical to dual-aquifer management. This can be challenging due to variable well depths and uncertainty as to hydrostratigraphic sources of groundwater. This study uses a multiport monitor well to investigate the degree of aquifer mixing between the overlying Edwards aquifer and underlying Trinity aquifer in central Texas. The results will inform dual-aquifer management as the Trinity aquifer is being developed as an alternative water source to the Edwards aquifer due to pumping limits and projections of increasing water demand. Water levels from isolated hydrostratigraphic units (n = 19) were measured monthly in the well as climate conditions transitioned from wet to dry (Sept 2010 to May 2011). Groundwater was sampled over a two-week interval in May to June 2011. At the start of the monitoring interval, water levels were high in the Edwards and the uppermost units of the Trinity relative to the rest of the Trinity units. Water levels decreased to lower elevations, from about 635 to 585 ft-msl, under dry conditions. Water levels in the lowermost Trinity declined less, from about 630 to 620 ft-msl, under dry conditions. Two zones separating the Edwards and lowermost Trinity showed almost no head change during this period. The water-level variations between the two aquifers suggest that: i) vertical flow potential from the Edwards to the Trinity occurs during dry conditions, ii) the uppermost stratigraphic units of the Trinity and Edwards are mixing, and iii) portions of the Trinity behave as an aquitard, providing hydrologic separation between the Edwards and lowermost Trinity units. Groundwater samples indicate the presence of three distinct hydrochemical facies: Ca-HCO3 (Edwards), Ca-HCO3-SO4 (lowermost Trinity), and Ca-SO4 (Trinity-Glen Rose Fm), suggesting little vertical flow and mixing. Covariation between groundwater 87Sr/86Sr values and SO4 concentrations from units of the Edwards and lowermost Trinity units can be accounted for by a two-end-member fluid mixing model, which uses a unit from the Edwards and lowermost Trinity as end members. This may indicate that 87Sr/86Sr values and SO4 concentrations are controlled by varying extents of mixing between the two units. Groundwater from units in the Glen Rose Formation (between the Edwards and lowermost Trinity units) cannot be accounted for by this mixing process due to elevated SO4 concentrations likely associated with dissolution of evaporites. 87Sr/86Sr values of evaporites recovered from the well are consistent with 87Sr/86Sr values of groundwater from these Glen Rose units. Although the geochemical model results suggest possible mixing between the Edwards and Trinity aquifers, water-level variations and the presence of distinct hydrochemical facies indicate that vertical flow between the Edwards and Trinity is limited to the uppermost units of the Trinity. This study suggests that the Edwards aquifer and lowermost Trinity units are not likely in hydrologic communication and independent management may be possible.

  19. Geologic framework of the Edwards Aquifer and upper confining unit, and hydrogeologic characteristics of the Edwards Aquifer, south-central Uvalde County, Texas

    USGS Publications Warehouse

    Clark, Allan K.; Small, Ted A.

    1997-01-01

    The stratigraphic units of the Edwards aquifer in south-central Uvalde County generally are porous and permeable. The stratigraphic units that compose the Edwards aquifer in south-central Uvalde County are the Devils River Formation in the Devils River trend; and the West Nueces, McKnight, and Salmon Peak Formations in the Maverick Basin. The Balcones fault zone is the principal structural feature in Uvalde County; however, the displacement along the fault zone is less in Uvalde County than in adjacent Medina and Bexar Counties to the east. The Uvalde Salient is a structural high in south-central Uvalde County, and consists of several closely connected crustal uplifts that bring Edwards aquifer strata to the surface generally forming prominent hills. The crustal uplifts forming this structural high are the remnants of intrusive and extrusive magnatic activity. Six primary faults?Cooks, Black Mountain, Blue Mountain, Uvalde, Agape, and Connor?cross the length of the study area from the southwest to the northeast juxtaposing the Lower Cretaceous Salmon Peak Formation at the surface in the northwestern part of the study area against Upper Cretaceous formations in the central part of the study area. In the study area, the porosity of the rocks in the Edwards aquifer is related to depositional or diagenetic elements along specific stratigraphic horizons (fabric selective) and to dissolution and structural elements that can occur in any lithostratigraphic horizon (not fabric selective). Permeability depends on the physical properties of the rock such as size, shape, distribution of pores, and fissuring and dissolution. The middle 185 feet of the lower part of the Devils River Formation, the upper part of the Devils River Formation, and the upper unit of the Salmon Peak Formation probably are the most porous and permeable stratigraphic zones of the Edwards aquifer in south-central Uvalde County.

  20. Calibrated models as management tools for stream-aquifer systems: the case of central Kansas, USA

    USGS Publications Warehouse

    Sophocleous, M.; Perkins, S.P.

    1993-01-01

    We address the problem of declining streamflows in interconnected stream-aquifer systems and explore possible management options to address the problem for two areas of central Kansas: the Arkansas River valley from Kinsley to Great Bend and the lower Rattlesnake Creek-Quivira National Wildlife Refuge area. The approach we followed implements, calibrates, and partially validates for the study areas a stream-aquifer numerical model combined with a parameter estimation package and sensitivity analysis. Hydrologic budgets for both predevelopment and developed conditions indicate significant differences in the hydrologic components of the study areas resulting from development. The predevelopment water budgets give an estimate of natural ground-water recharge, whereas the budgets for developed conditions give an estimate of induced recharge, indicating that major ground-water development changes the recharge-discharge regime of the model areas with time. Such stream-aquifer models serve to link proposed actions to hydrologic effects, as is clearly demonstrated by the effects of various management alternatives on the streamflows of the Arkansas River and Rattlesnake Creek. Thus we show that a possible means of restoring specified streamflows in the area is to implement protective stream corridors with restricted ground-water extraction. ?? 1993.

  1. Calibrated models as management tools for stream-aquifer systems: the case of central Kansas, USA

    NASA Astrophysics Data System (ADS)

    Sophocleous, Marios; Perkins, Samuel P.

    1993-12-01

    We address the problem of declining streamflows in interconnected stream-aquifer systems and explore possible management options to address the problem for two areas of central Kansas: the Arkansas River valley from Kinsley to Great Bend and the lower Rattlesnake Creek-Quivira National Wildlife Refuge area. The approach we followed implements, calibrates, and partially validates for the study areas a stream-aquifer numerical model combined with a parameter estimation package and sensitivity analysis. Hydrologic budgets for both predevelopment and developed conditions indicate significant differences in the hydrologic components of the study areas resulting from development. The predevelopment water budgets give an estimate of natural ground-water recharge, whereas the budgets for developed conditions give an estimate of induced recharge, indicating that major ground-water development changes the recharge-discharge regime of the model areas with time. Such stream-aquifer models serve to link proposed actions to hydrologic effects, as is clearly demonstrated by the effects of various management alternatives on the streamflows of the Arkansas River and Rattlesnake Creek. Thus we show that a possible means of restoring specified streamflows in the area is to implement protective stream corridors with restricted ground-water extraction.

  2. Isotopic characterization of the Precambrian carbonate aquifers under the city of Bangui (Central African Republic)

    NASA Astrophysics Data System (ADS)

    Huneau, Frederic; Djebebe-Ndjiguim, Chantal-Laure; Foto, Eric; Ito, Mari; Celle-Jeanton, Helene; Garel, Emilie; Mabingui, Joseph

    2013-04-01

    The city of Bangui, the capital of the Central African Republic, is located on the right bank of the Ubangi River which is the northernmost tributary of the Congo River. From its foundation in 1889 this city has always suffered from serious problems of water management. This is related to the specificity of the site configuration (steep hills surrounding a large swampy flat valley poorly drained) and to the urbanisation process responsible for the waterproofing of soils and the associated increased runoff processes under tropical humid condition.This paper presents the results of a geochemical and isotopic survey carried out in 2011 aiming at evaluating the type and chemical quality of the groundwater resources of the Bangui region. By combining geological, hydrogeochemical and isotopic data it appears that the underground of Bangui seems favourable to the development of a secured and sustainable water supply from groundwater provided that the conditions of exploitation would be constrained by the local authorities. The deep fractured (and locally kastified) Precambrian carbonate aquifers known as Bimbo and Fatima formations are identified as target resources considering the relatively good quality of the resource from the chemical point of view, and the semi-confined structure of the aquifer preventing the mixing with shallow aquifers already strongly impacted by domestic and industrial pollutions.

  3. Data for ground-water test hole near Butte City, Central Valley aquifer project, California

    USGS Publications Warehouse

    French, James J.; Page, R.W.; Bertoldi, G.L.

    1983-01-01

    This report provides preliminary data for the third of seven test holes drilled as part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 NE 1/4 sec. 32, T. 19 N., R. 1 W., Glenn County, California, about one-half mile south of the town of Butte City. Drilled to a depth of 1,432 feet below land surface, the hole is cased to a depth of 82 feet and equipped with three piezometer tubes to depths of 592 feet, 968 feet, and 1,330 feet. A 5-foot well screen is at the bottom of each piezometer. Each screened interval has a cement plug above and below it to isolate it from other parts of the aquifer , and the well bore is filled between the plugs with sediment. Nine cores and 49 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, and chemical quality of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  4. Data for ground-water test hole near Nicolaus, Central Valley aquifer project, California

    USGS Publications Warehouse

    French, James J.; Page, R.W.; Bertoldi, Gilbert L.

    1983-01-01

    Preliminary data are provided for the third of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 NE 1/4 sec. 2, T.12N., R.3E., Sutter County, California, about 1 1/2 miles northwest of the town of Nicolaus. Drilled to a depth of 1,150 feet below land surface, the hole is cased to a depth of 100 feet and equipped with three piezometer tubes to depths of 311, 711, and 1,071 feet. A 5-foot well screen is set in sand at the bottom of each piezometer. Each screened interval has a cement plug above and below it to isolate it from other parts of the aquifer, and the well bore is filled between the plugs with sediment. Thirty-one cores and 34 sidewall cores were recovered. Laboratory tests were made for minerology, consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis of the three tapped zones and measured for water level. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  5. Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA

    USGS Publications Warehouse

    Gosselin, D.C.; Harvey, F.E.; Frost, C.; Stotler, R.; Macfarlane, P.A.

    2004-01-01

    The Dakota aquifer of the central and eastern Great Plains of the United States is an important source of water for municipal supplies, irrigation and industrial use. Although the regional flow system can be characterized generally as east to northeasterly from the Rocky Mountains towards the Missouri River, locally the flow systems are hydrologically complex. This study uses Sr isotopic data from groundwater and leached aquifer samples to document the complex subsystems within the Dakota aquifer in Nebraska and Kansas. The interaction of groundwater with the geologic material through which it flows has created spatial patterns in the isotopic measurements that are related to: long-term water-rock interaction, during which varying degrees of isotopic equilibrium between water and rock has been achieved; and the alteration of NaCl fluids by water-rock interaction. Specifically, Sr isotopic data distinguish brines from Kansas and western Nebraska from those in eastern Nebraska: the former are interpreted to reflect interaction with Permian rocks, whereas the latter record interaction with Pennsylvanian rocks. The Sr isotopic composition of groundwater from other parts of Nebraska and Kansas are a function of the dynamic interaction between groundwater and unlithified sediments (e.g., glacial till and loess), followed by interaction with oxidized and unoxidized sediments within the Dakota Formation. This study illustrates the power of combining Sr chemistry with more conventional geochemical data to obtain a more complete understanding of groundwater flow systems within regional aquifer systems where extensive monitoring networks do not exist. ?? 2003 Elsevier Ltd. All rights reserved.

  6. Comparative evolution of Pennsylvanian platform margins in Oklahoma and north-central Texas

    SciTech Connect

    Cleaves, A.W.; Puckette, J.O. )

    1991-08-01

    Pennsylvanian evolution of the Midland basin's eastern shelf and the northern shelves of the Anadarko and Arkoma basins demonstrates a strongly contrasting pattern with regard to the facies composition and stability of the shelf margin. For the Midland basin a carbonate ramp system developed adjacent to the Eastern shelf during the early Desmoinesian but received no coarse-grained clastic sediment until after the central Fort Worth basin was completely filled by Ouachita orogenic debris in the late Desmoinesian. At that time, a distinct north-south hingeline formed between the shelf and incipient Midland basin that allowed for subsequent vertical accretion of a Missourian-age double bank system. Due to the absence of active deltaic depocenters across the southern two-thirds of the shelf, the Missourian shelf margin did not prograde basinward nor did a submarine fan system develop adjacent to this reciprocal bank complex. Later, during the Virgilian, a single shelf-edge bank and submarine fan complex prograded the shelf edge westward. The shelf edges for the Anadarko and Arkoma basins demonstrate a significantly different pattern. Only during the late Desmoinesian (Marmaton Group) did a shelf-edge bank develop in association with shelf-slope reciprocal sedimentation. For the Anadarko basin, widespread submarine fans, fed from a northeasterly cratonic source, are first seen with Red Fork deposition. Post-Tonkawa cyclic sedimentation prograded the shelf edge southward and gave rise to a more carbonate-dominated shelf sequence. In virtually all instances the regressive submarine fan units indicate eustatic lowstands of sea level.

  7. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and metamorphosed to some degree, thus rock types and their relationships vary over distance. Quaternary-age sediment and basalt compose the primary source of groundwater in the Wood River Valley aquifer system. These Quaternary deposits can be divided into three units: a coarse-grained sand and gravel unit, a fine-grained silt and clay unit, and a single basalt unit. The fine- and coarse-grained units were primarily deposited as alluvium derived from glaciation in the surrounding mountains and upper reaches of tributary canyons. The basalt unit is found in the southeastern Bellevue fan area and is composed of two flows of different ages. Most of the groundwater produced from the Wood River Valley aquifer system is from the coarse-grained deposits. The altitude of the pre-Quaternary bedrock surface in the Wood River Valley was compiled from about 1,000 well-driller reports for boreholes drilled to bedrock and about 70 Horizontal-to-Vertical Spectral Ratio (HVSR) ambient-noise measurements. The bedrock surface generally mimics the land surface by decreasing down tributary canyons and the main valley from north to south; it ranges from more than 6,700 feet in Baker Creek to less than 4,600 feet in the central Bellevue fan. Most of the south-central portion of the Bellevue fan is underlain by an apparent topographically closed area on the bedrock surface that appears to drain to the southwest towards Stanton Crossing. Quaternary sediment thickness ranges from less than a foot on main and tributary valley margins to about 350 feet in the central Bellevue fan. Hydraulic conductivity for 81 wells in the study area was estimated from well-performance tests reported on well-driller reports. Estimated hydraulic conductivity for 79 wells completed in alluvium ranges from 1,900 feet per day (ft/d) along Warm Springs Creek to less than 1 ft/d in upper Croy Canyon. A well completed in bedrock had an estimated hydraulic conductivity value of 10 ft/d, one well completed in basalt had a value of 50 ft/d, and three wells completed in the confined system had values ranging from 32 to 52 ft/d. Subsurface outflow of groundwater from the Wood River Valley aquifer system into the eastern Snake River Plain aquifer was estimated to be 4,000 acre-feet per year. Groundwater outflow beneath Stanton Crossing to the Camas Prairie was estimated to be 300 acre-feet per year.

  8. Hydrologic maps of Ogallala Aquifer, west-central Kansas, 1979-81

    USGS Publications Warehouse

    Spinazola, Joseph M.

    1982-01-01

    A mathematical technique, called kriging, was programmed for a computer to interpolate hydrologic data based on a network of measured values in west-central Kansas. The computer program generated estimated values at the center of each 1-mile section in the Western Kansas Groundwater Management District No. 1 and facilitated contouring of selected hydrologic data that are needed in the effective management of ground water for irrigation. The kriging technique produced various maps that illustrated hydrologic conditions in the Ogallala aquifer, the principal source of water in west-central Kansas. Maps of the aquifer, which use a 3-year average, included the 1979-81 water-table altitudes, which ranged from about 2,580 to 3,720 feet; the 1979-81 saturated thicknesses, which ranged from about 0 to 250 feet; and the percentage changes in saturated thickness from 1950 to 1979-81, which ranged from about a 40-percent increase to a 100-percent decrease. A map showing errors of estimate also was provided as a measure of reliability for the 1979-81 water-table altitudes. Errors of estimate ranged from 2 to 24 feet. (USGS)

  9. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan.

    PubMed

    Babiker, Insaf S; Mohamed, Mohamed A A; Hiyama, Tetsuya; Kato, Kikuo

    2005-06-01

    Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and land use planning. This contribution aims at estimating aquifer vulnerability by applying the DRASTIC model as well as utilizing sensitivity analyses to evaluate the relative importance of the model parameters for aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture central Japan. An additional objective is to demonstrate the combined use of the DRASTIC and geographical information system (GIS) as an effective method for groundwater pollution risk assessment. The DRASTIC model uses seven environmental parameters (Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone, and hydraulic Conductivity) to characterize the hydrogeological setting and evaluate aquifer vulnerability. The western part of the Kakamigahara aquifer was dominated by "High" vulnerability classes while the eastern part was characterized by "Moderate" vulnerability classes. The elevated north-eastern part of the study area displayed "Low" aquifer vulnerability. The integrated vulnerability map shows the high risk imposed on the eastern part of the Kakamigahara aquifer due to the high pollution potential of intensive vegetable cultivation. The more vulnerable western part of the aquifer is, however, under a lower contamination risk. In Kakamigahara Heights, land use seems to be a better predictor of groundwater contamination by nitrate. Net recharge parameter inflicted the largest impact on the intrinsic vulnerability of the aquifer followed by soil media, topography, vadose zone media, and hydraulic conductivity. Sensitivity analyses indicated that the removal of net recharge, soil media and topography causes large variation in vulnerability index. Moreover, net recharge and hydraulic conductivity were found to be more effective in assessing aquifer vulnerability than assumed by the DRASTIC model. The GIS technique has provided efficient environment for analyses and high capabilities of handling large spatial data. PMID:15919534

  10. Geologic and hydrogeologic frameworks of the Biscayne aquifer in central Miami-Dade County, Florida

    USGS Publications Warehouse

    Wacker, Michael A.; Cunningham, Kevin J.; Williams, John H.

    2014-01-01

    Evaluations of the lithostratigraphy, lithofacies, paleontology, ichnology, depositional environments, and cyclostratigraphy from 11 test coreholes were linked to geophysical interpretations, and to results of hydraulic slug tests of six test coreholes at the Snapper Creek Well Field (SCWF), to construct geologic and hydrogeologic frameworks for the study area in central Miami-Dade County, Florida. The resulting geologic and hydrogeologic frameworks are consistent with those recently described for the Biscayne aquifer in the nearby Lake Belt area in Miami-Dade County and link the Lake Belt area frameworks with those developed for the SCWF study area. The hydrogeologic framework is characterized by a triple-porosity pore system of (1) matrix porosity (mainly mesoporous interparticle porosity, moldic porosity, and mesoporous to megaporous separate vugs), which under dynamic conditions, produces limited flow; (2) megaporous, touching-vug porosity that commonly forms stratiform groundwater passageways; and (3) conduit porosity, including bedding-plane vugs, decimeter-scale diameter vertical solution pipes, and meter-scale cavernous vugs. The various pore types and associated permeabilities generally have a predictable vertical spatial distribution related to the cyclostratigraphy. The Biscayne aquifer within the study area can be described as two major flow units separated by a single middle semiconfining unit. The upper Biscayne aquifer flow unit is present mainly within the Miami Limestone at the top of the aquifer and has the greatest hydraulic conductivity values, with a mean of 8,200 feet per day. The middle semiconfining unit, mainly within the upper Fort Thompson Formation, comprises continuous to discontinuous zones with (1) matrix porosity; (2) leaky, low permeability layers that may have up to centimeter-scale vuggy porosity with higher vertical permeability than horizontal permeability; and (3) stratiform flow zones composed of fossil moldic porosity, burrow related vugs, or irregular vugs. Flow zones with a mean hydraulic conductivity of 2,600 feet per day are present within the middle semiconfining unit, but none of the flow zones are continuous across the study area. The lower Biscayne aquifer flow unit comprises a group of flow zones in the lower part of the aquifer. These flow zones are present in the lower part of the Fort Thompson Formation and in some cases within the limestone or sandstone or both in the uppermost part of the Pinecrest Sand Member of the Tamiami Formation. The mean hydraulic conductivity of major flow zones within the lower Biscayne aquifer flow unit is 5,900 feet per day, and the mean value for minor flow zones is 2,900 feet per day. A semiconfining unit is present beneath the Biscayne aquifer. The boundary between the two hydrologic units is at the top or near the top of the Pinecrest Sand Member of the Tamiami Formation. The lower semiconfining unit has a hydraulic conductivity of less than 350 feet per day. The most productive zones of groundwater flow within the two Biscayne aquifer flow units have a characteristic pore system dominated by stratiform megaporosity related to selective dissolution of an Ophiomorpha-dominated ichnofabric. In the upper flow unit, decimeter-scale vertical solution pipes that are common in some areas of the SCWF study area contribute to high vertical permeability compared to that in areas without the pipes. Cross-hole flowmeter data collected from the SCWF test coreholes show that the distribution of vuggy porosity, matrix porosity, and permeability within the Biscayne aquifer of the SCWF is highly heterogeneous and anisotropic. Groundwater withdrawals from production well fields in southeastern Florida may be inducing recharge of the Biscayne aquifer from canals near the well fields that are used for water-management functions, such as flood control and well-field pumping. The SCWF was chosen as a location within Miami-Dade County to study the potential for such recharge to the Biscayne aquifer from the C–2 (Snapper Creek) canal that roughly divides the well field in half. Geologic, hydrogeologic, and hydraulic information on the aquifer collected during construction of monitoring wells within the SCWF could be used to evaluate the groundwater flow budget at the well-field scale.

  11. Geologic Map of the Edwards Aquifer In Northern Medina and Northeastern Uvalde Counties, South-central Texas

    USGS Publications Warehouse

    Clark, Allan K.; Faith, Jason R.; Blome, Charles D.; Pedraza, Diana E.

    2006-01-01

    The southern segment of the Edwards aquifer in south-central Texas is one of the most productive subsurface reservoirs of potable water in the world, providing water of excellent quality to more than a million people in the San Antonio region, where the Environmental Protection Agency (EPA) has declared it to be a sole-source aquifer (van der Leeden and others, 1990). Depending on the depositional province within which the associated carbonate rocks originated (Maclay and Small, 1984), the Edwards aquifer is composed of several geologic formations (primarily limestone and dolostone) of Early Cretaceous age. Most water pumped from the Edwards aquifer comes form the Person and Kainer Formations, which were deposited over the San Marcos Platform. The principal source of ground water in study area is the Devils River Formation, which was deposited in the Devils River trend. The Devils River Formation provides large quantities of irrigation water to fertile bottomland areas of Medina and Uvalde Counties, where the success of farming and ranching activities has long depended upon water from the Edwards aquifer. The study area includes all of the Edwards aquifer recharge zone between the Sabinal River (on the west) and the Medina River (on the east) plus an updip fringe of the confined zone in east-central Uvalde and central Medina Counties. Over about ninety percent of the study area--within the Devils River trend--the Edwards aquifer is composed of the Georgetown Formation plus the underlying Devils River Formation. Over the remaining area--over the southwestern margin of the San Marcos platform--the Edwards aquifer consists of the Georgetown Formation plus the underlying Edwards Group (Rose, 1972), which comprises the Kainer and Person Formations.

  12. Dissolved solids and sodium in water from the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Krothe, Noel C.; Oliver, Joseph W.; Weeks, John B.

    1982-01-01

    In 1978, the U.S. Geological Survey initiated a 5-year study of the High Plains regional aquifer to provide: (1) Hydrologic information needed to evaluate the effects of continued ground-water development; and (2) computer models to predict aquifer response to changes in ground-water development. The plan of study for the High Plains Regional Aquifer-System Analysis was described by Weeks (1978). A description of the High Plains aquifer and a map of the 1978 water table were presented by Gutentag and Weeks (1980). Maps of the bedrock geology, altitude of aquifer base, and saturated thickness of the High Plains aquifer were published by Weeks and Gutentag (1981). Water-level and saturated-thickness changes, from predevelopment to 1980, were mapped by Luckey, Gutentag, and Weeks (1981). This report describes the areal distribution of dissolved solids and sodium in the water of the High Plains aquifer. Data used in this study were provided by the U.S. Geological Survey and State agencies in each of the eight States in the High Plains. Their contribution is an integral part of this investigation.

  13. Machine-readable files developed for the High Plains Regional Aquifer-System analysis in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Ferrigno, C.F.

    1986-01-01

    Machine-readable files were developed for the High Plains Regional Aquifer-System Analysis project are stored on two magnetic tapes available from the U.S. Geological Survey. The first tape contains computer programs that were used to prepare, store, retrieve, organize, and preserve the areal interpretive data collected by the project staff. The second tape contains 134 data files that can be divided into five general classes: (1) Aquifer geometry data, (2) aquifer and water characteristics , (3) water levels, (4) climatological data, and (5) land use and water use data. (Author 's abstract)

  14. OUTCROP-BASED LITHOFACIES AND DEPOSITIONAL SETTING OF ARSENIC-BEARING PERMIAN RED BEDS IN THE CENTRAL OKLAHOMA AQUIFER (COA), CLEVELAND COUNTY, OKLAHOMA

    EPA Science Inventory

    In January 2001, the Environmental Protection Agency established safe drinking water standards for arsenic at a maximum concentration of 10 mg/L. Results from the National Water-Quality Assessment Program (USGS), however, document the occurrence of arsenic concentrations in drin...

  15. Description and Evaluation of Numerical Groundwater Flow Models for the Edwards Aquifer, South-Central Texas

    USGS Publications Warehouse

    Lindgren, Richard J.; Taylor, Charles J.; Houston, Natalie A.

    2009-01-01

    A substantial number of public water system wells in south-central Texas withdraw groundwater from the karstic, highly productive Edwards aquifer. However, the use of numerical groundwater flow models to aid in the delineation of contributing areas for public water system wells in the Edwards aquifer is problematic because of the complex hydrogeologic framework and the presence of conduit-dominated flow paths in the aquifer. The U.S. Geological Survey, in cooperation with the Texas Commission on Environmental Quality, evaluated six published numerical groundwater flow models (all deterministic) that have been developed for the Edwards aquifer San Antonio segment or Barton Springs segment, or both. This report describes the models developed and evaluates each with respect to accessibility and ease of use, range of conditions simulated, accuracy of simulations, agreement with dye-tracer tests, and limitations of the models. These models are (1) GWSIM model of the San Antonio segment, a FORTRAN computer-model code that pre-dates the development of MODFLOW; (2) MODFLOW conduit-flow model of San Antonio and Barton Springs segments; (3) MODFLOW diffuse-flow model of San Antonio and Barton Springs segments; (4) MODFLOW Groundwater Availability Modeling [GAM] model of the Barton Springs segment; (5) MODFLOW recalibrated GAM model of the Barton Springs segment; and (6) MODFLOW-DCM (dual conductivity model) conduit model of the Barton Springs segment. The GWSIM model code is not commercially available, is limited in its application to the San Antonio segment of the Edwards aquifer, and lacks the ability of MODFLOW to easily incorporate newly developed processes and packages to better simulate hydrologic processes. MODFLOW is a widely used and tested code for numerical modeling of groundwater flow, is well documented, and is in the public domain. These attributes make MODFLOW a preferred code with regard to accessibility and ease of use. The MODFLOW conduit-flow model incorporates improvements over previous models by using (1) a user-friendly interface, (2) updated computer codes (MODFLOW-96 and MODFLOW-2000), (3) a finer grid resolution, (4) less-restrictive boundary conditions, (5) an improved discretization of hydraulic conductivity, (6) more accurate estimates of pumping stresses, (7) a long transient simulation period (54 years, 1947-2000), and (8) a refined representation of high-permeability zones or conduits. All of the models except the MODFLOW-DCM conduit model have limitations resulting from the use of Darcy's law to simulate groundwater flow in a karst aquifer system where non-Darcian, turbulent flow might actually dominate. The MODFLOW-DCM conduit model is an improvement in the ability to simulate karst-like flow conditions in conjunction with porous-media-type matrix flow. However, the MODFLOW-DCM conduit model has had limited application and testing and currently (2008) lacks commercially available pre- and post-processors. The MODFLOW conduit-flow and diffuse-flow Edwards aquifer models are limited by the lack of calibration for the northern part of the Barton Springs segment (Travis County) and their reliance on the use of the calibrated hydraulic conductivity and storativity values from the calibrated Barton Springs segment GAM model. The major limitation of the Barton Springs segment GAM and recalibrated GAM models is that they were calibrated to match measured water levels and springflows for a restrictive range of hydrologic conditions, with each model having different hydraulic conductivity and storativity values appropriate to the hydrologic conditions that were simulated. The need for two different sets of hydraulic conductivity and storativity values increases the uncertainty associated with the accuracy of either set of values, illustrates the non-uniqueness of the model solution, and probably most importantly demonstrates the limitations of using a one-layer model to represent the heterogeneous hydrostratigraph

  16. Geohydrology and water quality of stratified-drift aquifers in the middle Merrimack River basin, south-central New Hampshire

    USGS Publications Warehouse

    Ayotte, Joseph D.; Toppin, Kenneth W.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the State of New Hampshire, Department of Environmental Services, Water Resources Division has assessed the geohydrology and water quality of stratified-drift aquifers in the middle Merrimack River basin in south-central New Hampshire. The middle Merrimack River basin drains 469 square miles; 98 square miles is underlain by stratified-drift aquifers. Saturated thickness of stratified drift within the study area is generally less than 40 feet but locally greater than 100 feet. Transmissivity of stratified-drift aquifers is generally less than 2,000 feet squared per day but locally exceeds 6, 000 feet squared per day. At present (1990), ground-water withdrawals from stratified drift for public supply are about 0.4 million gallons per day within the basin. Many of the stratified-drift aquifers within the study area are not developed to their fullest potential. The geohydrology of stratified-drift aquifers was investigated by focusing on basic aquifer properties, including aquifer boundaries; recharge, discharge, and direction of ground-water flow; saturated thickness and storage; and transmissivity. Surficial geologic mapping assisted in the determination of aquifer boundaries. Data from 757 wells and test borings were used to produce maps of water-table altitude, saturated thickness, and transmissivity of stratified drift. More than 10 miles of seismic-refraction profiling and 14 miles of seismic-reflection profiling were also used to construct the water table and saturated-thickness maps. Stratified-drift aquifers in the southern, western, and central parts of the study area are typically small and discontinuous, whereas aquifers in the eastern part along the Merrimack River valley are continuous. The Merrimack River valley aquifers formed in glacial Lakes Merrimack and Hooksett. Many other smaller discontinuous aquifers formed in small temporary ponds during deglaciation. A stratified-drift aquifer in Goffstown was analyzed for aquifer yield by use of a two-dimensional, finite-difference ground-water-flow model. Yield of the Goffstown aquifer was estimated to be 2.5 million gallons per day. Sensitivity analysis showed that the estimate of aquifer yield was most sensitive to changes in hydraulic conductivity. The amount of water induced into the aquifer from the Piscataquog River was most affected by changes in estimates of streambed conductance. Results of analysis of water samples from 10 test wells indicate that, with some exceptions, water in the stratified-drift aquifers generally meets U.S. Environmental Protection Agency primary and secondary drinking-water regulations. Water from two wells had elevated sodium concentrations, waterfront two wells had elevated concentrations of dissolved iron, and waterfront seven wells had elevated concentrations of manganese. Known areas of contamination were avoided during water-quality sampling.

  17. Inter-seasonal variability in baseflow recession rates: The role of aquifer antecedent storage in central California watersheds

    NASA Astrophysics Data System (ADS)

    Bart, Ryan; Hope, Allen

    2014-11-01

    Baseflow recession rates vary inter-seasonally in many watersheds. This variability is generally associated with changes in evapotranspiration; however, an additional and less studied control over inter-seasonal baseflow recession rates is the effect of aquifer antecedent storage. Understanding the role of aquifer antecedent storage on baseflow recession rates is crucial for Mediterranean-climate regions, where seasonal asynchronicity of precipitation and energy levels produces large inter-seasonal differences in aquifer storage. The primary objective of this study was to elucidate the relation between aquifer antecedent storage and baseflow recession rates in four central California watersheds using antecedent streamflow as a surrogate for watershed storage. In addition, a parsimonious storage-discharge model consisting of two nonlinear stores in parallel was developed as a heuristic tool for interpreting the empirical results and providing insight into how inter-seasonal changes in aquifer antecedent storage may affect baseflow recession rates. Antecedent streamflow cumulated from the beginning of the wateryear was found to be the strongest predictor of baseflow recession rates, indicating that inter-seasonal differences in aquifer storage are a key control on baseflow recession rates in California watersheds. Baseflow recession rates and antecedent streamflow exhibited a negative power-law relation, with baseflow recession rates decreasing by up to two orders of magnitude as antecedent streamflow levels increased. Inference based on the storage-discharge model indicated that the dominant source of recession flow shifted from small, rapid response aquifers at the beginning of the wet season to large, seasonal aquifers as the wet season progressed. Aquifer antecedent storage in California watersheds should be accounted for along with evapotranspiration when characterizing baseflow recession rates.

  18. Recharge response to interannual and multidecadal climate variability and implications for groundwater resources of the Central Valley aquifer, California

    NASA Astrophysics Data System (ADS)

    Kuss, A. M.; Gurdak, J. J.

    2010-12-01

    Climate variability on interannual to multidecadal temporal scales has substantial implications for management and sustainability of water resources, yet are poorly understood throughout much of the United States. Climate forcings on these timescales partially control precipitation distribution, temperature fluctuations, drought occurrence and severity, streamflow, and recharge. Reliable predictions of future climate and subsequent adaptation of groundwater management strategies in vulnerable aquifers, such as the Central Valley aquifer located in central California of the United States, requires improved understanding of climate variability on interannual to multidecadal timescales and the associated responses in recharge rates. Groundwater withdrawals from the Central Valley aquifer are the second largest of all aquifers in the United States and are used to support one of the largest agricultural economies. However, the effects of the El Niño Southern Oscillation (ENSO) (2 to 6 year cycle), Pacific Decadal Oscillation (PDO) (10 to 25 year cycle), and Atlantic Multidecadal Oscillation (AMO) (50 to 80 year cycle) on recharge rates and groundwater levels in the Central Valley aquifer previously have not been quantified. In this study, singular spectrum analysis (SSA) was used to identify the principal components of groundwater level time series from selected wells in Central Valley aquifer that contribute to the greatest amount of variance in the record. In each of the time series analyzed, the PDO was the most significant contributor to groundwater level fluctuations. Wavelet analysis was also used to examine the nonstationary phase relation of multiple time series to identify significance and duration of each forcing. A consistent phase relation of multiple signals suggests possible coherence between climate forcings and groundwater levels, and also indicates the effect of the PDO on groundwater levels. These findings support the conclusion that interannual to multidecadal climate variability, especially PDO, contributes to fluctuations in available groundwater in the Central Valley, and is therefore a necessary component of future water resource management. Findings from the Central Valley aquifer are presented within the context of the effects of climate variability on multiple aquifers across the United States, and support the use of spatiotemporal variations in recharge rates due to climate variability within adaptation strategies for groundwater sustainability.

  19. Spatial Analysis of Suitability for Managed Aquifer Recharge in a Groundwater Basin in Central Coastal California

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Fisher, A. T.; Hanson, R. T.; Lockwood, B. S.

    2011-12-01

    The Pajaro Valley Groundwater Basin (PVGB), central coastal California, relies almost entirely on groundwater to satisfy agricultural and municipal/domestic needs (83% and 17% of water usage, respectively). The rate of groundwater extraction and other outflows from the PVGB over the last five decades has exceeded the total rate of inflows, resulting in chronic overdraft. This has led to a lowering of water levels throughout the basin and seawater intrusion near the coast. Managed aquifer recharge (MAR) likely will become increasingly important for sustaining groundwater supply in future years; however, identifying areas amenable to MAR remains challenging. A geographical information system (GIS) analysis was completed to evaluate areas of the PVGB suitable for MAR. Initially GIS analyses used topographic, land use, bedrock geology, and soil property data to assess shallow conditions, and subsequent analyses have included subsurface information such as aquifer and associated confining layer locations, properties, thicknesses, and historical changes in water levels. Additional GIS coverages included potential supplemental water supplies. A preliminary map of MAR site suitability suggests that about 10% of the basin may be suitable for MAR. Ongoing field testing will provide "ground truth" for the assessment of GIS-based calculations, and both field and GIS analyses will provide critical input for regional hydrologic models that will be used to quantify the potential influences of different MAR scenarios. Collectively, these studies are helping to evaluate management options for improving long-term groundwater conditions throughout the PVGB.

  20. Data for ground-water test hole near Zamora, Central Valley Aquifer Project, California

    USGS Publications Warehouse

    French, J.J.; Page, R.W.; Bertoldi, G.L.

    1982-01-01

    Preliminary data are presented for the first of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 SE 1/4 sec. 34, T. 12 N. , R. 1 E., Yolo County, California, about 3 miles northeast of the town of Zamora. Drilled to a depth of 2,500 feet below land surface, the hole is cased to a depth of 190 feet and equipped with three piezometer tubes to depths of 947, 1,401, and 2,125 feet. A 5-foot well screen is at the bottom of each piezometer. Eighteen cores and 68 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, diatom identification, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  1. Potentiometric surface of the Sparta aquifer in eastern and south-central Arkansas and north-central Louisiana, and the Memphis Aquifer in east-central Arkansas, October 1996-July 1997

    USGS Publications Warehouse

    Joseph, Robert L.

    1998-01-01

    During the 1997 water year, the water level in the Sparta and Memphis aquifers was measured in about 274 wells in Arkansas, and the water level in the Sparta aquifer was measured in about 55 wells in Louisiana. The potentiometric surface data reveal spatial trends across the study area. In Arkansas, the altitude of the potentiometric surfaced ranged from 199 feet below sea level in Union County to 307 feet above sea level in Saline County. In Louisiana, the altitude of the potentiometric surface ranged from 224 feet below sea level in Ouachita Parish to 230 feet above sea level in Bienville Parish. The general direction of ground-water flow in the Sparta and Memphis aquifers is from the west to the Southeast. The regional direction of ground-water flow in Arkansas is from the north and west to the south and east, away from the recharge zone in the outcrop and subcrop area, except near areas affected by intense ground-water withdrawals; such areas are manifested by large cones of depression centered in Columbia, Jefferson, and Union Counties. The regional ground-water flow in the Sparta aquifer in north-central Louisiana generally is downdip in an easterly direction from the recharge zone in the outcrop and subcrop area in the west toward the Mississippi Alluvial Plain. The potentiometric surface of the Sparta aquifer in Arkansas and Louisiana exhibits cones of depression descending below sea level. Comparison of potentiometric surface maps through time shows that the cones of depression in Columbia and Union Counties are coalescing at or near the Columbia and Union County line. However, the general direction of ground-water movement indicates that heavy pumpage locally has altered or reversed the natural direction of flow in some areas. Flow in these areas is toward the cones of depression at the center of pumping. Hydrographs from wells in the Sparta and Memphis aquifers reveals that water levels have declined more than 2.0 feet per year in some wells. Long-term hydrographs of eight wells in Arkansas, during the period 1972-1997, reveal water-level declines ranging from less than 0.8 foot per year in Phillips County to more than 2.0 feet per year in Union County. Long-term hydrographs of two wells in Louisiana, during the period 1972-1997, reveal water-level declines were more than 2.0 feet per year in Lincoln and Ouachita Parishes.

  2. A Study on the Delivery of Lower Division Collegiate Programs and Services in the Metropolitan Oklahoma City Region for the Oklahoma State Regents for Higher Education.

    ERIC Educational Resources Information Center

    Parnell, Dale; Philips, Al

    In 1990, the Oklahoma State Regents for Higher Education authorized a study of lower-division education services offered by Central State University, El Reno Junior College, Oklahoma City Community College, Oklahoma State University Technical Branch, and Rose State College--all operating in the Oklahoma City metropolitan area. Special attention…

  3. Modeling groundwater levels on the Calera Aquifer Region in Central Mexico using ModFLow.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A conceptual model for the Calera Aquifer has been created to represent the aquifer system beneath the Calera Aquifer Region (CAR) in the State of Zacatecas, Mexico. The CAR area was uniformly partitioned into a 500 X 500 m grid generating a high resolution model that represented the natural boundar...

  4. Water Quality in the High Plains Aquifer, Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1999-2004

    USGS Publications Warehouse

    Gurdak, Jason J.; McMahon, Peter B.; Dennehy, Kevin; Qi, Sharon L.

    2009-01-01

    This report contains the major findings of a 1999-2004 assessment of water quality in the High Plains aquifer. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings for principal and other aquifers and major river basins across the Nation. In these reports, water quality is discussed in terms of local, regional, State, and national issues. Conditions in the aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or the private sector. The information will be useful in addressing a number of current issues, such as drinking-water quality, the effects of agricultural practices on water quality, source-water protection, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of ground water in areas near where they live and how that water quality compares to the quality of water in other areas across the region and the Nation. The water-quality conditions in the High Plains aquifer summarized in this report are discussed in greater detail in other reports that can be accessed in Appendix 1 of http://pubs.usgs.gov/pp/1749/. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa). This report accompanies the detailed and technical report of water-quality conditions in the High Plains aquifer 'Water-quality assessment of the High Plains aquifer, 1999-2004' (http://pubs.usgs.gov/pp/1749/)

  5. Geohydrologic Framework of the Edwards and Trinity Aquifers, South-Central Texas

    USGS Publications Warehouse

    Blome, Charles D.; Faith, Jason R.; Ozuna, George B.

    2007-01-01

    This five-year USGS project, funded by the National Cooperative Geologic Mapping Program, is using multidisciplinary approaches to reveal the surface and subsurface geologic architecture of two important Texas aquifers: (1) the Edwards aquifer that extends from south of Austin to west of San Antonio and (2) the southern part of the Trinity aquifer in the Texas Hill Country west and south of Austin. The project's principal areas of research include: Geologic Mapping, Geophysical Surveys, Geochronology, Three-dimensional Modeling, and Noble Gas Geochemistry. The Edwards aquifer is one of the most productive carbonate aquifers in the United States. It also has been designated a sole source aquifer by the U.S. Environmental Protection Agency and is the primary source of water for San Antonio, America's eighth largest city. The Trinity aquifer forms the catchment area for the Edwards aquifer and it intercepts some surface flow above the Edwards recharge zone. The Trinity may also contribute to the Edwards water budget by subsurface flow across formation boundaries at considerable depths. Dissolution, karst development, and faulting and fracturing in both aquifers directly control aquifer geometry by compartmentalizing the aquifer and creating unique ground-water flow paths.

  6. Geohydrology and water quality of stratified-drift aquifers in the middle Connecticut River basin, west-central New Hampshire

    USGS Publications Warehouse

    Flanagan, S.M.

    1996-01-01

    A study was done by the U.S. Geological Survey, in cooperation with the New Hampshire Department of Environmental Services, Water Resources Division, to describe the geohydrology and water quality of stratified-drift aquifers in the Middle Connecticut River Basin, west-central New Hampshire Stratified-drift aquifers discontinuously underlie 123 mi2 (square miles) of the Middle Connecticut River Basin, which has a total drainage area of 987 mi 2. Saturated thicknesses of stratified drift in the study area are locally greater than 500 feet but generally are less than 100 feet. Aquifer transmissivity locally exceeds 4,000 ft2/d (feet squared per day) but is generally less than 1,000 ft2/d. In only 17.2 mi2 of the study area are the aquifers identified as having a transmissivity greater than 1,000 ft2/d. As of 1990, total groundwater withdrawals from stratified drift for municipal supply were about 1.5 Mgal/d (million gallons per day) in the study area. Many of the stratified-drift aquifers underlying the study area are not developed to their fullest potential. The geohydrologic investigation of the stratified-drift aquifers focused on aquifer properties, including aquifer boundaries; recharge, discharge, and direction of ground-water flow; saturated thickness and storage; and transmissivity. Surficial-geologic mapping assisted in the determination of aquifer boundaries. Data from more than 1,000 wells, test borings, and springs were used to prepare maps of water-table altitude, saturated thickness, and transmissivity of stratified drift. More than 11 miles of seismic-refraction profiling at 95 sites was used in the preparation of the water-table-altitude and saturated-thickness maps. Seismic-reflection data collected along 1.6 miles of Mascoma Lake also were used in preparation of the saturated-thickness maps. Four stratified-drift aquifers in the towns of Franconia, Haverhill, and Lisbon were analyzed to estimate the water availability on the basis of analytical ground-water model simulation based on the Theis confined-flow equation adjusted to account for boundary effects commonly associated with stratified-drift aquifers. Conservative estimates of water availability during a 180-day period of no recharge were estimated to be 1.9 Mgal/d for the Meadow Brook aquifer; 1.8 Mgal/d for the Ham Branch Brook aquifer; 1.5 Mgal/d for the Salmon Hole aquifer; and 1.4 Mgal/d for the Haverhill-French Pond aquifer. Water-availability estimates would be higher if periods of recharge were accounted for and if less conservative boundary conditions were used in the model. Results of analysis of water samples from 26 observation wells, 3 municipal water-supply wells, and 1 public-supply spring show that, with the exception of dissolved iron and manganese in some samples, water in the stratified-drift aquifers generally meets the U.S. Environmental Protection Agency's primary and secondary drinking-water standards.

  7. Rescuing degrading aquifers in the Central Coastal Plain of North Carolina (USA): Just process, effective groundwater management policy, and sustainable aquifers

    NASA Astrophysics Data System (ADS)

    Manda, Alex K.; Klein, Wendy A.

    2014-07-01

    Strategic management of degrading coastal aquifers in eastern North Carolina (USA) became imperative after a severe imbalance occurred between withdrawal and recharge rates. To ameliorate this growing problem, an aggressive water policy was developed through public input by creating the Central Coastal Plain Capacity Use Area (CCPCUA) to maintain beneficial use of groundwater resources. Insights from social psychology, and socio-legal studies are used to evaluate how procedural justice and public participation played major roles to resolving groundwater resource management problems. A mixed methods approach uses archival data and interviews with various rule-making participants to assess the process of stakeholder involvement that led to creation of the policy. In addition, data analysis techniques are utilized to evaluate the effects of the policy on aquifer health (through water levels) over a ˜10 year period. Results suggest that not only did a stakeholder group participate in a process that was deemed fair, understandable, and relatively easy to administer for users and regulators, but public participation resulted in an effective plan that ensures the long-term sustainable use of groundwater. Declining groundwater withdrawals and recovering water levels suggest that the rule is achieving its intended goal of protecting the aquifers from depletion and degradation. This paper touches on global themes that are essential to water demand and consumption, water management techniques, and water resources protection.

  8. THE OKLAHOMA MESONET

    EPA Science Inventory

    The Oklahoma Mesonet, operated and maintained by the Oklahoma Climatological Survey, is Oklahoma's premier climatological data collection system. For the area covered, which includes the entire state, no other system within the United States or internationally has the degree of ...

  9. Effects of paved surfaces on recharge to the Floridan aquifer in east-central Florida : a conceptual model

    USGS Publications Warehouse

    Tibbals, C.H.

    1978-01-01

    The proportionate amount of surface area that can be paved in Floridan aquifer recharge areas in east-central Florida without reducing the net recharge to the Floridan aquifer is a function of many variables that include rainfall, depth to water table, depth to potentiometric surface of the Floridan, evaporation from paved areas, evapotranspiration from unpaved areas, runoff, pattern of paving, and leakance coefficient of the confining beds. Equations that incorporate those variables, except pattern of paving, are developed and coupled to produce a conceptual model that estimates relative amounts of water available for recharge and percentage of unpaved area below which Floridan aquifer recharge rates must increase. The model is not intended to be used as a basis for engineering design. Rather, its purpose is to show approximate mathematical interrelations of rainfall, runoff, evapotranspiration, percentage of paving, and Floridan aquifer recharge, and to make quantitative estimates of amounts of water available for Floridan aquifer recharge before and after paving. The allowable percentage of paving calculated in four examples ranges from 86.8 percent to 3.6 percent. (Woodard-USGS)

  10. A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala Formation, Central High Plains Aquifer

    USGS Publications Warehouse

    McMahon, Peter B.

    2000-01-01

    In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains (fig. 1A). Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers (fig. 2) knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone (fig. 3). However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer (figs. 1A and 1B). The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in the Ogallala Formation is separated from overlying land-use practices by as much as 400 feet of unsaturated sediments. Consequently, one may hypothesize that recently recharged water is not present in the formation. The U.S. Geological Survey conducted a reconnaissance study in 1999 to establish (a) if recently recharged water was present in the Ogallala Formation underlying irrigated cropland and (b) if agricultural land-use practices affect water quality. Results from the reconnaissance study will be used to determine whether a full-scale land-use study is warranted.

  11. Carbonate aquifers

    USGS Publications Warehouse

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  12. Effects of projected climate (2011–50) on karst hydrology and species vulnerability—Edwards aquifer, south-central Texas, and Madison aquifer, western South Dakota

    USGS Publications Warehouse

    Mahler, Barbara J.; Stamm, John F.; Poteet, Mary F.; Symstad, Amy J.; Musgrove, MaryLynn; Long, Andrew J.; Norton, Parker A.

    2015-01-01

    Karst aquifers—formed by the dissolution of soluble rocks such as limestone—are critical groundwater resources in North America, and karst springs, caves, and streams provide habitat for unique flora and fauna. Springflow and groundwater levels in karst terrane can change greatly over short time scales, and therefore are likely to respond rapidly to climate change. How might the biological communities and ecosystems associated with karst respond to climate change and accompanying changes in groundwater levels and springflow? Sites in two central U.S. regions—the Balcones Escarpment of south-central Texas and the Black Hills of western South Dakota (fig. 1)—were selected to study climate change and its potential effects on the local karst hydrology and ecosystem. The ecosystems associated with the Edwards aquifer (Balcones Escarpment region) and Madison aquifer (Black Hills region) support federally listed endangered and threatened species and numerous State-listed species of concern, including amphibians, birds, insects, and plants. Full results are provided in Stamm and others (2014), and are summarized in this fact sheet.

  13. A plan to study the aquifer system of the Central Valley of California

    USGS Publications Warehouse

    Bertoldi, Gilbert L.

    1979-01-01

    Unconsolidated Quaternary alluvial deposits comprise a large complex aquifer system in the Central Valley of California. Millions of acre-feet of water is pumped from the system annually to support a large and expanding agribusiness industry. Since the 1950's, water levels have been steadily declining in many areas of the valley and concern has been expressed about the ability of the entire ground-water system to support agribusiness at current levels, not to mention its ability to function at projected expansion levels. At current levels of ground-water use, an estimated 1.5 to 2 million acre-feet is withdrawn from storage each year; that is, 1.5 to 2 million acre-feet of water is pumped annually in excess of annual replenishment. The U.S. Geological Survey has initiated a 4-year study to develop geologic, hydrologic, and hydraulic information and to establish a valleywide ground-water data base that will be used to build computer models of the ground-water flow system. Subsequently, these models may be used to evaluate the system response to various ground-water management alternatives. This report describes current problems, objectives of the study, and outlines the general work to be accomplished in the study area. A bibliography of about 600 references is included. (Kosco-USGS)

  14. Source and migration of dissolved manganese in the Central Nile Delta Aquifer, Egypt

    NASA Astrophysics Data System (ADS)

    Bennett, P. C.; El Shishtawy, A. M.; Sharp, J. M.; Atwia, M. G.

    2014-08-01

    Dissolved metals in waters in shallow deltaic sediments are one of the world's major health problems, and a prime example is arsenic contamination in Bangladesh. The Central Nile Delta Aquifer, a drinking water source for more than 6 million people, can have high concentrations of dissolved manganese (Mn). Standard hydrochemical analyses coupled with sequential chemical extraction is used to identify the source of the Mn and to identify the probable cause of the contamination. Fifty-nine municipal supply wells were sampled and the results compared with published data for groundwaters and surface waters. Drill cuttings from 4 wells were collected and analyzed by sequential chemical extraction to test the hypothesized Mn-generating processes. The data from this research show that the Mn source is not deep saline water, microbial reduction of Mn oxides at the production depth, or leakage from irrigation drainage ditches. Instead, Mn associated with carbonate minerals in the surficial confining layer and transported down along the disturbed well annulus of the municipal supply wells is the likely source. This analysis provides a basis for future hydrogeological and contaminant transport modeling as well as remediation-modification of well completion practices and pumping schedules to mitigate the problem.

  15. Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas

    SciTech Connect

    Nieto Camargo, Jorge E. Jensen, Jerry L.

    2012-09-15

    Reservoir compartments, typical targets for infill well locations, are commonly created by faults that may reduce permeability. A narrow fault may consist of a complex assemblage of deformation elements that result in spatially variable and anisotropic permeabilities. We report on the permeability structure of a km-scale fault sampled through drilling a faulted siliciclastic aquifer in central Texas. Probe and whole-core permeabilities, serial CAT scans, and textural and structural data from the selected core samples are used to understand permeability structure of fault zones and develop predictive models of fault zone permeability. Using numerical flow simulation, it is possible to predict permeability anisotropy associated with faults and evaluate the effect of individual deformation elements in the overall permeability tensor. We found relationships between the permeability of the host rock and those of the highly deformed (HD) fault-elements according to the fault throw. The lateral continuity and predictable permeability of the HD fault elements enhance capability for estimating the effects of subseismic faulting on fluid flow in low-shale reservoirs.

  16. Chemical evolution and estimated flow velocity of water in the Trinity Aquifer, south-central Texas

    USGS Publications Warehouse

    Jones, Sonya A.; Lee, Roger W.; Busby, John F.

    1997-01-01

    Three permeable zones with varying lithology and water chemistry compose the Trinity aquifer, a principal source of water in the 5,500-square-mile study area in south-central Texas. The upper permeable zone locally yields small quantities of water to wells and was not included in this study. The middle permeable zone primarily is composed of limestone with minor amounts of dolostone. Terrigenous sand and marine limestone, with minor amounts of dolostone, are the principal lithologic units in the lower permeable zone. Dissolved solids concentrations range from 329 to 1,820 milligrams per liter in water samples from the middle permeable zone and from 518 to 3,030 milligrams per liter in water samples from the lower permeable zone. Principal hydrochemical facies in the middle permeable zone are calcium magnesium bicarbonate and calcium magnesium sulfate. Hydrochemical facies in ground-water samples from the lower permeable zone vary. Tritium concentrations as large as 5.3 tritium units in the southeastern part of the study area are indicative of relatively recent recharge. Results of a geochemical mass balance simulation along a flowpath in the middle permeable zone indicate a mass transfer of 4.25 millimoles per liter of dolomite dissolved, 5.74 millimoles per liter of gypsum dissolved, 0.46 millimole per liter of sodium chloride dissolved, 8.07 millimoles per liter of calcite precipitated, and 0.67 millimole per liter of calcium-for-sodium cation exchange between solid and aqueous phases. These results support dedolomitization as a principal chemical process in the middle permeable zone of the Trinity aquifer. Results of a simulation along a flowpath in the lower permeable zone indicate a mass transfer of 0.41 millimole per liter of dolomite dissolved, 0.001 millimole per liter of gypsum dissolved, 9.58 millimoles per liter of sodium chloride dissolved, 1.09 millimoles per liter of calcite precipitated, and 1.11 millimoles per liter of sodium-for-calcium cation exchange between solid and aqueous phases. Lower permeable zone processes indicate sodium chloride dissolution, dedolomitization, and cation exchange. Ground-water-flow velocities determined from adjusted carbon-14 ages, calculated using NETPATH, for selected flowpaths in the middle and lower permeable zones were about 1.7 feet per year and less than about 4.4 feet per year, respectively.

  17. Hydrogeological framework, numerical simulation of groundwater flow, and effects of projected water use and drought for the Beaver-North Canadian River alluvial aquifer, northwestern Oklahoma

    USGS Publications Warehouse

    Ryter, Derek W.; Correll, Jessica S.

    2016-01-01

    A hypothetical severe drought was simulated by using aquifer recharge flow rates during the drought year of 2011 for a period of 10 years. All other flows including evapotranspiration and groundwater pumping were set at estimated 2011 rates. The hypothetical drought caused a decrease in water in aquifer storage by about 7 percent in Reach I and 7 percent in Reach II. Another analysis of the effects of hypothetical drought estimated the effects of drought on streamflow and lake storage. The hypothetical drought was simulated by decreasing recharge by 75 percent for a selected 10-year period (1994–2004) during the 1980–2011 simulation. In Reach I, the amounts of water stored in Canton Lake and streamflow at the Seiling, Okla., streamflow-gaging station were analyzed. Streamflow at the Seiling station decreased by a mean of 75 percent and was still diminished by 10 percent after 2011. In Reach II, the effect of drought on the streamflow at the Yukon, Okla., streamflow-gaging station was examined. The greatest mean streamflow decrease was approximately 60 percent during the simulated drought, and after 2011, the mean decrease in streamflow was still about 5 percent. Canton Lake storage decreased by as much as 83 percent during the simulated drought and did not recover by 2011.

  18. Hydrogeology of the Buffalo aquifer, Clay and Wilkin Counties, West-Central Minnesota

    USGS Publications Warehouse

    Wolf, R.J.

    1981-01-01

    The Buffalo aquifer is the principal source of ground-water supplies in the Moorhead, Minnesota area. The aquifer is an elongate deposit of sand and gravel, which locally contains water under confined conditions. Although the Buffalo aquifer contains about 270 billion gallons of water in storage, only 120 billion gallons could be withdrawn. Largest well yields occur along the deep trough in the center of the aquifer. Induced streambed infiltration may be possible in certain areas where the stream overlies the aquifer and where the intervening lake sediments are thin or absent. A numerical model constructed for aquifer evaluation has shown that a considerable amount of ground water is discharged through the confining bed to the stream or leaves the area as underflow to the west. Water from the Buffalo aquifer generally is very hard and of the calcium bicarbonate type. The average discharge of the Buffalo River for the base period 1946-78 ranges from 0.229 cubic foot per second per square mile near Hawley to 0.108 cubic foot per second per square mile at Sabin. Surface water in the Buffalo River drainage system is dominantly a calcium bicarbonate type similar to ground water of the area, especially at low flow in the upper reaches of the tributaries. (USGS)

  19. Aquifer tests at the Jackpile-Paguate uranium mine, Pueblo of Laguna, west-central New Mexico

    USGS Publications Warehouse

    Risser, D.W.; Davis, P.A.; Baldwin, J.A.; McaAda, D.P.

    1984-01-01

    The transmissivity of the Jackpile sandstone bed in the Brushy Basin Shale Member of the Morrison Formation, west-central New Mexico, was determined to be 24 sq ft/day at well M2 and 47 sq ft/day at well M3 from constant-discharge aquifer tests conducted at the Jackpile-Paguate Uranium Mine. The storage coefficient of the Jackpile sandstone bed was estimated to be 0.00018 at well M2 and 0.00029 at well M3 from the same tests. An aquifer test conducted at well M21 indicated the transmissivity of the Jackpile sandstone bed was 2.0 sq ft/day and the storage coefficient was 0.00002. The transmissivity of an unnamed sandstone bed in the Brushy Basin Shale Member of the Morrison Formation was estimated from ' slug-test ' results to be about 20 sq ft/day. Water levels in this sandstone probably did not change due to pumping from the overlying Jackpile sandstone bed for 88 hours at an average discharge of 15.3 gallons/min. A constant discharge aquifer test at well M4C indicated that the transmissivity of the alluvium at this location was about 430 sq ft/day. Water levels in the underlying Jackpile sandstone bed began declining within 15 minutes after withdrawals of groundwater from the alluvial aquifer began. (USGS)

  20. Integrated geophysical interpretation for delineating the structural elements and groundwater aquifers at central part of Sinai Peninsula, Egypt

    NASA Astrophysics Data System (ADS)

    Araffa, Sultan Awad Sultan; Sabet, Hassan S.; Gaweish, Wael R.

    2015-05-01

    The study area is inhabited by Bedouins, suffering from scarcity of water necessary for domestic use and agricultural activities. The study area is located at central part of Sinai between Nakhl area and El Thamed area. Magnetic, gravity and geoelectric methods were used in this investigation to determine the groundwater aquifers and delineate the structural elements in the study area. Two hundreds and eighty eight magnetic and gravity stations were acquired by the EnviMag and Autograv CG3 instruments respectively. The magnetic data were processed by using Oasis Montaj. Reductions to the pole and 2D magnetic modeling were established to construct basement relief map. The depth to the basement rocks in the study area is ranging from 1200 m to 7000 m. The regional-residual separation and Euler deconvolution techniques were applied to the gravity data. Nine deep Vertical Electrical Sounding stations were measured to estimate the deep groundwater aquifer in the study area (Nubian Sandstone aquifer). The depth of upper surface of Nubian Sandstone aquifer is ranging between 975 m and 1100 m and affected by two major fault trends in the NE-SW and NW-SE directions.

  1. Assessing Groundwater Availability in the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Qi, Sharon L.; Christenson, Scott

    2010-01-01

    The U.S. Geological Survey's Groundwater Resources Program is conducting an assessment of groundwater availability to gain a clearer understanding of the status of the Nation's groundwater resources and the natural and human factors that can affect those resources. The goals of this national effort are to define the current status and improve understanding of the Nation's groundwater resources, to better estimate availability and suitability of those resources for use in the future, and to provide tools to estimate the future availability of ground-water for its various uses. Assessments will be completed for regional aquifer systems across the Nation to help characterize how much water we have, where groundwater resources are most stressed, how groundwater availability is changing, and where groundwater resources are most available for future use.

  2. Hydrologic characteristics of soils in the High Plains, northern Great Plains, and Central Texas Carbonates Regional Aquifer Systems

    USGS Publications Warehouse

    Dugan, Jack T.; Hobbs, Ryne D.; Ihm, Laurie A.

    1990-01-01

    Certain physical characteristics of soils, including permeability, available water capacity, thickness, and topographic position, have a measurable effect on the hydrology of an area. These characteristics control the rate at which precipitation infiltrates or is transmitted through the soil, and thus they have an important role in determining the rates of actual evapotranspiration (consumptive water use), groundwater recharge, and surface runoff. In studies of groundwater hydrology, it is useful to differentiate soils spatially according to their physical characteristics and to assign values that indicate their hydrologic responses.The principal purpose of this report is to describe the relation between the hydrologic characteristics of the soils in the study area and those environmental factors that affect the development and distribution of the soils. This objective will be achieved by (1) defining both qualitatively and quantitatively those soil characteristics that affect hydrology, and (2) classifying and delineating the boundaries of the soils in the study area according to these hydrologic characteristics.The study area includes the High Plains, Northern Great Plains, the Central Texas Carbonates, and parts of the Central Midwest Regional Aquifer Systems as described by the U.S. Geological Survey Regional Aquifer-System Analysis (RASA) Program (Sun, 1986, p.5and Sun, personal commun., June 1985) and shown in figures 1 through 5. The spatial patterns of the soils classified according to their quantifiable hydrologic characteristics will subsequently serve as an integral component in the analysis of actual evapotranspiration (consumptive water use), consumptive irrigation requirements, and potential ground-water recharge of the study area.The classification system used to describe the soils in this report is compatible with that of Dugan (1986). Dugan described the same characteristics of soils that are immediately underlain by principal aquifers of Cretaceous or older age in adjacent parts of the Central Midwest Regional Aquifer System. However, map scales and mapping detail are different between this report and the report by Dugan (1986) because of the size of the study area.

  3. Chemical and isotopic composition and potential for contamination of water in the upper Floridan aquifer, west-central Florida, 1986-1989

    SciTech Connect

    Swancar, A.; Hutchinson, C.B.

    1995-12-31

    This report describes the water quality in the Upper Floridan aquifer of west-central Florida in terms of major ion and environmental isotope concentrations, and assesses the potential for contamination of the aquifer. It also contains mineral saturation indices of ground water and a statistical analysis of ground-water chemistry data. Information and results are presented in maps showing the distribution of physical aspects of the hydrogeologic setting, chemical constituents, and potential for contamination of the Upper Floridan aquifer in west-central Florida.

  4. Linkages Between Boundary-Layer Structure and the Development of Nocturnal Low-Level Jets in Central Oklahoma

    NASA Astrophysics Data System (ADS)

    Klein, Petra M.; Hu, Xiao-Ming; Shapiro, Alan; Xue, Ming

    2016-03-01

    In the Southern Great Plains, nocturnal low-level jets (LLJs) develop frequently after sunset and play an important role in the transport and dispersion of moisture and atmospheric pollutants. However, our knowledge regarding the LLJ evolution and its feedback on the structure of the nocturnal boundary layer (NBL) is still limited. In the present study, NBL characteristics and their interdependencies with LLJ evolution are investigated using datasets collected across the Oklahoma City metropolitan area during the Joint Urban field experiment in July 2003 and from three-dimensional simulations with the Weather Research and Forecasting (WRF) model. The strength of the LLJs and turbulent mixing in the NBL both increase with the geostrophic forcing. During nights with the strongest LLJs, turbulent mixing persisted after sunset in the NBL and a strong surface temperature inversion did not develop. However, the strongest increase in LLJ speed relative to the mixed-layer wind speed in the daytime convective boundary layer (CBL) occurred when the geostrophic forcing was relatively weak and thermally-induced turbulence in the CBL was strong. Under these conditions, turbulent mixing at night was typically much weaker and a strong surface-based inversion developed. Sensitivity tests with the WRF model confirm that weakening of turbulent mixing during the decay of the CBL in the early evening transition is critical for LLJ formation. The cessation of thermally-induced CBL turbulence during the early evening transition triggers an inertial oscillation, which contributes to the LLJ formation.

  5. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of pesticide and nitrogen applications and shallow depths to ground water.

  6. Impact of climate change and sea level rise on a coastal aquifer, Central Vietnam

    NASA Astrophysics Data System (ADS)

    Beyen, Ine; Batelaan, Okke; Thanh Tam, Vu

    2014-05-01

    The Gio Linh district in the Quang Tri province, Central Vietnam has, like many other coastal areas in the world, to deal with negative impacts of Global Climate Change (GCC) and sea level rise (SLR). This research aims at investigating the impact of GCC/SLR and designing an adaptive water use plan till the year 2030 for the 150,000 local residents of the Gio Linh district and the city of Dong Ha. The coastal plain covers an area of about 450 km2 between the rivers Ben Hai in the North and Thach Han in the South. The area has a tropical monsoon climate which is characterized by an average precipitation of 1500 to 2700 mm in nearly 180 days from August to April. GCC/SLR scenarios are built and assessed for estimating the changes in hydrometeorological conditions of the study area. Depending on the level of gas emission the sea level is expected to rise 7-9 cm by 2020 and around 11-14 cm by 2030 for low to high gas emission respectively. The salt-freshwater interface is expected to experience an inland shift due to SLR, affecting the amount of exploitable groundwater for drinking and irrigation water production. Water production mainly comes from shallow aquifers in unconsolidated Quarternary coastal formations. These geological formations have a highly heterogeneous lithology. A 3D groundwater model is built to study possible seawater intrusion under the changing conditions. Data from meteorological stations over a period of about 30 years and some data from 63 boreholes in and around the Gio Linh district are available. Geophysical measurements have been carried out recently and in the past and are used to support the model.

  7. Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoirs to Evaluate Regional CO2 Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas

    NASA Astrophysics Data System (ADS)

    Watney, W. L.; Rush, J.

    2011-12-01

    The Paleozoic-age Ozark Plateau Aquifer System (OPAS) in southern Kansas consists of a thick (>450 m) and deeply buried (>1 km) succession of Cambro-Ordovician Arbuckle Group strata (dolomite) overlain by Lower Ordovician to Lower Carboniferous-age carbonate, chert, and shale. The Arbuckle Group is a thick widespread saline aquifer in southern Kansas. A 500 meter core of the OPAS interval and immediate overlying Pennsylvanian shale caprock were cored in early 2011 in the BEREXCO Wellington KGS #1-32 well in Wellington Field, a nearly depleted oil field in Sumner County, in south-central Kansas. An exhaustive set of modern logs were run in the KGS #1-32 well including chemical, microresistivity imaging, dipole sonic, nuclear magnetic resonance, and standard porosity and resistivity wireline logs. In addition, routine and special core analyses provide vital means to calibrate these logs. Core also provide vital chemical analyses and rock samples to run flow experiments, including in situ conditions, to establish reaction kinetics of rock and connate brines with CO2. Core and logs also provide the means to calibrate a 26 km2 multicomponent 3D seismic survey that was acquired in Wellington Field in 2010. Studies of four oil fields, also part of this project, are underway in southwestern Kansas to provide additional calibration points for the western part of the regional study that covers 65,000 km2 where CO2 sequestration capacity will be measured. Several hundred deep wells have been identified to serve as type wells in the regional study area. Well logs and sample descriptions are being digitized, correlated, and mapped to define distribution of aquifers, oil reservoirs, and caprocks. Drill stem test data have been analyzed for deep wells to establish that the Arbuckle is an open aquifer connected to surface exposures 100s of km to east in central Missouri. Over 500 km2 of 3D seismic have been donated by industrial partners to aid in understanding fault and fracture systems. Regional gravity and magnetics data have been analyzed to infer the potential presence of faults using the tilt angle processing of this information to aid in defining discontinuities and estimates of the depth of the anomalies. Results are being uploaded and integrated as part of an interactive web-based project mapper to permit comparison and interrogation of the data. Integrated views based on this comprehensive examination of the northern shelfward extension of the Anadarko Basin is providing new perspectives and insights into basin development and associated structures. Deep-seated basement faults are extensively developed, expressed in the Phanerozoic strata as drape or faults or no evidence for movement. Selection of CO2 sequestration sites will consider aquifer distribution, caprock integrity, and, once established, the extent of fracture and faults to evaluate risk for potential leakage of CO2. The project is funded by DOE/NETL under grant DE-FE0002056 and cost-sharing partners.

  8. Generalized thickness and configuration of the top of the intermediate aquifer, West-Central Florida

    SciTech Connect

    Corral, M.A. Jr.; Wolansky, R.M.

    1984-01-01

    The water-bearing units of the intermediate aquifer consist of discontinuous sand, gravel, shell, and limestone and dolomite beds in the Tamiami Formation of late Miocene age and the Hawthorn Formation of middle Miocene age. Within parts of Polk, Manatee, Hardee, De Soto, Sarasota, and Charlotte Counties, sand and clay beds within the Tampa Limestone that are hydraulically connected to the Hawthorn Formation are also included in the intermediate aquifer. 15 refs.

  9. Geophysical Log Analysis of Selected Test Holes and Wells in the High Plains Aquifer, Central Platte River Basin, Nebraska

    USGS Publications Warehouse

    Anderson, J. Alton; Morin, Roger H.; Cannia, James C.; Williams, John H.

    2009-01-01

    The U.S. Geological Survey in cooperation with the Central Platte Natural Resources District is investigating the hydrostratigraphic framework of the High Plains aquifer in the Central Platte River basin. As part of this investigation, a comprehensive set of geophysical logs was collected from six test holes at three sites and analyzed to delineate the penetrated stratigraphic units and characterize their lithology and physical properties. Flow and fluid-property logs were collected from two wells at one of the sites and analyzed along with the other geophysical logs to determine the relative transmissivity of the High Plains aquifer units. The integrated log analysis indicated that the coarse-grained deposits of the alluvium and the upper part of the Ogallala Formation contributed more than 70 percent of the total transmissivity at this site. The lower part of the Ogallala with its moderately permeable sands and silts contributed some measureable transmissivity, as did the fine-grained sandstone of the underlying Arikaree Group, likely as a result of fractures and bedding-plane partings. Neither the lower nor the upper part of the siltstone- and claystone-dominated White River Group exhibited measurable transmissivity. The integrated analysis of the geophysical logs illustrated the utility of these methods in the detailed characterization of the hydrostratigraphy of the High Plains aquifer.

  10. Geomorphic and hydrologic assessment of erosion hazards at the Norman municipal landfill, Canadian River floodplain, Central Oklahoma

    USGS Publications Warehouse

    Curtis, J.A.; Whitney, J.W.

    2003-01-01

    The Norman, Oklahoma, municipal landfill closed in 1985 after 63 years of operation, because it was identified as a point source of hazardous leachate composed of organic and inorganic compounds. The landfill is located on the floodplain of the Canadian River, a sand-bed river characterized by erodible channel boundaries and by large variation in mean monthly discharges. In 1986, floodwaters eroded riprap protection at the southern end of the landfill and penetrated the landfill's clay cap, thereby exposing the landfill contents. The impact of this moderate-magnitude flood event (Q12) was the catalyst to investigate erosion hazards at the Norman landfill. This geomorphic investigation analyzed floodplain geomorphology and historical channel changes, flood-frequency distributions, an erosion threshold, the geomorphic effectiveness of discharge events, and other factors that influence erosion hazards at the landfill site. The erosion hazard at the Norman landfill is a function of the location of the landfill with respect to the channel thalweg, erosional resistance of the channel margins, magnitude and duration of discrete discharge events, channel form and hydraulic geometry, and cumulative effects related to a series of discharge events. Based on current climatic conditions and historical channel changes, a minimum erosion threshold is set at bankfull discharge (Q = 572 m3/s). The annual probability of exceeding this threshold is 0.53. In addition, this analysis indicates that peak stream power is less informative than total energy expenditures when estimating the erosion potential or geomorphic effectiveness of discrete discharge events. On the Canadian River, long-duration, moderate-magnitude floods can have larger total energy expenditures than shorter-duration, high-magnitude floods and therefore represent the most serious erosion hazard to floodplain structures.

  11. Aquifer compaction and ground-water levels in south-central Arizona

    USGS Publications Warehouse

    Evans, Daniel W.; Pool, Donald R.

    2000-01-01

    As of 1998, the U.S. Geological Survey is monitoring water-level fluctuationa dn aquifer compaction at 19 wells that are fitted with borehole extensometers in the Eloy Basin, Stanfield Basin, Avra Valley, and Upper Santa Cruz Basin. Decreased ground-water pumping has resulted in water-level recoveries of more than 100 feet at a well near Eloy and almost 200 feet at a well in Avra Valley. Aquifer compaction has continued in both areas despite the large water-level recoveries in Eloy and the stable water levels in Avra Valley. Extensometer sites in the Upper Santa Cruz Basin have recorded as much as 50 feet of water-level decline and 0.2 feet of aquifer compaction during 1980 to 1996. Rates of compaction vary throughout the extensometer network, with the greater rates of compaction being associated with the more compressible sediments of Eloy and Stanfield Basins.

  12. Hydrogeology of the Helena Valley-fill aquifer system, west-central Montana. Water resources investigation

    SciTech Connect

    Briar, D.W.; Madison, J.P.

    1992-01-01

    The report, which presents the study results, describes the hydrogeology of the valley-fill aquifer system. Specific objectives were to: describe the geometry and the hydraulic characteristics of the aquifer system; define the potentiometric surface and the direction of ground-water flow; locate and quantify sources of ground-water recharge and discharge including surface- and ground-water interactions; and characterize the water quality in terms of susceptibility of the aquifer system to contamination and in terms of concentrations, distribution, and sources of major ions, trace elements, and organic compounds. The results of the study will be useful to the development of a comprehensive management program for the use and protection of the ground-water resources of the Helena Valley.

  13. ADAPTATIONS OF INDIGENOUS BACTERIA TO FUEL CONTAMINATION IN KARST AQUIFERS IN SOUTH-CENTRAL KENTUCKY

    USGS Publications Warehouse

    Byl, Thomas D.; Metge, David W.; Daniel T. Agymang; Bradley, Michael W.; Hileman, Gregg; Harvey, Ronald W.

    2014-01-01

    The karst aquifer systems in southern Kentucky can be dynamic and quick to change. Microorganisms that live in these unpredictable aquifers are constantly faced with environmental changes. Their survival depends upon adaptations to changes in water chemistry, taking advantage of positive stimuli and avoiding negative environmental conditions. The U.S. Geological Survey conducted a study in 2001 to determine the capability of bacteria to adapt in two distinct regions of water quality in a karst aquifer, an area of clean, oxygenated groundwater and an area where the groundwater was oxygen depleted and contaminated by jet fuel. Water samples containing bacteria were collected from one clean well and two jet fuel contaminated wells in a conduit-dominated karst aquifer. Bacterial concentrations, enumerated through direct count, ranged from 500,000 to 2.7 million bacteria per mL in the clean portion of the aquifer, and 200,000 to 3.2 million bacteria per mL in the contaminated portion of the aquifer over a twelve month period. Bacteria from the clean well ranged in size from 0.2 to 2.5 mm, whereas bacteria from one fuel-contaminated well were generally larger, ranging in size from 0.2 to 3.9 mm. Also, bacteria collected from the clean well had a higher density and, consequently, were more inclined to sink than bacteria collected from contaminated wells. Bacteria collected from the clean portion of the karst aquifer were predominantly (,95%) Gram-negative and more likely to have flagella present than bacteria collected from the contaminated wells, which included a substantial fraction (,30%) of Gram-positive varieties. The ability of the bacteria from the clean portion of the karst aquifer to biodegrade benzene and toluene was studied under aerobic and anaerobic conditions in laboratory microcosms. The rate of fuel biodegradation in laboratory studies was approximately 50 times faster under aerobic conditions as compared to anaerobic, sulfur-reducing conditions. The optimum pH for fuel biodegradation ranged from 6 to 7. These findings suggest that bacteria have adapted to water-saturated karst systems with a variety of active and passive transport mechanisms.

  14. Bacterial production of methane and its influence on ground-water chemistry in east-central Texas aquifers

    NASA Astrophysics Data System (ADS)

    Grossman, Ethan L.; Coffman, B. Keith; Fritz, Steven J.; Wada, Hideki

    1989-06-01

    Geochemical and isotopic data for methane and ground water indicate that gaseous hydrocarbons in Eocene aquifers in east-central Texas form by bacterial processes. The δ13C values of methane from five wells in the clay-rich Yegua and Cook Mountain Formations range from -71‰ to -62‰. Methane from ten wells in the cleaner sands of the Sparta and Queen City Formations have δ13C values between -57‰ and -53‰. The carbon isotopic difference between methanes from the Yegua and Sparta aquifers is comparable to the isotopic difference in sedimentary organic matter from outcrops of the units, suggesting substrate control on the δ13C of bacterial methane. Hydrogen isotopic compositions of methane from the aquifers are similar, averaging -181‰. This high value suggests methane production predominantly by CO2 reduction. The δ13C of dissolved inorganic carbon (DIC) in high bicarbonate waters increases from about -20‰ to 0‰ with increasing DIC. Mass-balance calculations indicate that the DIC added to the ground water has δ;13C values as high as 10‰. This 13C-enriched carbon is predominantly derived from CO2 production by fermentation and anaerobic oxidation reactions combined with CO2 consumption by CO2 reduction. This process is responsible for high bicarbonate contents in these and probably other Gulf Coast ground waters.

  15. Simulated effects of ground-water development on potentiometric surface of the Floridan Aquifer, west-central Florida

    USGS Publications Warehouse

    Wilson, W.E.; Gerhart, J.M.

    1982-01-01

    A digital model of two-dimensional ground-water flow was used to predict changes in the potentiometric surface of the Floridan aquifer, 1976 to 2000, in a 5,938-square-mile area of west-central Florida. In 1975, ground water withdrawn from the Floridan aquifer for irrigation, phosphate mines, other industries, and municipal supplies averaged about 649 million gallons per day. Rates are projected to increase to about 840 million gallons per day by 2000. The model was calibrated under steady-state and transient conditions. Input parameters included transmissivity and storage coefficient of the Floridan aquifer; thickness, vertical hydraulic conductivity, and storage coefficient of the upper confining bed; altitudes of the water table and potentiometric surface; and ground-water withdrawals. Simulation of May 1976 to May 2000, using projected combined pumping rates for municipal supplies, irrigation, and industry (including existing and proposed phosphate mines), resulted in a rise in the potentiometric surface of about 10 feet in Polk County, and a decline of about 35 feet in parts of Manatee and Hardee Counties. The lowest predicted potentiometric level was about 30 feet below sea level. Predicted declines for November 1976 to October 2000 were generally 5 to 10 feet less than those for May 1976 to May 2000. (USGS)

  16. Estimation of intrinsic aquifer vulnerability with index-overlay and statistical methods: the case of eastern Kopaida, central Greece

    NASA Astrophysics Data System (ADS)

    Tziritis, E.; Lombardo, L.

    2016-03-01

    The intrinsic vulnerability of a karstic aquifer system in central Greece was jointly assessed with the use of a statistical approach and PI method, as a function of topography, protective cover effectiveness and the degree to which this cover is bypassed due to flow conditions. The input data for the index-overlay PI method were derived from field works and 71 boreholes of the area; the information was obtained, subsequently its critical factors were compiled which included lithology, fissuring and karstification of bedrock, soil characteristics, hydrology, hydrogeology, topography and vegetation. The aforementioned parameters were processed jointly with the aid of a GIS and yielded the final estimation of intrinsic aquifer vulnerability to contamination. Results were compared with an equivalent spatially distributed probability map obtained through a stochastic approach. The calibration and test phase of the latter relied on morphometric conditions derived by terrain analyses of a digital elevation model as well as on geology and land use from thematic maps. This procedure allowed taking into account the topographic influences with respect to a deep system such as the local karstic aquifer of eastern Kopaida basin. Finally, results were validated with ground truth nitrate values obtained from 41 groundwater samples, highlighted the spatial delineation of susceptible areas to contamination in both cases and provided a robust tool for regional planning actions and water resources management schemes.

  17. Effects of increased pumpage on a fractured-bedrock aquifer system in central Orange County, New York

    USGS Publications Warehouse

    Garber, Murray

    1985-01-01

    The bedrock in central Orange County consists of highly indurated siltstone, shale, and conglomerate containing two major fault systems and extensive fracturing; it is overlain by 50 to 100 feet of till. The fracturing permits unusually high well yields. Wells tapping the bedrock yield 75 to 200 gallons per minute; those tapping bedrock in adjacent areas yield only a few tens of gallons per minute. The bedrock aquifer is recharged mainly by percolation of water from precipitation through the till. In 1983, the U.S. Geological Survey studied the hydrologic effects of increased pumpage on the fractured bedrock aquifer system near the Village of Kiryas Joel, in the Town of Monroe. Water levels were measured in several wells in the village 's two well fields from February to October 1983, and pumpage data from the same period were tabulated. Water levels responded to variations in both pumpage and precipitation. Pumping tests and water levels in the southeastern well field in 1983 had no effect on the northwestern well field. An observation well between the two fields shows about 20 feet of seasonal fluctuation from recharge and the effects of pumping at the northwestern well field. Aquifer-test data indicate a transmissivity of 900 feet squared per day and a storage coefficient of 0.0001. (USGS)

  18. Simulated effects of ground-water development on potentiometric surface of the Floridan Aquifer, west-central Florida

    USGS Publications Warehouse

    Wilson, William Edward; Gerhart, James M.

    1980-01-01

    A digital model of two-dimensional ground-water flow was used to predict changes in the potentiometric surface of the Floridan aquifer, 1976-2000, in a 5,938-square-mile area of west-central Florida. In 1975, ground water withdrawn from the Floridan aquifer for irrigation, phosphate mines, other industries, and municipal supplies averaged about 649 million gallons per day. Rates are projected to increase to about 840 million gallons per day by 2000. The model was calibrated under steady-state and transient conditions. Input parameters included transmissivity and storage coefficient of the Floridan aquifer; thickness, vertical hydraulic conductivity, and storage coefficient of the upper confining bed; altitudes of the water table and potentiometric surface; and ground-water withdrawals. Simulation of May 1976 to May 2000, using projected combined pumping rates for municipal supplies, irrigation, and industry (including existing and proposed phosphate mines), resulted in a rise in the potentiometric surface of about 10 feet in Polk County, and a decline of about 35 feet in parts of Manatee and Hardee Counties. The lowest predicted potentiometric level was about 30 feet below sea level. Predicted declines for November 1976 to October 2000 were generally 5 to 10 feet less than those for May 1976 to May 2000. (USGS)

  19. MICROBIAL ECOLOGY OF A SHALLOW UNCONFINED GROUND WATER AQUIFER POLLUTED BY MUNICIPAL LANDFILL LEACHATE

    EPA Science Inventory

    The microflora of a shallow anoxic aquifer underlying a municipal landfill In Oklahoma was characterized by direct light microscopy, most probable number of determinations of sulfate reducers and methanogens, and measurements of methanogenesis in aquifer samples containing either...

  20. Computer simulation of the steady-state flow system of the Tertiary limestone (Floridan) aquifer system in east-central Florida

    USGS Publications Warehouse

    Tibbals, C.H.

    1981-01-01

    The predevelopment steady-state ground-water flow system for 13 ,700 square miles of the Tertiary limestone aquifer system (known as the Florida aquifer in Florida) in east-central Florida is simulated by means of a digital computer model. The model results indicate that about 1,900 cubic feet per second recharges the aquifer as downward leakage from the surficial aquifer. The average recharge rate where recharge actually occurs (approximately 6,550 square miles) is about 4 inches per year. The maximum recharge rate is about 14 inches per year. An additional 21 cubic feet per second is recharged to the modeled area of the aquifer by means of lateral boundary inflow along the northeast boundary. The Floridan aquifer system, as simulated, discharges 1,300 cubic feet per second as springflow, 540 cubic feet per second as diffuse upward leakage to the surficial aquifer in an area of approximately 7,150 square miles and 81 cubic feet per second as lateral boundary outflow to the southwest and to the east. The average transmissivity of the upper unit of the aquifer, as simulated, is about 120,000 square feet per day while that for the lower unit is about 60,000 square feet per day. (USGS)

  1. Subsurface geology and aquifer system of the Nohbi Plain, central Japan

    NASA Astrophysics Data System (ADS)

    Makinouchi, T.; Land Subsidence, Tokai Three-Prefecture Investigation Committee on

    2015-11-01

    The Nohbi Plain is a typical coastal plain in Japan. The subsurface of this plain consists of alternating beds of marine clays in transgressive stages and fluvial gravels in regressive stages, and forms a groundwater basin. The aquifers are represented by the gravel beds in the regressive stages.

  2. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    USGS Publications Warehouse

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize the aquifer, and the surface nuclear magnetic resonance was able to provide missing data. In favorable locations, surface nuclear magnetic resonance is able to provide valuable noninvasive information about aquifer parameters and should be a useful tool for groundwater managers in Nebraska.

  3. Summary of hydrology of the regional aquifer systems, Gulf Coastal Plain, south-central United States

    USGS Publications Warehouse

    Grubb, H.F.

    1998-01-01

    There is potential for further development of ground-water supplies in the Gulf Coastal Plain because of the abundance of water in streams, lakes, and swamps and the generally good hydraulic connection between the water table and underlying water-yielding units. The most favorable conditions for further development of ground-water supplies are generally in the upper permeable zones and aquifers, and the potential for development typically increases from west to east.

  4. Arsenic-related water quality with depth and water quality of well-head samples from production wells, Oklahoma, 2008

    USGS Publications Warehouse

    Becker, Carol J.; Smith, S. Jerrod; Greer, James R.; Smith, Kevin A.

    2010-01-01

    The U.S. Geological Survey well profiler was used to describe arsenic-related water quality with well depth and identify zones yielding water with high arsenic concentrations in two production wells in central and western Oklahoma that yield water from the Permian-aged Garber-Wellington and Rush Springs aquifers, respectively. In addition, well-head samples were collected from 12 production wells yielding water with historically large concentrations of arsenic (greater than 10 micrograms per liter) from the Garber-Wellington aquifer, Rush Springs aquifer, and two minor aquifers: the Arbuckle-Timbered Hills aquifer in southern Oklahoma and a Permian-aged undefined aquifer in north-central Oklahoma. Three depth-dependent samples from a production well in the Rush Springs aquifer had similar water-quality characteristics to the well-head sample and did not show any substantial changes with depth. However, slightly larger arsenic concentrations in the two deepest depth-dependent samples indicate the zones yielding noncompliant arsenic concentrations are below the shallowest sampled depth. Five depth-dependent samples from a production well in the Garber-Wellington aquifer showed increases in arsenic concentrations with depth. Well-bore travel-time information and water-quality data from depth-dependent and well-head samples showed that most arsenic contaminated water (about 63 percent) was entering the borehole from perforations adjacent to or below the shroud that overlaid the pump. Arsenic concentrations ranged from 10.4 to 124 micrograms per liter in 11 of the 12 production wells sampled at the well head, exceeding the maximum contaminant level of 10 micrograms per liter for drinking water. pH values of the 12 well-head samples ranged from 6.9 to 9. Seven production wells in the Garber-Wellington aquifer had the largest arsenic concentrations ranging from 18.5 to 124 micrograms per liter. Large arsenic concentrations (10.4-18.5) and near neutral to slightly alkaline pH values (6.9-7.4) were detected in samples from one well in the Garber-Wellington aquifer, three production wells in the Rush Springs aquifer, and one well in an undefined Permian-aged aquifer. All well-head samples were oxic and arsenate was the only species of arsenic in water from 10 of the 12 production wells sampled. Arsenite was measured above the laboratory reporting level in water from a production well in the Garber-Wellington aquifer and was the only arsenic species measured in water from the Arbuckle-Timbered Hills aquifer. Fluoride and uranium were the only trace elements, other than arsenic, that exceeded the maximum contaminant level for drinking water in well-head samples collected for the study. Uranium concentrations in four production wells in the Garber-Wellington aquifer ranged from 30.2 to 99 micrograms per liter exceeding the maximum contaminant level of 30 micrograms per liter for drinking water. Water from these four wells also had the largest arsenic concentrations measured in the study ranging from 30 to 124 micrograms

  5. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    USGS Publications Warehouse

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of recharge in this area is from bedrock. Concentrations of Na+, HCO3-, As, and TDS also increase in the western MVA. Ground water in the MAK is of a Ca2+-HCO3- type. Mass-balance calculations, using Cl- as a natural, conservative tracer, indicate that approximately 17% of the ground water flowing from the confluence area is derived from the MVA.

  6. Changes in flow in the upper North Canadian river basin of western Oklahoma, pre-development to 2000

    USGS Publications Warehouse

    Wahl, K.L.

    2001-01-01

    Water levels have declined in the southern part of the High Plains aquifer of the central USA since the mid-1960s in response to extensive irrigation development. The North Canadian River originates in western Oklahoma, and most of the basin is underlain by the High Plains aquifer. Average river flow in the headwaters near Guymon, Oklahoma, has decreased from about 0.9 m3/s before 1970 to near zero at present. Canton Lake, on the North Canadian River near Seiling, about 250 km downstream from Guymon, is a source of water supply for Oklahoma City. Precipitation data and streamflow data for gages upstream from Canton Lake were divided into an "early" period ending in 1971 and a "recent" period that begins in 1978. The early period represents conditions before ground-water levels had declined appreciably in the High Plains aquifer, and the recent period reflects the current condition, including the effects of storage reservoirs. Tests for trend and comparisons of flows between the early and recent periods show that the total annual volume of flow and the magnitudes of instantaneous annual peak discharges measured at most locations in the North Canadian River basin have decreased. Precipitation records for the area, however, show no corresponding changes. The decreases in average annual flow, expressed as a percentage of the average flows for the early period, ranged from 91 percent near Guymon to 37 percent near Canton Lake. A major contributing factor in the decreased flows appears to be the large declines in water levels in the High Plains aquifer.

  7. Bacterial production of methane and its influence on ground-water chemistry in east-central Texas aquifers

    SciTech Connect

    Grossman, E.L.; Coffman, B.K. ); Fritz, S.J. ); Wada, Hideki )

    1989-06-01

    Geochemical and isotopic data for methane and ground water indicate that gaseous hydrocarbons in Eocene aquifers in east-central Texas form by bacterial processes. The {delta}{sup 13}C values of methane from live wells in the clay-rich Yegua and Cook Mountain Formations range from -71{per thousand} to -62{per thousand}. Methane from ten wells in the cleaner sands of the Sparta Queen City Formations have {delta}{sup 13}C values between -57{per thousand} and -53{per thousand}. The carbon isotopic difference between methanes from the Yegua and Sparta aquifers is comparable to the isotopic difference in sedimentary organic matter from outcrops of the units, suggesting substrate control on the {delta}{sup 13}C of bacterial methane. Hydrogen isotopic compositions of methane from the aquifers are similar, averaging -181{per thousand}. This high value suggest methane production predominantly by CO{sub 2} reduction. The {delta}{sup 13}C dissolved inorganic carbon (DIC) in high bicarbonate waters increase from about -20{per thousand} to 0{per thousand} with increasing DIC. Mass-balance calculations indicate that the DIC added to the ground water has {delta}{sup 13}C values as high as 10{per thousand}. This {sup 13}C-enriched carbon is predominantly derived from CO{sub 2} production by fermentation and anaerobic oxidation reactions combined with CO{sub 2} consumption by CO{sub 2} reduction. This process is responsible for high bicarbonate contents in these and probably other Gulf Coast ground waters.

  8. One Dimensional Bedrock-Aquifer Subsidence Model Based on InSAR-Observed Mine Subsidence in North-Central Nevada

    NASA Astrophysics Data System (ADS)

    Katzenstein, K. W.; Bell, J. W.; Watters, R. J.

    2008-12-01

    Bedrock-Aquifer response from groundwater pumping is a rarely observed and, therefore, poorly understood phenomenon. Typically, the magnitude of drawdown necessary to create effective stresses high enough to induce significant and, therefore, observable surface subsidence is not reached. This study documents a case where mine-dewatering induced drawdown of greater than 500 m led to bedrock subsidence magnitudes of approximately 50 cm in an 8 year period. Ground subsidence related to mine-dewatering is a common occurrence due to the large volumes of water that are pumped in order to lower the local groundwater table to facilitate open pit and underground mining operations. Several mines located along the Carlin Trend of Central Nevada have produced InSAR-identified subsidence signals of greater aerial extent and magnitude than most municipal groundwater signals. The dewatering signal at one such mine shows a minimum of 45.8 cm of cumulative subsidence between June 1, 1992 and September 21, 2000. This study has created many (>50) interferograms, allowing a better understanding of how the subsidence signal evolved in response to varied pumping rates from dewatering wells. The deformation signal correlates well with the observed groundwater drawdown characteristics. However, since the spatial resolution of the InSAR is much better than that of the monitoring well locations, the complexity of the signal is better delineated. The maximum aerial extent of the subsidence feature extends as far as 20 km away from the location of the extraction wells used for dewatering. The InSAR results were utilized to test a new, simple, one dimensional bedrock-aquifer subsidence model. This model utilizes easily obtained rock strength and rock mass parameters along with drawdown magnitudes to estimate vertical strain within the bedrock aquifer. Comparison of InSAR-identified subsidence magnitudes with estimated subsidence magnitudes from the new model agree quite well, particularly in areas of maximum drawdown.

  9. Quaternary stratigraphy, sediment characteristics and geochemistry of arsenic-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in central Bangladesh.

    PubMed

    Shamsudduha, M; Uddin, A; Saunders, J A; Lee, M-K

    2008-07-29

    This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions. PMID:18502538

  10. Hydrogeological study of the intensely exploited aquifer of the Santa Croce leather-producing district, Tuscany (central Italy)

    NASA Astrophysics Data System (ADS)

    Grassi, Sergio; Doveri, Marco; Cortecci, Gianni; Amadori, Michele

    2011-05-01

    A hydrogeological study was undertaken to define the groundwater circulation in the Santa Croce area (Tuscany, central Italy) where the existing multilayered aquifer has long been intensively exploited. Investigations carried out on about 150 wells revealed the existence of a deep piezometric depression (to 20 m below sea level) which drains groundwater from the entire surrounding area. Samples from about 70 water points, collected twice in 2007, were analysed for major elements and stable isotope composition. Three major groups of waters, which mix in the study area, have been distinguished: (1) waters of the Ca-Mg-HCO3 type mainly flowing along the Arno River Plain; (2) waters of the Na-K-Cl/Ca-Mg-HCO3-SO4, type with SO4 content up to 275 mg/L, inflowing from the Pisane Hills; (3) relatively high-salinity waters mainly of the Na-HCO3 type which, with Cl concentrations up to 750 mg/L, likely arise from a normal fault located at the foot of the northern hills. The characteristics of the different components are greatly affected by significant modifying processes such as cation exchange and sulfate reduction. The achieved conceptual model suggests the southern hills as the main recharging area of the aquifer system from which water circulation, characterized by pathways of different length and depth, develops.

  11. Key subsurface data help to refine Trinity aquifer hydrostratigraphic units, south-central Texas

    USGS Publications Warehouse

    Blome, Charles D.; Clark, Allan K.

    2014-01-01

    The geologic framework and hydrologic characteristics of aquifers are important components for studying the nation’s subsurface heterogeneity and predicting its hydraulic budgets. Detailed study of an aquifer’s subsurface hydrostratigraphy is needed to understand both its geologic and hydrologic frameworks. Surface hydrostratigraphic mapping can also help characterize the spatial distribution and hydraulic connectivity of an aquifer’s permeable zones. Advances in three-dimensional (3-D) mapping and modeling have also enabled geoscientists to visualize the spatial relations between the saturated and unsaturated lithologies. This detailed study of two borehole cores, collected in 2001 on the Camp Stanley Storage Activity (CSSA) area, provided the foundation for revising a number of hydrostratigraphic units representing the middle zone of the Trinity aquifer. The CSSA area is a restricted military facility that encompasses approximately 4,000 acres and is located in Boerne, Texas, northwest of the city of San Antonio. Studying both the surface and subsurface geology of the CSSA area are integral parts of a U.S. Geological Survey project funded through the National Cooperative Geologic Mapping Program. This modification of hydrostratigraphic units is being applied to all subsurface data used to construct a proposed 3-D EarthVision model of the CSSA area and areas to the south and west.

  12. IMPLICATIONS OF NEW ARSENIC STANDARDS ON OKLAHOMA WATER RESOURCES

    EPA Science Inventory

    The new national standard for arsenic in drinking water supplies, slated to take effect in 2006, is having an unexpected impact on a number of Oklahoma communities. Currently, several municipalities in north central Oklahoma are in compliance with existing arsenic standards (50 ...

  13. Fens, seasonal wetlands, and the unconfined pumice aquifer east of the Cascade Range, south-central Oregon

    NASA Astrophysics Data System (ADS)

    Cummings, M. L.; Large, A.; Mowbray, A.; Weatherford, J.; Webb, B.

    2013-12-01

    Fens and seasonal wetlands in the headwaters of the Klamath and Deschutes river basins in south-central Oregon are present in an area blanketed by 2 to 3 m of pumice during the Holocene eruption of Mount Mazama. The lower pumice unit, moderately sorted coarse pumice lapilli to blocks (0.3 to 0.7 cm), phenocrysts, and lithics is 1.5 to 2 m thick; the upper pumice unit, poorly sorted lapilli to blocks (0.2 to 6 cm), minor phenocrysts, and lithics is 1 m thick. Pumice is a perched, unconfined aquifer over low permeability bedrock or pre-eruption fine-grained sediment. Early landscape response included partial erosion of pumice from pre-eruption valleys followed by partial filling by alluvium: phenocryst- and lithic-rich sand grading upward to glassy silt with rounded pumice pebbles. Groundwater-fed wetlands, fens, associated with the unconfined pumice aquifer occur as areas of diffuse groundwater discharge through gently sloping, convex surfaces underlain by up to 1.4 m of peat. Locally, focused discharge through the confining peat layer feeds low discharge streams. Carnivorous plants (sundews and pitcher plants) may be present. The sharp contact between peat and underlying pumice is an erosion surface that cuts progressively deeper into the upper and lower pumice units downslope. At the base of the slope peat with fen discharge feeding surface flow, alluvium with no surface flow, or a subtle berm separating the slope underlain by peat from the valley bottom underlain by alluvium may be present. Distinct vegetation changes take place at this transition. The erosion surface that underlies the peat layer in the fen is at the surface on the opposing valley wall and progressively rises up through the lower and upper pumice units: iron staining and cementation of pumice is locally prominent. Up to 1.5 m difference in water table occurs between the fen and opposing valley wall. Water table in piezometers screened in peat is at the surface. Locally, water table screened in pumice below the peat confining layer is up to 24 cm above the surface. Electrical conductivity in groundwater from the unconfined pumice aquifer ranged between 20 and 45 μS/cm. Rarely, electrical conductivity greater than 250 μS/cm is measured. Hydrochemistry indicates these waters are distinctly different (Ca-bicarbonate, [Fe] up to 22 mg/l) from water commonly encountered in the unconfined pumice aquifer (Na-bicarbonate, [Fe] less than 0.07 mg/l). Seasonally elevated water tables are present where pre-eruption topography allows snowmelt to accumulate in the unconfined pumice aquifer in valley bottoms and upland surfaces. Differential hardness of volcanic bedrock units control distribution in valley bottoms; emplacement processes and weathering of flow tops control distribution in upland settings. In both settings the lower pumice unit is saturated, but the upper pumice unit may be absent or thin. Alluvium commonly overlies pumice in valley bottoms. The water table may fluctuate up to 1.5 m from the spring snowmelt to late summer. Electrical conductivity in the pumice aquifer ranges between 19 and 250 μS/cm and commonly increases at single sites as the dry season progresses.

  14. Synthesis of the Hydrogeologic Framework of the Floridan Aquifer System and Delineation of a Major Avon Park Permeable Zone in Central and Southern Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Richardson, Emily

    2008-01-01

    The carbonate Floridan aquifer system of central and southern Florida (south of a latitude of about 29 degrees north) is an invaluable resource with a complex framework that has previously been mapped and managed primarily in a subregional context according to geopolitical boundaries. As interest and use of the Floridan aquifer system in this area increase, a consistent regional hydrogeologic framework is needed for effective management across these boundaries. This study synthesizes previous studies on the Floridan aquifer system and introduces a new regional hydrogeologic conceptual framework, linking physical relations between central and southern Florida and between the west and east coastal areas. The differences in hydrogeologic nomenclature and interpretation across the study area from previous studies were identified and resolved. The Floridan aquifer system consists of the Upper Floridan aquifer, middle confining unit, and Lower Floridan aquifer. This study introduces and delineates a new major, regional productive zone or subaquifer, referred to as the Avon Park permeable zone. This zone is contained within the middle confining unit and synthesizes an extensive zone that has been referred to differently in different parts of the study area in previous studies. The name of this zone derives from the description of this zone as the ?Avon Park highly permeable zone? in west-central Florida in a previous study. Additionally, this zone has been identified previously in southeastern Florida as the ?middle Floridan aquifer.? An approximately correlative or approximate time-stratigraphic framework was developed and was used to provide guidance in the identification and determination of aquifers, subaquifers, and confining units within the Floridan aquifer system and to determine their structural relations. Two stratigraphic marker horizons within the Floridan aquifer system and a marker unit near the top of the aquifer system were delineated or mapped. The marker horizons are correlative points in the stratigraphic section rather than a unit with upper and lower boundaries. The two marker horizons and the marker unit originated from previous studies, wherein they were based on lithology and correlation of geophysical log signatures observed in boreholes. The depths of these marker horizons and the marker unit were extended throughout the study area by correlation of natural gamma-ray logs between wells. The Floridan aquifer system includes, in ascending order, the upper part of the Cedar Keys Formation, Oldsmar Formation, Avon Park Formation, Ocala Limestone, Suwannee Limestone, and in some areas the lower part of the Hawthorn Group. The first marker horizon is in the lower part of the aquifer system near the top of the Oldsmar Formation and is associated with the top of distinctive glauconitic limestone beds that are present in some regions; the second marker horizon is near the middle of the aquifer system in the middle part of the Avon Park Formation. The marker unit lies at the top of a basal unit in the Hawthorn Group and provides a stratigraphic constraint for the top of the Floridan aquifer system. The marker horizons do not have distinguishing lithologic characteristics or a characteristic gamma-ray log pattern in all areas but are still thought to be valid because of correlation of the entire section and correlation of all sufficiently deep wells with gamma-ray logs. The Avon Park permeable zone is contained entirely within the Avon Park Formation; its position within the section is either near the middle Avon Park marker horizon or within a thick part of the section that extends several hundred feet above the marker horizon. This subaquifer is present over most of the study area and characteristically consists of thick units of dolostone and interbedded limestone, and limestone in its upper part. Permeability is primarily associated with fracturing. This subaquifer is well developed in west-cen

  15. Heat flow in Oklahoma

    SciTech Connect

    Cranganu, C.; Deming, D. )

    1996-01-01

    Oklahoma is one area in which terrestrial heat flow data are sparse. The thermal state of the southern mid-continent, however, is a key to understanding several important geologic problems. These include thermal anomalies associated with Paleozoic fluid migrations and the formation of Mississippi Valley-type lead-zinc deposits, the thermal evolution of the Arkoma and Anadarko sedimentary basins, and the history of hydrocarbon generation and overpressuring in the Anadarko Basin. In the late 1920s, the American Petroleum Institute made a set of equilibrium temperature logs in idle oil wells. These temperature data are generally regarded as being high quality, accurate estimates of rock temperature and they cover the entire central part of Oklahoma. Average thermal gradients in the API survey range from 14 to 43 [sup 0]C/km (average 31.2 [sup 0]C/km) over depth intervals that extend from the surface to a an average depth of 961 m. Geothermal gradients decrease from NNE to SSW. The observed change in thermal gradients could be due to a number of factors. The change in thermal gradients could simply reflect changes in lithology and thermal conductivity. Alternatively, the variation in thermal gradients could be indicative of a change in heat flow related perhaps to variations in the concentration of radioactive heat-producing elements in the crust or heat transport by one or more regional groundwater flow systems. We are proceeding to reduce ambiguity in interpretation by estimating heat flow from thermal conductivity measurements on drill cuttings and heat production from available gamma-ray logs which penetrate basement rocks.

  16. Heat flow in Oklahoma

    SciTech Connect

    Cranganu, C.; Deming, D.

    1996-12-31

    Oklahoma is one area in which terrestrial heat flow data are sparse. The thermal state of the southern mid-continent, however, is a key to understanding several important geologic problems. These include thermal anomalies associated with Paleozoic fluid migrations and the formation of Mississippi Valley-type lead-zinc deposits, the thermal evolution of the Arkoma and Anadarko sedimentary basins, and the history of hydrocarbon generation and overpressuring in the Anadarko Basin. In the late 1920s, the American Petroleum Institute made a set of equilibrium temperature logs in idle oil wells. These temperature data are generally regarded as being high quality, accurate estimates of rock temperature and they cover the entire central part of Oklahoma. Average thermal gradients in the API survey range from 14 to 43 {sup 0}C/km (average 31.2 {sup 0}C/km) over depth intervals that extend from the surface to a an average depth of 961 m. Geothermal gradients decrease from NNE to SSW. The observed change in thermal gradients could be due to a number of factors. The change in thermal gradients could simply reflect changes in lithology and thermal conductivity. Alternatively, the variation in thermal gradients could be indicative of a change in heat flow related perhaps to variations in the concentration of radioactive heat-producing elements in the crust or heat transport by one or more regional groundwater flow systems. We are proceeding to reduce ambiguity in interpretation by estimating heat flow from thermal conductivity measurements on drill cuttings and heat production from available gamma-ray logs which penetrate basement rocks.

  17. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    SciTech Connect

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.

  18. Statistical tools for managing the Ambikapur aquifer in central India for sustainable hydrological development of the region

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.

    2009-04-01

    Statistical tools for managing the Ambikapur aquifer in central India for sustainable hydrological development of the region Despite India's tremendous progress on all fronts after independence in 1947, the fact remains that it is one of the poorest nation in the world in terms of per capita income and energy consumption which is considered to be the gauge of the economic situation of any country. In case of India, it is nearly one tenth of the developed nations. If economic condition of its people is to be raised, then country has to boost its agriculture production which is largely monsoon dependent and to exploit its conventional and unconventional energy sources at a very rapid growth rate. Although, worldwide, 70% of the water that is withdrawn for human use is used for agriculture, 22% for industry and 8% is used for domestic services. But in India which is a low income country, 82% is used for agriculture, 10% for industry and 8% for domestic services. Therefore, India needs new sources of water to reduce the risk of dependency on the monsoon for the Sustainable Development of the country. It is in this connection that the Ambikapur Basin in the Central India has been studied for sustainable water withdrawal. At present, the crops in the Ambikapur region are totally monsoon dependent. However, with the initiatives of the State Government, 25 boreholes in an area of about 25 square kilometers have been drilled up to a depth of 500m and completed in the Gondwana sandstone. The water quality and the discharge rates have been established to sustain the crops of the area which is the only livelihood of the local people , in case the monsoon fails. The hydraulic properties of the aquifer like Transmissivity (T) and the Coefficient of Storage (S) were determined following the graphic method of Jacob and Theis. The rate of discharge (Q) of the pumped well was estimated at 4.05 x 10 to the power 3 cubic meters per second and the values of other parameters like T at the well being 2.5 x 10 to the power 3 square meters per second and, T and S at the piezometric head being 1.56 x 10 to the power 2 square meters per second and 5.8 % respectively. The Interference Tests show that the reservoir is communicable. The measurements of bottom hole pressure indicate that it was always greater than the hydrostatic pressure, therefore, the wells will have a self flow. The residency period of the water in the reservoir comes out to be nearly 30 to 40 years. The reservoir characteristics indicate that the Ambikapur aquifer offers vast water resource worth exploiting the judicious management of which can reduce the dependency of crops on the monsoon and can help a fast sustainable development of the region. Key words : Gondwana sandstone, Aquifer, Transmissivity, Piezometric head, Interference test,

  19. Water movement through thick unsaturated zones overlying the central High Plains aquifer, southwestern Kansas, 2000-2001

    USGS Publications Warehouse

    McMahon, Peter B.; Dennehy, K.F.; Michel, R.L.; Sophocleous, M.A.; Ellett, K.M.; Hurlbut, D.B.

    2003-01-01

    The role of irrigation as a driving force for water and chemical movement to the central High Plains aquifer is uncertain because of the thick unsaturated zone overlying the aquifer. Water potentials and profiles of tritium, chloride, nitrate, and pesticide concentrations were used to evaluate water movement through thick unsaturated zones overlying the central High Plains aquifer at three sites in southwestern Kansas. One site was located in rangeland and two sites were located in areas dominated by irrigated agriculture. In 2000?2001, the depth to water at the rangeland site was 50 meters and the depth to water at the irrigated sites was about 45.4 meters. Irrigation at the study sites began in 1955?56. Measurements of matric potential and volumetric water content indicate wetter conditions existed in the deep unsaturated zone at the irrigated sites than at the rangeland site. Total water potentials in the unsaturated zone at the irrigated sites systematically decreased with depth to the water table, indicating a potential existed for downward water movement from the unsaturated zone to the water table at those sites. At the rangeland site, total water potentials in the deep unsaturated zone indicate small or no potential existed for downward water movement to the water table. Postbomb tritium was not detected below a depth of 1.9 meters in the unsaturated zone or in ground water at the rangeland site. In contrast, postbomb tritium was detected throughout most of the unsaturated zone and in ground water at both irrigated sites. These results indicate post-1953 water moved deeper in the unsaturated zone at the irrigated sites than at the rangeland site. The depth of the interface between prebomb and postbomb tritium and a tritium mass-balance method were used to estimate water fluxes in the unsaturated zone at each site. The average water fluxes at the rangeland site were 5.4 and 4.4 millimeters per year for the two methods, which are similar to the average water flux (5.1 millimeters per year) estimated using a chloride mass-balance method. Tritium profiles in the unsaturated zone at the irrigated sites were complicated by the presence of tritium-depleted intervals separating upper and lower zones containing postbomb tritium. If the interface between prebomb and postbomb tritium was at the top of the tritium-depleted interval and postbomb tritium detected beneath that interval was from the declining water table in the area, then the average water flux at the irrigated sites was estimated to be 21 to 54 millimeters per year. If postbomb tritium detected beneath the tritium-depleted interval was from bypass or preferential water movement through the local unsaturated zone instead of the declining water table, then the minimum water flux at the irrigated sites was estimated to be 106 to 116 millimeters per year. In either case, water fluxes at the irrigated sites were at least 4 to 12 times larger than the flux at the rangeland site, indicating irrigation was an important driving force for water movement through the unsaturated zone. The presence of postbomb tritium and large nitrate and total pesticide concentrations (24 milligrams per liter as nitrogen and 0.923 microgram per liter, respectively) in ground water at the irrigated sites indicates irrigation water also was an important driving force for chemical movement to the water table. The persistence of a downward hydraulic gradient from the deep unsaturated zone to the water table at the irrigated sites, in addition to large nitrate and atrazine concentrations in deep soil water (34 milligrams per liter as nitrogen and 0.79 microgram per liter, respectively), indicate that the deep unsaturated zone will be a source of nitrate and atrazine to the aquifer in the future.

  20. Assessment of nonpoint-source contamination of the High Plains Aquifer in south-central Kansas, 1987

    USGS Publications Warehouse

    Helgesen, John O.; Stullken, Lloyd E.; Rutledge, A.T.

    1994-01-01

    Ground-water quality was assessed in a 5,000-square-mile area of the High Plains aquifer in south-central Kansas that is susceptible to nonpoint-source contamination from agricultural and petroleum-production activities. Of particular interest was the presence of agricultural chemicals and petroleum-derived hydrocarbons that might have been associated with brines that formerly were disposed into unlined ponds. Random sampling of ground water was done within a framework of discrete land-use areas (irrigated cropland, petroleum-production land containing former brine-disposal ponds, and undeveloped rangeland) of 3-10 square miles. Although true baseline water-quality conditions probably are rare, in this region they are represented most closely by ground water in areas of undeveloped rangeland. The sampling design enabled statistical hypothesis testing, using nonparametric procedures, of the effects of land use, unsaturated-zone lithology, and type of well sampled. Results indicate that regional ground-water quality has been affected by prevailing land-use activities, as shown by increased concentrations of several inorganic constituents. Ground water beneath irrigated cropland was characterized by significantly larger concentrations of hardness, alkalinity, calcium, magnesium, potassium, fluofide, and nitrite plus nitrate than was water beneath undeveloped rangeland. Few nondegraded pesticides were detected in the aquifer, probably because of degradation and sorption. Atrazine was the most common, but only in small concentrations. round water beneath petroleum-production land was characterized by significantly larger concentrations of hardness, alkalinity, dissolved solids, sodium, and chloride than was water beneath undeveloped rangeland. Nonpoint-source contamination by oil-derived hydrocarbons was not discernible. The occurrences of trace organic compounds were similar between petroleum-production land and undeveloped rangeland, which indicates a natural origin for these compounds. The unsaturated zone in the study area is lithologically heterogeneous and contains substantial amounts of clay that inhibit the downward movement of water and solutes. Within the aquifer, the rate of lateral regional flow and solute transport is slow enough so that the ground-water quality reflects overlying land use in discrete areas of several square miles, but it is still sufficiently rapid so that the type of well sampled is not important in regional characterizations of water quality beneath irrigated cropland; the seasonal pumping of irrigation wells does not appear to divert regional flow enough to cause substantial local anomalies of more mineralized ground water.

  1. Age of irrigation water in ground water from the Eastern Snake River Plain Aquifer, south-central Idaho

    USGS Publications Warehouse

    Plummer, L.N.; Rupert, M.G.; Busenberg, E.; Schlosser, P.

    2000-01-01

    Stable isotope data (2H and 18O) were used in conjunction with chlorofluorocarbon (CFC) and tritium/helium-3 (3H/3He) data to determine the fraction and age of irrigation water in ground water mixtures from farmed parts of the Eastern Snake River Plain (ESRP) Aquifer in south-central Idaho. Two groups of waters were recognized: (1) regional background water, unaffected by irrigation and fertilizer application, and (2) mixtures of irrigation water from the Snake River with regional background water. New data are presented comparing CFC and 3H/3He dating of water recharged through deep fractured basalt, and dating of young fractions in ground water mixtures. The 3H/3He ages of irrigation water in most mixtures ranged from about zero to eight years. The CFC ages of irrigation water in mixtures ranged from values near those based on 3H/3He dating to values biased older than the 3H/3He ages by as much as eight to 10 years. Unsaturated zone air had CFC-12 and CFC-113 concentrations that were 60% to 95%, and 50% to 90%, respectively, of modern air concentrations and were consistently contaminated with CFC-11. Irrigation water diverted from the Snake River was contaminated with CFC-11 but near solubility equilibrium with CFC-12 and CFC-113. The dating indicates ground water velocities of 5 to 8 m/d for water along the top of the ESRP Aquifer near the southwestern boundary of the Idaho National Engineering and Environmental Laboratory (INEEL). Many of the regional background waters contain excess terrigenic helium with a 3He/4He isotope ratio of 7 x 10-6 to 11 x 10-6 (R/Ra = 5 to 8) and could not be dated. Ratios of CFC data indicate that some rangeland water may contain as much as 5% to 30% young water (ages of less than or equal to two to 11.5 years) mixed with old regional background water. The relatively low residence times of ground water in irrigated parts of the ESRP Aquifer and the dilution with low-NO3 irrigation water from the Snake River lower the potential for NO3 contamination in agricultural areas.

  2. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA

    USGS Publications Warehouse

    Yang, Qiang; Culbertson, Charles W.; Nielsen, Martha G.; Schalk, Charles W.; Johnson, Carole D.; Marvinney, Robert G.; Stute, Martin; Zheng, Yan

    2014-01-01

    To understand the hydrogeochemical processes regulating well water arsenic (As) evolution in fractured bedrock aquifers, three domestic wells with [As] up to 478 μg/L are investigated in central Maine. Geophysical logging reveals that fractures near the borehole bottom contribute 70-100% of flow. Borehole and fracture water samples from various depths show significant proportions of As (up to 69%) and Fe (93-99%) in particulates (>0.45 μm). These particulates and those settled after a 16-day batch experiment contain 560-13,000 g/kg of As and 14-35% weight/weight of Fe. As/Fe ratios (2.5-20 mmol/mol) and As partitioning ratios (adsorbed/dissolved [As], 20,000-100,000 L/kg) suggest that As is sorbed onto amorphous hydrous ferric oxides. Newly drilled cores also show enrichment of As (up to 1300 mg/kg) sorbed onto secondary iron minerals on the fracture surfaces. Pumping at high flow rates induces large decreases in particulate As and Fe, a moderate increase in dissolved [As] and As(III)/As ratio, while little change in major ion chemistry. The δD and δ18O are similar for the borehole and fracture waters, suggesting a same source of recharge from atmospheric precipitation. Results support a conceptual model invoking flow and sorption controls on groundwater [As] in fractured bedrock aquifers whereby oxygen infiltration promotes the oxidation of As-bearing sulfides at shallower depths in the oxic portion of the flow path releasing As and Fe; followed by Fe oxidation to form Fe oxyhydroxide particulates, which are transported in fractures and sorb As along the flow path until intercepted by boreholes. In the anoxic portions of the flow path, reductive dissolution of As-sorbed iron particulates could re-mobilize As. For exposure assessment, we recommend sampling of groundwater without filtration to obtain total As concentration in groundwater.

  3. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA

    PubMed Central

    Yang, Qiang; Culbertson, Charles W.; Nielsen, Martha G.; Schalk, Charles W.; Johnson, Carole D.; Marvinney, Robert G.; Stute, Martin; Zheng, Yan

    2014-01-01

    To understand the hydrogeochemical processes regulating well water arsenic (As) evolution in fractured bedrock aquifers, three domestic wells with [As] up to 478 µg/L are investigated in central Maine. Geophysical logging reveals that fractures near the borehole bottom contribute 70–100% of flow. Borehole and fracture water samples from various depths show significant proportions of As (up to 69%) and Fe (93–99%) in particulates (>0.45 µm). These particulates and those settled after a 16-day batch experiment contain 560–13,000 mg/kg of As and 14–35% weight/weight of Fe. As/Fe ratios (2.5–20 mmole/mole) and As partitioning ratios (adsorbed/dissolved [As], 20,000–100,000 L/kg) suggest that As is sorbed onto amorphous hydrous ferric oxides. Newly drilled cores also show enrichment of As (up to 1,300 mg/kg) sorbed onto secondary iron minerals on the fracture surfaces. Pumping at high flow rates induces large decreases in particulate As and Fe, a moderate increase in dissolved [As] and As(III)/As ratio, while little change in major ion chemistry. The δD and δ18O are similar for the borehole and fracture waters, suggesting a same source of recharge from atmospheric precipitation. Results support a conceptual model invoking flow and sorption controls on groundwater [As] in fractured bedrock aquifers whereby oxygen infiltration promotes oxidation of As-bearing sulfides at shallower depths in the oxic portion of the flow path releasing As and Fe; followed by Fe oxidation to form Fe oxyhydroxide particulates, which are transported in fractures and sorb As along the flow path until intercepted by boreholes. In the anoxic portions of the flow path, reductive dissolution of As-sorbed iron particulates could re-mobilize As. For exposure assessment, we recommend sampling of groundwater without filtration to obtain total As concentration in groundwater. PMID:24842411

  4. Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA.

    PubMed

    Yang, Qiang; Culbertson, Charles W; Nielsen, Martha G; Schalk, Charles W; Johnson, Carole D; Marvinney, Robert G; Stute, Martin; Zheng, Yan

    2015-02-01

    To understand the hydrogeochemical processes regulating well water arsenic (As) evolution in fractured bedrock aquifers, three domestic wells with [As] up to 478 μg/L are investigated in central Maine. Geophysical logging reveals that fractures near the borehole bottom contribute 70-100% of flow. Borehole and fracture water samples from various depths show significant proportions of As (up to 69%) and Fe (93-99%) in particulates (>0.45 μm). These particulates and those settled after a 16-day batch experiment contain 560-13,000 mg/kg of As and 14-35% weight/weight of Fe. As/Fe ratios (2.5-20 mmol/mol) and As partitioning ratios (adsorbed/dissolved [As], 20,000-100,000 L/kg) suggest that As is sorbed onto amorphous hydrous ferric oxides. Newly drilled cores also show enrichment of As (up to 1300 mg/kg) sorbed onto secondary iron minerals on the fracture surfaces. Pumping at high flow rates induces large decreases in particulate As and Fe, a moderate increase in dissolved [As] and As(III)/As ratio, while little change in major ion chemistry. The δD and δ(18)O are similar for the borehole and fracture waters, suggesting a same source of recharge from atmospheric precipitation. Results support a conceptual model invoking flow and sorption controls on groundwater [As] in fractured bedrock aquifers whereby oxygen infiltration promotes the oxidation of As-bearing sulfides at shallower depths in the oxic portion of the flow path releasing As and Fe; followed by Fe oxidation to form Fe oxyhydroxide particulates, which are transported in fractures and sorb As along the flow path until intercepted by boreholes. In the anoxic portions of the flow path, reductive dissolution of As-sorbed iron particulates could re-mobilize As. For exposure assessment, we recommend sampling of groundwater without filtration to obtain total As concentration in groundwater. PMID:24842411

  5. Nonlinear-regression flow model of the Gulf Coast aquifer systems in the south-central United States

    USGS Publications Warehouse

    Kuiper, L.K.

    1994-01-01

    A multiple-regression methodology was used to help answer questions concerning model reliability, and to calibrate a time-dependent variable-density ground-water flow model of the gulf coast aquifer systems in the south-central United States. More than 40 regression models with 2 to 31 regressions parameters are used and detailed results are presented for 12 of the models. More than 3,000 values for grid-element volume-averaged head and hydraulic conductivity are used for the regression model observations. Calculated prediction interval half widths, though perhaps inaccurate due to a lack of normality of the residuals, are the smallest for models with only four regression parameters. In addition, the root-mean weighted residual decreases very little with an increase in the number of regression parameters. The various models showed considerable overlap between the prediction inter- vals for shallow head and hydraulic conductivity. Approximate 95-percent prediction interval half widths for volume-averaged freshwater head exceed 108 feet; for volume-averaged base 10 logarithm hydraulic conductivity, they exceed 0.89. All of the models are unreliable for the prediction of head and ground-water flow in the deeper parts of the aquifer systems, including the amount of flow coming from the underlying geopressured zone. Truncating the domain of solution of one model to exclude that part of the system having a ground-water density greater than 1.005 grams per cubic centimeter or to exclude that part of the systems below a depth of 3,000 feet, and setting the density to that of freshwater does not appreciably change the results for head and ground-water flow, except for locations close to the truncation surface.

  6. Pride in Oklahoma.

    ERIC Educational Resources Information Center

    Moore, Gordon; Blackburn, Bob L.

    This booklet is intended to be used as background material by social studies and history classroom teachers as they develop and implement educational programs on Oklahoma's heritage. It includes background information on the land and people of Oklahoma (geology, climate, topography, vegetation, animals, prehistoric peoples, French explorers,…

  7. Pride in Oklahoma.

    ERIC Educational Resources Information Center

    Moore, Gordon; Blackburn, Bob L.

    This booklet is intended to be used as background material by social studies and history classroom teachers as they develop and implement educational programs on Oklahoma's heritage. It includes background information on the land and people of Oklahoma (geology, climate, topography, vegetation, animals, prehistoric peoples, French explorers,

  8. Oklahoma Tribes: A History

    ERIC Educational Resources Information Center

    Gover, Kevin

    1977-01-01

    Oklahoma is a microcosm of American Indian country. Water rights, tribal government impotence, jurisdiction, tribal membership, treaty rights, taxation, sovereignty, racism, and poor housing, education, and health are all vital issues facing the Indian tribes of Oklahoma. In order to understand the complexity of these issues, a review of the…

  9. Earthquake history of Oklahoma

    USGS Publications Warehouse

    von Hake, C. A.

    1976-01-01

    The strongest and most widely felt earthquake in Oklahoma occured on April 9, 1952. The intensity VII (Modified Mercalli Scale) tremor was felt over 362,000 sqaure kilometres. A second intensity VII earthquake, felt over a very small area, occurred in October 1956. In addition, 15 other shocks, intensity V or VI, have originated within Oklahoma

  10. Oklahoma's Advanced School Funding.

    ERIC Educational Resources Information Center

    Green, Gary

    A new means of funding school operations known as advanced school funding allows Oklahoma schools financing during the temporary cash shortfalls. The program consists of the Oklahoma Development Authority issuing revenue bonds purchased by E. F. Hutton and Company, Inc., which then sells the tax free bonds to investors throughout the country. A…

  11. Geochemistry of and radioactivity in ground water of the Highland Rim and Central Basin aquifer systems, Hickman and Maury counties, Tennessee

    USGS Publications Warehouse

    Hileman, G.E.; Lee, R.W.

    1993-01-01

    A reconnaissance of the geochemistry of and radioactivity in ground water from the Highland Rim and Central Basin aquifer systems in Hickman and Maury Counties, Tennessee, was conducted in 1989. Water in both aquifer systems typically is of the calcium or calcium magnesium bicarbonate type, but concentrations of calcium, magnesium, sodium, potassium, chloride, and sulfate are greater in water of the Central Basin system; differences in the concentrations are statistically significant. Dissolution of calcite, magnesium-calcite, dolomite, and gypsum are the primary geochemical processes controlling ground-water chemistry in both aquifer systems. Saturation-state calculations using the computer code WATEQF indicated that ground water from the Central Basin system is more saturated with respect to calcite, dolomite, and gypsum than water from the Highland Rim system. Geochemical environments within each aquifer system are somewhat different with respect to dissolution of magnesium-bearing minerals. Water samples from the Highland Rim system had a fairly constant calcium to magnesium molar ratio, implying congruent dissolution of magnesium-bearing minerals, whereas water samples from the Central Basin system had highly variable ratios, implying either incongruent dissolution or heterogeneity in soluble constituents of the aquifer matrix. Concentrations of radionuclides in water were low and not greatly different between aquifer systems. Median gross alpha activities were 0.54 picocuries per liter in water from each system; median gross beta activities were 1.1 and 2.3 picocuries per liter in water from the Highland Rim and Central Basin systems, respectively. Radon-222 concentrations were 559 and 422 picocuries per liter, respectively. Concentrations of gross alpha and radium in all samples were substantially less than Tennessee?s maximum permissible levels for community water-supply systems. The data indicated no relations between concentrations of dissolved radionuclides (uranium, radium-226, radium-228, radon-222, gross alpha, and gross beta) and any key indicators of water chemistry, except in water from the Highland Rim system, in which radon-222 was moderately related to pH and weakly related to dissolved magnesium. The only relation among radiochemical constituents indicated by the data was between radium-226 and gross alpha activity; this relation was indicated for water from both aquifer systems.

  12. Altitude and configuration of the water table in the High Plains Aquifer in Kansas, 1960

    USGS Publications Warehouse

    Pabst, Marilyn E.; Stullken, Lloyd E.

    1986-01-01

    The High Plains aquifer in Kansas is part of a regional aquifer system that extends into Colorado, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The aquifer in Kansas underlies an area of 31,000 square miles in the western and south-central part of the State. The aquifer is a hydraulically connected assemblage of unconsolidated water-bearing deposits. In western Kansas, the High Plains aquifer consists principally of the Ogallala Formation of the late Tertiary age and the overlying deposits of Quaternary age. In south-central Kansas, the aquifer consists of unconsolidated deposits principally of Quaternary age. Valley alluvium of Quaternary age also is included in the deposits in both areas. The High Plains aquifer is delimited on the east by outcrops of Permian or Cretaceous rocks and by unsaturated deposits of Quaternary age. The altitude and configuration of the water table during 1960 are shown for the High Plains aquifer in Kansas. The water table sloped generally from west to east at an average rate of 10 feet per mile. The altitude of the water table ranged from about 3,900 feet in the southwest corner of Sherman County, northwestern Kansas, to about 1,350 feet in northern Sedgwick County, southcentral Kansas. Groundwater moves perpendicular to the water table contours from higher altitudes in the western part of the High Plains to lower altitudes in the east. Contours that cross stream valleys without flexure may indicate that the water table was below the streambed. Upstream flexure of water table contours along streams indicates that groundwater flowed toward, and discharged into, streams. This is most evident along the South Fork Republican River in Cheyenne County, Northwestern Kansas, and the South Fork Ninnescah River in Pratt and Kingman Counties, south-central Kansas. (USGS)

  13. Assessing the Vulnerability of Public-Supply Wells to Contamination: Central Valley Aquifer System near Modesto, California

    USGS Publications Warehouse

    Jagucki, Martha L.; Jurgens, Bryant C.; Burow, Karen R.; Eberts, Sandra M.

    2009-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well in Modesto, California. The well selected for study pumps on average about 1,600 gallons per minute from the Central Valley aquifer system during peak summer demand. Water samples were collected at the public-supply well and at monitoring wells installed in the Modesto vicinity. Samples from the public-supply wellhead contained the undesirable constituents uranium, nitrate, arsenic, volatile organic compounds (VOCs), and pesticides, although none were present at concentrations exceeding drinking-water standards. Of these contaminants, uranium and nitrate pose the most significant water-quality risk to the public-supply well because human activities have caused concentrations in groundwater to increase over time. Overall, study findings point to four primary factors that affect the movement and (or) fate of contaminants and the vulnerability of the public-supply well in Modesto: (1) groundwater age (how long ago water entered, or recharged, the aquifer); (2) irrigation and agricultural and municipal pumping that drives contaminants downward into the primary production zone of the aquifer; (3) short-circuiting of contaminated water down the public-supply well during the low-pumping season; and (4) natural geochemical conditions of the aquifer. A local-scale computer model of groundwater flow and transport to the public-supply well was constructed to simulate long-term nitrate and uranium concentrations reaching the well. With regard to nitrate, two conflicting processes influence concentrations in the area contributing recharge to the well: (1) Beneath land that is being farmed or has recently been farmed (within the last 10 to 20 years), downward-moving irrigation waters contain elevated nitrate concentrations; yet (2) the proportion of agricultural land has decreased and the proportion of urban land has increased since 1960. Urban land use is associated with low nitrate concentrations in recharge (3.1 milligrams per liter). Results of the simulation indicate that nitrate concentrations in the public-supply well peaked in the late 1990s and will decrease slightly from the current level of 5.5 milligrams per liter during the next 100 years. A lag time of 20 to 30 years between peak nitrate concentrations in recharge and peak concentrations in the well is the result of the wide range of ages of water reaching the public-supply well combined with changing nitrogen input concentrations over time. As for uranium, simulation results show that concentrations in the public-supply well will likely approach the Maximum Contaminant Level of 30 micrograms per liter over time; however, it will take more than 100 years because of the contribution of old water at depth in the public-supply well that dilutes uranium concentrations in shallower water entering the well. This allows time to evaluate management strategies and to alter well-construction or pumping strategies to prevent uranium concentrations from exceeding the drinking-water standard.

  14. House Damage from 2011 Oklahoma Earthquake

    House damage in central Oklahoma from the magnitude 5.6 earthquake on Nov. 6, 2011. Research conducted by USGS geophysicist Elizabeth Cochran and her university-based colleagues suggests that this earthquake was induced by injection into deep disposal wells in the Wilzetta North field....

  15. Linking groundwater use and stress to specific crops using the groundwater footprint in the Central Valley and High Plains aquifer systems, U.S.

    NASA Astrophysics Data System (ADS)

    Esnault, Laurent; Gleeson, Tom; Wada, Yoshihide; Heinke, Jens; Gerten, Dieter; Flanary, Elizabeth; Bierkens, Marc F. P.; van Beek, Ludovicus P. H.

    2014-06-01

    A number of aquifers worldwide are being depleted, mainly by agricultural activities, yet groundwater stress has not been explicitly linked to specific agricultural crops. Using the newly developed concept of the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services), we develop a methodology to derive crop-specific groundwater footprints. We illustrate this method by calculating high-resolution groundwater footprint estimates of crops in two heavily used aquifer systems: the Central Valley and High Plains, U.S. In both aquifer systems, hay and haylage, corn, and cotton have the largest groundwater footprints, which highlights that most of the groundwater stress is induced by crops meant for cattle feed. Our results are coherent with other studies in the High Plains but suggest lower groundwater stress in the Central Valley, likely due to artificial recharge from surface water diversions which were not taken into account in previous estimates. Uncertainties of recharge and irrigation application efficiency contribute the most to the total relative uncertainty of the groundwater footprint to aquifer area ratios. Our results and methodology will be useful for hydrologists, water resource managers, and policy makers concerned with which crops are causing the well-documented groundwater stress in semiarid to arid agricultural regions around the world.

  16. Linking Groundwater Use and Stress to Specific Crops Using the Groundwater Footprint in the Central Valley and High Plains Aquifer Systems, U.S.

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Esnault, L.; Gleeson, T.; Heinke, J.; Gerten, D.; Flanary, E.; Bierkens, M. F.; Van Beek, L. P.

    2014-12-01

    A number of aquifers worldwide are being depleted, mainly by agricultural activities, yet groundwater stress has not been explicitly linked to specific agricultural crops. Using the newly-developed concept of the groundwater footprint (the area required to sustain groundwater use and groundwater-dependent ecosystem services), we develop a methodology to derive crop-specific groundwater footprints. We illustrate this method by calculating high resolution groundwater footprint estimates of crops in two heavily used aquifer systems: the Central Valley and High Plains, U.S. In both aquifer systems, hay and haylage, corn and cotton have the largest groundwater footprints, which highlights that most of the groundwater stress is induced by crops meant for cattle feed. Our results are coherent with other studies in the High Plains but suggest lower groundwater stress in the Central Valley, likely due to artificial recharge from surface water diversions which were not taken into account in previous estimates. Uncertainties of recharge and irrigation application efficiency contribute the most to the total relative uncertainty of the groundwater footprint to aquifer area ratios. Our results and methodology will be useful for hydrologists, water resource managers, and policy makers concerned with which crops are causing the well-documented groundwater stress in semiarid to arid agricultural regions around the world.

  17. Regional evaluation of the hydrogeologic framework, hydraulic properties, and chemical characteristics of the intermediate aquifer system underlying southern west-central Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.

    2006-01-01

    Three major aquifer systems-the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system-are recognized in the approximately 5,100-square-mile southern west-central Florida study area. The principal source of freshwater for all uses is ground water supplied from the three aquifer systems. Ground water from the intermediate aquifer system is considered only moderately abundant compared to the Upper Floridan aquifer, but it is an important source of water where the Upper Floridan aquifer contains water too mineralized for most uses. In the study area, the potential ground-water resources of the intermediate aquifer system were evaluated by regionally assessing the vertical and lateral distribution of hydrogeologic, hydraulic, and chemical characteristics. Although the intermediate aquifer system is considered a single entity, it is composed of multiple water-bearing zones separated by confining units. Deposition of a complex assemblage of carbonate and siliciclastic sediments during the late Oligocene to early Pliocene time resulted in discontinuities that are reflected in transitional and abrupt contacts between facies. Discontinuous facies produce water-bearing zones that may be locally well-connected or culminate abruptly. Changes in the depositional environment created the multilayered intermediate aquifer system that contains as many as three zones of enhanced water-bearing capacity. The water-bearing zones consist of indurated limestone and dolostone and in some places unindurated sand, gravel, and shell beds, and these zones are designated, in descending order, as Zone 1, Zone 2, and Zone 3. Zone 1 is thinnest (<80 feet thick) and is limited to <20 percent (southern part) of the study area. Zone 2, the only regionally extensive zone, is characterized by moderately low permeability. Zone 3 is found in about 50 percent of the study area, has the highest transmissivities, and generally is in good hydraulic connection with the underlying Upper Floridan aquifer. In parts of the study area, particularly in southwestern Hillsborough County and southeastern De Soto and Charlotte Counties, Zone 3 likely is contiguous with and part of the Upper Floridan aquifer. Transmissivity of the intermediate aquifer system ranges over five orders of magnitude from about 1 to more than 40,000 feet squared per day (ft2/d), but rarely exceeds 10,000 ft2/d. The overall transmissivity of the intermediate aquifer system is substantially lower (2 to 3 orders of magnitude) than the underlying Upper Floridan aquifer. Transmissivity varies vertically among the zones within the intermediate aquifer system; Zone 2 has the lowest median transmissivity (700 ft2/d), Zone 1 has a moderate median transmissivity (2,250 ft2/d), and Zone 3 has the highest median transmissivity (3,400 ft2/d). Additionally, the transmissivity varies geographically (from site to site) within a zone. Specifically, a region of relatively low transmissivity (<100 ft2/d) throughout the vertical extent of the intermediate aquifer system is present in the central part of the study area. This low transmissivity region is encompassed by a larger region of moderately low transmissivity (<1,000 ft2/d) that covers a large part of the study area. Clay beds and fine-grained carbonates form the confining units between the water-bearing zones and are characterized by low leakance. Leakance through the intermediate aquifer system confining units ranges over 4 orders of magnitude from 4.2x10-7 to 6.0x10-3 feet per day per foot [(ft/d)/ft]. Despite the large range, the geometric mean and median leakances of individual confining units are within the same order of magnitude, 10-5 (ft/d)/ft, which is 2 orders of magnitude less than the median leakance of the semiconfining unit within the Upper Floridan aquifer. Major ion concentrations in water from the intermediate aquifer system, and throughout the ground-water flow system, generally increase with depth. T

  18. Oklahoma City, Canadian River, OK, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This view of Oklahoma City, OK (35.5N, 97.5W) surrounded by the grasslands of the central plains, is detailed enough to use as a map of the major highways and throughfares within the city and surrounding area. Tinker Air Force Base and Will Rogers International Airport as well as Lakes Hefner, Stanley Draper and nearby recreation areas. The smaller community of Norman, on the banks of the Canadian River to the south, is home to the University of Oklahoma.

  19. Water Decisions for Sustainability of the Arbuckle-Simpson Aquifer

    NASA Astrophysics Data System (ADS)

    Lazrus, H.; Mcpherson, R. A.; Morss, R. E.; PaiMazumder, D.; Silvis, V.; Towler, E.

    2012-12-01

    The Arbuckle-Simpson Aquifer in south-central Oklahoma, situated in the heart of the Chickasaw Nation, is the state's only sole-source groundwater basin and sustains the Blue River, the state's only freeflowing river. The recent comprehensive hydrological studies of the aquifer indicate the need for sustainable management of the amount of water extracted. However, the question of how to deal with that management in the face of increasing drought vulnerability, diverse demands, and climate variability and change remains. Water management carries a further imperative to be inclusive of tribal and non-tribal interests. To address these issues, this interdisciplinary project takes an integrated approach to understanding risk perceptions and water decisions for sustainability of the Arbuckle-Simpson Aquifer. Our interdisciplinary research asks: How do stakeholders in the Arbuckle-Simpson Aquifer perceive drought risks across weather and climate scales, and how do these perceptions guide water management decisions given (i) diverse cultural beliefs, (ii) valued hydrologic services, (iii) past drought experience, and (iv) uncertainties in future projection of precipitation and drought? We will use ethnographic methods to diagnose how cultural values and beliefs inform risk perceptions, and how this in turn guides decision making or ignites conflict across different sectors and stakeholder groups. Further, the characterization of drought risk will be examined in the context of historic meteorological and hydrologic events, as well as climate variability and change. This will identify which risks are prioritized, and under what conditions, in regional decision making or water-related conflicts.

  20. Occurrence of Radium-224, Radium-226 and Radium-228 in Water from the Vincentown and Wenonah-Mount Laurel Aquifers, the Englishtown Aquifer System, and the Hornerstown and Red Bank Sands, Southwestern and South-Central New Jersey

    USGS Publications Warehouse

    dePaul, Vincent T.; Szabo, Zoltan

    2007-01-01

    This investigation is the first regionally focused study of the presence of natural radioactivity in water from the Vincentown and Wenonah-Mount Laurel aquifers, Englishtown aquifer system, and the Hornerstown and Red Bank Sands. Geologic materials composing the Vincentown and Wenonah-Mount Laurel aquifers and the Hornerstown and Red Bank Sands previously have been reported to contain radioactive (uranium-enriched) phosphatic strata, which is common in deposits from some moderate-depth coastal marine environments. The decay of uranium and thorium gives rise to natural radioactivity and numerous radioactive progeny, including isotopes of radium. Naturally occurring radioactive isotopes, especially those of radium, are of concern because radium is a known human carcinogen and ingestion (especially in water used for drinking) can present appreciable health risks. A regional network in southwestern and south-central New Jersey of 39 wells completed in the Vincentown and Wenonah-Mount Laurel aquifers, the Englishtown aquifer system, and the Hornerstown and Red Bank Sands was sampled for determination of gross alpha-particle activity; concentrations of radium radionuclides, major ions, and selected trace elements; and physical properties. Concentrations of radium-224, radium-226, and radium-228 were determined for water from 28 of the 39 wells, whereas gross alpha-particle activity was determined for all 39. The alpha spectroscopic technique was used to determine concentrations of radium-224, which ranged from less than 0.5 to 2.7 pCi/L with a median concentration of less than 0.5pCi/L, and of radium-226, which ranged from less than 0.5 to 3.2 pCi/L with a median concentration of less than 0.5 pCi/L. The beta-counting technique was used to determine concentrations of radium-228. The concentration of radium-228 ranged from less than 0.5 to 4.3 pCi/L with a median of less than 0.5. Radium-228, when quantifiable, had the greatest concentration of the three radium radioisotopes in 9 of the 12 samples (75 percent). The concentration of radium-224 exceeded that of radium-226 in five of the six (83 percent) samples when both were quantifiable. The radium concentration distribution differed by aquifer, with the highest Ra-228 concentrations present in the Englishtown aquifer system and the highest Ra-226 concentrations present in the Wenonah-Mount Laurel aquifer. Radium-224 generally contributed a considerable amount of gross alpha-particle activity to water produced from all the sampled aquifers, but was not the dominant radionuclide as it is in water from the Kirkwood-Cohansey aquifer system, nor were concentrations greater than 1 pCi/L of radium-224 widespread. Gross alpha-particle activity was found to exceed the U.S Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) of 15 pCi/L in one sample (16 pCi/L) from the Vincentown aquifer. A greater part of the gross alpha-particle activity in water from the Wenonah-Mount Laurel aquifer resulted from the decay of Ra-226 than did the gross alpha-particle activity in the other sampled aquifers; this relation is consistent with the concentration distribution of the Ra-226 itself. Concentrations of radium-224 correlate strongly with those of both radium-226 and radium-228 (Spearman correlation coefficients, r, +0.86 and +0.66, respectively). The greatest concentrations of radium-224, radium-226, and radium-228 were present in the most acidic ground water. All radium-224, radium-226, and radium-228 concentrations greater than 2.5 pCi/L were present in ground-water samples with a pH less than 5.0. The presence of combined radium-226 and radium-228 concentrations greater than 5 pCi/L in samples from the Vincentown and Wenonah-Mount Laurel aquifers and the Englishtown aquifer system was not nearly as common as in samples from the Kirkwood-Cohansey aquifer system, likely because of the slightly higher pH of water from these aquifers relative to that of Kirkwood-Cohansey aqu

  1. Geohydrologic characteristics and simulated response to pumping stresses in the Sparta aquifer in East-Central Arkansas

    USGS Publications Warehouse

    Fitzpatrick, Daniel J.; Kilpatrick, John M.; McWreath, Harry

    1990-01-01

    A finite difference digital model of the Sparta aquifer system in Arkansas was developed to aid in assessing the geohydrologic characteristics of the aquifer as well as the impact of withdrawals on water-level declines in the aquifer. The model consists of two layers. The Cockfield aquifer, represented by layer 1, was modeled as a constant head surface. The Sparta aquifer is represented by layer 2. The base of the Sparta aquifer was modeled as a no-flow boundary. The model boundaries to the north, south, and east in Mississippi were represented by specified heads, while boundaries to the west in Louisiana were represented as no flow. The model period of 1989 to 1985 was divided into 25 stress periods. Appropriate aquifer withdrawals were assigned to each stress period. Calibrated hydraulic conductivities of the Sparta aquifer, ranged from 1 to 35 ft/day. Calibrated hydraulic vertical conductivities of the Cook Mountain confining unit ranged from 0.0003 to 0.000009 ft/day. The calibrated storage coefficient of the aquifer was 0.0001. More than 80% of the recharge to the aquifer came from vertical leakage and from direct recharge on the outcrop. Greater than 90 % of outflow from the aquifer was from pumpage or leakage to rivers. Theoretical pumping schemes to the year 2005 indicated that virtually no change to the potentiometric surface occurred when 1985 pumping rates were extended to 2005. Doubling of pumpage over the entire study area resulted in additional water-level declines of up to 130 ft. (USGS)

  2. Geophysical Exploration of Fractured-Media Aquifers at the Mexican Mesa Central: Satellite City, San Luis Potosí, Mexico

    NASA Astrophysics Data System (ADS)

    López Loera, Héctor; Ramos Leal, José Alfredo; Dávila Harris, Pablo; Torres Gaytan, David Ernesto; Martinez Ruiz, Victor Julian; Gogichaishvili, Avto

    2015-01-01

    Groundwater is scarce in arid and semi-arid zones in the Mexican Mesa Central. It is found at depths over 200 m, and its movement is primarily through fractures. This work aims to present a geophysical methodology, which shows the potential of combining natural and induced methods to locate confined aquifers in fault zones. The studies begin by interpreting the aeromagnetic survey, mainly by seeking lineaments associated with low magnetic anomalies, which are correlated with fault zones, and/or fractures and/or geological contacts where ferromagnetic minerals have undergone oxidation due to their association with recharge zones. These aeromagnetic lineaments are confirmed on land by a ground magnetic survey. After locating these areas, interpreted as permeability zones, their possible association with moist zones is confirmed by applying the vertical electrical sounding (VES) technique. H-type curve is associated with the presence of saturated zones. This study used the proposed methodology to interpret four main aeromagnetic lineaments and 12 main ground magnetic lineaments in a 36 km2 (6 km × 6 km) area. Twenty-six SEV were performed over these magnetic lineaments, of which about 50 % were associated with H-type resistivity curves, interpreted as being associated with moisture. Of the 12 VES with inferred groundwater potential, two wells have been drilled to date, one having an extraction flow of 70 lps.

  3. A study of chlorinated solvent contamination of the aquifers of an industrial area in central Italy: a possibility of bioremediation

    PubMed Central

    Matteucci, Federica; Ercole, Claudia; del Gallo, Maddalena

    2015-01-01

    Perchloroethene, trichloroethene, and other chlorinated solvents are widespread groundwater pollutants. They form dense non-aqueous phase liquids that sink through permeable groundwater aquifers until non-permeable zone is reached. In Italy, there are many situations of serious contamination of groundwater that might compromise their use in industry, agriculture, private, as the critical case of a Central Italy valley located in the province of Teramo (“Val Vibrata”), characterized by a significant chlorinated solvents contamination. Data from the various monitoring campaigns that have taken place over time were collected, and new samplings were carried out, resulting in a complete database. The data matrix was processed with a multivariate statistic analysis (in particular principal component analysis, PCA) and was then imported into geographic information system (GIS), to obtain a model of the contamination. A microcosm anaerobic study was utilized to assess the potential for in situ natural or enhanced bioremediation. Most of the microcosms were positive for dechlorination, particularly those inoculated with a mineral medium. This indicate the presence of an active native dechlorinating population in the subsurface, probably inhibited by co-contaminants in the groundwater, or more likely by the absence or lack of nutritional factors. Among the tested electron donors (i.e., yeast extract, lactate, and butyrate) lactate and butyrate enhanced dechlorination of chlorinated compounds. PCA and GIS studies allowed delimiting the contamination; the microcosm study helped to identify the conditions to promote the bioremediation of the area. PMID:26388862

  4. Plan of study to quantify the hydrologic relations between the Rio Grande and the Santa Fe Group aquifer system near Albuquerque, central New Mexico

    USGS Publications Warehouse

    McAda, D.P.

    1996-01-01

    The Albuquerque Basin in central New Mexico covers an area of about 3,060 square miles. Ground water from the Santa Fe Group aquifer system of the Albuquerque Basin is the principal source of water for municipal, domestic, commercial, and industrial uses in the Albuquerque area, an area of about 410 square miles. Ground- water withdrawal in the basin has increased from about 97,000 acre-feet in 1970 to about 171,000 acre-feet in 1994. About 92 percent of the 1994 total was withdrawn in the Albuquerque area. Management of ground water in the Albuquerque Basin is related to the surface water in the Rio Grande. Because the aquifer system is hydraulically connected to the Rio Grande and water in the river is fully appropriated, the ability to reliably estimate the effects of ground-water withdrawals on flow in the river is important. This report describes the components of the Rio Grande/Santa Fe Group aquifer system in the Albuquerque area and the data availability and data and interpretation needs relating to those components, and presents a plan of study to quantify the hydrologic relations between the Rio Grande and the Santa Fe Group aquifer system. The information needs related to the components of the river/aquifer system are prioritized. Information that is necessary to improve the understanding or quantification of a component in the river/aquifer system is prioritized as essential. Information that could add additional understanding of the system, but would not be necessary to improve the quantification of the system, is prioritized as useful. The study elements are prioritized in the same manner as the information needs; study elements designed to provide information considered necessary to improve the quantification of the system are prioritized as essential, and those designed to provide information that would add additional understanding of the system, but would not be necessary to improve the quantification of the system, are prioritized as useful.

  5. Conjunctive-use optimization model and sustainable-yield estimation for the Sparta aquifer of southeastern Arkansas and north-central Louisiana

    USGS Publications Warehouse

    McKee, Paul W.; Clark, Brian R.; Czarnecki, John B.

    2004-01-01

    Conjunctive-use optimization modeling was done to assist water managers and planners by estimating the maximum amount of ground water that hypothetically could be withdrawn from wells within the Sparta aquifer indefinitely without violating hydraulic-head or stream-discharge constraints. The Sparta aquifer is largely a confined aquifer of regional importance that comprises a sequence of unconsolidated sand units that are contained within the Sparta Sand. In 2000, more than 35.4 million cubic feet per day (Mft3/d) of water were withdrawn from the aquifer by more than 900 wells, primarily for industry, municipal supply, and crop irrigation in Arkansas. Continued, heavy withdrawals from the aquifer have caused several large cones of depression, lowering hydraulic heads below the top of the Sparta Sand in parts of Union and Columbia Counties and several areas in north-central Louisiana. Problems related to overdraft in the Sparta aquifer can result in increased drilling and pumping costs, reduced well yields, and degraded water quality in areas of large drawdown. A finite-difference ground-water flow model was developed for the Sparta aquifer using MODFLOW, primarily in eastern and southeastern Arkansas and north-central Louisiana. Observed aquifer conditions in 1997 supported by numerical simulations of ground-water flow show that continued pumping at withdrawal rates representative of 1990 - 1997 rates cannot be sustained indefinitely without causing hydraulic heads to drop substantially below the top of the Sparta Sand in southern Arkansas and north-central Louisiana. Areas of ground-water levels below the top of the Sparta Sand have been designated as Critical Ground-Water Areas by the State of Arkansas. A steady-state conjunctive-use optimization model was developed to simulate optimized surface-water and ground-water withdrawals while maintaining hydraulic-head and streamflow constraints, thus determining the 'sustainable yield' for the aquifer. Initial attempts to estimate sustainable yield using simulated 1997 hydraulic heads as initial heads in Scenario 1 and 100 percent of the baseline 1990-1997 withdrawal rate as the lower specified limit in Scenario 2 led to infeasible results. Sustainable yield was estimated successfully for scenario 3 with three variations on the upper limit of withdrawal rates. Additionally, ground-water withdrawals in Union County were fixed at 35.6 percent of the baseline 1990-1997 withdrawal rate in Scenario 3. These fixed withdrawals are recognized by the Arkansas Soil and Water Conservation Commission to be sustainable as determined in a previous study. The optimized solutions maintained hydraulic heads at or above the top of the Sparta Sand (except in the outcrop areas where unconfined conditions occur) and streamflow within the outcrop areas was maintained at or above minimum levels. Scenario 3 used limits of 100, 150, and 200 percent of baseline 1990-1997 withdrawal rates for the upper specified limit on 1,119 withdrawal decision variables (managed wells) resulting in estimated sustainable yields ranging from 11.6 to 13.2 Mft3/d in Arkansas and 0.3 to 0.5 Mft3/d in Louisiana. Assuming the total 2 Conjunctive-Use Optimization Model and Sustainable-Yield Estimation for the Sparta Aquifer of Southeastern Arkansas and North-Central Louisiana water demand is equal to the baseline 1990-1997 withdrawal rates, the sustainable yields estimated from the three scenarios only provide 52 to 59 percent of the total ground-water demand for Arkansas; the remainder is defined as unmet demand that could be obtained from large, sustainable surface-water withdrawals.

  6. Assessment of recharge and flowpaths in a limestone thermomineral aquifer system using environmental isotope tracers (Central Portugal).

    PubMed

    Marques, Jose M; Eggenkamp, Hans G M; Graca, Henrique; Carreira, Paula M; Jose Matias, Maria; Mayer, Bernhard; Nunes, Dina

    2010-06-01

    We conducted chemical and isotopic analyses to develop and test a hydrogeological model of thermomineral water circulation in a limestone aquifer system at Caldas da Rainha (Central Portugal), contributing to future borehole-drilling and development strategies, with the aim of extracting waters with the best possible flow and/or temperature. The thermomineral waters (T approximately 33 degrees C) discharge from springs and boreholes located close to a locally N-S-oriented oblique fault (60 degrees E) that places loamy and detritic Upper Jurassic rocks and Hettangian-Rhaetian marls (and evaporitic deposits) in contact. (14)C determinations indicate a pmC content between 29.33+/-0.14 and 44.39+/-0.20 pmC. The presence of HCO[image omitted] , Ca(2+) (and Mg(2+)) are ascribed to water-limestone interactions, while Na(+), Cl(-) and SO[image omitted] concentrations are mainly associated with the dissolution of halite and gypsum lenses found along the regional syncline structure. The delta(18)O values of Caldas da Rainha thermomineral water were slightly lower than those of shallow groundwater from the Upper Jurassic rocks, suggesting the existence of two distinct aquifer systems. The different isotopic composition of water also indicates that the main recharge of the thermomineral waters likely occurs in the Middle and Lower Jurassic limestone formations of the Candeeiros Mountains. The presence of (3)H (from 1.1 to 2.8 TU) in some thermomineral borehole waters (showing rather similar geochemical signatures) suggests mixing of small amounts of shallow groundwater with thermomineral waters, as a result of leaking borehole casing construction or a recharge when the (3)H content in the atmosphere was higher than that at present. Caldas da Rainha thermomineral waters having delta(34)S(sulphate) and delta(18)O(sulphate) values between+14.9 and+19.1 per thousand and+11.1 and+16.2 per thousand, respectively, indicate that the sulphate is the result of water-rock interaction with evaporitic formations. The obtained chemical and isotopic data have informed the further development of a hydrogeological model that will be used by decision-makers, in order to contribute to the socio-economic development of the spa region. PMID:20582785

  7. Comparison of aquifer characteristics of Paleozoic Permosilesian and Mesozoic Buntsandstein clastic rocks in the Thuringian Basin, Central Germany

    NASA Astrophysics Data System (ADS)

    Aehnelt, M.; Hilse, U.; Beyer, D.; Kunkel, C.; Deicke, Ch.; Voigt, Th.; Pudlo, D.; Gaupp, R.

    2012-04-01

    The Thuringian Basin in Central Germany is a structural trough with Buntsandstein and Zechstein outcropping at the margins and Keuper sedimentary fill in the center. Major aquifer units are Permosilesian, Lower and Middle Buntsandstein and Keuper clastics. In this study we compare aquifer characteristics of the Permosilesian and Buntsandstein sediments. Petrophysical, facial/textural, compositional/diagenetic and chemical properties were studied in order to investigate fluid flow properties in the present and past. The analyzed Buntsandstein sediments occur in present depths between approx. 400-900 m. Paleoburial depths were in the order of 2800 m. The succession is dominated by sandstones and mudstones. Deposition took place in lacustrine to fluvial (Lower Buntsandstein) and fluvial to eolian settings (Middle Buntsandstein). In order to compare sediments of almost identical origin, only the fluvial-alluvial sandstones were considered in this contribution. The sandstones are poorly to well sorted arkoses to subarkoses consisting of quartz, major amounts of feldspar and only negligible amounts of lithoclasts (volcanic, sedimentary rocks). Diagenetic features are early ferrous clay coatings, authigenic quartz overgrowth, feldspar alteration (including leaching, illitisation), blocky sulfate and carbonate cementation and late cement dissolution, formation of illite (early tangential illites, radial illite rims, late meshwork illites) and locally kaolinite. The analyzed Permosilesian sediments occur in present depths of about 1500-2500 m. They comprise conglomerates, sandstones and mudstones of fluvial-alluvial origin. Sandstones are moderately sorted sublitharenites and litharenites consisting of quartz, minor amounts of feldspar and a significant content of metamorphic and subordinately volcanic rock fragments. Major diagenetic features are early ferrous clay coatings and matrix, some authigenic quartz cement, feldspar and lithoclast alteration (including leaching, illitisation), minor blocky carbonate cements and intense illite formation (tangential illites, meshwork illites). Bulk geochemical analyzes (methods: ICP-MS/OES, XRF) reveal no significant differences in major element contents. However, compared to Buntsandstein sandstones the Permosilesian sediments are enriched in all transition metals caused by higher amounts of volcanic and metamorphic lithoclasts, and clay matrix respectively. Comparison of petrophysical characteristics reveals low porosity and permeabilities in the Permosilesian sediments (φ = up to 10 %, K = 0,01 - 1 mD), and higher ones in the Buntsandstein samples (φ = up to 24 %, K =0,01 - >100 mD). These differences are attributed to (1) facial differences (texture, matrix content), (2) compositional differences (alteration and dissolution of detrital grains), (3) differences in the diagenetic history (e.g. fabric stabilization by early blocky cements, cement dissolution, intense clay mineral formation in primary and secondary pore space), and (4) differences in burial depth (degree of mechanical compaction). We intent to characterize described influences on aquifer properties and the resulting fluid flow properties in order to understand fluid migration in sedimentary basins in the present and past.

  8. Simulated response to pumping stress in the Sparta aquifer of southeastern Arkansas and north-central Louisiana, 1998-2027

    USGS Publications Warehouse

    Hays, Phillip D.; Lovelace, John K.; Reed, Thomas B.

    1998-01-01

    The Sparta aquifer in southeastern Arkansas and north-central Louisiana is a major water resource for municipal, industrial, and agricultural uses. In recent years, the demand for water in some areas has resulted in withdrawals from the Sparta that significantly exceed recharge to the aquifer. Considerable drawdown has occurred in the potentiometric surface, and water users and managers alike have begun to question the ability of the aquifer to supply water for the long term. Large cones of depression are centered beneath the Grand Prairie area and the cities of Pine Bluff and El Dorado in Arkansas, and Monroe in Louisiana. Water levels in the aquifer have declined at rates greater than 1 foot per year for more than a decade in much of southern Arkansas and northern Louisiana and are now below the top of the formation in parts of Union and Columbia Counties, Arkansas, and in several areas of Louisiana. Problems related to over draft in the Sparta could result in increased drilling and pumping costs, loss of yield, salt-water intrusion, and decrease in water quality in areas of large drawdown. The effects of current ground-water withdrawals and potential future withdrawals on water availability are major concerns of water managers and users as well as the general public in the two States. The Sparta model-a regional scale, digital ground-water flow model-was first calibrated in the mid-1980's. The model was updated and reverified using 1995-97 data. Visual inspection of the observed (1996-97) and simulated potentiometric surfaces, statistical analysis of the error for the original calibration and current reverification, and comparison of observed versus simulated hydro graphs indicates that the model is simulating conditions in the aquifer within acceptable error, and the quality of current (1998) model results is similar to the original model calibration results. When stressed with current withdrawal volumes and distributions, the model is able to simulate currently observed heads effectively as heads were simulated in the original calibration period. Five pumping scenarios were simulated over a 30-year period based on (1) current pumping rates, (2) current rates of change in pumping, (3) decreased pumping in selected areas, (4) increased pumping in selected areas, and (5) redistribution and increase of pumping in selected areas. Model results show that although continued pumping at current rates will result in relatively minor declines in water levels (scenario 1 above), continued pumping at currently observed rates of change will result in drastic declines across large areas of focused withdrawals (scenario 2). Under the first scenario-in which current pumping rates are input to the model for the 30-year simulation period-water levels in the middle of the cones of depression centered on El Dorado and Monroe decrease less than 10 feet. In the second scenario-in which the current rate of change in pumpage is applied to the model-substantial declines occur in the proximity of most major pumpage centers. During the 1998-2027 model period, predicted water levels decline from 307 feet below sea level to 438 feet below sea level near El Dorado, from 58 feet below sea level to 277 feet below sea level near Pine Bluff, but only by about 25 feet-from 202 feet below sea level to 225 feet below sea level near Monroe. In the third scenario-in which minimum predicted water use figures supplied by selected facilities in Arkansas and decreased pumping estimates for Louisiana are applied to the model-simulated water levels are substantially higher at cones of depression around the major pumping centers of Monroe and El Dorado as compared to initial (1997) values. During the 1998-2027 model period, predicted water levels near Monroe increase from 202 feet below sea level to 133 feet below sea level; water levels near El Dorado increase from 307 feet below sea level to 123 feet below sea level. For the fourth scenario-in which maxi mum pr

  9. Is Oklahoma getting drier?

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Stackhouse, Paul, Jr.; Sun, Wenbo; Hu, Yongxiang; Liu, Zhaoyan; Fan, Tai-Fang (Alice)

    2013-06-01

    Land surface hydrology is important to regional climate, ecosystem, agriculture, and even human activities. Changes in soil moisture can produce considerable impacts on socioeconomics. Analysis of assimilation model results, especially those from the Community Land Model, shows that soil moisture over Oklahoma region is continuously reduced from 1980 to 2009. The potential drying trend in the Oklahoma region is evaluated by observations taken during last three decades in this study. Satellite data from Global Precipitation Climatology Project exhibit a clear precipitation decrease in the Oklahoma region during the last decade or so compared with those of two or three decades ago. Accompanying with the precipitation variation, land surface net radiation and temperature over the region are found increases by satellite and/or in-situ measurements. These changes in regional climate conditions also likely result in reduction of regional evaporation and enhancement of sensible heat transport from land surface into the atmosphere as indicated in assimilated data. These observed and modeled evidences of the changes in regional water and energy cycles lead us to conclude that the soil moisture over the Oklahoma region was reduced during the last decade. This soil moisture drop could increase a risk in water shortage for agriculture in the Oklahoma state if the dry period continues. Further investigations on the drying in the Oklahoma State or even entire Southern Great Plains are needed to mitigate potential droughts, reductions in vegetation products, and other socioeconomic impacts.

  10. Agriculture-related trends in groundwater quality of the glacial deposits aquifer, central Wisconsin

    USGS Publications Warehouse

    Saad, D.A.

    2008-01-01

    Measuring and understanding trends in groundwater quality is necessary for determining whether changes in land-management practices have an effect on groundwater quality. This paper describes an approach that was used to measure and understand trends using data from two groundwater studies conducted in central Wisconsin as part of the USGS NAWQA program. One of the key components of this approach, determining the age of sampled groundwater, gave a temporal component to the snapshots of water quality that were obtained through synoptic-sampling efforts. This approach can be used at other locations where groundwater quality data are collected, groundwater age can be determined, and associated temporal data are available. Results of these studies indicate measured concentrations of nitrate and atrazine plus deethylatrazine were correlated to historical patterns of fertilizer and atrazine use. Concentrations of nitrate in groundwater have increased over time; concentrations of atrazine plus deethylatrazine increased and then decreased. Concentrations of nitrate also were correlated to screen depth below the water level and concentrations of dissolved O2; concentrations of atrazine plus deethylatrazine were correlated to dissolved O2 and annual precipitation. To measure trends in concentrations of atrazine plus deethylatrazine, the data, collected over a near-decadal period, were adjusted to account for changes in laboratory-reporting levels and analytical recoveries. Only after accounting for these changes was it apparent that the median concentrations of atrazine plus deethylatrazine decreased over the near-decadal interval between sampling efforts. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  11. Water quality assessment of carbonate aquifers in southern Latium region, Central Italy: a case study for irrigation and drinking purposes

    NASA Astrophysics Data System (ADS)

    Sappa, Giuseppe; Ergul, Sibel; Ferranti, Flavia

    2014-06-01

    In southern Latium region, Central Italy, groundwater and spring water resources in the carbonate aquifers are the major contributors of drinking and irrigation water supply. The aim of this study was to review hydrochemical processes that control the groundwater chemistry and to determine the suitability of springs and groundwater for irrigation and drinking purposes on the basis of the water quality indices. Physical (pH, electrical conductivity, total dissolved solids) and hydrochemical characteristics (Na+, K+, Ca2+, Mg2+, HCO3 -, Cl-, and SO4 -) of springs and groundwater were determined. To assess the water quality, chemical parameters like sodium adsorption ratio (SAR), total hardness, Mg-hazard (MH), sodium percentage (Na %), salinity hazard, permeability index, and Kelly's ratio were calculated based on the analytical results. A Durov diagram plot revealed that the groundwater has been evolved from Ca to HCO3 recharge water, followed by mixing and reverse ion exchange processes, due to the respective dominance of Na-Cl and Ca-Cl water types. According to Gibbs's diagram plots, chemical weathering of rock forming minerals is the major driving force controlling water chemistry in this area. Groundwater and spring samples were grouped into six categories according to irrigation water quality assessment diagram of US Salinity Laboratory classification and most of the water samples distributed in category C2-S1 and C3-S1 highlighting medium to high salinity hazard and low sodium content class. The results of hydrochemical analyses and the calculated water quality parameters suggest that most of the water samples are suitable for irrigation and drinking purposes, except for the samples influenced by seawater and enhanced water-rock interaction. High values of salinity, Na %, SAR, and MH at certain sites, restrict the suitability for agricultural uses.

  12. Origin of the groundwater salinity and geochemical processes in detrital and carbonate aquifers: Case of Chougafiya basin (Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Farid, Intissar; Zouari, Kamel; Rigane, Adel; Beji, Ridha

    2015-11-01

    Comprehensive investigations of groundwaters were performed in the detrital and carbonate aquifers of the Chougafiya basin, central Tunisia. In the present review, hydrochemistry and isotopic tools were combined to get an insight into the processes controlling mineralization, recharge conditions, flow pattern of groundwater and C chemistry in the investigated hydrological system. Analysis of the dissolved constituents revealed that several processes controlled the observed chemical composition: (i) the dissolution of evaporitic minerals, (ii) cation exchange reactions, (iii) sulfate reduction under anaerobic conditions, (iv) incongruent dissolution of carbonate minerals (calcite, dolomite) coupled with gypsum dissolution and calcite precipitation, and (v) silicates weathering. Data inferred from 18O and deuterium isotopes in groundwater samples indicated recharge with modern rainfall. Water characterized by lower δ18O and δ2H values is interpreted as recharged by non-evaporated rainfall originating from Mediterranean and Atlantic air masses. However, water with relatively enriched δ18O and δ2H contents is thought to reflect the occurrence of an evaporation process related to the long term practice of flood irrigation. The radiogenic (3H) isotope data provided insight into the presence of two recharge periods in the investigated groundwaters. Waters with 3H contents of <1 TU indicated a pre-nuclear recharge. Waters with 3H contents of >1 TU clearly suggested the occurrence of a contemporaneous recharge probably during the last two decades. Carbon isotopes provided some insights into the timescales of groundwater flow, but mainly revealed that main sources of C are active in the system. These are likely: dissolved biogenic CO2, carbonate dissolution and incongruent reaction of the carbonate matrix. Mean residence times were determined after correction of the initial activities for dead C from the rock matrix and suggest ages ranging from the present day to the Holocene in both Upper Cretaceous and Mio-pliocene groundwaters.

  13. 78 FR 78318 - Television Broadcasting Services; Oklahoma City, Oklahoma

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...The Commission has before it a petition for rulemaking filed by Family Broadcasting Group, Inc. (``Family Broadcasting''), the licensee of station KSBI(TV), channel 51, Oklahoma City, Oklahoma, requesting the substitution of channel 23 for channel 51 at Oklahoma City. While the Commission instituted a freeze on the acceptance of full power television rulemaking petitions requesting channel......

  14. Map Showing Geology and Hydrostratigraphy of the Edwards Aquifer Catchment Area, Northern Bexar County, South-Central Texas

    USGS Publications Warehouse

    Clark, Amy R.; Blome, Charles D.; Faith, Jason R.

    2009-01-01

    Rock units forming the Edwards and Trinity aquifers in northern Bexar County, Texas, are exposed within all or parts of seven 7.5-minute quadrangles: Bulverde, Camp Bullis, Castle Hills, Helotes, Jack Mountain, San Geronimo, and Van Raub. The Edwards aquifer is the most prolific ground-water source in Bexar County, whereas the Trinity aquifer supplies water for residential, commercial, and industrial uses for areas north of the San Antonio. The geologic map of northern Bexar County shows the distribution of informal hydrostratigraphic members of the Edwards Group and the underlying upper member of the Glen Rose Limestone. Exposures of the Glen Rose Limestone, which forms the Trinity aquifer alone, cover approximately 467 km2 in the county. This study also describes and names five informal hydrostratigraphic members that constitute the upper member of the Glen Rose Limestone; these include, in descending order, the Caverness, Camp Bullis, Upper evaporite, Fossiliferous, and Lower evaporite members. This study improves our understanding of the hydrogeologic connection between the two aquifers as it describes the geology that controls the infiltration of surface water and subsurface flow of ground water from the catchment area (outcropping Trinity aquifer rocks) to the Edwards water-bearing exposures.

  15. Experimental studies in stream-aquifer interaction along the Arkansas River in Central Kansas - Field testing and analysis

    USGS Publications Warehouse

    Sophocleous, M.; Townsend, M.A.; Vogler, L.D.; McClain, T.J.; Marks, E.T.; Coble, G.R.

    1988-01-01

    During the last several years, streamflows of a number of Kansas streams have been reduced as a result of groundwater declines. In order to better understand and quantify stream-aquifer interrelationships, an eight-day comprehensive stream-aquifer pumping test, followed by recovery monitoring, was conducted along the Arkansas River near Great Bend, Kansas. In addition to water level monitoring in numerous observation wells, streamflow data, streambed hydraulic gradients, neutron probe-based water content of dewatered sediments, water chemistry and other data were collected. The alluvial aquifer is shown to be highly transmissive (T = 1803 m2d-1) with the pumping stress (9538 m3d-1) having a radius of influence larger than 1.77 km, impacting both the aquifer levels and the streamflow in the nearby Arkansas River. Drawdown and recharge boundary effects were observed in all observation wells, including those on the opposite side of the river. The alluvial aquifer did not exhibit a water table behavior and responded as a leaky confined aquifer. A semiconfining clay layer less than 3 m thick and an additional recharge source from a nearby stream-alluvial system were the probable causes of the observed phenomena. Actual streamflow depletion is shown to be appreciably less than the computed depletion based on analytical solutions. ?? 1988.

  16. History of ground-water pumpage and water-level decline in the Black Creek and upper Cape Fear aquifers of the central coastal plain of North Carolina

    USGS Publications Warehouse

    Winner, M.D.; Lyke, W.L.

    1986-01-01

    Historical ground-water withdrawals and a general water-level decline in the Black Creek and upper Cape Fear aquifers of the central Coastal Plain of North Carolina are documented. Total municipal and industrial pumpage from these aquifers has increased from approximately 120,000 gal/day (gpd) in 1910 to >21 million gpd in 1980. Major pumpage, > 10,000 gpd, began around 1900. Since that time, per capita water use in the central Coastal Plain area has ranged from 17 to 172 gpd/person. The higher values partially represent the increasing availability and use of modern conveniences since the World War II era. The range of per capita water use can be subdivided according to general water-use and population characteristics for both urban and rural areas. The pumpage of ground water from the Black Creek and upper Cape Fear aquifers has created water-level declines from 0.5 to 4.9 ft/year since 1900. Approximately a third of the study area has experienced a decline > 50 ft up to the period 1979-1981, with 148 ft being the maximum.

  17. InSAR detection of aquifer recovery: Case studies of Koehn Lake (central California) and Lone Tree Gold Mine (Basin and Range)

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Greene, F.; Amelung, F.

    2013-12-01

    Anthropogenic intervention in groundwater flow and aquifer storage often results in vertical movements of Earth's surface, which are well detected by InSAR observations. Most anthropogenic intervention occurs due to groundwater extraction for both agriculture and human consumption and results in land subsidence. However in some cases, ending anthropogenic intervention can lead to aquifer recovery and, consequently, surface uplift. In this study we present two such cases of aquifer recovery. The first case is the aquifer beneath Koehn Lake in Central California, which was overused to meet agricultural demands until the 1990's. The second case is the Lone Tree Gold Mine in Nevada that during active mining in the 1991-2006 groundwater pumping disrupted the aquifer and cause subsidence. But after mining ceased, groundwater flow was recovered and resulted in uplift. In both cases we studied the surface uplift using InSAR time series observations. We conduct an ERS and Envisat InSAR survey over Koehn Lake in California and Lone Tree Gold Mine in Nevada between 1992 and 2010. We followed the SBAS algorithm to generate a time-series of ground displacements and average velocities of pixels, which remain coherent through time in the SAR dataset. A total of 100 and 80 combined ERS and Envisat SAR dates are inverted for Koehn Lake and Lone Tree Gold Mine respectively. Results for the Koehn Lake area indicate a rapid uplift of about 3.5 mm/yr between 1992-2000 and a slower uplift rate of 1.6 mm/yr between 2000-2004, suggesting a decrease in the recovery process. The observed uplift correlates well with groundwater level increase in the Koehn Lake area. Results for the Lone Tree Gold Mine show a constant subsidence (~ 1 cm/yr) due to groundwater extraction between 1992-2006, but uplift of ~1 cm/yr since the beginning of 2007. In both case studies, InSAR observations reveal that the aquifer recovery is accompanied by surface uplift. We plan to use the InSAR observations and the groundwater level records to model and better understand aquifer recovery processes.

  18. Demonstration optimization analyses of pumping from selected Arapahoe aquifer municipal wells in the west-central Denver Basin, Colorado, 2010–2109

    USGS Publications Warehouse

    Banta, Edward R.; Paschke, Suzanne S.

    2012-01-01

    Declining water levels caused by withdrawals of water from wells in the west-central part of the Denver Basin bedrock-aquifer system have raised concerns with respect to the ability of the aquifer system to sustain production. The Arapahoe aquifer in particular is heavily used in this area. Two optimization analyses were conducted to demonstrate approaches that could be used to evaluate possible future pumping scenarios intended to prolong the productivity of the aquifer and to delay excessive loss of saturated thickness. These analyses were designed as demonstrations only, and were not intended as a comprehensive optimization study. Optimization analyses were based on a groundwater-flow model of the Denver Basin developed as part of a recently published U.S. Geological Survey groundwater-availability study. For each analysis an optimization problem was set up to maximize total withdrawal rate, subject to withdrawal-rate and hydraulic-head constraints, for 119 selected municipal water-supply wells located in 96 model cells. The optimization analyses were based on 50- and 100-year simulations of groundwater withdrawals. The optimized total withdrawal rate for all selected wells for a 50-year simulation time was about 58.8 cubic feet per second. For an analysis in which the simulation time and head-constraint time were extended to 100 years, the optimized total withdrawal rate for all selected wells was about 53.0 cubic feet per second, demonstrating that a reduction in withdrawal rate of about 10 percent may extend the time before the hydraulic-head constraints are violated by 50 years, provided that pumping rates are optimally distributed. Analysis of simulation results showed that initially, the pumping produces water primarily by release of water from storage in the Arapahoe aquifer. However, because confining layers between the Denver and Arapahoe aquifers are thin, in less than 5 years, most of the water removed by managed-flows pumping likely would be supplied by depleting overlying hydrogeologic units, substantially increasing the rate of decline of hydraulic heads in parts of the overlying Denver aquifer.

  19. Dolomite dissolution rates and possible Holocene dedolomitization of water-bearing units in the Edwards aquifer, south-central Texas

    USGS Publications Warehouse

    Deike, R.G.

    1990-01-01

    Rates of dolomite dissolution can be used to test the concept, based on geomorphologic evidence, that a major part of the Edwards aquifer could have formed within the Holocene, a timeframe of approximately 10,000 years. During formation of the aquifer in the Edwards limestone (Cretaceous, Albian) of the Balcones fault zone, dolomite dissolution and porosity development were synchronous and the result of mixing-zone dedolomitization. Initiation of the mixing zone in the early Holocene (???11,000 years before present) is suggested by the maximum age of formation of major discharge sites that allowed the influx of meteoric water into brine-filled, dolomitic preaquifer units. Dedolomitization, the dissolution of dolomite and net precipitation of calcite, has left aquifer units that are calcitic, and 40 vol.% interconnected pore space. The mass of dolomite missing is obtained by comparison of stratigraphically equivalent altered and unaltered units. One dissolution rate (1.76 ?? 10-4 mmol dolomite kgH2O-1yr-1) is determined from this mass, 104yr reaction time, and a log-linear function describing the increase in mass discharge (three orders of magnitude) during aquifer formation. The second estimated dissolution rate is obtained from the mass transfer of dolomite to solution calculated from the increase in magnesium in pore fluids selected from the modern aquifer to represent a typical flowpath during aquifer formation. A reaction time of 104yr for this mass transfer yields a rate of 0.56 ?? 10-4 mmol dolomite kgH2O-1yr-1. Both of these rates are comparable to modern rates of dolomite dissolution (0.3 to 4.5 ?? 10-4 mmol dolomite kgH2O-1yr-1) calculated from measured reaction times in the Tertiary Floridan aquifer system in Florida and the Madison aquifer in the Mississippian Madison Limestone of the Northern Great Plains. Similarity of these rates to the estimated paleo-rates of dolomite dissolution supports a 104 yr reaction timeframe. The Holocene reaction time also can be compared to a series of reaction times calculated by assuming that the mass of dolomite missing from the Edwards was removed at rates observed in the Floridan and Madison aquifers. These reaction times (for complete removal of dolomite) range from 2700 to 58,500 yr and span the Pleistocene-Holocene boundary. Finally, an estimated dolomite reaction rate during dedolomitization of the Edwards aquifer based on surface area of exposed dolomite [mmol cm-2s-1 (millimoles per square centimeter per second)] may be approximated from reaction times. This rate is directly a function of the mass of dolomite removed and the surface area exposed per pore volume passing through the rock. The surface area is available from the observed dolomite rhomb size in unaltered rock. The rate of pore fluid movement is obtained from the averaged annual discharge. Rates during formation of the Edwards aquifer calculated from all reaction times range from 10-13 to 10-14 mmol dolomite cm-2s-1. These rates are faster than rates (10-18 mmol cm-2s-1), measured in the pure laboratory system, CaMg(CO3)2CO2H2O, but slower than rates determined in an alpine stream study (10-10 to 10-11 mmol cm-2s-1) where cold glacial melt water flows over dolostone. Dolomite dissolution rates from both the Edwards and other aquifers support the concept that a major part of the Edwards aquifer could have formed within the Holocene. ?? 1990.

  20. Effects of aquifer heterogeneity on ground-water flow and chloride concentrations in the Upper Floridan aquifer near and within an active pumping well field, west-central Florida

    USGS Publications Warehouse

    Tihansky, A.B.

    2005-01-01

    Chloride concentrations have been increasing over time in water from wells within and near the Eldridge-Wilde well field, near the coast in west-central Florida. Variable increases in chloride concentrations from well to well over time are the combined result of aquifer heterogeneity and ground-water pumping within the Upper Floridan aquifer. Deep mineralized water and saline water associated with the saltwater interface appear to move preferentially along flow zones of high transmissivity in response to ground-water withdrawals. The calcium-bicarbonate-type freshwater of the Upper Floridan aquifer within the study area is variably enriched with ions by mixing with introduced deep and saline ground water. The amount and variability of increases in chloride and sulfate concentrations at each well are related to well location, depth interval, and permeable intervals intercepted by the borehole. Zones of high transmissivity characterize the multilayered carbonate rocks of the Upper Floridan aquifer. Well-developed secondary porosity within the Tampa/Suwannee Limestones and the Avon Park Formation has created producing zones within the Upper Floridan aquifer. The highly transmissive sections of the Avon Park Formation generally are several orders of magnitude more permeable than the Tampa/Suwannee Limestones, but both are associated with increased ground-water flow. The Ocala Limestone is less permeable and is dominated by primary, intergranular porosity. Acoustic televiewer logging, caliper logs, and borehole flow logs (both electromagnetic and heat pulse) indicate that the Tampa/Suwannee Limestone units are dominated by porosity owing to dissolution between 200 and 300 feet below land surface, whereas the porosity of the Avon Park Formation is dominated by fractures that occur primarily from 600 to 750 feet below land surface and range in angle from horizontal to near vertical. Although the Ocala Limestone can act as a semiconfining unit between the Avon Park Formation and the Tampa/Suwannee Limestones, seismic-reflection data and photolinear analyses indicate that fractures and discontinuities in the Ocala Limestone are present within the southwestern part of the well field. It is possible that some fracture zones extend upward from the Avon Park Formation through the Ocala, Suwannee, and Tampa Limestones to land surface. These fractures may provide a more direct hydrologic connection between transmissive zones that are vertically separated by less permeable stratigraphic units. Ground water moves along permeable zones within the Upper Floridan aquifer in response to changes in head gradients as a result of pumping. Borehole geophysical measurements, including flow logs, specific conductance logs, and continuous monitoring of specific conductance at selected fixed depths, indicate that borehole specific conductance varies substantially with time and in response to pumping stresses. Ground-water mixing between hydrogeologic units likely occurs along highly transmissive zones and within boreholes of active production wells. Ground-water movement and water-quality changes were greatest along the most transmissive zones. Variable mixing of three water-type end members (freshwater, deepwater, and saltwater) occurs throughout the study area. Both deepwater and saltwater are likely sources for elevated chloride and sulfate concentrations in ground water. Mass-balance calculations of mixtures of the three end members indicate that deepwater is found throughout the aquifer units. Samples from wells within the southwestern part of the well field indicate that deepwater migrates into the shallow permeable units in the southwestern part of the well field. Deepwater contributes to elevated sulfate and chloride concentrations, which increase with depth and are elevated in wells less than 400 feet deep. The greatest increases in chloride concentrations over time are found in water from wells closest to the saltwater interface. Gro

  1. Effects of recharge from drainage wells on quality of water in the Floridan Aquifer in the Orlando area, central Florida

    USGS Publications Warehouse

    Schiner, G.R.; German, E.R.

    1983-01-01

    Approximately 400 drainage wells in the Orlando area inject, by gravity, large quantities of stormwater runoff that may or may not be suitable for most purposes without treatment into the same freshwater zones of the Floridan aquifer tapped for public supply. The wells are used mostly to control lake levels and dispose of urban storm runoff. Recharge from drainage wells compensates for heavy withdrawals from the Floridan aquifer and helps maintain aquifer pressures that retard upward saltwater encroachment. Sixty-five supply wells and 21 drainage wells within a 16-mile radius of Orlando were sampled from September 1977 to June 1979. Most constituent concentrations were slightly higher in water from drainage wells than in water from supply wells. The most notable differences were in bacteria colony count and total nitrogen concentrations. With the exception of bacteria, water from drainage wells would generally meet the maximum contaminant levels established by the National Interim Primary and Proposed Secondary Drinking Water Regulations. (USGS)

  2. Geohydrology and water quality of confined-drift aquifers in the Brooten-Belgrade area, west-central Minnesota

    USGS Publications Warehouse

    Delin, G.N.

    1990-01-01

    Results from a ground-water-flow model indicate that increased pumping from confined aquifers in the area would not adversely affect water levels. The addition of 10 to 20 hypothetical wells, pumping 123 to 246 million gallons per year, generally resulted in regional water-level declines of 0.1 to 1.0 feet. Simulations showed that the reduced recharge and increased pumping resulting from a 3-year drought probably would lower water levels between 5 and 10 feet regionally in the confined-drift aquifers and as much as 20 feet locally in the unconfined aquifer. Ground-water discharge to the East Branch Chippewa and North Fork Crow Rivers during the simulated drought would be reduced by 38 percent of 1984 conditions.

  3. Stable and radio-isotope analysis to determine recharge timing and paleoclimate of sandstone aquifers in central and southeast Libya

    NASA Astrophysics Data System (ADS)

    Al Faitouri, Mohamed; Sanford, William E.

    2015-02-01

    Stable isotopes of water and 14C activities (percent modern carbon, pmc) were used to estimate the timing of recharge and paleoclimatic conditions during recharge for three sandstone aquifers in Libya. These aquifers are part of the Nubian Aquifer System, with current and planned groundwater development designed to produce 106 m3/day of water. 14C activities from water samples collected at three wellfields (Sarir, Tazerbo and Al Kufra) indicate recharge during late Pleistocene and early Holocene. Stable isotope compositions from all three locations are significantly depleted relative to modern water, indicating that the climate was more humid than today. These results are in line with previous regional groundwater studies. This was the first study of its kind for the aquifers at Tazerbo and Sarir wellfield. The Tazerbo wellfield, which produces from the deepest aquifer, had the oldest estimated recharge ages (late Pleistocene). For Sarir, 14C activities ranged from 6.30 to 41.42 pmc; the Sarir aquifer is leaky confined and this range is likely due to mixing of shallow younger water with older deeper water. At Al Kufra, the 14C activity (5.27 pmc) of a well which is part of an agriculture project, is greater than the activity of wells sampled in 1973 (0.5-2.0 pmc). The greater activity is likely due to the lowering of the regional potentiometric surface causing younger water to be captured after four decades of wellfield operation. It is recommended that periodic monitoring be done in large wellfields to identify changes in isotope compositions as production continues.

  4. A century of induced earthquakes in Oklahoma?

    USGS Publications Warehouse

    Hough, Susan E.; Page, Morgan T.

    2015-01-01

    Seismicity rates have increased sharply since 2009 in the central and eastern United States, with especially high rates of activity in the state of Oklahoma. Growing evidence indicates that many of these events are induced, primarily by injection of wastewater in deep disposal wells. The upsurge in activity has raised two questions: What is the background rate of tectonic earthquakes in Oklahoma? How much has the rate varied throughout historical and early instrumental times? In this article, we show that (1) seismicity rates since 2009 surpass previously observed rates throughout the twentieth century; (2) several lines of evidence suggest that most of the significant earthquakes in Oklahoma during the twentieth century were likely induced by oil production activities, as they exhibit statistically significant temporal and spatial correspondence with disposal wells, and intensity measurements for the 1952 El Reno earthquake and possibly the 1956 Tulsa County earthquake follow the pattern observed in other induced earthquakes; and (3) there is evidence for a low level of tectonic seismicity in southeastern Oklahoma associated with the Ouachita structural belt. The 22 October 1882 Choctaw Nation earthquake, for which we estimate Mw 4.8, occurred in this zone.

  5. Potentiometric surface of the lower Cape Fear Aquifer in the central coastal plain of North Carolina, December 1986

    USGS Publications Warehouse

    Winner, M.D., Jr.; Lyke, William L.; Brockman, Allen R.

    1989-01-01

    Water level measurements were made in four wells open to the lower Cape Fear aquifer at the end of 1986 to determine the configuration of its potentiometric surface over an area of approximately 4,100 sq mi. Because of the scarcity of data, five earlier measurements were also used to help estimate the position of the potentiometric contours. These were one-time measurements in temporary observation wells. A broad cone of depression has formed in the area between Kinston and New Bern where the potentiometric surface is below sea level and seems likely related to large groundwater withdrawals from the aquifers overlying the lower Cape Fear in that area.

  6. Geohydrology and water quality of stratified-drift aquifers in the Contoocook River basin, south-central New Hampshire

    USGS Publications Warehouse

    Harte, P.T.; Johnson, William

    1995-01-01

    Stratified-drift aquifers discontinuously underlie 121 mi2 (square miles) of the Contoocook River Basin, which has a total drainage area of 776 mi2. Maps of these aquifers, showing water-table configurations, saturated thicknesses, and transmissivities were prepared from well and test-hole data and seismic-refraction profiles. The distribution of stratified-drift aquifers is largely controlled by the Pleistocene glaciation process and the formation of multiple glacial lakes along the main stem of the Contoocook River. Locally, saturated thickness of stratified drift within these aquifers are as great as 200 feet. Estimated transmissivities exceed 8,000 ft2/d (squared feet per day) at three locations and is as high as 22,800 ft2/d at one location. Stratified-drift aquifers that have the greatest potential to supply additional amounts of water include the aquifers at Greenfield-Otter Brook and Hancock-Norway Pond. Potential yields to hypothetical supply wells were estimated for the Greenfield-Otter Brook, Hillsborough-Contoocook River, and Andover- Blackwater River aquifers by use of a analytical ground-water-flow model. The model results predict that the potential yields are greatest from the Greenfield-Otter Brook aquifer, yielding up to 1.85 gallons per day during half-year periods of no recharge. The effective ground-water recharge to the entire basin, which includes recharge to the till, bedrock, and stratified drift, is 13.9 in./yr (inches per year) (521 million gallons per day) on the basis of hydrograph separation of streamflow. The quality of water obtained from 11 observation wells and 10 municipal supply wells is generally suitable for drinking and most other domestic purposes. Ground water in the region has low alkalinity, is slightly acidic, and has low concentrations of dissolved solids. Concentrations of dissolved constituents in ground-water samples were generally less than the U.S. Environmental Protection Agency's primary and secondary maximum contaminant levels except for elevated iron concentrations (in water from six wells) and manganese concentrations in water from seven wells.

  7. Hydrogeology of stratified-drift aquifers and water quality in the Nashua Regional Planning Commission Area, south-central New Hampshire

    USGS Publications Warehouse

    Toppin, K.W.

    1987-01-01

    The Nashua Regional Planning Commission area in south-central New Hampshire is a 12-community area that is experiencing increases in population and in demands for water supply. The study area is underlain by 129 sq mi (40% of the area) of stratified drift which, where sufficiently saturated and permeable, form the most productive aquifers in the area. Eight towns use the stratified-drift aquifers for municipal water supply. The saturated thickness of stratified drift in the study area ranges from 0 or < 20 ft near aquifer boundaries to more than 100 ft in the Souhegan and Merrimack River valleys. The transmissivity of stratified drift ranges from < 2,000 sq ft/day throughout much of the area to more than 8,000 sq ft/day in the communities of Amherst, Brookline, Hollis, Hudson, Litchfield, Merrimack, Milford, Nashua, and Pelham. Directions of groundwater flow are generally from valley walls to surface waters, which act as drains for the stratified drift aquifers. The estimated total yield of community water-supply systems in the study area (surface and groundwater combined) is 22 mgd (million gallons per day). Analytical modeling indicates that an additional 12 mgd could be obtained from six aquifers located in the communities of Amherst, Litchfield, Merrimack, Milford, and Pelham. Other aquifers in the area, not modeled in the study, could also provide increased amounts of water especially where yields could be augmented by induced recharge of surface water. Groundwater quality in the study area is characterized by naturally elevated levels of iron (Fe) and manganese (Mn). Of 32 wells sampled, 7 exceeded EPA recommended drinking water limits for both Fe and Mn, and 3 wells exceeded the Mn limit only. The average total dissolved solids concentration for 32 samples was 121 mg/L. Groundwater in the area is slightly corrosive; pH 's ranged from 5.0-7.3. Groundwater contamination has been detected at two ' Superfund ' sites in the study area located in Milford and Nashua. At both sites, contamination of groundwater has caused the shutdown of municipal and private water supply wells. The widespread effect of applying highway deicing chemicals on groundwater quality is reflected by sodium (Na) concentrations that average 24 mg/L throughout the study area. At 11 of 32 sites sampled, EPA recommended limits for Na (20 mg/L) was exceeded. (Author 's abstract)

  8. Depositional setting and thin-section petrology of Misener Formation (Devonian) in northeast Nash and nearby fields, north-central Oklahoma

    SciTech Connect

    Francis, B.M.; Mansfield, C.F.

    1987-08-01

    The Devonian-age Misener formation is a mixed quartzose-carbonate sequence that is widely but discontinuously distributed in northern Oklahoma. Eleven conventional cores representing five different Misener oil fields in Grant and Garfield Counties were examined to determine the depositional setting and petrology of the formation. The Misener ranges in thickness to approximately 60 ft and is everywhere overlain by the Woodford Shale. The Misener-Woodford sequence unconformably overlies the Hunton Group (Silurian-Devonian), Sylvan Shale (Ordovician). Core descriptions show the Misener to be a clean sand containing scattered disrupted clay laminae, shale clasts, and pyrite nodules. The contacts between the overlying Woodford Shale and the underlying Hunton and pre-Hunton strata are sharp and slightly undulose. Thin-section petrology indicates the Misener contains fine to medium-grained, rounded to subangular, quartz-rich sandstone with little or no dolomite and, in places, grades into a dolomite-rich sandstone with floating quartz grains. Quartz overgrowths are abundant and calcite cement is less common. Other components comprising the Misener strata include phosphatic shale clasts, phosphatic fossil fragments, glauconite, and chert. Porosity ranges from 0 to 14% and much of it appears to have been diagenetically induced.

  9. Isotopic evidence for glacial meltwater recharge to the Cambrian-Ordovician aquifer, north-central United States

    USGS Publications Warehouse

    Siegel, D.I.; Mandle, R.J.

    1984-01-01

    The chemistry of water in the Cambrian-Ordovician aquifer in six midwestern states has been studied as part of the Northern Midwest Regional Aquifer-System Analysis of the U.S. Geological Survey. Dissolved-solids concentrations generally increase perpendicular to the direction of regional groundwater flow, from less than 400 mg/liter in southeast Minnesota, southwest Wisconsin, and northeast Iowa to more than 10,000 mg/liter in northwest Missouri. Isotopic ratios of hydrogen and oxygen are significantly depleted from north to south, with an areal distribution approximately parallel to the distribution of dissolved solids. For example, ??18O in southern Iowa and northern Missouri is about 6 parts per thousand lighter than ??18O of modern recharge water in Minnesota and Wisconsin. Covariance between ??18O and ??D of the groundwater, similar to that of modern precipitation, suggests that the differences in isotopic ratios between groundwater and modern recharge water reflect meteoric signatures of water during past recharge events rather than geochemical processes such as isotopic exchange with aquifer materials. The pronounced parallelism between the distribution of isotopes and dissolved solids over large areas probably reflects largescale recharge of Pleistocene glacial meltwater into the aquifer system, which probably had a paleoflow system with a gradient from northeast to southwest rather than from northwest to southeast. ?? 1984.

  10. Oklahoma and SREB

    ERIC Educational Resources Information Center

    Southern Regional Education Board (SREB), 2009

    2009-01-01

    The Southern Regional Education Board (SREB) is a nonprofit organization that works collaboratively with Oklahoma and 15 other member states to improve education at every level--from pre-K to postdoctoral study--through many effective programs and initiatives. SREB's "Challenge to Lead" Goals for Education, which call for the region to lead the…

  11. Oklahoma's Quest for Quality.

    ERIC Educational Resources Information Center

    Wisniewski, Richard

    The passage of Bill 1706 by the Oklahoma State Legislature is a major step toward building professional schools of education and a true profession. Through the specifications of this law, the total process is to be strengthened, since changes in teacher education are severely limited if done in a piecemeal fashion. There are five major points…

  12. Texas-Oklahoma

    Atmospheric Science Data Center

    2014-05-15

    article title:  Texas-Oklahoma Border     ... important resources for farming, ranching, public drinking water, hydroelectric power, and recreation. Both originate in New Mexico and ... NASA's Goddard Space Flight Center, Greenbelt, MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science ...

  13. Oklahoma NASA EPSCoR

    NASA Technical Reports Server (NTRS)

    Snowden, Victoria Duca

    2002-01-01

    The mission of Oklahoma EPSCoR is to make Oklahoma researchers more successful in competing for research funding. Specific goals, objectives, and strategies were developed for each federal EPSCoR program, based on federal and state needs. A theme of stimulating collaboration among campuses and building on common research strengths is a strong component of the Oklahoma EPSCoR strategic plan. It extends also to our relationships with the federal agencies, and wherever possible, Oklahoma EPSCoR projects are developed collaboratively with federal research laboratories and program offices. Overall, Oklahoma EPSCoR seeks to capitalize on unique research capabilities and opportunities. The NASA EPSCoR Program in Oklahoma was developed through this grant as a joint effort between Oklahoma EPSCoR and the NASA Oklahoma Space Grant Consortium (OSGC). The major goal of the Oklahoma NASA EPSCoR Plan established in 1996 is to develop an academic research enterprise directed towards a long-term, self-sustaining, nationally competitive capability in areas of mutual self-interest to NASA and Oklahoma. Our final technical summary pie chart demonstrates the strong successes we have achieved during this period as a result of the award.

  14. Linking economic and integrated hydrologic models to investigate the effects of reduced surface water deliveries on the aquifers of Californias Central Valley

    NASA Astrophysics Data System (ADS)

    Brush, C. F.; Dale, L. L.; Miller, N. L.; Dogrul, E. C.; Kadir, T.; Vicuna, S. D.; Chung, F. I.

    2009-12-01

    Predicted global mean temperature increases will change the rates and timing of mountain-front discharges and thus the availability of surface water supplies for agricultural and urban water consumers. Californias water supply and distribution system collects runoff from the Sierra Nevada Mountain range in the northeastern and eastern part of the state, and routes this to agricultural and urban consumers in the central, western and southern parts of the state. The surface water collection and distribution system relies heavily on the storage of winter precipitation as snow in the Sierra Nevada Mountains, with moderately-sized reservoirs collecting and releasing melt-water through the spring and summer months. Higher elevations of the Sierra Nevada have already experienced a 0.60C rise and 10% reduction in snowpack, and continued warming may reduce snowpack volume by 25% by 2050, with further reductions likely as lower-elevation precipitation increasingly falls as rain. Snowpack reductions, environmental restrictions and recurring droughts may significantly constrain surface water supplies. Agricultural water users have historically increased groundwater pumping to replace surface water during droughts, and groundwater levels have recovered in subsequent years of higher precipitation (and recharge) and surface water flows. Central Valley aquifers could be significantly impacted if reduced snowpack leads to sustained increases in groundwater pumping. These impacts are being studied using the California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM) and the Central Valley Production Model (CVPM). Multiple CVPM runs were conducted to simulate crop acreage changes in response to surface water reductions and groundwater depth increases, and were then converted to logit function parameters. C2VSIM was used to simulate three future levels of drought (corresponding to 30%, 50% and 70% reductions in precipitation) for periods of 10, 20, 30 and 60 years, each preceded by a 10-yr spin-up and a 30-yr recovery period. Simulations were conducted with fixed agricultural demands and incorporating dynamic changes in crop mix using the logit function parameters derived from CVPM. Simulation results with fixed agricultural demands suggest that an extended drought would have moderate impacts on aquifer heads in the northern Sacramento River Basin, locally severe impacts in the central San Joaquin River Basin, and regionally severe impacts in the southern Tulare Basin. Simulation results incorporating dynamic crop changes suggest acreage reductions and changes in crop mix may significantly reduce impacts on the aquifers.

  15. Report on the Economic Impact of American Indians in the State of Oklahoma.

    ERIC Educational Resources Information Center

    Green, Margaret Abudu; And Others

    This report assesses the economic impact created by the presence of American Indians in Oklahoma. In 1980, American Indians in Oklahoma numbered 169,459, or 5.6% of the state's population. Most Indians lived in central and eastern counties. Compared to the general population, Indians were younger, less educated, and had higher unemployment and…

  16. Ground-water flow in the Gulf Coast aquifer systems, south central United States; a preliminary analysis

    USGS Publications Warehouse

    Williamson, A.K.; Grubb, H.F.; Weiss, J.S.

    1990-01-01

    A major objective of the Gulf Coast Regional Aquifer-System Analysis is to use digital models of regional groundwater flow systems to develop better understanding and to improve management of the resource. Modeling is used to synthesize information about the aquifer systems and to test hypotheses about the relative importance of the components of the systems. The 290,000-sq mile study area in the Gulf of Mexico Coastal Plain includes the Mississippi embayment, Gulf Coastal Plain of Texas, and the Continental Shelf that are underlain by deposits of Tertiary and younger age, which contain fresh and saline water. A 10-layer, finite-difference, variable density model, with blocks 10 miles on a side, was used to simulate groundwater flow before development and in 1980, assuming steady- state conditions. Preliminary results indicate that the major factors controlling predevelopment regional flow are the topography, land-surface outcrop pattern, and geometry of aquifers and confining units. Geologic structure and the distribution of precipitation were less significant factors. The density of saline water in the deeper parts of the aquifer system probably has a substantial effect on regional groundwater flow that extends into the freshwater part of the system. Variable water density may be a significant driving force that transports salt great distances in many directions, including updip. The distribution and rates of regional recharge and discharge have been substantially changed by development. Groundwater pumpage in 1980 was about five times the value of predevelopment regional recharge. About 80% of the pumpage was supplied from increased regional recharge. Also resistance to vertical flow caused by many fine-grained beds within the permeable zones can be as important as resistance caused by regional confining units. (USGS)

  17. Boundary of the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, L. Niel

    2009-01-01

    This vector data set delineates the approximate boundary of the Eagle River watershed valley-fill aquifer (ERWVFA). This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. The boundary of the ERWVFA was developed by combining information from two data sources. The first data source was a 1:250,000-scale geologic map of the Leadville quadrangle developed by Day and others (1999). The location of Quaternary sediments was used as a first approximation of the ERWVFA. The boundary of the ERWVFA was further refined by overlaying the geologic map with Digital Raster Graphic (DRG) scanned images of 1:24,000 topographic maps (U.S. Geological Survey, 2001). Where appropriate, the boundary of the ERWVFA was remapped to correspond with the edge of the valley-fill aquifer marked by an abrupt change in topography at the edge of the valley floor throughout the Eagle River watershed. The boundary of the ERWVFA more closely resembles a hydrogeomorphic region presented by Rupert (2003, p. 8) because it is based upon general geographic extents of geologic materials and not on an actual aquifer location as would be determined through a rigorous hydrogeologic investigation.

  18. Investigating surface and groundwater mixing dynamics under varying antecedent moisture conditions in a karst aquifer, Central Texas

    NASA Astrophysics Data System (ADS)

    Wong, C.; Banner, J. L.; Musgrove, M.; Mahler, B. J.

    2010-12-01

    Variability in Sr concentrations and isotope values of groundwater from the Barton Springs segment of the Edwards aquifer during the period of November 2008 to March 2010 reflects a broad range of hydrologic conditions, and lends insight into surface and groundwater mixing dynamics. Surface water recharge rapidly moves through the karst groundwater system, making surface water quality an important component of groundwater quality. Understanding how surface and groundwater mixing changes in response to varying antecedent moisture conditions is critical to groundwater management. Within the Barton Spring segment, groundwater compositions are characterized by Sr concentrations (median = 1,600 μg/l) and Sr isotope values (median = 0.70792) that reflect extensive interaction with the carbonate bedrock. Surface water, in contrast, has lower Sr concentrations (median = 290 μg/l) and higher Sr isotope values (median = 0.70805) that reflect interaction with soils and urban water inputs. Groundwater was sampled from wells that accessed conduit and diffuse flow dominated parts of the aquifer and from the main discharge point (Barton Springs) of the aquifer segment. Samples were collected in conditions ranging from drought and near-historically low spring discharge to above average rainfall conditions and spring discharge. Groundwater sampled from a well accessing the diffuse part of the aquifer had consistent Sr concentrations and Sr isotope values, reflecting little to no surface water mixing. Groundwater sampled from a well accessing the conduit part of the aquifer had gradually decreasing Sr concentrations and increasing Sr isotope values with increasingly wetter hydrologic conditions, reflecting an increasing proportion of surface water mixing. While spring water also has decreasing Sr concentrations and increasing Sr isotope values with increasingly wetter hydrologic conditions, concentrations and isotope values begin to change only after spring discharge exceeded 50 cfs. The consistent values prior to a discharge of 50 cfs likely reflect a threshold effect, whereby the proportion of surface water in spring discharge was limited until hydrologic conditions reached a certain level. The results of this study demonstrate that 1) groundwater Sr concentrations and isotope variability track varying proportions of surface and groundwater in response to changing moisture conditions, and 2) surface and groundwater mixing varies between different components (i.e., conduit, diffuse, and discharge point) of the system.

  19. Geohydrology of the Wellington-alluvial aquifer system and evaluation of possible locations of relief wells to decrease saline ground-water discharge to the Smoky Hill and Solomon rivers, central Kansas

    USGS Publications Warehouse

    Gillespie, Joe B.; Hargadine, G.D.

    1986-01-01

    Saline water discharges from the alluvial aquifer into the Smoky Hill and Solomon Rivers between New Cambria and Solomon in central Kansas. Chloride concentrations in the Smoky Hill River sometimes exceed 1,000 mg/L during low flow conditions. The source of saline water is the underlying Wellington aquifer, a zone of halite and gypsum dissolution, subsidence, and collapse along the eastern margin of the Permian Hutchinson Salt Member of the Wellington Formation. Locally, brine from the Wellington aquifer flows upward through collapse structures in the confining layer into the overlying alluvium. Estimated brine discharge averages about 0.8 cu ft/sec. Control of the saline groundwater discharge to the Smoky Hill and Solomon Rivers is desirable to improve the quality of water in the rivers. The upward discharge of natural brine into the alluvium could be partly controlled by relief wells installed in the Wellington aquifer. The wells need to be located in the area of greatest saline groundwater discharge to the rivers and near the eastern end of the Wellington aquifer between New Cambria and Solomon. The relief wells could be pumped just enough to reverse the hydraulic gradient between the Wellington and alluvial aquifers, decreasing the upward flow of brine into the alluvium and, into the rivers. The brine could be disposed into brine aquifers underlying the area at depth or pumped into surface evaporation-storage reservoirs. (Author 's abstract)

  20. Oklahoma Healthy Homes Initiative

    PubMed Central

    Khan, Fahad

    2011-01-01

    Compelling scientific evidence suggests that a strong association exists between housing-related hazards and the health and safety of their residents. Health, safety, and environmental hazards (such as asthma and allergy triggers), unintentional injury hazards, lead-based paint hazards, and poor indoor air quality are interrelated with substandard housing conditions. This article describes a Healthy Homes initiative to address these hazards in a coordinated fashion in the home, rather than taking a categorical approach, even in the presence of multiple hazards. It also provides an overview of Oklahoma's Healthy Homes initiative and its pilot project, the Tulsa Safe and Healthy Housing Project, which is currently administered in Tulsa in collaboration with Children First, Oklahoma's Nurse-Family Partnership program. This pilot project seeks to open new areas of research that can lead to a greater understanding of environmental health issues related to substandard housing in the United States, which will eventually make homes safer and healthier. PMID:21563709

  1. Is Oklahoma getting drier?

    NASA Astrophysics Data System (ADS)

    Lin, B.; Fan, T.; Xi, B.

    2010-12-01

    Global Land Data Assimilation System (GLDAS) models, especially the Community Land Model (CLM), show a continue reduction of soil moisture over Oklahoma region from 1980 to 2008. When the top 3.5 meter of surface is considered, the total water amounts estimated from models are within the ranges of 145-150, 140-145, 135-140, and 130-135 kg/m2 for the years of 1980-1986, 1987-1993, 1994-2000, and 2001-2008, respectively. A statistically significant decreasing trend of annual mean soil moisture is also found, indicating the region may experience a continuous drying period. Although the moisture change could be related to many factors, precipitation and evaporation potentially are the two dominant meteorological variables in determining the soil moisture variation. The rainfall amounts simulated by CLM are compared well with the satellite observations of Global Precipitation Climatology Project (GPCP). Both exhibit significant decreases in the region from 1980 to 2008. The CLM rainfalls also agree well with the available in-situ rainfall measurements during 1997 to 2007 from the Oklahoma Mesonet, which consist of 120 stations over the Oklahoma. For evaporation, currently there are no reliable direct observations during the time period studied. Limited satellite observations from the Princeton land surface data set indicate likely increase of evaporation. The soil moisture and temperature from SGP has records starting 1997, which is not enough to show the trend because of large variability. But both SRB and ISCCP surface net radiative flux from 1983 to 2008 shows an increasing trend. This could support the idea of increase in evaporation. The general decreases in precipitation and possible enhancements in evaporation would reduce land surface water storage. The reduced soil moisture could have considerable impact on land surface vegetation. For the Oklahoma region, this change would have a great potential in influence of regional agriculture and society.

  2. Oklahoma seismic network. Final report

    SciTech Connect

    Luza, K.V.; Lawson, J.E. Jr. |

    1993-07-01

    The US Nuclear Regulatory Commission has established rigorous guidelines that must be adhered to before a permit to construct a nuclear-power plant is granted to an applicant. Local as well as regional seismicity and structural relationships play an integral role in the final design criteria for nuclear power plants. The existing historical record of seismicity is inadequate in a number of areas of the Midcontinent region because of the lack of instrumentation and (or) the sensitivity of the instruments deployed to monitor earthquake events. The Nemaha Uplift/Midcontinent Geophysical Anomaly is one of five principal areas east of the Rocky Mountain front that has a moderately high seismic-risk classification. The Nemaha uplift, which is common to the states of Oklahoma, Kansas, and Nebraska, is approximately 415 miles long and 12-14 miles wide. The Midcontinent Geophysical Anomaly extends southward from Minnesota across Iowa and the southeastern corner of Nebraska and probably terminates in central Kansas. A number of moderate-sized earthquakes--magnitude 5 or greater--have occurred along or west of the Nemaha uplift. The Oklahoma Geological Survey, in cooperation with the geological surveys of Kansas, Nebraska, and Iowa, conducted a 5-year investigation of the seismicity and tectonic relationships of the Nemaha uplift and associated geologic features in the Midcontinent. This investigation was intended to provide data to be used to design nuclear-power plants. However, the information is also being used to design better large-scale structures, such as dams and high-use buildings, and to provide the necessary data to evaluate earthquake-insurance rates in the Midcontinent.

  3. Reconnaissance of the hydrology of sandstone and limestone aquifers along the northwest flank of the Little Rocky Mountains, Fort Belknap Indian Reservation, north-central Montana

    USGS Publications Warehouse

    Slagle, S.E.; Christensen, P.K.

    1993-01-01

    The geohydrology of aquifers was studied the south- western part of the Fort Belknap Indian Reservation in north-central Montana. The geologic units of interest are the Lodgepole Limestone, principally composed of thin-bedded limestone; the Mission Canyon Limestone, a massive limestone containing numerous solution cavities; the lower part of the Kootenai Formation, composed of sandstone; a sands- stone unit at the base of the Colorado Group; and the Virgelle Sandstone Member at the base of the Eagle Sandstone. These units were formed during Early Mississippian through Late Cretaceous time and have been subjected to uplift, folding, and the intrusion of the igneous core of Little Rocky Mountains. Dips of these units range from nearly vertical to about 10 degrees. Thirty-one test holes were drilled and 25 of the holes were completed as monitoring wells. Water-level fluctuations in most aquifers followed a seasonal pattern with the lowest levels occurring in the fall and winter and highest levels in the spring and summer. Seasonal fluctuations ranged from about 0.6 to 21 feet. Specific capacity of wells tested ranged from 0.02 gallon per minute per foot for a well completed in the Eagle Sandstone to 4.6 gallons per minute per foot for a well completed in the Mission Canyon Limestone. Eight aquifer tests indicated transmissivity values of 15 to 1,000 feet squared per day. Dissolved-solids concentration in water collected from 22 wells ranged from 263 to 1,930 milligrams per liter. The least mineralized water was obtained from the Mission Canyon Limestone and the most mineralized from the Eagle Sandstone.

  4. Integrated characterization of groundwater contamination in an alluvial system. Case study of Allier alluvial aquifer (Massif Central, France).

    NASA Astrophysics Data System (ADS)

    Mohammed, Nabaz; Celle-Jeanton, Hélène; Batisson, Isabelle; Bardot, Corinne; Colombet, Jonathan; Huneau, Frédéric; Le Coustumer, Philippe; Clauzet, Marie-Laure; Lavastre, Véronique

    2013-04-01

    Hydrogeology is an intrinsically multi-disciplinary field because of the critical role water plays in both human health and natural ecosystems. The NAA (Nappe Alluviale de l'Allier) project proposes an integrated research (hydrodynamic, hydrochemistry and biology) on the shallow aquifer of the Allier River (one of the main tributaries of the Loire River). This aquifer plays an important role in the regional water supply for it represents more than 60% of the total water abstraction. As an example, the sampling site, located near the city of Clermont-Ferrand (France) constitutes the major source of drinking water supply for more than 100 000 inhabitants and then plays a major role on the local socio-economy. A biweekly following sampling, that concerns hydrodynamical parameters, major ions and isotopes (oxygen-18, deuterium and carbon-13), has been achieved during two years on 2 rivers, 1 pond, 2 springs and 17 boreholes with the aim of defining the functioning of the aquifer in terms of quality and quantity of the water resources and then on the main processes that governs hydrodynamic and hydrochemistry. Preliminary results allowed discriminating different origins of groundwater with a part due to surface waters/groundwater interactions and a secondary origin that implies water circulating from the surrounding hills. A monthly following sampling of pesticides, pharmaceuticals and traces ions provides information on contaminants sources. In parallel, the dynamics of the microbial communities (bacteria, pico-cyanobacteria and pico-eukaryotes) was followed by flow cytometer. The bacterial diversity has been measured through PCR-DGGE analysis in order to evaluate the impact of the occurrence of contaminants.

  5. Statistical analysis of water-level, springflow, and streamflow data for the Edwards Aquifer in south-central Texas

    USGS Publications Warehouse

    Puente, Celso

    1976-01-01

    Water-level, springflow, and streamflow data were used to develop simple and multiple linear-regression equations for use in estimating water levels in wells and the flow of three major springs in the Edwards aquifer in the eastern San Antonio area. The equations provide daily, monthly, and annual estimates that compare very favorably with observed data. Analyses of geologic and hydrologic data indicate that the water discharged by the major springs is supplied primarily by regional underflow from the west and southwest and by local recharge in the infiltration area in northern Bexar, Comal, and Hays Counties.

  6. Effects of land use on water quality of the Fountain Creek alluvial aquifer, east-central Colorado

    USGS Publications Warehouse

    Chafin, Daniel T.

    1996-01-01

    Water-quality data were collected from the Fountain Creek alluvial aquifer in 1988 and 1989 as part of the Toxic-Waste Ground-Water Contamination Program. These data indicate that dissolved solids, most major ions, fluoride, ammonium, boron, lithium, selenium, and strontium were more concentrated in the agricultural land-use area than in the upgradient urban land-use area. Nitrate and phosphate had significantly larger concentrations, and volatile organic compounds had significantly greater detection frequencies in the urban land-use area.

  7. Water quality of the Little Arkansas River and Equus Beds Aquifer before and concurrent with large-scale artificial recharge, south-central Kansas, 1995-2012

    USGS Publications Warehouse

    Tappa, Daniel J.; Lanning-Rush, Jennifer L.; Klager, Brian J.; Hansen, Cristi V.; Ziegler, Andrew C.

    2015-01-01

    Recharge activities at Phase I recharge wells have not resulted in substantial effects on groundwater quality in the area, likely because the total amount of water recharged is relatively small (1 billion gallons) compared to aquifer storage volume (greater than 990 billion gallons in winter 2012). The eastward movement of the Burrton chloride plume is likely being slowed by a line of recharge locations associated with Phase I; however, chloride concentrations in deep groundwater still advanced to less than one half mile from the central part of the study area. Water-quality constituents of concern (major ions, nutrients, trace elements, triazine herbicides, and fecal indicator bacteria) have not increased substantially and are likely more affected by climatological (natural recharge by precipitation) and natural (geochemical oxidation/reduction, metabolic and decay rates) processes than artificial recharge. Arsenic remains a water-quality constituent of concern because of natural and continued persistence of concentrations exceeding the Federal maximum contaminant level of 10 micrograms per liter, especially in the deeper parts of theEquus Beds aquifer.

  8. Chemical and isotopic composition and potential for contamination of water in the upper Floridan Aquifer, west-central Florida, 1986-89

    USGS Publications Warehouse

    Swancar, Amy; Hutchinson, C.B.

    1995-01-01

    Major ions, unstable field constitutents, and the environmental isotopes tritium, deuterium, and oxygen-18 were measured in water from 112 wells that are open to the uppermost producing zones of the upper Floridan Aquifer. Tritium analyses indicate that the unconfined aquifer in northern areas contains relatively young water that has entered the aquifer since 1953, whereas the confined aquifer in southern areas contains older water. The potential for contamination of the upper Floridan Aquifer generally is greatest in those areas where the aquifer is unconfined and recharge has been shown to be high.

  9. Analysis of environmental setting, surface-water and groundwater data, and data gaps for the Citizen Potawatomi Nation Tribal Jurisdictional Area, Oklahoma, through 2011

    USGS Publications Warehouse

    Andrews, William J.; Harich, Christopher R.; Smith, S. Jerrod; Lewis, Jason M.; Shivers, Molly J.; Seger, Christian H.; Becker, Carol J.

    2013-01-01

    The Citizen Potawatomi Nation Tribal Jurisdictional Area, consisting of approximately 960 square miles in parts of three counties in central Oklahoma, has an abundance of water resources, being underlain by three principal aquifers (alluvial/terrace, Central Oklahoma, and Vamoosa-Ada), bordered by two major rivers (North Canadian and Canadian), and has several smaller drainages. The Central Oklahoma aquifer (also referred to as the Garber-Wellington aquifer) underlies approximately 3,000 square miles in central Oklahoma in parts of Cleveland, Logan, Lincoln, Oklahoma, and Pottawatomie Counties and much of the tribal jurisdictional area. Water from these aquifers is used for municipal, industrial, commercial, agricultural, and domestic supplies. The approximately 115,000 people living in this area used an estimated 4.41 million gallons of fresh groundwater, 12.12 million gallons of fresh surface water, and 8.15 million gallons of saline groundwater per day in 2005. Approximately 8.48, 2.65, 2.24, 1.55, 0.83, and 0.81 million gallons per day of that water were used for domestic, livestock, commercial, industrial, crop irrigation, and thermoelectric purposes, respectively. Approximately one-third of the water used in 2005 was saline water produced during petroleum production. Future changes in use of freshwater in this area will be affected primarily by changes in population and agricultural practices. Future changes in saline water use will be affected substantially by changes in petroleum production. Parts of the area periodically are subject to flooding and severe droughts that can limit available water resources, particularly during summers, when water use increases and streamflows substantially decrease. Most of the area is characterized by rural types of land cover such as grassland, pasture/hay fields, and deciduous forest, which may limit negative effects on water quality by human activities because of lesser emissions of man-made chemicals on such areas than in more urbanized areas. Much of the water in the area is of good quality, though some parts of this area have water quality impaired by very hard surface water and groundwater; large chloride concentrations in some smaller streams; relatively large concentrations of nutrients and counts of fecal-indicator bacteria in the North Canadian River; and chloride, iron, manganese, and uranium concentrations that exceed primary or secondary drinking-water standards in water samples collected from small numbers of wells. Substantial amounts of hydrologic and water-quality data have been collected in much of this area, but there are gaps in those data caused by relatively few streamflow-gaging stations, uneven distribution of surface-water quality sampling sites, lack of surface-water quality sampling at high-flow and low-flow conditions, and lack of a regularly measured and sampled groundwater network. This report summarizes existing water-use, climatic, geographic, hydrologic, and water-quality data and describes several means of filling gaps in hydrologic data for this area.

  10. Land Subsidence and Aquifer-System Compaction in the Tucson Active Management Area, South-Central Arizona, 1987-2005

    USGS Publications Warehouse

    Carruth, Robert L.; Flynn, Pool; Donald, R.; Anderson, Carl E.

    2007-01-01

    The U.S. Geological Survey monitors land subsidence and aquifer-system compaction caused by ground-water depletion in Tucson Basin and Avra Valley - two of the three alluvial basins within the Tucson Active Management Area. In spring 1987, the Global Positioning System was used to measure horizontal and vertical positions for bench marks at 43 sites to establish a network for monitoring land subsidence in Tucson Basin and Avra Valley. Between 1987 and 2005, the original number of subsidence monitoring stations was gradually increased to more than 100 stations to meet the need for information in the growing metropolitan area. Data from approximately 60 stations common to the Global Positioning System surveys done after an initial survey in 1987 are used to document land subsidence. For the periods of comparison, average land-surface deformation generally is less than the maximum subsidence at an individual station and takes into account land-surface recovery from elastic aquifer-system compaction. Between 1987 and 1998, as much as 3.2 inches of subsidence occurred in Tucson Basin and as much as 4 inches of subsidence occurred in Avra Valley. For the 31 stations that are common to both the 1987 and 1998 Global Positioning System surveys, the average subsidence during the 11-year period was about 0.5 inch in Tucson Basin and about 1.2 inches in Avra Valley. For the approximately 60 stations that are common to both the 1998 and 2002 Global Positioning System surveys, the data indicate that as much as 3.5 inches of subsidence occurred in Tucson Basin and as much as 1.1 inches of subsidence occurred in Avra Valley. The average subsidence for the 4-year period is about 0.4 inch in Tucson Basin and 0.6 inch in Avra Valley. Between the 2002 and the 2005 Global Positioning System surveys, the data indicate that as much as 0.2 inch of subsidence occurred in Tucson Basin and as much as 2.2 inches of subsidence occurred in Avra Valley. The average subsidence for the 3-year period is about 0.7 inch in Avra Valley. Between 1987 and 2004-05, land subsidence was greater in Avra Valley than in Tucson Basin on the basis of the average cumulative subsidence for the stations that were common to the original Global Positioning System survey in 1987. The average total subsidence during the 17- to 18-year period was about 1.3 inches in Tucson Basin and about 2.8 inches in Avra Valley. Three stations in Tucson Basin showed subsidence greater than 4 inches for the period - 5 inches at stations C45 and X419 and 4.1 inches at station PA4. In Avra Valley, two stations showed subsidence for the 17- to 18-year period greater than 4 inches - 4.3 inches at station AV25 and 4.8 inches at station SA105. In 1983, fourteen wells were fitted with borehole extensometers to monitor water-level fluctuations and aquifer-system compaction. Continuous records of water level and aquifer-system compaction indicate that as much as 45 feet of water-level decline and 4 inches of aquifer-system compaction occurred in Tucson Basin from January 1989 through December, 2005. In Avra Valley, extensometer data indicate that as much as 55 feet of water-level decline and 1.7 inches of aquifer-system compaction occurred during the same time period. Rates of compaction vary throughout the extensometer network, with the greater rates of compaction being associated with areas of greater water-level decline and more compressible sediments. In Avra Valley, data from the Global Positioning System surveys indicate that more than half of the total subsidence of the land surface may be the result of aquifer-system compaction below the portion of the aquifer instrumented with the vertical extensometers. For the area in the northern part of Tucson Basin between the Rillito and Santa Cruz rivers, an Interferometric Synthetic Aperture Radar interferogram indicates that about 1.65 inches of subsidence occurred between 2003 and 2006. Between 2002 and 2004, the Global Positioning System

  11. Correlation between groundwater flow and deformation in the fractured carbonate Gran Sasso aquifer (INFN underground laboratories, central Italy)

    NASA Astrophysics Data System (ADS)

    Amoruso, A.; Crescentini, L.; Martino, S.; Petitta, M.; Tallini, M.

    2014-06-01

    The Gran Sasso massif is a carbonate fractured aquifer with a spring discharge of more than 18 m3 s-1. The water table has been partially drained by two motorway tunnels and an underground laboratory (UL), located into the core aquifer. Karst features have limited role below the water table, where groundwater flow is mainly regulated by the fracture network. Two paired laser extensometers (BA and BC) recorded ground deformation in the UL. Changes in deformation correlate with the seasonal recharge/discharge cycle of groundwater flow and its long-term changes. Hydrostatic conditions prevail during the recharge phases because of the low permeability of local fractures, favoring compression, and hydraulic gradient increase above the UL. Fast groundwater flow through the high-permeability fault outcropping in the UL can enhance local dilatation for short periods. Spring discharge during exhaustion periods is fed by the low-permeability fracture network, fostering hydrodynamic conditions by hydraulic gradient decrease, diminishing compression and consequently favoring dilatation. Independent support to this conceptual model comes from local tests and a numerical model which highlights the hydromechanical strain effects induced by the hydrological cycle on the jointed rock mass along BA and the role of the hydraulic gradient on the rock mass deformation.

  12. The past is the key to the future: how the groundwater recharge to carbonate aquifer in central Italy has changed in recent decades

    NASA Astrophysics Data System (ADS)

    Preziosi, Elisabetta; Guyennon, Nicolas; Romano, Emanuele; Bruna Petrangeli, Anna; Di Salvo, Cristina

    2014-05-01

    Carbonate aquifers are important resources especially in mountainous regions because they are able to store huge quantities of groundwater in the humid periods and gradually release them during dry periods. Water quality is often excellent, hence they are regarded as strategic both for human consumption as well as for environmental uses. In many parts of the world this resources are largely exploited to supply large urban areas and possible negative effects of climate changes to their discharge is a great concern. The present study aims to analyze how the regimen of recharge to groundwater is affected by eventual non stationarity in temperature and precipitation during past decades. The case study (235 km2 ) is located in central Italy and feed the Nera river with an average discharge of about 3.3 m3/s. Daily data from 16 (7) stations monitoring precipitation (temperature) covering the area of interest over the period 1951-2013 were spatially homogenized by means of kriging at a 1 km2 resolution. The resulting daily maps were used to force a simple spatial distributed soil water budget model considering the local hydrogeological structure. The reconstructed daily recharge to the aquifer was then compared to the discharge of the groundwater system observed in the period 1991-1993 and 1996-2012 (discontinues measurements). Results show that minimum and maximum temperatures present a significant (95%) positive trend after the 1980, in acceleration after 1990 (+0.055 (+0.07 )°C/yr for the maximum T; +0.03 ( +0.06) °C/yr for the minimum T, for the periods 1980-2013 (1990-2013)); precipitation and recharge to the aquifer present a non-significant (95%) negative linear trend over the period 1951-2013 (-1.5 mm/yr and -3 Ls-1yr-1 respectively) without obvious changings points, indicating in first approximation a marginal impact of temperature non stationarity on the recharge. The decrease in the recharge to the aquifer, although not statistically significant, represents a reduction of 5.5% of the groundwater system discharge over the past 60 years.

  13. Estimated 2008 groundwater potentiometric surface and predevelopment to 2008 water-level change in the Santa Fe Group aquifer system in the Albuquerque area, central New Mexico

    USGS Publications Warehouse

    Falk, Sarah E.; Bexfield, Laura M.; Anderholm, Scott K.

    2011-01-01

    The water-supply requirements of the Albuquerque metropolitan area of central New Mexico have historically been met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. Previous studies have indicated that the large quantity of groundwater withdrawal relative to recharge has resulted in water-level declines in the aquifer system throughout the metropolitan area. Analysis of the magnitude and pattern of water-level change can help improve understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies' efforts to minimize future water-level declines and improve sustainability. This report, prepared by the U.S. Geological Survey in cooperation with the Albuquerque Bernalillo County Water Utility Authority, presents the estimated groundwater potentiometric surface during winter (from December to March) of the 2008 water year and the estimated changes in water levels between predevelopment and water year 2008 for the production zone of the Santa Fe Group aquifer system in the Albuquerque and surrounding metropolitan and military areas. Hydrographs from selected wells are included to provide details of historical water-level changes. In general, water-level measurements used for this report were measured in small-diameter observation wells screened over short intervals and were considered to best represent the potentiometric head in the production zone-the interval of the aquifer, about 300 feet below land surface to 1,100 feet or more below land surface, in which production wells generally are screened. Water-level measurements were collected by various local and Federal agencies. The 2008 water year potentiometric surface map was created in a geographic information system, and the change in water-level elevation from predevelopment to water year 2008 was calculated. The 2008 water-level contours indicate that the general direction of groundwater flow is from the Rio Grande towards clusters of production wells in the east, north, and west. Water-level changes from predevelopment to 2008 are variable across the area. Hydrographs from piezometers on the east side of the river generally indicate a trend of decline in the annual highest water level through most of the period of record. Hydrographs from piezometers in the valley near the river and on the west side of the river indicate spatial variability in water-level trends.

  14. InSAR analysis of aquifer-system response to 20 years of mine-dewatering in the Carlin gold trend, north-central Nevada

    NASA Astrophysics Data System (ADS)

    Bell, J. W.; Katzenstein, K.

    2012-12-01

    The Carlin trend in north-central Nevada has the second largest gold resources in the world, most of it produced from large open-pit mines. Heavy groundwater dewatering is required at the mines to lower water levels below the depth of mining which can exceed 400-500 m. The resulting water level declines have produced surface deformation (subsidence) that can be detected and modeled with InSAR to characterize the aquifer-system response and to estimate hydraulic parameters in order to test and refine groundwater models. In a series of studies we examined the effects of dewatering at mines operated by Newmont Mining Corporation and Barrick Gold of North America near Battle Mountain and Carlin, Nevada. The Lone Tree mine operated a large-scale dewatering program between 1992-2006 using deep bedrock wells that pumped between 64-92 hm3/yr (52,000-75,000 acre-ft/yr) and lowered bedrock water levels more than 120 m. InSAR analysis of ERS and Envisat data for the 1992-2000 and 2004-2010 periods showed that as much as 50 cm of aquifer-system compaction occurred in bedrock and in alluvial basin deposits with subsidence rates ranging between 3-6 cm/yr. Since dewatering ended in late 2006 and water levels began rising, only 7 cm of aquifer-system recovery (uplift) has occurred as of 2010 suggesting that most of the aquifer-system compaction was likely inelastic, apparently in the pumped fractured bedrock. The InSAR subsidence data differ significantly from the pre-pumping groundwater model which predicted 2.5 m of subsidence for the 1992-2000 period. The results yield bulk storage coefficients in the range of 7 x 10-3 to 5.6 x 10-5 with a most frequent value of 1.0 x 10-3 (Baffoe-Twum, 2007), InSAR-derived hydraulic values that can provide better constraints on specific storage estimates in future groundwater models. The Betze-Post mine has been dewatering continually since late 1989 with maximum pumping rates of greater than 140 hm3/yr (110,000 acre-ft/yr) in the early and late 1990s. This resulted in the lowering of groundwater levels by as much as 500 m in some areas. Analysis of InSAR data covering the 1992-2000 and 2004-2010 time periods suggests a cumulative measured subsidence magnitude of approximately 50 cm. In this case, all of the aquifer-system compaction is occurring in bedrock. Estimates of bulk storage coefficients at Betze-Post are also on the order of approximately 1.0 x 10-3 suggesting that subsidence at both sites is occurring in materials of similar character. Subsidence rates have decreased to near zero since groundwater production was reduced in the early 2000s. Since the early 2000s, subsidence rates resulting from dewatering at the neighboring Leeville mine have been greater than those at Betze-Post. Dewatering at the Turquoise Ridge-Twin Creeks and Gold Quarry mines, adjacent to these two larger mines, has also produced measureable aquifer-system compaction but with lower rates of subsidence. However, detailed hydrologic analyses have not been undertaken at these mines.

  15. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    USGS Publications Warehouse

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  16. EXECUTIVE SUMMARY OF STATE DATA RELATED TO ABANDONED CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    SciTech Connect

    H. Seay Nance

    2003-03-01

    This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertaken for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.

  17. 75 FR 18048 - Oklahoma Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ...We, the Office of Surface Mining Reclamation and Enforcement (OSM), are approving an amendment to the Oklahoma regulatory program (Oklahoma program) under the Surface Mining Control and Reclamation Act of 1977 (SMCRA or the Act). The Oklahoma Department of Mines (ODM, Oklahoma, or department) made revisions to its rules regarding circumstances under which a notice of violation may have an......

  18. Karst in Permian evaporite rocks of western Oklahoma

    SciTech Connect

    Johnson, K.S. )

    1993-02-01

    Bedded evaporites (gypsum and salt) of Permian age have been dissolved naturally by ground water to form a major evaporite-karst region in western Oklahoma. The Blaine Formation and associated evaporites comprise 100--800 ft of strata that dip gently into broad, structural basins. Outcropping gypsum, dolomite, and red-bed shales of the Blaine display typical karstic features, such as sinkholes, caves, disappearing streams, and springs. Large caves are developed in gypsum beds 10--30 ft thick at several places, and a major gypsum/dolomite karst aquifer provides irrigation water to a large region in southwestern Oklahoma, where salt layers above and below the Blaine Formation have been partly dissolved at depths of 30--800 ft below the land surface. Salt dissolution causes development of brine-filled cavities, into which overlying strata collapse, and the brine eventually is emitted at the land surface in large salt plains.

  19. Potentiometric surface of the upper Cape Fear Aquifer in the central coastal plain of North Carolina, December 1986

    USGS Publications Warehouse

    Winner, M.D., Jr.; Lyke, William L.; Brockman, Allen R.

    1989-01-01

    Water-level measurements were made in 84 wells open to the upper Cape Fear aquifer at the end of 1986 to determine the configuration of its potentiometric surface over an area of approximately 5,500 sq mi. The major feature of the potentiometric surface is the development of a large, almost circular cone of depression as a result of the merging of a number of smaller cones. The center of the large cone lies along an axis between Greenville and Kinston. The potentiometric surface in the upper Cape Fear is nearly 100 ft below sea level at Greenville; it is more than 100 ft above sea level south of the Neuse River near Colorado.

  20. Remediation Rates for Oklahoma High School Graduates in Oklahoma Public Colleges. Oklahoma High School Indicators Project.

    ERIC Educational Resources Information Center

    Oklahoma State Regents for Higher Education, Oklahoma City.

    As part of a larger study to provide "indicators" of high school educational performance, this report presents data on remedial services provided to 15,042 college freshmen (1996-97) in Oklahoma public colleges by Oklahoma high school for the graduating class of 1995-96. The study used a student-cohort flow system to track student data…

  1. PRECIPITATION TRENDS AND GROUNDWATER IN THE ARBUCKLE FORMATION OF OKLAHOMA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decade-scale precipitation trends have been recognized in many regions of the Great Plains. In particular, two decades of above average precipitation prevailed in Central Oklahoma at the end of the 20th century. Previous studies have concluded that above average precipitation resulted in a substan...

  2. Estimated Withdrawals from Stream-Valley Aquifers and Refined Estimated Withdrawals from Selected Aquifers in the United States, 2000

    USGS Publications Warehouse

    Sargent, B. Pierre; Maupin, Molly A.; Hinkle, Stephen R.

    2008-01-01

    The U.S. Geological Survey National Water Use Information Program compiles estimates of fresh ground-water withdrawals in the United States on a 5-year interval. In the year-2000 compilation, withdrawals were reported from principal aquifers and aquifer systems including two general aquifers - Alluvial and Other aquifers. Withdrawals from a widespread aquifer group - stream-valley aquifers - were not specifically identified in the year-2000 compilation, but they are important sources of ground water. Stream-valley aquifers are alluvial aquifers located in the valley of major streams and rivers. Stream-valley aquifers are long but narrow aquifers that are in direct hydraulic connection with associated streams and limited in extent compared to most principal aquifers. Based in large part on information published in U.S. Geological Survey reports, preliminary analysis of withdrawal data and hydrogeologic and surface-water information indicated areas in the United States where possible stream-valley aquifers were located. Further assessment focused on 24 states and the Commonwealth of Puerto Rico. Withdrawals reported from Alluvial aquifers in 16 states and withdrawals reported from Other aquifers in 6 states and the Commonwealth of Puerto Rico were investigated. Two additional States - Arkansas and New Jersey - were investigated because withdrawals reported from other principal aquifers in these two States may be from stream-valley aquifers. Withdrawals from stream-valley aquifers were identified in 20 States and were about 1,560 Mgal/d (million gallons per day), a rate comparable to withdrawals from the 10 most productive principal aquifers in the United States. Of the 1,560 Mgal/d of withdrawals attributed to stream-valley aquifers, 1,240 Mgal/d were disaggregated from Alluvial aquifers, 150 Mgal/d from glacial sand and gravel aquifers, 116 Mgal/d from Other aquifers, 28.1 Mgal/d from Pennsylvanian aquifers, and 24.9 Mgal/d from the Mississippi River Valley alluvial aquifer. Five States, including Colorado (552 Mgal/d), Kansas (384 Mgal/d), Oklahoma (126 Mgal/d), Kentucky (102 Mgal/d), and Ohio (100 Mgal/d), accounted for 81 percent of estimated stream-valley aquifer withdrawals identified in this report. Of the total withdrawals from stream-valley aquifers, about 63 percent (984 Mgal/d) were used for irrigation, 26 percent (400 Mgal/d) for public-supply, and 11 percent (177 Mgal/d) for self-supplied industrial uses. The largest estimated water withdrawals were from stream-valley aquifers associated with the South Platte (404 Mgal/d), Arkansas (395 Mgal/d), and Ohio (221 Mgal/d) Rivers.

  3. Estimated 2012 groundwater potentiometric surface and drawdown from predevelopment to 2012 in the Santa Fe Group aquifer system in the Albuquerque metropolitan area, central New Mexico

    USGS Publications Warehouse

    Powell, Rachel I.; McKean, Sarah E.

    2014-01-01

    Historically, the water-supply requirements of the Albuquerque metropolitan area of central New Mexico were met almost exclusively by groundwater withdrawal from the Santa Fe Group aquifer system. In response to water-level declines, the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began diverting water from the San Juan-Chama Drinking Water Project in December 2008 to reduce the use of groundwater to meet municipal demand. Modifications in the demand for water and the source of the supply of water for the Albuquerque metropolitan area have resulted in a variable response in the potentiometric surface of the production zone (the interval of the aquifer, from within about 200 feet below the water table to 900 feet or more, in which supply wells generally are screened) of the Santa Fe Group aquifer system. Analysis of the magnitude and spatial distribution of water-level change can help improve the understanding of how the groundwater system responds to withdrawals and variations in the management of the water supply and can support water-management agencies’ efforts to minimize future water-level declines and improve sustainability. The U.S. Geological Survey (USGS), in cooperation with the ABCWUA, has developed an estimate of the 2012 potentiometric surface of the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. This potentiometric surface is the latest in a series of reports depicting the potentiometric surface of the area. This report presents the estimated potentiometric surface during winter (from December to March) of water year 2012 and the estimated changes in potentiometric surface between predevelopment (pre-1961) and water year 2012 for the production zone of the Santa Fe Group aquifer system in the Albuquerque metropolitan area. Hydrographs from selected piezometers are included to provide details of historical water-level changes. In general, water-level measurements used for this report were collected in small-diameter observation wells screened over short intervals near the middle of the production zone and were considered to best represent the potentiometric head in the production zone. The water-level measurements were collected by various local and Federal agencies. The water year 2012 potentiometric surface map was created in a geographic information system, and the change in water-level altitude from predevelopment to water year 2012 was calculated. The 2012 potentiometric surface indicates that the general direction of groundwater flow is from the Rio Grande towards clusters of supply wells in the east, north, and west. Water-level changes from predevelopment to 2012 were variable across the Albuquerque metropolitan area. Estimated drawdown from 2008 was spatially variable across the Albuquerque metropolitan area. Hydrographs from piezometers on the east side of the river indicate an increase in the annual highest water-level measurement from 2008 to 2012. Hydrographs from piezometers in the northwest part of the study area indicate either steady decline of the water-level altitude over the period of record or recently variable trends in which water-level altitudes increased for a number of years but have declined since water year 2012.

  4. Certified organic farming research and demonstration project by Oklahoma State University and USDA's Agricultural Research Service at Lane, Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2003, Oklahoma State University and USDA, Agricultural Research Service, South Central Agricultural Research Laboratory received organic certification for 8 acres at the Lane Agricultural Center, Lane, OK. The certified organic land was used to develop a cooperative project with a diversity of a...

  5. Buried aquifers in the Brooten-Belgrade and Lake Emily areas, west-central Minnesota--Factors related to developing water for irrigation

    USGS Publications Warehouse

    Wolf, R.J.

    1976-01-01

    Irrigation has given a substantial boost to the economy in the Brooten-Belgrade and Lake Emily areas of Minnesota. The surficial outwash aquifer is capable of yielding sufficient quantities of water for irrigation over half of its area; the remaining part may be supplied by deep aquifers. Buried glacial outwash and Cretaceous sand aquifers, as thick as 50 feet occur to depths of 300 feet. In places, the buried aquifers are sufficiently thick and permeable to yield large quantities of water to wells. The buried aquifers are probably narrow, elongate, truncated bodies enclosed by clay till. The Precambrian surface, ranging from 190 to 350 feet below the land surface, is the lower limit of the buried aquifers. Water in the buried-drift aquifers is a very hard calcium magnesium bicarbonate type, suitable for irrigation needs. Water in Cretaceous aquifers, although untested, is expected to be higher in dissolved solids. Potenial water problems include slow rate of recharge to buried aquifers, and head loss caused by screening of the surficial and buried aquifers in the same well, and by allowing well to flow unabated. Another potential problem is possible pollution of the buried aquifers through the boreholes of multiaquifer wells. (Woodard-USGS)

  6. Geophysical logs for selected wells in the Picher Field, northeast Oklahoma and southeast Kansas

    USGS Publications Warehouse

    Christenson, Scott C.; Thomas, Tom B.; Overton, Myles D.; Goemaat, Robert L.; Havens, John S.

    1991-01-01

    The Roubidoux aquifer in northeastern Oklahoma is used extensively as a source of water for public supplies, commerce, industry, and rural water districts. The Roubidoux aquifer may be subject to contamination from abandoned lead and zinc mines of the Picher field. Water in flooded underground mines contains large concentrations of iron, zinc, cadmium, and lead. The contaminated water may migrate from the mines to the Roubidoux aquifer through abandoned water wells in the Picher field. In late 1984, the Oklahoma Water Resources Board began to locate abandoned wells that might be serving as conduits for the migration of contaminants from the abandoned mines. These wells were cleared of debris and plugged. A total of 66 wells had been located, cleared, and plugged by July 1985. In cooperation with the Oklahoma Water Resources Board, the U.S. Geological Survey took advantage of the opportunity to obtain geophysical data in the study area and provide the Oklahoma Water Resources Board with data that might be useful during the well-plugging operation. Geophysical logs obtained by the U.S. Geological Survey are presented in this report. The geophysical logs include hole diameter, normal, single-point resistance, fluid resistivity, natural-gamma, gamma-gamma, and neutron logs. Depths logged range from 145 to 1,344 feet.

  7. Appraisal of the interconnection between the St Johns River and the surficial aquifer, east-central Duval County, Florida

    USGS Publications Warehouse

    Spechler, R.M.; Stone, R.B.

    1982-01-01

    The proposed deepening of the navigation channel in the St. Johns River to about 46-48 feet below sea level (45 feet below mean low water) may breach up to 11 feet of limestone unit of the lower part of the surficial aquifer along a 25-mile channel. The limestone supplies water to numerous domestic wells along the river in the Jacksonville area. Recent channel improvements to about 39 feet below sea level have already breached the limestone at many locations. Where breaching has not yet occurred, less than 1 to 6 feet of undifferentiated sediments overlie the limestone. These sediments, consisting predominantly of sand, are generally too permeable to form an effective confining layer. Chloride concentrations determined from water in wells tapping the limestone unit range from 8 to 6,600 milligrams per liter. However, chloride concentrations in water from wells located more than 500 feet from the river, were generally less than 30 milligrams per liter. The proposed dredging operation is not expected to alter significantly the present hydrologic system. The current position of the interface most likely represents conditions that will be present after future channel improvements. (USGS)

  8. Reconnaissance of the hydrology, water quality, and sources of bacterial and nutrient contamination in the Ozark Plateaus aquifer system and Cave Springs Branch of Honey Creek, Delaware County, Oklahoma, March 1999-March 2000

    USGS Publications Warehouse

    Schlottmann, Jamie L.; Tanner, Ralph S.; Samadpour, Mansour

    2000-01-01

    A reconnaissance investigation of hydrology and water quality was conducted to evaluate possible sources of bacteria and nutrient contamination in the Cave Springs Branch basin and the underlying karstic Ozark Plateau aquifer system. Objectives were to: (1) determine the directions of ground-water flow in the basin and determine whether Cave Springs Branch interacts with ground water, (2) compare water quality in Cave Springs Branch with water quality in nearby wells to determine whether the stream is contaminating nearby wells, and (3) determine sources of fecal coliform bacteria and nitrate contamination in Cave Springs Branch and ground water. Potential sources of bacteria and nitrate in the area include cultivated agriculture, cow and horse on pasture, poultry production, households, and wildlife. Presence of fecal coliform and fecal streptococcal bacteria directly indicate fecal contamination and the potential for the presence of other pathogenic organisms in a water supply. Nitrate in drinking water poses health risks and may indicate the presence of additional contaminants. Fecal coliform bacteria colony counts were least in wells, intermediate in the poultry-processing plant wastewater outfall and Honey Creek above the confluence with Cave Springs Branch, and greatest in Cave Springs Branch. Bacteria strains and resistance to antibiotics by some bacteria indicate that livestock may have been sources of some bacteria in the water samples. Multiple antibiotic resistances were not present in the isolates from the water samples, indicating that the bacteria may not be from human or poultry sources. Ribotyping indicates that Escherichia coli bacteria in water samples from the basin were from bird, cow, horse, dog, deer, and human sources. The presence of multiple ribotypes from each type of animal source except bird indicates that most of the bacteria are from multiple populations of source animals. Identifiable sources of bacteria in Cave Springs Branch at the state line were dominantly cow and horse with one ribotype from bird. Escherichia coli was detected in only one well sample. Bacterial ribotypes in water from that upgradient well indicated human and dog feces as sources for bacteria, and that on site wastewater treatment may not always be adequate in these highly permeable soils. Greater concentrations of nitrate in Cave Springs Branch and O'Brien Spring relative to the poultry-processing plant wastewater outfall may be due, in part, to conversion of ammonia from poultry processing plant wastewater. The poultry-processing plant wastewater outfall sample collected in March 2000 contained greater concentrations of ammonia and total organic nitrogen plus ammonia than the spring, stream, and well samples collected during August 1999. Cave Springs Branch and Honey Creek contributed approximately equal loads of nitrogen to Honey Creek below the confluence and the greatest loads of nitrogen were introduced to Cave Springs Branch by the poultry processing plant wastewater outfall and O'Brien Spring. Nitrate concentrations in upgradient well samples ranged from 0.38 to 4.60 milligrams per liter, indicating that there are sources of ground-water nitrogen other than Cave Springs Branch, such as animal waste, fertilizer, or human waste. Nitrogen compounds in water from wells downgradient of Cave Springs Branch may be from Cave Springs Branch, fertilizers, animal waste, or human waste.

  9. Configuration of the base of the Edwards-Trinity aquifer system and hydrogeology of the underlying pre-Cretaceous rocks, west-central Texas

    USGS Publications Warehouse

    Barker, Rene A.; Ardis, Ann F.

    1992-01-01

    The Edwards-Trinity aquifer system is underlain by an extensive complex of rocks, ranging from Late Cambrian through Late Triassic in age, that are typically about 10 to perhaps 1,000 times less permeable than those composing the aquifer system. The Cretaceous rocks of the aquifer system are separated from the pre-Cretaceous rocks by an unconformity that spans about 60 million years of erosion during the Jurassic Period. The upper surface of the pre-Cretaceous rock complex forms the base of the Edwards-Trinity aquifer system. The configuration of the base reflects the original topography of the eroded pre-Cretaceous land surface plus the effects of subsequent deformation. The most permeable pre-Cretaceous rocks are in the eastern half of the study area where they compose the Hickory aquifer (in Upper Cambrian rocks), Ellenburger-San Saba aquifer (Upper Cambrian- Lower Ordovician), and Marble Falls aquifer (Lower Pennsylvanian). These aquifers are hydraulically connected to the northeastern fringe of the Edwards-Trinity aquifer system, as their up-turned margins crop out around the flanks of the breached Llano uplift. The Rustler aquifer in rocks of Late Permian age underlies parts of the Trans-Pecos region, where it yields small amounts of greatly mineralized water for industrial and agricultural purposes. The Dockum aquifer in rocks of Late Triassic age directly underlies the Edwards-Trinity aquifer system in western parts of the study area, and locally increases the saturated thickness of the ground-water-flow system by an average of about 200 feet. Despite these notable exceptions, the collective effect of the pre-Cretaceous rocks is that 01 a barrier to ground-water flow, which limits the exchange of water across the base of the Edwards-Trinity aquifer system.

  10. Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: Northern Gafsa basin - Central Tunisia

    NASA Astrophysics Data System (ADS)

    Mokadem, Naziha; Demdoum, Abedslem; Hamed, Younes; Bouri, Salem; Hadji, Rihab; Boyce, Adrian; Laouar, Rabah; Sâad, Abedaziz

    2016-02-01

    The hydrodynamic of the multi-aquifer system (the Continental Intercalaire " C.I " and the Complex Terminal " C.T ") of the North Gafsa basin is largely determined by tectonics (Tebessa - Gafsa fault). The composition of groundwater is controlled by complex reactions at gas-liquid-solid "mineralogical composition of associated rocks" interfaces, which depend on the natural surrounding and potential anthropogenic impact. The hydrochemical data (major ion geochemistry) indicate that these groundwaters are characterized by the dominance a Ca-Mg-HCO3/SO4 and Na-Cl-NO3 water types. Geochemical pattern is mainly controlled by the dissolution of halite, gypsum and/or anhydrite as well as by the incongruent dissolution of carbonate minerals. The pH of these samples range from 6.54 to 8.89, supporting the conclusion that the H2CO3/HCO3 couple control pH buffering. Oxygen-18 (δ18O‰SMOW) and deuterium (dD‰SMOW) isotopic data show the exchange between the groundwater and the rock (water-rock interaction) and the evaporation effect. The isotopic content of the boreholes waters is of mixed Mediterranean - Atlantic origin and is opposite to the quantity of rainwater distribution, both in space and time in the study area. This is due to its geographical situation in the southern and south-western of the Mediterranean Sea and between the Atlas area and the Sahara Platform. The concentrations of the isotopic composition of the groundwater are significantly higher than the rainwater. This is indicative of the dissolution of salts and other processes modifying the rainwater geochemical composition during infiltration into the vadose zone. The hydraulic interconnection of these components of the system has led to the evolution of these interesting groundwater types.

  11. MAINE AQUIFERS

    EPA Science Inventory

    AQFRS24 contains polygons of significant aquifers in Maine (glacial deposits that are a significant ground water resource) mapped at a scale 1:24,000. This statewide coverage was derived from aquifer boundaries delineated and digitized by the Maine Geological Survey from data com...

  12. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, L. Niel

    2009-01-01

    This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps was developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  13. Hydrochemical and multivariate statistical interpretations of spatial controls of nitrate concentrations in a shallow alluvial aquifer around oxbow lakes (Osong area, central Korea)

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Ho; Yun, Seong-Taek; Choi, Byoung-Young; Chae, Gi-Tak; Joo, Yongsung; Kim, Kangjoo; Kim, Hyoung-Soo

    2009-07-01

    Hydrochemical and multivariate statistical interpretations of 16 physicochemical parameters of 45 groundwater samples from a riverside alluvial aquifer underneath an agricultural area in Osong, central Korea, were performed in this study to understand the spatial controls of nitrate concentrations in terms of biogeochemical processes occurring near oxbow lakes within a fluvial plain. Nitrate concentrations in groundwater showed a large variability from 0.1 to 190.6 mg/L (mean = 35.0 mg/L) with significantly lower values near oxbow lakes. The evaluation of hydrochemical data indicated that the groundwater chemistry (especially, degree of nitrate contamination) is mainly controlled by two competing processes: 1) agricultural contamination and 2) redox processes. In addition, results of factorial kriging, consisting of two steps (i.e., co-regionalization and factor analysis), reliably showed a spatial control of the concentrations of nitrate and other redox-sensitive species; in particular, significant denitrification was observed restrictedly near oxbow lakes. The results of this study indicate that sub-oxic conditions in an alluvial groundwater system are developed geologically and geochemically in and near oxbow lakes, which can effectively enhance the natural attenuation of nitrate before the groundwater discharges to nearby streams. This study also demonstrates the usefulness of multivariate statistical analysis in groundwater study as a supplementary tool for interpretation of complex hydrochemical data sets.

  14. Hydrochemical and multivariate statistical interpretations of spatial controls of nitrate concentrations in a shallow alluvial aquifer around oxbow lakes (Osong area, central Korea).

    PubMed

    Kim, Kyoung-Ho; Yun, Seong-Taek; Choi, Byoung-Young; Chae, Gi-Tak; Joo, Yongsung; Kim, Kangjoo; Kim, Hyoung-Soo

    2009-07-21

    Hydrochemical and multivariate statistical interpretations of 16 physicochemical parameters of 45 groundwater samples from a riverside alluvial aquifer underneath an agricultural area in Osong, central Korea, were performed in this study to understand the spatial controls of nitrate concentrations in terms of biogeochemical processes occurring near oxbow lakes within a fluvial plain. Nitrate concentrations in groundwater showed a large variability from 0.1 to 190.6 mg/L (mean=35.0 mg/L) with significantly lower values near oxbow lakes. The evaluation of hydrochemical data indicated that the groundwater chemistry (especially, degree of nitrate contamination) is mainly controlled by two competing processes: 1) agricultural contamination and 2) redox processes. In addition, results of factorial kriging, consisting of two steps (i.e., co-regionalization and factor analysis), reliably showed a spatial control of the concentrations of nitrate and other redox-sensitive species; in particular, significant denitrification was observed restrictedly near oxbow lakes. The results of this study indicate that sub-oxic conditions in an alluvial groundwater system are developed geologically and geochemically in and near oxbow lakes, which can effectively enhance the natural attenuation of nitrate before the groundwater discharges to nearby streams. This study also demonstrates the usefulness of multivariate statistical analysis in groundwater study as a supplementary tool for interpretation of complex hydrochemical data sets. PMID:19524319

  15. Biological assessment of environmental flows for Oklahoma

    USGS Publications Warehouse

    Fisher, William L.; Seilheimer, Titus S.; Taylor, Jason M.

    2012-01-01

    Large-scale patterns in fish assemblage structure and functional groups are influenced by alterations in streamflow regime. In this study, we defined an objective threshold for alteration for Oklahoma streams using a combination of the expected range of 27 flow indices and a discriminant analysis to predict flow regime group. We found that fish functional groups in reference flow conditions had species that were more intolerant to flow alterations and preferences for stream habitat and faster flowing water. In contrast, altered sites had more tolerant species that preferred lentic habitat and slower water velocity. Ordination graphs of the presence and functional groups of species revealed an underlying geographical pattern roughly conforming to ecoregions, although there was separation between reference and altered sites within the larger geographical framework. Additionally, we found that reservoir construction and operation significantly altered fish assemblages in two different systems, Bird Creek in central Oklahoma and the Kiamichi River in southeastern Oklahoma. The Bird Creek flow regime shifted from a historically intermittent stream to one with stable perennial flows, and changes in fish assemblage structure covaried with changes in all five components of the flow regime. In contrast, the Kiamichi River flow regime did not change significantly for most flow components despite shifts in fish assemblage structure; however, most of the species associated with shifts in assemblage structure in the Kiamichi River system were characteristic of lentic environments and were likely related more to proximity of reservoirs in the drainage system than changes in flow. The spatial patterns in fish assemblage response to flow alteration, combined with different temporal responses of hydrology and fish assemblage structure at sites downstream of reservoirs, indicate that interactions between flow regime and aquatic biota vary depending on ecological setting. This supports the notion that regional variation in natural flow regimes could affect the development of flow recommendations.

  16. Distribution of dissolved-solids concentrations and temperature in ground water of the gulf coast aquifer systems, south-central United States

    USGS Publications Warehouse

    Pettijohn, Robert A.; Weiss, Jonathan S.; Williamson, Alex K.

    1988-01-01

    The distribution of dissolved-solids concentrations and temperature in waters of 10 of the aquifers comprising the gulf coast aquifer systems of the Gulf Mexico Coastal Plain are mapped at a scale of 1:3,500,000. Dissolved solids concentration in the aquifers of the Tertiary System ranges from less than 500 mg/L at the outcrop and subcrop areas to as much as 150,000 mg/L at the downdip extent of these aquifers. A distinct band of sharply increasing concentration of dissolved-solids occurs at about middip of each aquifer of the Tertiary System. Dissolved-solids concentration in younger aquifers ranges from less than 500 mg/L in outcrop and subcrop areas to about 70,000 mg/L at the downdip extent of these aquifers. Temperature of waters in permeable Tertiary deposits ranges from about 18 C at the outcrop and subcrop areas to 90 C at the downdip extent of these aquifers. Temperature of waters in younger deposits ranges from about 14 C at the outcrop and subcrop areas to 30 C at their downdip extent. (USGS)

  17. Were the 2011 Prague, Oklahoma Earthquakes Natural, Induced, or Something in Between?

    NASA Astrophysics Data System (ADS)

    McGarr, A.

    2013-12-01

    Two hypotheses have been proposed for the origin of the Prague, Oklahoma earthquake sequence, which is under debate. I offer a third explanation, whereby this sequence was triggered by approximately 12 million cubic m of wastewater injected into the epicentral zone, from five high-volume injection wells. This sequence included three earthquakes of M5 or greater: a M5 foreshock, the M5.7 main shock, and a M5 aftershock (Keranen et al., Geology, 2013). The main shock, which caused substantial damage, is of exceptional importance in the central and eastern United States because it is the second largest earthquake that has been recorded in this vast region. Because of its importance in assessing seismic hazard, especially in central Oklahoma, there is an urgent need to understand its origin. The first hypothesis argues that the Prague earthquakes are of natural origin (Keller and Holland, OGS website, 2013). As shown by Ellsworth et al. (abstract, SSA Meeting, 2012,), the seismicity in central Oklahoma has increased dramatically starting in 2009. This increase is inconsistent with natural processes that are likely to occur in this geologically stable area. Instead, it seems more likely that the increase in seismicity is related to the increase of fluid injection activities related to expanding oil and gas operations. Even so, the Prague earthquakes themselves could be a natural sequence. The second hypothesis argues that the M5 foreshock was triggered by pore pressure increase due to wastewater injected from two wells near the northeast end of the epicentral zone. This M5 event, in turn, increased the Coulomb stress on a pre-existing fault triggering the M5.7 mainshock and its numerous aftershocks (Keranen, et al., 2013). This hypothesis focuses on two nearly co-located disposal wells, Stasta 1 and 2, that together injected nearly 100,000 cubic m of wastewater into the basal aquifer during the years leading up to the Prague earthquakes. There are, however, five much higher-volume disposal wells in the zone of epicenters, each of which injected more than 1 million cubic m into the same aquifer. Indeed, the highest volume well, Wilzetta 1, which injected nearly 4 million cubic m starting in 1999, is also at the northeast end of the zone of epicenters, close to the two Stasta wells. Accordingly, the third hypothesis, favored here, is based on a relationship developed by McGarr (2013, manuscript submitted for publication) that gives the maximum seismic moment as less than or equal to the product of the total volume of injected fluid and the modulus of rigidity. This upper bound is consistent with observations of seismic moments and corresponding injected volumes from numerous case histories during the past 50 years including the Prague sequence for which a total injected volume of 12 million cubic m resulted in a maximum seismic moment of about 3.9e17 Nm.

  18. Estimated effects of projected ground-water withdrawals on movement of the saltwater front in the Floridan aquifer, 1976-2000, west-central Florida

    USGS Publications Warehouse

    Wilson, William Edward

    1982-01-01

    Maps of observed 1976 and simulated 2000 potentiometric surfaces were used to estimate rates of saltwater encroachment and theoretical predevelopment equilibrium positions of the saltwater-freshwater interface in west-central Florida. The observed saltwater front, defined by the 19,000 milligrams-per-liter line of equal chloride concentration in the lower part of the Floridan aquifer, corresponds closely to a theoretical predevelopment equilibrium position of a saltwater-freshwater interface. The interface position was computed by the Ghyben-Herzberg method, using heads from a map of the predevelopment potentiometric surface. In maps of both the observed May 1976 and simulated May 2000 potentiometric surface, the saltwater front was within a large seasonal cone of depression in parts of Hillsborough, Manatee, and Sarasota Counties. Average landward flow rate of the front was computed to be 0.30 foot per day in May 1976 and 0.36 foot per day in May 2000. Seaward potentiometric-surface gradient under simulated October 2000 conditions averaged 8.8 x 10-5 foot per foot less than under observed September 1976 conditions. Regional observation wells are desirable for monitoring potentiometric-level changes in western Hardee County and eastern Manatee County and for monitoring water-quality changes along the saltwater front, on its landward side, from mid-Sarasota County northward to Hillsborough County. Net landward movement of the saltwater front in the lower part of the Floridan aquifer is probably occurring under existing conditions. Pumping during 1976-2000 would probably increase slightly the rate of movement. However, rates are so slow that on a regional basis saltwater encroachment under existing and projected conditions is not presently a threat to the existing freshwater resources. The maximum projected regional landward movement, under 'worst case' conditions, of the saltwater front between 1976 and 2000 is estimated to be about one-half mile. Significant local encroachment could result from (1) ground-water development in the zone of transition and (2) deviations of local hydrogeologic conditions from average regional conditions.

  19. Linkage between fluid-rock-interactions and facial, petrographical, and geochemical properties of Buntsandstein aquifer sandstones of the Thuringian Basin, Central Germany

    NASA Astrophysics Data System (ADS)

    Hilse, U.; Beyer, D.; Kunkel, C.; Aehnelt, M.; Pudlo, D.; Voigt, T.; Gaupp, R.

    2012-04-01

    This study is part of a collaborative research project examining the basin wide movement of fluids in the subsurface (INFLUINS - integrated fluid dynamics in sediment basins). The Lower Triassic Buntsandstein is a major aquifer in Thuringia and adjacent areas in central Germany. The sediments exhibit an overall trend of base level and associated environmental changes. In the Lower Buntsandstein, deposition started with sediments indicating a playa-like setting. The Middle Buntsandstein consists of sediments of wide floodplains with very shallow rivers and eolian reworking in the lower part, and of deeper, long-ranged braided to meandering river systems in the upper part. Outcrop samples and core material were used for investigations and following discussion. For understanding fluid-rock-interactions in these sediments it is important to investigate the linkage between facies, rock composition, and mineral surfaces exposed to the pore space, as well as bulk rock and mineral chemistry. Compared to the clay rich lacustrine sediments of the Lower Buntsandstein the more porous fluvial and eolian sandstones of the Middle Buntsandstein represent better pathways for fluid migration in the present and past. The lacustrine and fluvial sandstones are mostly arkoses and subarkoses, whereas the eolian sandstones are often characterized by quartzarenitic composition. Facies variations and associated compositional differences are reflected in the geochemical composition of the rocks determined by ICP-MS/OES and XRF measurements. Sandstones of the Lower Buntsandstein are characterized by high contents of e.g. Al, Na, K, Fe, and Li, caused by the enrichment of clays and feldspars in the lacustrine sediments. Due to their higher compositional maturity, the fluvial (and eolian) sediments of the Middle Buntsandstein exhibit an increase of stable minerals towards the top, which is also reflected in geochemical data (increasing Si by decreasing Al, Na, K). By scanning electron microscopy and cathodoluminescence four generations of carbonate cements can be distinguish. Depending on fluctuating composition of fluids and varying Eh- and pH-conditions during carbonate precipitation different zones within carbonate cements were formed reflected in distinct manganese and iron content. During uplift descending meteoric waters induce hydration of anhydrite cements to gypsum. Late diagenetic feldspar corrosion due to meteoric influence delivers Al and Si for precipitation of kaolinite minerals (replacement of feldspars). These minerals are found in former feldspars or are transported into underlying sediments precipitating in pore space. Under surface conditions also dissolution of gypsum cements and oxidation of iron took place. Ongoing studies will further verify the effects of fluids on the sediments, which are most likely strongly depending on sedimentary facies and associated petrographical and geochemical features thus determining aquifer characteristics.

  20. Oklahoma's Federally-Recognized Indian Tribes.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City. Indian Education Section.

    This document compiles lesson plans, classroom activities, and facts from previous Oklahoma state publications about Oklahoma's American Indian peoples. "Oklahoma's Indian People: Images of Yesterday, Today, and Tomorrow" contains brief presentations and related class activities and writing assignments about the histories of approximately 29…

  1. Oklahoma Higher Education: Challenging the Conventional Wisdom

    ERIC Educational Resources Information Center

    Denhart, Matthew; Matgouranis, Christopher

    2011-01-01

    A major headline in recent years has been that cash-strapped state governments are cutting back support for many services, including public higher education. Oklahoma is no different. Indeed, in the most recent state budget crafted by Oklahoma policymakers, Oklahoma's public colleges and universities received a 5.8 percent cut in state…

  2. Development and calibration of a ground-water flow model for the Sparta Aquifer of southeastern Arkansas and north-central Louisiana and simulated response to withdrawals, 1998-2027

    USGS Publications Warehouse

    McKee, Paul W.; Clark, Brian R.

    2003-01-01

    The Sparta aquifer, which consists of the Sparta Sand, in southeastern Arkansas and north-central Louisiana is a major water resource and provides water for municipal, industrial, and agricultural uses. In recent years, the demand in some areas has resulted in withdrawals from the Sparta aquifer that substantially exceed replenishment of the aquifer. Considerable drawdown has occurred in the potentiometric surface forming regional cones of depression as water is removed from storage by withdrawals. These cones of depression are centered beneath the Grand Prairie area and the cities of Pine Bluff and El Dorado in Arkansas, and Monroe in Louisiana. The rate of decline for hydraulic heads in the aquifer has been greater than 1 foot per year for more than a decade in much of southern Arkansas and northern Louisiana where hydraulic heads are now below the top of the Sparta Sand. Continued hydraulic-head declines have caused water users and managers alike to question the ability of the aquifer to supply water for the long term. Concern over protecting the Sparta aquifer as a sustainable resource has resulted in a continued, cooperative effort by the Arkansas Soil and Water Conservation Commission, U.S. Army Corps of Engineers, and the U.S. Geological Survey to develop, maintain, and utilize numerical ground-water flow models to manage and further analyze the ground-water system. The work presented in this report describes the development and calibration of a ground-water flow model representing the Sparta aquifer to simulate observed hydraulic heads, documents major differences in the current Sparta model compared to the previous Sparta model calibrated in the mid-1980's, and presents the results of three hypothetical future withdrawal scenarios. The current Sparta model-a regional scale, three-dimensional numerical ground-water flow model-was constructed and calibrated using available hydrogeologic, hydraulic, and water-use data from 1898 to 1997. Significant changes from the previous model include grid rediscretization of the aquifer, extension of the active model area northward beyond the Cane River Formation facies change, and representation of model boundaries. The current model was calibrated with the aid of parameter estimation, a nonlinear regression technique, combined with trial and error parameter adjustment using a total of 795 observations from 316 wells over 4 different years-1970, 1985, 1990, and 1997. The calibration data set provides broad spatial and temporal coverage of aquifer conditions. Analysis of the residual statistics, spatial distribution of residuals, simulated compared to observed hydrographs, and simulated compared to observed potentiometric surfaces were used to analyze the ability of the calibrated model to simulate aquifer conditions within acceptable error. The calibrated model has a root mean square error of 18 feet for all observations, an improvement of more than 12 feet from the previous model. The current Sparta model was used to predict the effects of three hypothetical withdrawal scenarios on hydraulic heads over the period 1998-2027 with one of those extended indefinitely until equilibrium conditions were attained, or steady state. In scenario 1a, withdrawals representing the time period from 1990 to 1997 was held constant for 30 years from 1998 to 2027. Hydraulic heads in the middle of the cone of depression centered on El Dorado decreased by 10 feet from the 1997 simulation to 222 feet below NGVD of 1929 in 2027. Hydraulic heads in the Pine Bluff cone of depression showed a greater decline from 61 feet below NGVD of 1929 to 78 feet below NGVD of 1929 in the center of the cone. With these same withdrawals extended to steady state (scenario 1b), hydraulic heads in the Pine Bluff cone of depression center declined an 2 Development and Calibration of a Ground-Water Flow Model for the Sparta Aquifer of Southeastern Arkansas and North-Central Louisiana and Simulated Response to Withdrawa

  3. Projected ground-water development, ground-water levels, and stream-aquifer leakage in the South Fork Solomon River Valley between Webster Reservoir and Waconda Lake, north-central Kansas, 1979-2020

    USGS Publications Warehouse

    Kume, Jack; Lindgren, R.J.; Stullken, L.E.

    1985-01-01

    A two-dimensional finite difference computer model was used to project changes in the potentiometric surface, saturated thickness, and stream aquifer leakage in an alluvial aquifer resulting from four instances of projected groundwater development. The alluvial aquifer occurs in the South Fork Solomon River valley between Webster Reservoir and Waconda Lake in north-central Kansas. In the first two projections, pumpage for irrigation was held constant at 1978 rates throughout the projection period (1979-2020). In the second two projections, the 1978 pumpage was progressively increased each yr through 2020. In the second and fourth projections, surface water diversions in the Osborne Irrigation Canal were decreased by 50 %. For the third and fourth projections, each grid-block in the modeled area was classified initially as one of six types according to whether it represented irrigable or nonirrigable land, to its saturated thickness, to its location inside or outside the canal-river area, and to its pumping rate. The projected base-flow rates (leakage from the aquifer to the river) were lower during the irrigation season (June, July, and August) than during the other months of the yr because of the decline in hydraulic head produced by groundwater pumpage. Stream depletion, calculated as a decrease below the average (1970-78) estimated winter base-flow rate of 16.5 cu ft/sec, varied inversely with base flow. For the first two projections, a constant annual cycle of well pumpage and recharge was used throughout the projection period. Aquifer leakage to the river was nearly constant by the mid-to-late 1990's, implying that flow conditions had attained a stabilized annual cycle. The third and fourth projections never attained an annual stabilized cycle because the irrigation pumpage rate was increased each year. By the early 1980's, the hydraulic head had fallen below river stage, reversing the hydraulic gradient at the stream-aquifer interface and resulting in net leakage from the river to the aquifer during the summer months. By the early 1990 's, the projected potentiometric surface of the aquifer was lower than the river stage even during the winter and spring months. (Author 's abstract)

  4. Hydrogeology, water quality, and water-resources development potential of the upper Floridan Aquifer in the Valdosta area, south-central Georgia

    USGS Publications Warehouse

    McConnell, J.B.; Hacke, C.M.

    1993-01-01

    Water quality in the Upper Floridan aquifer in the Valdosta, Georgia area is adversely affected by direct recharge from the Withlacoochee River. Water enters the aquifer along a short reach of the river where sinkholes have formed in the stream bed. The water receives little filtration as it recharges the Upper Floridan aquifer through these sinkholes. Naturally occurring organic material in the river provides a readily available source of energy for the growth of microbiota in the aquifer. Microbiological processes and chemical reactions in the aquifer produce methane and hydrogen sulfide as the water from the river mixes with ground water and moves downgradient in the aquifer. Humic substances associated with the organic material in the ground water in this area can form trihalomethanes when the water is chlorinated for public supply. To assess areas most suitable for ground-water supply development, areal distributions of total organic carbon, total sulfide, and methane in the Upper Floridan aquifer were mapped and used to evaluate areas affected by recharge from the Withlacoochee River. Areas where concentrations of total organic carbon, total sulfide, and methane were less than or equal to 2.0 milligrams per liter, 0.5 milligrams per liter, and 100 micrograms per liter, respectively, were considered to be relatively unaffected by recharge from the river and to have the greatest potential for water- resources development.

  5. Quality of Shallow Groundwater and Drinking Water in the Mississippi Embayment-Texas Coastal Uplands Aquifer System and the Mississippi River Valley Alluvial Aquifer, South-Central United States, 1994-2004

    USGS Publications Warehouse

    Welch, Heather L.; Kingsbury, James A.; Tollett, Roland W.; Seanor, Ronald C.

    2009-01-01

    The Mississippi embayment-Texas coastal uplands aquifer system is an important source of drinking water, providing about 724 million gallons per day to about 8.9 million people in Texas, Louisiana, Mississippi, Arkansas, Missouri, Tennessee, Kentucky, Illinois, and Alabama. The Mississippi River Valley alluvial aquifer ranks third in the Nation for total withdrawals of which more than 98 percent is used for irrigation. From 1994 through 2004, water-quality samples were collected from 169 domestic, monitoring, irrigation, and public-supply wells in the Mississippi embayment-Texas coastal uplands aquifer system and the Mississippi River Valley alluvial aquifer in various land-use settings and of varying well capacities as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Groundwater samples were analyzed for physical properties and about 200 water-quality constituents, including total dissolved solids, major inorganic ions, trace elements, radon, nutrients, dissolved organic carbon, pesticides, pesticide degradates, and volatile organic compounds. The occurrence of nutrients and pesticides differed among four groups of the 114 shallow wells (less than or equal to 200 feet deep) in the study area. Tritium concentrations in samples from the Holocene alluvium, Pleistocene valley trains, and shallow Tertiary wells indicated a smaller component of recent groundwater than samples from the Pleistocene terrace deposits. Although the amount of agricultural land overlying the Mississippi River Valley alluvial aquifer was considerably greater than areas overlying parts of the shallow Tertiary and Pleistocene terrace deposits wells, nitrate was rarely detected and the number of pesticides detected was lower than other shallow wells. Nearly all samples from the Holocene alluvium and Pleistocene valley trains were anoxic, and the reducing conditions in these aquifers likely result in denitrification of nitrate. In contrast, most samples from the Pleistocene terrace deposits in Memphis, Tennessee, were oxic, and the maximum nitrate concentration measured was 6.2 milligrams per liter. Additionally, soils overlying the Holocene alluvium and Pleistocene valley trains, generally in areas near the wells, had lower infiltration rates and higher percentages of clay than soils overlying the shallow Tertiary and Pleistocene terrace deposits wells. Differences in these soil properties were associated with differences in the occurrence of pesticides. Pesticides were most commonly detected in samples from wells in the Pleistocene terrace deposits, which generally had the highest infiltration rates and lowest clay content. Median dissolved phosphorus concentrations were 0.07, 0.11, and 0.65 milligram per liter in samples from the shallow Tertiary, Pleistocene valley trains, and Holocene alluvium, respectively. The widespread occurrence of dissolved phosphorus at concentrations greater than 0.02 milligram per liter suggests either a natural source in the soils or aquifer sediments, or nonpoint sources such as fertilizer and animal waste or a combination of natural and human sources. Although phosphorus concentrations in samples from the Holocene alluvium were weakly correlated to concentrations of several inorganic constituents, elevated concentrations of phosphorus could not be attributed to a specific source. Phosphorus concentrations generally were highest where samples indicated anoxic and reducing conditions in the aquifers. Elevated dissolved phosphorus concentrations in base-flow samples from two streams in the study area suggest that transport of phosphorus with groundwater is a potential source contributing to high yields of phosphorus in the lower Mississippi River basin. Water from 55 deep wells (greater than 200 feet deep) completed in regional aquifers of Tertiary age represent a sample of the principal aquifers used for drinking-water supply in the study area. The wells were screened in both confined and

  6. Gaseous Oxidized Mercury Dry Deposition Measurements in Southwestern USA: Comparison between texas, Eastern Oklahoma, and the Four Corners Area

    EPA Science Inventory

    Gaseous oxidized mercury (GOM) dry deposition measurements using aerodynamic surrogate surface passive samplers were collected in central and eastern Texas and eastern Oklahoma, from September 2011 to September 2012.The purpose of this study was to provide an initial characteriza...

  7. Constraints on recent earthquake source parameters, fault geometry and aftershock characteristics in Oklahoma

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Benz, H.; Herrmann, R. B.; Bergman, E. A.; McMahon, N. D.; Aster, R. C.

    2014-12-01

    In late 2009, the seismicity of Oklahoma increased dramatically. The largest of these earthquakes was a series of three damaging events (Mw 4.8, 5.6, 4.8) that occurred over a span of four days in November 2011 near the town of Prague in central Oklahoma. Studies suggest that these earthquakes were induced by reactivation of the Wilzetta fault due to the disposal of waste water from hydraulic fracturing ("fracking") and other oil and gas activities. The Wilzetta fault is a northeast trending vertical strike-slip fault that is a well known structural trap for oil and gas. Since the November 2011 Prague sequence, thousands of small to moderate (M2-M4) earthquakes have occurred throughout central Oklahoma. The most active regions are located near the towns of Stillwater and Medford in north-central Oklahoma, and Guthrie, Langston and Jones near Oklahoma City. The USGS, in collaboration with the Oklahoma Geological Survey and the University of Oklahoma, has responded by deploying numerous temporary seismic stations in the region in order to record the vigorous aftershock sequences. In this study we use data from the temporary seismic stations to re-locate all Oklahoma earthquakes in the USGS National Earthquake Information Center catalog using a multiple-event approach known as hypo-centroidal decomposition that locates earthquakes with decreased uncertainty relative to one another. Modeling from this study allows us to constrain the detailed geometry of the reactivated faults, as well as source parameters (focal mechanisms, stress drop, rupture length) for the larger earthquakes. Preliminary results from the November 2011 Prague sequence suggest that subsurface rupture lengths of the largest earthquakes are anomalously long with very low stress drop. We also observe very high Q (~1000 at 1 Hz) that explains the large felt areas and we find relatively low b-value and a rapid decay of aftershocks.

  8. Groundwater Quality, Age, and Probability of Contamination, Eagle River Watershed Valley-Fill Aquifer, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, L. Niel

    2009-01-01

    The Eagle River watershed is located near the destination resort town of Vail, Colorado. The area has a fastgrowing permanent population, and the resort industry is rapidly expanding. A large percentage of the land undergoing development to support that growth overlies the Eagle River watershed valley-fill aquifer (ERWVFA), which likely has a high predisposition to groundwater contamination. As development continues, local organizations need tools to evaluate potential land-development effects on ground- and surface-water resources so that informed land-use and water management decisions can be made. To help develop these tools, the U.S. Geological Survey (USGS), in cooperation with Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority, conducted a study in 2006-2007 of the groundwater quality, age, and probability of contamination in the ERWVFA, north-central Colorado. Ground- and surface-water quality samples were analyzed for major ions, nutrients, stable isotopes of hydrogen and oxygen in water, tritium, dissolved gases, chlorofluorocarbons (CFCs), and volatile organic compounds (VOCs) determined with very low-level laboratory methods. The major-ion data indicate that groundwaters in the ERWVFA can be classified into two major groups: groundwater that was recharged by infiltration of surface water, and groundwater that had less immediate recharge from surface water and had elevated sulfate concentrations. Sulfate concentrations exceeded the USEPA National Secondary Drinking Water Regulations (250 milligrams per liter) in many wells near Eagle, Gypsum, and Dotsero. The predominant source of sulfate to groundwater in the Eagle River watershed is the Eagle Valley Evaporite, which is a gypsum deposit of Pennsylvanian age located predominantly in the western one-half of Eagle County.

  9. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, Maurice E.

    1986-01-01

    The major Paleozoic artesian aquifers, the aquifers most favorable for continued development, in the Ten Sleep area of the Bighorn Basin of Wyoming are the Tensleep Sandstone, the Madison Limestone and Bighorn Dolomite (Madison-Bighorn aquifer), and the Flathead Sandstone. The minor aquifers include the Goose Egg and Park City Formations (considered in the Ten Sleep area to be the lateral equivalent of the Phosphoria Formation) and the Amsden Formation. Most wells completed in the major and minor aquifers flow at the land surface. Wellhead pressures generally are less than 50 pounds per square inch for the Tensleep Sandstone, 150-250 pounds per square inch for the Madison-Bighorn aquifer, and more than 400 pounds per square inch for the Flathead Sandstone. Flowing wells completed in the Madison-Bighorn aquifer and the Flathead Sandstone yield more than 1,000 gallons per minute. The initial test of one well completed in the Madison-Bighorn aquifer indicated a flow rate of 14,000 gallons per minute. Transmissivities range from 500 to 1,900 feet squared per day for the Madison-Bighorn aquifer and from about 90 to 325 feet squared per day for the Tensleep and Flathead Sandstones. Significant secondary permeability from fracturing in the Paleozoic aquifers allows local upward interformational movement of water, and this affects the altitude of the potentiometric surfaces of the Tensleep Sandstone and the Madison-Bighorn aquifer. Water moves upward from the Tensleep and other formations, through the Goose Egg Formation, to discharge at the land surface as springs. Much of the spring flow is diverted for irrigation or is used for rearing fish. Decreases from original well pressures were not apparent in wells completed in the Tensleep Sandstone or in the Madison-Bighorn aquifer in the study area except for a few wells in or near the town of Ten Sleep. Most wells completed in the Flathead Sandstone, which also are open to the Madison-Bighorn aquifer, show a decrease of pressure from the time of completion to 1978. The decrease of pressure is partly the result of water moving from the Flathead Sandstone into the Madison-Bighorn aquifer, which has a lower potentiometric surface than does the Flathead Sandstone, even during the time the wells are not in operation. Pressure in some small-capacity wells completed in the Goose Egg Formation also has decreased near Ten Sleep. Most of the wells, particularly the irrigation wells, show a progressive decrease in pressure during the irrigation season but recover during periods of nonuse. Measurements of the pressure were made principally in 1953, 1962, 1970, and 1975-78. Well water from the Paleozoic aquifers generally contains minimal concentrations of dissolved solids and individual constituents but excessive hardness. Dissolved-solids concentrations of water are less than 300 milligrams per liter in the Tensleep Sandstone and the Madison-Bighorn aquifer, less than 200 milligrams per liter in the Flathead Sandstone, and as much as 450 milligrams per liter in the Goose Egg Formation. Bicarbonate is the major constituent, followed by calcium and magnesium. Relatively large concentrations of sulfate, as much as 490 milligrams per liter, were found, mainly in water from the Goose Egg Formation. The water has low sodium (alkali) and medium salinity; therefore, the water is satisfactory for irrigation and most other uses, if excessive hardness is not a detrimental factor. Wellhead temperatures range from 11 ? to 27.5 ? Celsius (51 ? to 81.5 ? Fahrenheit) within a range in depth of approximately 250 to 4,000 feet. This gives a geothermal gradient of about 0.44 ? Celsius per 100 feet (0.79 ? Fahrenheit per 100 feet).

  10. Hydrogeochemistry of regional aquifer systems from Tuscany (central Italy): the state of the art before the definition of a geochemical baseline

    NASA Astrophysics Data System (ADS)

    Nisi, Barbara; Battaglini, Raffaele; Raco, Brunella

    2013-04-01

    European Community Water Framework Directive (WFD) and its derivative regulations have recognized the urgent need to adopt specific measures against the contamination of water bodies by individual pollutants that may significantly affect the quality of water itself. Italian regulation takes into account the EU Directives, and charges the regional authorities to create monitoring networks and produce assessment reports on the contamination of groundwater. The knowledge of "natural baseline" for various dissolved elements in groundwaters on a regional scale becomes of primary importance to distinguish natural sources and anthropogenic inputs. The studied area includes the whole Tuscan regional district (central Italy) and covers an area of about 23,000 km2. From a geolithological point of view, Tuscan territory consists of several complexes outcropping regionally, the most typical features being the Mesozoic and Cenozoic carbonate and evaporitic formations, overlain by flysch sequences, as well as granite intrusions and volcanic rocks. Moreover, two geothermal areas (Larderello and Mt. Amiata), a large number of thermal springs and CO2-rich gas vents are mostly present in the central-southern part of Tuscany. Finally in southern Tuscany (e.g. Campiglia M.Ma, Mt. Amiata, Elba Island), mining districts, predominantly characterized by polimetallic sulphides ore deposits, were exploited since the Etruscan time. In this work statistical distribution models are used to develop summary statistics and estimate probabilities of exceeding water-quality standards according to the National Legislative Decree 152/06. Descriptive statistics on solute concentrations are based on geochemical data from the main Tuscan aquifers and investigated by the CNR-IGG (Institute of Geosciences and Earth Resources of Pisa, Italy) and Department of Earth Sciences (University of Florence, Italy). The data processing was carried out on 4,767 water samples collected from 1997 to 2009. According to the National Legislative, the chemical constituents were selected according to a priority interest: As, B, Cd, Cr (VI), F, Hg, Ni, Pb, Sb, Se, V, sulphate and chloride. For each species probability plots in logarithmic scale were computed and the statistical parameters were evaluated for the individual populations as resulting by the procedure of partitioning. Most of the solutes have concentrations that span within 2-3 orders of magnitude, although Ni, SO4 and Cl concentrations show a larger variability (up to 4 orders of magnitude). All the considered variables are mainly characterized by polymodal distributions and composed by more than one population. High concentration populations, exceeding water-quality standards, are generally recognized for SO4, As, B, Cd, Cr(VI), F, Hg, Ni, Pb and Se.

  11. Water quality of the Ogallala Formation, central High Plains aquifer within the North Plains Groundwater Conservation District, Texas Panhandle, 2012-13

    USGS Publications Warehouse

    Baldys, Stanley; Haynie, Monti M.; Beussink, Amy M.

    2014-01-01

    In cooperation with the North Plains Groundwater Conservation District (NPGCD), the U.S. Geological Survey collected and analyzed water-quality samples at 30 groundwater monitor wells in the NPGCD in the Texas Panhandle. All of the wells were completed in the Ogallala Formation of the central High Plains aquifer. Samples from each well were collected during February–March 2012 and in March 2013. Depth to groundwater in feet below land surface was measured at each well before sampling to determine the water-quality sampling depths. Water-quality samples were analyzed for physical properties, major ions, nutrients, and trace metals, and 6 of the 30 samples were analyzed for pesticides. There was a strong relation between specific conductance and dissolved solids as evidenced by a coefficient of determination (R2) value of 0.98. The dissolved-solids concentration in water from five wells exceeded the secondary drinking-water standard of 500 milligrams per liter set by the U.S. Environmental Protection Agency. Water from 3 of these 5 wells was near the north central part of the NPGCD. Nitrate values exceeded the U.S. Environmental Protection Agency maximum contaminant level of 10 milligrams per liter in 2 of the 30 wells. A sodium-adsorption ratio of 23.4 was measured in the sample collected from well Da-3589 in Dallam County, with the next largest sodium-adsorption ratio measured in the sample collected from well Da-3588 (12.5), also in Dallum County. The sodium-adsorption ratios measured in all other samples were less than 10. The groundwater was generally a mixed cation-bicarbonate plus carbonate type. Twenty-three trace elements were analyzed, and no concentrations exceeded the secondary drinking-water standard or maximum contaminant level set by the U.S. Environmental Protection Agency for water supplies. In 2012, 6 of the 30 wells were sampled for commonly used pesticides. Atrazine and its degradate 2-Chloro-4-isopropylamino-6-amino-s-triazine were detected in two samples. Tebuthiuron was detected in one sample at a detection level below the reporting level but above the long-term method detection level. There were no detections of the glyphosate, aminomethylphosphonic acid (AMPA), or glufosinate.

  12. Oklahoma Kids Count Factbook, 2002.

    ERIC Educational Resources Information Center

    Ingraham, Sandy

    This Kids Count Factbook details county and statewide trends in the well-being of children in Oklahoma. The statistical portrait is based on seven indicators or benchmarks of child well-being: (1) low birthweight infants; (2) infant mortality; (3) births to young teens; (4) child abuse and neglect; (5) child and teen death; (6) high school…

  13. Oklahoma Kids Count Factbook, 1999.

    ERIC Educational Resources Information Center

    Ingraham, Sandy

    This Kids Count Factbook details county and statewide trends in the well-being of Oklahoma's children. The statistical portrait is based on eight indicators of child well-being: (1) low birth weight infants; (2) infant mortality; (3) births to young teens; (4) child abuse and neglect; (5) child and teen death; (6) child poverty; (7) high school

  14. Oklahoma Kids Count Factbook '97.

    ERIC Educational Resources Information Center

    Oklahoma Inst. for Child Advocacy, Inc., Oklahoma City. Oklahoma Kids Count.

    This Kids Count report details county and statewide trends in the well-being of Oklahoma's children. The statistical report is based on eight indicators of child well being: (1) economic distress; (2) percent low birthweight infants; (3) infant mortality rate; (4) births to teens; (5) child abuse and neglect rates; (6) child and teen death rate;

  15. Oklahoma Kids Count Factbook '98.

    ERIC Educational Resources Information Center

    Oklahoma Inst. for Child Advocacy, Inc., Oklahoma City. Oklahoma Kids Count.

    This Kids Count report details county and statewide trends in the well-being of Oklahoma's children. The statistical portrait is based on eight indicators of child well-being: (1) low birthweight infants; (2) infant mortality; (3) births to teens; (4) child abuse and neglect; (5) child death; (6) child poverty; (7) high school dropouts; and (8)

  16. Oklahoma Kids Count Factbook '96.

    ERIC Educational Resources Information Center

    Ingraham, Sandy

    This data book presents findings of the Kids Count Project on current conditions faced by Oklahoma children age birth through 18. This second annual factbook organizes state and county data over a period of time to enable conditions for children in each county to be compared and ranked. The benchmark indicators studied include low birthweight

  17. Oklahoma Kids Count Factbook, 2001.

    ERIC Educational Resources Information Center

    Ingraham, Sandy

    This Kids Count Factbook details county and statewide trends in the well-being of Oklahoma's children. The statistical portrait is based on seven indicators or benchmarks of child well-being: (1) low birth weight infants; (2) infant mortality; (3) births to young teens; (4) child abuse and neglect; (5) child and teen death; (6) high school…

  18. Status of water levels and selected water-quality conditions in the Sparta and Memphis aquifers in eastern and south-central Arkansas, 1999

    USGS Publications Warehouse

    Joseph, Robert L.

    2000-01-01

    During the spring of 1999, water levels were measured in the Sparta and Memphis aquifers in 321 wells in eastern and south-central Arkansas. Water samples were collected during the spring and summer of 1999 from wells completed in these aquifers. The specific conductance of the ground water was measured from 147 samples and dissolved chloride was measured from 98 samples. Maps of areal distribution of potentiometric surface and specific conductance generated from these data reveal spatial trends across the study area. The altitude of the potentiometric surface ranged from 214 feet below sea level in Union County to 332 feet above sea level in Grant County. The regional direction of ground-water flow in Arkansas is from the north and west to the south and east, away from the recharge zone in the outcrop and subcrop area, except near areas affected by intense ground-water withdrawals; such areas are characterized by large cones of depression centered in Columbia, Jefferson, and Union Counties. Heavy pumpage locally has altered or reversed the natural direction of flow in some areas. Flow in these areas is toward the cones of depression at the center of pumping. Comparison of potentiometric surface maps through time shows that the cones of depression in Columbia and Union Counties are coalescing at or near the Columbia and Union County line. Long-term hydrographs of 20 wells indicate trends of water-level decline over a 31-year period. During the period 1969-1999, average water-level declines generally were less than 0.7 foot per year in Craighead, Drew, Lee, Ouachita, and Phillips Counties, and between 0.7 and 1.1 feet per year in Bradley, Cleveland, Cross, Dallas, Poinsett, and Prairie Counties. Analysis of water-level data from Calhoun, Desha, Jefferson, Lonoke, Lincoln, and Union Counties indicates water levels declined between 1.1 and 2.0 feet per year since 1969. Water levels in Arkansas and Columbia Counties have declined more than 2.0 feet per year for the past 31 years. Water-level data from counties with cones of depressions indicate that water levels continued to decline in three cones of depression from 1995 to 1999; however, water levels increased in one cone of depression. Water levels declined an average of 2.5 feet per year in Union County, 1.4 feet per year in Jefferson County, and 1.7 feet per year in Cross County since 1995. One relatively new cone of depression has formed in Arkansas County. Water levels declined 4.0 feet per year in Arkansas County since 1995. However, water levels appear to be increasing in Columbia County where the same 11 wells were monitored in 1995 and 1999, and the water levels increased at a rate of 0.6 foot per year. Specific conductance measurements made on water samples collected during the study ranged from 44 microsiemens per centimeter at 25 degrees Celsius at a well in Ouachita County to 1,510 microsiemens per centimeter at 25 degrees Celsius at a well in Lee County. Dissolved chloride concentrations ranged from 1.1 milligram per liter at a well in Lincoln County to 220 milligrams per liter at a well in Union County.

  19. AQUIFER TRANSMISSIVITY

    EPA Science Inventory

    Evaluation of groundwater resources requires the knowledge of the capacity of aquifers to store and transmit ground water. This requires estimates of key hydraulic parameters, such as the transmissivity, among others. The transmissivity T (m2/sec) is a hydrauli...

  20. Estimating Groundwater Concentrations from Mass Releases to the Aquifer at Integrated Disposal Facility and Tank Farm Locations Within the Central Plateau of the Hanford Site

    SciTech Connect

    Bergeron, Marcel P.; Freeman, Eugene J.

    2005-06-09

    This report summarizes groundwater-related numerical calculations that will support groundwater flow and transport analyses associated with the scheduled 2005 performance assessment of the Integrated Disposal Facility (IDF) at the Hanford Site. The report also provides potential supporting information to other ongoing Hanford Site risk analyses associated with the closure of single-shell tank farms and related actions. The IDF 2005 performance assessment analysis is using well intercept factors (WIFs), as outlined in the 2001 performance assessment of the IDF. The flow and transport analyses applied to these calculations use both a site-wide regional-scale model and a local-scale model of the area near the IDF. The regional-scale model is used to evaluate flow conditions, groundwater transport, and impacts from the IDF in the central part of the Hanford Site, at the core zone boundary around the 200 East and 200 West Areas, and along the Columbia River. The local-scale model is used to evaluate impacts from transport of contaminants to a hypothetical well 100 m downgradient from the IDF boundaries. Analyses similar to the regional-scale analysis of IDF releases are also provided at individual tank farm areas as additional information. To gain insight on how the WIF approach compares with other approaches for estimating groundwater concentrations from mass releases to the unconfined aquifer, groundwater concentrations were estimated with the WIF approach for two hypothetical release scenarios and compared with similar results using a calculational approach (the convolution approach). One release scenario evaluated with both approaches (WIF and convolution) involved a long-term source release from immobilized low-activity waste glass containing 25,550 Ci of technetium-99 near the IDF; another involved a hypothetical shorter-term release of {approx}0.7 Ci of technetium over 600 years from the S-SX tank farm area. In addition, direct simulation results for both release scenarios were provided to compare with the results of the WIF and convolution approaches.

  1. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, M.E.

    1985-01-01

    Major Paleozoic artesian aquifers in the southeastern Bighorn Basin of Wyoming area, in descending order, the Tensleep Sandstone; the Madison Limestone and Bighorn Dolomite, which together form the Madison-Bighorn aquifer; and the Flathead Sandstone. Operating yields commonly are more than 1,000 gallons per minute from flowing wells completed in the Madison-Bighorn aquifer. The initial test of one well indicated a flow of 14,000 gallons per minute. Wellhead pressures range from less than 50 to more than 400 pounds per square inch. Transmissivities are 500-1,900 feet squared per day for the Madison-Bighorn aquifer and 90-325 feet squared per day for the Tensleep and Flathead Sandstones. Despite extensive development for irrigation there have been few decreases in pressure. Some decreases in pressure have occurred in wells completed in the Flathead Sandstone. Fractures along linear structural features result in significant secondary permeability and allow upward interformational movement of water that affects the altitude of the potentiometric surfaces in the Tensleep Sandstone and Madison-Bighorn aquifer. Upward-moving water from the Tensleep and other formations discharges at the land surface as springs along or near these lineations. Water from the aquifers generally contains minimal concentrations of dissolved solids and individual constituents but has excessive hardness. The water is satisfactory for irrigation and other purposes when hardness is not a detrimental factor. Wellhead temperatures range from 11 degrees to 27.5 degrees C, giving a geothermal gradient of about 0.44 degrees C per 100 feet. (USGS)

  2. Hydrologic and chemical interaction of the Arkansas River and the Equus Beds aquifer between Hutchinson and Wichita, south-central Kansas

    USGS Publications Warehouse

    Myers, N.C.; Hargadine, G.D.; Gillespie, Joe B.

    1996-01-01

    Large chloride concentrations in Arkansas River water may degrade water quality in the adjacent Equus beds aquifer. A ground-water flow-model program (MODFLOW) was used to simulate hydrologic interaction of the Arkansas River and the Equus beds aquifer. A particle-tracking program (MODPATH) was used to simulate the movement of chloride from the river through the aquifer. Model-simulation results indicate that declining water levels in the Equus beds aquifer have caused net base-flow gains in the Arkansas and Little Arkansas Rivers to decrease from about 21 and 67 ft3/s (cubic feet per second), respectively, in 1940 to about -52 and 27 ft3/s, respectively, by the end of 1989. In hypothetical simulations (1990-2019) where only pumpage varied, net base-flow loss from the Arkansas River ranged from about 59 to 117 ft3/s for no increase in pumpage and a 3-percent per year increase in pumpage since 1989, respectively. Estimated chloride discharge from the Arkansas River Iassuming a chloride concentration of 630 milligrams per liter) to the aquifer increased from about 21 ton/d (tons per day) in 1940 to about 100 ton/d by the end of 1989 and was estimated to range from about 110 to 200 ton/d by 2019, depending on pumpage and climate conditions. Particle-tracking simulations show that the distribution of particles representing chloride from the Arkansas River expanded from relatively narrow bands near the river to a wider distribution within the aquifer, and may have reached the edge of the Wichita well field by 1963.

  3. Digital-simulation and projection of water-level declines in basalt aquifers of the Odessa-Lind area, east-central Washington

    USGS Publications Warehouse

    Luzier, J.E.; Skrivan, James A.

    1975-01-01

    A digital computer program using finite-difference techniques simulates an intensively pumped, multilayered basalt-aquifer system near Odessa. The aquifers now developed are in the upper 1,000 feet of a regionally extensive series of southwesterly dipping basalt flows of the Columbia River Group. Most of the aquifers are confined. Those in the depth range of about 500 to 1,000 feet are the chief source of ground water pumped from irrigation wells. Transmissivity of these aquifers ranges from less than 2,700 feet squared per day to more than 40,000 feet squared per day, and storage coefficients range from 0.0015 to 0.006. Shallower aquifers are generally much less permeable, but they are a source of recharge to deeper aquifers with lower artesian heads; vertical leakage occurs along joints in the basalt and down uncased wells, which short circuit the aquifer system. For model analysis, the deeper, pumped aquifers were grouped and treated as a single layer with drawdown-dependent leakage from an overlying confining layer. Verification of the model was achieved primarily by closely matching observed pumpage-related head declines ranging from about 10 feet to more than 40 feet over the 4-year period from March 1967 to March 1971. Projected average annual rates of decline in the Odessa-Lind area during the 14-year period from March 1967 to March 1981 are: from 1 to 9 feet per year if pumpage is maintained at the 1970 rate of 117,000 acre-feet per year; or, from 3 to 33 feet per year if 1970 pumpage is increased to 233,000 acre-feet per year, which includes 116,000 acre-feet per year covered by water-right applications held in abeyance. In each case, projected drawdown on the northeast side of a major ground-water barrier is about double that on the southwest side because of differences in transmissivity and storage coefficient and in sources of recharge.

  4. Fault control on the hydrogeological setting of the Sibillini Mountains aquifers (Central Apennines, Italy): an example of hydrogeological structures in thrust-belt contexts

    NASA Astrophysics Data System (ADS)

    Tarragoni, C.

    2012-04-01

    This work is aimed at highlighting the importance of fault control on the hydrogeological setting in orogenic areas. In Sibillini Montains, Umbrian-Marchean pelagic succession outcrops. This succession, characterized by calcareous, calcareous-marly and silicate could presents condensed succession and is involved in fold and overthrust deformation, followed by a development of normal faults. The lithostratigraphical and structural study allowed defining the aquifer settings. Several cross-sections have been drawn to identify the three-dimensional geological setting and aquifer's boundaries that consist on: lithological limit between permeable and very low permeable complexes and structural features (groundwater divide and faults). The analyses of principals structural features (e.g. overthrust) have allowed to identify the prominent groundwater flow direction: the Sibillini Montains, Monte Val di Fibbia-P.ta Bambucerta and Visso overthrusts represent three important inverse faults oriented NNW-SSE having aquiclude role due to the high displacement. The altitude gradual decrease forward N of aquiclude handing aquifers combined to Apennine orientation of overthrusts induce a SSE-NNW groundwater flow. A detailed analysis of base flow has allowed to: 1) define the river's base flow; 2) recognize the punctual, diffused and linear springs; 3) quantify the water resource on average drained; and 4) determine the discharge regime of springs and rivers. The geologic-structural analyses with the quantitative hydrogeological studies have allowed to prepare the Conceptual Hydrogeological Model (CHM) and to calculate the hydrogeological balance for each aquifer. This double approach let to carry out a detailed study and make out hypotheses about groundwater circulation for each aquifer. These hypotheses represent the bases for the groundwater modelling that could give an important contribute to confirm or not them. The CHM of main aquifer has been adopted to carry out the groundwater numerical simulation. Modelling validation has been performed through the matching between the experimental and calculated discharge values, between the piezometric field and topography (the calculated piezometric field always resulting above the spring altitude and below the hydrographical network without base flow) and between the piezometric field and altitude of aquiclude that limits the aquifer. If one of these three conditions is not verified the model is not realistic and the hypotheses must be rejected. In two cases the modelling results suggested a revision of the assumptions and only through a depth structural analysis has been possible to estimate the real role of Vettore Mont normal fault and recognize a secondary fault that divide an aquifer. In conclusion this study represents an example of necessary combination between structural and hydrogeological analyses and underlines the importance of information exchange and/or cooperation to allow the 3-D reconstruction of hydrogeological setting.

  5. 78 FR 32007 - Environmental Impact Statement for Tulsa-Oklahoma City Passenger Rail Corridor, Oklahoma, Lincoln...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... implementing NEPA and the FRA's Procedures for Considering Environmental Impacts as set forth in 64 FR 28545... Corridor, Oklahoma, Lincoln, Creek, and Tulsa Counties, OK AGENCY: Federal Railroad Administration (FRA... Investment Plan in Oklahoma, Lincoln, Creek, and Tulsa counties, Oklahoma. The EIS will evaluate...

  6. What Works in Oklahoma Schools: A Comprehensive Needs Assessment of Oklahoma Schools. Phase II State Report

    ERIC Educational Resources Information Center

    Marzano Research Laboratory, 2010

    2010-01-01

    Phase II provides a more detailed examination of classroom variables important to achievement in Oklahoma schools. Where Phase I addressed all nine of the Oklahoma essential elements using survey data, Phase II focuses on what occurs in Oklahoma classrooms primarily using data from principal interviews, classroom observations (on-site), and video…

  7. Hydrogeology of Ljubljana polje perched aquifers

    NASA Astrophysics Data System (ADS)

    Šram, D.; Brenčič, M.

    2012-04-01

    Ljubljana polje aquifer lies in central part of Slovenia and is one of the biggest and most important aquifers in Slovenia. Aquifer was formed in quaternary basin which was filled with sediments from local rivers. River Sava is the biggest and the most important among them. Thickness of the aquifer varies from 20 m to 100 m. In general it is an unconfined aquifer, but locally, between gravel and sand sediments which have good hydraulic conductivity, layers with low hydraulic conductivity, such as silt and clay, appear. Those layers or lenses can form perched aquifers. Perched aquifers are important for prevention of pollution of the main aquifer and also for the water recharge in the time periods with high precipitation. The perched aquifers were located by boreholes, while their spatial distribution has not been studied yet. Within the project INCOME all the existing lithological borehole logs were collected and analysed with Jewel Suite 2011 software. A geostatistical method sequential indicator simulation was used to create spatial distribution of five hydrofacies at the Ljubljana polje aquifer. The layers/lenses that are bigger than 0.07 km2 and have hydraulic conductivity lower than K = 10-7 m/s were defined as lenses that can potentially form perched aquifers. In the modelling area, two areas with higher concentration of lenses with low hydraulic conductivity were defined. At those areas, according to the borehole data, perched aquifers appear few meters below surface to the depth around 30 m. At the other parts of the model area lenses with low hydraulic conductivity are less abundant. With spatial information (lateral and vertical extension) of perched aquifers in Ljubljana polje improvement of existing hydrogeological models can be made which can help to improve the qualitative and quantitative status of the Ljubljana polje main aquifer.

  8. Aerobiology of Juniperus Pollen in Oklahoma, Texas, and New Mexico

    NASA Technical Reports Server (NTRS)

    Levetin, Estelle; Bunderson, Landon; VandeWater, Pete; Luvall, Jeff

    2014-01-01

    Pollen from members of the Cupressaceae are major aeroallergens in many parts of the world. In the south central and southwest United States, Juniperus pollen is the most important member of this family with J. ashei (JA) responsible for severe winter allergy symptoms in Texas and Oklahoma. In New Mexico, pollen from J. monosperma (JM) and other Juniperus species are important contributors to spring allergies, while J. pinchotii (JP) pollinates in the fall affecting sensitive individuals in west Texas, southwest Oklahoma and eastern New Mexico. Throughout this region, JA, JM, and JP occur in dense woodland populations. Generally monitoring for airborne allergens is conducted in urban areas, although the source for tree pollen may be forested areas distant from the sampling sites. Improved pollen forecasts require a better understanding of pollen production at the source. The current study was undertaken to examine the aerobiology of several Juniperus species at their source areas for the development of new pollen forecasting initiatives.

  9. Hydrogeologic investigation and simulation of ground-water flow in the Upper Floridan Aquifer of north-central Florida and southwestern Georgia and delineation of contributing areas for selected city of Tallahassee, Florida, water-supply wells

    USGS Publications Warehouse

    Davis, Hal

    1996-01-01

    A 4-year investigation of the Upper Floridan aquifer and ground-water flow system in Leon County, Florida, and surrounding counties of north-central Florida and southwestern Georgia began in 1990. The purpose of the investigation was to describe the ground-water flow system and to delineate the contributing areas to selected City of Tallahassee, Florida, water-supply wells. The investigation was prompted by the detection of low levels of tetrachloroethylene in ground-water samples collected from several of the city's water-supply wells. Hydrologic data and previous studies indicate that; ground-water flow within the Upper Floridan aquifer can be considered steady-state; the Upper Floridan aquifer is a single water-bearing unit; recharge is from precipitation; and that discharge occurs as spring flow, leakage to rivers, leakage to the Gulf of Mexico, and pumpage. Measured transmissivities of the aquifer ranged from 1,300 ft2/d (feet squared per day) to 1,300,000 ft2/d. Steady-state ground-water flow in the Upper Floridan aquifer was simulated using a three-dimensional ground- water flow model. Transmissivities ranging from less than 5,000 ft2/d to greater than 11,000,000 ft2/d were required to calibrate to observed conditions. Recharge rates used in the model ranged from 18.0 inches per year in areas where the aquifer was unconfined to less than 2 inches per year in broad areas where the aquifer was confined. Contributing areas to five Tallahassee water-supply wells were simulated by particle- tracking techniques. Particles were seeded in model cells containing pumping wells then tracked backwards in time toward recharge areas. The contributing area for each well was simulated twice, once assuming a porosity of 25 percent and once assuming a porosity of 5 percent. A porosity of 25 percent is considered a reasonable average value for the Upper Floridan aquifer; the 5 percent porosity simulated the movement of ground-water through only solution-enhanced bedding plains and fractures. The contributing areas were generally elliptical in shape, reflecting the influence of the sloping potentiometric surface. The contributing areas delineated for a 5 percent porosity were always much larger than those determined using a 25 percent porosity. The lowest average ground-water velocity computed within a contributing area, using a 25 percent porosity, was 1.0 ft/d (foot per day) and the highest velocity was 1.6 ft/d. The lowest average ground-water velocity, determined using a 5 percent porosity, was 2.4 ft/d and the highest was 7.4 ft/d. The contributing areas for each of the five wells was also determined analytically and compared to the model-derived areas. The upgradient width of the simulated contributing areas were larger than the upgradient width of the analytically determined contributing areas for four of the five wells. The model could more accurately delineate contributing areas because of the ability to simulate wells as partially penetrating and by incorporating complex, three-dimensional aquifer characteristics, which the analytical method could not.

  10. Geothermal resource assessment in Oklahoma

    NASA Astrophysics Data System (ADS)

    Prater, M. L.; Cheung, P. K.; Luza, K. V.; Harrison, W. E.

    1981-10-01

    In September 1980, the Oklahoma Geological Survey began a program to assess the geothermal potential of the state. The program, thus far, consists of: the preparation of a detailed geothermal-gradient map of Oklahoma at a scale of 1:500,000; and site-specific investigations of gradient and subsurface conditions in areas that appear to have geothermal potential. Two areas where recent mapping showed the high gradients (2.10F/100 feet) were selected for detailed study. These areas are in Haskell and Pittsburgh Counties. Volume was estimated as was deliverability of formation water potentially available from several sandstone units for geothermal applications. The Spiro and Cromwell sands were chosen for the Pittsburgh anomaly.

  11. Analyses of Water-Level Differentials and Variations in Recharge between the Surficial and Upper Floridan Aquifers in East-Central and Northeast Florida

    USGS Publications Warehouse

    Murray, Louis C., Jr.

    2007-01-01

    Continuous (daily) water-level data collected at 29 monitoring-well cluster sites were analyzed to document variations in recharge between the surficial (SAS) and Floridan (FAS) aquifer systems in east-central and northeast Florida. According to Darcy's law, changes in the water-level differentials (differentials) between these systems are proportional to changes in the vertical flux of water between them. Variations in FAS recharge rates are of interest to water-resource managers because changes in these rates affect sensitive water resources subject to minimum flow and water-level restrictions, such as the amount of water discharged from springs and changes in lake and wetland water levels. Mean daily differentials between 2000-2004 ranged from less than 1 foot at a site in east-central Florida to more than 114 feet at a site in northeast Florida. Sites with greater mean differentials exhibited lower percentage-based ranges in fluctuations than did sites with lower mean differentials. When averaged for all sites, differentials (and thus Upper Floridan aquifer (UFA) recharge rates) decreased by about 18 percent per site between 2000-2004. This pattern can be associated with reductions in ground-water withdrawals from the UFA that occurred after 2000 as the peninsula emerged from a 3-year drought. Monthly differentials exhibited a well-defined seasonal pattern in which UFA recharge rates were greatest during the dry spring months (8 percent above the 5-year daily mean in May) and least during the wetter summer/early fall months (4 percent below the 5-year daily mean in October). In contrast, differentials exceeded the 5-year daily mean in all but 2 months of 2000, indicative of relatively high ground-water withdrawals throughout the year. On average, the UFA received about 6 percent more recharge at the project sites in 2000 than between 2000-2004. No statistically significant correlations were detected between monthly differentials and precipitation at 27 of the 29 sites between 2000-2004. For longer periods of record, double-mass plots of differentials and precipitation indicate the UFA recharge rate increased by about 34 percent at a site in west Orange County between the periods of 1974-1983 and 1983-2004. Given the absence of a trend in rainfall, the increase can likely be attributed to ground-water development. At a site in south Lake County, double-mass plots indicate that dredging of the Palatlakaha River and other nearby drainage improvements may have reduced recharge rates to the UFA by about 30 percent from the period between 1960-1965 to 1965-1970. Water-level differentials were positively correlated with land-surface altitude. The correlation was particularly strong for the 11 sites located in physiographically-defined ridge areas (coefficient of determination (R2) = 0.89). Weaker yet statistically significant negative correlations were detected between differentials and the model-calibrated leakance and thickness of the intermediate confining unit (ICU). Recharge to the UFA decreased by about 14 percent at the Charlotte Street monitoring-well site in Seminole County between 2000-2004. The decrease can be attributed to a reduction in nearby pumpage, from 57 to 49 million gallons per day over the 5-year period, with a subsequent recovery in UFA water levels that exceeded those in the SAS. Differentials at Charlotte were influenced by system memory of both precipitation and pumpage. While not statistically correlated with monthly precipitation, monthly differentials were well correlated with the 9-month moving average of precipitation. Similarly, differentials were best correlated with the 2-month moving average of pumpage. The polynomial function that quantifies the correlation between differentials and the 2-month moving average of pumpage indicates that, in terms of UFA recharge rates, the system was closer to a steady-state condition in 2000 when pumpage rates were high, than from 2001-2004 when p

  12. Geothermal resource assessment in Oklahoma

    SciTech Connect

    Harrison, W.E.; Luza, K.V.; Prater, M.L.; Cheung, P.K.; Ruscetta, C.A.

    1982-07-01

    The procedures and methods used to develop a geothermal gradient map of Oklahoma are discussed. Two areas, Haskell and Pittsburg Counties, in the Arkoma Basin, are discussed in detail. Three sandstone units, the Spiro, Cromwell, and Hartshorne were selected as potential low-temperature geothermal water sources. The average temperature ranged from 103/sup 0/F at Hartshorne to 158/sup 0/F at Cromwell. (MJF)

  13. MORPHOLOGICAL AND CULTURAL COMPARISON OF MICROORGANISMS IN SURFACE SOIL AND SUBSURFACE SEDIMENTS AT A PRISTINE STUDY SITE IN OKLAHOMA (JOURNAL VERSION)

    EPA Science Inventory

    Surface-soil and subsurface microfloras at the site of a shallow aquifer in Oklahoma were examined and compared with respect to (1) total and viable cell numbers, (2) colony and cell types that grew on various plating media, (3) cell morphologies seen in flotation films stripped ...

  14. Environmental isotopes and noble gases in the deep aquifer system of Kazan Trona Ore Field, Ankara, central Turkey and links to paleoclimate

    NASA Astrophysics Data System (ADS)

    Arslan, Sebnem; Yazicigil, Hasan; Stute, Martin; Schlosser, Peter

    2013-03-01

    Environmental isotopes and noble gases in groundwater samples from the Kazan Trona Ore Field are studied to establish the temperature change between the Holocene and the late Pleistocene. Noble gas temperatures (NGTs) presented in this study add an important facet to the global paleotemperature map in the region between Europe and North Africa. The groundwater system under investigation consists of three different aquifers named shallow, middle and deep in which δ18O and δ2H vary from - 8.10‰ to - 12.80‰ and from - 60.89‰ to - 92.60‰ VSMOW, respectively. The average isotopic depletion between unconfined and confined parts of the system is - 2.5‰ in δ18O and - 20‰ in δ2H. It is not possible to explain this depletion solely with the elevation effect. Recharge temperatures derived from dissolved atmospheric noble gases reflect the current average yearly ground temperatures (13°C) for samples collected near the recharge area but are 3 to 8°C lower than today's temperatures in the deep aquifer system. Low 14C activities and high He excesses in the confined parts of the aquifer system suggest that the water in the deep aquifer was recharged during the last Pleistocene under considerably cooler climatic conditions.

  15. Regional ground-water-flow models of surficial sand and gravel aquifers along the Mississippi River between Brainerd and St. Cloud, central Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.; Cowdery, T.K.

    2004-01-01

    Calibrated values of horizontal hydraulic conductivity and areal recharge for the aquifer in a southern model area were 70 m/d and 6.0x10-4 m/d, respectively. This model was sensitive mostly to horizontal hydraulic conductivity. Net areal recharge and ground-water discharge to perennial streams were the major sources of net inflow and outflow, respectively.

  16. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    USGS Publications Warehouse

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per capita water use for exempt wells. Accuracy of the simulated groundwater-flow system was evaluated by using observational control from water levels in wells, estimates of base flow from streamflow records, and estimates of spring discharge. Major results from the simulations include the importance of variations in recharge rates throughout the study area and recharge along ephemeral and losing stream reaches in alluvial basins. Insights about the groundwater-flow systems in individual basins include the hydrologic influence of geologic structures in some areas and that stream-aquifer interactions along the lower part of the Little Colorado River are an effective control on water level distributions throughout the Little Colorado River Plateau basin. Better information on several aspects of the groundwater flow system are needed to reduce uncertainty of the simulated system. Many areas lack documentation of the response of the groundwater system to changes in withdrawals and recharge. Data needed to define groundwater flow between vertically adjacent water-bearing units is lacking in many areas. Distributions of recharge along losing stream reaches are poorly defined. Extents of aquifers and alluvial lithologies are poorly defined in parts of the Big Chino and Verde Valley sub-basins. Aquifer storage properties are poorly defined throughout most of the study area. Little data exist to define the hydrologic importance of geologic structures such as faults and fractures. Discharge of regional groundwater flow to the Verde River is difficult to identify in the Verde Valley sub-basin because of unknown contributions from deep percolation of excess surface water irrigation.

  17. Geochemical Effects of Induced Stream-Water and Artificial Recharge on the Equus Beds Aquifer, South-Central Kansas, 1995-2004

    USGS Publications Warehouse

    Schmidt, Heather C. Ross; Ziegler, Andrew C.; Parkhurst, David L.

    2007-01-01

    Artificial recharge of the Equus Beds aquifer is part of a strategy implemented by the city of Wichita, Kansas, to preserve future water supply and address declining water levels in the aquifer of as much as 30 feet caused by withdrawals for water supply and irrigation since the 1940s. Water-level declines represent a diminished water supply and also may accelerate migration of saltwater from the Burrton oil field to the northwest and the Arkansas River to the southwest into the freshwater of the Equus Beds aquifer. Artificial recharge, as a part of the Equus Beds Ground-Water Recharge Project, involves capturing flows larger than base flow from the Little Arkansas River and recharging the water to the Equus Beds aquifer by means of infiltration or injection. The geochemical effects on the Equus Beds aquifer of induced stream-water and artificial recharge at the Halstead and Sedgwick sites were determined through collection and analysis of hydrologic and water-quality data and the application of statistical, mixing, flow and solute-transport, and geochemical model simulations. Chloride and atrazine concentrations in the Little Arkansas River and arsenic concentrations in ground water at the Halstead recharge site frequently exceeded regulatory criteria. During 30 percent of the time from 1999 through 2004, continuous estimated chloride concentrations in the Little Arkansas River at Highway 50 near Halstead exceeded the Secondary Drinking-Water Regulation of 250 milligrams per liter established by the U.S. Environmental Protection Agency. Chloride concentrations in shallow monitoring wells located adjacent to the stream exceeded the drinking-water criterion five times from 1995 through 2004. Atrazine concentrations in water sampled from the Little Arkansas River had large variability and were at or near the drinking-water Maximum Contaminant Level of 3.0 micrograms per liter as an annual average established by the U.S. Environmental Protection Agency. Atrazine concentrations were much smaller than the drinking-water criterion and were detected at much smaller concentrations in shallow monitoring wells and diversion well water located adjacent to the stream probably because of sorption on aquifer sediment. Before and after artificial recharge, large, naturally occurring arsenic concentrations in the recharge water for the Halstead diversion well and recharge site exceeded the Maximum Contaminant Level of 10 micrograms per liter established by the U.S. Environmental Protection Agency for drinking water. Arsenic and iron concentrations decreased when water was recharged through recharge basins or a trench; however, chemical precipitation and potential biofouling eventually may decrease the artificial recharge efficiency through basins and trenches. At the Sedgwick site, chloride concentrations infrequently exceeded regulatory criteria. Large concentrations of atrazine were treated to decrease concentrations to less than regulatory criteria. Recharge of treated stream water through recharge basins avoids potentially large concentrations of arsenic and iron that exist at the Halstead diversion site. Results from a simple mixing model using chloride as a tracer indicated that the water chemistry in shallow monitoring well located adjacent to the Little Arkansas River was 80 percent of stream water, demonstrating effective recharge of the alluvial aquifer by the stream. Results also indicated that about 25 percent of the water chemistry of the diversion well water was from the shallow part of the aquifer. Additionally, diverting water through a diversion well located adjacent to the stream removed about 75 percent of the atrazine, probably through sorption to aquifer sediment, and decreased the need for additional water treatment to remove atrazine. A flow and solute-transport model was developed using water-level and chloride concentration data to simulate and better evaluate the quantity of stream-water flow to the p

  18. Hydrogeology of the Scioto River Valley near Piketon, South-Central Ohio a quantitative study of ground-water yield and induced infiltration in a glacial outwash aquifer

    USGS Publications Warehouse

    Norris, Stanley Eugene; Fidler, Richard E.

    1969-01-01

    A systematic study was made of one of Ohio's principal aquifers, a sand and gravel outwash in the Scioto River Valley, to determine the feasibility of developing a ground-water supply of 20 million gallons per day at a site near Piketon. The first part of the study was spent in determining the thickness and physical properties of the sand and gravel aquifer and in drilling test wells to determine the best site for the supply wells. The second part of the investigation was an aquifer infiltration test to determine the hydraulic properties of the aquifer and the conditions of stream recharge. A well 83 feet deep was drilled on the flood plain and was pumped for 9 days at the rate of 1,000 gallons per minute. Tile effect on the hydrologic system during and after the pumping was determined by measuring the water levels in an array of deep and shallow observation wells and in 8 drive-point wells installed in the bed of the river. Seldom have more comprehensive data been collected showing the effects of pumping on a natural, unconfined, hydrologic system. From these data were calculated the coefficient of transmissibility (215,000 gallons per day per foot) and the rate of streambed infiltration (0.235 million gallons per day per acre per foot). The aquifer was tested near the end of a long drought; so the ground-water levels and the river stage were very nearly following a level trend. Because the ground-water levels were essentially unaffected by extraneous influences, the test data are probably as precise and uncomplicated as is practical to obtain in the field. These data proved to be valid for use as design criteria for the location, spacing, and construction of four supply wells. The third part of the investigation was the testing and quantitative evaluation of the four supply wells before they were put into service. The wells were found to perform about as predicted, indicating that the hydraulic properties of the aquifer, as determined by standard methods, are fairly representative.

  19. Selenium in Oklahoma ground water and soil

    SciTech Connect

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  20. 77 FR 25872 - Oklahoma Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... conditions of approval of the Oklahoma program in the January 19, 1981, Federal Register (46 FR 4902). You..., 2011, Federal Register (76 FR 23522). In the same document, we opened the public comment period and... the Act). Oklahoma revised its regulations regarding subsidence allegation reporting requirements...

  1. 40 CFR 81.337 - Oklahoma.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume... Washington County AQCR 187 Northwestern Oklahoma Intrastate Unclassifiable/Attainment Alfalfa County Beaver... AQCR 187 Northwestern Oklahoma Intrastate Unclassifiable/Attainment Alfalfa County Beaver County...

  2. Organic vegetable weed control research in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lane Agriculture Research Center is operated by Oklahoma State University and the Agricultural Research Service of the U.S. Department of Agriculture. Located in southeastern Oklahoma, 13 resident scientists work cooperatively to develop production practices for organic vegetable production. On...

  3. 76 FR 60959 - Oklahoma Disaster #OK-00055

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00055 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Oklahoma dated...

  4. 75 FR 30871 - Oklahoma Disaster #OK-00038

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00038 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State of Oklahoma...

  5. 76 FR 34799 - Oklahoma Disaster #OK-00050

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00050 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State of Oklahoma...

  6. 77 FR 61651 - Oklahoma Disaster # OK-00067

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00067 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of OKLAHOMA dated...

  7. 77 FR 53247 - Oklahoma Disaster #OK-00063

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00063 AGENCY: U.S. Small Business Administration. ACTION: Notice. ] SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State of Oklahoma...

  8. 77 FR 61652 - Oklahoma Disaster #OK-00066

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00066 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of OKLAHOMA dated...

  9. 75 FR 47650 - Oklahoma Disaster #OK-00042

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00042 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of OKLAHOMA dated...

  10. 77 FR 26598 - Oklahoma Disaster #OK-00059

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00059 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Oklahoma....

  11. 76 FR 24555 - Oklahoma Disaster #OK-00045

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00045 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State of Oklahoma...

  12. 76 FR 59766 - Oklahoma Disaster #OK-00056

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00056 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Oklahoma dated...

  13. 78 FR 31998 - Oklahoma Disaster #OK-00071

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00071 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State of Oklahoma...

  14. 75 FR 42173 - Oklahoma Disaster #OK-00041

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00041 AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Oklahoma dated...

  15. 76 FR 77578 - Oklahoma Disaster #OK-00057

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00057 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Oklahoma dated...

  16. 76 FR 23522 - Oklahoma Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ..., Federal Register (46 FR 4902). You can also find later actions concerning the Oklahoma program and program... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 936 Oklahoma Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public...

  17. 77 FR 34890 - Oklahoma Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ..., 1981, Federal Register (46 FR 4902). You can also find later actions concerning the Oklahoma program... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 936 Oklahoma Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public...

  18. 50 CFR 32.55 - Oklahoma.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Oklahoma. 32.55 Section 32.55 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.55 Oklahoma. The following refuge units...

  19. 50 CFR 32.55 - Oklahoma.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Oklahoma. 32.55 Section 32.55 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.55 Oklahoma. The following refuge units...

  20. Onion transplant production system for Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Onions are a valuable specialty crop. Unfortunately, commercially available transplants in Oklahoma are often produced in a different area of the country and shipped into Oklahoma, resulting in a limited cultivar selection, non-adapted cultivars, poor crop stands, high bolting incidence, and low pro...

  1. Geohydrology of alluvium and terrace deposits of the Cimarron River from freedom to Guthrie, Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Bergman, D.L.

    1996-01-01

    Ground water in 1,305 square miles of Quaternary alluvium and terrace deposits along the Cimarron River from Freedom to Guthrie, Oklahoma, is used for irrigation, municipal, stock, and domestic supplies. As much as 120 feet of clay, silt, sand, and gravel form an unconfined aquifer with an average saturated thickness of 28 feet. The 1985-86 water in storage, assuming a specific yield of 0.20, was 4.47 million acre-feet. The aquifer is bounded laterally and underlain by relatively impermeable Permian geologic units. Regional ground-water flow is generally southeast to southwest toward the Cimarron River, except where the flow direction is affected by perennial tributaries. Estimated average recharge to the aquifer is 207 cubic feet per second. Estimated average discharge from the aquifer by seepage and evapotranspiration is 173 cubic feet per second. Estimated 1985 discharge by withdrawals from wells was 24.43 cubic feet per second. Most water in the terrace deposits varied from a calcium bicarbonate to mixed bicarbonate type, with median dissolved-solids concentration of 538 milligrams per liter. Cimarron River water is a sodium chloride type with up to 16,600 milligrams per liter dissolved solids. A finite-difference ground-water flow model was developed and calibrated to test the conceptual model of the aquifer under steady-state conditions. The model was calibrated to match 1985-86 aquifer heads and discharge to the Cimarron River between Waynoka and Dover.

  2. Water quality of the Little Arkansas River and Equus Beds Aquifer before and concurrent with large-scale artificial recharge, south-central Kansas, 1995-2012

    USGS Publications Warehouse

    Tappa, Daniel J.; Lanning-Rush, Jennifer L.; Ziegler, Andrew C.

    2015-01-01

    This fact sheet describes baseline water quality of the Equus Beds aquifer and Little Arkansas River and water-quality effects of artificial recharge by the city of Wichita associated with Phase I (2007–present) of the Aquifer Storage and Recovery project. During 1995 through 2012, more than 8,800 surface water and groundwater water-quality samples were collected and analyzed for more than 400 compounds, including most of the compounds on the U.S. Environmental Protection Agency’s primary drinking-water standards maximum contaminant level list and secondary drinkingwater regulations secondary maximum contaminant level list. Water-quality constituents of concern discussed in detail in this fact sheet are chloride, arsenic, total coliform bacteria, and atrazine. Sulfate, nitrate, iron, manganese, oxidation-reduction potential, and specific conductance also are constituents of concern and are discussed to a lesser extent.

  3. Improved regional groundwater flow modeling using drainage features: a case study of the central northern karst aquifer system of Puerto Rico (USA)

    NASA Astrophysics Data System (ADS)

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Padilla, Ingrid Y.; Alshawabkeh, Akram

    2016-04-01

    In northern Puerto Rico (USA), subsurface conduit networks with unknown characteristics, and surface features such as springs, rivers, lagoons and wetlands, drain the coastal karst aquifers. In this study, drain lines connecting sinkholes and springs are used to improve the developed regional model by simulating the drainage effects of conduit networks. Implemented in an equivalent porous media (EPM) approach, the model with drains is able to roughly reproduce the spring discharge hydrographs in response to rainfall. Hydraulic conductivities are found to be scale dependent and significantly increase with higher test radius, indicating scale dependency of the EPM approach. Similar to other karst regions in the world, hydraulic gradients are steeper where the transmissivity is lower approaching the coastline. This study enhances current understanding of the complex flow patterns in karst aquifers and suggests that using a drainage feature improves modeling results where available data on conduit characteristics are minimal.

  4. Simulation of the effects of management alternatives on the stream-aquifer system, South Fork Solomon River Valley between Webster Reservoir and Waconda Lake, north-central Kansas

    USGS Publications Warehouse

    Burnett, R.D.; Reed, T.B.

    1985-01-01

    With extensive irrigation use of both surface water and groundwater in the South Fork Solomon River valley shortages of these water supplies have been created. A two-dimensional digital model of transient groundwater flow was applied to investigate the potential effects on the stream aquifer system of seven management alternatives. These alternatives included proposals to conserve surface water supplies by lining the Osborne Irrigation Canal with clay, replacing the lateral canals with pipe, removing phreatophytes, decreasing surface water use by 75%, 50%, or 25% and replacing it with groundwater sources, and continuing 1978 groundwater use and 1970-78 average surface water use until the end of the 20th century. Results were assessed by comparison of drawdowns of hydraulic head in the alluvial aquifer and base flow for each simulation. As listed in order of the smallest to the greatest potential effects on the system relative to drawdown and base flow the alternatives are: (1) removal of one-half of the phreatophytes; (2) continuation of 1978 groundwater withdrawals and average 1970-78 surface water supply; (3) replacement of the lateral canals with pipe; (4) lining the Osborne Irrigation Canal with clay; (5) decrease of surface water use by 25% and replacement of it with groundwater; (6) decrease of surface water use by 50% and replacement of it with groundwater; and (7) decrease of surface water use by 75% and replacement of it with groundwater. The removal of one-half of the phreatophytes would result in a decrease in average drawdown in the alluvial aquifer to about 1.74 ft and an increase in base flow of the Solomon River to about 12.3 cu ft/sec. The decrease of surface water supply by 75 % and a corresponding increase in groundwater withdrawal would result in an increase in drawdown in the aquifer to about 2.5 ft and a decrease in base flow to about 6.8 cu ft/sec. (Lantz-PTT)

  5. Cancer Incidence and Staging among American Indians in Oklahoma

    PubMed Central

    Campbell, Janis E.; Martinez, Sydney A.; Janitz, Amanda E.; Pate, Anne E.; Erb-Alvarez, Julie; Wharton, David F; Gahn, David; Tall, Vicki L.; Snider, Cuyler; Anderson, Tom

    2015-01-01

    Background This study describes overall and site specific cancer incidence among AI/ANs compared to whites in Oklahoma and differences in cancer staging. Methods Age-adjusted incidence rates obtained from the Oklahoma Central Cancer Registry are presented for all cancer sites combined and for the most common cancer sites among AI/ANs with comparisons to whites. Percentages of late stage cancers for breast, colorectal, and melanoma cancers are also presented. Results AI/ANs had a significantly higher overall cancer incidence rate compared to whites (629.8/100,000 vs. 503.3/100,000), with a rate ratio of 1.25 (95% CI: 1.22, 1.28). There was a significant disparity in the percentage of late stage melanoma cancers between 2005 and 2009, with 14.0% late stage melanoma for whites and 20.0% for AI/ANs (p-value: 0.03). Conclusions Overall, there were cancer disparities between AI/ANs and whites in Oklahoma. Incidence rates were higher among AI/ANs for all cancers and many site specific cancers. PMID:24800463

  6. Chronology of migration by American coots in Oklahoma

    USGS Publications Warehouse

    Eddleman, William R.; Knopf, Fritz L.; Patterson, Craig T.

    1985-01-01

    American coots (Fulica americana) were studied on large reservoirs in north-central Oklahoma in 1979-1982 to determine chronologies of migrations by age- and sex class. Coots began migrating into Oklahoma in mid-September, numbers peaked in early to mid-October, and few birds were seen after 1 November. Some late migrants appeared in mid-December. In spring, coots began migrating in late February, numbers peaked in mid-April, and the last birds were seen in mid-May. Generally, adult and juvenile males and juvenile female coots migrated simultaneously in autumn, but adult females completed migration by 1 November. A few juveniles and adult males migrated in December. Adult coots preceded yearlings in spring. Despite annual and between-lake differences in chronology of autumn migration, most coots migrated before waterfowl hunting season in Oklahoma. Coot hunting seasons in mid-latitude states should commence before the general waterfowl season where management goals are to increase hunter interest and the harvest of birds.

  7. Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma

    SciTech Connect

    1991-11-17

    The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

  8. Geohydrology and water quality of stratified-drift aquifers in the Saco and Ossipee River basins, east-central New Hampshire

    USGS Publications Warehouse

    Moore, R.B.; Medalie, Laura

    1995-01-01

    Stratified-drift aquifers discontinuously underlie 152.5 square miles of the Saco and Ossipee River Basins, which have a total drainage area of 869.4 square miles. Saturated thicknesses of stratified drift in the study area are locally greater than 280 feet, but generally are less. Transmissivity locally exceeds 8,000 feet squared per day but are generally less. About 93.6 square miles, or 10.8 percent of the study area, are identified as having transmissivity greater than 1,000 feet squared per day. The stratified-drift aquifer in Ossipee, Freedom, Effingham, Madison, and Tamworth was analyzed for the availability of ground water by use of transient simulations and a two-dimensional, finite-difference ground-water-flow model. The numerical -model results indicate that potential available water amounts in this aquifer are 7.72 million gallons per day. Sample results of water- quality analyses obtained from 25 test wells and 4 springs indicated that water was generally suitable for drinking and other domestic purposes. Concen- trations of dissolved constituents in ground-water samples are less than or meet U.S. Environmental Protection Agency (USEPA)primary and secondary drinking-water regulations. Concentrations of inorganic constituents that exceeded the USEPA's secondary regulations were chloride and sodium, iron manganese, and fluoride.

  9. Characterizing Earthquake Clusters in Oklahoma Using Subspace Detectors

    NASA Astrophysics Data System (ADS)

    McMahon, N. D.; Benz, H.; Aster, R. C.; McNamara, D. E.; Myers, E. K.

    2014-12-01

    Subspace detection is a powerful and adaptive tool for continuously detecting low signal to noise seismic signals. Subspace detectors improve upon simple cross-correlation/matched filtering techniques by moving beyond the use of a single waveform template to the use of multiple orthogonal waveform templates that effectively span the signals from all previously identified events within a data set. Subspace detectors are particularly useful in event scenarios where a spatially limited source distribution produces earthquakes with highly similar waveforms. In this context, the methodology has been successfully deployed to identify low-frequency earthquakes within non-volcanic tremor, to characterize earthquakes swarms above magma bodies, and for detailed characterization of aftershock sequences. Here we apply a subspace detection methodology to characterize recent earthquakes clusters in Oklahoma. Since 2009, the state has experienced an unprecedented increase in seismicity, which has been attributed by others to recent expansion in deep wastewater injection well activity. Within the last few years, 99% of increased Oklahoma earthquake activity has occurred within 15 km of a Class II injection well. We analyze areas of dense seismic activity in central Oklahoma and construct more complete catalogues for analysis. For a typical cluster, we are able to achieve catalog completeness to near or below magnitude 1 and to continuously document seismic activity for periods of 6 months or more. Our catalog can more completely characterize these clusters in time and space with event numbers, magnitudes, b-values, energy, locations, etc. This detailed examination of swarm events should lead to a better understanding of time varying earthquake processes and hazards in the state of Oklahoma.

  10. Restoration of One-Room School Facilities in Oklahoma.

    ERIC Educational Resources Information Center

    McKinley, Kenneth H.

    Within the last 4 years, four one-room school houses have been restored for use as educational museum facilities. These include the Pleasant Valley School in Stillwater, Oklahoma; the Rose Hill School at Perry, Oklahoma; the old school located on the grounds of the Harn Homestead Museum in Oklahoma City, Oklahoma; and the Old Roll School, located…

  11. Report on the projected future climate of the Fort Cobb Watershed, Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report provides technical information on projected climate change and associated monotonic trends of precipitation and air temperature at the ARS Fort Cobb Experimental Watershed in west-central Oklahoma. The report is an attachment to the full report of the multi-location project MLP 464: “Est...

  12. Water used by grazed pigeon pea [Cajanus cajan(L) Millsp] in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water use by the warm-season annual pulse pigeon pea must be described to effectively use this legume as forage to support late-summer grazing by stocker cattle in the southern Great Plains (SGP). This study was conducted in central Oklahoma during 2008 to 2010 to quantify water and water use effici...

  13. Soil water signature of the 2005-2006 drought under tallgrass prairie at Fort Reno, Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined changes in the seasonal pattern of soil water content under a tall grass prairie in central Oklahoma as a result of the 2005-2006 drought. The seasonal pattern of soil water content in the top 50 cm of the soil profile was minimally impacted by the drought, as this portion of the...

  14. Does long-term pasture management influence spatial distribution of soil characteristics in Oklahoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Native prairie and winter wheat pastures are among the primary resources used to graze cattle in central Oklahoma. These forage resources are subject to numerous stressors that affect land condition including grazing, climate, soil fertility, and farming operations. Understanding responses of soil c...

  15. Faculty Productivity. Report & Recommendations to the Oklahoma State Regents for Higher Education.

    ERIC Educational Resources Information Center

    Oklahoma State Regents for Higher Education, Oklahoma City.

    A review of Oklahoma higher education faculty productivity at state supported institutions resulted in recommendations to enhance quality while working within policy goals. The review identified faculty workload as the central issue and found that studies consistently show that full-time faculty members work 50 to 65 hours a week with about half…

  16. Geohydrology of the Dakota Aquifer

    NASA Astrophysics Data System (ADS)

    Johnson, Ivan

    This book is the result of a symposium on the geology and hydrology of the Dakota Aquifer system. The symposium and this proceedings were dedicated to C. V. Theis, who is widely considered to be the father of modern quantitative methods in groundwater hydrology. The aquifer area that is discussed in this series o f papers coincides to a great extent with the Central Midwest Regional Aquifer System Analysis (RASA) project. This was was one of the many RASA projects shown in the map on the cover of the April 14, 1987, Eos. The proceedings provides a multidisciplinary look at details concerning the hydrology and geology overviews, as well as more specialized discussions of the hydrodynamics of petroleum accumulation, geothermal assessment, hydrochemistry, and water use in the Dakota Sandstone and equivalent units.

  17. Simulation of groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, east central Massachusetts

    USGS Publications Warehouse

    Eggleston, Jack R.; Carlson, Carl S.; Fairchild, Gillian M.; Zarriello, Phillip J.

    2012-01-01

    The effects of groundwater pumping on surface-water features were evaluated by use of a numerical groundwater model developed for a complex glacial-sediment aquifer in northeastern Framingham, Massachusetts, and parts of surrounding towns. The aquifer is composed of sand, gravel, silt, and clay glacial-fill sediments up to 270 feet thick over an irregular fractured bedrock surface. Surface-water bodies, including Cochituate Brook, the Sudbury River, Lake Cochituate, Dudley Pond, and adjoining wetlands, are in hydraulic connection with the aquifer and can be affected by groundwater withdrawals. Groundwater and surface-water interaction was simulated with MODFLOW-NWT under current conditions and a variety of hypothetical pumping conditions. Simulations of hypothetical pumping at reactivated water supply wells indicate that captured groundwater would decrease baseflow to the Sudbury River and induce recharge from Lake Cochituate. Under constant (steady-state) pumping, induced groundwater recharge from Lake Cochituate was equal to about 32 percent of the simulated pumping rate, and flow downstream in the Sudbury River decreased at the same rate as pumping. However, surface water responded quickly to pumping stresses. When pumping was simulated for 1 month and then stopped, streamflow depletions decreased by about 80 percent within 2 months and by about 90 percent within about 4 months. The fast surface water response to groundwater pumping offers the potential to substantially reduce streamflow depletions during periods of low flow, which are of greatest concern to the ecological integrity of the river. Results indicate that streamflow depletion during September, typically the month of lowest flow, can be reduced by 29 percent by lowering the maximum pumping rates to near zero during September. Lowering pumping rates for 3 months (July through September) reduces streamflow depletion during September by 79 percent as compared to constant pumping. These results demonstrate that a seasonal or streamflow-based groundwater pumping schedule can reduce the effects of pumping during periods of low flow.

  18. Historical and projected climate (1901–2050) and hydrologic response of karst aquifers, and species vulnerability in south-central Texas and western South Dakota

    USGS Publications Warehouse

    Stamm, John F.; Poteet, Mary F.; Symstad, Amy J.; Musgrove, MaryLynn; Long, Andrew J.; Mahler, Barbara J.; Norton, Parker A.

    2015-01-01

    Flora and fauna that rely on springflow from Edwards and Madison aquifer sites were assessed for vulnerability to projected climate change on the basis of the Climate Change Vulnerability Index (CCVI). The CCVI is determined by the exposure of a species to climate, the sensitivity of the species, and the ability of the species to cope with climate change. Sixteen species associated with springs and groundwater were assessed in the Balcones Escarpment region. The Barton Springs salamander (Eurycea sosorum) was scored as highly vulnerable with moderate confidence. Nine species—three salamanders, a fountain darter (Etheostoma fonticola), three insects, and two amphipods—were scored as moderately vulnerable. The remaining six species—four vascular plants, the Barton cavesnail (Stygopyrgus bartonensis), and a cave shrimp—were scored as not vulnerable/presumed stable (not vulnerable and evidence does not support change in abundance or range of the species). Vulnerability of eight species associated with streams that receive springflow from the Madison aquifer in the Black Hills was assessed. Of these, the American dipper (Cinclus mexicanus) and the lesser yellow lady’s slipper (Cypripedium parviflorum) were scored as moderately vulernable with high confidence. The dwarf scouringrush (Equisetum scirpoides) and autumn willow (Salix serissima) were also scored as moderately vulnerable with moderate to low confidence, respectively. Other species were assessed as not vulnerable/presumed stable or not vulnerable/increase likely (not vulnerable and evidence supporting an increase in abundance or range of the species). Lower vulnerability scores for the Black Hills species in comparison to the Balcones Escarpment species reflect lower endemicity, higher projected springflow than in the historical period, and high thermal tolerance of many of the species for the Black Hills. Importantly, climate change vulnerability scores differed substantially for Edwards aquifer species when RRAWFLOW model projections were included, resulting in increased vulnerability scores for 12 of the 16 species.

  19. Denitrification in a hypersaline lake-aquifer system (Pétrola Basin, Central Spain): the role of recent organic matter and Cretaceous organic rich sediments.

    PubMed

    Gómez-Alday, J J; Carrey, R; Valiente, N; Otero, N; Soler, A; Ayora, C; Sanz, D; Muñoz-Martín, A; Castaño, S; Recio, C; Carnicero, A; Cortijo, A

    2014-11-01

    Agricultural regions in semi-arid to arid climates with associated saline wetlands are one of the most vulnerable environments to nitrate pollution. The Pétrola Basin was declared vulnerable to NO3(-) pollution by the Regional Government in 1998, and the hypersaline lake was classified as a heavily modified body of water. The study assessed groundwater NO3(-) through the use of multi-isotopic tracers (δ(15)N, δ(34)S, δ(13)C, δ(18)O) coupled to hydrochemistry in the aquifer connected to the eutrophic lake. Hydrogeologically, the basin shows two main flow components: regional groundwater flow from recharge areas (Zone 1) to the lake (Zone 2), and a density-driven flow from surface water to the underlying aquifer (Zone 3). In Zones 1 and 2, δ(15)NNO3 and δ(18)ONO3 suggest that NO3(-) from slightly volatilized ammonium synthetic fertilizers is only partially denitrified. The natural attenuation of NO3(-) can occur by heterotrophic reactions. However, autotrophic reactions cannot be ruled out. In Zone 3, the freshwater-saltwater interface (down to 12-16 m below the ground surface) is a reactive zone for NO3(-) attenuation. Tritium data suggest that the absence of NO3(-) in the deepest zones of the aquifer under the lake can be attributed to a regional groundwater flow with long residence time. In hypersaline lakes the geometry of the density-driven flow can play an important role in the transport of chemical species that can be related to denitrification processes. PMID:25169874

  20. Corrosive ground water in the Kirkwood-Cohansey aquifer system in the vicinity of Ocean County, east-central New Jersey

    USGS Publications Warehouse

    Kish, George R.; Barringer, Julia L.; Ulery, Randy L.

    1989-01-01

    Corrosive groundwater, which has been linked to trace-metal leaching from plumbing materials in Europe and the United States , has been identified in the Coastal Plain of New Jersey. The corrosiveness of groundwater in the Kirkwood-Cohansey aquifer system in New Jersey has been estimated by calculating values for the Aggressive Index, using groundwater chemistry data. A contour map of Aggressive-Index values shows that groundwater is very corrosive in the vicinity of Ocean County, New Jersey. Areas with the least corrosive water are generally along the coast, whereas areas with the most corrosive water are farther inland. (USGS)

  1. Alternative conceptual models and the robustness of groundwater management scenarios in the multi-aquifer system of the Central Veneto Basin, Italy

    NASA Astrophysics Data System (ADS)

    Passadore, Giulia; Monego, Martina; Altissimo, Lorenzo; Sottani, Andrea; Putti, Mario; Rinaldo, Andrea

    2012-05-01

    A three-dimensional (3D) groundwater flow model of the deep multi-aquifer Quaternary deposits of the Po plain sedimentary basin, within a 3,300-km2 area (Veneto, Italy), is developed, tested and applied to aid sustainable large-scale water-resources management. Integrated mathematical modelling proves significantly successful, owing to an unusual wealth of available geological, geophysical, and hydrologic data and to state-of-the-art numerical tools. Of particular interest is the evaluation of the influence of alternative conceptual models; that is, of reconstructed representations of the 3D geological model of the structure of the aquifers. The reference conceptual model is set up by means of extended geological sections and stratigraphic records, and is used to create a large, unstructured 3D finite element grid. By analyzing the effects on piezometric surfaces and on the overall water budget of geometrical perturbations from the reference structure, alternative geo-structural models, obtained by systematically shifting the pinch-out of the aquitards, are compared. Interestingly, the impacts of aquitard pinch-out prove far from negligible. The results suggest the critical importance of reliable geological models even for large, complex 3D models. The good practice of iteratively testing numerically the impact of surprises on the conceptual model, as more field information is collected, is thus supported.

  2. A search for aquifers of sand and gravel by electrical-resistivity methods in north-central New Castle County, Delaware

    USGS Publications Warehouse

    Spicer, H. Cecil; McCullough, Richard A.; Mack, Frederick K.

    1955-01-01

    A search for aquifers in an area immediately north of the Chesapeake and Delaware Canal in New Castle, Del., has been made by an electrical resistivity study.  The search located 32 sites that may be underlain by sand and gravel. The thicker deposits are significant with respect to the occurrence of ground water, and all of them are of interest as possible sources of sand and gravel for construction purposes, such as for highway construction.  The thickness of these deposits ranges from 4.4 feet to 77 feet, and the computed resistivity for these ranges from a low of 97,800 ohm-cms to a high of 423,800 ohm-cms.  The study located with certainty one buried channel filled with sand and gravel deposits and pointed out the possibility of others that may be aquifers.  The interpretations show that a large deposit of sand and gravel is present in the eastern part of the area investigated and it is tentatively assumed that this deposit is continuous and may yield large quantities of ground water.  Places where the deposit was found to be the thickest and of high resistivity are described.

  3. Drinking-water quality and variations in water levels in the fractured crystalline-rock aquifer, west-central Jefferson County, Colorado

    USGS Publications Warehouse

    Hall, Dennis C.; Johnson, Carl J.

    1979-01-01

    In parts of Jefferson County, CO, water for domestic use from the fractured crystalline-rock aquifer contained excessive concentrations of major ions, coliform bacteria, trace elements, or radiochemicals. Based on results of analyses from 26 wells, water from 21 of the wells contained excessive concentrations of one or more constituents. Drinking water standards were exceeded for fluoride in water from 2 wells, nitrate plus nitrite in 2 wells, dissolved solids in 1 well, iron in 6 wells, manganese in 8 wells, zinc in 2 wells, coliform bacteria in 4 wells, gross alpha radiation in 11 wells and possibly 4 more, and gross beta radiation possibly in 1 well. Local variations in concentrations of 15 chemical constituents, specific conductance, and water temperature were statistically significant. Specific conductance increased significantly during 1973-75 only in the vicinity of Indian Hills. Annual range in depths to water in 11 observation wells varied from 1 to 15 feet. The shallowest water levels were recorded in late winter, usually in February. The deepest water levels occurred during summer or fall, depending on the well and the year. Three-year trends in water level changes in 6 of the 11 wells indicated decreasing water storage in the aquifer. (USGS).

  4. National Uranium Resource Evaluation: Clinton Quadrangle, Oklahoma

    SciTech Connect

    Bloch, S.; Johnson, K.S.; Eutsler, R.L.; Myers, J.J.

    1982-09-01

    Uranium resources of the Clinton Quadrangle, west-central Oklahoma, were evaluated to a depth of 1500 m using available surface and subsurface geologic information. Uranium occurrences reported in previously published literature were located, sampled, and described in detail. Areas of anomalous radioactivity, which were interpreted from aerial radiometric and hydrogeochemical and stream-sediment reconnaissance surveys, were also investigated. Five areas of uranium favorability were delineated within the quadrangle. Delineation was based on both surface and subsurface data. Two of these areas include coastal-plain facies of the Upper Permian Doxey Shale. Two other areas include the marginal basin facies of the Cloud Chief and Rush Springs Formations (Late Permian). The fifth area, in the southern part of the quadrangle, is characterized by arkosic alluvial-fan and fluvial facies of Late Pennsylvanian and Early Permian age. Geologic units considered to be unfavorable include all pre-Upper Pennsylvanian rocks, most Permian rocks, the Pliocene Ogallala Formation, Pleistocene sediments, and parts of the Upper Pennsylvanian-Lower Permian rocks.

  5. Co-seismic and post-seismic hydrogeological response of the Gran Sasso carbonate aquifer to the 2009 L'Aquila earthquake (central Italy)

    NASA Astrophysics Data System (ADS)

    Amoruso, Antonella; Crescentini, Luca; Petitta, Marco; Rusi, Sergio; Tallini, Marco

    2010-05-01

    The Mw=6.3 April 6 2009 L'Aquila earthquake mainshock produced self-evident co-seismic and post-seismic changes in the hydrogeological setting of the Gran Sasso carbonate fractured aquifer (Adinolfi Falcone et alii, 2008; Barbieri et alii, 2005) in which the seismogenic Paganica Fault, which is responsible for the mainshock, is located (Anzidei et alii, 2009; Atzori et alii, 2009; Chiarabba et alii, 2009; Walters et alii, 2009): i) the sudden co-seismic disappearance of some springs localized exactly along the surface trace of the Paganica Fault; ii) co-seismic and post-seismic increases in the discharge of the Gran Sasso highway tunnel drainages (+20%) and of other springs (+10%) and iii) a progressive increase of the water table (+1m) at the boundary of the aquifer. Taking into account previous data collected since the '90s, and spot and aftershock monitoring data on spring discharge, spring turbidity, water table levels and rainfall events, a preliminary conceptual model of the earthquake's consequences on the Gran Sasso aquifer is proposed, excluding the contribution of seasonal recharge. Co-seismic effects registered immediately after the shock (i.e. disappearance of local springs and discharge peaks), are caused by pore pressure increase related to deformation. Post-seismic effects, observed in the months following the mainshock (i.e. discharges remaining higher than in the inter-seismic period and a progressive increase of the groundwater level), suggest a permanent change in groundwater hydrodynamics. Additional groundwater flowing towards aquifer boundaries and springs reflects a possible increase in hydraulic conductivity, which can be related to fracture clearing and/or dilatancy (Montgomery and Manga, 2003). To validate the proposed conceptual model we analyse pore pressure changes and the Darcy flow pattern immediately after L'Aquila earthquake for a layered poroelastic medium, using a Green's functions approach (Wang and Kumpel, 2003), and compare results with observations of co-seismic spring discharge changes. As regards the post-seismic phase, several springs in the Gran Sasso region exhibit long-lasting flow increase, but pore pressure changes can sustain flow changes for few days only. We treat the Gran Sasso acquifer as a homogenous/heterogeneous one-dimensional/annular-sectored aquifer and compare the observed changes and model predictions computed for a permanent or transient increase in permeability. References Adinolfi Falcone, R. et alii, 2008: Journal of Hydrology, v. 357, p. 368- 388. Anzidei, M. et alii, 2009: Geophysical Research Letters, v. 36, L17307, doi:10.1029/2009GL039145. Atzori, S. et alii, 2009: Geophysical Research Letters, v. 36, L15305, doi:10.1029/2009GL039293. Barbieri, M. et alii, 2005: Applied Geochemistry, v. 20, p. 2063-2081. Chiarabba, C. et alii, 2009: Geophysical Research Letters, v. 6, 18308, oi:10.1029/2009GL039627. Montgomery, D.R., and Manga, M., 2003: Science, v. 300, p. 2047-2049. Walters, R.J. et alii, 2009: Geophysical Research Letters, v. 36, L17312, doi:10.1029/2009GL039337. Wang, R., and H.-J. Kumpel, 2003: Geophysics, v. 68, p. 705-717.

  6. Borehole geophysical, fluid, and hydraulic properties within and near the freshwater/saline-water transition zone, San Antonio segment of the Edwards aquifer, south-central Texas, 2010-11

    USGS Publications Warehouse

    Thomas, Jonathan V.; Stanton, Gregory P.

    2013-01-01

    The freshwater zone of the San Antonio segment of the Edwards aquifer is used by residents of San Antonio and numerous other rapidly growing communities in south-central Texas as their primary water supply source. This freshwater zone is bounded to the south and southeast by a saline-water zone with an intermediate zone transitioning from freshwater to saline water (transition zone). As demands on this water supply increase, there is concern that the transition zone could potentially move, resulting in more saline water in current freshwater supply wells. Since 1985, the U.S. Geological Survey, San Antonio Water System, and other Federal and State agencies have conducted studies to better understand the transition zone.

  7. Quartz Mountain/Oklahoma Summer Arts Institute.

    ERIC Educational Resources Information Center

    Frates, Mary Y.; Madeja, Stanley S.

    1982-01-01

    Describes the Quartz Mountain Oklahoma Summer Arts Institute program. It is designed to nurture artistic talent and to provide intensive arts experiences in music, dance, theater, and the visual arts for talented students aged 14-18. (AM)

  8. Oklahoma Space Industry Development Authority

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The purpose of this grant was to increase the awareness of students of space sciences and commerce through experimentation. This objective was carried out through the award and administration, by OSIDA, the Oklahoma Space Industry Development Authority, of eleven smaller grants to fund thirteen projects at schools determined by competitive application. Applications were graded on potential outreach, experimentation objectives and impact on students' awareness of space sciences. We chose projects from elementary, middle and high schools as well as colleges that would encourage students through research and experimentation to consider education and careers in related disciplines. Each organization did not receive an equal share of the grant; instead, OSIDA distributed the money to each project based on the organization's need. A copy of the dispersement record is enclosed with this final grant report. The projects covered topics such as: space colonization, space stations, constellations, model rocketry, and space commerce.

  9. Hydrogeology and sources of recharge to the Buffalo and Wahpeton aquifers in the southern part of the Red River of the North drainage basin, west-central Minnesota and southeastern North Dakota

    USGS Publications Warehouse

    Schoenberg, Michael

    1998-01-01

    The potential sources of recharge to the Wahpeton aquifers investigated were the Red River of the North, and adjacent hydro geologic units. The volume of ground water pumped from the Wahpeton aquifers provides an estimate of the upper limit for the volume of recharge to the aquifer. Based on pumpage from all of the Wapheton aquifers from 1990 to 1993, the upper limit is about 580 million gallons per year (2.4 x 105 cubic feet per day).

  10. OKLAHOMA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our contribution to this annual newsletter is a summary of research accomplishments in the past year in germplasm enhancement for aphid resistance in barley and wheat at the USDA-ARS Plant Science and Water Conservation Research Laboratory , Stillwater, OK. Russian Wheat aphid, Greenbug, Bird Cherr...

  11. Digital geologic map of Beaver County, Oklahoma

    USGS Publications Warehouse

    Cederstrand, J.R.

    1997-01-01

    This data set consists of digital data and accompanying documentation for the surficial geology of Beaver County, Oklahoma. The original data are from the Hydrogeologic Map, sheet 1 of 3, included in the U.S. Geological Survey publication, Reconnaissance of the Water Resources of Beaver County, Oklahoma, Hydrologic Investigations Atlas HA-450, Morton and Goemaat, 1973. The geology was compiled by S.L. Schoff, 1953.

  12. The Oklahoma State Study of Oklahoma's Public Higher Education Physical Infrastructure.

    ERIC Educational Resources Information Center

    Katsinas, Stephen G., Ed.; And Others

    This project examines policies related to facilities at public institutions of higher education in Oklahoma in the context of a current legislative debate over a bond issue to fund facilities. The last bond issue for Oklahoma higher education was in 1968. Verification of a representative sample of 27 campus master plans validated an earlier

  13. Water-Level Changes in the High Plains Aquifer, 1980 to 1995

    USGS Publications Warehouse

    McGuire, Virginia L.; Sharpe, Jennifer B.

    1997-01-01

    The High Plains aquifer underlies one of the major agricultural areas in the world, including parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Ground-water irrigation expanded rapidly after 1940 in the area underlain by the High Plains aquifer (called the 'High Plains region' in this report): 1949--2.1 million acres; 1959--6.1 million acres; 1969--9.0 million acres; 1978--12.9 million acres; and 1980--13.7 million acres (Gutentag and others, 1984; Thelin and Heimes, 1987). In 1990, 95 percent of the water withdrawn from the High Plains aquifer, 15.7 million acre-feet, was used for irrigation (Marilee Horn, U.S. Geological Survey, written commun., 1996). Water-level declines appeared in the High Plains aquifer soon after extensive ground-water irrigation development began. By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet. In response to these declines, the U.S. Geological Survey, in cooperation with numerous Federal, State, and local water-resource agencies, began a ground-water monitoring program in 1988 to assess water-level change in the aquifer annually, using water-level measurements in more than 7,000 wells. The water-level measurements are made in winter or early spring, when water levels generally represent nonpumping conditions.

  14. An Updated Checklist of the Mosquitoes of Oklahoma Including New State Records and West Nile Virus Vectors, 2003-06.

    PubMed

    Noden, Bruce H; Coburn, Lisa; Wright, Russell; Bradley, Kristy

    2015-12-01

    The mosquito fauna of Oklahoma has not been evaluated since 1965 and no report has been published concerning species associated with urban areas in the state. Mosquito collections were conducted as part of the West Nile virus (WNV) surveillance program between April and November from 2003 to 2006, using standard collection methods. A total of 74,756 adults were collected in 26 urban centers in 16 counties of Oklahoma. Altogether, 40 species were recorded during this study period, bringing the total mosquito species recorded in Oklahoma to 62 species in 9 different genera and 18 subgenera. An updated checklist of Oklahoma mosquito fauna is included with a comparison to historical records. New state records include 3 species: Aedes muelleri, Anopheles perplexens, and Culex coronator. In addition to updating the checklist, 12 species of mosquitoes were tested for WNV. Pools of Culex pipiens complex represented the highest proportion testing positive for WNV (134/766, 17.5%), followed by Cx. tarsalis (13/192, 6.8%) and Aedes albopictus (5/215, 2.3%). West Nile virus-positive mosquitoes were detected earliest in June 2005 and latest in November 2004. Infected Cx. pipiens complex testing positive for WNV were more prevalent in the eastern and central areas of Oklahoma, whereas positive Cx. tarsalis were found mainly in the western areas of the state. This distinct geographical difference needs to be monitored and followed up to ensure optimal mosquito control efforts in Oklahoma communities with mosquito control capabilities. PMID:26675455

  15. Analysis of aquifer mineralization by paleodrainage channels

    USGS Publications Warehouse

    Rubin, H.; Buddemeier, R.W.

    2003-01-01

    Mineralization of groundwater resources is a problem in south-central Kansas, due to the penetration of saline water from Permian bedrock formations into the overlying alluvial aquifer. One of the mechanisms involved in the mineralization involves small bedrock features of high permeability located in places occupied by streams and rivers in past geological eras. These geological features are termed 'paleodrainage channels'. The permeability of the overlying aquifer can be significantly smaller than that of the channel fill material. The comparatively fast migration of saline water through these channels of high permeability is associated with the transfer of minerals into the overlying freshwater aquifer. This study applies a set of boundary layer approaches to quantify the process of mineral transfer from the channels into the aquifer. The methods used in the present study provide quick estimation and evaluation of the dilution of the channel flow, as well as mineral concentration profile changes in the mineralized zone created in the overlying aquifer. More generally, the method can also be useful for the analysis and evaluation of various types of groundwater contamination in heterogeneous aquifers. The application of the method is exemplified by a complete set of calculations characterizing the possible mineralization process at a specific channel in south central Kansas. Sensitivity analyses are performed and provide information about the importance of the various parameters that affect the mineralization process. Some possible scenarios for the aquifer mineralization phenomena are described and evaluated. It is shown that the channel mineralization may create either several stream tubes of the aquifer with high mineral concentration, or many stream tubes mineralized to a lesser extent. Characteristics of these two patterns of aquifer mineralization are quantified and discussed. ?? 2003 Published by Elsevier Science B.V.

  16. 40 CFR 282.86 - Oklahoma State-Administered Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with section 9004 of RCRA, 42 U.S.C. 6991c, and 40 CFR part 281, subpart E. If Oklahoma obtains... Building, Room 238, Oklahoma City, OK 73105. (1) State statutes and regulations. (i) The provisions...

  17. 40 CFR 282.86 - Oklahoma State-Administered Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with section 9004 of RCRA, 42 U.S.C. 6991c, and 40 CFR part 281, subpart E. If Oklahoma obtains... Building, Room 238, Oklahoma City, OK 73105. (1) State statutes and regulations. (i) The provisions...

  18. The Winona-Tallahatta Aquifer in Mississippi

    USGS Publications Warehouse

    Spiers, C.A.

    1977-01-01

    This aquifer atlas describing the Winona-Tallahatta aquifer is the seventh in a series prepared in cooperation with the Mississippi Board of Water Commissioners. The atlas summarizes the large amount of unpublished data available in the files of the U.S. Geological Survey and it describes the extent, character, and present utilization of the aquifer and its potential for additional development. The Winona-Tallahatta aquifer, which contains freshwater having less than 1,000 mg/liter of dissolved solids in about 25 percent of the State occurs in northwestern and central Mississippi. The water-bearing zones extend into Tennessee and become part of the Memphis aquifer. In Arkansas and Louisiana the aquifer is in the Cane River Formation. The Tallahatta Formation which is the basal unit of the Claiborne Group includes, in ascending order, the Meridian Sand, Basic City Shale, and Neshoba Sand Members. The Winona-Tallahatta aquifer is the source of water for only a few large water users, but is the source of water for hundreds of small-yield domestic and stock wells less than 200 feet deep. Total water use in the State in 1977 from the Winona-Tallahatta is estimated to be about 3 mdg. (Woodard-USGS)

  19. Annual Employment Outcomes Report. Oklahoma State System of Higher Education.

    ERIC Educational Resources Information Center

    Oklahoma State Regents for Higher Education, Oklahoma City.

    This study examined the percentage of Oklahoma residents who graduate from Oklahoma public colleges and universities and remain in the state, and the impact of educational level on salaries. Data on Oklahoma state system degree recipients from 1992-1993 through 1996-1997 were obtained from the State Regents' Unitized Data System. It was found that…

  20. 77 FR 74689 - Land Acquisitions; Tonkawa Tribe of Oklahoma

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... Bureau of Indian Affairs Land Acquisitions; Tonkawa Tribe of Oklahoma AGENCY: Bureau of Indian Affairs... Tonkawa Tribe of Oklahoma on December 6, 2012. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director... accept approximately 127.65 acres of land into trust for the Tonkawa Tribe of Oklahoma under...

  1. Drought and grazing effects on Oklahoma phlox (Polemoniaceae, Phlox oklahomensis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oklahoma phlox (Phlox oklahomensis Wherry) is endemic to Butler, Chautauqua, Comanche, Cowley, and Elk Counties of Kansas and Woods and Woodward Counties of Oklahoma. The species comprises populations of a few scattered individuals to several hundred in mixed-grass prairie sites in Oklahoma where co...

  2. OTIS: An Evaluation of the Oklahoma Teletypewriter Interlibrary System.

    ERIC Educational Resources Information Center

    Casey, Genevieve M.

    A study of the Oklahoma Teletypewriter Interlibrary System (OTIS), made at the request of the Oklahoma Department of Libraries, covers the period April 1968 through June 1969. It is based upon an analysis of records maintained at the Oklahoma Department of Libraries including: (1) what material was requested by what library, how the requests were…

  3. 75 FR 76483 - Land Acquisitions; Cherokee Nation of Oklahoma

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... Bureau of Indian Affairs Land Acquisitions; Cherokee Nation of Oklahoma AGENCY: Bureau of Indian Affairs... Cherokee Nation of Oklahoma on November 10, 2010. FOR FURTHER INFORMATION CONTACT: Paula L. Hart, Director... approximately 16.61 acres of land into trust for the Cherokee Nation of Oklahoma under the authority of...

  4. 76 FR 42723 - Land Acquisitions; Osage Nation of Oklahoma

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Bureau of Indian Affairs Land Acquisitions; Osage Nation of Oklahoma AGENCY: Bureau of Indian Affairs... Parcel, into trust for the Osage Nation of Oklahoma on July 8, 2011. FOR FURTHER INFORMATION CONTACT... decided to accept approximately 7.5 acres of land into trust for the Osage Nation of Oklahoma under...

  5. 76 FR 42723 - Land Acquisitions; Osage Nation of Oklahoma

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Bureau of Indian Affairs Land Acquisitions; Osage Nation of Oklahoma AGENCY: Bureau of Indian Affairs...,'' into trust for the Osage Nation of Oklahoma on July 8, 2011. FOR FURTHER INFORMATION CONTACT: Paula L... approximately 15 acres of land into trust for the Osage Nation of Oklahoma under the authority of the...

  6. 76 FR 42723 - Land Acquisitions; Osage Nation of Oklahoma

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Bureau of Indian Affairs Land Acquisitions; Osage Nation of Oklahoma AGENCY: Bureau of Indian Affairs...,'' into trust for the Osage Nation of Oklahoma on July 8, 2011. FOR FURTHER INFORMATION CONTACT: Paula L... to accept approximately 27.66 acres of land into trust for the Osage Nation of Oklahoma under...

  7. Muriel Wright: Telling the Story of Oklahoma Indian Nations

    ERIC Educational Resources Information Center

    Cesar, Dana; Smith, Joan K.; Noley, Grayson

    2004-01-01

    The Wright family, descended from the patriarch Allen Wright, who arrived in the new Choctaw Nation after surviving the "Trail of Tears," played an important role in Oklahoma politics and society. Following removal to Oklahoma, Allen went on to become Principal Chief of the Choctaw Nation and gave the name, Oklahoma, to the southwest territory. He…

  8. Social and Economic Consequences of Indian Gaming in Oklahoma

    ERIC Educational Resources Information Center

    Grant, Kenneth W., II; Spilde, Katherine A.; Taylor, Jonathan B.

    2004-01-01

    The balancing framework of Indian gaming as it operates in Oklahoma constrains Oklahoma Indian nations from operating facilities according to the dictates of the marketplace on a large-scale Class III basis. Indian gaming actually brings substantial net economic benefits to the state, contrary to claims that Oklahoma Indian gaming benefits come at…

  9. Muriel Wright: Telling the Story of Oklahoma Indian Nations

    ERIC Educational Resources Information Center

    Cesar, Dana; Smith, Joan K.; Noley, Grayson

    2004-01-01

    The Wright family, descended from the patriarch Allen Wright, who arrived in the new Choctaw Nation after surviving the "Trail of Tears," played an important role in Oklahoma politics and society. Following removal to Oklahoma, Allen went on to become Principal Chief of the Choctaw Nation and gave the name, Oklahoma, to the southwest territory. He

  10. 77 FR 41975 - Southern Star Central Gas Pipeline, Inc.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Application Take notice that on June 27, 2012, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56... Oklahoma and Logan Counties, Oklahoma (Line V). Southern Star states that due to the age of Line V and...

  11. Conodont biostratigraphy of lower Ordovician rocks, Arbuckle Group, southern Oklahoma

    SciTech Connect

    Dresbach, R.I.; Ethington, R.L. )

    1989-08-01

    The Arbuckle Group of southern Oklahoma displays the only complete exposure of the shallow-water carbonates that characterize the Lower Ordovician of interior North America. Trilobites have been described from some parts of this sequence and sporadic occurrences of other invertebrates are known, but much of the sequence is sparingly fossiliferous. As a consequence, these magnificent exposures have not contributed notably to continuing efforts toward development of a comprehensive biostratigraphic scheme for the Lower Ordovician of the North American platform. Samples collected at 25-ft intervals through the Arbuckle Group along and adjacent to Interstate Highway 35 on the south flank of the Arbuckle anticline near Ardmore, Oklahoma, produced conodonts in abundances ranging from a few tens to over a thousand elements per kilogram and displaying good to excellent preservation with low CAI. These conodonts document a biostratigraphic continuum that provides a standard for correlation of Lower Ordovician rocks in the subsurface of central US and of the many localized and incomplete outcrops of generally equivalent strata in the Ozark and Upper Mississippi Valley regions. The stratigraphic continuity of the collections makes the I-35 section an ideal standard reference section for graphic correlation of Lower Ordovician rocks containing conodonts of the Mid-Continent Province.

  12. Recent (2008-10) water quality in the Barton Springs segment of the Edwards aquifer and its contributing zone, central Texas, with emphasis on factors affecting nutrients and bacteria

    USGS Publications Warehouse

    Mahler, Barbara J.; Musgrove, MaryLynn; Sample, Thomas L.; Wong, Corinne I.

    2011-01-01

    The Barton Springs zone, which comprises the Barton Springs segment of the Edwards aquifer and the watersheds to the west that contribute to its recharge, is in south-central Texas, an area with rapid growth in population and increasing amounts of land area affected by development. During November 2008-March 2010, an investigation of factors affecting the fate and transport of nutrients and bacteria in the Barton Springs zone was conducted by the U.S. Geological Survey (USGS), in cooperation with the Texas Commission on Environmental Quality. The primary objectives of the study were to characterize occurrence of nutrients and bacteria in the Barton Springs zone under a range of flow conditions; to improve understanding of the interaction between surface-water quality and groundwater quality; and to evaluate how factors such as streamflow variability and dilution affect the fate and transport of nutrients and bacteria in the Barton Springs zone. The USGS collected and analyzed water samples from five streams (Barton, Williamson, Slaughter, Bear, and Onion Creeks), two groundwater wells (Marbridge and Buda), and the main orifice of Barton Springs in Austin, Texas. During the period of the study, during which the hydrologic conditions transitioned from exceptional drought to wetter than normal, water samples were collected routinely (every 3 to 4 weeks) from the streams, wells, and spring and, in response to storms, from the streams and spring. All samples were analyzed for major ions, nutrients, the bacterium Escherichia coli, and suspended sediment. During the dry period, the geochemistry of groundwater at the two wells and at Barton Springs was dominated by flow from the aquifer matrix and was relatively similar and unchanging at the three sites. At the onset of the wet period, when the streams began to flow, the geochemistry of groundwater samples from the Marbridge well and Barton Springs changed rapidly, and concentrations of most major ions and nutrients and densities of Escherichia coli became more similar to those of samples from the streams relative to concentrations and densities during the dry period. Geochemical modeling indicated that the proportion of Barton Springs discharge composed of stream recharge increased from about 0-8 percent during the dry period to about 80 percent during the wet period. The transition from exceptional drought to wetter-than-normal conditions resulted in a number of marked changes that highlight factors affecting the fate and transport of nutrients and bacteria and the strong influence of stream recharge on water quality in the Barton Springs segment of the Edwards aquifer and had a pronounced effect on the fate of nitrogen species. Organic nitrogen loaded to and stored in soils during the dry period was nitrified to nitrate when the soils were rewetted, resulting in elevated concentrations of nitrate plus nitrite in streams as these constituents were progressively leached during continued wet weather. Estimated mean monthly loads of organic nitrogen and nitrate plus nitrite in stream recharge and Barton Springs discharge, which were relatively low and constant during the dry period, increased during the wet period. Loads of organic nitrogen, on average, were about six times greater in stream recharge than in Barton Springs discharge, indicating that organic nitrogen likely was being converted to nitrate within the aquifer. Loads of total nitrogen (organic nitrogen plus ammonia and nitrate plus nitrite) in stream recharge (162 kilograms per day) and in Barton Springs discharge (157 kilograms per day) for the period of the investigation were not significantly different. Dilution was not an important factor affecting concentrations of nitrate plus nitrite in the streams or in Barton Springs during the period of this investigation: Concentrations of nitrate plus nitrite did not decrease in streams with increasing stream discharge, and nitrate plus nitrite concentrations measured at Barton

  13. A Legal Analysis of Litigation against Oklahoma Educators and School Districts under the Oklahoma Governmental Tort Claims Act

    ERIC Educational Resources Information Center

    Lacefield, Kevin Lee

    2010-01-01

    This dissertation analyzed public court decisions in cases against Oklahoma school districts and their employees involving sovereign immunity claims filed under Oklahoma's Governmental Tort Claims Act. The questions addressed were: (1) How have the Oklahoma courts interpreted the Governmental Tort Claims Act, (Okla. Stat. tit. 51 Section 151 et…

  14. A Legal Analysis of Litigation against Oklahoma Educators and School Districts under the Oklahoma Governmental Tort Claims Act

    ERIC Educational Resources Information Center

    Lacefield, Kevin Lee

    2010-01-01

    This dissertation analyzed public court decisions in cases against Oklahoma school districts and their employees involving sovereign immunity claims filed under Oklahoma's Governmental Tort Claims Act. The questions addressed were: (1) How have the Oklahoma courts interpreted the Governmental Tort Claims Act, (Okla. Stat. tit. 51 Section 151 et

  15. The Active Bacterial Community in a Pristine Confined Aquifer

    EPA Science Inventory

    This study of the active bacteria residing in a pristine confined aquifer provides unexpected insights into the ecology of iron-reducing and sulfate-reducing bacteria in the subsurface. At 18 wells in east-central Illinois, we trapped the microbes that attached to aquifer sedimen...

  16. Modeling The Evolution Of A Regional Aquifer System With The California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM)

    NASA Astrophysics Data System (ADS)

    Brush, C. F.; Dogrul, E. C.; Kadir, T. N.; Moncrief, M. R.; Shultz, S.; Tonkin, M.; Wendell, D.

    2006-12-01

    The finite element application IWFM has been used to develop an integrated groundwater-surface water model for California's Central Valley, an area of ~50,000 km2, to simulate the evolution of the groundwater flow system and historical groundwater-surface water interactions on a monthly time step from October 1921 to September 2003. The Central Valley's hydrologic system changed significantly during this period. Prior to 1920, most surface water flowed unimpeded from source areas in the mountains surrounding the Central Valley through the Sacramento-San Joaquin Delta to the Pacific Ocean, and groundwater largely flowed from recharge areas on the valley rim to discharge as evapotransipration in extensive marshes along the valley's axis. Rapid agricultural development led to increases in groundwater pumping from ~0.5 km3/yr in the early 1920's to 13-18 km3/yr in the 1940's to 1970's, resulting in strong vertical head gradients, significant head declines throughout the valley, and subsidence of >0.3 m over an area of 13,000 km2. Construction of numerous dams and development of an extensive surface water delivery network after 1950 altered the surface water flow regime and reduced groundwater pumping to the current ~10 km3/yr, increasing net recharge and leading to local head gradient reversals and water level recoveries. A model calibrated to the range of historical flow regimes in the Central Valley will provide robust estimations of stream-groundwater interactions for a range of projected future scenarios. C2VSIM uses the IWFM application to simulate a 3-D finite element groundwater flow process dynamically coupled with 1-D land surface, stream flow, lake and unsaturated zone processes. The groundwater flow system is represented with three layers each having 1393 elements. Land surface processes are simulated using 21 subregions corresponding to California DWR water-supply planning areas. The surface-water network is simulated using 431 stream nodes representing 72 stream reaches, with 108 deliveries specified at 80 diversion locations. Monthly land use, agricultural crops, urban demand, precipitation, evapotranspiration, boundary stream flows and surface water diversions are specified, and the land-surface process calculates crop water demands and routes runoff to streams and deep percolation to the unsaturated zone. The stream process routes surface water flows, allocates available water to meet specified deliveries, and calculates stream-groundwater interactions. Groundwater pumping (which is not metered in California) can be specified or calculated by the model. Model calibration included automated selection of optimum hydraulic parameters using PEST, and manual selection of the areal and vertical distribution of groundwater pumping, to obtain the best match to historical groundwater heads and stream flows. The calibrated model is being used to calculate stream accretions and depletions for use in CALSIM-III, a reservoir-river simulation tool used for planning and management of the State Water Project and Central Valley Project, large surface water distribution networks in California's Central Valley.

  17. Impact of the 2005-2006 drought on soil water content under a tall grass prairie at Fort Reno, Oklahoma.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined changes in the seasonal pattern of soil water content under a tall grass prairie in central Oklahoma as a result of the 2005-2006 drought. The seasonal pattern of soil water content in the top 50 cm of the soil profile was minimally impacted by the drought, as this portion of the...

  18. Probability of Unmixed Young Groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    USGS Publications Warehouse

    Rupert, Michael G.; Plummer, L. Niel

    2009-01-01

    This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  19. Occurrence of Selected Organic Compounds in Groundwater Used for Public Supply in the Plio-Pleistocene Deposits in East-Central Nebraska and the Dawson and Denver Aquifers near Denver, Colorado, 2002-2004

    USGS Publications Warehouse

    Bails, Jeffrey B.; Dietsch, Benjamin J.; Landon, Matthew K.; Paschke, Suzanne S.

    2009-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey has an ongoing Source Water-Quality Assessment program designed to characterize the quality of water in aquifers used as a source of drinking-water supply for some of the largest metropolitan areas in the Nation. In addition to the sampling of the source waters, sampling of finished or treated waters was done in the second year of local studies to evaluate if the organic compounds detected in the source waters also were present in the water supplied to the public. An evaluation of source-water quality used in selected groundwater-supplied public water systems in east-central Nebraska and in the south Denver metropolitan area of Colorado was completed during 2002 through 2004. Fifteen wells in the Plio-Pleistocene alluvial and glacial deposits in east-central Nebraska (the High Plains study) and 12 wells in the Dawson and Denver aquifers, south of Denver (the South Platte study), were sampled during the first year to obtain information on the occurrence and distribution of selected organic chemicals in the source waters. During the second year of the study, two wells in east-central Nebraska were resampled, along with the associated finished water derived from these wells, to determine if organic compounds detected in the source water also were present in the finished water. Selection of the second-phase sampling sites was based on detections of the most-frequently occurring organic compounds from the first-year Source Water-Quality Assessment study results. The second-year sampling also required that finished waters had undergone water-quality treatment processes before being distributed to the public. Sample results from the first year of sampling groundwater wells in east-central Nebraska show that the most-frequently detected organic compounds were the pesticide atrazine and its degradate, deethylatrazine (DEA, otherwise known as 2-chloro-4-isopropylamino-6-amino-s-triazine or CIAT), which were detected in 9 of the 15 wells (60 percent of the samples). The second most frequently detected organic compound was tetrachloroethylene, detected in 4 of the 15 wells (27 percent of the samples), followed by chloroform, trichloroethylene, and 2-hydroxyatrazine (2-hydroxy-4-isopropylamino-6-ethylamino-s-triazine, or OIET), present in 3 of the 15 wells (20 percent of the samples). The pesticide compounds deisopropylatrazine (2-chloro-6-ethylamino-4-amino-s-triazine, or CEAT), metolachlor, and simazine and the volatile organic compound cis-1,2-dichloroethylene were detected in 2 of the 15 wells, and the compounds diuron and 1,2-dichloroethane were detected in only 1 of the 15 wells during the first-year sampling. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. There were few detections of organic compounds during the first year of sampling groundwater wells in the South Platte study area. The compounds atrazine, deethylatrazine, picloram, tetrachloroethylene, methyl-tert-butyl-ether (MTBE), tris(2-butoxyethyl)phosphate, and bromoform were detected only once in all the samples from the 12 wells. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. Second-year sampling, which included the addition of paired source- and finished-water samples, was completed at two sites in the High Plains study area. Source-water samples from the second-year sampling had detections of atrazine and deethylatrazine; at one site deisopropylatrazine and chloroform also were detected. The finished-water samples, which represent the source water after blending with water from other wells and treatment, indicated a decrease in the concentrations of the pesticides at one site, whereas concentrations remained nearly constant at a second site. The trihalomethanes (THMs or disinfec

  20. A description of aquifer units in eastern Oregon

    USGS Publications Warehouse

    Gonthier, J.B.

    1985-01-01

    Geologic formations in Oregon, east of the crest of the Cascade Range, have been grouped according to similarities in their hydrogeologic and geologic properties into six major aquifer units. Two of the units, the Mesozoic-Paleozoic and the John Day-Clarno aquifers, are low-permeability aquifers, have hydraulic conductivities generally less than 1 ft/d (feet per day), and are generally capable of yielding only a few gallons per minute to wells. These are important aquifer units, nevertheless, because they are the only economical source of domestic water present in east-central Oregon where they outcrop. Four of the aquifer units contain beds or zones of high permeability materials with hydraulic conductivities that commonly range between 5 and 50 ft/d. In many localities where these units are present, they are capable of yielding 200 gallons/min or more to wells. These productive aquifer units are the Columbia River Basalt, the Cenozoic volcanic and sedimentary , Cenozoic sedimentary, and the Quaternary sediment aquifers, respectively. North of the Blue Mountains, the Columbia River Basalt aquifer is a major aquifer of regional extent and, in that area, heavy withdrawals, chiefly for irrigation, have resulted in regional groundwater level declines. South of the Blue Mountains, the basalt underlies rugged terrane, is not developed, and little is known about its hydraulic properties. Other major aquifer units are heavily developed in localized areas or in basins throughout eastern Oregon. (USGS)

  1. Current (2004-07) Conditions and Changes in Ground-Water Levels from Predevelopment to 2007, Southern High Plains Aquifer, East-Central New Mexico-Curry County, Portales, and Causey Lingo Underground Water Basins

    USGS Publications Warehouse

    Tillery, Anne

    2008-01-01

    The Southern High Plains aquifer is the principal aquifer in Curry and Roosevelt Counties, N. Mex., and primary source of water in southeastern New Mexico. Successful water-supply planning for New Mexico's Southern High Plains requires knowledge of the current aquifer conditions and a context to estimate future trends given current aquifer-management policy. This report provides a summary of the current (2007) water-level status of the Southern High Plains aquifer in New Mexico, including a basis for estimating future trends by comparison with historical conditions. This report includes estimates of the extent of ground-water level declines in the Curry County, Portales, and Causey-Lingo Ground-water Management Area parts of the High Plains Aquifer in eastern New Mexico since predevelopment. Maps representing 2007 water levels, water-level declines, aquifer saturated thickness, and depth to water accompanied by hydrographs from representative wells for the Southern High Plains aquifer in the Curry County, Portales, and Causey Lingo Underground Water Basins were prepared in cooperation with the New Mexico Office of the State Engineer. The results of this mapping show the water level declined as much as 175 feet in the study area at rates as high as 1.76 feet per year.

  2. Oklahoma: Statewide Automation-Related Activities.

    ERIC Educational Resources Information Center

    Corbett, John, Ed.

    1996-01-01

    Presents an overview of past, present, and future activities involving automation and networking in Oklahoma libraries. Topics include a library technology network concerned with equitable library service; a union list of CD-ROM library holdings; telecommunications infrastructure; telephone charges and Internet access; upgrades of rural library…

  3. Native Americans in Oklahoma, K-6.

    ERIC Educational Resources Information Center

    Cunningham, Patricia; And Others

    The study unit on American Indians in Oklahoma for grades K-6 provides suggested multi-curriculum activities and resources for educators to use as an introduction for all students, Indian and non-Indian. Goals of the multi-curriculum based study unit include: (1) developing an awareness of the origin of Native American culture; (2) making the

  4. State Education Finance and Governance Profile: Oklahoma

    ERIC Educational Resources Information Center

    Slosburg, Tucker

    2010-01-01

    This article presents the state education finance and governance profile of Oklahoma. The state uses a State Aid Formula to determine the appropriation of funds to various districts. Along with the aid formula, the state collects revenue from the following sources: compensatory programs, special education, vocational programs, transportation…

  5. Oklahoma: A View of the Center

    ERIC Educational Resources Information Center

    Jones, Ruthe Blalock; Depriest, Maria; Fowler, Cynthia

    2007-01-01

    This article presents a dialogue on twentieth-century Oklahoma artists and writers given at a conference titled "Working from Community: American Indian Art and Literature in a Historical and Cultural Context" and held in the summer of 2003 at Evergreen State College in Olympia, Washington. Twenty-five educators converged for six weeks of…

  6. 40 CFR 81.337 - Oklahoma.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Intrastate Unclassifiable/Attainment Alfalfa County Beaver County Blaine County Cimarron County Custer County.../Attainment Alfalfa County Beaver County Blaine County Cimarron County Custer County Dewey County Ellis County... 187Northwestern Oklahoma Intrastate Unclassifiable/Attainment Alfalfa County Beaver County Blaine County...

  7. Ethnicity and Identity in Northeastern Oklahoma.

    ERIC Educational Resources Information Center

    Roark, Sue N.

    The origins of the Oklahoma Delaware reflect a complex history of migration, forced relocation, and punitive concentration. Though 36 tribal identities survive today, they are not of equal cultural coherence. Among the Delaware, there is no simple relation between socioeconomic status, level of acculturation, and factional membership. Rather, the…

  8. SIMULATION OF PEANUT GROWTH IN OKLAHOMA.

    USGS Publications Warehouse

    Grosz, Gerald D.; Elliott, Ronald L.; Young, James H.

    1986-01-01

    Two peanut growth models of varying complexity were calibrated for Oklahoma varieties and growing conditions. Both models predicted pod growth quite well. The models were then used to simulate the effects of various soil moisture levels on peanut growth. The more complex model has potential as a management tool.

  9. 75 FR 11949 - Oklahoma Disaster # OK-00035

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... State of Oklahoma (FEMA- 1883-DR), dated 03/05/2010. Incident: Severe Winter Storm. Incident Period: 01/28/2010 through 01/30/2010. Effective Date: 03/05/2010. Physical Loan Application Deadline Date: 05/04/2010. Economic Injury (EIDL) Loan Application Deadline Date: 12/06/2010. ADDRESSES:...

  10. 77 FR 37728 - Oklahoma Disaster # OK-00060

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00060 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  11. 78 FR 23622 - Oklahoma Disaster #OK-00070

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00070 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  12. 76 FR 33394 - Oklahoma Disaster # OK-00051

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00051 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  13. 76 FR 31670 - Oklahoma Disaster #OK-00048

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00048 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  14. 76 FR 30224 - Oklahoma Disaster #OK-00047

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00047 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  15. 75 FR 10330 - Oklahoma Disaster # OK-00034

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... From the Federal Register Online via the Government Publishing Office ] SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00034 AGENCY: U.S. Small Business Administration ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  16. 78 FR 42147 - Oklahoma Disaster #OK-00073

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-15

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00073 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  17. 76 FR 38263 - Oklahoma Disaster # OK-00052

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00052 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only...

  18. 75 FR 45679 - Oklahoma Disaster #OK-00043

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00043 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  19. 75 FR 35103 - Oklahoma Disaster #OK-00040

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Oklahoma Disaster OK-00040 AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for Public Assistance Only for...

  20. The Oklahoma Report: An Update on Education.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Information about education in Oklahoma beginning with the 1989-90 school year and continuing through December of 1990 is presented in a concise and usable format. This document is an overview of information useful to the public. Sections include: (1) common education recognitions and achievements; (2) 1990 school legislation; (3) educational…

  1. 78 FR 66671 - Oklahoma Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... conditions of approval of the Oklahoma program in the January 19, 1981, Federal Register (46 FR 4902). You... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 936 [SATS No. OK-035-FOR; Docket ID: OSM... Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION:...

  2. Nutritional Risk among Oklahoma Congregate Meal Participants

    ERIC Educational Resources Information Center

    Quigley, Kimberly K.; Hermann, Janice R.; Warde, William D.

    2008-01-01

    Objective: To determine if there were differences by demographic variables in response rates to Nutrition Screening Initiative (NSI) Checklist statements reported by over 50% of Oklahoma Older Americans Act Nutrition Program (OAANP) congregate meal participants categorized at high nutritional risk based on cumulative NSI Checklist scores. Design:

  3. State Education Finance and Governance Profile: Oklahoma

    ERIC Educational Resources Information Center

    Slosburg, Tucker

    2010-01-01

    This article presents the state education finance and governance profile of Oklahoma. The state uses a State Aid Formula to determine the appropriation of funds to various districts. Along with the aid formula, the state collects revenue from the following sources: compensatory programs, special education, vocational programs, transportation

  4. Oklahoma Association of Teacher Educators Journal 2009

    ERIC Educational Resources Information Center

    Green, Malinda Hendricks, Ed.

    2009-01-01

    The Oklahoma Association of Teacher Educators 2009 Journal includes the following four peer reviewed articles: (1) The Changing Role of Grandparents (Fred D. Hammond, III, Terry E. Spigner, Charolette Myles-Nixon, and Pauline Holloway); (2) Pedagogical Agent Instructional Design Challenges (Jon Martens); (3) Differences in Relatedness across…

  5. Eliminating Barriers to Dual Enrollment in Oklahoma

    ERIC Educational Resources Information Center

    Roach, Rick; Gamez Vargas, Juanita; David, Kevin M.

    2015-01-01

    Policy, financial, and transportation barriers have limited participation in dual enrollment for marginalized (low-socioeconomic, first-generation, and ethnic minority) students in Oklahoma. This chapter presents a collaborative effort by education and community leaders that has successfully eliminated these barriers and increased the number of

  6. Nutritional Risk among Oklahoma Congregate Meal Participants

    ERIC Educational Resources Information Center

    Quigley, Kimberly K.; Hermann, Janice R.; Warde, William D.

    2008-01-01

    Objective: To determine if there were differences by demographic variables in response rates to Nutrition Screening Initiative (NSI) Checklist statements reported by over 50% of Oklahoma Older Americans Act Nutrition Program (OAANP) congregate meal participants categorized at high nutritional risk based on cumulative NSI Checklist scores. Design:…

  7. Oklahoma Handbook: Child Nutrition Programs. Revised Edition.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Nutrition concepts, school food service guidelines, and related materials (such as nutrition charts, menu planning worksheets, and student survey forms) are provided in this nutrition handbook. Prepared by the Oklahoma State Department of Education's School Lunch Section, the handbook consists of nine sections that are organized in outline format.…

  8. Public Library Service to Children in Oklahoma.

    ERIC Educational Resources Information Center

    Wentroth, Mary Ann

    Because of the low density of its population and subsequent low property tax support, library service in Oklahoma is based on the multicounty library operating as a single unit. With the help of federal funds, such units now cover one-third of the state and 60 percent of its population utilizing branch libraries and bookmobile service. Service to…

  9. Eliminating Barriers to Dual Enrollment in Oklahoma

    ERIC Educational Resources Information Center

    Roach, Rick; Gamez Vargas, Juanita; David, Kevin M.

    2015-01-01

    Policy, financial, and transportation barriers have limited participation in dual enrollment for marginalized (low-socioeconomic, first-generation, and ethnic minority) students in Oklahoma. This chapter presents a collaborative effort by education and community leaders that has successfully eliminated these barriers and increased the number of…

  10. Borehole geophysical, fluid, and hydraulic properties within and surrounding the freshwater/saline-water transition zone, San Antonio segment of the Edwards aquifer, south-central Texas, 2010-11

    USGS Publications Warehouse

    Thomas, Jonathan V.; Stanton, Gregory P.; Lambert, Rebecca B.

    2012-01-01

    The freshwater zone of the San Antonio segment of the Edwards aquifer is used by residents of San Antonio and numerous other rapidly growing communities in south-central Texas as their primary water supply source. This freshwater zone is bounded to the south and southeast by a saline-water zone with an intermediate zone transitioning from freshwater to saline water, the transition zone. As demands on this water supply increase, there is concern that the transition zone could potentially move, resulting in more saline water in current supply wells. Since 1985, the U.S. Geological Survey (USGS), San Antonio Water System (SAWS), and other Federal and State agencies have conducted studies to better understand the transition zone. During 2010 and 2011, the USGS, in cooperation with SAWS, conducted a study to further assess the potential for movement of the transition zone in part of the San Antonio segment of the Edwards aquifer. Equivalent freshwater heads were computed to investigate the transition from saline to freshwater zones in the San Antonio segment and evaluate the potential for lateral flow at the freshwater/saline-water interface. Data were collected within and surrounding the transition zone from 13 wells in four transects (East Uvalde, Tri-County, Fish Hatchery, and Kyle). Hydraulic head and geophysical log data were used to calculate equivalent freshwater heads and then analyzed to identify possible horizontal gradients across the transition zone and thus flow. Unlike previous studies that used indirect methods to calculate fluid conductivity from fluid resistivity, in this study geophysical tools that directly measured fluid conductivity were used. Electromagnetic (EM) flowmeter logs were collected under both ambient and stressed (pumping) conditions and were processed to identify vertical flow zones within the borehole. The San Antonio segment of the Edwards aquifer (the study area) is about 175 miles long and extends from the western groundwater divide near Brackettville in Kinney County to the eastern groundwater divide near Kyle in Hays County. The four transects consist of two to five wells per transect and were configured approximately perpendicular to and across the expected trace of the freshwater/saline-water interface. The deep flow zone indicated by the EM flowmeter data for East Uvalde transect well EU2 corresponds directly with a large, negative deflection of the fluid logs, indicating an inflow of fresher water from the Devils River Limestone. To the southwest, towards the freshwater/saline-water interface, this same flow zone was observed in well EU1, but with a reduction of flow, and displayed no apparent fluid curve deflections. The highest observed transmissivity of the study area was observed in the saline zone of the Tri-County transect, at well TC3, which had a total transmissivity of 24,900 square feet per day. Zones of high transmissivity throughout the study site were observed to not be continuous and are likely caused by localized secondary porosity such as intersecting faults or karst features. Although analyses of daily mean equivalent freshwater heads for the East Uvalde transect indicated that the gradient across the freshwater/saline-water interface varied between into and out of the freshwater zone, the data indicate that there was a slightly longer period during which the gradient was out of the freshwater zone. Analyses of all daily mean equivalent freshwater heads for the Tri-County transect indicated that the lateral-head gradients across the freshwater/saline-water interface were typically mixed (not indicative of flow into or out of freshwater zone). Assessment of the daily mean equivalent freshwater heads indicated that, although the lateral-head gradient at the Kyle transect varied between into and out of the freshwater zone, the lateral-head gradient was typically from the transition zone into the freshwater zone.

  11. Hydrochemical characteristics and seasonal variations in groundwater quality of an alluvial aquifer in parts of Central Ganga Plain, Western Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Umar, Rashid; Ahmed, Izrar; Alam, Fakhre; Khan, Mohammad Muqtada

    2009-09-01

    The present study was undertaken to assess major ion chemistry of groundwater in parts of the Central Ganga Plain and observe seasonal variations in its chemical quality. Systematic sampling was carried out during November 2005 and June 2006. The major ion chemistry of groundwater shows large variations, so much so that at times the meteoric signature seems to be completely obliterated. In many samples the concentrations of SO4, NO3 and F are above the permissible limit for human consumption. The graphical treatment of major ion chemistry helps in identifying four types of groundwater. All possible ionic species such as NaCl, KCl, NaHCO3, NaSO4, KNO3, NaNO3, CaHCO3, MgHCO3, MgSO4 are likely to occur in groundwater system. The observed chemical variations may be attributed to sediment water interaction, ion exchange, dissolution mechanisms and anthropogenic influences such as application of fertilizers and effluents from sugar factories and paper mills. A general increase in TDS is observed in samples during June 2006. The increase in salinity is attributed to evaporation from water table, irrigation return flows, anthropogenic activities and below average rainfall in 2005 and 2006.

  12. Aquifer-nomenclature guidelines

    USGS Publications Warehouse

    Laney, R.L.; Davidson, C.B.

    1986-01-01

    Guidelines and recommendations for naming aquifers are presented to assist authors of geohydrological reports in the United States Geological Survey, Water Resources Division. The hierarchy of terms that is used for water- yielding rocks from largest to smallest is aquifer system, aquifer, and zone. If aquifers are named, the names should be derived from lithologic terms, rock-stratigraphic units, or geographic names. The following items are not recommended as sources of aquifer names: time-stratigraphic names, relative position, alphanumeric designations, depositional environment, depth of occurrence, acronyms, and hydrologic conditions. Confining units should not be named unless doing so clearly promotes understanding of a particular aquifer system. Sources of names for confining units are similar to those for aquifer names, i.e. lithologic terms, rock-stratigraphic units or geographic names. Examples of comparison charts and tables that are used to define the geohydrologic framework are included. Aquifers are defined in 11 hypothetical examples that characterize geohydrologic settings throughout the country. (Author 's abstract)

  13. Dam-breach analysis and flood-inundation mapping for selected dams in Oklahoma City, Oklahoma, and near Atoka, Oklahoma

    USGS Publications Warehouse

    Shivers, Molly J.; Smith, S. Jerrod; Grout, Trevor S.; Lewis, Jason M.

    2015-01-01

    Digital-elevation models, field survey measurements, hydraulic data, and hydrologic data (U.S. Geological Survey streamflow-gaging stations North Canadian River below Lake Overholser near Oklahoma City, Okla. [07241000], and North Canadian River at Britton Road at Oklahoma City, Okla. [07241520]), were used as inputs for the one-dimensional dynamic (unsteady-flow) models using Hydrologic Engineering Centers River Analysis System (HEC–RAS) software. The modeled flood elevations were exported to a geographic information system to produce flood-inundation maps. Water-surface profiles were developed for a 75-percent probable maximum flood dam-breach scenario and a sunny-day dam-breach scenario, as well as for maximum flood-inundation elevations and flood-wave arrival times at selected bridge crossings. Points of interest such as community-services offices, recreational areas, water-treatment plants, and wastewater-treatment plants were identified on the flood-inundation maps.

  14. Update on hantavirus in Oklahoma: are we missing cases?

    PubMed

    Smithee, L; Bos, J; Mallonee, S; Nisbett, R A; Crutcher, J M

    2007-05-01

    Hantavirus Pulmonary Syndrome (HPS) was first recognized in 1993. Through July 6, 2005, 396 cases have been reported in the US, including 50 from Kansas, Texas, and Oklahoma. We report the second case of HPS in Oklahoma and present data from rodent testing to support the presence of hantaviruses across Oklahoma. We examined Oklahoma death certificates for 1999-2003 for possible unreported HPS cases. The rate of death in young adults 15-49 years due to acute respiratory distress syndrome was 69% higher and the death rate due to unspecified respiratory failure was three times higher in the grassland area of Oklahoma as compared to the non-grassland. It appears the highest risk of HPS is in the Oklahoma grasslands but Sin Nombre virus is present in the non-grassland area as well. We request physician collaboration in detection and reporting of HPS cases and present brief recommendations for prevention. PMID:17557601

  15. Seismic and gravity study of the lithospheric structure of the Southern Oklahoma Aulacogen and surrounding region

    NASA Astrophysics Data System (ADS)

    Tave, M.; Gurrola, H.; Mickus, K. L.; Thomas, W. A.

    2012-12-01

    The Southern Oklahoma Aulacogen (SOA) is easily recognizable in gravity and magnetic maps as perhaps the second largest gravity anomaly in North America (second to the Mid-continental rift). The SOA lies in the Granite Rhyolite province of Oklahoma. It is characterized by large magnitude basement faults that were active during Cambrian rifting and were reactivated as thrust faults during the late Paleozoic (313-285 Ma) during the Ouachita Orogeny. The SOA was originally considered to be a failed rift of a triple junction associated with Cambrian-aged opening of the Iapetan Ocean. This model is supported by the three-armed pattern of gravity highs at the junction of the SOA with Ouachita orogen, the age of the bimodal series of gabbroic and rhyolitic rock (that are clearly mantle derived), and the interpretation of a thick sequence of clastic metasedimentary rock as rift-fill. These metasedimentary rock, however, have been found to be much older than the SOA faulting and volcanism. More recent investigations favor models that describe the SOA as a system of leaky transform faults that are roughly parallel to the Alabama-Oklahoma transform fault, which partially frames part of the Iapetan margin of Southern Laurentia. This study will try to use seismic and gravity modeling to resolve the nature of the SOA and to determine the depth (into the mantle) to which features related to the formation of the SOA are preserved. The EarthScope transportable array (TA) has completed data acquisition in Oklahoma and Texas. We have made receiver functions (RF) from the TA along the SOA and found that the there is an abrupt change in crustal structure across the SOA. RF analysis shows that a mid-crustal boundary occurs at about 15 km south of the SOA that dips toward the SOA. North of the SOA, this midcrustal boundary appears to be 5 km shallower and flat. The Moho appears to be 45 km deep to the south of the SOA but appears to be at a depth of about 38 km to the north. Additional processing is underway to map out variation in the Vp/Vs ratio throughout the region and into the mantle. Several uncharacteristically large earthquakes occurred in west Texas and Oklahoma during the period that the TA was in the region (including a 5.6 in east-central Oklahoma, a 5.3 in southeastern Colorado, a 4.8 near the Gulf Coast, and a 4.2 in central Texas; all of which had many aftershocks between 3.5 and 4). We will use these events to perform Pn tomography throughout the area.

  16. Molecular characterization, ecology, and epidemiology of a novel Tymovirus in Asclepias viridis from Oklahoma.

    PubMed

    Min, Byoung-Eun; Feldman, Tracy S; Ali, Akhtar; Wiley, Graham; Muthukumar, Vijay; Roe, Bruce A; Roossinck, Marilyn; Melcher, Ulrich; Palmer, Michael W; Nelson, Richard S

    2012-02-01

    Native virus-plant interactions require more understanding and their study will provide a basis from which to identify potential sources of emerging destructive viruses in crops. A novel tymovirus sequence was detected in Asclepias viridis (green milkweed), a perennial growing in a natural setting in the Tallgrass Prairie Preserve (TGPP) of Oklahoma. It was abundant within and frequent among A. viridis plants and, to varying extents, within other dicotyledonous and one grass (Panicum virgatum) species obtained from the TGPP. Extracts from A. viridis containing the sequence were infectious to a limited number of species. The virus genome was cloned and determined to be closely related to Kennedya yellow mosaic virus. The persistence of the virus within the Oklahoma A. viridis population was monitored for five successive years. Virus was present in a high percentage of plants within representative areas of the TGPP in all years and was spreading to additional plants. Virus was present in regions adjacent to the TGPP but not in plants sampled from central and south-central Oklahoma. Virus was present in the underground caudex of the plant during the winter, suggesting overwintering in this tissue. The RNA sequence encoding the virus coat protein varied considerably between individual plants (≈3%), likely due to drift rather than selection. An infectious clone was constructed and the virus was named Asclepias asymptomatic virus (AsAV) due to the absence of obvious symptoms on A. viridis. PMID:22026416

  17. Ground-water movement and effects of coal strip mining on water quality of high-wall lakes and aquifers in the Macon-Huntsville area, north-central Missouri

    SciTech Connect

    Hall, D.C.; Davis, R.E.

    1986-01-01

    Glacial drift and Pennsylvanian bedrock were mixed together forming spoil during pre-reclamation strip mining for coal in north-central Missouri. This restructuring of the land increases the porosity of the material, and increased aqueous concentrations of many dissolved constituents. Median sodium and bicarbonate concentrations were slightly greater, calcium 5 times greater, magnesium 6 times greater, manganese 15 times greater, iron 19 times greater, and sulfate 24 times greater in water from spoil than in water from glacial drift. Median potassium concentrations were slightly greater, and chloride concentrations were two times greater in water from glacial drift than in water from spoil. Water types in glacial drift and bedrock were mostly sodium bicarbonate and calcium bicarbonate; in spoil and lakes in the spoil, the water types were mostly calcium sulfate. median pH values in water from spoil were 6.6, as compared to 7.4 in water from glacial drift and 9.0 in water from bedrock. Neutralization of acid by carbonate rocks causes the moderate pH values in water from spoil; a carbonate system closed to the atmosphere may result in alkaline pH values in bedrock. Transmissivities generally are greatest for spoil, and decrease in the following order: alluvium, glacial drift, and bedrock. Recharge to spoil is from precipitation, lateral flow from glacial drift, and lateral and vertical flow from bedrock. The rate of recharge to the aquifers is unknown, but probably is small. Groundwater discharge from the glacial drift, bedrock, and spoil is to alluvium. 23 refs., 19 figs., 25 tabs.

  18. Digital map of saturated thickness in 1980 for the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, South Dakota, Texas, Wyoming

    USGS Publications Warehouse

    Cederstrand, Joel R.; Becker, Mark F.

    1999-01-01

    This report contains digital data and accompanying documentation for saturated thickness contours of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created by digitizing the saturated thickness contours from a 1:1,000,000-scale base map created by the U.S. Geological Survey High Plains Regional Aquifer-System Analysis (RASA) project (Gutentag, E.D., Heimes, F.J., Krothe, N.C., Luckey, R.R., and Weeks, J.B., 1984, Geohydrology of the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U.S. Geological Survey Professional Paper 1400-B, 63 p.) The data are not intended for use at scales larger than 1:1,000,000.

  19. A digital geologic map database for the state of Oklahoma

    USGS Publications Warehouse

    Heran, William D.; Green, Gregory N.; Stoeser, Douglas B.

    2003-01-01

    This dataset is a composite of part or all of the 12 1:250,000 scale quadrangles that make up Oklahoma. The result looks like a geologic map of the State of Oklahoma. But it is only an Oklahoma shaped map clipped from the 1:250,000 geologic maps. This is not a new geologic map. No new mapping took place. The geologic information from each quadrangle is available within the composite dataset.

  20. Thermal maturation by vitrinite reflectance of Woodford shale, Arbuckle Mountains, Oklahoma

    SciTech Connect

    Cardott, B.J.; Metcalf, W.J. III; Ahern, J.L. )

    1989-09-01

    Vitrinite reflectance was measured on 40 grab samples from outcrops of the Woodford Shale (Upper Devonian-Lower Mississippian) collected near the Washita Valley fault in the Arbuckle Mountains in south-central Oklahoma. Samples are widely distributed along 40 km. Sample localities range from 60 m to 7.63 km from the Washita Valley fault. Well-indurated shale samples were collected from below the outcrop surface to reduce the effect of weathering on vitrinite reflectance. Vitrinite reflectance values were measured from standard kerogen concentrate pellets. Implications of the data specific to the Arbuckle Mountains include the Woodford Shale is immature to marginally mature with respect to the generation of liquid hydrocarbons; high heat flow associated with the rifting stage of the southern Oklahoma aulacogen was diminished by Late Devonian; the Woodford Shale was never deeply buried; and frictional heating from the Washita Valley fault did not affect the temperature field significantly.

  1. Hydrologic Drought of Water Year 2006 Compared with Four Major Drought Periods of the 20th Century in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.

    2008-01-01

    Water Year 2006 (October 1, 2005, to September 30, 2006) was a year of extreme hydrologic drought and the driest year in the recent 2002-2006 drought in Oklahoma. The severity of this recent drought can be evaluated by comparing it with four previous major hydrologic droughts, water years 1929-41, 1952-56, 1961-72, and 1976-81. The U.S. Geological Survey, in cooperation with the Oklahoma Water Resources Board, completed an investigation to summarize the Water Year 2006 hydrologic drought and compare it to the four previous major hydrologic droughts in the 20th century. The period of water years 1925-2006 was selected as the period of record because before 1925 few continuous record streamflow-gaging sites existed and gaps existed where no streamflow-gaging sites were operated. Statewide annual precipitation in Water Year 2006 was second driest and statewide annual runoff in Water Year 2006 was sixth driest in the 82 years of record. Annual area-averaged precipitation totals by the nine National Weather Service Climate Divisions from Water Year 2006 are compared to those during four previous major hydrologic droughts to show how rainfall deficits in Oklahoma varied by region. Only two of the nine climate divisions, Climate Division 1 Panhandle and Climate Division 4 West Central, had minor rainfall deficits, while the rest of the climate divisions had severe rainfall deficits in Water Year 2006 ranging from only 65 to 73 percent of normal annual precipitation. Regional streamflow patterns for Water Year 2006 indicate that Oklahoma was part of the regionwide below-normal streamflow conditions for Arkansas-White-Red River Basin, the sixth driest since 1930. The percentage of long-term stations in Oklahoma (with at least 30 years of record) having below-normal streamflow reached 80 to 85 percent for some days in August and November 2006. Twelve long-term streamflow-gaging sites with periods of record ranging from 62 to 78 years were selected to show how streamflow deficits varied by region. The hydrologic drought worsened going from north to south in Oklahoma, ranging from 45 percent in the north, to just 14 percent in east-central Oklahoma, and 20 percent of normal annual streamflow in the southwest. The low streamflows resulted in only 86.3 percent of the statewide conservation storage available at the end of the water year in major reservoirs, and 7 to 47 percent of hydroelectric power generation at sites in Oklahoma in Calendar Year 2005.

  2. [Oil and gas prorationing in Oklahoma

    SciTech Connect

    Rice, L. )

    1992-06-01

    The issues involved in prorationing oil and gas in Oklahoma are reviewed. The legislation that regulated prorationing in the state is discussed. In 1991 a Natural Gas Policy Commission was formed. Serving on the commission were majors, independents, mineral owners, pipelines and a few legislaters. The purpose of the commission was to come up with legislation that dealt with the problem of prorationing. This was done as Senate Bill 663.

  3. Oklahoma's Ouachita area beginning to stir

    SciTech Connect

    Petzet, G.A.

    1991-02-18

    This paper reports on exploration of Ouachita rocks of southeastern Oklahoma. Wells are completed or planned in the Potato Hills, Moyers, and Atoka areas of the Ouachita Province. Deep and shallow drilling will start soon in a 9 sq mile area in the Potato Hills area of southern Latimer County. The shallow drilling program will consist of eight wells to about 6,000 ft to assess potential in Ordovician Big Fork, Womble, and Mississippian-Devonian Arkansas Novaculite.

  4. Quantitative petrographic analysis of Desmoinesian sandstones from Oklahoma

    USGS Publications Warehouse

    Dyman, Thaddeus S.

    1989-01-01

    Desmoinesian sandstones from the northern Oklahoma platform and the Anadarko, Arkoma, and Ardmore basins record a complex interaction between mid-Pennsylvanian source-area tectonism and cyclic sedimentation patterns associated with numerous transgressions and regressions. Framework-grain summaries for 50 thin sections from sandstones of the Krebs, Cabaniss, and Marmaton Groups and their surface and subsurface equivalents were subjected to multivariate statistical analyses to establish regional compositional trends for provenance analysis. R-mode cluster and correspondence analyses were used to determine the contributing effect (total variance) of key framework grains. Fragments of monocrystalline and polycrystalline quartz; potassium and plagioclase feldspar; chert; and metamorphic, limestone, and mudstone-sandstone rock fragments contribute most to the variation in the grain population. Q-mode cluster and correspondence analyses were used to identify four petrofacies and establish the range of compositional variation in Desmoinesian sandstones. Petrofacies I is rich in monocrystalline quartz (78-98%); mica and rock fragments are rare. Petrofacies II is also rich in monocrystalline quartz (60-84%) and averages 12% total rock fragments. Petrofacies III and IV are compositionally heterogeneous and contain variable percentages of monocrystalline and polycrystalline quartz, potassium feldspar, mica, chert, and metamorphic and sedimentary rock fragments. Quantitative analyses indicate that Desmoinesian sandstones were derived from sedimentary, igneous, and metamorphic source areas. Sandstones of petrofacies I and II occur mostly in the lower Desmoinesian and are widely distributed, although they are most abundant in eastern and central Oklahoma; sandstones of petrofacies III and IV are widely distributed and occur primarily in the middle and upper Desmoinesian. The range of compositional variation and the distribution of petrofacies are related to paleotectonics and basin development, sediment recycling, and varying depositional environments.

  5. Biscayne aquifer, southeast Florida

    USGS Publications Warehouse

    Klein, Howard; Hull, John E.

    1978-01-01

    Peak daily pumpage from the highly permeable, unconfined Biscayne aquifer for public water-supply systems in southeast Florida in 1975 was about 500 million gallons. Another 165 million gallons was withdrawn daily for irrigation. Recharge to the aquifer is primarily by local rainfall. Discharge is by evapotranspiration, canal drainage, coastal seepage, and pumping. Pollutants can enter the aquifer by direct infiltration from land surface or controlled canals, septic-tank and other drainfields, drainage wells, and solid-waste dumps. Most of the pollutants are concentrated in the upper 20 to 30 feet of the aquifer; public supply wells generally range in depth from about 75 to 150 feet. Dilution, dispersion, and adsorption tend to reduce the concentrations. Seasonal heavy rainfall and canal discharge accelerate ground-water circulation, thereby tending to dilute and flush upper zones of the aquifer. The ultimate fate of pollutants in the aquifer is the ocean, although some may be adsorbed by the aquifer materials en route to the ocean, and some are diverted to pumping wells. (Woodard-USGS)

  6. Hydrologic data for the alluvium and terrace deposits of the Cimarron River from Freedom to Guthrie, Oklahoma

    USGS Publications Warehouse

    Adams, Gregory P.; Bergman, D.L.; Pruitt, D.J.; May, J.E.; Kurklin, J.K.

    1994-01-01

    Ground water in the Quaternary alluvium and terrace deposits associated with the Cimarron River in northwestern Oklahoma is used extensively for irrigation, municipal, stock, and domestic supplies. The data in this report were collected as part of an investigation to provide State water managers with the quantitative knowledge necessary to manage the ground-water resource effectively. The investigation was conducted by the U.S. Geological Survey in cooperation with the Oklahoma Geological Survey. The information presented in this report include data collected in the field from 1985 through 1989, and unpublished data compiled from files of the U.S. Geological Survey and the Oklahoma Water Resources Board. Data include well and test-bole records, consisting of ground-water levels, depth of wells, principal aquifer, and primary use of water. Water levels include continuous, daily, monthly, and periodic measure- ments for selected wells. Concentrations of common chemical constituents, selected trace elements, organic analyses, and tritium analyses of water samples from wells completed in the Cimarron River alluvium and terrace deposits and Permian geologic units are reported. Winter and summer base-flow discharge measurements of the Cimarron River and its Tributaries are presented together with water-quality data from the measuring sites. Continuous water-level and precipitation-gage data are presented graphically. Locations of data- collection sites are shown on plates.

  7. Geohydrologic systems in Kansas physical framework of the lower aquifer unit in the western interior plains aquifer system

    USGS Publications Warehouse

    Hansen, Cristi V.; Spinazola, Joseph M.; Wolf, R.J.

    1994-01-01

    Thickness of the lower aquifer unit in the Western Interior Plains aquifer system is depicted in geohydrologic section B-B" (fig. 6) and on the accompanying thickness map (fig. 7). The thickness of the lower aquifer unit ranges from a few feet near the edges of the Nemaha Anticline, the Cambridge Arch, and the Central Kansas Uplift, where the aquifer unit has been removed by erosion, to about 2,500 feet thick near the southwest corner of the State in Morton County (fig. 7). The areas of greatest thickness in central and eastern Kansas along the Kansas-Nebraska State line do not coincide with the deepest parts of the Salina and Forest City Basins in Kansas, but do relect the effect of the North Kansas Basin (fig. 5), which is a pre-Mississippian structural feature that existed during deposition of part of the lower aquifer unit (Merriam, 1963). The Ellis Arch, which is another pre-Mississippian structural feature (fig. 5), also was present during deposition of part of the lower aquifer unit (Merriam, 1963). Evidence of this arch generally has been masked throughout much of the area of the arch by later development of the Cambridge Arch and Central Kansas Uplift. However, the broad area where the lower aquifer unit is rather thin west of the Cambridge Arch in northwestern Kansas may be a remnant of the Ellis Arch (compare figs. 5 and 7).

  8. Subsurface imaging of an abandoned solid waste landfill site in Norman, Oklahoma

    USGS Publications Warehouse

    Zume, J.T.; Tarhule, A.; Christenson, S.

    2006-01-01

    Leachate plume emanating from an old unlined municipal landfill site near the city of Norman, Oklahoma, is discharging into the underlying alluvial aquifer. Subsurface imaging techniques, electrical resistivity tomography and electrical conductivity (EC) logging, were used on the site to detect and map the position of the leachate plume. Anomalous EC zones, delineated with the two methods, correlated with the occurrence of the plume detected by water chemistry analyses from multilevel monitoring wells. Specific conductance, a potential indicator of leachate contamination, ranged from 1861 to 7710 ??S/cm in contaminated zones and from 465 to 2180 ??S/cm in uncontaminated ground water. Results are in agreement with those from earlier studies that the leachate plume emerges from the landfill along preferential pathways. Additionally, there are indications that the leading edge of the plume has migrated, at least, 200 m away from the landfill in the direction of ground water flow. ?? 2006 National Ground Water Association.

  9. Regional aquifer systems

    NASA Astrophysics Data System (ADS)

    The fifth in the American Water Resources Association (AWRA) Monograph series “Regional Aquifer Systems of the United States” has just been published as Monograph Series No. 13, “Aquifers of the Midwestern Area,” edited by L. A. Swain and A. Ivan Johnson. The 238-page publication is available for $18 to AWRA members and $21 for nonmembers.Each AWRA Annual Conference since 1985 has sponsored special seminars describing hydrologic, geochemical, and geologic characteristics of the Regional Aquifer System Analysis (RASA) studies carried out by the U.S. Geological Survey

  10. Factors affecting public-supply well vulnerability in two karst aquifers.

    PubMed

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-09-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management. PMID:24841501

  11. Factors affecting public-supply well vulnerability in two karst aquifers

    USGS Publications Warehouse

    Musgrove, MaryLynn; Katz, Brian G.; Fahlquist, Lynne S.; Crandall, Christy A.; Lindgren, Richard J.

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of considerable differences in geology and hydrogeology, the two aquifers are similarly vulnerable to anthropogenic contamination. Vulnerability in studied PSWs in both aquifers is strongly influenced by rapid karst flowpaths and the dominance of young (<10 years) groundwater. Vulnerability was demonstrated by the frequent detection of similar constituents of concern in both aquifers (nitrate, atrazine, deethylatrazine, tetrachloroethene, and chloroform). Specific consideration of water-quality protection efforts, well construction and placement, and aquifer response times to land-use changes and contaminant loading are discussed, with implications for karst groundwater management.

  12. Factors Affecting Public-Supply Well Vulnerability in Two Karst Aquifers

    PubMed Central

    Musgrove, MaryLynn; Katz, Brian G; Fahlquist, Lynne S; Crandall, Christy A; Lindgren, Richard J

    2014-01-01

    Karst aquifers occur in a range of climatic and geologic settings. Nonetheless, they are commonly characterized by their vulnerability to water-quality impairment. Two karst aquifers, the Edwards aquifer in south-central Texas and the Upper Floridan aquifer in western Florida, were investigated to assess factors that control the movement of contaminants to public-supply wells (PSWs). The geochemistry of samples from a selected PSW or wellfield in each aquifer was compared with that from nearby monitoring wells and regional PSWs. Geochemistry results were integrated with age tracers, flow modeling, and depth-dependent data to refine aquifer conceptual models and to identify factors that affect contaminant movement to PSWs. The oxic Edwards aquifer is vertically well mixed at the selected PSW/wellfield, although regionally the aquifer is geochemically variable downdip. The mostly anoxic Upper Floridan aquifer is affected by denitrification and also is geochemically variable with depth. In spite of