Science.gov

Sample records for centred local structures

  1. Investigations of the EPR Parameters and Local Lattice Structure for the Rhombic Cu2+ Centre in TZSH Crystal

    NASA Astrophysics Data System (ADS)

    Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian

    2016-03-01

    The electron paramagnetic resonance (EPR) parameters [i.e. g factors gi (i=x, y, z) and hyperfine structure constants Ai] and the local lattice structure for the Cu2+ centre in Tl2Zn(SO4)2·6H2O (TZSH) crystal were theoretically investigated by utilising the perturbation formulae of these parameters for a 3d9 ion under rhombically elongated octahedra. In the calculations, the admixture of d orbitals in the ground state and the ligand orbital and spin-orbit coupling interactions are taken into account based on the cluster approach. The theoretical EPR parameters show good agreement with the observed values, and the Cu2+-H2O bond lengths are obtained as follows: Rx≈1.98 Å, Ry≈2.09 Å, Rz≈2.32 Å. The results are discussed.

  2. Constructing Learning Spaces? Videoconferencing at Local Learning Centres in Sweden

    ERIC Educational Resources Information Center

    Logdlund, Ulrik

    2010-01-01

    This article explores videoconferencing in the context of local learning centres in Sweden. The practice is described as a "learning space" in which adult learners construct socio-spatial relations. The study goes beyond a sociological apprehension of actors and opposes the idea of the material as neutral, passive and conformed by practice. On the…

  3. Local light-induced spin manipulation in two magnetic centre metallic chains

    NASA Astrophysics Data System (ADS)

    Hartenstein, T.; Li, C.; Lefkidis, G.; Hübner, W.

    2008-08-01

    In this paper localized optically induced spin dynamics is presented, based on highly correlational ab initio calculations. Two-magnetic-centre metallic chains are chosen as a material on which the total spin is always found to lie on one of the magnetic centres only. Switching is achieved through a Λ-process driven by a laser pulse whose parameters are optimized with a genetic algorithm. Locally switching the spin on the iron side of a Co-Na-Fe cluster is given as an example of local spin manipulation.

  4. Theoretical studies of the dependence of EPR g-factors on local structure for the trigonal Er3+-VK centres in KMgF3 and KZnF3

    NASA Astrophysics Data System (ADS)

    Chai, Rui-Peng; Kuang, Xiao-Yu; Liang, Liang; Yu, Geng-Hua

    2015-05-01

    The dependence of the EPR g-factors on the local structural parameter for a 4f11 configuration ion Er3+ in a trigonal crystal-field has been studied by diagonalizing the 364×364 complete energy matrices. Our studies indicate that the EPR spectra of the trigonal Er3+-VK centers in KMgF3 and KZnF3 may be attributed to the translation of the cubic Kramers doublet Γ7. Furthermore, the EPR g-factors of the trigonal Er3+-VK centers may be interpreted reasonably by the shifts ΔZ≈0.340 Å and ΔZ≈0.303 Å of the Er3+ ions toward the charge compensator VK along the C3 axis for the KMgF3:Er3+ and the KZnF3:Er3+ systems respectively.

  5. From gene to structure: The protein factory of the NBICS Centre of Kurchatov Institute

    SciTech Connect

    Boyko, K. M.; Lipkin, A. V.; Popov, V. O. Kovalchuk, M. V.

    2013-05-15

    The Protein Factory was established at the Centre for Nano, Bio, Info, Cognitive, and Social Sciences and Technologies (NBICS Centre) of the National Research Centre 'Kurchatov Institute' in 2010. The Protein Factory, together with the Centre for Synchrotron Radiation and Nanotechnology, promote research on structural biology. This paper presents the technology platforms developed at the Protein Factory and the facilities available for researchers. The main projects currently being performed at the Protein Factory are briefly described.

  6. Evaluation of a diabetes specialty centre: structure, process and outcome.

    PubMed

    Basa, R P; McLeod, B

    1995-02-01

    The purpose of this study was to evaluate the effectiveness of a diabetes specialty centre in assisting clients with noninsulin-dependent diabetes mellitus to improve their metabolic control and quality of life. A single-subject repeated measures design was used where data was collected on entry to the program, immediately following the 2-day education sessions, and at both 3- and 6-month follow-up visits. Structure and process were taken into consideration, and the main outcome variables measured were knowledge, attitudes, metabolic control (hemoglobin A1c) and perceived quality of life. These variables were chosen in the belief that many factors can influence behaviour and it is the combination of these factors which results in behavioural change and ultimately improvement in metabolic control and quality of life. The main findings were that the facilities and documentation records were adequate, the clients perceived that the primary function of the center was medical management rather than education, and knowledge, metabolic control and quality of life improved significantly after the program. For clients, perceived happiness and quality of life were primary issues. Therefore, improvement in quality of life should be one of the primary goals of diabetes education programs. PMID:7603930

  7. Deformation-induced structural transition in body-centred cubic molybdenum

    PubMed Central

    Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.

    2014-01-01

    Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama–Wassermann and Kurdjumov–Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655

  8. Deformation-induced structural transition in body-centred cubic molybdenum.

    PubMed

    Wang, S J; Wang, H; Du, K; Zhang, W; Sui, M L; Mao, S X

    2014-01-01

    Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama-Wassermann and Kurdjumov-Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655

  9. A Study of Self and Task Performance in Childcare Centres as Perceived by Caregivers under Local Administrative Organisations in Thailand

    ERIC Educational Resources Information Center

    Bhulpat, Cheerapan

    2011-01-01

    The purpose of this research was to study the opinions toward self and task performance in childcare centres as perceived by caregivers under the jurisdiction of the Local Administrative Organization. The four areas evaluated were caregiver characteristics, task performance, objectives of caregiving and educating young children and problems and…

  10. Localized structures in gaseous combustion

    NASA Astrophysics Data System (ADS)

    Knobloch, Edgar; Lo Jacono, David; Bergeon, Alain

    2015-11-01

    We consider a flame between a pair of porous walls at x = +/- 1 that allow fuel and oxidizer to diffuse into the burn region from opposite sides. The burn process is described by a binary one-step process of Arrhenius type. The heat released is redistributed via radiation. Convection is ignored. In 1D the low and high temperature states are connected by an S-shaped branch with a fold at low Damköhler number below which extinction takes place. Various instabilities occur on the upper (flame) branch leading to different time-dependent but 1D flames. In 2D the situation is dramatically modified: near the extinction region the burn front breaks up into structures that are localized in the direction along the front, with multiple branches of such states bifurcating from the fold. These correspond to states with n = 1 , 2 , ⋯ identical and equispaced hotspots. Further bifurcations generate states in which the hotspots are nonidentical and separated by unequal distances. All these states are present in the same parameter interval, implying great sensitivity of the system to initial conditions.

  11. Localized structure of Euglena bioconvection

    NASA Astrophysics Data System (ADS)

    Iima, Makoto; Shoji, Erika; Awazu, Akinori; Nishimori, Hiraku; Izumi, Shunsuke; Hiroshima University Collaboration

    2013-11-01

    Bioconvection of a suspension of Euglena gracilis, a photosensitive flagellate whose body length is approximately 50 micrometers, was experimentally studied. Under strong light intensity, Euglena has a negative phototaxis; they tend to go away from the light source. When the bright illumination is given from the bottom, a large scale spatio-temporal pattern is generated as a result of interaction between Euglena and surrounding flow. Recently, localized convection pattern had been reported, however, the generation process and interaction of the localized convection cells has not been analyzed. We performed experimental study to understand the localization mechanism, in particular, the onset of bioconvection and lateral localization behavior due to phototaxis. Experiments started from different initial condition suggests a bistability near the onset of the convection as binary fluid convection that also shows localized convection cells. Dynamics of localized convections cells, which is similar to the binary fluid convection case although the basic equations are not the same, is also reported.

  12. A Foreign Model of Teacher Education and Its Local Appropriation: The English Teachers' Centres in Spain

    ERIC Educational Resources Information Center

    Groves, Tamar

    2015-01-01

    This article explores the implementation of the English model of teachers' centres in the context of 1980s Spain. Originally it was a top-down plan initiated by a national government. However, from the very beginning its fate was dependent on a bottom-up educational project carried out by pedagogical social movements. The first part of the article…

  13. Teaching Reading and Writing in Local Language Using the Child-Centred Pedagogy in Uganda

    ERIC Educational Resources Information Center

    Akello, Dora Lucy; Timmerman, Greetje; Namusisi, Speranza

    2016-01-01

    Uganda introduced the use of mother tongue as medium of instruction in primary schools in 2007. This was meant to promote interaction and participation in the learning process and improve children's proficiency in reading and writing. Drawing elements of interaction and participation from the socio-cultural theory, the child-centred pedagogy was…

  14. Combinatorics of locally optimal RNA secondary structures.

    PubMed

    Fusy, Eric; Clote, Peter

    2014-01-01

    It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is 1.104366∙n-3/2∙2.618034n. Motivated by the kinetics of RNA secondary structure formation, we are interested in determining the asymptotic number of secondary structures that are locally optimal, with respect to a particular energy model. In the Nussinov energy model, where each base pair contributes -1 towards the energy of the structure, locally optimal structures are exactly the saturated structures, for which we have previously shown that asymptotically, there are 1.07427∙n-3/2∙2.35467n many saturated structures for a sequence of length n. In this paper, we consider the base stacking energy model, a mild variant of the Nussinov model, where each stacked base pair contributes -1 toward the energy of the structure. Locally optimal structures with respect to the base stacking energy model are exactly those secondary structures, whose stems cannot be extended. Such structures were first considered by Evers and Giegerich, who described a dynamic programming algorithm to enumerate all locally optimal structures. In this paper, we apply methods from enumerative combinatorics to compute the asymptotic number of such structures. Additionally, we consider analogous combinatorial problems for secondary structures with annotated single-stranded, stacking nucleotides (dangles). PMID:23263300

  15. Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography

    PubMed Central

    Johansson, Linda C.; Arnlund, David; Katona, Gergely; White, Thomas A.; Barty, Anton; DePonte, Daniel P.; Shoeman, Robert L.; Wickstrand, Cecilia; Sharma, Amit; Williams, Garth J.; Aquila, Andrew; Bogan, Michael J.; Caleman, Carl; Davidsson, Jan; Doak, R Bruce; Frank, Matthias; Fromme, Raimund; Galli, Lorenzo; Grotjohann, Ingo; Hunter, Mark S.; Kassemeyer, Stephan; Kirian, Richard A.; Kupitz, Christopher; Liang, Mengning; Lomb, Lukas; Malmerberg, Erik; Martin, Andrew V.; Messerschmidt, Marc; Nass, Karol; Redecke, Lars; Seibert, M Marvin; Sjöhamn, Jennie; Steinbrener, Jan; Stellato, Francesco; Wang, Dingjie; Wahlgren, Weixaio Y.; Weierstall, Uwe; Westenhoff, Sebastian; Zatsepin, Nadia A.; Boutet, Sébastien; Spence, John C.H.; Schlichting, Ilme; Chapman, Henry N.; Fromme, Petra; Neutze, Richard

    2013-01-01

    Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8 Å resolution and determine its serial femtosecond crystallography structure to 3.5 Å resolution. Although every microcrystal is exposed to a dose of 33 MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure. PMID:24352554

  16. Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography

    NASA Astrophysics Data System (ADS)

    Johansson, Linda C.; Arnlund, David; Katona, Gergely; White, Thomas A.; Barty, Anton; Deponte, Daniel P.; Shoeman, Robert L.; Wickstrand, Cecilia; Sharma, Amit; Williams, Garth J.; Aquila, Andrew; Bogan, Michael J.; Caleman, Carl; Davidsson, Jan; Doak, R. Bruce; Frank, Matthias; Fromme, Raimund; Galli, Lorenzo; Grotjohann, Ingo; Hunter, Mark S.; Kassemeyer, Stephan; Kirian, Richard A.; Kupitz, Christopher; Liang, Mengning; Lomb, Lukas; Malmerberg, Erik; Martin, Andrew V.; Messerschmidt, Marc; Nass, Karol; Redecke, Lars; Seibert, M. Marvin; Sjöhamn, Jennie; Steinbrener, Jan; Stellato, Francesco; Wang, Dingjie; Wahlgren, Weixaio Y.; Weierstall, Uwe; Westenhoff, Sebastian; Zatsepin, Nadia A.; Boutet, Sébastien; Spence, John C. H.; Schlichting, Ilme; Chapman, Henry N.; Fromme, Petra; Neutze, Richard

    2013-12-01

    Serial femtosecond crystallography is an X-ray free-electron-laser-based method with considerable potential to have an impact on challenging problems in structural biology. Here we present X-ray diffraction data recorded from microcrystals of the Blastochloris viridis photosynthetic reaction centre to 2.8 Å resolution and determine its serial femtosecond crystallography structure to 3.5 Å resolution. Although every microcrystal is exposed to a dose of 33 MGy, no signs of X-ray-induced radiation damage are visible in this integral membrane protein structure.

  17. Introduction: Dissipative localized structures in extended systems

    NASA Astrophysics Data System (ADS)

    Tlidi, Mustapha; Taki, Majid; Kolokolnikov, Theodore

    2007-09-01

    Localized structures belong to the class of dissipative structures found far from equilibrium. Contributions from the most representative groups working on a various fields of natural science such as biology, chemistry, plant ecology, mathematics, optics, and laser physics are presented. The aim of this issue is to gather specialists from these fields towards a cross-fertilization among these active areas of research and thereby to present an overview of the state of art in the formation and the characterization of dissipative localized structures. Nonlinear optics and laser physics have an important part in this issue because of potential applications in information technology. In particular, localized structures could be used as "bits" for parallel information storage and processing.

  18. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre

    SciTech Connect

    Boucher, Ian W.; Kalliomaa, Anne K.; Levdikov, Vladimir M.; Blagova, Elena V.; Fogg, Mark J.; Brannigan, James A. Wilson, Keith S.; Wilkinson, Anthony J.

    2005-07-01

    The crystal structures of two manganese superoxide dismutases from B. anthracis were solved by X-ray crystallography using molecular replacement. The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms.

  19. Patterns and localized structures in population dynamics

    NASA Astrophysics Data System (ADS)

    Clerc, M. G.; Escaff, D.; Kenkre, V. M.

    2005-11-01

    Patterns, fronts, and localized structures of a prototypical model for population dynamics interaction are studied. The physical content of the model is the coexistence of a simple random walk for the motion of the individuals with a nonlinearity in the competitive struggle for resources which simultaneously stresses the Allee effect and interaction at a distance. Mathematically, the model is variational and exhibits coexistence between different stable extended states. Solutions are obtained, the phase diagram is constructed, and the emergence of localized structures is investigated.

  20. Local backbone structure prediction of proteins.

    PubMed

    de Brevern, Alexandre G; Benros, Cristina; Gautier, Romain; Valadié, Héléne; Hazout, Serge; Etchebest, Catherine

    2004-01-01

    A statistical analysis of the PDB structures has led us to define a new set of small 3D structural prototypes called Protein Blocks (PBs). This structural alphabet includes 16 PBs, each one is defined by the (phi, psi) dihedral angles of 5 consecutive residues. The amino acid distributions observed in sequence windows encompassing these PBs are used to predict by a Bayesian approach the local 3D structure of proteins from the sole knowledge of their sequences. LocPred is a software which allows the users to submit a protein sequence and performs a prediction in terms of PBs. The prediction results are given both textually and graphically. PMID:15724288

  1. How Good Is Our School? The Child at the Centre: The Health Promoting School--The Role of Local Authorities and Their Partners. Self-Evaluation Series

    ERIC Educational Resources Information Center

    Her Majesty's Inspectorate of Education, 2004

    2004-01-01

    To become effective health promoting establishments which achieve the maximum impact on children, young people and families and on the local community, schools and pre-school centres need to operate within a strategic framework developed at the highest levels within their local council and community area. Effective councils are committed to…

  2. Quantum structure based infrared detector research and development within Acreo’s centre of excellence IMAGIC

    NASA Astrophysics Data System (ADS)

    Andersson, J. Y.; Höglund, L.; Noharet, B.; Wang, Q.; Ericsson, P.; Wissmar, S.; Asplund, C.; Malm, H.; Martijn, H.; Hammar, M.; Gustafsson, O.; Hellström, S.; Radamson, H.; Holtz, P. O.

    2010-07-01

    Acreo has a long tradition of working with quantum structure based infrared (IR) detectors and arrays. This includes QWIP (quantum well infrared photodetector), QDIP (quantum dot infrared photodetector), and InAs/GaInSb based photon detectors of different structure and composition. It also covers R&D on uncooled microbolometers. The integrated thermistor material of such detectors is advantageously based on quantum structures that are optimised for high temperature coefficient and low noise. Especially the SiGe material system is preferred due to the compatibility with silicon technology. The R&D work on IR detectors is a prominent part of Acreo's centre of excellence "IMAGIC" on imaging detectors and systems for non-visible wavelengths. IMAGIC is a collaboration between Acreo, several industry partners and universities like the Royal Institute of Technology (KTH) and Linköping University.

  3. Structures of two superoxide dismutases from Bacillus anthracis reveal a novel active centre

    PubMed Central

    Boucher, Ian W.; Kalliomaa, Anne K.; Levdikov, Vladimir M.; Blagova, Elena V.; Fogg, Mark J.; Brannigan, James A.; Wilson, Keith S.; Wilkinson, Anthony J.

    2005-01-01

    The BA4499 and BA5696 genes of Bacillus anthracis encode proteins homologous to manganese superoxide dismutase, suggesting that this organism has an expanded repertoire of antioxidant proteins. Differences in metal specificity and quaternary structure between the dismutases of prokaryotes and higher eukaryotes may be exploited in the development of therapeutic antibacterial compounds. Here, the crystal structure of two Mn superoxide dismutases from B. anthracis solved to high resolution are reported. Comparison of their structures reveals that a highly conserved residue near the active centre is substituted in one of the proteins and that this is a characteristic feature of superoxide dismutases from the B. cereus/B. anthracis/B. thuringiensis group of organisms. PMID:16511113

  4. Structure Process, Weak Values and Local Momentum

    NASA Astrophysics Data System (ADS)

    Hiley, B. J.

    2016-03-01

    We explain how weak values and the local momentum can be better understood in terms of Bohm's notion of structure process. The basic ideas of this approach can be expressed in a fully algebraic way, generalising Heisenberg's original matrix mechanics. This approach leads to questions that are now being experimentally investigated by our group at University College London.

  5. Detecting structure of haplotypes and local ancestry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present a two-layer hidden Markov model to detect the structure of haplotypes for unrelated individuals. This allows us to model two scales of linkage disequilibrium (one within a group of haplotypes and one between groups), thereby taking advantage of rich haplotype information to infer local an...

  6. Local structures of homogeneous Hall MHD turbulence

    NASA Astrophysics Data System (ADS)

    Miura, H.; Araki, K.

    2011-12-01

    Local structures of decaying homogeneous and isotropic Hall MHD turbulence are studied by means of direct numerical simulations. Regions of strong vorticity and strong current density in Hall MHD turbulence are compared to those of single-fluid MHD turbulence. An analysis by the use of a low-pass filter reveals that the introduction of the Hall term can modify not only small-scale structures of the current density but also structures of the vorticity field, especially at the scales smaller than the ion skin depth.

  7. Offloading social care responsibilities: recent experiences of local voluntary organisations in a remote urban centre in British Columbia, Canada.

    PubMed

    Hanlon, Neil; Rosenberg, Mark; Clasby, Rachael

    2007-07-01

    Services offered by voluntary organisations are an integral but often overlooked component of health and social care. Of late, there has been a renewed interest in voluntary welfare provision as a viable alternative to state and market. Recent developments in welfare provision in Canada appear to have brought greater social care roles for the voluntary sector at the same time as new and arguably more restrictive funding and accountability mechanisms are being imposed by different arms of the state. To explore these issues more closely, the present paper examines the impressions and experiences of voluntary and formal sector providers of services for senior citizens and people with disabilities in a remote urban centre (population less than 100 000) in the interior of British Columbia, Canada. Two important operational pressures provide the context of the analysis: (1) reform of provincial government funding and regulation of voluntary services; and (2) the restructuring of welfare provision, especially in the areas of health care and social services. The authors found evidence of an escalating incursion of the state into local voluntary sector affairs that needs to be understood in the context of long-standing institutional links between government and 'professional' voluntary welfare provision in British Columbia. The results point to three important directions in contemporary local voluntary provision: (1) an emerging ethos of accountability, efficiency and competition in voluntary provision; (2) increasing pressure to centralise volunteer services; and consequently, (3) the potential erosion of flexibility and personalisation that are seen to characterise the voluntary sector. PMID:17578395

  8. A structural alphabet for local protein structures: improved prediction methods.

    PubMed

    Etchebest, Catherine; Benros, Cristina; Hazout, Serge; de Brevern, Alexandre G

    2005-06-01

    Three-dimensional protein structures can be described with a library of 3D fragments that define a structural alphabet. We have previously proposed such an alphabet, composed of 16 patterns of five consecutive amino acids, called Protein Blocks (PBs). These PBs have been used to describe protein backbones and to predict local structures from protein sequences. The Q16 prediction rate reaches 40.7% with an optimization procedure. This article examines two aspects of PBs. First, we determine the effect of the enlargement of databanks on their definition. The results show that the geometrical features of the different PBs are preserved (local RMSD value equal to 0.41 A on average) and sequence-structure specificities reinforced when databanks are enlarged. Second, we improve the methods for optimizing PB predictions from sequences, revisiting the optimization procedure and exploring different local prediction strategies. Use of a statistical optimization procedure for the sequence-local structure relation improves prediction accuracy by 8% (Q16 = 48.7%). Better recognition of repetitive structures occurs without losing the prediction efficiency of the other local folds. Adding secondary structure prediction improved the accuracy of Q16 by only 1%. An entropy index (Neq), strongly related to the RMSD value of the difference between predicted PBs and true local structures, is proposed to estimate prediction quality. The Neq is linearly correlated with the Q16 prediction rate distributions, computed for a large set of proteins. An "expected" prediction rate QE16 is deduced with a mean error of 5%. PMID:15822101

  9. Science Learning Centres Roundup

    ERIC Educational Resources Information Center

    Education in Science, 2010

    2010-01-01

    The national network of Science Learning Centres aims to raise the quality of science teaching from Key Stage 1 through post-16 (ages 5-19). Short courses are provided locally through the regional Science Learning Centres and longer, more intensive programmes are available at the National Science Learning Centre in York. There are a growing number…

  10. A structured methodology to calculate traffic emissions inventories for city centres.

    PubMed

    Ariztegui, Javier; Casanova, Jesus; Valdes, Manuel

    2004-12-01

    This study presents a methodology to estimate traffic emissions inventories for the case of city centres. It deals with the problem in a structured manner, identifying the sources and the formats of the input data as well as labelling the steps needed to perform the calculation. It describes a method to calculate the total mileage driven around the city using the concept of mileage per zone. Although the methodology employs a classical approach through the use of emission factors developed for mean speeds, it also discusses the possibility of applying these factors to instantaneous speeds. Finally, the study focuses on the influence of two critical factors: time resolution and the estimate of the total mileage. In both cases, the results indicate that the assumptions made are adequate and yield accurate results. The methodology has been applied to the city of Madrid as an example. PMID:15504496

  11. Single centre outcomes from definitive chemo-radiotherapy and single modality radiotherapy for locally advanced oesophageal cancer

    PubMed Central

    Gray, Joanna; McDonald, Alexander; McIntosh, David; MacLaren, Vivienne; Hennessy, Aisling; Grose, Derek

    2016-01-01

    Background Definitive chemo-radiotherapy (dCRT) has been advocated as an alternative to surgical resection for the treatment of locally advanced oesophageal cancer (OC). We have retrospectively reviewed 4 years’ experience of patients (pts) who underwent contemporary staging and were treated with concurrent chemo-radiotherapy (dCRT) or single modality radical radiotherapy (RT) with curative intent. Methods Retrospective analysis permitted identification of consecutive patients who underwent contemporary staging prior to non-surgical treatment for locally advanced oesophageal carcinoma. The primary outcomes were overall survival (OS) and disease-free survival (DFS), adjusted for baseline differences in age, tumour staging and histological cell type. All patients were treated with either dCRT or single modality RT within a single centre between 2009 and 2012. Results We identified 235 patients in total [median age 69.8 years, male =130 pts, female =105 pts, adenocarcinoma (ACA) =85 pts, squamous =150 pts]. A total of 190 pts received dCRT and 45 patients were treated with RT. All patients were staged with CT of chest, abdomen and pelvis, 226 patients underwent endoscopic ultrasound (EUS), and 183 patients had PET-CT. Patients treated with dCRT demonstrated longer OS (27 vs. 25 months respectively, P=0.02) and DFS (31 vs. 16 months respectively, P=0.01) compared to those treated with RT. More advanced tumour stage (stage 3 vs. stage 1/2) at presentation conferred poorer OS (32 vs. 38.2 months, P=0.02) and DFS (11 vs. 28 months, P=0.013). We demonstrated an acceptable toxicity profile with only 77 patients (32.8%) suffering grade 3 toxicity and 9 patients (4.2%) experiencing grade 4 toxicity by CTC criteria. The NG/PEG feeding rates were 4% across all treated patients. Conclusions This retrospective analysis is in keeping with current treatment paradigms emphasising the importance and safety of concurrent CRT in maximising curative potential for patients undergoing

  12. Guanine quadruplex structures localize to heterochromatin.

    PubMed

    Hoffmann, Roland F; Moshkin, Yuri M; Mouton, Stijn; Grzeschik, Nicola A; Kalicharan, Ruby D; Kuipers, Jeroen; Wolters, Anouk H G; Nishida, Kazuki; Romashchenko, Aleksander V; Postberg, Jan; Lipps, Hans; Berezikov, Eugene; Sibon, Ody C M; Giepmans, Ben N G; Lansdorp, Peter M

    2016-01-01

    Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation. PMID:26384414

  13. Guanine quadruplex structures localize to heterochromatin

    PubMed Central

    Hoffmann, Roland F.; Moshkin, Yuri M.; Mouton, Stijn; Grzeschik, Nicola A.; Kalicharan, Ruby D.; Kuipers, Jeroen; Wolters, Anouk H.G.; Nishida, Kazuki; Romashchenko, Aleksander V.; Postberg, Jan; Lipps, Hans; Berezikov, Eugene; Sibon, Ody C.M.; Giepmans, Ben N.G.; Lansdorp, Peter M.

    2016-01-01

    Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation. PMID:26384414

  14. Luminescence and ESR studies of relationships between O(-)-centres and structural iron in natural and synthetically hydrated kaolinites

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Costanzo, P. M.; Theng, B. K.

    1989-01-01

    Luminescence, induced by dehydration and by wetting with hydrazine and unsymmetrically substituted hydrazine, and related ESR spectra have been observed from several kaolinites, synthetically hydrated kaolinites, and metahalloysites. The amine-wetting luminescence results suggest that intercalation, not a chemiluminescence reaction, is the luminescence trigger. Correlation between hydration-induced luminescence and g = 2 ESR signals associated with O(-)-centres in several natural halloysites, and concurrent diminution of the intensity of both these signal types as a function of aging in two 8.4 angstroms synthetically hydrated, kaolinites, confirm a previously-reported relationship between the luminescence induced by dehydration and in the presence of O(-)-centres (holes, i.e., electron vacancies) in the tetrahedral sheet. Furthermore, the ESR spectra of the 8.4 angstroms hydrate showed a concurrent change in the line shape of the g = 4 signal from a shape usually associated with structural Fe in an ordered kaolinite, to a simpler one typically observed in more disordered kaolinite, halloysite, and montmorillonite. Either structural Fe centres and the O(-)-centres interact, or both are subject to factors previously associated with degree of order. The results question the long-term stability of the 8.4 angstroms hydrate, although XRD does not indicate interlayer collapse over this period. Complex inter-relationships are shown between intercalation, stored energy, structural Fe, and the degree of hydration which may be reflected in catalytic as well as spectroscopic properties of the clays.

  15. Effects of closure of an urban level I trauma centre on adjacent hospitals and local injury mortality: a retrospective, observational study

    PubMed Central

    Crandall, Marie; Sharp, Douglas; Wei, Xiong; Nathens, Avery; Hsia, Renee Y

    2016-01-01

    Objective To determine the association of the Martin Luther King Jr Hospital (MLK) closure on the distribution of admissions on adjacent trauma centres, and injury mortality rates in these centres and within the county. Design Observational, retrospective study. Setting Non-public patient-level data from the state of California were obtained for all trauma patients from 1999 to 2009. Geospatial analysis was used to visualise the redistribution of trauma patients to other hospitals after MLK closed. Variance of observed to expected injury mortality using multivariate logistic regression was estimated for the study period. Participants A total of 37 131 trauma patients were admitted to the five major south Los Angeles trauma centres from the MLK service area between 1999 and 2009. Main outcome measures (1) Number and type of trauma admissions to trauma centres in closest proximity to MLK; (2) inhospital injury mortality of trauma patients after the trauma centre closure. Results During and after the MLK closure, trauma admissions increased at three of the four nearby hospitals, particularly admissions for gunshot wounds (GSWs). This redistribution of patient load was accompanied by a dramatic change in the payer mix for surrounding hospitals; one hospital's share of uninsured more than tripled from 12.9% in 1999 to 44.6% by 2009. Overall trauma mortality did not significantly change, but GSW mortality steadily and significantly increased after the closure from 5.0% in 2007 to 7.5% in 2009. Conclusions Though local hospitals experienced a dramatic increase in trauma patient volume, overall mortality for trauma patients did not significantly change after MLK closed. PMID:27165650

  16. A neural-network reinforcement-learning model of domestic chicks that learn to localize the centre of closed arenas.

    PubMed

    Mannella, Francesco; Baldassarre, Gianluca

    2007-03-29

    Previous experiments have shown that when domestic chicks (Gallus gallus) are first trained to locate food elements hidden at the centre of a closed square arena and then are tested in a square arena of double the size, they search for food both at its centre and at a distance from walls similar to the distance of the centre from the walls experienced during training. This paper presents a computational model that successfully reproduces these behaviours. The model is based on a neural-network implementation of the reinforcement-learning actor - critic architecture (in this architecture the 'critic' learns to evaluate perceived states in terms of predicted future rewards, while the 'actor' learns to increase the probability of selecting the actions that lead to higher evaluations). The analysis of the model suggests which type of information and cognitive mechanisms might underlie chicks' behaviours: (i) the tendency to explore the area at a specific distance from walls might be based on the processing of the height of walls' horizontal edges, (ii) the capacity to generalize the search at the centre of square arenas independently of their size might be based on the processing of the relative position of walls' vertical edges on the horizontal plane (equalization of walls' width), and (iii) the whole behaviour exhibited in the large square arena can be reproduced by assuming the existence of an attention process that, at each time, focuses chicks' internal processing on either one of the two previously discussed information sources. The model also produces testable predictions regarding the generalization capabilities that real chicks should exhibit if trained in circular arenas of varying size. The paper also highlights the potentialities of the model to address other experiments on animals' navigation and analyses its strengths and weaknesses in comparison to other models. PMID:17255019

  17. Towards structural controllability of local-world networks

    NASA Astrophysics Data System (ADS)

    Sun, Shiwen; Ma, Yilin; Wu, Yafang; Wang, Li; Xia, Chengyi

    2016-05-01

    Controlling complex networks is of vital importance in science and engineering. Meanwhile, local-world effect is an important ingredient which should be taken into consideration in the complete description of real-world complex systems. In this letter, structural controllability of a class of local-world networks is investigated. Through extensive numerical simulations, firstly, effects of local world size M and network size N on structural controllability are examined. For local-world networks with sparse topological configuration, compared to network size, local-world size can induce stronger influence on controllability, however, for dense networks, controllability is greatly affected by network size and local-world effect can be neglected. Secondly, relationships between controllability and topological properties are analyzed. Lastly, the robustness of local-world networks under targeted attacks regarding structural controllability is discussed. These results can help to deepen the understanding of structural complexity and connectivity patterns of complex systems.

  18. Invariant current approach to wave propagation in locally symmetric structures

    NASA Astrophysics Data System (ADS)

    Zampetakis, V. E.; Diakonou, M. K.; Morfonios, C. V.; Kalozoumis, P. A.; Diakonos, F. K.; Schmelcher, P.

    2016-05-01

    A theory for wave mechanical systems with local inversion and translation symmetries is developed employing the two-dimensional solution space of the stationary Schrödinger equation. The local symmetries of the potential are encoded into corresponding local basis vectors in terms of symmetry-induced two-point invariant currents which map the basis amplitudes between symmetry-related points. A universal wavefunction structure in locally symmetric potentials is revealed, independently of the physical boundary conditions, by using special local bases which are adapted to the existing local symmetries. The local symmetry bases enable efficient computation of spatially resolved wave amplitudes in systems with arbitrary combinations of local inversion and translation symmetries. The approach opens the perspective of a flexible analysis and control of wave localization in structurally complex systems.

  19. Structures of Local Rearrangements in Soft Colloidal Glasses

    NASA Astrophysics Data System (ADS)

    Yang, Xiunan; Liu, Rui; Yang, Mingcheng; Wang, Wei-Hua; Chen, Ke

    2016-06-01

    We image local structural rearrangements in soft colloidal glasses under small periodic perturbations induced by thermal cycling. Local structural entropy S2 positively correlates with observed rearrangements in colloidal glasses. The high S2 values of the rearranging clusters in glasses indicate that fragile regions in glasses are structurally less correlated, similar to structural defects in crystalline solids. Slow-evolving high S2 spots are capable of predicting local rearrangements long before the relaxations occur, while fluctuation-created high S2 spots best correlate with local deformations right before the rearrangement events. Local free volumes are also found to correlate with particle rearrangements at extreme values, although the ability to identify relaxation sites is substantially lower than S2. Our experiments provide an efficient structural identifier for the fragile regions in glasses and highlight the important role of structural correlations in the physics of glasses.

  20. Structures of Local Rearrangements in Soft Colloidal Glasses.

    PubMed

    Yang, Xiunan; Liu, Rui; Yang, Mingcheng; Wang, Wei-Hua; Chen, Ke

    2016-06-10

    We image local structural rearrangements in soft colloidal glasses under small periodic perturbations induced by thermal cycling. Local structural entropy S_{2} positively correlates with observed rearrangements in colloidal glasses. The high S_{2} values of the rearranging clusters in glasses indicate that fragile regions in glasses are structurally less correlated, similar to structural defects in crystalline solids. Slow-evolving high S_{2} spots are capable of predicting local rearrangements long before the relaxations occur, while fluctuation-created high S_{2} spots best correlate with local deformations right before the rearrangement events. Local free volumes are also found to correlate with particle rearrangements at extreme values, although the ability to identify relaxation sites is substantially lower than S_{2}. Our experiments provide an efficient structural identifier for the fragile regions in glasses and highlight the important role of structural correlations in the physics of glasses. PMID:27341261

  1. Local and bulk 13C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations

    PubMed Central

    Álvarez, Gonzalo A.; Bretschneider, Christian O.; Fischer, Ran; London, Paz; Kanda, Hisao; Onoda, Shinobu; Isoya, Junichi; Gershoni, David; Frydman, Lucio

    2015-01-01

    Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing 13C nuclei from free electrons in bulk usually demand operation at cryogenic temperatures. Room temperature approaches targeting diamonds with nitrogen-vacancy centres could alleviate this need; however, hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron-13C spin-alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron–nuclear spin manifold. 13C-detected nuclear magnetic resonance experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant 13Cs throughout the nuclear bulk ensemble. This method opens new perspectives for applications of diamond nitrogen-vacancy centres in nuclear magnetic resonance, and in quantum information processing. PMID:26404169

  2. Local and bulk (13)C hyperpolarization in nitrogen-vacancy-centred diamonds at variable fields and orientations.

    PubMed

    Álvarez, Gonzalo A; Bretschneider, Christian O; Fischer, Ran; London, Paz; Kanda, Hisao; Onoda, Shinobu; Isoya, Junichi; Gershoni, David; Frydman, Lucio

    2015-01-01

    Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing (13)C nuclei from free electrons in bulk usually demand operation at cryogenic temperatures. Room temperature approaches targeting diamonds with nitrogen-vacancy centres could alleviate this need; however, hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron-(13)C spin-alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron-nuclear spin manifold. (13)C-detected nuclear magnetic resonance experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant (13)Cs throughout the nuclear bulk ensemble. This method opens new perspectives for applications of diamond nitrogen-vacancy centres in nuclear magnetic resonance, and in quantum information processing. PMID:26404169

  3. Studies on crystal structures, active-centre geometry and depurinating mechanism of two ribosome-inactivating proteins.

    PubMed Central

    Huang, Q; Liu, S; Tang, Y; Jin, S; Wang, Y

    1995-01-01

    Two ribosome-inactivating proteins, trichosanthin and alpha-momorcharin, have been studied in the forms of complexes with ATP or formycin, by an X-ray-crystallographic method at 1.6-2.0 A (0.16-0.20 nm) resolution. The native alpha-momorcharin had been studied at 2.2 A resolution. Structures of trichosanthin were determined by a multiple isomorphous replacement method. Structures of alpha-momorcharin were determined by a molecular replacement method using refined trichosanthin as the searching model. Small ligands in all these complexes have been recognized and built on the difference in electron density. All these structures have been refined to achieve good results, both in terms of crystallography and of ideal geometry. These two proteins show considerable similarity in their three-dimensional folding and to that of related proteins. On the basis of these structures, detailed geometries of the active centres of these two proteins are described and are compared with those of related proteins. In all complexes the interactions between ligand atoms and protein atoms, including hydrophobic forces, aromatic stacking interactions and hydrogen bonds, are found to be specific towards the adenine base. The relationship between the sequence conservation of ribosome-inactivating proteins and their active-centre geometry was analysed. A depurinating mechanism of ribosome-inactivating proteins is proposed on the basis of these results. The N-7 atom of the substrate base group is proposed to be protonated by an acidic residue in the active centre. Images Figure 1 PMID:7619070

  4. Rodlike localized structure in isotropic pattern-forming systems

    NASA Astrophysics Data System (ADS)

    Bordeu, Ignacio; Clerc, Marcel G.

    2015-10-01

    Stationary two-dimensional localized structures have been observed in a wide variety of dissipative systems. The existence, stability properties, dynamical evolution, and bifurcation diagram of an azimuthal symmetry breaking, rodlike localized structure in the isotropic prototype model of pattern formation, the Swift-Hohenberg model, is studied. These rodlike structures persist under the presence of nongradient perturbations. Interaction properties of the rodlike structures are studied. This allows us to envisage the possibility of different crystal-like configurations.

  5. Finding Common Ground: Creating Local Governance Structures.

    ERIC Educational Resources Information Center

    Mutchler, Sue E.; And Others

    As federal, state, and local policy makers attend to the economic, educational, social, and health-related needs of children, they are beginning to share a vision of a "seamless web" of high-quality, comprehensive, continuous services for children and their families. It remains a challenging goal because of the complexity of children's needs and…

  6. XAFS study on the impact of local structure on electrochemical performance for Co3O4 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Cheng, Weiren; He, Jingfu; Huang, Junheng; Liu, Qinghua; Jiang, Yong; Wei, Shiqiang

    2016-05-01

    Determining the local structure of catalyst materials is critical for understanding the mechanism of enhanced electrochemical activity in semiconductor electrode. Here, using X-ray absorption fine structure (XAFS) spectra, we reveal that the local disorder structure is formed for the mixed-phase Co3O4 nanowire arrays due to the interaction between the phases of Co3O4 and Co2(OH)2CO3. Comparing to pure Co3O4 nanowire arrays, the mixed phase sample is richer in Co2+ and the electronic structure is changed by the local structure, which are demonstrated by the X-ray absorption near-edge structure (XANES) spectra. It is deduced that the mixed-phase Co3O4 nanowire arrays with abundant Co2+ sites provide more redox centres in electrochemical reaction than the pure Co3O4 nanowire arrays.

  7. Optimisation of the usage of LHC and local computing resources in a multidisciplinary physics department hosting a WLCG Tier-2 centre

    NASA Astrophysics Data System (ADS)

    Barberis, Stefano; Carminati, Leonardo; Leveraro, Franco; Mazza, Simone Michele; Perini, Laura; Perlz, Francesco; Rebatto, David; Tura, Ruggero; Vaccarossa, Luca; Villaplana, Miguel

    2015-12-01

    We present the approach of the University of Milan Physics Department and the local unit of INFN to allow and encourage the sharing among different research areas of computing, storage and networking resources (the largest ones being those composing the Milan WLCG Tier-2 centre and tailored to the needs of the ATLAS experiment). Computing resources are organised as independent HTCondor pools, with a global master in charge of monitoring them and optimising their usage. The configuration has to provide satisfactory throughput for both serial and parallel (multicore, MPI) jobs. A combination of local, remote and cloud storage options are available. The experience of users from different research areas operating on this shared infrastructure is discussed. The promising direction of improving scientific computing throughput by federating access to distributed computing and storage also seems to fit very well with the objectives listed in the European Horizon 2020 framework for research and development.

  8. Local structure of equality constrained NLP problems

    SciTech Connect

    Mari, J.

    1994-12-31

    We show that locally around a feasible point, the behavior of an equality constrained nonlinear program is described by the gradient and the Hessian of the Lagrangian on the tangent subspace. In particular this holds true for reduced gradient approaches. Applying the same ideas to the control of nonlinear ODE:s, one can device first and second order methods that can be applied also to stiff problems. We finally describe an application of these ideas to the optimization of the production of human growth factor by fed-batch fermentation.

  9. Enhancing community detection by using local structural information

    NASA Astrophysics Data System (ADS)

    Xiang, Ju; Hu, Ke; Zhang, Yan; Bao, Mei-Hua; Tang, Liang; Tang, Yan-Ni; Gao, Yuan-Yuan; Li, Jian-Ming; Chen, Benyan; Hu, Jing-Bo

    2016-03-01

    Many real-world networks, such as gene networks, protein-protein interaction networks and metabolic networks, exhibit community structures, meaning the existence of groups of densely connected vertices in the networks. Many local similarity measures in the networks are closely related to the concept of the community structures, and may have a positive effect on community detection in the networks. Here, various local similarity measures are used to extract local structural information, which is then applied to community detection in the networks by using the edge-reweighting strategy. The effect of the local similarity measures on community detection is carefully investigated and compared in various networks. The experimental results show that the local similarity measures are crucial for the improvement of community detection methods, while the positive effect of the local similarity measures is closely related to the networks under study and applied community detection methods.

  10. Structure and redox properties of the haem centre in the C357M mutant of cytochrome P450cam.

    PubMed

    Murugan, Rajamanickam; Mazumdar, Shyamalava

    2005-07-01

    The effects of site-specific mutation of the axial cysteine (C357M) to a methionine residue in cytochrome P450cam on the enzyme's coordination geometry and redox potential have been investigated. The absorption spectra of the haem centre in the C357M mutant of the enzyme showed close similarity to those of cytochrome c both in the oxidised and reduced forms. A well-defined absorption peak at 695 nm, similar to that seen in the case of cytochrome c and characteristic of methionine ligation to the ferric haem, was observed. The results indicated that the haem of C357M cytochrome P450cam is possibly axially coordinated to a methionine and a histidine, analogously to cytochrome c. The circular dichroism spectra in the visible and the far-UV regions suggested that the tertiary structure of the haem cavity in the C357M mutant cytochrome P450cam was distinctly different from that in the wild-type enzyme or in cytochrome c, although the secondary structure of the mutant remained identical to that of the wild-type cytochrome P450cam. Comparison of the natures of the CD spectra in the 400 nm and 695 nm regions of the C357M mutant of cytochrome P450cam with those of horse cytochrome c suggested (R) chirality at the sulfur atom of the iron-bound methionine residue in the mutant. The redox potential of the haem centre, estimated by redox titration of the C357M mutant, was found to be +260 mV, which is much higher than that in the wild-type enzyme and similar to the redox potential of cytochrome c. This supported the concept that axial ligation of the haem plays the major role in tuning the redox potential of the haem centre in haem proteins. PMID:15912551

  11. Local Structural Alignment of RNA with Affine Gap Model

    NASA Astrophysics Data System (ADS)

    Wong, Thomas K. F.; Cheung, Brenda W. Y.; Lam, T. W.; Yiu, S. M.

    Predicting new non-coding RNAs (ncRNAs) of a family can be done by aligning the potential candidate with a member of the family with known sequence and secondary structure. Existing tools either only consider the sequence similarity or cannot handle local alignment with gaps. In this paper, we consider the problem of finding the optimal local structural alignment between a query RNA sequence (with known secondary structure) and a target sequence (with unknown secondary structure) with the affine gap penalty model. We provide the algorithm to solve the problem. Based on a preliminary experiment, we show that there are ncRNA families in which considering local structural alignment with gap penalty model can identify real hits more effectively than using global alignment or local alignment without gap penalty model.

  12. Global-local finite element analysis of composite structures

    SciTech Connect

    Deibler, J.E.

    1992-06-01

    The development of layered finite elements has facilitated analysis of laminated composite structures. However, the analysis of a structure containing both isotropic and composite materials remains a difficult problem. A methodology has been developed to conduct a ``global-local`` finite element analysis. A ``global`` analysis of the entire structure is conducted at the appropriate loads with the composite portions replaced with an orthotropic material of equivalent materials properties. A ``local`` layered composite analysis is then conducted on the region of interest. The displacement results from the ``global`` analysis are used as loads to the ``local`` analysis. the laminate stresses and strains can then be examined and failure criteria evaluated.

  13. Global-local finite element analysis of composite structures

    SciTech Connect

    Deibler, J.E.

    1992-06-01

    The development of layered finite elements has facilitated analysis of laminated composite structures. However, the analysis of a structure containing both isotropic and composite materials remains a difficult problem. A methodology has been developed to conduct a global-local'' finite element analysis. A global'' analysis of the entire structure is conducted at the appropriate loads with the composite portions replaced with an orthotropic material of equivalent materials properties. A local'' layered composite analysis is then conducted on the region of interest. The displacement results from the global'' analysis are used as loads to the local'' analysis. the laminate stresses and strains can then be examined and failure criteria evaluated.

  14. Local gravity and large-scale structure

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, Roman; Vittorio, Nicola; Wyse, Rosemary F. G.

    1990-01-01

    The magnitude and direction of the observed dipole anisotropy of the galaxy distribution can in principle constrain the amount of large-scale power present in the spectrum of primordial density fluctuations. This paper confronts the data, provided by a recent redshift survey of galaxies detected by the IRAS satellite, with the predictions of two cosmological models with very different levels of large-scale power: the biased Cold Dark Matter dominated model (CDM) and a baryon-dominated model (BDM) with isocurvature initial conditions. Model predictions are investigated for the Local Group peculiar velocity, v(R), induced by mass inhomogeneities distributed out to a given radius, R, for R less than about 10,000 km/s. Several convergence measures for v(R) are developed, which can become powerful cosmological tests when deep enough samples become available. For the present data sets, the CDM and BDM predictions are indistinguishable at the 2 sigma level and both are consistent with observations. A promising discriminant between cosmological models is the misalignment angle between v(R) and the apex of the dipole anisotropy of the microwave background.

  15. Locally refined block-centred finite-difference groundwater models: Evaluation of parameter sensitivity and the consequences for inverse modelling

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2002-01-01

    Models with local grid refinement, as often required in groundwater models, pose special problems for model calibration. This work investigates the calculation of sensitivities and the performance of regression methods using two existing and one new method of grid refinement. The existing local grid refinement methods considered are: (a) a variably spaced grid in which the grid spacing becomes smaller near the area of interest and larger where such detail is not needed, and (b) telescopic mesh refinement (TMR), which uses the hydraulic heads or fluxes of a regional model to provide the boundary conditions for a locally refined model. The new method has a feedback between the regional and local grids using shared nodes, and thereby, unlike the TMR methods, balances heads and fluxes at the interfacing boundary. Results for sensitivities are compared for the three methods and the effect of the accuracy of sensitivity calculations are evaluated by comparing inverse modelling results. For the cases tested, results indicate that the inaccuracies of the sensitivities calculated using the TMR approach can cause the inverse model to converge to an incorrect solution.

  16. Local structure analyzers as determinants of preattentive pattern discrimination.

    PubMed

    Kröse, B J

    1987-01-01

    Contemporary literature suggests that preattentive texture or pattern discrimination is induced by differences between local structure features or "textons." This paper presents a model for the description of such local structure features based on the computation of local autocorrelations within the image. By means of this structure model a measure of structure dissimilarity is introduced. Experiments have been carried out to test a hypothesized relation between the detectability of a target pattern in a field of background patterns and the value of the structure dissimilarity measure. The experimental results show that it seems justified to relate, in a quantitative way, the detectability of the target pattern to the value of the structure dissimilarity measure. PMID:3828403

  17. Glass formation and local topological instability of atomic structure

    SciTech Connect

    Egami, T.

    1997-12-31

    A direct connection between the local topology of the atomic structure of liquids and glasses and thermodynamic quantities through the atomic level stresses is suggested for metallic alloys. In particular the role of local topological instability in the phase transformation involving liquid and glass will be discussed. It is pointed out that a single local geometrical criterion can explain various phase transformations, such as melting, glass transition, and glass formation by solid state reaction and liquid quenching.

  18. Local Influence Analysis of Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  19. Localized vibrations: moles in structure-land

    NASA Astrophysics Data System (ADS)

    van der Maas, John H.

    1992-03-01

    Functional groups reveal specific information about their direct surroundings; in fact, they form the moles, the undercover agents, in molecules. However, as with agents, the information is produced in coded form (spectral data) so one has to know the code in detail before the message is completely understood. The substantially improved accuracy (wavenumber, intensity) and sensitivity brought about by FT-instruments, in combination with computer software, offer extended spectral information. Functional groups can now be examined in great detail. Obviously the amount of deducible structural items is group dependent, implying that one has to pursue the probing qualities of a functionality prior to use. The OH-group, and more in particular the OH-stretching vibration, proves to be an extremely good mole. Its potentials are demonstrated on conformational studies of various saturated alcohols, the presence of OH(DOT)(DOT)(DOT)(pi) bridges, the strength and type of OH(DOT)(DOT)(DOT)O bridges, all in an apolar solvent, and on the disclosure of different hydrogen bonds in some solid samples.

  20. Proteins comparison through probabilistic optimal structure local alignment

    PubMed Central

    Micale, Giovanni; Pulvirenti, Alfredo; Giugno, Rosalba; Ferro, Alfredo

    2014-01-01

    Multiple local structure comparison helps to identify common structural motifs or conserved binding sites in 3D structures in distantly related proteins. Since there is no best way to compare structures and evaluate the alignment, a wide variety of techniques and different similarity scoring schemes have been proposed. Existing algorithms usually compute the best superposition of two structures or attempt to solve it as an optimization problem in a simpler setting (e.g., considering contact maps or distance matrices). Here, we present PROPOSAL (PROteins comparison through Probabilistic Optimal Structure local ALignment), a stochastic algorithm based on iterative sampling for multiple local alignment of protein structures. Our method can efficiently find conserved motifs across a set of protein structures. Only the distances between all pairs of residues in the structures are computed. To show the accuracy and the effectiveness of PROPOSAL we tested it on a few families of protein structures. We also compared PROPOSAL with two state-of-the-art tools for pairwise local alignment on a dataset of manually annotated motifs. PROPOSAL is available as a Java 2D standalone application or a command line program at http://ferrolab.dmi.unict.it/proposal/proposal.html. PMID:25228906

  1. Protein tertiary structure recognition using optimized Hamiltonians with local interactions.

    PubMed Central

    Goldstein, R A; Luthey-Schulten, Z A; Wolynes, P G

    1992-01-01

    Protein folding codes embodying local interactions including surface and secondary structure propensities and residue-residue contacts are optimized for a set of training proteins by using spin-glass theory. A screening method based on these codes correctly matches the structure of a set of test proteins with proteins of similar topology with 100% accuracy, even with limited sequence similarity between the test proteins and the structural homologs and the absence of any structurally similar proteins in the training set. PMID:1409599

  2. Structure of local interactions in complex financial dynamics

    PubMed Central

    Jiang, X. F.; Chen, T. T.; Zheng, B.

    2014-01-01

    With the network methods and random matrix theory, we investigate the interaction structure of communities in financial markets. In particular, based on the random matrix decomposition, we clarify that the local interactions between the business sectors (subsectors) are mainly contained in the sector mode. In the sector mode, the average correlation inside the sectors is positive, while that between the sectors is negative. Further, we explore the time evolution of the interaction structure of the business sectors, and observe that the local interaction structure changes dramatically during a financial bubble or crisis. PMID:24936906

  3. Structure of local interactions in complex financial dynamics

    NASA Astrophysics Data System (ADS)

    Jiang, X. F.; Chen, T. T.; Zheng, B.

    2014-06-01

    With the network methods and random matrix theory, we investigate the interaction structure of communities in financial markets. In particular, based on the random matrix decomposition, we clarify that the local interactions between the business sectors (subsectors) are mainly contained in the sector mode. In the sector mode, the average correlation inside the sectors is positive, while that between the sectors is negative. Further, we explore the time evolution of the interaction structure of the business sectors, and observe that the local interaction structure changes dramatically during a financial bubble or crisis.

  4. Reconstruction of biofilm images: combining local and global structural parameters

    SciTech Connect

    Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk

    2014-11-07

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.

  5. Reconstruction of biofilm images: combining local and global structural parameters.

    PubMed

    Resat, Haluk; Renslow, Ryan S; Beyenal, Haluk

    2014-10-01

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process. PMID:25377487

  6. Global/local methods for probabilistic structural analysis

    NASA Technical Reports Server (NTRS)

    Millwater, H. R.; Wu, Y.-T.

    1993-01-01

    A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.

  7. Structure and local structure of perovskite based materials

    NASA Astrophysics Data System (ADS)

    Rossell Abrodos, Marta Dacil

    Perovskites, with general formula ABX3, where A and B are cations and X is an anion, form a very important class of inorganic crystals whose physical properties are extensively used in many technological applications. The basic, so-called aristotype structure, consists of an infinite array of corner-linked anion octahedra, with the A cations in the spaces between the octahedra and a B cation at the center of each octahedron. Interesting physical properties are often related to the flexibility of the perovskite structure to deform or to form non-stoichiometric compositions. In this thesis, four perovskite-related systems are studied. Transmission electron microscopy (TEM) is of prime interest to analyze the influence of the structure and microstructure on the physical properties of these systems. (1) The anion-deficient Sr4Fe6O12+delta (delta < 1) derivatives. These materials are mixed conducting oxides with high oxygen and electronic conductivity. A complete characterization of the structure of these anion-deficient compounds is deduced from electron diffraction and high-resolution TEM. The presence of anion vacancies in the Sr4Fe6O12+delta (delta < 1) structure is suggested to have an influence on the transport properties. (2) The CaRMnSnO6 (R = La, Pr, Nd, Sm-Dy) double perovskites. A random distribution of the Ca and R cations over the A positions and Mn and Sn cations over the B positions is found. Due to a random distribution of the Mn 3+ and Sn4+ cations, a spin glass behavior was found for CaLaMnSnO6. (3) The K3AlF6 elpasolite-type (or ordered double perovskite) structure. This compound is of high technological importance since it is a basic component of the melts for low temperature electrolysis in aluminum smelting. A sequence of phase transitions at different temperatures in K3AlF6 along with the data on unit cell dimensions and space symmetry of three major polymorphs is reported. (4) Ca 2Fe2O5 brownmillerite-type thin films deposited on three different

  8. Effects of Temperature on Structure and Mobility of the <100> Edge Dislocation in Body-Centred Cubic Iron

    SciTech Connect

    Terentyev, Dmitry; Osetskiy, Yury N; Bacon, David J

    2010-01-01

    Dislocation segments with Burgers vector b = <1 0 0> are formed during deformation of body-centred-cubic (bcc) metals by the interaction between dislocations with b = 1/2<1 1 1>. Such segments are also created by reactions between dislocations and dislocation loops in irradiated bcc metals. The obstacle resistance produced by these segments on gliding dislocations is controlled by their mobility, which is determined in turn by the atomic structure of their cores. The core structure of a straight <1 0 0> edge dislocation is investigated here by atomic-scale computer simulation for {alpha}-iron using three different interatomic potentials. At low temperature the dislocation has a non-planar core consisting of two 1/2<1 1 1> fractional dislocations with atomic disregistry spread on planes inclined to the main glide plane. Increasing temperature modifies this core structure and so reduces the critical applied shear stress for glide of the <1 0 0> dislocation. It is concluded that the response of the <1 0 0> edge dislocation to temperature or applied stress determines specific reaction pathways occurring between a moving dislocation and 1/2<1 1 1> dislocation loops. The implications of this for plastic flow in unirradiated and irradiated ferritic materials are discussed and demonstrated by examples.

  9. The Local Physical Structure of Amorphous Boron Carbide Thin Films

    NASA Astrophysics Data System (ADS)

    Paquette, M. M.; Li, Wenjing; Driver, M. S.; Oyler, N. A.; Caruso, A. N.

    2011-03-01

    Thin-film amorphous hydrogenated boron carbide (a-B5 C:Hx) and technical boron carbide (B4 C:Cy) are important materials in next-generation solid-state neutron detectors and refractory electronics. Optimizing the electrical carrier transport and electronic structure of these films for the stated applications has been severely hindered by: (1) their lack of long-range periodicity; (2) the ability of boron-rich solids to form complex polyhedra; and, (3) the possibility that carbon atoms incorporate into the polyhedral structures in an intraicosahedral fashion or that they bridge polyhedral structures in an intericosahedral fashion. The use of traditional spectroscopies that are sensitive to local coordination environment have been inadequate in the determination of the local physical structure because of either poor resolution or very low interaction cross sections. However, magic spinning angle (MAS) solid-state nuclear magnetic resonance (SSNMR), does have the signal-to-noise and rigor to extract the local physical coordination structure of these materials, despite the challenges associated with deltahedra-based structures. This poster will describe the progress and challenges in structure determination through a comparison of unknown samples to known calibration standards using MAS techniques, in the context of furthering the general understanding of the electronic structure of a-B5 C:Hx and B4 C:Cy thin films.

  10. Correlation of Local Structure and Electronic Properties of Glass Materials

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo; Adelstein, Nicole

    2015-03-01

    Wide band gap glasses such as silica and its derivatives are typically considered insulators. However, electronic transport in glasses can be important for certain applications, such as when used as the host material for a scintillator radiation detector. Here we explore the relationship between local structure in glass materials and the corresponding electronic properties of carrier transport and charge trapping. We present a novel analysis that decomposes the distribution of localized band tail states in terms of specific local structural features in the glass. Comparison of the structure-related transport properties of different glass compositions is given, using silica and sodium silicate as prototypes. Prepared by LLNL under Contract DE-AC52-07NA27344.

  11. Confidence-Guided Local Structure Prediction with HHfrag

    PubMed Central

    Kalev, Ivan; Habeck, Michael

    2013-01-01

    We present a method to assess the reliability of local structure prediction from sequence. We introduce a greedy algorithm for filtering and enrichment of dynamic fragment libraries, compiled with remote-homology detection methods such as HHfrag. After filtering false hits at each target position, we reduce the fragment library to a minimal set of representative fragments, which are guaranteed to have correct local structure in regions of detectable conservation. We demonstrate that the location of conserved motifs in a protein sequence can be predicted by examining the recurrence and structural homogeneity of detected fragments. The resulting confidence score correlates with the local RMSD of the representative fragments and allows us to predict torsion angles from sequence with better accuracy compared to existing machine learning methods. PMID:24146881

  12. Periodic colour-centre structure formed under filamentation of mid-IR femtosecond laser radiation in a LiF crystal

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Kompanets, V. O.; Dormidonov, A. E.; Chekalin, S. V.; Shlenov, S. A.; Kandidov, V. P.

    2016-04-01

    A colour-centre structure formed in a LiF crystal under filamentation of a femtosecond mid-IR laser pulse with a power slightly exceeding the critical power for self-focusing has been experimentally and theoretically investigated. Strictly periodic oscillations have been detected for the first time for the density of the colour centres induced in an isotropic LiF crystal under filamentation of a laser beam with a wavelength tuned in the range from 2600 to 3350 nm. The structure period is found to be about 30 μm. With an increase in the laser radiation wavelength, the period of the oscillations decreases and their amplitude increases. The maximum colour centre density, observed under filamentation of a 3100-nm beam, is related to the increased contribution of the direct generation of colour centres as a result of the absorption of an integer number of photons by the exciton band. It is numerically shown that the formation of a periodic colour-centre structure in LiF is due to the periodic change in the light field amplitude in the light bullet (1.5 optical periods long) formed under filamentation.

  13. Influences of consolidation processes on local paper structure

    NASA Astrophysics Data System (ADS)

    Sung, Yongjoo

    The accurate measurement of the structural parameters such as thickness, grammage, apparent density and surface topography, and the proper evaluation of the variation of each parameter, are very important not only for predicting the end use properties of the paper, but also for diagnosing the pa permaking processes. The difficulty of the measurement of thickness at fine scale ˜1 mm has been an impediment to the understanding of local paper structure. To address this problem, a twin laser profilometer instrument (TLP) for non-contacting measurement of local thickness and surface topography was developed, characterized and calibrated in this work. The fundamental relationships between structural parameters were reexamined with various handsheet samples. The effects of wet pressing on the local paper structure were evaluated using laboratory static press and commercial press felts. The different press pressure had no significant influence on the local density variation of the handsheet samples. The influences of felts on the surface topography were also successfully observed. The different densification effects of soft nip and hard nip calendering processes were evaluated by direct comparison of structural parameters before and after processing. The much higher selective reduction in local thickness (larger reduction for the thicker area) by the hard nip calendering process resulted in different relationships between structural parameters. The various periodic variations in the paper structure were also detected, analyzed and identified. The effects of different forming elements such as the conventional foil system and the velocity induced drainage (VID) system on the paper structure and end use properties were evaluated with pilot machine trials and commercial product produced using different forming elements. Generally, the VID samples showed better formation, less two sidedness in the fine distribution through thickness direction, and less densification during

  14. Our Milky Way structure in the context of local galaxies

    NASA Astrophysics Data System (ADS)

    Shen, Juntai

    2015-08-01

    The Milky Way is the closest galaxy to us, and has been studied extensively due to its proximity. Understanding its structure and dynamics will help us understand spiral galaxies in general. I will review the latest research progress in the structure, kinematics, and dynamics of the Milky Way in the context of local galaxies. I will cover most structural components (the bulge/bar, disk, and spiral structures) and discuss the implications of some new results on the formation history of our home galaxy.

  15. Exploiting orientation-selective DEER: determining molecular structure in systems containing Cu(ii) centres.

    PubMed

    Bowen, Alice M; Jones, Michael W; Lovett, Janet E; Gaule, Thembanikosi G; McPherson, Michael J; Dilworth, Jonathan R; Timmel, Christiane R; Harmer, Jeffrey R

    2016-02-17

    Orientation-selective DEER (Double Electron-Electron Resonance) measurements were conducted on a series of rigid and flexible molecules containing Cu(ii) ions. A system with two rigidly held Cu(ii) ions was afforded by the protein homo-dimer of copper amine oxidase from Arthrobacter globiformis. This system provided experimental DEER data between two Cu(ii) ions with a well-defined distance and relative orientation to assess the accuracy of the methodology. Evaluation of orientation-selective DEER (os DEER) on systems with limited flexibility was probed using a series of porphyrin-based Cu(ii)-nitroxide and Cu(ii)-Cu(ii) model systems of well-defined lengths synthesized for this project. Density functional theory was employed to generate molecular models of the conformers for each porphyrin-based Cu(ii) dimer studied. Excellent agreement was found between DEER traces simulated using these computed conformers and the experimental data. The performance of different parameterised structural models in simulating the experimental DEER data was also investigated. The results of this analysis demonstrate the degree to which the DEER data define the relative orientation of the two Cu(ii) ions and highlight the need to choose a parameterised model that captures the essential features of the flexibility (rotational freedom) of the system being studied. PMID:26837391

  16. Bacterial pathogen gene regulation: a DNA-structure-centred view of a protein-dominated domain.

    PubMed

    Dorman, Charles J; Colgan, Aoife; Dorman, Matthew J

    2016-07-01

    The mechanisms used by bacterial pathogens to regulate the expression of their genes, especially their virulence genes, have been the subject of intense investigation for several decades. Whole genome sequencing projects, together with more targeted studies, have identified hundreds of DNA-binding proteins that contribute to the patterns of gene expression observed during infection as well as providing important insights into the nature of the gene products whose expression is being controlled by these proteins. Themes that have emerged include the importance of horizontal gene transfer to the evolution of pathogens, the need to impose regulatory discipline upon these imported genes and the important roles played by factors normally associated with the organization of genome architecture as regulatory principles in the control of virulence gene expression. Among these architectural elements is the structure of DNA itself, its variable nature at a topological rather than just at a base-sequence level and its ability to play an active (as well as a passive) part in the gene regulation process. PMID:27252403

  17. Local Function Conservation in Sequence and Structure Space

    PubMed Central

    Weinhold, Nils; Sander, Oliver; Domingues, Francisco S.; Lengauer, Thomas; Sommer, Ingolf

    2008-01-01

    We assess the variability of protein function in protein sequence and structure space. Various regions in this space exhibit considerable difference in the local conservation of molecular function. We analyze and capture local function conservation by means of logistic curves. Based on this analysis, we propose a method for predicting molecular function of a query protein with known structure but unknown function. The prediction method is rigorously assessed and compared with a previously published function predictor. Furthermore, we apply the method to 500 functionally unannotated PDB structures and discuss selected examples. The proposed approach provides a simple yet consistent statistical model for the complex relations between protein sequence, structure, and function. The GOdot method is available online (http://godot.bioinf.mpi-inf.mpg.de). PMID:18604264

  18. Implementing Responsibility Centre Budgeting

    ERIC Educational Resources Information Center

    Vonasek, Joseph

    2011-01-01

    Recently, institutes of higher education (universities) have shown a renewed interest in organisational structures and operating methodologies that generate productivity and innovation; responsibility centre budgeting (RCB) is one such process. This paper describes the underlying principles constituting RCB, its origin and structural elements, and…

  19. A novel method to compare protein structures using local descriptors

    PubMed Central

    2011-01-01

    Background Protein structure comparison is one of the most widely performed tasks in bioinformatics. However, currently used methods have problems with the so-called "difficult similarities", including considerable shifts and distortions of structure, sequential swaps and circular permutations. There is a demand for efficient and automated systems capable of overcoming these difficulties, which may lead to the discovery of previously unknown structural relationships. Results We present a novel method for protein structure comparison based on the formalism of local descriptors of protein structure - DEscriptor Defined Alignment (DEDAL). Local similarities identified by pairs of similar descriptors are extended into global structural alignments. We demonstrate the method's capability by aligning structures in difficult benchmark sets: curated alignments in the SISYPHUS database, as well as SISY and RIPC sets, including non-sequential and non-rigid-body alignments. On the most difficult RIPC set of sequence alignment pairs the method achieves an accuracy of 77% (the second best method tested achieves 60% accuracy). Conclusions DEDAL is fast enough to be used in whole proteome applications, and by lowering the threshold of detectable structure similarity it may shed additional light on molecular evolution processes. It is well suited to improving automatic classification of structure domains, helping analyze protein fold space, or to improving protein classification schemes. DEDAL is available online at http://bioexploratorium.pl/EP/DEDAL. PMID:21849047

  20. Local Structure of Implicated Pd in Si Using PAC

    NASA Astrophysics Data System (ADS)

    Brett, D. A.; Dogra, R.; Byrne, A. P.; Ridgway, M. C.; Bartels, J.; Vianden, R.

    2004-11-01

    TDPAC has been employed to study the local structure of implanted palladium in silicon utilizing 87 75 keV γ γ cascade of probe nucleus 100Pd. The observed hyperfine parameters revealed the presence of Pd V defect pair only in highly doped n-type silicon. A dumbbell structure with substitutional palladium and silicon vacancy as nearest neigbor is suggested for this defect.

  1. Cosmic Flows and the Structure of the Local Universe

    NASA Astrophysics Data System (ADS)

    Steinmetz, Matthias

    2016-03-01

    The Local Volume is the area of the cosmos we can analyze in most detail with respect to the properties of its galaxy population, their abundance, their inner structure, their distribution, and their formation. Indeed, many challenges of the cosmological concordance model such as the substructure crisis or the surprising occurrence of vast planes of satellite galaxies are intimately linked to observations of the local galaxy population. However, owing to the peculiar environment of our Milky Way system and its cosmic neighborhood, the Local Volume may also be severely biased. Cosmography, i.e. the reconstruction of the local cosmic web from cosmic flows, and constrained simulations of structure formation as a tool to produce simulated local group analogues provide a powerful method to analyze and quantify these biases. Possible applications include the analysis of the local distribution of dwarf galaxies around luminous galaxies and the characterization of the mass accretion history of these objects. Thanks to the extension of galaxy velocity data out to distances in excess of 200Mpc, we are now capable to reconstruct the 3D matter distribution out to these distances, thus constraining the formation history of object such as the Virgo Cluster.

  2. One Single Static Measurement Predicts Wave Localization in Complex Structures

    NASA Astrophysics Data System (ADS)

    Lefebvre, Gautier; Gondel, Alexane; Dubois, Marc; Atlan, Michael; Feppon, Florian; Labbé, Aimé; Gillot, Camille; Garelli, Alix; Ernoult, Maxence; Mayboroda, Svitlana; Filoche, Marcel; Sebbah, Patrick

    2016-08-01

    A recent theoretical breakthrough has brought a new tool, called the localization landscape, for predicting the localization regions of vibration modes in complex or disordered systems. Here, we report on the first experiment which measures the localization landscape and demonstrates its predictive power. Holographic measurement of the static deformation under uniform load of a thin plate with complex geometry provides direct access to the landscape function. When put in vibration, this system shows modes precisely confined within the subregions delineated by the landscape function. Also the maxima of this function match the measured eigenfrequencies, while the minima of the valley network gives the frequencies at which modes become extended. This approach fully characterizes the low frequency spectrum of a complex structure from a single static measurement. It paves the way for controlling and engineering eigenmodes in any vibratory system, especially where a structural or microscopic description is not accessible.

  3. One Single Static Measurement Predicts Wave Localization in Complex Structures.

    PubMed

    Lefebvre, Gautier; Gondel, Alexane; Dubois, Marc; Atlan, Michael; Feppon, Florian; Labbé, Aimé; Gillot, Camille; Garelli, Alix; Ernoult, Maxence; Mayboroda, Svitlana; Filoche, Marcel; Sebbah, Patrick

    2016-08-12

    A recent theoretical breakthrough has brought a new tool, called the localization landscape, for predicting the localization regions of vibration modes in complex or disordered systems. Here, we report on the first experiment which measures the localization landscape and demonstrates its predictive power. Holographic measurement of the static deformation under uniform load of a thin plate with complex geometry provides direct access to the landscape function. When put in vibration, this system shows modes precisely confined within the subregions delineated by the landscape function. Also the maxima of this function match the measured eigenfrequencies, while the minima of the valley network gives the frequencies at which modes become extended. This approach fully characterizes the low frequency spectrum of a complex structure from a single static measurement. It paves the way for controlling and engineering eigenmodes in any vibratory system, especially where a structural or microscopic description is not accessible. PMID:27563967

  4. Local Structure of CuIn3Se5

    SciTech Connect

    Chang, C. H.; Wei, S. H.; Leyarovska, N.; Johnson, J. W.; Zhang, S. B.; Stanbery, B. J.; Anderson, T. J.

    2000-01-01

    The results of a detailed EXAFS study of the Cu-K, In-K, and Se-K edges CuIn3Se5 are reported. The Cu and In first nearest neighbor local structures were found to be almost identical to those in CuInSe2.

  5. The Changing Market Structure of Local Television News.

    ERIC Educational Resources Information Center

    Powers, Angela

    The growth in competition for revenues, along with the advent of cable, independent television and video cassette recorders (VCR), may signify a change in the market structure of local television news. To explain if and how this change may be occurring, an explanation of economic theory as well as evidence from "Broadcast and Cable Yearbook" and…

  6. Structures of Participation in the "University of Local Knowledge"

    ERIC Educational Resources Information Center

    Evans, Penny; Irish, Sharon

    2013-01-01

    "Structures of Participation" concerns a recent media arts project, the University of Local Knowledge (ULK). ULK is simultaneously a critique of established academic institutions and disciplines and a system for self-organized learning among the residents of Knowle West, an area of south Bristol (UK). Beginning in 2009, the Knowle West…

  7. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    PubMed

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions. PMID:18491388

  8. PredyFlexy: flexibility and local structure prediction from sequence

    PubMed Central

    de Brevern, Alexandre G.; Bornot, Aurélie; Craveur, Pierrick; Etchebest, Catherine; Gelly, Jean-Christophe

    2012-01-01

    Protein structures are necessary for understanding protein function at a molecular level. Dynamics and flexibility of protein structures are also key elements of protein function. So, we have proposed to look at protein flexibility using novel methods: (i) using a structural alphabet and (ii) combining classical X-ray B-factor data and molecular dynamics simulations. First, we established a library composed of structural prototypes (LSPs) to describe protein structure by a limited set of recurring local structures. We developed a prediction method that proposes structural candidates in terms of LSPs and predict protein flexibility along a given sequence. Second, we examine flexibility according to two different descriptors: X-ray B-factors considered as good indicators of flexibility and the root mean square fluctuations, based on molecular dynamics simulations. We then define three flexibility classes and propose a method based on the LSP prediction method for predicting flexibility along the sequence. This method does not resort to sophisticate learning of flexibility but predicts flexibility from average flexibility of predicted local structures. The method is implemented in PredyFlexy web server. Results are similar to those obtained with the most recent, cutting-edge methods based on direct learning of flexibility data conducted with sophisticated algorithms. PredyFlexy can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/predyflexy/. PMID:22689641

  9. Localization of acoustic modes in periodic porous silicon structures

    PubMed Central

    2014-01-01

    The propagation of longitudinal acoustic waves in multilayer structures based on porous silicon and the experimental measurement of acoustic transmission for the structures in the gigahertz range are reported and studied theoretically. The considered structures exhibit band gaps in the transmission spectrum and these are localized modes inside the band gap, coming from defect layers introduced in periodic systems. The frequency at which the acoustic resonances appear can be tuned by changing the porosity and/or thickness of the defect layer. PMID:25206317

  10. Local magnetic structure determination using polarized neutron holography

    SciTech Connect

    Szakál, Alex Markó, Márton Cser, László

    2015-05-07

    A unique and important property of the neutron is that it possesses magnetic moment. This property is widely used for determination of magnetic structure of crystalline samples observing the magnetic components of the diffraction peaks. Investigations of diffraction patterns give information only about the averaged structure of a crystal but for discovering of local spin arrangement around a specific (e.g., impurity) nucleus remains still a challenging problem. Neutron holography is a useful tool to investigate the local structure around a specific nucleus embedded in a crystal lattice. The method has been successfully applied experimentally in several cases using non-magnetic short range interaction of the neutron and the nucleus. A mathematical model of the hologram using interaction between magnetic moment of the atom and the neutron spin for polarized neutron holography is provided. Validity of a polarized neutron holographic experiment is demonstrated by applying the proposed method on model systems.

  11. Comments on valence-bond structures and charge-shift + recoupled-pair bonding for symmetrical 4-electron 3-centre bonding units

    NASA Astrophysics Data System (ADS)

    Harcourt, Richard D.

    2016-07-01

    Consideration is given to two charge-shift bonding schemes for a symmetrical 4-electron 3-centre hyperbonding unit with three overlapping atomic orbitals. One of these schemes includes the other scheme and the Hach-Rundle-Pimentel 3-centre molecular orbital model as special cases. SF4 and [Cu(H2O)6]2+ are used to illustrate aspects of charge-shift bonding and recoupled-pair bonding theory by generating the increased-valence structures that are associated with the preferred scheme.

  12. Early detection of local buckling in structural members

    NASA Astrophysics Data System (ADS)

    Ali, Bashir; Sundaresan, Mannur J.; Schulz, Mark J.; Hughes, Derke

    2005-05-01

    Most structural health monitoring analyses to date have focused on the determination of damage in the form of crack growth in metallic materials or delamination or other types of damage growth in composite materials. However, in many applications, local instability in the form of buckling can be the precursor to more extensive damage and unstable failure of the structure. If buckling could be detected in the very early stages, there is a possibility of taking preventive measures to stabilize and save the structure. Relatively few investigations have addressed this type of damage initiation in structures. Recently, during the structural health monitoring of a wind turbine blade, local buckling was identified as the cause of premature failure. A stress wave propagation technique was used in this test to detect the precursor to the buckling failure in the form of early changes in the local curvature of the blade. These conditions have also been replicated in the laboratory and results are reported in this paper. A composite column was subjected to axial compression to induce various levels of buckling deformation. Two different techniques were used to detect the precursors to buckling in this column. The first identifier is the change in the vibration shapes and natural frequencies of the column. The second is the change in the characteristics of diagnostic Lamb waves during the buckling deformation. Experiments indicate that very small changes in curvature during the initial stages of buckling are detectable using the structural health monitoring techniques. The experimental vibration characteristics of the column with slight initial curvatures compared qualitatively with finite element results. The finite element analysis is used to identify the frequencies that are most sensitive to buckling deformation, and to select suitable locations for the placement of sensors that can detect even small changes in the local curvature.

  13. Topological framework for local structure analysis in condensed matter

    PubMed Central

    Lazar, Emanuel A.; Han, Jian; Srolovitz, David J.

    2015-01-01

    Physical systems are frequently modeled as sets of points in space, each representing the position of an atom, molecule, or mesoscale particle. As many properties of such systems depend on the underlying ordering of their constituent particles, understanding that structure is a primary objective of condensed matter research. Although perfect crystals are fully described by a set of translation and basis vectors, real-world materials are never perfect, as thermal vibrations and defects introduce significant deviation from ideal order. Meanwhile, liquids and glasses present yet more complexity. A complete understanding of structure thus remains a central, open problem. Here we propose a unified mathematical framework, based on the topology of the Voronoi cell of a particle, for classifying local structure in ordered and disordered systems that is powerful and practical. We explain the underlying reason why this topological description of local structure is better suited for structural analysis than continuous descriptions. We demonstrate the connection of this approach to the behavior of physical systems and explore how crystalline structure is compromised at elevated temperatures. We also illustrate potential applications to identifying defects in plastically deformed polycrystals at high temperatures, automating analysis of complex structures, and characterizing general disordered systems. PMID:26460045

  14. Topological framework for local structure analysis in condensed matter.

    PubMed

    Lazar, Emanuel A; Han, Jian; Srolovitz, David J

    2015-10-27

    Physical systems are frequently modeled as sets of points in space, each representing the position of an atom, molecule, or mesoscale particle. As many properties of such systems depend on the underlying ordering of their constituent particles, understanding that structure is a primary objective of condensed matter research. Although perfect crystals are fully described by a set of translation and basis vectors, real-world materials are never perfect, as thermal vibrations and defects introduce significant deviation from ideal order. Meanwhile, liquids and glasses present yet more complexity. A complete understanding of structure thus remains a central, open problem. Here we propose a unified mathematical framework, based on the topology of the Voronoi cell of a particle, for classifying local structure in ordered and disordered systems that is powerful and practical. We explain the underlying reason why this topological description of local structure is better suited for structural analysis than continuous descriptions. We demonstrate the connection of this approach to the behavior of physical systems and explore how crystalline structure is compromised at elevated temperatures. We also illustrate potential applications to identifying defects in plastically deformed polycrystals at high temperatures, automating analysis of complex structures, and characterizing general disordered systems. PMID:26460045

  15. Tracking Coherent Structures and Source Localization in Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Forgoston, Eric; Hsieh, Ani; Schwartz, Ira; Yecko, Philip

    There has been a steady increase in the deployment of autonomous underwater and surface vehicles for applications such as ocean monitoring, tracking of marine processes, and forecasting contaminant transport. The underwater environment poses unique challenges since robots must operate in a communication and localization-limited environment where their dynamics are tightly coupled with the environmental dynamics. This work presents current efforts in understanding the impact of geophysical fluid dynamics on underwater vehicle control and autonomy. The focus of the talk is on the use of collaborative vehicles to track Lagrangian coherent structures and to localize contaminant spills. Research supported by the National Science Foundation and the Office of Naval Research.

  16. Binding-activated localization microscopy of DNA structures.

    PubMed

    Schoen, Ingmar; Ries, Jonas; Klotzsch, Enrico; Ewers, Helge; Vogel, Viola

    2011-09-14

    Many nucleic acid stains show a strong fluorescence enhancement upon binding to double-stranded DNA. Here we exploit this property to perform superresolution microscopy based on the localization of individual binding events. The dynamic labeling scheme and the optimization of fluorophore brightness yielded a resolution of ∼14 nm (fwhm) and a spatial sampling of 1/nm. We illustrate our approach with two different DNA-binding dyes and apply it to visualize the organization of the bacterial chromosome in fixed Escherichia coli cells. In general, the principle of binding-activated localization microscopy (BALM) can be extended to other dyes and targets such as protein structures. PMID:21838238

  17. Fluctuations and local ice structure in model supercooled water

    NASA Astrophysics Data System (ADS)

    Overduin, S. D.; Patey, G. N.

    2015-09-01

    Large-scale simulations (up to 32 000 molecules) are used to analyze local structures and fluctuations for the TIP4P/2005 and TIP5P water models, under deeply supercooled conditions, near previously proposed liquid-liquid critical points. Bulk freezing does not occur in our simulations, but correlations between molecules with local ice-like structure (ice-like molecules) are strong and long ranged (˜4 nm), exceeding the shortest dimension of smaller simulation cells at the lowest temperatures considered. Correlations between ice-like molecules decay slowly at low temperature, on the order of a hundred nanoseconds. Local ice-like structure is strongly correlated with highly tetrahedral liquid structure at all times, both structures contribute to density fluctuations, and to the associated anomalous scattering. For the TIP4P/2005 and TIP5P models, we show that the apparent spontaneous liquid-liquid phase separations, recently reported [T. Yagasaki, M. Matsumoto, and H. Tanaka, Phys. Rev. E 89, 020301 (2014)] for small rectangular simulation cells below the proposed critical points, exhibit strong system size dependence and do not occur at all in the largest systems we consider. Furthermore, in the smaller rectangular systems where layers of different densities do occur, we find that the appearance of a region of low density is always accompanied simultaneously by an excess of local ice density, with no separation in time. Our results suggest that the density differences observed in direct simulations for the two models considered here are likely due to long-range correlations between ice-like molecules and do not provide strong evidence of liquid-liquid phase separation.

  18. Monaural sound localization based on structure-induced acoustic resonance.

    PubMed

    Kim, Keonwook; Kim, Youngwoong

    2015-01-01

    A physical structure such as a cylindrical pipe controls the propagated sound spectrum in a predictable way that can be used to localize the sound source. This paper designs a monaural sound localization system based on multiple pyramidal horns around a single microphone. The acoustic resonance within the horn provides a periodicity in the spectral domain known as the fundamental frequency which is inversely proportional to the radial horn length. Once the system accurately estimates the fundamental frequency, the horn length and corresponding angle can be derived by the relationship. The modified Cepstrum algorithm is employed to evaluate the fundamental frequency. In an anechoic chamber, localization experiments over azimuthal configuration show that up to 61% of the proper signal is recognized correctly with 30% misfire. With a speculated detection threshold, the system estimates direction 52% in positive-to-positive and 34% in negative-to-positive decision rate, on average. PMID:25668214

  19. Monaural Sound Localization Based on Structure-Induced Acoustic Resonance

    PubMed Central

    Kim, Keonwook; Kim, Youngwoong

    2015-01-01

    A physical structure such as a cylindrical pipe controls the propagated sound spectrum in a predictable way that can be used to localize the sound source. This paper designs a monaural sound localization system based on multiple pyramidal horns around a single microphone. The acoustic resonance within the horn provides a periodicity in the spectral domain known as the fundamental frequency which is inversely proportional to the radial horn length. Once the system accurately estimates the fundamental frequency, the horn length and corresponding angle can be derived by the relationship. The modified Cepstrum algorithm is employed to evaluate the fundamental frequency. In an anechoic chamber, localization experiments over azimuthal configuration show that up to 61% of the proper signal is recognized correctly with 30% misfire. With a speculated detection threshold, the system estimates direction 52% in positive-to-positive and 34% in negative-to-positive decision rate, on average. PMID:25668214

  20. A local average distance descriptor for flexible protein structure comparison

    PubMed Central

    2014-01-01

    Background Protein structures are flexible and often show conformational changes upon binding to other molecules to exert biological functions. As protein structures correlate with characteristic functions, structure comparison allows classification and prediction of proteins of undefined functions. However, most comparison methods treat proteins as rigid bodies and cannot retrieve similarities of proteins with large conformational changes effectively. Results In this paper, we propose a novel descriptor, local average distance (LAD), based on either the geodesic distances (GDs) or Euclidean distances (EDs) for pairwise flexible protein structure comparison. The proposed method was compared with 7 structural alignment methods and 7 shape descriptors on two datasets comprising hinge bending motions from the MolMovDB, and the results have shown that our method outperformed all other methods regarding retrieving similar structures in terms of precision-recall curve, retrieval success rate, R-precision, mean average precision and F1-measure. Conclusions Both ED- and GD-based LAD descriptors are effective to search deformed structures and overcome the problems of self-connection caused by a large bending motion. We have also demonstrated that the ED-based LAD is more robust than the GD-based descriptor. The proposed algorithm provides an alternative approach for blasting structure database, discovering previously unknown conformational relationships, and reorganizing protein structure classification. PMID:24694083

  1. Earth Structure, Ice Mass Changes, and the Local Dynamic Geoid

    NASA Astrophysics Data System (ADS)

    Harig, C.; Simons, F. J.

    2014-12-01

    Spherical Slepian localization functions are a useful method for studying regional mass changes observed by satellite gravimetry. By projecting data onto a sparse basis set, the local field can be estimated more easily than with the full spherical harmonic basis. We have used this method previously to estimate the ice mass change in Greenland from GRACE data, and it can also be applied to other planetary problems such as global magnetic fields. Earth's static geoid, in contrast to the time-variable field, is in large part related to the internal density and rheological structure of the Earth. Past studies have used dynamic geoid kernels to relate this density structure and the internal deformation it induces to the surface geopotential at large scales. These now classical studies of the eighties and nineties were able to estimate the mantle's radial rheological profile, placing constraints on the ratio between upper and lower mantle viscosity. By combining these two methods, spherical Slepian localization and dynamic geoid kernels, we have created local dynamic geoid kernels which are sensitive only to density variations within an area of interest. With these kernels we can estimate the approximate local radial rheological structure that best explains the locally observed geoid on a regional basis. First-order differences of the regional mantle viscosity structure are accessible to this technique. In this contribution we present our latest, as yet unpublished results on the geographical and temporal pattern of ice mass changes in Antarctica over the past decade, and we introduce a new approach to extract regional information about the internal structure of the Earth from the static global gravity field. Both sets of results are linked in terms of the relevant physics, but also in being developed from the marriage of Slepian functions and geoid kernels. We make predictions on the utility of our approach to derive fully three-dimensional rheological Earth models, to

  2. Local structure co-occurrence pattern for image retrieval

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Zhang, Fan; Lu, Jia; Lu, Yinghua; Kong, Jun; Zhang, Ming

    2016-03-01

    Image description and annotation is an active research topic in content-based image retrieval. How to utilize human visual perception is a key approach to intelligent image feature extraction and representation. This paper has proposed an image feature descriptor called the local structure co-occurrence pattern (LSCP). LSCP extracts the whole visual perception for an image by building a local binary structure, and it is represented by a color-shape co-occurrence matrix which explores the relationship of multivisual feature spaces according to visual attention mechanism. As a result, LSCP not only describes low-level visual features integrated with texture feature, color feature, and shape feature but also bridges high-level semantic comprehension. Extensive experimental results on an image retrieval task on the benchmark datasets, corel-10,000, MIT VisTex, and INRIA Holidays, have demonstrated the usefulness, effectiveness, and robustness of the proposed LSCP.

  3. Dynamics of Localized Structures in Systems with Broken Parity Symmetry

    NASA Astrophysics Data System (ADS)

    Javaloyes, J.; Camelin, P.; Marconi, M.; Giudici, M.

    2016-04-01

    A great variety of nonlinear dissipative systems are known to host structures having a correlation range much shorter than the size of the system. The dynamics of these localized structures (LSs) has been investigated so far in situations featuring parity symmetry. In this Letter we extend this analysis to systems lacking this property. We show that the LS drifting speed in a parameter varying landscape is not simply proportional to the parameter gradient, as found in parity preserving situations. The symmetry breaking implies a new contribution to the velocity field which is a function of the parameter value, thus leading to a new paradigm for LSs manipulation. We illustrate this general concept by studying the trajectories of the LSs found in a passively mode-locked laser operated in the localization regime. Moreover, the lack of parity affects significantly LSs interactions which are governed by asymmetrical repulsive forces.

  4. Local and near surface structure from diffraction (Preface)

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E

    2010-01-01

    This special topic of Materials Science and Engineering A highlights novel applications of X-ray and neutron diffraction for the analysis of a range of materials, including conventional and nanostructured materials, thin films, bio-inspired materials, and superalloys. The development of ultra-brilliant synchrotron X-ray sources and recent advances in neutron diffraction provide important new opportunities for the analysis of local and near surface material structures at multiple length scales.

  5. Wycheproof Education Centre.

    ERIC Educational Resources Information Center

    Sweetnam and Godfrey, Melbourne (Australia).

    The Wycheproof township in New South Wales (Australia) is the regional center for a grain farming community. The Wycheproof Education Centre was formed by the merger of a separate primary and secondary school (on one site with existing buildings), into a single governing body that is educationally structured into junior, middle, and senior…

  6. Seismic structure of ultra-slow spreading crust formed at the Mid-Cayman Spreading Centre, Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Grevemeyer, I.; Merz, M.; Dannowski, A.; Papenberg, C. A.; Hayman, N. W.; Van Avendonk, H. J.; Peirce, C.

    2015-12-01

    About 57% of the Earth's surface is covered by oceanic crust and new ocean floor is continuously created along the ~60.000 km long mid-ocean ridge (MOR) system. About 25% of the MOR spread at an ultra-slow spreading rate of <20 mm/yr. At ultra-slow spreading rates the melt supply to the ridge is thought to dramatically decrease and crustal thickness decreases to a thickness of <6 km. However, we know little about the processes shaping crust at reduced spreading rates. A formation of crust from a magma chamber would suggest the creation of a well stratified crust, with an extrusive upper crust (layer 2) and a lower gabbroic crust (lower 3) and a well-defined crust-mantle boundary and hence a seismic Moho. In contrast, decompressional melting without formation of a magma chamber would support a crustal structure where seismic velocities change gradually from values typical of crustal rocks to mantle rocks. Here, we report initial results from a survey from the ultra-slow spreading Cayman Spreading Centre in the Caribbean Sea, sampling mature crust along a flowline from both conjugated ridge flanks. The seismic refraction and wide-angle survey was conducted using ocean-bottom-seismometers from Germany, the UK, and Texas and a 5500 cubic-inch airgun-array source towed by the German research vessel METEOR in April 2015. Typical crustal velocities support a thin crust of 3 to 5 km thickness. However, a well-defined Moho boundary was not observed. Thus, velocities change gradually from crustal-type velocities (<7.2 km/s) to values of 7.6-7.8 km/s, supporting mantle rocks. We suggest that reduced mantle velocities indicate gabbroic intrusions within the mantle rather than indicating serpentinization.

  7. Analyzing the sequence-structure relationship of a library of local structural prototypes.

    PubMed

    Benros, Cristina; de Brevern, Alexandre G; Hazout, Serge

    2009-01-21

    We present a thorough analysis of the relation between amino acid sequence and local three-dimensional structure in proteins. A library of overlapping local structural prototypes was built using an unsupervised clustering approach called "hybrid protein model" (HPM). The HPM carries out a multiple structural alignment of local folds from a non-redundant protein structure databank encoded into a structural alphabet composed of 16 protein blocks (PBs). Following previous research focusing on the HPM protocol, we have considered gaps in the local structure prototype. This methodology allows to have variable length fragments. Hence, 120 local structure prototypes were obtained. Twenty-five percent of the protein fragments learnt by HPM had gaps. An investigation of tight turns suggested that they are mainly derived from three PB series with precise locations in the HPM. The amino acid information content of the whole conformational classes was tackled by multivariate methods, e.g., canonical correlation analysis. It points out the presence of seven amino acid equivalence classes showing high propensities for preferential local structures. In the same way, definition of "contrast factors" based on sequence-structure properties underline the specificity of certain structural prototypes, e.g., the dependence of Gly or Asn-rich turns to a limited number of PBs, or, the opposition between Pro-rich coils to those enriched in Ser, Thr, Asn and Glu. These results are so useful to analyze the sequence-structure relationships, but could also be used to improve fragment-based method for protein structure prediction from sequence. PMID:18977232

  8. Local Structure of Cerium in Aluminophosphate and Silicophosphate Glasses

    SciTech Connect

    J Rygel; Y Chen; C Pantano; T Shibata; J Du; L Kokou; R Woodman; J Belcher

    2011-12-31

    The local structure of cerium in two systematic compositional series of glasses, nominally CeP{sub 3}O{sub 9}-AlP{sub 3}O{sub 9} and CeP{sub 3}O{sub 9}-SiP{sub 2}O{sub 7}, was interrogated using X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy. XPS revealed that, for glasses melted in air, {>=}95% of cerium ions are Ce{sup 3+}. This was independently confirmed using X-ray absorption near edge spectroscopy (XANES). Ce K-edge extended X-ray absorption fine structure (EXAFS) has been used to determine the local structure of Ce{sup 3+}. Near the metaphosphate composition, cerium was found to have an average cerium coordination number of {approx}7.0 and an average cerium-oxygen bond length of 2.41 {angstrom}. The average cerium coordination number and average cerium-oxygen bond distance were found to increase with decreasing cerium concentration in both compositional series. Rare-earth clustering is suggested based on numerical calculations for glasses containing {>=}14 and {>=}15 mol% Ce{sub 2}O{sub 3} for the aluminophosphate and silicophosphate series, respectively.

  9. Local Structure of Cerium in Aluminophosphate and Silicophosphate Glasses

    SciTech Connect

    Rygel, Jennifer L.; Chen, Yongsheng; Pantano, Carlo G.; Shibata, Tomohiro; Du, Jincheng; Kokou, Leopold; Woodman, Robert; Belcher, James

    2011-09-20

    The local structure of cerium in two systematic compositional series of glasses, nominally CeP{sub 3}O{sub 9}-AlP{sub 3}O{sub 9} and CeP{sub 3}O{sub 9}-SiP{sub 2}O{sub 7}, was interrogated using X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) spectroscopy. XPS revealed that, for glasses melted in air, {>=}95% of cerium ions are Ce{sup 3+}. This was independently confirmed using X-ray absorption near edge spectroscopy (XANES). Ce K-edge extended X-ray absorption fine structure (EXAFS) has been used to determine the local structure of Ce{sup 3+}. Near the metaphosphate composition, cerium was found to have an average cerium coordination number of {approx}7.0 and an average cerium-oxygen bond length of 2.41 {angstrom}. The average cerium coordination number and average cerium-oxygen bond distance were found to increase with decreasing cerium concentration in both compositional series. Rare-earth clustering is suggested based on numerical calculations for glasses containing {>=}14 and {>=}15 mol% Ce{sub 2}O{sub 3} for the aluminophosphate and silicophosphate series, respectively.

  10. Assessing the local identifiability of probabilistic knowledge structures.

    PubMed

    Stefanutti, Luca; Heller, Jürgen; Anselmi, Pasquale; Robusto, Egidio

    2012-12-01

    Given a collection Q of problems, in knowledge space theory Doignon & Falmagne, (International Journal of Man-Machine Studies 23:175-196, 1985) the knowledge state of a student is the collection K ⊆ Q of all problems that this student is capable of solving. A knowledge structure is a pair (Q, ), where is a collection of knowledge states that contains at least the empty set and Q. A probabilistic knowledge structure (PKS) is a knowledge structure (Q, , π), where π is a probability distribution on the knowledge states. The PKS that has received the most attention is the basic local independence model BLIM; Falmagne & Doignon, (British Journal of Mathematical and Statistical Psychology 41:1-23, 1988a, Journal of Mathematical Psychology 32:232-258, 1988b). To the best of our knowledge, systematic investigations in the literature concerning the identifiability of the BLIM are totally missing. Based on the theoretical work of Bamber and van Santen (Journal of Mathematical Psychology 29:443-473, 1985), the present article is aimed to present a method and a corresponding computerized procedure for assessing the local identifiability of the BLIM, which is applicable to any finite knowledge structure of moderate size. PMID:22588988

  11. Towards accurate structural characterization of metal centres in protein crystals: the structures of Ni and Cu T{sub 6} bovine insulin derivatives

    SciTech Connect

    Frankaer, Christian Grundahl; Mossin, Susanne; Ståhl, Kenny; Harris, Pernille

    2014-01-01

    The level of structural detail around the metal sites in Ni{sup 2+} and Cu{sup 2+} T{sub 6} insulin derivatives was significantly improved by using a combination of single-crystal X-ray crystallography and X-ray absorption spectroscopy. Photoreduction and subsequent radiation damage of the Cu{sup 2+} sites in Cu insulin was followed by XANES spectroscopy. Using synchrotron radiation (SR), the crystal structures of T{sub 6} bovine insulin complexed with Ni{sup 2+} and Cu{sup 2+} were solved to 1.50 and 1.45 Å resolution, respectively. The level of detail around the metal centres in these structures was highly limited, and the coordination of water in Cu site II of the copper insulin derivative was deteriorated as a consequence of radiation damage. To provide more detail, X-ray absorption spectroscopy (XAS) was used to improve the information level about metal coordination in each derivative. The nickel derivative contains hexacoordinated Ni{sup 2+} with trigonal symmetry, whereas the copper derivative contains tetragonally distorted hexacoordinated Cu{sup 2+} as a result of the Jahn–Teller effect, with a significantly longer coordination distance for one of the three water molecules in the coordination sphere. That the copper centre is of type II was further confirmed by electron paramagnetic resonance (EPR). The coordination distances were refined from EXAFS with standard deviations within 0.01 Å. The insulin derivative containing Cu{sup 2+} is sensitive towards photoreduction when exposed to SR. During the reduction of Cu{sup 2+} to Cu{sup +}, the coordination geometry of copper changes towards lower coordination numbers. Primary damage, i.e. photoreduction, was followed directly by XANES as a function of radiation dose, while secondary damage in the form of structural changes around the Cu atoms after exposure to different radiation doses was studied by crystallography using a laboratory diffractometer. Protection against photoreduction and subsequent

  12. Local structural excitations in model glass systems under applied load

    NASA Astrophysics Data System (ADS)

    Swayamjyoti, S.; Löffler, J. F.; Derlet, P. M.

    2016-04-01

    The potential-energy landscape of a model binary Lennard-Jones structural glass is investigated as a function of applied external strain, in terms of how local structural excitations (LSEs) respond to the load. Using the activation relaxation technique and nudged elastic band methods, the evolving structure and barrier energy of such LSEs are studied in detail. For the case of a tensile/compressive strain, the LSE barrier energies generally decrease/increase, whereas under pure shear, it may either increase or decrease resulting in a broadening of the barrier energy distribution. It is found that how a particular LSE responds to an applied strain is strongly controlled by the LSE's far-field internal stress signature prior to loading.

  13. Electronic-structure calculation for metals by local optimization

    SciTech Connect

    Woodward, C.; Min, B.I.; Benedek, R.; Garner, J.

    1989-03-15

    Recent work by Car and Parrinello has generated considerable interest in the calculation of electronic structure by nonlinear optimization. The technique introduced by these authors, dynamical simulated annealing, is designed for problems that involve energy barriers. When local optimization suffices to determine the energy minimum, more direct methods are available. In this paper we apply the algorithm suggested by Williams and Soler to calculate the electronic structure of metals, using a plane-wave expansion for the electronic orbitals and an electron-ion pseudopotential of the Kleinman-Bylander form. Radial pseudopotentials were taken from the compilation of Bachelet, Hamann, and Schlueter. Calculations are performed to optimize the electronic structure (i) with fixed atomic configuration, or (ii) with the atomic volume being optimized simultaneously. It is found that the dual optimization (ii) converges in essentially the same number of steps as the static lattice optimization (i). Numerical results are presented for Li, K, Al, and simple-cubic P.

  14. Role of nonlinear localized structures and turbulence in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Pathak, Neha; Yadav, Nitin; Uma, R.; Sharma, R. P.

    2016-09-01

    In the present study, we have analyzed the field localization of kinetic Alfvén wave (KAW) due to the presence of background density perturbation, which are assumed to be originated by the three dimensionally propagating low frequency KAW. These localized structures play an important role for energy transportation at smaller scales in the dispersion range of magnetic power spectrum. For the present model, governing dynamic equations of high frequency pump KAW and low frequency KAW has been derived by considering ponderomotive nonlinearity. Further, these coupled equations have been numerically solved to analyze the resulting localized structures of pump KAW and magnetic power spectrum in the magnetopause regime. Numerically calculated spectrum exhibits inertial range having spectral index of -3/2 followed by steeper scaling; this steepening in the turbulent spectrum is a signature of energy transportation from larger to smaller scales. In this way, the proposed mechanism, which is based on nonlinear wave-wave interaction, may be useful for understanding the particle acceleration and turbulence in magnetopause.

  15. Phase behavior and local structure of liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Fynewever, Herb

    In this work we use a combination of theory and computer simulation to study the phase behavior of liquid crystalline polymers and the local structure of polymer melts. We review experimental and simulation evidence which shows that long and stiff molecules form orientationally ordered phases at packing fractions intermediate between the liquid and the solid. With the aid of a two-molecule simulation, we are able to apply Onsager's theory [Ann. N. Y. Acad. Sci. 51, 627 (1949)] for liquid crystal formation to flexible molecules without any additional approximations. Our results have a quantitative advantage over other theories in comparison with computer simulation data such as for the liquid-liquid crystal phase diagram. We also study the local structure of polymer melts using a two-molecule simulation to apply the density functional theories of Donley, Curro, and McCoy [J. Chem. Phys. 101 , 3205 (1994)1; and Yethiraj and Woodward [J. Chem. Phys 102 , 5499 (1995)]. The accuracy of these methods rivals that of integral equation theories in their predictions of local order. Further, the two-molecule simulation facilitates a more direct calculation of the equation of state via the monitoring of orientational correlations.

  16. High Resolution Local Structure-Constrained Image Upsampling.

    PubMed

    Zhao, Yang; Wang, Ronggang; Wang, Wenmin; Gao, Wen

    2015-11-01

    With the development of ultra-high-resolution display devices, the visual perception of fine texture details is becoming more and more important. A method of high-quality image upsampling with a low cost is greatly needed. In this paper, we propose a fast and efficient image upsampling method that makes use of high-resolution local structure constraints. The average local difference is used to divide a bicubic-interpolated image into a sharp edge area and a texture area, and these two areas are reconstructed separately with specific constraints. For reconstruction of the sharp edge area, a high-resolution gradient map is estimated as an extra constraint for the recovery of sharp and natural edges; for the reconstruction of the texture area, a high-resolution local texture structure map is estimated as an extra constraint to recover fine texture details. These two reconstructed areas are then combined to obtain the final high-resolution image. The experimental results demonstrated that the proposed method recovered finer pixel-level texture details and obtained top-level objective performance with a low time cost compared with state-of-the-art methods. PMID:26186777

  17. Protein structure prediction with local adjust tabu search algorithm

    PubMed Central

    2014-01-01

    Background Protein folding structure prediction is one of the most challenging problems in the bioinformatics domain. Because of the complexity of the realistic protein structure, the simplified structure model and the computational method should be adopted in the research. The AB off-lattice model is one of the simplification models, which only considers two classes of amino acids, hydrophobic (A) residues and hydrophilic (B) residues. Results The main work of this paper is to discuss how to optimize the lowest energy configurations in 2D off-lattice model and 3D off-lattice model by using Fibonacci sequences and real protein sequences. In order to avoid falling into local minimum and faster convergence to the global minimum, we introduce a novel method (SATS) to the protein structure problem, which combines simulated annealing algorithm and tabu search algorithm. Various strategies, such as the new encoding strategy, the adaptive neighborhood generation strategy and the local adjustment strategy, are adopted successfully for high-speed searching the optimal conformation corresponds to the lowest energy of the protein sequences. Experimental results show that some of the results obtained by the improved SATS are better than those reported in previous literatures, and we can sure that the lowest energy folding state for short Fibonacci sequences have been found. Conclusions Although the off-lattice models is not very realistic, they can reflect some important characteristics of the realistic protein. It can be found that 3D off-lattice model is more like native folding structure of the realistic protein than 2D off-lattice model. In addition, compared with some previous researches, the proposed hybrid algorithm can more effectively and more quickly search the spatial folding structure of a protein chain. PMID:25474708

  18. Local measurement of optically induced photocurrent in semiconductor structures

    NASA Astrophysics Data System (ADS)

    Benesova, Marketa; Dobis, Pavel; Tomanek, Pavel; Uhdeova, Nadezda

    2003-07-01

    Photocurrent (PC) spectroscopic techniques have demonstrated to be helpful experimental method to investigate the local properties of bulk semiconductors, microstructures, surfaces and interfaces. We have measured locally induced PC of semiconductor quantum structures using a technique of reflection Scanning Near-field Optical Microscope (r-SNOM) in combination with Ti:Sapphire laser and tuning dye laser and with He-Ne laser. The r-SNOM employs an uncoated and/or Au-metalized single-mode fiber tip both in illumination and collection mode. Taking opportunity of the high lateral resolution of the microscope and combining it with fast micro-PL, it is possible to locate e.g. defects in a multiple quantum well grown by molecular beam epitaxy. Near-field characteristics of measured quantities are also discussed.

  19. Measuring capital market efficiency: Global and local correlations structure

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2013-01-01

    We introduce a new measure for capital market efficiency. The measure takes into consideration the correlation structure of the returns (long-term and short-term memory) and local herding behavior (fractal dimension). The efficiency measure is taken as a distance from an ideal efficient market situation. The proposed methodology is applied to a portfolio of 41 stock indices. We find that the Japanese NIKKEI is the most efficient market. From a geographical point of view, the more efficient markets are dominated by the European stock indices and the less efficient markets cover mainly Latin America, Asia and Oceania. The inefficiency is mainly driven by a local herding, i.e. a low fractal dimension.

  20. Unimodal biometric system based on local topology structure preserving projections

    NASA Astrophysics Data System (ADS)

    Liu, Huanxi; Lv, Xiaowei; Li, Xiong; Liu, Yuncai

    2009-11-01

    We propose a unified unimodal biometric system that is suitable for most individual modalities, e.g., face and gait. The proposed system consists of three steps: (1) preprocessing raw biometric data, (2) determining the intrinsic low-dimensional subspace of preprocessed data by local topology structure preserving projections (LTSPP), and (3) performing the classification in the determined subspace using the intraclass distance sum. In the proposed system, LTSPP is a novel subspace algorithm that focuses not only on the class information but also on the local topology structure. In terms of representing the separability of different classes, LTSPP projects the interclass margin data far apart. Meanwhile, LTSPP preserves the intraclass topology structures by using linear reconstruction coefficients. Compared with other subspace methods, LTSPP possesses more discriminant abilities and is more suitable for biometric recognition. In addition, both preprocessing each raw datum into unit and performing the classification using the intraclass distance sum are helpful to improve the recognition rates. We carry out various recognition experiments using the Yale and HumanID gait databases. The encouraging experimental results demonstrate the effectiveness of our unified unimodal biometric system, and the proposed LTSPP algorithm for this system can yield the best recognition rates compared to the other algorithms.

  1. Localization-Based Super-Resolution Imaging of Cellular Structures

    PubMed Central

    Kanchanawong, Pakorn; Waterman, Clare M.

    2013-01-01

    Fluorescence microscopy allows direct visualization of fluorescently tagged proteins within cells. However, the spatial resolution of conventional fluorescence microscopes is limited by diffraction to ~250 nm, prompting the development of super-resolution microscopy which offers resolution approaching the scale of single proteins, i.e., ~20 nm. Here, we describe protocols for single molecule localization-based super-resolution imaging, using focal adhesion proteins as an example and employing either photoswitchable fluorophores or photoactivatable fluorescent proteins. These protocols should also be easily adaptable to imaging a broad array of macromolecular assemblies in cells whose components can be fluorescently tagged and assemble into high density structures. PMID:23868582

  2. Localized structures in dissipative media: from optics to plant ecology

    PubMed Central

    Tlidi, M.; Staliunas, K.; Panajotov, K.; Vladimirov, A. G.; Clerc, M. G.

    2014-01-01

    Localized structures (LSs) in dissipative media appear in various fields of natural science such as biology, chemistry, plant ecology, optics and laser physics. The proposal for this Theme Issue was to gather specialists from various fields of nonlinear science towards a cross-fertilization among active areas of research. This is a cross-disciplinary area of research dominated by nonlinear optics due to potential applications for all-optical control of light, optical storage and information processing. This Theme Issue contains contributions from 18 active groups involved in the LS field and have all made significant contributions in recent years. PMID:25246688

  3. Local structure studies of materials using pair distribution function analysis

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph W.

    A collection of pair distribution function studies on various materials is presented in this dissertation. In each case, local structure information of interest pushes the current limits of what these studies can accomplish. The goal is to provide insight into the individual material behaviors as well as to investigate ways to expand the current limits of PDF analysis. Where possible, I provide a framework for how PDF analysis might be applied to a wider set of material phenomena. Throughout the dissertation, I discuss 0 the capabilities of the PDF method to provide information pertaining to a material's structure and properties, ii) current limitations in the conventional approach to PDF analysis, iii) possible solutions to overcome certain limitations in PDF analysis, and iv) suggestions for future work to expand and improve the capabilities PDF analysis.

  4. Local Strain Evaluation of Strained-SOI Structures

    NASA Astrophysics Data System (ADS)

    Usuda, Koji; Mizuno, Tomohisa; Numata, Toshinori; Tezuka, Tsutomu; Sugiyama, Naoharu; Moriyama, Yoshihiko; Nakaharai, Shu; Takagi, Shin-Ichi

    The strain relaxation within a strained-Si on SiGe on insulator (SGOI) structure might be one of the key issues in development of strained-Si MOSFET devices for high-performance ULSIs. In order to investigate the strain relaxation within the thin strained-Si layers, a new characterization technique to directly evaluate a local strain variation in the layers is required. Hence, we have developed the nano-beam electron diffraction (NBD) method which has a lateral resolution of 10 nm and a strain resolution of 0.1%. In this paper, we discuss a detailed investigation of whether the NBD method could be utilized to clarify a strain in a strained-Si layer on the SGOI structures.

  5. Local structures of copper-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Ma, Qing; Buchholz, D. Bruce; Chang, Robert P. H.

    2008-12-01

    We report the local structures of a series of copper-doped zinc oxide films using polarization-dependent x-ray-absorption spectroscopy. The films were grown by pulsed-laser ablation under various conditions. The results show that films where copper exists solely as clusters are not ferromagnetic. The results also show that some of the copper-doped zinc oxide films are not ferromagnetic despite the fact that the copper substitution for zinc in the ZnO lattice is in the Cu2+ state, which provides the necessary unpaired spins for ferromagnetism. Therefore, Cu2+/Zn2+ substitution is not the only imperative condition for ferromagnetism to occur. We present characteristics unique to the electronic and atomic structure of ferromagnetic films and argue that the increased covalence of the CuZn-O bond found in these films is a prerequisite for the spin alignments in a substitutionally copper-doped zinc oxide film.

  6. Global functions in global-local finite-element analysis of localized stresses in prismatic structures

    NASA Technical Reports Server (NTRS)

    Dong, Stanley B.

    1989-01-01

    An important consideration in the global local finite-element method (GLFEM) is the availability of global functions for the given problem. The role and mathematical requirements of these global functions in a GLFEM analysis of localized stress states in prismatic structures are discussed. A method is described for determining these global functions. Underlying this method are theorems due to Toupin and Knowles on strain energy decay rates, which are related to a quantitative expression of Saint-Venant's principle. It is mentioned that a mathematically complete set of global functions can be generated, so that any arbitrary interface condition between the finite element and global subregions can be represented. Convergence to the true behavior can be achieved with increasing global functions and finite-element degrees of freedom. Specific attention is devoted to mathematically two-dimensional and three-dimensional prismatic structures. Comments are offered on the GLFEM analysis of NASA flat panel with a discontinuous stiffener. Methods for determining global functions for other effects are also indicated, such as steady-state dynamics and bodies under initial stress.

  7. Local structures surrounding Zr in nanostructurally stabilized cubic zirconia: Structural origin of phase stability

    SciTech Connect

    Soo, Y. L.; Chen, P. J.; Huang, S. H.; Shiu, T. J.; Tsai, T. Y.; Chow, Y. H.; Lin, Y. C.; Weng, S. C.; Chang, S. L.; Wang, G.; Cheung, C. L.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Haider, H.; Garvin, K. L.; Lee, J. F.; Lee, H. Y.; Chu, P. P.

    2008-12-01

    Local environment surrounding Zr atoms in the thin films of nanocrystalline zirconia (ZrO{sub 2}) has been investigated by using the extended x-ray absorption fine structure (EXAFS) technique. These films prepared by the ion beam assisted deposition exhibit long-range structural order of cubic phase and high hardness at room temperature without chemical stabilizers. The local structure around Zr probed by EXAFS indicates a cubic Zr sublattice with O atoms located on the nearest tetragonal sites with respect to the Zr central atoms, as well as highly disordered locations. Similar Zr local structure was also found in a ZrO{sub 2} nanocrystal sample prepared by a sol-gel method. Variations in local structures due to thermal annealing were observed and analyzed. Most importantly, our x-ray results provide direct experimental evidence for the existence of oxygen vacancies arising from local disorder and distortion of the oxygen sublattice in nanocrystalline ZrO{sub 2}. These oxygen vacancies are regarded as the essential stabilizing factor for the nanostructurally stabilized cubic zirconia.

  8. Mechanochemically synthesized fluorides: local structures and ion transport.

    PubMed

    Preishuber-Pflügl, Florian; Wilkening, Martin

    2016-06-01

    The performance of new sensors or advanced electrochemical energy storage devices strongly depends on the active materials chosen to realize such systems. In particular, their morphology may greatly influence their overall macroscopic properties. Frequently, limitations in classical ways of chemical preparation routes hamper the development of materials with tailored properties. Fortunately, such hurdles can be overcome by mechanochemical synthesis. The versatility of mechanosynthesis allows the provision of compounds that are not available through common synthesis routes. The mechanical treatment of two or three starting materials in high-energy ball mills enables the synthesis not only of new compounds but also of nanocrystalline materials with unusual properties such as enhanced ion dynamics. Fast ion transport is of crucial importance in electrochemical energy storage. It is worth noting that mechanosynthesis also provides access to metastable phases that cannot be synthesized by conventional solid state synthesis. Ceramic synthesis routes often yield the thermally, i.e., thermodynamically, stable products rather than metastable compounds. In this perspective we report the mechanochemical synthesis of nanocrystalline fluorine ion conductors that serve as model substances to understand the relationship between local structures and ion dynamics. While ion transport properties were complementarily probed via conductivity spectroscopy and nuclear magnetic relaxation, local structures of the phases prepared were investigated by high-resolution (19)F NMR spectroscopy carried out by fast magic angle spinning. The combination of nuclear and non-nuclear techniques also helped us to shed light on the mechanisms controlling mechanochemical reactions in general. PMID:27172256

  9. Embrittlement and Flow Localization in Reactor Structural Materials

    SciTech Connect

    Xianglin Wu; Xiao Pan; James Stubbins

    2006-10-06

    Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of necking is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.

  10. A variable-radius measure of local hospital market structure.

    PubMed Central

    Phibbs, C S; Robinson, J C

    1993-01-01

    OBJECTIVE. To provide a radius measure of the structure of local hospital markets that varies with hospital characteristics and is available for all hospitals in the United States. DATA SOURCES. 1982 American Hospital Association (AHA) Survey of Hospitals, 1982 Area Resource File (ARF), and 1983 California Office of Statewide Health Planning and Development (OSHPD) discharge abstracts. STUDY DESIGN. The OSHPD data were used to measure the radii necessary to capture 75 percent and 90 percent of each hospital's admissions. These radii were used as the dependent variables in regression models in which the independent variables were from the AHA and ARF. To estimate predicted market radii, the estimated parameters from the California models were applied to all nonfederal, short-term, general hospitals in the continental United States. These radii were used to define each hospital's service area, and all other hospitals within the calculated radii were considered potential competitors. Using this definition, we calculated two measures of local market structure: the number of other hospitals within the radius and a Herfindahl-Hirschman Index based on the distribution of hospital bed shares in the market. DATA EXTRACTION METHODS. These measures were calculated for all nonfederal, short-term, acute care hospitals in the continental United States for whom complete data were available (N = 4,884). CONCLUSIONS. These measures are available from the authors on computer-readable diskette, matched to hospital identifiers. PMID:8344822

  11. Fine structure of the electron paramagnetic resonance spectrum of Fe3+ centres in LiTaO3

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Guseva, V. B.; Artyomov, M. Yu; Route, R. K.; Fejer, M. M.; Byer, R. L.

    2003-01-01

    The electron paramagnetic resonance spectrum of trigonal Fe3+ centres has been investigated and parameters of the spin Hamiltonian obtained for nominally pure congruent LiTaO3 crystals annealed at ~1500 K under Li2O vapour pressure corresponding to the pressure over the stoichiometric lithium tantalate. The possibility of calculating the zero-field splitting of the ground state of the impurity ion on the basis of the superposition model is discussed.

  12. Matt: local flexibility aids protein multiple structure alignment.

    PubMed

    Menke, Matthew; Berger, Bonnie; Cowen, Lenore

    2008-01-01

    Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned fragment pair chaining, where short structural fragments from all the proteins are aligned against each other optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We introduce the program Matt (Multiple Alignment with Translations and Twists), an aligned fragment pair chaining algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body transformations. After a dynamic programming assembly guided by these "bent" alignments, geometric consistency is restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt's global performance is competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability to better align the ends of alpha-helices and beta-strands, an important characteristic of any structure alignment program intended to help construct a structural template library for threading approaches to the inverse protein-folding problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the length of the common core and average root

  13. Structural heterogeneity regarding local Shwartzman activity of lipid A.

    PubMed

    Mashimo, J; Tanaka, C; Arata, S; Akiyama, Y; Hata, S; Hirayama, T; Egawa, K; Kasai, N

    1988-01-01

    The relation of chemical structure to local Shwartzman activity of lipid A preparations purified by thin-layer chromatography from five bacterial strains was examined. Two lipid A fractions from E. coli F515--Ec-A2 and Ec-A3--exhibited strong activity, similar to that of previous synthetic E. coli-type lipid A (compound 506 or LA-15-PP). The Ec-A3 fraction contained a component that appeared to be structurally identical to compound 506, and the main component of Ec-A2 fraction was structurally similar to compound 506 except that it carried a 3-hydroxytetradecanoyl group at the C-3' position of the backbone in place of a 3-tetradecanoyloxytetradecanoyl group. Free lipid A (12 C) and purified lipid A fractions, Ec-A2 (12 C) and Ec-A3 (12 C), respectively, obtained from bacteria grown at 12 C, exhibited activity comparable to Ec-A2 or Ec-A3. In these preparations, a large part of the 3-dodecanoyloxytetradecanoyl group might be replaced by 3-hexadecenoyloxytetradecanoyl group. Salmonella minnesota R595 free lipid A also contained at least two active lipid A components as seen in E. coli lipid A, but the third component corresponding to the synthetic Salmonella-type lipid A (compound 516 or LA-16-PP) exhibited low activity. A lipid A fraction, Cv-A4 from Chromobacterium violaceum IFO 12614, which was proposed to have two acyloxyacyl groups at the C-2 and C-2' positions with other acyl groups, exhibited weaker activity than the free lipid A or LPS. The purified lipid A fractions from Pseudomonas diminuta JCM 2788 and Pseudomonas vesicularis JCM 1477 contained an unusual backbone with 2,3-diamino-2,3-dideoxy-D-glucose disaccharide phosphomonoester, and these lipid A (Pd-A3 and Pv-A3) exhibited strong activity comparable to the E. coli lipid A. Thus, the present results show that the local Shwartzman reaction can be expressed by partly different lipid A structures in both hydrophilic backbone and fatty acyl residues; when they have the same backbone the potency varies

  14. Superoxide reductase from Giardia intestinalis: structural characterization of the first SOR from a eukaryotic organism shows an iron centre that is highly sensitive to photoreduction.

    PubMed

    Sousa, Cristiana M; Carpentier, Philippe; Matias, Pedro M; Testa, Fabrizio; Pinho, Filipa; Sarti, Paolo; Giuffrè, Alessandro; Bandeiras, Tiago M; Romão, Célia V

    2015-11-01

    Superoxide reductase (SOR), which is commonly found in prokaryotic organisms, affords protection from oxidative stress by reducing the superoxide anion to hydrogen peroxide. The reaction is catalyzed at the iron centre, which is highly conserved among the prokaryotic SORs structurally characterized to date. Reported here is the first structure of an SOR from a eukaryotic organism, the protozoan parasite Giardia intestinalis (GiSOR), which was solved at 2.0 Å resolution. By collecting several diffraction data sets at 100 K from the same flash-cooled protein crystal using synchrotron X-ray radiation, photoreduction of the iron centre was observed. Reduction was monitored using an online UV-visible microspectrophotometer, following the decay of the 647 nm absorption band characteristic of the iron site in the glutamate-bound, oxidized state. Similarly to other 1Fe-SORs structurally characterized to date, the enzyme displays a tetrameric quaternary-structure arrangement. As a distinctive feature, the N-terminal loop of the protein, containing the characteristic EKHxP motif, revealed an unusually high flexibility regardless of the iron redox state. At variance with previous evidence collected by X-ray crystallography and Fourier transform infrared spectroscopy of prokaryotic SORs, iron reduction did not lead to dissociation of glutamate from the catalytic metal or other structural changes; however, the glutamate ligand underwent X-ray-induced chemical changes, revealing high sensitivity of the GiSOR active site to X-ray radiation damage. PMID:26527141

  15. Structure-dependent interatomic dispersion coefficients in oxides with maximally localized Wannier functions.

    PubMed

    Sukhomlinov, Sergey V; Smirnov, Konstantin S

    2012-11-28

    The interatomic C(6) dispersion coefficients in crystalline and amorphous SiO(2) and ZrO(2) structures were obtained with the approach proposed by Silvestrelli (2008 Phys. Rev. Lett. 100 053002) and based on the use of maximally localized Wannier functions (MLWFs) for partitioning the electron density. Localization of Wannier functions close to the nuclei in oxide systems makes it possible to assign the MLWFs to the atoms in an unambiguous way and then to compute the C(6) coefficients in an atom pairwise manner. A modification of the method is suggested in which the MLWFs are condensed to effective orbitals centred on the atoms and parameters of these effective orbitals are used for computing the interatomic dispersion coefficients. The obtained values of the dispersion coefficients were found to vary not only from one oxide to another, but also between different modifications of the same compound. The oxygen-oxygen coefficient C6(OO) reveals the largest variation and its value in ZrO(2) structures is twice as large as that in SiO(2) ones. Atomic characteristics obtained in the frame of the effective orbital method, such as the self-atom dispersion coefficient, and the oxide ion polarizability were found to correlate with the metal-oxygen bond length and the oxygen coordination number in the systems. This behaviour is attributed to the confinement of electrons by the electrostatic potential. The values of the coefficient and of the polarizability were related to charges of the oxygen atoms. In all studied systems the oxygen atoms having larger absolute values of charge were found to be less polarizable because of a stronger confinement effect. The obtained results can be used in the development of polarizable force fields for the atomistic modelling of oxide materials. PMID:23103433

  16. Local structure of solid Rb at megabar pressures

    SciTech Connect

    De Panfilis, S.; Gorelli, F.; Santoro, M.; Ulivi, L.; Gregoryanz, E.; Irifune, T.; Shinmei, T.; Kantor, I.; Mathon, O.; Pascarelli, S.

    2015-06-07

    We have investigated the local and electronic structure of solid rubidium by means of x-ray absorption spectroscopy up to 101.0 GPa, thus doubling the maximum investigated experimental pressure. This study confirms the predicted stability of phase VI and was completed by the combination of two pivotal instrumental solutions. On one side, we made use of nanocrystalline diamond anvils, which, contrary to the more commonly used single crystal diamond anvils, do not generate sharp Bragg peaks (glitches) at specific energies that spoil the weak fine structure oscillations in the x-ray absorption cross section. Second, we exploited the performance of a state-of-the-art x-ray focussing device yielding a beam spot size of 5 × 5 μm{sup 2}, spatially stable over the entire energy scan. An advanced data analysis protocol was implemented to extract the pressure dependence of the structural parameters in phase VI of solid Rb from 51.2 GPa up to the highest pressure. A continuous reduction of the nearest neighbour distances was observed, reaching about 6% over the probed pressure range. We also discuss a phenomenological model based on the Einstein approximation to describe the pressure behaviour of the mean-square relative displacement. Within this simplified scheme, we estimate the Grüneisen parameter for this high pressure Rb phase to be in the 1.3–1.5 interval.

  17. Local structure of solid Rb at megabar pressures.

    PubMed

    De Panfilis, S; Gorelli, F; Santoro, M; Ulivi, L; Gregoryanz, E; Irifune, T; Shinmei, T; Kantor, I; Mathon, O; Pascarelli, S

    2015-06-01

    We have investigated the local and electronic structure of solid rubidium by means of x-ray absorption spectroscopy up to 101.0 GPa, thus doubling the maximum investigated experimental pressure. This study confirms the predicted stability of phase VI and was completed by the combination of two pivotal instrumental solutions. On one side, we made use of nanocrystalline diamond anvils, which, contrary to the more commonly used single crystal diamond anvils, do not generate sharp Bragg peaks (glitches) at specific energies that spoil the weak fine structure oscillations in the x-ray absorption cross section. Second, we exploited the performance of a state-of-the-art x-ray focussing device yielding a beam spot size of 5 × 5 μm(2), spatially stable over the entire energy scan. An advanced data analysis protocol was implemented to extract the pressure dependence of the structural parameters in phase VI of solid Rb from 51.2 GPa up to the highest pressure. A continuous reduction of the nearest neighbour distances was observed, reaching about 6% over the probed pressure range. We also discuss a phenomenological model based on the Einstein approximation to describe the pressure behaviour of the mean-square relative displacement. Within this simplified scheme, we estimate the Grüneisen parameter for this high pressure Rb phase to be in the 1.3-1.5 interval. PMID:26049504

  18. Local structure of solid Rb at megabar pressures

    NASA Astrophysics Data System (ADS)

    De Panfilis, S.; Gorelli, F.; Santoro, M.; Ulivi, L.; Gregoryanz, E.; Irifune, T.; Shinmei, T.; Kantor, I.; Mathon, O.; Pascarelli, S.

    2015-06-01

    We have investigated the local and electronic structure of solid rubidium by means of x-ray absorption spectroscopy up to 101.0 GPa, thus doubling the maximum investigated experimental pressure. This study confirms the predicted stability of phase VI and was completed by the combination of two pivotal instrumental solutions. On one side, we made use of nanocrystalline diamond anvils, which, contrary to the more commonly used single crystal diamond anvils, do not generate sharp Bragg peaks (glitches) at specific energies that spoil the weak fine structure oscillations in the x-ray absorption cross section. Second, we exploited the performance of a state-of-the-art x-ray focussing device yielding a beam spot size of 5 × 5 μm2, spatially stable over the entire energy scan. An advanced data analysis protocol was implemented to extract the pressure dependence of the structural parameters in phase VI of solid Rb from 51.2 GPa up to the highest pressure. A continuous reduction of the nearest neighbour distances was observed, reaching about 6% over the probed pressure range. We also discuss a phenomenological model based on the Einstein approximation to describe the pressure behaviour of the mean-square relative displacement. Within this simplified scheme, we estimate the Grüneisen parameter for this high pressure Rb phase to be in the 1.3-1.5 interval.

  19. Structuring Lecture Videos by Automatic Projection Screen Localization and Analysis.

    PubMed

    Li, Kai; Wang, Jue; Wang, Haoqian; Dai, Qionghai

    2015-06-01

    We present a fully automatic system for extracting the semantic structure of a typical academic presentation video, which captures the whole presentation stage with abundant camera motions such as panning, tilting, and zooming. Our system automatically detects and tracks both the projection screen and the presenter whenever they are visible in the video. By analyzing the image content of the tracked screen region, our system is able to detect slide progressions and extract a high-quality, non-occluded, geometrically-compensated image for each slide, resulting in a list of representative images that reconstruct the main presentation structure. Afterwards, our system recognizes text content and extracts keywords from the slides, which can be used for keyword-based video retrieval and browsing. Experimental results show that our system is able to generate more stable and accurate screen localization results than commonly-used object tracking methods. Our system also extracts more accurate presentation structures than general video summarization methods, for this specific type of video. PMID:26357345

  20. Efficient reanalysis of structures by a direct modification method. [local stiffness modifications of large structures

    NASA Technical Reports Server (NTRS)

    Raibstein, A. I.; Kalev, I.; Pipano, A.

    1976-01-01

    A procedure for the local stiffness modifications of large structures is described. It enables structural modifications without an a priori definition of the changes in the original structure and without loss of efficiency due to multiple loading conditions. The solution procedure, implemented in NASTRAN, involved the decomposed stiffness matrix and the displacement vectors of the original structure. It solves the modified structure exactly, irrespective of the magnitude of the stiffness changes. In order to investigate the efficiency of the present procedure and to test its applicability within a design environment, several real and large structures were solved. The results of the efficiency studies indicate that the break-even point of the procedure varies between 8% and 60% stiffness modifications, depending upon the structure's characteristics and the options employed.

  1. Using Local Born and Local Rytov Fourier Modeling and Migration Methods for Investigation of Heterogeneous Structures

    SciTech Connect

    Fehler, M.C.; Huang, L.-J.

    1998-12-10

    During the past few years, there has been interest in developing migration and forward modeling approaches that are both fast and reliable particularly in regions that have rapid spatial variations in structure. The authors have been investigating a suite of modeling and migration methods that are implemented in the wavenumber-space domains and operate on data in the frequency domain. The best known example of these methods is the split-step Fourier method (SSF). Two of the methods that the authors have developed are the extended local Born Fourier (ELBF) approach and the extended local Rytov Fourier (ELRF) approach. Both methods are based on solutions of the scalar (constant density) wave equation, are computationally fast and can reliably model effects of both deterministic and random structures. The authors have investigated their reliability for migrating both 2D synthetic data and real 2D field data. The authors have found that the methods give images that are better than those that can be obtained using other methods like the SSF and Kirchhoff migration approaches. More recently, the authors have developed an approach for solving the acoustic (variable density) wave equation and have begun to investigate its applicability for modeling one-way wave propagation. The methods will be introduced and their ability to model seismic wave propagation and migrate seismic data will be investigated. The authors will also investigate their capability to model forward wave propagation through random media and to image zones of small scale heterogeneity such as those associated with zones of high permeability.

  2. Evaluating the Importance of Local Environment on Tree Structural Allometries

    NASA Astrophysics Data System (ADS)

    Duncanson, L.; Cook, B. D.; Rourke, O.; Hurtt, G. C.; Dubayah, R.

    2013-12-01

    Allometric relationships relating various forest structural properties such as DBH, tree height and aboveground biomass have been developed through detailed field data collection both in the United States, and globally. However, there has been limited attention to explaining observed variability in these relationships. Often, a single relationship is developed for a single species, and is applied irrespective of environment. In this research, we attempt to explain allometry as a function of environment by focusing on the relationship between DBH, crown radius and tree height. Two primary datasets are used to conduct this research. First, the Forest Inventory Analysis (FIA) dataset, including tree DBH and height information for the United States, are used to investigate variability in the relationship between DBH and tree height. Second, high-resolution airborne lidar datasets were collected from areas across the US, Canada and Costa Rica and are applied to investigate variability in the relationship between crown radius and height. The lidar datasets are run through a generalized canopy delineation algorithm to produce multilayered estimates of individual tree location, height, and crown radius. Power law functions are fit to the relationships between DBH and tree height, and crown radius and tree height. The mean and standard deviation of the power law exponents are compared to environmental attributes including precipitation, temperature, topography, and age since disturbance. This research demonstrates that although universal tendencies are observed in average power law exponents, considerable local variability exists that can be partially attributed to local environment. Therefore local environment, as well as tree species, should be accounted for in the development and application of allometric equations for forest studies.

  3. Local atomic structure in disordered and nanocrystalline catalytic materials.

    SciTech Connect

    Dmowski, W.; Egami, T.; Swider-Lyons, K.; Dai, Sheng; Overbury, Steven {Steve} H

    2007-01-01

    The power of the atomic pair density function method to study the local atomic structure of dispersed materials is discussed for three examples (I) supercapacitor hydrous ruthenia, (II) electroctalyst platinum-iron phosphate and (III) nanoparticle gold catalyst. Hydrous ruthenia appears to be amorphous, but was found to be nanocomposite with RuO{sub 2} nanocrystals supporting electronic and hydrous boundaries protonic conductivity. A platinum-iron phosphate electrocatalyst, that exhibits activity for the oxygen reduction reaction has platinum in a non-metallic state. In catalysts comprised of gold nanoparticles supported on TiO{sub 2}, atomic correlations in the second atomic shell were observed suggesting interaction with the support that could modify gold chemical activity.

  4. Balancing Newtonian gravity and spin to create localized structures

    NASA Astrophysics Data System (ADS)

    Bush, Michael; Lindner, John

    2015-03-01

    Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.

  5. Local Structure Fixation in the Composite Manufacturing Chain

    NASA Astrophysics Data System (ADS)

    Girdauskaite, Lina; Krzywinski, Sybille; Rödel, Hartmut; Wildasin-Werner, Andrea; Böhme, Ralf; Jansen, Irene

    2010-12-01

    Compared to metal materials, textile reinforced composites show interesting features, but also higher production costs because of low automation rate in the manufacturing chain at this time. Their applicability is also limited due to quality problems, which restrict the production of complex shaped dry textile preforms. New technologies, design concepts, and cost-effective manufacturing methods are needed in order to establish further fields of application. This paper deals with possible ways to improve the textile deformation process by locally applying a fixative to the structure parallel to the cut. This hinders unwanted deformation in the textile stock during the subsequent stacking and formation steps. It is found that suitable thermoplastic binders, applied in the appropriate manner do not restrict formation of the textile and have no negative influence on the mechanical properties of the composite.

  6. Structural evidence for Scc4-dependent localization of cohesin loading

    PubMed Central

    Hinshaw, Stephen M; Makrantoni, Vasso; Kerr, Alastair; Marston, Adèle L; Harrison, Stephen C

    2015-01-01

    The cohesin ring holds newly replicated sister chromatids together until their separation at anaphase. Initiation of sister chromatid cohesion depends on a separate complex, Scc2NIPBL/Scc4Mau2 (Scc2/4), which loads cohesin onto DNA and determines its localization across the genome. Proper cohesin loading is essential for cell division, and partial defects cause chromosome missegregation and aberrant transcriptional regulation, leading to severe developmental defects in multicellular organisms. We present here a crystal structure showing the interaction between Scc2 and Scc4. Scc4 is a TPR array that envelops an extended Scc2 peptide. Using budding yeast, we demonstrate that a conserved patch on the surface of Scc4 is required to recruit Scc2/4 to centromeres and to build pericentromeric cohesion. These findings reveal the role of Scc4 in determining the localization of cohesin loading and establish a molecular basis for Scc2/4 recruitment to centromeres. DOI: http://dx.doi.org/10.7554/eLife.06057.001 PMID:26038942

  7. Polariton Local States in Periodic Bragg Multiple Quantum Well Structures

    NASA Astrophysics Data System (ADS)

    Deych, Lev; Yamilov, Alexey; Lisyansky, Alexander

    2000-11-01

    We analytically study defect polariton states in Bragg MQW structures, and defect induced changes in transmission and reflection spectra. Defect layers can differ from the host layers in three different ways: in the exciton-light coupling strength, in the exciton resonance frequency, and in interwell spacing. We show that a single defect leads to two local polariton modes in the photonic band gap. These modes lead to peculiarities in reflection and transmission spectra. Each type of defect can be reproduced experimentally, and we show that each of them play distinctly different roles in the optical properties of the system. We obtain closed analytical expressions for respective local frequencies, as well as for reflection and transmission coefficients. On the basis of the results obtained, we give practical recommendation for experimental observation of the studied effects in samples used in Refs. [1,2]. [1] M.Hübner, J. Kuhl, T. Stroucken, A. Knorr, S.W. Koch, R. Hey, K. Ploog, Phys. Rev. Lett. 76, 4199 (1996). [2] M.Hübner, J.P. Prineas, C. Ell, P. Brick, E.S. Lee, G. Khitrova, H.M. Gibbs, S.W. Koch, Phys. Rev. Lett. 83, 2841 (1999).

  8. Studies of local magnetism and local structure in La(2-x)Sr(x)CuO4

    NASA Technical Reports Server (NTRS)

    Budnick, J. I.; Tan, Z.; Filipkowski, M.

    1991-01-01

    The muon spin rotation (MUSR) study of local magnetism of Sr-doped La2CrO4 is reviewed. Emphasis is placed on magnetic order as detected by local and bulk probes with local atomic environments studies by x ray absorption fine structure (XAFS). Correlations between the MUSR study of local magnetic ordering and the bulk magnetization study are presented along with a discussion of the dependence upon oxygen stoichiometry. Results are presented for both superconducting phases and magnetic phases. Recent data which reveals the existence of local magnetic ordering in the hydrogen-doped YBa2Cu3O7 system are also discussed.

  9. Pressure dependence of the local structure of iridium ditelluride across the structural phase transition

    NASA Astrophysics Data System (ADS)

    Paris, E.; Joseph, B.; Iadecola, A.; Marini, C.; Ishii, H.; Kudo, K.; Pascarelli, S.; Nohara, M.; Mizokawa, T.; Saini, N. L.

    2016-04-01

    The local structure of IrTe2 has been studied by iridium L3-edge x-ray absorption spectroscopy (XAS) measurements as a function of pressure, performed at two temperatures (100 and 295 K) across the structural phase transition at ˜270 K. Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectra show pressure-dependent anomalies, suggesting phase transitions that are characterized by different local atomic displacements. The high-temperature phase of IrTe2 (trigonal at 295 K) reveals a clear anomaly in the Ir-Te correlations at ˜4 GPa, while the low-temperature phase (at 100 K) shows a smaller change at ˜6 GPa, likely to be associated with transitions in lower-symmetry phases. XANES spectra, measuring higher-order atomic correlations, also show nonlinear pressure dependence in the local geometry at the anomalous pressures. These nonlinear changes suggest that IrTe2 goes through lower local symmetry phases with increasing pressure.

  10. Predicting the bifurcation structure of localized snaking patterns

    NASA Astrophysics Data System (ADS)

    Makrides, Elizabeth; Sandstede, Björn

    2014-02-01

    We expand upon a general framework for studying the bifurcation diagrams of localized spatially oscillatory structures. Building on work by Beck et al., the present work provides rigorous analytical results on the effects of perturbations to systems exhibiting snaking behavior. Starting with a reversible variational system possessing an additional Z2 symmetry, we elucidate the distinct effects of breaking symmetry and breaking variational structure, and characterize the resulting changes in both the bifurcation diagram and the solutions themselves. We show how to predict the branch reorganization and drift speeds induced by any particular given perturbative term, and illustrate our results via numerical continuation. We further demonstrate the utility of our methods in understanding the effects of particular perturbations breaking reversibility. Our approach yields an analytical explanation for previous numerical results on the effects of perturbations in the one-dimensional cubic-quintic Swift-Hohenberg model and allows us to make predictions on the effects of perturbations in more general settings, including planar systems. While our numerical results involve the Swift-Hohenberg model system, we emphasize the general applicability of the analytical results.

  11. Local geometry and elasticity in compact chromatin structure.

    PubMed

    Koslover, Elena F; Fuller, Colin J; Straight, Aaron F; Spakowitz, Andrew J

    2010-12-15

    The hierarchical packaging of DNA into chromatin within a eukaryotic nucleus plays a pivotal role in both the accessibility of genomic information and the dynamics of replication. Our work addresses the role of nanoscale physical and geometric properties in determining the structure of chromatin at the mesoscale level. We study the packaging of DNA in chromatin fibers by optimization of regular helical morphologies, considering the elasticity of the linker DNA as well as steric packing of the nucleosomes and linkers. Our model predicts a broad range of preferred helix structures for a fixed linker length of DNA; changing the linker length alters the predicted ensemble. Specifically, we find that the twist registry of the nucleosomes, as set by the internucleosome repeat length, determines the preferred angle between the nucleosomes and the fiber axis. For moderate to long linker lengths, we find a number of energetically comparable configurations with different nucleosome-nucleosome interaction patterns, indicating a potential role for kinetic trapping in chromatin fiber formation. Our results highlight the key role played by DNA elasticity and local geometry in regulating the hierarchical packaging of the genome. PMID:21156136

  12. Local Geometry and Elasticity in Compact Chromatin Structure

    PubMed Central

    Koslover, Elena F.; Fuller, Colin J.; Straight, Aaron F.; Spakowitz, Andrew J.

    2010-01-01

    The hierarchical packaging of DNA into chromatin within a eukaryotic nucleus plays a pivotal role in both the accessibility of genomic information and the dynamics of replication. Our work addresses the role of nanoscale physical and geometric properties in determining the structure of chromatin at the mesoscale level. We study the packaging of DNA in chromatin fibers by optimization of regular helical morphologies, considering the elasticity of the linker DNA as well as steric packing of the nucleosomes and linkers. Our model predicts a broad range of preferred helix structures for a fixed linker length of DNA; changing the linker length alters the predicted ensemble. Specifically, we find that the twist registry of the nucleosomes, as set by the internucleosome repeat length, determines the preferred angle between the nucleosomes and the fiber axis. For moderate to long linker lengths, we find a number of energetically comparable configurations with different nucleosome-nucleosome interaction patterns, indicating a potential role for kinetic trapping in chromatin fiber formation. Our results highlight the key role played by DNA elasticity and local geometry in regulating the hierarchical packaging of the genome. PMID:21156136

  13. Photonic crystal structures for efficent localization or extraction of light

    NASA Astrophysics Data System (ADS)

    Vuckovic, Jelena

    Three-dimensional (3D) photonic crystals offer the opportunity of light manipulation in all directions in space, but they are very difficult to fabricate. On the other hand, planar photonic crystals are much simpler to make, but they exhibit only a "quasi-3D" confinement, resulting from the combined action of 2D photonic crystal and internal reflection. The imperfect confinement in the third dimension produces some unwanted out-of-plane loss, which is usually a limiting factor in performance of these structures. This thesis proposes how to fully take advantage of the relatively simple fabrication of planar photonic crystals, by addressing a problem of loss-reduction. One of the greatest challenges in photonics is a construction of optical microcavities with small mode volumes and large quality factors, for efficient localization of light. Beside standard applications of these structures (such as lasers or filters), they can potentially be used for cavity QED experiments, or as building blocks for quantum networks. This work also presents the design and fabrication of optical microcavities based on planar photonic crystals, with mode volumes of the order of one half of cubic wavelength of light (measured in material) and with Q factors predicted to be even larger than 10 4. In addition to photonic crystals fabricated in semiconductors, we also address interesting properties of metallic photonic crystals and present our theoretical and experimental work on using them to improve the output of light emissive devices. Feature sizes of structures presented here are below those achievable by photolithography. Therefore, a high resolution lithography is necessary for their fabrication. The presently used e-beam writing techniques suffer from limitations in speed and wafer throughput, and they represent a huge obstacle to commercialization of photonic crystals. Our preliminary work on electron beam projection lithography, the technique that could provide us with the speed

  14. GraphClust: alignment-free structural clustering of local RNA secondary structures

    PubMed Central

    Rose, Dominic; Backofen, Rolf

    2012-01-01

    Motivation: Clustering according to sequence–structure similarity has now become a generally accepted scheme for ncRNA annotation. Its application to complete genomic sequences as well as whole transcriptomes is therefore desirable but hindered by extremely high computational costs. Results: We present a novel linear-time, alignment-free method for comparing and clustering RNAs according to sequence and structure. The approach scales to datasets of hundreds of thousands of sequences. The quality of the retrieved clusters has been benchmarked against known ncRNA datasets and is comparable to state-of-the-art sequence–structure methods although achieving speedups of several orders of magnitude. A selection of applications aiming at the detection of novel structural ncRNAs are presented. Exemplarily, we predicted local structural elements specific to lincRNAs likely functionally associating involved transcripts to vital processes of the human nervous system. In total, we predicted 349 local structural RNA elements. Availability: The GraphClust pipeline is available on request. Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22689765

  15. Seismic Structure of Villarrica Volcano obtained through Local Tomography

    NASA Astrophysics Data System (ADS)

    Mora-Stock, Cindy; Thorwart, Martin; Rabbel, Wolfgang

    2016-04-01

    We present a first model of the inner structure of the Villarrica volcano (Southern Chile) derived from P-wave arrival time inversion from local volcano tectonic (VT) events. A total set of 75 DSS-Cube stations was installed at the volcano surroundings between March 1st and 14th, 2012, with 50 of them at the crater, flanks and around the volcano. Volcano tectonic earthquakes located inside the network describe a NS-trending structure between 2 and 7 km below sea level at a transition zone between low and high P-wave velocity zones. The location and trend of the volume is consistent with a branch of the Liquiñe - Ofqui Fault Zone, a long lived arc-parallel 1000 km long strike-slip fault at the Chilean subduction zone. Values for P-wave velocity (Vp) averaged 4.5 km/s, and Vp/Vs ratios gave values of 1.6 to 1.7. The maximum variation of Vp is of the order of ±20%. Checkerboard test and Bootstrap method were applied. Bootstrap method shows that the standard deviation of the tomographic solutions is of the order of ±9%. Resolution given by Checkerboard test is of the order of 2-3 km. We observed three low velocity zones (LVZs) located between 1 and 5 km depth that can be associated with magma and/or other fluids. One main LVZ at 1-2 km towards NNW from the locus of seismicity; and two conduit-like LVZ s reaching from the locus of seismicity towards the surface features of the Los Nevados and Challupén pyroclastic flows (ENE and S of the crater, respectively). These two LVZs are thought to be remnant conduits of these previous eruptions. High velocity zones are observed to the east and below the crater, and can be interpreted as consolidated crustal rocks and volcanic products from previously collapsed caldera.

  16. Localized structural fluctuations promote amyloidogenic conformations in transthyretin

    PubMed Central

    Lim, Kwang Hun; Dyson, H. Jane; Kelly, Jeffery W.; Wright, Peter E.

    2013-01-01

    The process of transthyretin (TTR) misfolding and aggregation, including amyloid formation, appears to cause a number of degenerative diseases. During amyloid formation, the native protein undergoes a tetramer-to-folded monomer transition, followed by local unfolding of the monomer to an assembly-competent amyloidogenic intermediate. Here we use NMR relaxation dispersion to probe conformational exchange at physiological pH between native monomeric transthyretin (the F87M/L110M variant) and a small population of a transiently formed amyloidogenic intermediate. The dispersion experiments show that a majority of the residues in the β-sheet containing β-strands D, A, G and H undergo conformational fluctuations on μs-ms time scales. Exchange broadening is greatest for residues in the outer β-strand H, which hydrogen bonds to β-strand H’ of a neighboring subunit in the tetramer, but the associated structural fluctuations propagate across the entire β-sheet. Fluctuations in the other β-sheet are limited to the outer β-strand F, which packs against strand F’ in the tetramer, while the B, C, and E β-strands of this sheet remain stable. The structural changes were also investigated under more forcing amyloidogenic conditions (pH 6.4–3.7), where β-strand D and regions of the D-E and E-F loops were additionally destabilized, increasing the population of the amyloidogenic intermediate and accelerating amyloid formation. Strands B, C, and E appear to maintain native-like conformations in the partially unfolded, amyloidogenic state of wild type TTR. In the case of the protective mutant T119M, the conformational fluctuations are suppressed under both physiological and mildly acidic conditions, indicating that the dynamic properties of TTR correlate well with its aggregation propensity. PMID:23318953

  17. Local genetic structure in a white-bearded manakin population.

    PubMed

    Höglund, Jacob; Shorey, Lisa

    2003-09-01

    Local genetic structure was studied in lekking white-bearded manakins in a study area on northern Trinidad, West Indies. The study population consisted of nine leks, at which a total of 238 birds were caught. By genotyping the individuals at eight polymorphic microsatellite loci we inferred some males on leks to be related (r = 0.25) as we found an average number of 14.8 half-sib relationships and two full-sib relationships per lek. We found that the sampled birds belonged to one genetic population that was slightly inbred (FIS and FIT = 0.02). Kinship coefficients decreased with increasing geographical distance, indicating that related birds displayed at the same or nearby leks. However, leks did not consist of only one family group because the average genetic distance (aij) between males within leks was higher than when comparing males on leks within close proximity. These patterns suggest limited male dispersal, that some type of kin recognition process between individuals may exist in this species and that males on leks may be more likely to establish themselves as territory-holding birds if a relative is already present. PMID:12919483

  18. The Local Universe of Disk Galaxies: Energy, Mass, and Structure

    NASA Astrophysics Data System (ADS)

    Driver, Simon P.

    2015-08-01

    This talk will explore three themes: (1) Our understanding of the space density of disk systems in the nearby (z<0.1) Universe, their global properties including their panchromatic (FUV-far-IR) information (energy outputs), their dust properties (masses and temperatures), their (specific) star-formation rates, and ultimately the amount of stellar mass locked up in disc components. (2) The completeness of our local surveys, with a particular focus on the severe impact of low surface brightness selection bias, and how these can be overcome using the upcoming deep imaging studies. (3) The complexity of automated structural decomposition and experiences and results from profiling 8000 galaxies at z<0.06 allowing us to derive key relations such as the mass-size relation of disc systems. The data shown is drawn from the Galaxy And Mass Assembly survey. The GAMA survey builds upon the SDSS legacy by extending 2mags deeper spectroscopically (r<19.8mag) and also including panchromatic data from GALEX, VST, VISTA, WISE and Herschel-Atlas and shortly ASKAP for 300,000 galaxies over 250sq deg of sky. This talk will be aligned with the GAMA Panchromatic Data Release where all imaging data products will be publicly released.

  19. Beamlet Imaging and Local Inversion for Complex Structures

    NASA Astrophysics Data System (ADS)

    Wu, R.; Luo, M.; Chen, L.

    2003-12-01

    Beamlet decomposition of wavefields is defined as wavelet transform applied to wavefield along spatial axes. Beamlets has both spatial and directional localization satisfying the Heisenberg uncertainty principle. We have used both Gabor-Daubechies frame and local-cosine basis for the decomposition. The theory of local perturbations and wave propagators in beamlet domain has been developed. In this presentation we will summarize the theory and method of beamlet propagation and imaging, and show the 2D and 3D imaging (prestack depth migration) results for SEG/EAGE salt models. The high-resolution and high quality images demonstrate the excellent performance and wide-angle capacity of beamlet imaging. Based on beamlet imaging in angle-domain, a method of local AVA (amplitude versus angle) and local inversion is proposed to estimate the medium parameters near a local discontinuity (reflector). The local image matrices derived during the amplitude-preserving imaging process can be reduced to common refection-angle image (CRAI) gathers and common dip-angle image (CDAI) gathers. CDAI gathers can be used to determine the dip-angle of the reflector and CRAI gathers are then used for local AVA analysis. In the target area, local inversion can be conducted based on local AVA and velocity analyses. Preliminary numerical tests of local AVA analysis will be shown to demonstrate the feasibility of the approach.

  20. Strength through structure: visualization and local assessment of the trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Räth, C.; Monetti, R.; Bauer, J.; Sidorenko, I.; Müller, D.; Matsuura, M.; Lochmüller, E.-M.; Zysset, P.; Eckstein, F.

    2008-12-01

    The visualization and subsequent assessment of the inner human bone structures play an important role for better understanding the disease- or drug-induced changes of bone in the context of osteoporosis giving prospect for better predictions of bone strength and thus of the fracture risk of osteoporotic patients. In this work, we show how the complex trabecular bone structure can be visualized using μCT imaging techniques at an isotropic resolution of 26 μm. We quantify these structures by calculating global and local topological and morphological measures, namely Minkowski functionals (MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by deriving suitable texture measures based on MF and SIM. Using a sample of 151 specimens taken from human vertebrae in vitro, we correlate the texture measures with the mechanically measured maximum compressive strength (MCS), which quantifies the strength of the bone probe, by using Pearson's correlation coefficient. The structure parameters derived from the local measures yield good correlations with the bone strength as measured in mechanical tests. We investigate whether the performance of the texture measures depends on the MCS value by selecting different subsamples according to MCS. Considering the whole sample the results for the newly defined parameters are better than those obtained for the standard global histomorphometric parameters except for bone volume/total volume (BV/TV). If a subsample consisting only of weak bones is analysed, the local structural analysis leads to similar and even better correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield additional information about the stability of the bone especially in the case of weak bones, which corroborates the hypothesis that the bone structure (and not only its mineral mass) constitutes an important component of bone stability.

  1. Structural anisotropy quantification improves the final superresolution image of localization microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Yina; Huang, Zhen-li

    2016-07-01

    Superresolution localization microscopy initially produces a dataset of fluorophore coordinates instead of a conventional digital image. Therefore, superresolution localization microscopy requires additional data analysis to present a final superresolution image. However, methods of employing the structural information within the localization dataset to improve the data analysis performance remain poorly developed. Here, we quantify the structural information in a localization dataset using structural anisotropy, and propose to use it as a figure of merit for localization event filtering. With simulated as well as experimental data of a biological specimen, we demonstrate that exploring structural anisotropy has allowed us to obtain superresolution images with a much cleaner background.

  2. Enhancement of initial equivalency for protein structure alignment based on encoded local structures.

    PubMed

    Hung, Kenneth; Wang, Jui-Chih; Chen, Cheng-Wei; Chuang, Cheng-Long; Tsai, Kun-Nan; Chen, Chung-Ming

    2012-11-01

    Most alignment algorithms find an initial equivalent residue pair followed by an iterative optimization process to explore better near-optimal alignments in the surrounding solution space of the initial alignment. It plays a decisive role in determining the alignment quality since a poor initial alignment may make the final alignment trapped in an undesirable local optimum even with an iterative optimization. We proposed a vector-based alignment algorithm with a new initial alignment approach accounting for local structure features called MIRAGE-align. The new idea is to enhance the quality of the initial alignment based on encoded local structural alphabets to identify the protein structure pair whose sequence identity falls in or below twilight zone. The statistical analysis of alignment quality based on Match Index (MI) and computation time demonstrated that MIRAGE-align algorithm outperformed four previously published algorithms, i.e., the residue-based algorithm (CE), the vector-based algorithm (SSM), TM-align, and Fr-TM-align. MIRAGE-align yields a better estimate of initial solution to enhance the quality of initial alignment and enable the employment of a non-iterative optimization process to achieve a better alignment. PMID:22717522

  3. Analysis of pan-African Centres of excellence in health innovation highlights opportunities and challenges for local innovation and financing in the continent

    PubMed Central

    2012-01-01

    A pool of 38 pan-African Centres of Excellence (CoEs) in health innovation has been selected and recognized by the African Network for Drugs and Diagnostics Innovation (ANDI), through a competitive criteria based process. The process identified a number of opportunities and challenges for health R&D and innovation in the continent: i) it provides a direct evidence for the existence of innovation capability that can be leveraged to fill specific gaps in the continent; ii) it revealed a research and financing pattern that is largely fragmented and uncoordinated, and iii) it highlights the most frequent funders of health research in the continent. The CoEs are envisioned as an innovative network of public and private institutions with a critical mass of expertise and resources to support projects and a variety of activities for capacity building and scientific exchange, including hosting fellows, trainees, scientists on sabbaticals and exchange with other African and non-African institutions. PMID:22838941

  4. Analysis of pan-African Centres of excellence in health innovation highlights opportunities and challenges for local innovation and financing in the continent.

    PubMed

    Nwaka, Solomon; Ochem, Alexander; Besson, Dominique; Ramirez, Bernadette; Fakorede, Foluke; Botros, Sanaa; Inyang, Uford; Mgone, Charles; Adae-Mensah, Ivan; Konde, Victor; Nyasse, Barthelemy; Okole, Blessed; Guantai, Anastasia; Loots, Glaudina; Atadja, Peter; Ndumbe, Peter; Sanou, Issa; Olesen, Ole; Ridley, Robert; Ilunga, Tshinko

    2012-01-01

    A pool of 38 pan-African Centres of Excellence (CoEs) in health innovation has been selected and recognized by the African Network for Drugs and Diagnostics Innovation (ANDI), through a competitive criteria based process. The process identified a number of opportunities and challenges for health R&D and innovation in the continent: i) it provides a direct evidence for the existence of innovation capability that can be leveraged to fill specific gaps in the continent; ii) it revealed a research and financing pattern that is largely fragmented and uncoordinated, and iii) it highlights the most frequent funders of health research in the continent. The CoEs are envisioned as an innovative network of public and private institutions with a critical mass of expertise and resources to support projects and a variety of activities for capacity building and scientific exchange, including hosting fellows, trainees, scientists on sabbaticals and exchange with other African and non-African institutions. PMID:22838941

  5. Tidal effects on the spatial structure of the Local Group

    NASA Astrophysics Data System (ADS)

    Pasetto, S.; Chiosi, C.

    2009-05-01

    Aims: The spatial distribution of galaxies in the Local Group (LG) is the footprint of its formation mechanism and the gravitational interactions among its members and the external massive galaxies or galaxy groups. Using a 3D-geometrical description of the spatial distribution of all the members of the LG (not only the satellites of the MW and M 31) based on present-day data of positions and distances, we found in our previous study that all galaxies (MW, M 31, their satellites, and even the most distant objects) are confined within a slab of about 200 kpc thickness. Examining how external galaxies or groups would gravitationally affect (and eventually alter) the planar structure (and its temporal evolution) of the LG, they found that the external force field acts parallel to the plane determined by geometry and studied this with the Least Action Principle. Methods: In this paper, we thoroughly investigated the role played by the tidal forces exerted by external galaxies or galaxy groups on the LG galaxies (the most distant dwarfs in particular) in shaping their large-scale distribution. We studied in particular an idea based on the well-known effect of tidal interactions, according to which a system of mass-points can undergo not only tidal stripping but also tidal compression and thus become flatter. Results: Excluding the dwarf galaxies tightly bound to the MW and M 31, the same tidal forces can account for the planar distribution of the remaining dwarf galaxies. We analytically recover our previous results and prove that a planar distribution of the LG dwarf galaxies is compatible with the external force field. We also highlight the physical cause of this result.

  6. Titanium local structure in tektite probed by X-ray absorption fine structure spectroscopy.

    PubMed

    Wang, Ling; Yoshiasa, Akira; Okube, Maki; Takeda, Takashi

    2011-11-01

    The local structure of titanium in tektites from six strewn fields was studied by Ti K-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in order to provide quantitative data on Ti-O distance and Ti coordination number. The titanium in tektites possessed different coordination environment types. XANES spectra patterns revealed resemblance to high-temperature TiO(2)-SiO(2) glass and TiO(2) anatase. All samples showed that the valence of Ti is 4+. Based on the Ti-O distances, coordination numbers and radial distribution function determined by EXAFS analyses, the tektites were classified into three types: type I, Ti occupies a four-coordinated tetrahedral site with Ti-O distances of 1.84-1.79 Å; type II, Ti occupies a five-coordinated trigonal bipyramidal or tetragonal pyramidal site with Ti-O distances of 1.92-1.89 Å; type III, Ti occupies a six-coordinated octahedral site with Ti-O distances of 2.00-1.96 Å. Although Ti occupies the TiO(6) octahedral site in most titanium minerals under ambient conditions, some tektites have four- and five-coordinated Ti. This study indicated that the local structure of Ti might change in impact events and the following stages. PMID:21997913

  7. A special kind of local structure in the CMB intensity maps: duel peak structure

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Ti-Pei

    2009-03-01

    We study the local structure of Cosmic Microwave Background (CMB) temperature maps released by the Wilkinson Microwave Anisotropy Probe (WMAP) team, and find a new kind of structure, which can be described as follows: a peak (or valley) of average temperature is often followed by a peak of temperature fluctuation that is 4° away. This structure is important for the following reasons: both the well known cold spot detected by Cruz et al. and the hot spot detected by Vielva et al. with the same technology (the third spot in their article) have such structure; more spots that are similar to them can be found on CMB maps and they also tend to be significant cold/hot spots; if we change the 4° characteristic into an artificial one, such as 3° or 5°, there will be less 'similar spots', and the temperature peaks or valleys will be less significant. The presented 'similar spots' have passed a strict consistency test which requires them to be significant on at least three different CMB temperature maps. We hope that this article could arouse some interest in the relationship of average temperature with temperature fluctuation in local areas; meanwhile, we are also trying to find an explanation for it which might be important to CMB observation and theory.

  8. Expectation and Locality Effects in German Verb-final Structures

    PubMed Central

    Levy, Roger P.; Keller, Frank

    2013-01-01

    Probabilistic expectations and memory limitations are central factors governing the real-time comprehension of natural language, but how the two factors interact remains poorly understood. One respect in which the two factors have come into theoretical conflict is the documentation of both locality effects, in which more dependents preceding a governing verb increase processing difficulty at the verb, and anti-locality effects, in which more preceding dependents facilitate processing at the verb. However, no controlled study has previously demonstrated both locality and anti-locality effects in the same type of dependency relation within the same language. Additionally, many previous demonstrations of anti-locality effects have been potentially confounded with lexical identity, plausibility, and sentence position. Here, we provide new evidence of both locality and anti-locality effects in the same type of dependency relation in a single language—verb-final constructions in German—while controlling for lexical identity, plausibility, and sentence position. In main clauses, we find clear anti-locality effects, with the presence of a preceding dative argument facilitating processing at the final verb; in subject-extracted relative clauses with identical linear ordering of verbal dependents, we find both anti-locality and locality effects, with processing facilitated when the verb is preceded by a dative argument alone, but hindered when the verb is preceded by both the dative argument and an adjunct. These results indicate that both expectations and memory limitations need to be accounted for in any complete theory of online syntactic comprehension. PMID:24558294

  9. Perceptual centres in speech - an acoustic analysis

    NASA Astrophysics Data System (ADS)

    Scott, Sophie Kerttu

    Perceptual centres, or P-centres, represent the perceptual moments of occurrence of acoustic signals - the 'beat' of a sound. P-centres underlie the perception and production of rhythm in perceptually regular speech sequences. P-centres have been modelled both in speech and non speech (music) domains. The three aims of this thesis were toatest out current P-centre models to determine which best accounted for the experimental data bto identify a candidate parameter to map P-centres onto (a local approach) as opposed to the previous global models which rely upon the whole signal to determine the P-centre the final aim was to develop a model of P-centre location which could be applied to speech and non speech signals. The first aim was investigated by a series of experiments in which a) speech from different speakers was investigated to determine whether different models could account for variation between speakers b) whether rendering the amplitude time plot of a speech signal affects the P-centre of the signal c) whether increasing the amplitude at the offset of a speech signal alters P-centres in the production and perception of speech. The second aim was carried out by a) manipulating the rise time of different speech signals to determine whether the P-centre was affected, and whether the type of speech sound ramped affected the P-centre shift b) manipulating the rise time and decay time of a synthetic vowel to determine whether the onset alteration was had more affect on P-centre than the offset manipulation c) and whether the duration of a vowel affected the P-centre, if other attributes (amplitude, spectral contents) were held constant. The third aim - modelling P-centres - was based on these results. The Frequency dependent Amplitude Increase Model of P-centre location (FAIM) was developed using a modelling protocol, the APU GammaTone Filterbank and the speech from different speakers. The P-centres of the stimuli corpus were highly predicted by attributes of

  10. AWSEM-MD: Protein Structure Prediction Using Coarse-grained Physical Potentials and Bioinformatically Based Local Structure Biasing

    PubMed Central

    Davtyan, Aram; Schafer, Nicholas P.; Zheng, Weihua; Clementi, Cecilia; Wolynes, Peter G.; Papoian, Garegin A.

    2012-01-01

    The Associative memory, Water mediated, Structure and Energy Model (AWSEM) is a coarse-grained protein force field. AWSEM contains physically motivated terms, such as hydrogen bonding, as well as a bioinformatically based local structure biasing term, which efficiently takes into account many-body effects that are modulated by the local sequence. When combined with appropriate local or global alignments to choose memories, AWSEM can be used to perform de novo protein structure prediction. Herein we present structure prediction results for a particular choice of local sequence alignment method based on short residue sequences called fragments. We demonstrate the model’s structure prediction capabilities for three levels of global homology between the target sequence and those proteins used for local structure biasing, all of which assume that the structure of the target sequence is not known. When there are no homologs in the database of structures used for local structure biasing, AWSEM calculations produce structural predictions that are somewhat improved compared with prior works using related approaches. The inclusion of a small number of structures from homologous sequences improves structure prediction only marginally but when the fragment search is restricted to only homologous sequences, AWSEM can perform high resolution structure prediction and can be used for kinetics and dynamics studies. PMID:22545654

  11. Correlation between local structural dynamics of proteins inferred from NMR ensembles and evolutionary dynamics of homologues of known structure.

    PubMed

    Mahajan, Swapnil; de Brevern, Alexandre G; Offmann, Bernard; Srinivasan, Narayanaswamy

    2014-01-01

    Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (a-p) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and β-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues. PMID:23730714

  12. Comparison of perceived quality amongst migrant and local patients using primary health care delivered by community health centres in Shenzhen, China

    PubMed Central

    2014-01-01

    Background Providing good quality primary health care to all inhabitants is one of the Chinese Government’s health care objectives. However, information is scarce regarding the difference in quality of primary health care delivered to migrants and local residents respectively. This study aimed to compare patients’ perceptions of quality of primary health care between migrants and local patients, and their willingness to use and recommend primary health care to others. Methods A cross-sectional survey was conducted. 787 patients in total were chosen from four randomly drawn Community Health Centers (CHCs) for interviews. Results Local residents scored higher than migrants in terms of their satisfaction with types of drugs available (3.62 vs. 3.45, p = 0.035), attitude of health workers (4.41 vs. 4.14, p = 0.042) and waiting time (4.30 vs. 3.86, p < 0.001). Even though there was no significant difference in overall satisfaction between local residents and migrants (4.16 vs. 3.91, p = 0.159), migrants were more likely to utilize primary health care as the first choice for their usual health problems (94.1% vs. 87.1%, p = 0.032), while local residents were more inclined to recommend Traditional Chinese Medicine to others (65.6% vs. 56.6%, p = 0.026). Conclusions Quality of primary health care given to migrants is less satisfactory than to local residents in terms of attitude of health workers and waiting time. Our study suggests quality of care could be improved through extending opening hours of CHCs and strengthening professional ethics education. Considering CHCs as the first choice by migrants might be due to their health insurance scheme, while locals’ recommendations for traditional Chinese medicine were possibly because of cultural differences. PMID:24779564

  13. Local structure of Titanium in natural glasses probed by X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yoshiasa, A.; Okube, M.; Nakatani, T.; Hayasaka, Y.; Isobe, H.

    2013-04-01

    Synchrotron radiation has been used to collect titanium K-edge absorption spectra of a suite of natural glasses (tektites, impact glasses, fault rocks and volcanic glasses). XANES and XAFS analysis provided the qualitative and quantitative information of Ti oxidation state, Ti-O distance and site geometry. Tektites possess four-, five-, six-coordinated Ti, whereas fault rock-pseudotachylite, volcanic glasses and impact glass only presented five- and six-coordinated Ti. This study indicated that different petrogenesis of natural glasses has different local structures of titanium.

  14. The DESY Grid Centre

    NASA Astrophysics Data System (ADS)

    Haupt, A.; Gellrich, A.; Kemp, Y.; Leffhalm, K.; Ozerov, D.; Wegner, P.

    2012-12-01

    DESY is one of the world-wide leading centers for research with particle accelerators, synchrotron light and astroparticles. DESY participates in LHC as a Tier-2 center, supports on-going analyzes of HERA data, is a leading partner for ILC, and runs the National Analysis Facility (NAF) for LHC and ILC in the framework of the Helmholtz Alliance, Physics at the Terascale. For the research with synchrotron light major new facilities are operated and built (FLASH, PETRA-III, and XFEL). DESY furthermore acts as Data-Tier1 centre for the Neutrino detector IceCube. Established within the EGI-project DESY operates a grid infrastructure which supports a number of virtual Organizations (VO), incl. ATLAS, CMS, and LHCb. Furthermore, DESY hosts some of HEP and non-HEP VOs, such as the HERA experiments and ILC as well as photon science communities. The support of the new astroparticle physics VOs IceCube and CTA is currently set up. As the global structure of the grid offers huge resources which are perfect for batch-like computing, DESY has set up the National Analysis Facility (NAF) which complements the grid to allow German HEP users for efficient data analysis. The grid infrastructure and the NAF use the same physics data which is distributed via the grid. We call the conjunction of grid and NAF the DESY Grid Centre. In the contribution to CHEP2012 we will in depth discuss the conceptional and operational aspects of our multi-VO and multi-community Grid Centre and present the system setup. We will in particular focus on the interplay of Grid and NAF and present experiences of the operations.

  15. Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a Tellurium(VI)-centred polyoxotungstate.

    PubMed

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-19

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson-Evans-type polyoxometalate (POM), specifically Na6 [TeW6 O24 ]⋅22 H2 O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid-liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein-protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation. PMID:25521080

  16. Local Structures in Adult Education: A Discussion Paper.

    ERIC Educational Resources Information Center

    Irish National Association of Adult Education, Dublin.

    In January 2002, Ireland's minister of state announced the establishment of the National Adult Learning Council to take effect in March 2002. One of the council's priorities will be to establish local adult learning boards (LALBs) to oversee development and delivery of adult education. An Irish government white paper recommended that LALBs'…

  17. Global/local methods research using a common structural analysis framework

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.

    1991-01-01

    Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.

  18. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.

    PubMed

    Sarver, Michael; Zirbel, Craig L; Stombaugh, Jesse; Mokdad, Ali; Leontis, Neocles B

    2008-01-01

    New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more different RNA strand segments or molecules. We use a base-centered approach to construct efficient, yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA structure that we implement in a suite of MATLAB programs, "Find RNA 3D" (FR3D). The first modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-stacking interactions are calculated from the base geometries and are represented symbolically according to the Leontis/Westhof basepairing classification, extended to include base-stacking. These data are stored and used to organize motif searches. For geometric searches, the user supplies the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by rigidly rotating candidates to align optimally with the query motif and then comparing the relative orientations of the corresponding bases in the query and candidate motifs. Given the growing size of the RNA structure database, it is impossible to explicitly compute the discrepancy for all conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening algorithm that we describe finds all candidate motifs whose

  19. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures

    PubMed Central

    Sarver, Michael; Stombaugh, Jesse; Mokdad, Ali; Leontis, Neocles B.

    2010-01-01

    New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more different RNA strand segments or molecules. We use a base-centered approach to construct efficient, yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA structure that we implement in a suite of MATLAB programs, “Find RNA 3D” (FR3D). The first modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-stacking interactions are calculated from the base geometries and are represented symbolically according to the Leontis/Westhof basepairing classification, extended to include base-stacking. These data are stored and used to organize motif searches. For geometric searches, the user supplies the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by rigidly rotating candidates to align optimally with the query motif and then comparing the relative orientations of the corresponding bases in the query and candidate motifs. Given the growing size of the RNA structure database, it is impossible to explicitly compute the discrepancy for all conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening algorithm that we describe finds all candidate motifs

  20. Local x-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys

    SciTech Connect

    Brueckner, U.; Epishin, A.; Link, T.

    1997-12-01

    The structure of the dendrites in the single-crystal nickel-base superalloys SC16, SRR99 and CMSX4 with different refractory element levels (Mo + Ta + W + Re) has been investigated by local X-ray diffraction. A special technique was used to improve the spatial resolution of the X-ray diffraction and to enable the precise control of the X-ray spot position within the dendritic structure. A significant change of the {gamma}/{gamma}{prime}-lattice misfit was found within the dendrite in the superalloys with higher refractory element levels SRR99 and CMSX4. The observed misfit change is based on the change of the {gamma}-lattice parameter due to segregation of W and Re. The intensity of the X-ray beam reflected from the dendrite periphery was found to be weaker than that from the dendrite centre because of the mosaicity. Therefore misfit measurements without knowledge of the X-ray spot position in the dendritic structure lead to values that correspond more to the dendrite core.

  1. Localization of wood floor structure by infrared thermography

    NASA Astrophysics Data System (ADS)

    Cochior Plescanu, C.; Klein, M.; Ibarra-Castanedo, C.; Bendada, A.; Maldague, X.

    2008-03-01

    One of our industrial partners, Assek Technologie, is interested in developing a technique that would improve the drying process of wood floor in basements after flooding. In order to optimize the procedure, the floor structure and the damaged (wet) area extent must first be determined with minimum intrusion (minimum or no dismantling). The present study presents the use of infrared thermography to reveal the structure of (flooded) wood floors. The procedure involves opening holes in the floor. Injecting some hot air through those holes reveals the framing structure even if the floor is covered by vinyl or ceramic tiles. This study indicates that thermal imaging can also be used as a tool to validate the decontamination process after drying. Thermal images were obtained on small-scale models and in a demonstration room.

  2. Local structure determination in strained-layer semiconductors

    NASA Astrophysics Data System (ADS)

    Woicik, Joseph C.

    The theory of elasticity accurately describes the deformations of macroscopic bodies under the action of applied stress [1]. In this review, we examine the internal mechanisms of elasticity for strained-layer semiconductor heterostructures. In particular, we present extended x-ray-absorption fine structure (EXAFS) and x-ray diffraction (XRD) measurements to show how the bond lengths and bond angles in semiconductor thin-alloy films change with strain when they are grown coherently on substrates with different lattice constants. The structural distortions measured by experiment are compared to valence-force field (VFF) calculations and other theoretical models. Atomic switching and interfacial strain at buried interfaces are also discussed.

  3. Locally resonant periodic structures with low-frequency band gaps

    NASA Astrophysics Data System (ADS)

    Cheng, Zhibao; Shi, Zhifei; Mo, Y. L.; Xiang, Hongjun

    2013-07-01

    Presented in this paper are study results of dispersion relationships of periodic structures composited of concrete and rubber, from which the frequency band gap can be found. Two models with fixed or free boundary conditions are proposed to approximate the bound frequencies of the first band gap. Studies are conducted to investigate the low-frequency and directional frequency band gaps for their application to engineering. The study finds that civil engineering structures can be designed to block harmful waves, such as earthquake disturbance.

  4. Improving hybrid statistical and physical forcefields through local structure enumeration.

    PubMed

    Conway, Patrick; DiMaio, Frank

    2016-08-01

    Forcefields used in biomolecular simulations are comprised of energetic terms that are physical in nature, based on parameter fitting to quantum mechanical simulation or experimental data, or statistical, drawing off high-resolution structural data to describe distributions of molecular features. Combining the two in a single forcefield is challenging, since physical terms describe some, but not all, of the observed statistics, leading to double counting. In this manuscript, we develop a general scheme for correcting statistical potentials used in combination with physical terms. We apply these corrections to the sidechain torsional potential used in the Rosetta all-atom forcefield. We show the approach identifies instances of double-counted interactions, including electrostatic interactions between sidechain and nearby backbone, and steric interactions between neighboring Cβ atoms within secondary structural elements. Moreover, this scheme allows for the inclusion of intraresidue physical terms, previously turned off to avoid overlap with the statistical potential. Combined, these corrections lead to a forcefield with improved performance on several structure prediction tasks, including rotamer prediction and native structure discrimination. PMID:27239808

  5. The Local Job Bank Program: Performance, Structure, and Direction.

    ERIC Educational Resources Information Center

    Ullman, Joseph C.; Huber, George P.

    The book represents an effort to assess the performance, structure, and direction of the Job Bank Program of the Public Employment Service, a program meant to improve the functioning of the labor market information system in the United States. The research had three goals: to assess the relative goal achievement of job banks; to determine its…

  6. Localizing Age-Related Individual Differences in a Hierarchical Structure

    ERIC Educational Resources Information Center

    Salthouse, Timothy A.

    2004-01-01

    Data from 33 separate studies were combined to create an aggregate data set consisting of 16 cognitive variables and 6832 different individuals who ranged between 18 and 95 years of age. Analyses were conducted to determine where in a hierarchical structure of cognitive abilities individual differences associated with age, gender, education, and…

  7. Structure and chromosomal localization of the human renal kallikrein gene

    SciTech Connect

    Evans, B.A.; Yun, Z.X.; Close, J.A.; Tregear, G.W.; Kitamura, N.; Nakanish, S.; Callen, D.F.; Baker, E.; Hyland, V.J.; Sutherland, G.R.; Richards, R.I.

    1988-05-03

    Glandular kallikreins are a family of proteases encoded by a variable number of genes in different mammalian species. In all species examined, however, one particular kallikrein is functionally conserved in its capacity to release the vasoactive peptide, Lys-bradykinin, from low molecular weight kininogen. This kallikrein is found in the kidney, pancreas, and salivary gland, showing a unique pattern of tissue-specific expression relative to other members of the family. The authors have isolated a genomic clone carrying the human renal kallikrein gene and compared the nucleotide sequence of its promoter region with those of the mouse renal kallikrein gene and another mouse kallikrein gene expressed in a distinct cell type. They find four sequence elements conserved between renal kallikrein genes from the two species. They have also shown that the human gene is localized to 19q13, a position analogous to that of the kallikrein gene family on mouse chromosome 7.

  8. Evaluation of local structure alphabets based on residue burial.

    PubMed

    Karchin, Rachel; Cline, Melissa; Karplus, Kevin

    2004-05-15

    Residue burial, which describes a protein residue's exposure to solvent and neighboring atoms, is key to protein structure prediction, modeling, and analysis. We assessed 21 alphabets representing residue burial, according to their predictability from amino acid sequence, conservation in structural alignments, and utility in one fold-recognition scenario. This follows upon our previous work in assessing nine representations of backbone geometry.1 The alphabet found to be most effective overall has seven states and is based on a count of C(beta) atoms within a 14 A-radius sphere centered at the C(beta) of a residue of interest. When incorporated into a hidden Markov model (HMM), this alphabet gave us a 38% performance boost in fold recognition and 23% in alignment quality. PMID:15103615

  9. Local genetic structure in a clonal dioecious angiosperm.

    PubMed

    Ruggiero, M V; Reusch, T B H; Procaccini, G

    2005-04-01

    We used seven microsatellite loci to characterize genetic structure and clonal architecture at three different spatial scales (from meters to centimetres) of a Cymodocea nodosa population. C. nodosa exhibits both sexual reproduction and vegetative propagation by rhizome elongation. Seeds remain buried in the sediment nearby the mother plant in a dormant stage until germination. Seed dispersal potential is therefore expected to be extremely restricted. High clonal diversity (up to 67% of distinct genotypes) and a highly intermingled configuration of genets at different spatial scales were found. No significant differences in genetic structure were found among the three spatial scales, indicating that genetic diversity is evenly distributed along the meadow. Autocorrelation analyses of kinship estimates confirmed the absence of spatial clumping of genets at small spatial scale and the expectations of a very restricted seed dispersal (observed dispersal range 1-21 m) in this species. PMID:15773928

  10. Transcription inactivation through local refolding of the RNA polymerase structure

    SciTech Connect

    Belogurov, Georgiy A.; Vassylyeva, Marina N.; Sevostyanova, Anastasiya; Appleman, James R.; Xiang, Alan X.; Lira, Ricardo; Webber, Stephen E.; Klyuyev, Sergiy; Nudler, Evgeny; Artsimovitch, Irina; Vassylyev, Dmitry G.

    2009-02-12

    Structural studies of antibiotics not only provide a shortcut to medicine allowing for rational structure-based drug design, but may also capture snapshots of dynamic intermediates that become 'frozen' after inhibitor binding. Myxopyronin inhibits bacterial RNA polymerase (RNAP) by an unknown mechanism. Here we report the structure of dMyx - a desmethyl derivative of myxopyronin B - complexed with a Thermus thermophilus RNAP holoenzyme. The antibiotic binds to a pocket deep inside the RNAP clamp head domain, which interacts with the DNA template in the transcription bubble. Notably, binding of dMyx stabilizes refolding of the {beta}'-subunit switch-2 segment, resulting in a configuration that might indirectly compromise binding to, or directly clash with, the melted template DNA strand. Consistently, footprinting data show that the antibiotic binding does not prevent nucleation of the promoter DNA melting but instead blocks its propagation towards the active site. Myxopyronins are thus, to our knowledge, a first structurally characterized class of antibiotics that target formation of the pre-catalytic transcription initiation complex - the decisive step in gene expression control. Notably, mutations designed in switch-2 mimic the dMyx effects on promoter complexes in the absence of antibiotic. Overall, our results indicate a plausible mechanism of the dMyx action and a stepwise pathway of open complex formation in which core enzyme mediates the final stage of DNA melting near the transcription start site, and that switch-2 might act as a molecular checkpoint for DNA loading in response to regulatory signals or antibiotics. The universally conserved switch-2 may have the same role in all multisubunit RNAPs.

  11. Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure

    DOE PAGESBeta

    Timoshenko, J.; Shivhare, A.; Scott, R. W.; Lu, D.; Frenkel, A. I.

    2016-06-30

    We adopted ab-initio X-ray Absorption Near Edge Structure (XANES) modelling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modelling, where the candidate structures are known, and the inverse modelling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by following the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.

  12. Study of local structure and magnetism in high-T(sub c) copper oxide superconductors

    NASA Technical Reports Server (NTRS)

    Budnick, J. I.; Tan, Z.; Filipkowski, M.; Niedermayer, CH.; Glueckler, H.; Simon, R.; Golnik, A.; Rauer, M.; Recknagel, E.; Weidinger, A.

    1990-01-01

    The muon spin rotation (MUSR) study of local magnetism of Sr-doped La2CuO4 is reviewed. Emphasis is placed on magnetic order as detected by local and bulk probes with local atomic environments studied by x ray absorption fine structure (XAFS). Correlations between the MUSR study of local magnetic ordering and the bulk magnetization study are presented along with a discussion of the dependence upon oxygen stoichiometry. Results are presented for both superconducting phases and magnetic phases. Recent data which reveals the existence of local magnetic ordering in the hydrogen-doped YBa2Cu3O7 system are also discussed.

  13. Identification of local conformational similarity in structurally variable regions of homologous proteins using protein blocks.

    PubMed

    Agarwal, Garima; Mahajan, Swapnil; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2011-01-01

    Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to α-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the "structurally variable" regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of 'variable' regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been

  14. Data-driven high-throughput prediction of the 3-D structure of small molecules: review and progress. A response to the letter by the Cambridge Crystallographic Data Centre.

    PubMed

    Baldi, Pierre

    2011-12-27

    A response is presented to sentiments expressed in "Data-Driven High-Throughput Prediction of the 3-D Structure of Small Molecules: Review and Progress. A Response from The Cambridge Crystallographic Data Centre", recently published in the Journal of Chemical Information and Modeling, (1) which may give readers a misleading impression regarding significant impediments to scientific research posed by the CCDC. PMID:22107601

  15. Local structure analysis of some Cu(II) theophylline complexes

    NASA Astrophysics Data System (ADS)

    David, L.; Cozar, O.; Forizs, E.; Cr ăciun, C.; Ristoiu, D.; B ălan, C.

    1999-10-01

    The CuT 2L 2·2H 2O complexes [T=Theophylline (1,3-dimethylxanthine); L=NH 3, n-propylamine (npa), 2-aminoethanol (ae)] were prepared and investigated by ESR spectroscopy. Powder ESR spectrum of CuT 2(NH 3) 2·2H 2O is axial ( g||=2.255, g⊥=2.059). ESR spectrum of CuT 2(npa) 2·2H 2O with ( g||=2.299, g⊥=2.081) is a superposition of one axial ( g||=2.299, g⊥=2.073) and one isotropic component ( g0≈2.089), in the same amount. The axial spectra of the former complexes are due to a static Jahn-Teller effect ( EJT≈2880 cm -1). ESR spectrum of CuT 2(ae) 2·2H 2O is orthorhombic ( g1c=2.199, g2c=2.095, g3c=2.037). The local symmetries around the Cu(II) ions remain unchanged by DMF solvating, by adsorbing these solutions on NaY zeolite or by lowering the temperature.

  16. Input clustering and the microscale structure of local circuits

    PubMed Central

    DeBello, William M.; McBride, Thomas J.; Nichols, Grant S.; Pannoni, Katy E.; Sanculi, Daniel; Totten, Douglas J.

    2014-01-01

    The recent development of powerful tools for high-throughput mapping of synaptic networks promises major advances in understanding brain function. One open question is how circuits integrate and store information. Competing models based on random vs. structured connectivity make distinct predictions regarding the dendritic addressing of synaptic inputs. In this article we review recent experimental tests of one of these models, the input clustering hypothesis. Across circuits, brain regions and species, there is growing evidence of a link between synaptic co-activation and dendritic location, although this finding is not universal. The functional implications of input clustering and future challenges are discussed. PMID:25309336

  17. HYPLOSP: a knowledge-based approach to protein local structure prediction.

    PubMed

    Chen, Ching-Tai; Lin, Hsin-Nan; Sung, Ting-Yi; Hsu, Wen-Lian

    2006-12-01

    Local structure prediction can facilitate ab initio structure prediction, protein threading, and remote homology detection. However, the accuracy of existing methods is limited. In this paper, we propose a knowledge-based prediction method that assigns a measure called the local match rate to each position of an amino acid sequence to estimate the confidence of our method. Empirically, the accuracy of the method correlates positively with the local match rate; therefore, we employ it to predict the local structures of positions with a high local match rate. For positions with a low local match rate, we propose a neural network prediction method. To better utilize the knowledge-based and neural network methods, we design a hybrid prediction method, HYPLOSP (HYbrid method to Protein LOcal Structure Prediction) that combines both methods. To evaluate the performance of the proposed methods, we first perform cross-validation experiments by applying our knowledge-based method, a neural network method, and HYPLOSP to a large dataset of 3,925 protein chains. We test our methods extensively on three different structural alphabets and evaluate their performance by two widely used criteria, Maximum Deviation of backbone torsion Angle (MDA) and Q(N), which is similar to Q(3) in secondary structure prediction. We then compare HYPLOSP with three previous studies using a dataset of 56 new protein chains. HYPLOSP shows promising results in terms of MDA and Q(N) accuracy and demonstrates its alphabet-independent capability. PMID:17245815

  18. The Effects of a Locally Developed mHealth Intervention on Delivery and Postnatal Care Utilization; A Prospective Controlled Evaluation among Health Centres in Ethiopia

    PubMed Central

    Shiferaw, Solomon; Spigt, Mark; Tekie, Michael; Abdullah, Muna; Fantahun, Mesganaw; Dinant, Geert-Jan

    2016-01-01

    Background Although there are studies showing that mobile phone solutions can improve health service delivery outcomes in the developed world, there is little empirical evidence that demonstrates the impact of mHealth interventions on key maternal health outcomes in low income settings. Methods A non-randomized controlled study was conducted in the Amhara region, Ethiopia in 10 health facilities (5 intervention, 5 control) together serving around 250,000 people. Health workers in the intervention group received an android phone (3 phones per facility) loaded with an application that sends reminders for scheduled visits during antenatal care (ANC), delivery and postnatal care (PNC), and educational messages on dangers signs and common complaints during pregnancy. The intervention was developed at Addis Ababa University in Ethiopia. Primary outcomes were the percentage of women who had at least 4 ANC visits, institutional delivery and PNC visits at the health center after 12 months of implementation of the intervention. Findings Overall 933 and 1037 women were included in the cross-sectional surveys at baseline and at follow-up respectively. In addition, the medical records of 1224 women who had at least one antenatal care visit were followed in the longitudinal study. Women who had their ANC visit in the intervention health centers were significantly more likely to deliver their baby in the same health center compared to the control group (43.1% versus 28.4%; Adjusted Odds Ratio (AOR): 1.98 (95%CI 1.53–2.55)). A significantly higher percentage of women who had ANC in the intervention group had PNC in the same health center compared to the control health centers (41.2% versus 21.1%: AOR: 2.77 (95%CI 2.12–3.61)). Conclusions Our findings demonstrated that a locally customized mHealth application during ANC can significantly improve delivery and postnatal care service utilization possibly through positively influencing the behavior of health workers and their

  19. Global/local stress analysis of composite structures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    1989-01-01

    A method for performing a global/local stress analysis is described and its capabilities are demonstrated. The method employs spline interpolation functions which satisfy the linear plate bending equation to determine displacements and rotations from a global model which are used as boundary conditions for the local model. Then, the local model is analyzed independent of the global model of the structure. This approach can be used to determine local, detailed stress states for specific structural regions using independent, refined local models which exploit information from less-refined global models. The method presented is not restricted to having a priori knowledge of the location of the regions requiring local detailed stress analysis. This approach also reduces the computational effort necessary to obtain the detailed stress state. Criteria for applying the method are developed. The effectiveness of the method is demonstrated using a classical stress concentration problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener.

  20. Free amino and imino-bridged centres attached to organic chains bonded to structurally ordered silica for dye removal from aqueous solution.

    PubMed

    Rehman, Fozia; Volpe, Pedro L O; Airoldi, Claudio

    2014-01-15

    Ordered mesoporous SBA-15 type silica was synthesized by sol gel polymerization and reacted with 3-aminopropyltriethoxysilane (AP) or triethylenetetramine (TE), to attach pendant chains or bridging molecules, with basic centres. The materials were characterized by elemental analysis, infrared spectroscopy, and nuclear magnetic resonance in the solid state, X-ray diffractometry, scanning and transmission electron microscopy. The nitrogen sorption/desorption data for SBA-15 and the organofunctionalized SBA-15AP and SBA-15TE silicas resulted in IV type isotherms with hysteresis loops of the H1 type, surface areas of 800; 213 and 457 m(2) g(-1) and average pore diameters of 8.0; 3.2 and 6.8 nm, respectively. The ordered structural features of the mesoporous silica remained preserved after post-functionalization with pendant and bridged organic chains. Sorption data for organofunctionalized silicas gave highly selective sorption capacities for anionic water soluble Reactive Blue dye, with 0.064 and 0.072 mmol g(-1). Negligible sorption was observed with the unmodified mesoporous silica. The results suggest that organofunctionalized silica can be a simple, efficient, inexpensive and suitable method for the effective and selective removal of anionic organic dye pollutants from aqueous solutions. PMID:24374243

  1. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water.

    PubMed

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-01-01

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry. PMID:26286479

  2. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water

    PubMed Central

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P.; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-01-01

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry. PMID:26286479

  3. Twin Masks of Spiral Structure? A Local Perspective

    NASA Astrophysics Data System (ADS)

    Steiman-Cameron, Thomas Y.

    We examine models for the spiral structure of the Milky Way proposed over the past half century. Many approaches have been pursued to decipher the geometry of the Galaxy's spiral arms, often with conflicting results. While a general consensus exists that a global pattern exists, considerable disagreement remains in the details. Arm geometries, orientations, and even the number of arms are still debated. Close examination of the literature reveals a clear division between four- and two-arm spiral arms. Four-arm models follow naturally from observations of classical tracers of spiral arms - enhanced gas densities and associated star formation - while two-arm models primarily flow from observations linked to the distribution of cool evolved stars. We examine the dichotomy between two-arm and four-arm models and discuss its implications.

  4. Interplay between Microscopic Diffusion and Local Structure of Liquid Water

    SciTech Connect

    Cunsolo, A.; Orecchini, A; Petrillo, C.; Sacchetti, F.

    2010-11-29

    We present a quasielastic neutron scattering (QENS) study of single-particle dynamics in pure water, measured at temperatures between 256 and 293 K along an isobaric path at 200 MPa. A thorough analysis of the spectral line shapes reveals a departure from simple models of continuous or jump diffusion, with such an effect becoming stronger at lower temperatures. We show that such a diverging trend of dynamical quantities upon cooling closely resembles the divergent (anomalous) compressibility observed in water by small-angle diffraction. Such an analogy suggests an interesting interplay between single-particle diffusion and structural arrangements in liquid water, both bearing witness of the well-known water anomalies. In particular, a fit of dynamical parameters by a Vogel-Tammann-Fulcher law provides a critical temperature of about 220 K, interestingly close to the hypothesized position of the second critical point of water and to the so-called Widom line.

  5. Regional and local geologic structure of the Momotombo field, Nicaragua

    SciTech Connect

    Goldsmith, L.H.

    1980-09-01

    The regional geologic-tectonic setting of northwestern Nicaragua is the result of subduction. Differential plate margin movement and segmentation formed a deep rift paralleling the Middle American Trench. Deep-seated shear faults provided access to sublithospheric magmas to create the Nicaraguan volcanic chain. Volcan Momotombo is the southernmost volcano of the Marabios Range of northern Nicaragua. It hosts a proven geothermal resource known as the Momotombo field, located within a small graben structure and measuring less than one square kilometer. This geothermally productive area appears not to be a geothermal reservoir, but rather part of a thermal convection system. Wells in the central and eastern part of the field have diminished in output and temperature. The presence of a temperature inversion zone, clearly distinguishable in the eastern end of the field, indicates that no conductive heating of the productive zone is taking place.

  6. From local structure to a global framework: recognition of protein folds

    PubMed Central

    Joseph, Agnel Praveen; de Brevern, Alexandre G.

    2014-01-01

    Protein folding has been a major area of research for many years. Nonetheless, the mechanisms leading to the formation of an active biological fold are still not fully apprehended. The huge amount of available sequence and structural information provides hints to identify the putative fold for a given sequence. Indeed, protein structures prefer a limited number of local backbone conformations, some being characterized by preferences for certain amino acids. These preferences largely depend on the local structural environment. The prediction of local backbone conformations has become an important factor to correctly identifying the global protein fold. Here, we review the developments in the field of local structure prediction and especially their implication in protein fold recognition. PMID:24740960

  7. 33 CFR 208.10 - Local flood protection works; maintenance and operation of structures and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Local flood protection works; maintenance and operation of structures and facilities. 208.10 Section 208.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.10 Local flood protection works;...

  8. Application of Local Linear Embedding to Nonlinear Exploratory Latent Structure Analysis

    ERIC Educational Resources Information Center

    Wang, Haonan; Iyer, Hari

    2007-01-01

    In this paper we discuss the use of a recent dimension reduction technique called Locally Linear Embedding, introduced by Roweis and Saul, for performing an exploratory latent structure analysis. The coordinate variables from the locally linear embedding describing the manifold on which the data reside serve as the latent variable scores. We…

  9. Myanmar: The Community Learning Centre Experience.

    ERIC Educational Resources Information Center

    Middelborg, Jorn; Duvieusart, Baudouin, Ed.

    A community learning centre (CLC) is a local educational institution outside the formal education system, usually set up and managed by local people. CLCs were first introduced in Myanmar in 1994, and by 2001 there were 71 CLCs in 11 townships. The townships are characterized by remoteness, landlessness, unemployment, dependency on one cash crop,…

  10. Local structures of high-entropy alloys (HEAs) on atomic scales: An overview

    DOE PAGESBeta

    Diao, Haoyan; Santodonato, Louis J.; Tang, Zhi; Egami, Takeshi; Liaw, Peter K.

    2015-01-01

    The high-entropy alloys, containing several elements mixed in equimolar or near-equimolar ratios, have shown exceptional engineering properties. Local structures on the atomic level are essential to understand the mechanical behaviors and related mechanisms. This article covers the local structure and stress on the atomic level are reviewed by the pair-distribution function of neutron-diffraction data, ab-initio molecular dynamics simulations, and the atomic probe microscopy.

  11. Localized surface plasmon microscopy of submicron domain structures of mixed lipid bilayers

    PubMed Central

    Watanabe, Koyo; Miyazaki, Ryosuke; Terakado, Goro; Okazaki, Takashi; Morigaki, Kenichi; Kano, Hiroshi

    2012-01-01

    We propose scanning localized surface plasmon microscopy of mixed lipid bilayers with submicron domain structures. Our observation technique, which employs localized surface plasmons excited on a flat metal surface as a sensing probe, provides non-label and non-contact imaging with the spatial resolution of ∼ 170 nm. We experimentally show that submicron domain structures of mixed lipid bilayers can be observed. A detailed analysis finds that the domains are classified into two groups. PMID:23024897

  12. Austromegabalanus psittacus barnacle shell structure and proteoglycan localization and functionality.

    PubMed

    Fernández, M S; Arias, J I; Neira-Carrillo, A; Arias, J L

    2015-09-01

    Comparative analyzes of biomineralization models have being crucial for the understanding of the functional properties of biominerals and the elucidation of the processes through which biomacromolecules control the synthesis and structural organization of inorganic mineral-based biomaterials. Among calcium carbonate-containing bioceramics, egg, mollusk and echinoderm shells, and crustacean carapaces, have being fairly well characterized. However, Thoraceca barnacles, although being crustacea, showing molting cycle, build a quite stable and heavily mineralized shell that completely surround the animal, which is for life firmly cemented to the substratum. This makes barnacles an interesting model for studying processes of biomineralization. Here we studied the main microstructural and ultrastructural features of Austromegabalanus psittacus barnacle shell, characterize the occurrence of specific proteoglycans (keratan-, dermatan- and chondroitin-6-sulfate proteoglycans) in different soluble and insoluble organic fractions extracted from the shell, and tested them for their ability to crystallize calcium carbonate in vitro. Our results indicate that, in the barnacle model, proteoglycans are good candidates for the modification of the calcite crystal morphology, although the cooperative effect of some additional proteins in the shell could not be excluded. PMID:26276577

  13. Unique local structures of Ca, Ti, Fe and Zr in natural glasses formed by meteorite impact

    NASA Astrophysics Data System (ADS)

    Yoshiasa, Akira; Tobase, Tsubasa; Okube, Maki; Wang, Ling; Isobe, Hiroshi; Mashimo, Tsutomu; Graduate School of Science; Technology Collaboration; Materials; Structures Laboratory, Tokyo Institute of Technology Collaboration

    2015-06-01

    The local structures of cation in tektite from six strewn fields, impact-related glass, and non-impact-related glass were studied by Ca, Ti, Fe and Zr K-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). Shock compression also causes local structural changes of gest and minor elements as well as transition of host structures. How to be left a record is peculiar by each element. The XAFS measurements were performed at the beam lines BL-NW10A and BL-9C, KEK, Japan. The comparison of XANES spectra and bonding distances between crystalline reference minerals and natural glasses was done. Based on the different valence states of iron, the degrees of oxidation states were estimated. The local structures of Ca, Ti and Zr ions are useful probe for physical conditions and formation process of glasses. Tektites experienced high quenching rates and a reduced atmospheric environment when they were ejected into outer space. Other impact-related glass, which was remained close to the crater, experienced a more complicated environment. The local structural changes of cation in the impact-related glass are rich in a variety. Analysis of local structure is help to compare their formation process and distinguish them.

  14. The European standards of Haemophilia Centres

    PubMed Central

    Giangrande, Paul; Calizzani, Gabriele; Menichini, Ivana; Candura, Fabio; Mannucci, Pier Mannuccio; Makris, Michael

    2014-01-01

    Introduction The European haemophilia community of professionals and patients has agreed on the principles of haemophilia care to address comprehensive optimal delivery of care which is nowadays scattered throughout Europe. Many of the health facilities call themselves Haemophilia Centres despite their variation in size, expertise and services provided. Only a small number of countries have Haemophilia Centre accreditation systems in place. Methods In the framework of the European Haemophilia Network project, following an inclusive process of stakeholder involvement, the European Guidelines for the certification of haemophilia centres have been developed in order to set quality standards for European Haemophilia Centres and criteria for their certification. Results The Guidelines define the standards and criteria for the designation of two levels of care delivery: European Haemophilia Treatment Centres, providing local routine care, and European Haemophilia Comprehensive Care Centres, providing specialised and multi-disciplinary care and functioning as tertiary referral centres. Additionally, they define standards about general requirements, patient care, provision of an advisory service and establishment of network of clinical and specialised services. Conclusions The implementation of the European Guidelines for the certification of Haemophilia Centres will contribute to the reduction of health inequalities through the standardisation of quality of care in European Union Member States and could represent a model to be taken into consideration for other rare disease groups. PMID:24922293

  15. Centres of excellence.

    PubMed

    Watson, J M

    1980-05-16

    The present Government may not be enthusiastic about health centres. But Dr Joyce M. Watson, of Glasgow University Department of General Practice and based at Woodside Health Centre in Glasgow, writes with enthusiasm of their advantages for the practice of medicine and the care of patients. PMID:10247174

  16. Local structural differences in homologous proteins: specificities in different SCOP classes.

    PubMed

    Joseph, Agnel Praveen; Valadié, Hélène; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2012-01-01

    The constant increase in the number of solved protein structures is of great help in understanding the basic principles behind protein folding and evolution. 3-D structural knowledge is valuable in designing and developing methods for comparison, modelling and prediction of protein structures. These approaches for structure analysis can be directly implicated in studying protein function and for drug design. The backbone of a protein structure favours certain local conformations which include α-helices, β-strands and turns. Libraries of limited number of local conformations (Structural Alphabets) were developed in the past to obtain a useful categorization of backbone conformation. Protein Block (PB) is one such Structural Alphabet that gave a reasonable structure approximation of 0.42 Å. In this study, we use PB description of local structures to analyse conformations that are preferred sites for structural variations and insertions, among group of related folds. This knowledge can be utilized in improving tools for structure comparison that work by analysing local structure similarities. Conformational differences between homologous proteins are known to occur often in the regions comprising turns and loops. Interestingly, these differences are found to have specific preferences depending upon the structural classes of proteins. Such class-specific preferences are mainly seen in the all-β class with changes involving short helical conformations and hairpin turns. A test carried out on a benchmark dataset also indicates that the use of knowledge on the class specific variations can improve the performance of a PB based structure comparison approach. The preference for the indel sites also seem to be confined to a few backbone conformations involving β-turns and helix C-caps. These are mainly associated with short loops joining the regular secondary structures that mediate a reversal in the chain direction. Rare β-turns of type I' and II' are also identified

  17. Local Structural Differences in Homologous Proteins: Specificities in Different SCOP Classes

    PubMed Central

    Joseph, Agnel Praveen; Valadié, Hélène; Srinivasan, Narayanaswamy; de Brevern, Alexandre G.

    2012-01-01

    The constant increase in the number of solved protein structures is of great help in understanding the basic principles behind protein folding and evolution. 3-D structural knowledge is valuable in designing and developing methods for comparison, modelling and prediction of protein structures. These approaches for structure analysis can be directly implicated in studying protein function and for drug design. The backbone of a protein structure favours certain local conformations which include α-helices, β-strands and turns. Libraries of limited number of local conformations (Structural Alphabets) were developed in the past to obtain a useful categorization of backbone conformation. Protein Block (PB) is one such Structural Alphabet that gave a reasonable structure approximation of 0.42 Å. In this study, we use PB description of local structures to analyse conformations that are preferred sites for structural variations and insertions, among group of related folds. This knowledge can be utilized in improving tools for structure comparison that work by analysing local structure similarities. Conformational differences between homologous proteins are known to occur often in the regions comprising turns and loops. Interestingly, these differences are found to have specific preferences depending upon the structural classes of proteins. Such class-specific preferences are mainly seen in the all-β class with changes involving short helical conformations and hairpin turns. A test carried out on a benchmark dataset also indicates that the use of knowledge on the class specific variations can improve the performance of a PB based structure comparison approach. The preference for the indel sites also seem to be confined to a few backbone conformations involving β-turns and helix C-caps. These are mainly associated with short loops joining the regular secondary structures that mediate a reversal in the chain direction. Rare β-turns of type I’ and II’ are also

  18. Control of local structures and photophysical properties of zinc porphyrin-based supramolecular assemblies structurally organized by regioselective ligand coordination.

    PubMed

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Wada, Takehiko; Hasobe, Taku

    2016-02-10

    Nano- and micro-sized molecular assemblies of zinc porphyrins [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato-zinc(ii) (ZnTCPP)] utilizing bridging nitrogen ligands such as diazabicycro[2.2.2]octane (DABCO) were prepared to demonstrate the regioselective coordination by two different synthetic strategies such as (i) the solvothermal method and (ii) the colloidal metal organic framework (MOF) method. The initial organization process is a planar checkerboard patterned formation (2D platform) of zinc porphyrins organized by paddlewheel secondary building units (PSBUs) between carboxylate and zinc ions. Then, DABCO moieties are decorated on zinc atoms in the metal centres of the porphyrin rings (m-cPDC) in the solvothermal method, whereas the metal centres in the porphyrin rings (n-uPDC) remain uncoordinated in the colloidal MOF method. These internal structural changes between m-cPDC and n-uPDC are in sharp contrast with the corresponding reference systems using ZnTCPP and a 4,4'-bipyridine (BPY) ligand (i.e., m-cPBC and n-cPBC). Concretely, the metal centres of zinc porphyrins in n-uPDC were unsaturated and uncoordinated with the DABCO ligands, which was confirmed by XRD and steady-state spectroscopic measurements. These different coordination features have great effect on the spectroscopic and photophysical properties. For example, the average fluorescence lifetime of m-cPDC is much smaller than that of n-uPDC because of the acceleration of nonradiative processes, which are highly related with the coordination of DABCO to the Zn(ii) centre of the ZnTCPP unit. Finally, fluorescence quenching experiments via photoinduced electron transfer (PET) utilizing an electron acceptor: benzoquinone (BQ) were performed. The apparent association constant (Kapp) of n-uPDC is larger than that of m-cPDC. This suggested that the unsaturated ZnTCPP units embedded in n-uPDC easily accommodate guest molecules as compared to the other systems. PMID:26821786

  19. Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins

    PubMed Central

    Whitten, Steven T.; García-Moreno E., Bertrand; Hilser, Vincent J.

    2005-01-01

    Local conformational fluctuations in proteins can affect the coupling between ligand binding and global structural transitions. This finding was established by monitoring quantitatively how the population distribution in the ensemble of microstates of staphylococcal nuclease was affected by proton binding. Analysis of acid unfolding and proton-binding data with an ensemble-based model suggests that local fluctuations: (i) can be effective modulators of ligand-binding affinities, (ii) are important determinants of the cooperativity of ligand-driven global structural transitions, and (iii) are well represented thermodynamically as local unfolding processes. These studies illustrate how an ensemble-based description of proteins can be used to describe quantitatively the interdependence of local conformational fluctuations, ligand-binding processes, and global structural transitions. This level of understanding of the relationship between conformation, energy, and dynamics is required for a detailed mechanistic understanding of allostery, cooperativity, and other complex functional and regulatory properties of macromolecules. PMID:15767576

  20. Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials

    PubMed Central

    Levin, Igor; Vanderah, Terrell

    2008-01-01

    The functional responses (e.g., dielectric, magnetic, catalytic, etc.) of many industrially-relevant materials are controlled by their local structure—a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer) to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale—the so-called “nanostructure problem”—at the center of modern materials development. Today, multiple experimental techniques exist for probing local atomic arrangements; nonetheless, finding accurate comprehensive, and robust structural solutions for the nanostructured materials still remains a formidable challenge because any one of these methods yields only a partial view of the local structure. The primary goal of this 2-day NIST-sponsored workshop was to bring together experts in the key experimental and theoretical areas relevant to local-structure determination to devise a strategy for the collaborative effort required to develop a comprehensive measurement solution on the local scale. The participants unanimously agreed that solving the nanostructure problem—an ultimate frontier in materials characterization—necessitates a coordinated interdisciplinary effort that transcends the existing capabilities of any single institution, including national laboratories, centers, and user facilities. The discussions converged on an institute dedicated to local structure determination as the most viable organizational platform for successfully addressing the nanostructure problem. The proposed “institute” would provide an intellectual infrastructure for local structure determination by (1) developing and maintaining relevant computer software integrated in an open-source global optimization framework (Fig. 2), (2) connecting industrial and academic users with experts in measurement techniques, (3

  1. Anti-pruritic Effect of Sertaconazole 2% Cream in Atopic Dermatitis Subjects: A Prospective, Randomized, Double-blind, Vehicle-controlled, Multi-centre Clinical Trial of Efficacy, Safety and Local Tolerability.

    PubMed

    Ständer, Sonja; Metz, Martin; Ramos F, Mac H; Maurer, Marcus; Schoepke, Nicole; Tsianakas, Athanasios; Zeidler, Claudia; Luger, Thomas A

    2016-08-23

    This study was a prospective, parallel-group, randomized, double-blind, vehicle-controlled, multi-centre clinical trial to compare the efficacy of topical sertaconazole 2% cream with vehicle in reducing chronic pruritus in subjects with atopic dermatitis, and to assess its safety and local tolerability. A total of 70 subjects applied either of the 2 treatments twice daily for a period of 4 weeks on affected, itchy skin areas. Treatment efficacy was evaluated primarily considering the item itch intensity on a 5-point verbal rating scale. Insomnia, state of atopic dermatitis (Scoring Atopic Dermatitis; SCORAD), quality of life and therapy benefit were also assessed. No significant difference between active treatment and vehicle was found at any of the time-points for any of the investigated parameters. Under the experimental conditions of the study, sertaconazole 2% cream did not exert anti-pruritic effects that were better than vehicle in subjects with atopic dermatitis who had chronic pruritus. Trial registration ClinicalTrials.gov #NCT01792713. PMID:26527564

  2. Local field enhancement on metallic periodic surface structures produced by femtosecond laser pulses

    SciTech Connect

    Ionin, Andrei A; Kudryashov, Sergei I; Ligachev, A E; Makarov, Sergei V; Mel'nik, N N; Rudenko, A A; Seleznev, L V; Sinitsyn, D V; Khmelnitskii, R A

    2013-04-30

    Periodic surface structures on aluminium are produced by femtosecond laser pulses for efficient excitation of surface electromagnetic waves using a strong objective (NA = 0.5). The local electromagnetic field enhancement on the structures is measured using the technique of surface-enhanced Raman scattering from pyridine molecules. (extreme light fields and their applications)

  3. Incorporation of local structure into kriging models for the prediction of atomistic properties in the water decamer.

    PubMed

    Davie, Stuart J; Di Pasquale, Nicodemo; Popelier, Paul L A

    2016-10-15

    Machine learning algorithms have been demonstrated to predict atomistic properties approaching the accuracy of quantum chemical calculations at significantly less computational cost. Difficulties arise, however, when attempting to apply these techniques to large systems, or systems possessing excessive conformational freedom. In this article, the machine learning method kriging is applied to predict both the intra-atomic and interatomic energies, as well as the electrostatic multipole moments, of the atoms of a water molecule at the center of a 10 water molecule (decamer) cluster. Unlike previous work, where the properties of small water clusters were predicted using a molecular local frame, and where training set inputs (features) were based on atomic index, a variety of feature definitions and coordinate frames are considered here to increase prediction accuracy. It is shown that, for a water molecule at the center of a decamer, no single method of defining features or coordinate schemes is optimal for every property. However, explicitly accounting for the structure of the first solvation shell in the definition of the features of the kriging training set, and centring the coordinate frame on the atom-of-interest will, in general, return better predictions than models that apply the standard methods of feature definition, or a molecular coordinate frame. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27535711

  4. Local structure and superconductivity of the Ce1-xLaxRu2 Laves phase system

    NASA Astrophysics Data System (ADS)

    Saini, N. L.; Agrestini, S.; Amato, E.; Filippi, M.; di Castro, D.; Bianconi, A.; Manfrinetti, P.; Palenzona, A.; Marcelli, A.

    2004-09-01

    We have studied local structure of the Laves phase Ce1-xLaxRu2 superconductor by Ru K-edge extended x-ray absorption fine-structure measurements focusing on the small La concentration regime where the transition temperature Tc passes through a local maximum. We find that correlated Debye-Waller factor of the Ru-Ru bonds follows Tc with the varying La concentration in the system. Although, this remarkable Tc correlation on the local atomic structure suggests important role of the electron-lattice interactions, the band-structure effects seem more likely the reason to drive the anomalous superconducting behavior and the Tc maximum in this 4f system.

  5. Protein Classification Based on Analysis of Local Sequence-Structure Correspondence

    SciTech Connect

    Zemla, A T

    2006-02-13

    The goal of this project was to develop an algorithm to detect and calculate common structural motifs in compared structures, and define a set of numerical criteria to be used for fully automated motif based protein structure classification. The Protein Data Bank (PDB) contains more than 33,000 experimentally solved protein structures, and the Structural Classification of Proteins (SCOP) database, a manual classification of these structures, cannot keep pace with the rapid growth of the PDB. In our approach called STRALCP (STRucture Alignment based Clustering of Proteins), we generate detailed information about global and local similarities between given set of structures, identify similar fragments that are conserved within analyzed proteins, and use these conserved regions (detected structural motifs) to classify proteins.

  6. Density Functional Modeling of the Local Structure of Kaolinite Subjected to Thermal Dehydroxylation

    SciTech Connect

    White, Claire E.; Provis, John L.; Proffen, Thomas; Riley, Daniel P.; van Deventer, Jannie S.J.

    2010-11-19

    Understanding the atomic-level changes that occur as kaolinite is converted (thermally dehydroxylated) to metakaolin is critical to the optimization of this large-scale industrial process. Metakaolin is X-ray amorphous; therefore, conventional crystallographic techniques do not reveal the changes in local structure during its formation. Local structure-based experimental techniques are useful in understanding the atomic structure but do not provide the thermodynamic information which is necessary to ensure plausibility of refined structures. Here, kaolinite dehydroxylation is modeled using density functional theory, and a stepwise methodology, where several water molecules are removed from the structure, geometry optimization is carried out, and then the process is repeated. Hence, the structure remains in an energetically and thermodynamically feasible state while transitioning from kaolinite to metakaolin. The structures generated during the dehydroxylation process are validated by comparison with X-ray and neutron pair distribution function data. Thus, this study illustrates one possible route by which dehydroxylation of kaolinite can take place, revealing a chemically, energetically, and experimentally plausible structure of metakaolin. This methodology of density functional modeling of the stepwise changes in a material is not limited in application to kaolinite or other aluminosilicates and provides an accurate representation of the local structural changes occurring in materials used in industrially important processes.

  7. Pretoria Centre Reaches Out

    NASA Astrophysics Data System (ADS)

    Bosman, Olivier

    2014-08-01

    On 5 July 2014 six members of the Pretoria Centre of ASSA braved the light pollution of one of the shopping malls in Centurion to reach out to shoppers a la John Dobson and to show them the moon, Mars and Saturn. Although the centre hosts regular monthly public observing evenings, it was felt that we should take astronomy to the people rather than wait for the people to come to us.

  8. Local structure of NiAl compounds investigated by extended X-ray absorption fine-structure spectroscopy.

    PubMed

    Tian, J S; Han, G M; Wei, H; Jin, T; Dargusch, M S

    2012-07-01

    The local structures of pure NiAl and Ti-, Co-doped NiAl compounds have been obtained utilizing extended X-ray absorption fine-structure (EXAFS) spectroscopy. The results provide experimental evidence that Ni antisite defects exist in the Ni-rich NiAl compounds. The site preference of Ti and Co has been confirmed. Ti occupies the Al sublattice, while Co occupies the Ni sublattice. The structure parameters obtained by EXAFS were consistent with the X-ray diffraction results. Owing to the precipitation of α-Cr, the local structure of NiAl-Cr has not been obtained, making the site preference of Cr unclear. PMID:22713881

  9. Local formation of a Heusler structure in CoFe-Al alloys

    NASA Astrophysics Data System (ADS)

    Wurmehl, S.; Jacobs, P. J.; Kohlhepp, J. T.; Swagten, H. J. M.; Koopmans, B.; Maat, S.; Carey, M. J.; Childress, J. R.

    2011-01-01

    We systematically study the changes in the local atomic environments of Co in CoFe-Al alloys as a function of Al content by means of nuclear magnetic resonance. We find that a Co2FeAl Heusler type structure is formed on a local scale. The observed formation of a highly spin-polarized Heusler compound may explain the improved magnetotransport properties in CoFe-Al based current-perpendicular-to-the-plane spin-valves.

  10. Structural information content of networks: graph entropy based on local vertex functionals.

    PubMed

    Dehmer, Matthias; Emmert-Streib, Frank

    2008-04-01

    In this paper we define the structural information content of graphs as their corresponding graph entropy. This definition is based on local vertex functionals obtained by calculating j-spheres via the algorithm of Dijkstra. We prove that the graph entropy and, hence, the local vertex functionals can be computed with polynomial time complexity enabling the application of our measure for large graphs. In this paper we present numerical results for the graph entropy of chemical graphs and discuss resulting properties. PMID:18243802

  11. In silico local structure approach: a case study on outer membrane proteins.

    PubMed

    Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude

    2008-04-01

    The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. PMID:17932925

  12. Local and global structural drivers for the photoactivation of the orange carotenoid protein

    PubMed Central

    Gupta, Sayan; Guttman, Miklos; Leverenz, Ryan L.; Zhumadilova, Kulyash; Pawlowski, Emily G.; Petzold, Christopher J.; Lee, Kelly K.; Ralston, Corie Y.; Kerfeld, Cheryl A.

    2015-01-01

    Photoprotective mechanisms are of fundamental importance for the survival of photosynthetic organisms. In cyanobacteria, the orange carotenoid protein (OCP), when activated by intense blue light, binds to the light-harvesting antenna and triggers the dissipation of excess captured light energy. Using a combination of small angle X-ray scattering (SAXS), X-ray hydroxyl radical footprinting, circular dichroism, and H/D exchange mass spectrometry, we identified both the local and global structural changes in the OCP upon photoactivation. SAXS and H/D exchange data showed that global tertiary structural changes, including complete domain dissociation, occur upon photoactivation, but with alteration of secondary structure confined to only the N terminus of the OCP. Microsecond radiolytic labeling identified rearrangement of the H-bonding network associated with conserved residues and structural water molecules. Collectively, these data provide experimental evidence for an ensemble of local and global structural changes, upon activation of the OCP, that are essential for photoprotection. PMID:26385969

  13. Local structure of NaNbO3: A neutron scattering study

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Mitchell, D. C.; Dmowski, W.; Egami, T.

    2013-07-01

    We report the results of a neutron diffraction study of structural evolution in sodium niobate, NaNbO3, which is the parent compound for lead-free ferroelectric materials, as a function of temperature from 15 to 930 K over six phases. The Rietveld analysis of the high-resolution powder neutron diffraction data shows the variation in the structure from cubic to rhombohedral ferroelectric structures. However, the refinements on local structure by the pair distribution function (PDF) method indicates that there are only three basic patterns of the local structure, and the ground states of NaNbO3 in the low-temperature antiferroelectric and ferroelectric phases have the R3c symmetry, even though in the long range the system shows the Pbcm symmetry or the coexistence of two phases. The origin of the complex phase behavior and its implications on the performance as lead-free ferroelectrics are discussed.

  14. Identification, characterization and evolution of non-local quasi-Lagrangian structures in turbulence

    NASA Astrophysics Data System (ADS)

    Yang, Yue

    2016-02-01

    The recent progress on non-local Lagrangian and quasi-Lagrangian structures in turbulence is reviewed. The quasi-Lagrangian structures, e.g., vortex surfaces in viscous flow, gas-liquid interfaces in multi-phase flow, and flame fronts in premixed combustion, can show essential Lagrangian following properties, but they are able to have topological changes in the temporal evolution. In addition, they can represent or influence the turbulent flow field. The challenges for the investigation of the non-local structures include their identification, characterization, and evolution. The improving understanding of the quasi-Lagrangian structures is expected to be helpful to elucidate crucial dynamics and develop structure-based predictive models in turbulence.

  15. Control of Grain Structure in Pure Copper by a Local Heating

    NASA Astrophysics Data System (ADS)

    Shibayanagi, Toshiya; Tsukamoto, Masahiro; Abe, Nobuyuki

    The present work deals with a preferential grain growth process in a localized region utilizing local heating method in order to fabricate some unique microstructures different from those fabricated in the homogeneous way of microstructure evolution. A Monte Carlo simulation of grain growth under a heterogeneous temperature gradient, i.e. spot heating, was performed. Steep temperature gradient brought about a preferential grain growth in the higher temperature region, showing that the local heating was effective for the control of grain structure of polycrystalline materials. Such type of preferential grain growth became less significant under the mild temperature gradient. Local heating of pure copper foil with 0.2mm in thickness utilizing laser beam was performed by changing the irradiation conditions. In the case of 200W for laser power and 18mm/s for sweep velocity, some grains were observed to have larger grain sizes than their surrounding grains, suggesting a possibility of preferential grain growth in the localized region.

  16. Correlation between locally deformed structure and oxide film properties in austenitic stainless steel irradiated with neutrons

    NASA Astrophysics Data System (ADS)

    Chimi, Yasuhiro; Kitsunai, Yuji; Kasahara, Shigeki; Chatani, Kazuhiro; Koshiishi, Masato; Nishiyama, Yutaka

    2016-07-01

    To elucidate the mechanism of irradiation-assisted stress corrosion cracking (IASCC) in high-temperature water for neutron-irradiated austenitic stainless steels (SSs), the locally deformed structures, the oxide films formed on the deformed areas, and their correlation were investigated. Tensile specimens made of irradiated 316L SSs were strained 0.1%-2% at room temperature or at 563 K, and the surface structures and crystal misorientation among grains were evaluated. The strained specimens were immersed in high-temperature water, and the microstructures of the oxide films on the locally deformed areas were observed. The appearance of visible step structures on the specimens' surface depended on the neutron dose and the applied strain. The surface oxides were observed to be prone to increase in thickness around grain boundaries (GBs) with increasing neutron dose and increasing local strain at the GBs. No penetrative oxidation was observed along GBs or along surface steps.

  17. Distinct local electronic structure and magnetism for Mn in amorphous Si and Ge

    SciTech Connect

    Zeng, Li; Cao, J. X.; Helgren, E.; Karel, J.; Arenholz, E.; Ouyang, Lu; Smith, David J.; Wu, R. Q.; Hellman, F.

    2010-06-01

    Transition metals such as Mn generally have large local moments in covalent semiconductors due to their partially filled d shells. However, Mn magnetization in group-IV semiconductors is more complicated than often recognized. Here we report a striking crossover from a quenched Mn moment (<0.1 {mu}{sub B}) in amorphous Si (a-Si) to a large distinct local Mn moment ({ge}3{mu}{sub B}) in amorphous Ge (a-Ge) over a wide range of Mn concentrations (0.005-0.20). Corresponding differences are observed in d-shell electronic structure and the sign of the Hall effect. Density-functional-theory calculations show distinct local structures, consistent with different atomic density measured for a-Si and a-Ge, respectively, and the Mn coordination number N{sub c} is found to be the key factor. Despite the amorphous structure, Mn in a-Si is in a relatively well-defined high coordination interstitial type site with broadened d bands, low moment, and electron (n-type) carriers, while Mn in a-Ge is in a low coordination substitutional type site with large local moment and holes (p-type) carriers. Moreover, the correlation between N{sub c} and the magnitude of the local moment is essentially independent of the matrix; the local Mn moments approach zero when N{sub c} > 7 for both a-Si and a-Ge.

  18. Doubly periodic structure for the study of inhomogeneous bulk fermion matter with spatial localizations

    SciTech Connect

    Vantournhout, Klaas; Jachowicz, Natalie; Ryckebusch, Jan

    2011-09-15

    We present a method that offers perspectives to perform fully antisymmetrized simulations for inhomogeneous bulk fermion matter. The technique bears resemblance to classical periodic boundary conditions, using localized single-particle states. Such localized states are an ideal tool to discuss phenomena where spatial localization plays an important role. The antisymmetrization is obtained introducing a doubly periodic structure in the many-body fermion wave functions. This results in circulant matrices for the evaluation of expectation values, leading to a computationally tractable formalism to study fully antisymmetrized bulk fermion matter. We show that the proposed technique is able to reproduce essential fermion features in an elegant and computationally advantageous manner.

  19. Prediction of compounds in different local structure-activity relationship environments using emerging chemical patterns.

    PubMed

    Namasivayam, Vigneshwaran; Gupta-Ostermann, Disha; Balfer, Jenny; Heikamp, Kathrin; Bajorath, Jürgen

    2014-05-27

    Active compounds can participate in different local structure-activity relationship (SAR) environments and introduce different degrees of local SAR discontinuity, depending on their structural and potency relationships in data sets. Such SAR features have thus far mostly been analyzed using descriptive approaches, in particular, on the basis of activity landscape modeling. However, compounds in different local SAR environments have not yet been predicted. Herein, we adapt the emerging chemical patterns (ECP) method, a machine learning approach for compound classification, to systematically predict compounds with different local SAR characteristics. ECP analysis is shown to accurately assign many compounds to different local SAR environments across a variety of activity classes covering the entire range of observed local SARs. Control calculations using random forests and multiclass support vector machines were carried out and a variety of statistical performance measures were applied. In all instances, ECP calculations yielded comparable or better performance than controls. The approach presented herein can be applied to predict compounds that complement local SARs or prioritize compounds with different SAR characteristics. PMID:24803014

  20. Local structure in BaTi O3-BiSc O3 dipole glasses

    NASA Astrophysics Data System (ADS)

    Levin, I.; Krayzman, V.; Woicik, J. C.; Bridges, F.; Sterbinsky, G. E.; Usher, T.-M.; Jones, J. L.; Torrejon, D.

    2016-03-01

    Local structures in cubic perovskite-type (B a0.6B i0.4) (T i0.6S c0.4) O3 solid solutions that exhibit reentrant dipole glass behavior have been studied with variable-temperature x-ray/neutron total scattering, extended x-ray absorption fine structure, and electron diffraction methods. Simultaneous fitting of these data using a reverse Monte Carlo algorithm provided instantaneous atomic configurations, which have been used to extract local displacements of the constituent species. The smaller Bi and Ti atoms exhibit probability density distributions that consist of 14 and 8 split sites, respectively. In contrast, Ba and Sc feature single-site distributions. The multisite distributions arise from large and strongly anisotropic off-center displacements of Bi and Ti. The cation displacements are correlated over a short range, with a correlation length limited by chemical disorder. The magnitudes of these displacements and their anisotropy, which are largely determined by local chemistry, change relatively insignificantly on cooling from room temperature. The structure features a nonrandom distribution of local polarization with low-dimensional polar clusters that are several unit cells in size. In situ measurements of atomic pair-distribution function under applied electric field were used to study field-induced changes in the local structure; however, no significant effects besides lattice expansion in the direction of the field could be observed up to electric-field values of 4 kV m m-1 .

  1. Local Atomic Structure of Semiconductor Alloys Using Pair Distribution Function Analysis

    SciTech Connect

    Billinge, S.J.L.; Thorpe, M.F.

    2002-06-24

    We have been taking advantage of recent experimental developments, which involve utilizing diffraction data from x-rays or neutrons out to very large wave-vectors, to obtain a detailed structural characterization of semiconductor alloys. This approach allows an accurate Pair Distribution Function (PDF) to be obtained to 20A and beyond and reveals the local structure of the alloy directly. These data can be modeled explicitly to learn about local correlations and short-range order in materials. We are combining theory, modeling and experiments to study a range of materials from semiconductors to thermoelectrics and proton conductors.

  2. Linking Slow Dynamics and Local Structure in Simple Models of Glass-Forming Liquids

    NASA Astrophysics Data System (ADS)

    Coslovich, D.; Pastore, G.

    2008-07-01

    Establishing a relation between the dynamical features of supercooled liquids, their structural properties and the nature of intermolecular interactions is a key issue in the description of the glass transition. To investigate this point we perform molecular dynamics simulations for three model glass-forming liquids with different types of local order. Our results show that the roughness of the energy landscape, estimated from the amplitude of average energy barriers, and the localization of unstable modes provide useful means to rationalize the link between structure and dynamics in glass-forming liquids.

  3. Global and local structural similarity in protein–protein complexes: Implications for template-based docking

    PubMed Central

    Kundrotas, Petras J.; Vakser, Ilya A.

    2016-01-01

    The increasing amount of structural information on protein–protein interactions makes it possible to predict the structure of protein–protein complexes by comparison/alignment of the interacting proteins to the ones in cocrystallized complexes. In the predictions based on structure similarity, the template search is performed by structural alignment of the target interactors with the entire structures or with the interface only of the subunits in cocrystallized complexes. This study investigates the scope of the structural similarity that facilitates the detection of a broad range of templates significantly divergent from the targets. The analysis of the target-template similarity is based on models of protein–protein complexes in a large representative set of heterodimers. The similarity of the biological and crystal packing interfaces, dissimilar interface structural motifs in overall similar structures, interface similarity to the full structure, and local similarity away from the interface were analyzed. The structural similarity at the protein–protein interfaces only was observed in ~25% of target-template pairs with sequence identity <20% and primarily homodimeric templates. For ~50% of the target-template pairs, the similarity at the interface was accompanied by the similarity of the whole structure. However, the structural similarity at the interfaces was still stronger than that of the noninterface parts. The study provides insights into structural and functional diversity of protein–protein complexes, and relative performance of the interface and full structure alignment in docking. PMID:23946125

  4. Discussions on equivalent solutions and localized structures via the mapping method based on Riccati equation

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Cheng, Xuan; Dai, Chao-Qing

    2015-12-01

    Although the mapping method based on Riccati equation was proposed to obtain variable separation solutions many years ago, two important problems have not been studied: i) the equivalence of variable separation solutions by means of the mapping method based on Riccati equation with the radical sign combined ansatz; and ii) lack of physical meanings for some localized structures constructed by variable separation solutions. In this paper, we re-study the (2+1)-dimensional Boiti-Leon-Pempinelli equation via the mapping method based on Riccati equation and prove that nine types of variable separation solutions are actually equivalent to each other. Moreover, we also re-study localized structures constructed by variable separation solutions. Results indicate that some localized structures reported in the literature are lacking real values due to the appearance of the divergent and un-physical phenomenon for the initial field. Therefore, we must be careful with the initial field to avoid the appearance of some un-physical or even divergent structures in it when we construct localized structures for the potential field.

  5. Multi-spacecraft analysis of local structure of Heliospheric Current Sheet

    NASA Astrophysics Data System (ADS)

    Arrazola, D.; Blanco, Juan Jose; Rodriguez-Pacheco, Javier; Hidalgo, Miguel Angel; Medina, Jose

    Local variability of the Heliospheric Current Sheet (HCS) has been studied. Its local magnetic structure is observed as a boundary through which the magnetic field inverts its direction toward or away from Sun. In this work, we have used data from ACE, WIND, STEREO A and B spacecrafts. Solar wind features and magnetic field variations obtained from each spacecraft and for each event analyzed have been used to estimate temporal and spatial dependences in the local HCS structure. Their connection with the neutral line at the corona has been also determined. We have grouped the selected events according to their magnetic connection, with the aim of analyzing possible variations on the local orientation. Events studied cover from the ascending phase of solar cycle 23 to the next minimum around 2007. It has been observed that when spacecrafts are close to each other and/or magnetically well connected, clear variations on the local orientation are not observed. In these cases, the elapsed time was less than 2 hours. This fact could be interpreted as if there were not temporal variations on the local structure of the HCS in the range of 2 hours. On the other hand, the analysis shows that angular variation has a growing trend with elapsed time between different spacecraft. This can be related to the fact that spacecrafts are magnetically bad connected. In these cases, variations in local HCS orientation are observed. To evaluate changes of the HCS local orientations it has been used MVA, CVA and HYTARO methods. Results and future goals are summarized in this work.

  6. The Comparative Structural Study of Vitreous Matrices P{sub 2}O{sub 5}centre dotMeO [MeO ident to Li{sub 2}O (M{sub 1}) or CaO (M{sub 2})] Systems and {sub x}Fe{sub 2}O{sub 3}(100-x)[P{sub 2}O{sub 5}centre dotMeO] Glasses by Raman Spectroscopy

    SciTech Connect

    Andronache, C.

    2010-01-21

    For getting information about the way in which the structural units presented in glass matrices P{sub 2}O{sub 5}centre dotLi{sub 2}O (M{sub 1}) and P{sub 2}O{sub 5}centre dotCaO (M{sub 2}) are modifying with the substitutions Li{sub 2}O with CaO, these glasses where investigated by Raman spectroscopies. The absorption bands obtained and their assignments for each those two matrices are summarized. The influence of Fe{sub 2}O{sub 3} content on the structure of M1 and M2 matrices was followed.

  7. Evolution of local atomic structure during solidification of Al2Au liquid: An ab initio study

    SciTech Connect

    Xiong, L H; Lou, H B; Wang, X D; Debela, T T; Cao, Q P; Zhang, D X; Wang, S Y; Wang, C Z; Jiang, J Z

    2014-04-01

    The local atomic structure evolution in Al2Au alloy during solidification from 2000 K to 400 K was studied by ab initio molecular dynamics simulations and analyzed using the structure factor, pair correlation functions, bond angle distributions, the Honeycutt-Anderson (HA) index and Voronoi tessellation methods. It was found that the icosahedral-like clusters are negligible in the Al2Au stable liquid and supercooled liquid states, and the most abundant clusters are those having HA indices of 131 and 120 or Voronoi indices of < 0,4,4,0 >, < 0,3, 6,0 > and < 0,4,4,2 > with coordination numbers of 8, 9 and 10, respectively. These clusters are similar to the local atomic structures in the CaF2-type Al2Au crystal, revealing the existence of structure heredity between liquid and crystalline phase in Al2Au alloy. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. XAFS study on Ca local structure in natural glasses and tektite

    NASA Astrophysics Data System (ADS)

    Tobase, T.; Wang, L.; Yoshiasa, A.; Okube, M.; Nakatani, T.; Hayasaka, Y.; Isobe, H.

    2013-04-01

    The local structures of tektite and natural glasses were studied by Ca K-edge X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in order to provide quantitative data on bonding distances and coordination numbers. The pre-edge peak intensities of tektites are 10.7-11.7%, and those of peudotachylite, Kirauea volcanic glass, impactite, pitchstone and perlite are 6.7-10.9%. The main peak shoulder intensities of tektites are 68.3-70.7%, and other natural glasses are 63.0-63.9%. XAFS analysis indicated all tektites possess 7-coordinated Ca, but natural glasses possess 6-, 7- and 8- coordinated Ca. This study indicated that different petrogenesis of natural glasses gives different local structures of calcium.

  9. Hidden Markov models that use predicted local structure for fold recognition: alphabets of backbone geometry.

    PubMed

    Karchin, Rachel; Cline, Melissa; Mandel-Gutfreund, Yael; Karplus, Kevin

    2003-06-01

    An important problem in computational biology is predicting the structure of the large number of putative proteins discovered by genome sequencing projects. Fold-recognition methods attempt to solve the problem by relating the target proteins to known structures, searching for template proteins homologous to the target. Remote homologs that may have significant structural similarity are often not detectable by sequence similarities alone. To address this, we incorporated predicted local structure, a generalization of secondary structure, into two-track profile hidden Markov models (HMMs). We did not rely on a simple helix-strand-coil definition of secondary structure, but experimented with a variety of local structure descriptions, following a principled protocol to establish which descriptions are most useful for improving fold recognition and alignment quality. On a test set of 1298 nonhomologous proteins, HMMs incorporating a 3-letter STRIDE alphabet improved fold recognition accuracy by 15% over amino-acid-only HMMs and 23% over PSI-BLAST, measured by ROC-65 numbers. We compared two-track HMMs to amino-acid-only HMMs on a difficult alignment test set of 200 protein pairs (structurally similar with 3-24% sequence identity). HMMs with a 6-letter STRIDE secondary track improved alignment quality by 62%, relative to DALI structural alignments, while HMMs with an STR track (an expanded DSSP alphabet that subdivides strands into six states) improved by 40% relative to CE. PMID:12784210

  10. Control of localized surface plasmon resonance energy in monolayer structures of gold and silver nanoparticles.

    PubMed

    Yokota, Hiroki; Taniguchi, Taichi; Watanabe, Taichi; Kim, DaeGwi

    2015-10-28

    Monolayer structures of Au and Ag nanoparticles (NPs) were fabricated by a dipping method to realize the control of localized surface plasmon resonance (LSPR) energy. The mean inter-particle distance in the monolayer was controlled by changing the concentration of NPs in the colloidal solution used for the monolayer assembly. The extinction-peak energy of the monolayer structure was red-shifted with decreasing inter-particle distance, reflecting plasmon coupling between NPs. PMID:26411840