Science.gov

Sample records for century mitigation scenarios

  1. Temperature increase of 21st century mitigation scenarios

    SciTech Connect

    Van Vuuren, Detlef; Meinshausen, Malte; Plattner, Gian-Kasper; Joos, Fortunat; Strassmann, Kuno M.; Smith, Steven J.; Wigley, T. M.; Raper, S.; Riahi, Keywan; De La Chesnaye, Francisco; Den Elzen, Michel; Fujino, Junicho; Kejun, Jiang; Nakicenovic, Nebojsa; Paltsev, S.; Reilly, J. M.

    2008-10-06

    Estimates on 21st century global mean surface temperature increase have generally been based on scenarios that do not include climate policies. Newly developed multi-gas mitigation scenarios now allow the assessment of possible impacts of climate policies on projected warming ranges. By combing emission pathway results from multiple energy-economic models, we show that these mitigation scenarios result in a range of 21st century temperature increase of 0.5 to 4.2°C over 1990 levels as compared to 1.3-7.3 °C for the no-policy cases. About half the range is due to differences in the assumed stringency of the global climate policy and half is due to uncertainty in our understanding of the climate system, specifically, the carbon cycle and climate sensitivity. A minimum warming of about 0.5-2.7°C (avg. 1.3oC) remains for even the most stringent stabilization scenarios analyzed here - highlighting the need for both emission mitigation and adaptation policies.

  2. Temperature increase of 21st century mitigation scenarios.

    PubMed

    Van Vuuren, D P; Meinshausen, M; Plattner, G-K; Joos, F; Strassmann, K M; Smith, S J; Wigley, T M L; Raper, S C B; Riahi, K; de la Chesnaye, F; den Elzen, M G J; Fujino, J; Jiang, K; Nakicenovic, N; Paltsev, S; Reilly, J M

    2008-10-01

    Estimates of 21st Century global-mean surface temperature increase have generally been based on scenarios that do not include climate policies. Newly developed multigas mitigation scenarios, based on a wide range of modeling approaches and socioeconomic assumptions, now allow the assessment of possible impacts of climate policies on projected warming ranges. This article assesses the atmospheric CO(2) concentrations, radiative forcing, and temperature increase for these new scenarios using two reduced-complexity climate models. These scenarios result in temperature increase of 0.5-4.4 degrees C over 1990 levels or 0.3-3.4 degrees C less than the no-policy cases. The range results from differences in the assumed stringency of climate policy and uncertainty in our understanding of the climate system. Notably, an average minimum warming of approximately 1.4 degrees C (with a full range of 0.5-2.8 degrees C) remains for even the most stringent stabilization scenarios analyzed here. This value is substantially above previously estimated committed warming based on climate system inertia alone. The results show that, although ambitious mitigation efforts can significantly reduce global warming, adaptation measures will be needed in addition to mitigation to reduce the impact of the residual warming. PMID:18838680

  3. Climate mitigation scenarios of drained peat soils

    NASA Astrophysics Data System (ADS)

    Kasimir Klemedtsson, Åsa; Coria, Jessica; He, Hongxing; Liu, Xiangping; Nordén, Anna

    2014-05-01

    The national inventory reports (NIR) submitted to the UNFCCC show Sweden - which as many other countries has wetlands where parts have been drained for agriculture and forestry purposes, - to annually emit 12 million tonnes carbon dioxide equivalents, which is more GHG'es than industrial energy use release in Sweden. Similar conditions can be found in other northern countries, having cool and wet conditions, naturally promoting peat accumulation, and where land use management over the last centuries have promoted draining activities. These drained peatland, though covering only 2% of the land area, have emissions corresponding to 20% of the total reported NIR emissions. This substantial emission contribution, however, is hidden within the Land Use Land Use Change and Forestry sector (LULUCF) where the forest Carbon uptake is even larger, which causes the peat soil emissions become invisible. The only drained soil emission accounted in the Swedish Kyoto reporting is the N2O emission from agricultural drained organic soils of the size 0.5 million tonnes CO2e yr-1. This lack of visibility has made incentives for land use change and management neither implemented nor suggested, however with large potential. Rewetting has the potential to decrease soil mineralization, why CO2 and N2O emissions are mitigated. However if the soil becomes very wet CH4 emission will increase together with hampered plant growth. By ecological modeling, using the CoupModel the climate change mitigation potential have been estimated for four different land use scenarios; 1, Drained peat soil with Spruce (business as usual scenario), 2, raised ground water level to 20 cm depth and Willow plantation, 3, raised ground water level to 10 cm depth and Reed Canary Grass, and 4, rewetting to an average water level in the soil surface with recolonizing wetland plants and mosses. We calculate the volume of biomass production per year, peat decomposition, N2O emission together with nitrate and DOC

  4. Scenarios for the risk of hunger in the twenty-first century using Shared Socioeconomic Pathways

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tomoko; Fujimori, Shinichiro; Takahashi, Kiyoshi; Masui, Toshihiko

    2015-01-01

    Shared socioeconomic pathways (SSPs) are being developed internationally for cross-sectoral assessments of climate change impacts, adaptation, and mitigation. These are five scenarios that include both qualitative and quantitative information for mitigation and adaptation challenges to climate change. In this study, we quantified scenarios for the risk of hunger in the 21st century using SSPs, and clarified elements that influence future hunger risk. There were two primary findings: (1) risk of hunger in the 21st-century greatly differed among five SSPs; and (2) population growth, improvement in the equality of food distribution within a country, and increases in food consumption mainly driven by income growth greatly influenced future hunger risk and were important elements in its long-term assessment.

  5. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    NASA Astrophysics Data System (ADS)

    Vichi, Marcello; Manzini, Elisa; Fogli, Pier Giuseppe; Alessandri, Andrea; Patara, Lavinia; Scoccimarro, Enrico; Masina, Simona; Navarra, Antonio

    2011-11-01

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration

  6. Climate impacts of the ECLIPSE future emissions mitigation scenario

    NASA Astrophysics Data System (ADS)

    Baker, Laura; Collins, Bill; Olivie, Dirk; Cherian, Ribu; Quaas, Johannes; Myhre, Gunnar; Hodnebrog, Oivind; Skeie, Ragnhild

    2016-04-01

    We investigate the possible near-term climate benefits from mitigating aerosols, ozone and methane. The ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) project developed a realistic emissions inventory based on current legislation for 2005-2050 (CLE), and a corresponding mitigation scenario designed to be beneficial for both air quality and short-term climate impact (MIT). We determine the climate impacts of the MIT scenario, focussing on the period 2040-2050. Four climate models with interactive chemistry and aerosols (HadGEM, NorESM, CESM-CAM4 and ECHAM-HAM) are used to provide multi-model ensembles of both atmosphere-only and coupled atmosphere-ocean simulations, to separate the effective radiative forcing (ERF) and the climate response. The ERFs are derived from the atmosphere-only simulations. In all models the MIT scenario leads to a negative global ERF which is driven mainly by methane emissions reductions. There is variability between models in the relative importance of methane and aerosol emissions reductions, and in the sign of ERF response to aerosol emissions reductions. The climate response to MIT is derived from the coupled simulations. In all models, MIT results in a decrease in the global mean temperature compared to CLE, with a model mean decrease of 0.22°C. The temperature decrease is seen most strongly in the Northern Hemisphere and is particularly strong in the Arctic. The ensembles of coupled-ocean simulations have therefore enabled us to identify a robust cooling signal from the air quality mitigation scenarios, which can be attributed to the different species using the ERFs.

  7. 21st Century Steam for Asteroid Mitigation

    SciTech Connect

    Dearborn, D S

    2004-03-10

    The systematic requirements to divert an object on an earth-impacting course are developed relating the minimum velocity perturbation (both magnitude and direction) to the time available before impact. This, coupled with the accuracy to which orbits can be determined, restricts the time available for any mitigation technology to operate. Because nuclear energy densities are nearly a million times higher than those possible with chemical bonds, it is the most mass efficient means for storing delivering energy with today's technology. The question is how to most effectively apply that energy. This paper will examine the simple case of shattering the body, as well as a more controlled approach in which one or more small velocity increments divert a body. The optimal approach depends on the detailed circumstances, but in either case, already developed technology permits a successful diversion with a few years to decades of notice. The success of nuclear options on relatively short timescales permits consideration of other technologies that while not so well developed might be sufficiently improved to divert small (100 meter) bodies.

  8. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    SciTech Connect

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul; Luderer, Gunnar; Otto, Sander; Rao, Shilpa; Strefler, Jessica; Van Vuuren, Detlef

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In order to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.

  9. The new ENSEMBLES E1 mitigation scenario for future climate simulations

    NASA Astrophysics Data System (ADS)

    Royer, J.-F.; Lowe, J.; Johns, T.; van Vuuren, D.; Stehfest, E.; Denoblet-Ducoudré, N.; Boucher, O.; Rognerud, B.; Huebener, H.

    2009-04-01

    Climate simulations with state-of-the-art earth-system models are required to study the potential impacts of climate change, and possible solutions for avoiding, or reducing, some of its undesirable consequences. Though several emission scenarios have been applied for the IPCC AR4 assessments, the differences in the SRES scenarios result mainly from varying degrees of globalization, the role of environmental and social policy, economic and population growth and the rate of technology development. It seems then necessary to consider also more stringent mitigation pathways which aim eventually to implement a climate mitigation policy. In particular it appears particularly useful to implement and analyse climate scenarios for stabilising the additional anthropogenic radiative forcing to that equivalent to a carbon dioxide concentration at around 450 ppm during the 22nd Century for attempting to match the European Union target of keeping global anthropogenic warming below 2°C above pre-industrial levels. A new set of climate simulations over the 21st century with improved earth-system models has thus been designed by the European modelling groups participating to the European FP6 project ENSEMBLES, as a contribution to the second phase ("Stream 2") of the project. The set-up of the new simulations, though basically similar to that used in the CMIP3 simulations for the IPCC AR4, has been improved by taking into account land-use changes. The simulations cover the recent historical period (1860-2000) and are extended over the the 21st century by two scenarios based on the A1B development path. The A1B scenario has been chosen as the baseline scenario for the ENSEMBLES stream 2 simulations because the strong increase in emissions is consistent with real emissions growth, and in order provide overlap with earlier climate modelling work. Besides the standard A1B SRES scenario, a new stabilisation scenario has been developed so as to limit the long-term radiative forcing to

  10. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  11. Representative concentration pathways and mitigation scenarios for nitrous oxide

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.

    2012-06-01

    The challenges of mitigating nitrous oxide (N2O) emissions are substantially different from those for carbon dioxide (CO2) and methane (CH4), because nitrogen (N) is essential for food production, and over 80% of anthropogenic N2O emissions are from the agricultural sector. Here I use a model of emission factors of N2O to demonstrate the magnitude of improvements in agriculture and industrial sectors and changes in dietary habits that would be necessary to match the four representative concentration pathways (RCPs) now being considered in the fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). Stabilizing atmospheric N2O by 2050, consistent with the most aggressive of the RCP mitigation scenarios, would require about 50% reductions in emission factors in all sectors and about a 50% reduction in mean per capita meat consumption in the developed world. Technologies exist to achieve such improved efficiencies, but overcoming social, economic, and political impediments for their adoption and for changes in dietary habits will present large challenges.

  12. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    Evidence on a broad range of time scales, from Proterozoic to the most recent periods, shows that the Earth's climate responds sensitively to global forcings. In the past few decades the Earth's surface has warmed rapidly, apparently in response to increasing anthropogenic greenhouse gases in the atmosphere. The conventional view is that the current global warming rate will continue or accelerate in the 21st century. I will describe an alternate scenario that would slow the rate of global warming and reduce the danger of dramatic climate change. But reliable prediction of future climate change requires improved knowledge of the carbon cycle and global observations that allow interpretation of ongoing climate change.

  13. Persisting cold extremes under 21st-century warming scenarios

    SciTech Connect

    Kodra, Evan A; Steinhaeuser, Karsten J K; Ganguly, Auroop R

    2011-01-01

    Analyses of climate model simulations and observations reveal that extreme cold events are likely to persist across each land-continent even under 21st-century warming scenarios. The grid-based intensity, duration and frequency of cold extreme events are calculated annually through three indices: the coldest annual consecutive three-day average of daily maximum temperature, the annual maximum of consecutive frost days, and the total number of frost days. Nine global climate models forced with a moderate greenhouse-gas emissions scenario compares the indices over 2091 2100 versus 1991 2000. The credibility of model-simulated cold extremes is evaluated through both bias scores relative to reanalysis data in the past and multi-model agreement in the future. The number of times the value of each annual index in 2091 2100 exceeds the decadal average of the corresponding index in 1991 2000 is counted. The results indicate that intensity and duration of grid-based cold extremes, when viewed as a global total, will often be as severe as current typical conditions in many regions, but the corresponding frequency does not show this persistence. While the models agree on the projected persistence of cold extremes in terms of global counts, regionally, inter-model variability and disparity in model performance tends to dominate. Our findings suggest that, despite a general warming trend, regional preparedness for extreme cold events cannot be compromised even towards the end of the century.

  14. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community-integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model - namely, the Global Water Availability Model (GWAM) - is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5° × 0.5° resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining

  15. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    SciTech Connect

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining

  16. A new large initial condition ensemble to assess avoided impacts in a climate mitigation scenario

    NASA Astrophysics Data System (ADS)

    Sanderson, B. M.; Tebaldi, C.; Knutti, R.; Oleson, K. W.

    2014-12-01

    It has recently been demonstrated that when considering timescales of up to 50 years, natural variability may play an equal role to anthropogenic forcing on subcontinental trends for a variety of climate indicators. Thus, for many questions assessing climate impacts on such time and spatial scales, it has become clear that a significant number of ensemble members may be required to produce robust statistics (and especially so for extreme events). However, large ensemble experiments to date have considered the role of variability in a single scenario, leaving uncertain the relationship between the forced climate trajectory and the variability about that path. To address this issue, we present a new, publicly available, 15 member initial condition ensemble of 21st century climate projections for the RCP 4.5 scenario using the CESM1.1 Earth System Model, which we propose as a companion project to the existing 40 member CESM large ensemble which uses the higher greenhouse gas emission future of RCP8.5. This provides a valuable data set for assessing what societal and ecological impacts might be avoided through a moderate mitigation strategy in contrast to a fossil fuel intensive future. We present some early analyses of these combined ensembles to assess to what degree the climate variability can be considered to combine linearly with the underlying forced response. In regions where there is no detectable relationship between the mean state and the variability about the mean trajectory, then linear assumptions can be trivially exploited to utilize a single ensemble or control simulation to characterize the variability in any scenario of interest. We highlight regions where there is a detectable nonlinearity in extreme event frequency, how far in the future they will be manifested and propose mechanisms to account for these effects.

  17. NEA Mitigation Studies for Short Warning Time Scenarios

    NASA Technical Reports Server (NTRS)

    Barbee, Brent; Syal, Megan Bruck; Gisler, Galen

    2016-01-01

    This talk describes current collaborative research efforts between NASA GSFC and the Department of Energy's National Nuclear Security Administration (NNSA) national labs (Lawrence Livermore, Los Alamos, and Sandia) to design systems and frameworks for robust responses to short warning time near-Earth asteroid (NEA) scenarios, in which we would have less than 10 years to respond to an NEA on its way to impact the Earth.

  18. Allowable carbon emissions for a medium mitigation scenario

    NASA Astrophysics Data System (ADS)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Huntingford, C.; Kawamiya, M.

    2012-04-01

    The world climate research centres are currently running Earth System Models (ESMs) forced by Representative Concentration Pathways (RCP) scenarios. Based on these future pathways in atmospheric greenhouse gas concentrations, the emphasis has been mainly on estimating the associated levels of global warming that might be expected. There is also the important task of determining emission trajectories associated with the pathways, that may then be assessed by socio-economists for feasibility. Here we use an earth system model of intermediate complexity and a probabilistic framework to estimate the range of future temperature change and allowable emissions corresponding to a medium CO2 concentration pathway (RCP4.5). Uncertainty is initially estimated by allowing the equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical processes to vary within the widely accepted ranges. The results are then further constrained by extensive use of contemporary measurements. The resulting range of temperatures corresponding to RCP4.5 remains large. By year 2300, the predicted global temperature increase from pre-industrial has ± 2 standard deviation range of 1.4K, either side of a mean of 3.0K with 91% probability for increase over 2K. This result has major implications for future planning, as the difference between the upper and lower levels of warming may be expected to be enormous in terms of impacts, and quite possibly could differentiate between what is deemed "dangerous change" or otherwise. After constraint using contemporary data, the ensemble mean of the experiment allows similar emissions to the standard RCP4.5 emission scenario. The allowable emission for the peak emission period is projected as 11.5±2.0 PgC yr-1. Our ensemble demonstrates that, with high probability, drastic cuts in emissions will be required and that there is a probability of around 2% that there will need to be an extended period of time with global negative

  19. The current biodiversity extinction event: Scenarios for mitigation and recovery

    PubMed Central

    Novacek, Michael J.; Cleland, Elsa E.

    2001-01-01

    The current massive degradation of habitat and extinction of species is taking place on a catastrophically short timescale, and their effects will fundamentally reset the future evolution of the planet's biota. The fossil record suggests that recovery of global ecosystems has required millions or even tens of millions of years. Thus, intervention by humans, the very agents of the current environmental crisis, is required for any possibility of short-term recovery or maintenance of the biota. Many current recovery efforts have deficiencies, including insufficient information on the diversity and distribution of species, ecological processes, and magnitude and interaction of threats to biodiversity (pollution, overharvesting, climate change, disruption of biogeochemical cycles, introduced or invasive species, habitat loss and fragmentation through land use, disruption of community structure in habitats, and others). A much greater and more urgently applied investment to address these deficiencies is obviously warranted. Conservation and restoration in human-dominated ecosystems must strengthen connections between human activities, such as agricultural or harvesting practices, and relevant research generated in the biological, earth, and atmospheric sciences. Certain threats to biodiversity require intensive international cooperation and input from the scientific community to mitigate their harmful effects, including climate change and alteration of global biogeochemical cycles. In a world already transformed by human activity, the connection between humans and the ecosystems they depend on must frame any strategy for the recovery of the biota. PMID:11344295

  20. The current biodiversity extinction event: scenarios for mitigation and recovery.

    PubMed

    Novacek, M J; Cleland, E E

    2001-05-01

    The current massive degradation of habitat and extinction of species is taking place on a catastrophically short timescale, and their effects will fundamentally reset the future evolution of the planet's biota. The fossil record suggests that recovery of global ecosystems has required millions or even tens of millions of years. Thus, intervention by humans, the very agents of the current environmental crisis, is required for any possibility of short-term recovery or maintenance of the biota. Many current recovery efforts have deficiencies, including insufficient information on the diversity and distribution of species, ecological processes, and magnitude and interaction of threats to biodiversity (pollution, overharvesting, climate change, disruption of biogeochemical cycles, introduced or invasive species, habitat loss and fragmentation through land use, disruption of community structure in habitats, and others). A much greater and more urgently applied investment to address these deficiencies is obviously warranted. Conservation and restoration in human-dominated ecosystems must strengthen connections between human activities, such as agricultural or harvesting practices, and relevant research generated in the biological, earth, and atmospheric sciences. Certain threats to biodiversity require intensive international cooperation and input from the scientific community to mitigate their harmful effects, including climate change and alteration of global biogeochemical cycles. In a world already transformed by human activity, the connection between humans and the ecosystems they depend on must frame any strategy for the recovery of the biota. PMID:11344295

  1. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating

    PubMed Central

    Hejazi, Mohamad I.; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M.; Fortin, Daniel C.; Hathaway, John E.; Huang, Maoyi; Kyle, Page; Leung, L. Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L.; Pulsipher, Trenton C.; Rice, Jennie S.; Tesfa, Teklu K.; Vernon, Chris R.; Zhou, Yuyu

    2015-01-01

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate–energy–water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation. PMID:26240363

  2. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating.

    PubMed

    Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu

    2015-08-25

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation. PMID:26240363

  3. Global Food Demand Scenarios for the 21st Century

    PubMed Central

    Biewald, Anne; Weindl, Isabelle; Popp, Alexander; Lotze-Campen, Hermann

    2015-01-01

    Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries. PMID:26536124

  4. Global Food Demand Scenarios for the 21st Century.

    PubMed

    Bodirsky, Benjamin Leon; Rolinski, Susanne; Biewald, Anne; Weindl, Isabelle; Popp, Alexander; Lotze-Campen, Hermann

    2015-01-01

    Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries. PMID:26536124

  5. Energy Structure and Energy Security under Climate Mitigation Scenarios in China

    PubMed Central

    Matsumoto, Ken’ichi

    2015-01-01

    This study investigates how energy structure and energy security in China will change in the future under climate mitigation policy scenarios using Representative Concentration Pathways in a computable general equilibrium model. The findings suggest that to reduce greenhouse gas emissions, China needs to shift its energy structure from fossil fuel dominance to renewables and nuclear. The lower the allowable emissions, the larger the shifts required. Among fossil fuels, coal use particularly must significantly decrease. Such structural shifts will improve energy self-sufficiency, thus enhancing energy security. Under the policy scenarios, energy-source diversity as measured by the Herfindahl Index improves until 2050, after which diversity declines because of high dependence on a specific energy source (nuclear and biomass). Overall, however, it is revealed that energy security improves along with progress in climate mitigation. These improvements will also contribute to the economy by reducing energy procurement risks. PMID:26660094

  6. Energy Structure and Energy Security under Climate Mitigation Scenarios in China.

    PubMed

    Matsumoto, Ken'ichi

    2015-01-01

    This study investigates how energy structure and energy security in China will change in the future under climate mitigation policy scenarios using Representative Concentration Pathways in a computable general equilibrium model. The findings suggest that to reduce greenhouse gas emissions, China needs to shift its energy structure from fossil fuel dominance to renewables and nuclear. The lower the allowable emissions, the larger the shifts required. Among fossil fuels, coal use particularly must significantly decrease. Such structural shifts will improve energy self-sufficiency, thus enhancing energy security. Under the policy scenarios, energy-source diversity as measured by the Herfindahl Index improves until 2050, after which diversity declines because of high dependence on a specific energy source (nuclear and biomass). Overall, however, it is revealed that energy security improves along with progress in climate mitigation. These improvements will also contribute to the economy by reducing energy procurement risks. PMID:26660094

  7. Climate scenarios for the American Southwest in the next century

    SciTech Connect

    Diaz, H.F.

    1995-12-31

    The climate of the Southwest US is governed by two separate large-scale regimes during the course of the year. In the winter half-year, disturbances in the westerlies supply 40--80% of the annual total precipitation in the region. The precipitation is associated with frontal systems sweeping from the west and north through the area, and with the development of upper level troughs and occasional cutoff lows in the upper atmosphere. During the summer half-year, and particularly during the months of July--September, a monsoonal-type circulation system develops along western Mexico and extends into the desert areas of the US Southwest producing locally heavy thunderstorms and floods. In early fall, eastern Pacific hurricanes, occasionally recurving to the north and east across northwestern Mexico, can also produce widespread rains and locally severe flooding in the region. With regards to future changes in climate forced by increasing atmospheric greenhouse-gas concentrations, the question arises, as to whether the annual precipitation in the region will be more affected by changes in the winter-time regime, that is, through a modification of the polar jet stream and associated extratropical cyclone tracks, or whether an increase in the summer monsoon system will, at least in part, make up for a potential winter decline in precipitation. An increase in convective summer-season rainfall will also be accompanied by enhanced soil erosion, arroyo cutting, greater sediment loads in the region`s streams, and other problems. Climatic changes resulting from the enhanced greenhouse effect will be superimposed on a rich spectrum of naturally occurring climatic variability at the relevant time scales that are of interest here, namely, decadal to century fluctuations.

  8. How nuclear war might start: Scenarios from the early 21st century. Interim report

    SciTech Connect

    Digby, J.; Millot, M.D.; Schwabe, W.L.

    1988-10-01

    Scenarios are a useful way to make responsible officials think hard about the future. For officials in the Department of Defense, some of these scenarios must consider the actual use of nuclear weapons, so that they will be better prepared to avoid such situations. To encourage breadth in the formulation of games for official purposes, RAND responded to a request from the Director of Net Assessment to create a number of scenarios for the early 21st century in which conflict would occur or be likely and in which due attention would be given to the political and technological conditions that might then be operational. This Note presents a wide range of such scenarios in sketch form. Several of the scenarios assume varying degrees of success for elements of the current Strategic Defense Initiative program, for new applications of stealth technology, for the National Aerospace Plane, for nonnuclear strategic weapons, and for new surveillance techniques. Applications range from battlefield uses to strategic options.

  9. Failure Scenarios and Mitigations and for the BaBar Superconducting Solenoid

    SciTech Connect

    Thompson, EunJoo; Candia, A.; Craddock, W.W.; Racine, M.; Weisend, J.G., II; /SLAC

    2005-12-13

    The cryogenic department at the Stanford Linear Accelerator Center is responsible for the operation, troubleshooting, and upgrade of the 1.5 Tesla superconducting solenoid detector for the BABAR B-factory experiment. Events that disable the detector are rare but significantly impact the availability of the detector for physics research. As a result, a number of systems and procedures have been developed over time to minimize the downtime of the detector, for example improved control systems, improved and automatic backup systems, and spares for all major components. Together they can prevent or mitigate many of the failures experienced by the utilities, mechanical systems, controls and instrumentation. In this paper we describe various failure scenarios, their effect on the detector, and the modifications made to mitigate the effects of the failure. As a result of these modifications the reliability of the detector has increased significantly with only 3 shutdowns of the detector due to cryogenics systems over the last 2 years.

  10. Quantifying climate change mitigation potential in Great Plains wetlands for three greenhouse gas emission scenarios

    USGS Publications Warehouse

    Byrd, Kristin B.; Ratliff, Jamie L.; Wein, Anne; Bliss, Norman B.; Sleeter, Benjamin M.; Sohl, Terry L.; Li, Zhengpeng

    2015-01-01

    We examined opportunities for avoided loss of wetland carbon stocks in the Great Plains of the United States in the context of future agricultural expansion through analysis of land-use land-cover (LULC) change scenarios, baseline carbon datasets and biogeochemical model outputs. A wetland map that classifies wetlands according to carbon pools was created to describe future patterns of carbon loss and potential carbon savings. Wetland avoided loss scenarios, superimposed upon LULC change scenarios, quantified carbon stocks preserved under criteria of carbon densities or land value plus cropland suitability. Up to 3420 km2 of wetlands may be lost in the region by 2050, mainly due to conversion of herbaceous wetlands in the Temperate Prairies where soil organic carbon (SOC) is highest. SOC loss would be approximately 0.20 ± 0.15 megagrams of carbon per hectare per year (MgC ha−1 yr−1), depending upon tillage practices on converted wetlands, and total ecosystem carbon loss in woody wetlands would be approximately 0.81 ± 0.41 MgC ha−1 yr−1, based on biogeochemical model results. Among wetlands vulnerable to conversion, wetlands in the Northern Glaciated Plains and Lake Agassiz Plains ecoregions exhibit very high mean SOC and on average, relatively low land values, potentially creating economically competitive opportunities for avoided carbon loss. This mitigation scenarios approach may be adapted by managers using their own preferred criteria to select sites that best meet their objectives. Results can help prioritize field-based assessments, where site-level investigations of carbon stocks, land value, and consideration of local priorities for climate change mitigation programs are needed.

  11. Scenarios of Global Municipal Water-Use Demand Projections over the 21st Century

    SciTech Connect

    Hejazi, Mohamad I.; Edmonds, James A.; Chaturvedi, Vaibhav; Davies, Evan; Eom, Jiyong

    2013-03-06

    This paper establishes three future projections of global municipal water use to the end of the 21st century: A reference business-as usual (BAU) scenario, a High Technological Improvement (High Tech) scenario and a Low Technological Improvement (Low Tech) scenario. A global municipal water demand model is constructed using global water use statistics at the country-scale, calibrated to the base year of 2005, and simulated to the end of the 21st century. Since the constructed water demand model hinges on socioeconomic variables (population, income), water price, and end-use technology and efficiency improvement rates, projections of those input variables are adopted to characterize the uncertainty in future water demand estimates. The water demand model is linked to the Global Change Assessment Model (GCAM), a global change integrated assessment model. Under the reference scenario, the global total water withdrawal increases from 466 km3/year in 2005 to 941 km3/year in 2100,while withdrawals in the high and low tech scenarios are 321 km3/ year and 2000 km3/ year, respectively. This wide range (321-2000 km3/ year) indicates the level of uncertainty associated with such projections. The simulated global municipal demand projections are most sensitive to population and income projections, then to end-use technology and efficiency projections, and finally to water price. Thus, using water price alone as a policy measure to reduce municipal water use may substantiate the share of municipal water price of people’s annual incomes.

  12. Scenarios of large mammal loss in Europe for the 21st century.

    PubMed

    Rondinini, Carlo; Visconti, Piero

    2015-08-01

    Distributions and populations of large mammals are declining globally, leading to an increase in their extinction risk. We forecasted the distribution of extant European large mammals (17 carnivores and 10 ungulates) based on 2 Rio+20 scenarios of socioeconomic development: business as usual and reduced impact through changes in human consumption of natural resources. These scenarios are linked to scenarios of land-use change and climate change through the spatial allocation of land conversion up to 2050. We used a hierarchical framework to forecast the extent and distribution of mammal habitat based on species' habitat preferences (as described in the International Union for Conservation of Nature Red List database) within a suitable climatic space fitted to the species' current geographic range. We analyzed the geographic and taxonomic variation of habitat loss for large mammals and the potential effect of the reduced impact policy on loss mitigation. Averaging across scenarios, European large mammals were predicted to lose 10% of their habitat by 2050 (25% in the worst-case scenario). Predicted loss was much higher for species in northwestern Europe, where habitat is expected to be lost due to climate and land-use change. Change in human consumption patterns was predicted to substantially improve the conservation of habitat for European large mammals, but not enough to reduce extinction risk if species cannot adapt locally to climate change or disperse. PMID:25999066

  13. Mitigation Policy Scenario of Space Debris Threat Related with National Security

    NASA Astrophysics Data System (ADS)

    Herdiansyah, Herdis; Frimawaty, Evy; Munir, Ahmad

    2016-02-01

    The development of air space recently entered a new phase, when the space issues correlated with the future of a country. In past time, the space authorization was related with advancing technology by many space mission and various satellite launchings, or it could be said that who ruled technology will rule the space. Therefore, the numerous satellites in the space could be a threat for the countries which are mainly located in the path of the satellite, especially in the equatorial region including Indonesia. This study aims to create a policy scenario in mitigating the threat of space debris. The results showed that although space debris was not threatened national security for now, but the potential and its impact on the future potentially harmful. The threats of orbit circulation for some experts considered as a threat for national security, because its danger potential which caused by space debris could significantly damage the affected areas. However, until now Indonesia has no comprehensive mitigation strategy for space matters although it has been ratified by the United Nations Convention.

  14. Integrated Assessment of Global Water Scarcity over the 21st Century under Multiple Climate Change Mitigation Policies

    SciTech Connect

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-01-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and a global population of 14 billion by 2095, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demand for water exceeds the amount of water availability in two GCAM regions, the Middle East and India. Additionally, in years 2050 and 2095, 20% and 27% of the global population, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). This study implies an increasingly prominent role for water in future human decisions, and highlights the importance of including water in integrated assessment of global change.

  15. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios

    NASA Astrophysics Data System (ADS)

    Adloff, Fanny; Somot, Samuel; Sevault, Florence; Jordà, Gabriel; Aznar, Roland; Déqué, Michel; Herrmann, Marine; Marcos, Marta; Dubois, Clotilde; Padorno, Elena; Alvarez-Fanjul, Enrique; Gomis, Damià

    2015-11-01

    The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air-sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961-2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001-2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air-sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070-2099 period compared to 1961-1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in

  16. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios

    NASA Astrophysics Data System (ADS)

    Trusel, Luke D.; Frey, Karen E.; Das, Sarah B.; Karnauskas, Kristopher B.; Kuipers Munneke, Peter; van Meijgaard, Erik; van den Broeke, Michiel R.

    2015-12-01

    Ice shelves modulate Antarctic contributions to sea-level rise and thereby represent a critical, climate-sensitive interface between the Antarctic ice sheet and the global ocean. Following rapid atmospheric warming over the past decades, Antarctic Peninsula ice shelves have progressively retreated, at times catastrophically. This decay supports hypotheses of thermal limits of viability for ice shelves via surface melt forcing. Here we use a polar-adapted regional climate model and satellite observations to quantify the nonlinear relationship between surface melting and summer air temperature. Combining observations and multimodel simulations, we examine melt evolution and intensification before observed ice shelf collapse on the Antarctic Peninsula. We then assess the twenty-first-century evolution of surface melt across Antarctica under intermediate and high emissions climate scenarios. Our projections reveal a scenario-independent doubling of Antarctic-wide melt by 2050. Between 2050 and 2100, however, significant divergence in melt occurs between the two climate scenarios. Under the high emissions pathway by 2100, melt on several ice shelves approaches or surpasses intensities that have historically been associated with ice shelf collapse, at least on the northeast Antarctic Peninsula.

  17. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    SciTech Connect

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2013-01-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline underlying socioeconomic assumptions, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095 with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  18. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.

    2013-03-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  19. Mitigation of hurricane storm surge impacts: Modeling scenarios over wide continental shelves

    NASA Astrophysics Data System (ADS)

    Lima Rego, Joao; Li, Chunyan

    2010-05-01

    The improvement of present understanding of surge dynamics over wide and shallow shelves is vital for the improvement of our ability to forecast storm surge impacts to coastal regions, particularly the low-lying land areas that are most vulnerable to hurricane flooding (e.g. the Northern Gulf of Mexico, coastal Bangladesh, the Southeast China sea). Given the increase of global sea-surface temperature, both the total number and proportion of intense tropical cyclones have increased notably since 1970 (Emanuel, 2005; Nature). Therefore, more intense hurricanes may hit densely populated coastal regions, and this problem may be aggravated by the prospect of accelerated sea-level rise in the 21st century. This presentation offers a review of recent work on hurricane-induced storm surge. The finite-volume coastal ocean model ("FVCOM", by Chen et al., 2003; J. Atmos. Ocean Tech.) was applied to the storm surge induced by Hurricanes Rita and Ike along the coasts of Louisiana and Texas in 2005 and 2008, respectively, to study coastal storm surge dynamics. The sensitivity analysis of Rego and Li (2009; Geophys. Res. Lett.) demonstrated how stronger, wider or faster tropical cyclones would affect coastal flooding. Li, Weeks and Rego (2009; Geophys. Res. Lett) looked into how hurricane flooding and receding dynamics differ, concluding that the overland flow in the latter stage is of considerable importance. Rego and Li (2010; J. Geophys. Res.) showed how extreme events may result of a combination of non-extreme factors, by studying the nonlinear interaction of tide and hurricane surge. The ability of models to reproduce these extreme events and to proactive plan for damage reduction is covered in Rego and Li's (2010; J. Marine Syst.) study of how barrier island systems protect coastal bays from offshore surge propagation. Here we combine these results for a wider perspective on how hurricane flooding could be mitigated under changing conditions.

  20. Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario

    DOE PAGESBeta

    Neumeyer, Charles; Goldston, Robert

    2016-04-28

    Abstract: The Energy Return on Investment (EROI) is an important measure of the energy gain of an electrical power generating facility that is typically evaluated based on the life cycle energy balance of a single facility. The EROI concept can be extended to cover a collection of facilities that comprise a complete power system and used to assess the expansion and evolution of a power system as it transitions from one portfolio mix of technologies to another over time. In this study we develop a dynamic EROI model that simulates the evolution of a power system and we perform anmore » EROI simulation of one of the electricity production scenarios developed under the auspices of the Intergovernmental Panel on Climate Change (IPCC) covering the global supply of electricity in the 21st century. Our analytic tool provides the means for evaluation of dynamic EROI based on arbitrary time-dependent demand scenarios by modeling the required expansion of power generation, including the plowback needed for new construction and to replace facilities as they are retired. The results provide insight into the level of installed and delivered power, above and beyond basic consumer demand, that is required to support construction during expansion, as well as the supplementary power that may be required if plowback constraints are imposed. In addition, sensitivity to EROI parameters, and the impact of energy storage efficiency are addressed.« less

  1. Scenarios of 21st-century trans-Arctic shipping for climate studies

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Davis, S. J.; Zender, C. S.; Smith, L. C.

    2013-12-01

    Receding Arctic sea ice coupled with increased resource demand in east Asia have recast the Arctic as an international trade space facilitating export of petroleum and minerals and offering potential alternative pathways for global maritime trade. Several studies have examined the future impact of increased vessel traffic in the Arctic on emissions of greenhouse gases and black carbon (BC); however, the net impact of these emissions on climate forcing in the region is not well understood. Here we present several scenarios of 21st-century trans-Arctic shipping for climate studies. Vessel transits between 5 east Asian ports (Tianjin, Shanghai, Hong Kong, Tokyo/Yokohama, Busan) and 2 European ports (Rotterdam, Hamburg) are estimated from 2010-2050 according to projected sea ice concentration and thickness, trends in cargo export volumes, and vessel ice class and cargo capacity. Sea ice data are represented by a 7-model ensemble mean from CMIP5 under two forcing scenarios (RCP 4.5/8.5). Emissions presented (CO2, CH4, N2O, NOx, SOx, BC) are obtained by convolving projected transits with trends in emissions factors. Results illustrate a range of emissions inventories for the Arctic owing to differences in vessel accessibility, trade volume, routes, and fuel mixtures.

  2. Projecting Changes in S. Florida Rainfall for the 21st century: Scenarios, Downscaling and Analysis

    NASA Astrophysics Data System (ADS)

    Cioffi, F.; Lall, U.; Monti, A.

    2013-12-01

    A Non-Homogeneous hidden Markov Models (NHMM) is developed using a 65-years record (1948-2012) of daily rainfall amount at nineteen stations in South Florida and re-analysis atmospheric fields of Temperature (T) at 1000 hPa, Geo Potential Height (GPH) at 1000 hPa, Meridional Winds (MW) and Zonal Winds (ZW) at 850 hPa, and Zonal Winds on the specific latitude of 27N (ZW27N) from 10 to 1000 hPa. The NHMM fitted is then used for predicting future rainfall patterns under global warming scenario (RCP8.5), using predictors from the CMCC-CMS simulations from 1950-2100. The model directly includes a consideration of seasonality through changes in the driving variables thus addressing the question of how future changes in seasonality of precipitation can also be modeled. The results of the simulations obtained by using the downscaling model NHMM, with predictors derived from the simulations of CMCC-CMS CGM, in the worst conditions of global warming as simulated by RCP8.5 scenario, seems to indicate that, as a consequence of increase of CO2 concentration and temperature, South Florida should be subjected to more frequent dry conditions for the most part of the year, due mainly to a reduction of number of wet days and, at the same time, the territory should be also affected by extreme rainfall events that are more intense than the present ones. What appears from results is an increases of rainfall variability. This scenario seems coherent with the trends of rainfall patterns observed in the XX century. An investigation on the causes of such hydrologic changes, and specifically on the role of North Atlantic Subtropical High is pursued.

  3. A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY GLOBAL WARMING SCENARIOS

    SciTech Connect

    Race, Caitlin; Steinbach, Michael; Ganguly, Auroop R; Semazzi, Fred; Kumar, Vipin

    2010-01-01

    The connections among greenhouse-gas emissions scenarios, global warming, and frequencies of hurricanes or tropical cyclones are among the least understood in climate science but among the most fiercely debated in the context of adaptation decisions or mitigation policies. Here we show that a knowledge discovery strategy, which leverages observations and climate model simulations, offers the promise of developing credible projections of tropical cyclones based on sea surface temperatures (SST) in a warming environment. While this study motivates the development of new methodologies in statistics and data mining, the ability to solve challenging climate science problems with innovative combinations of traditional and state-of-the-art methods is demonstrated. Here we develop new insights, albeit in a proof-of-concept sense, on the relationship between sea surface temperatures and hurricane frequencies, and generate the most likely projections with uncertainty bounds for storm counts in the 21st-century warming environment based in turn on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Our preliminary insights point to the benefits that can be achieved for climate science and impacts analysis, as well as adaptation and mitigation policies, by a solution strategy that remains tailored to the climate domain and complements physics-based climate model simulations with a combination of existing and new computational and data science approaches.

  4. Divergent trajectories of Antarctic ice shelf surface melt under 21st century climate scenarios

    NASA Astrophysics Data System (ADS)

    Trusel, L. D.; Frey, K. E.; Das, S. B.; Kuipers Munneke, P.; van Meijgaard, E.

    2014-12-01

    Antarctic ice shelves represent a critical interface between continental ice masses and the surrounding ocean. Breakup events of several ice shelves in recent decades have been linked to an increase in intense surface melting, and have in turn lead to cascading effects including accelerated glacier discharge into the ocean. In this study, we utilized sophisticated regional and global climate models (GCMs) to assess potential future surface melt trajectories across Antarctica under two climate scenarios (RCP4.5 and RCP8.5). RACMO2.1, a polar-adapted regional atmospheric climate model, was forced by the ERA-Interim reanalysis (1980-2010) and by two GCMs, EC-EARTH and HadGEM2-ES (2007-2100). Using RACMO2.1, we observed an exponential growth function well represents the relationship between ice shelf surface meltwater production and mean summer (DJF) 2-meter air temperature (t2m). We employed this melt-t2m relationship to project melt using t2m output from an ensemble of five CMIP5-based GCMs incorporating the NCAR Community Land Model 4 (CLM4), following spatial downscaling and bias correction using t2m from ERA-Interim-forced RACMO2.1. Our resulting GCM-derived melt projections provide an independent and methodologically unique perspective into potential future melt pathways, complementary to those derived from RACMO2.1. Most notably, both RACMO2.1 and the CMIP5 ensemble reveal divergent trajectories of meltwater production beyond 2050 under the two climate scenarios. For many ice shelves in RCP4.5, meltwater production through 2100 remains at levels comparable to present. Conversely, under RCP8.5 all methods indicate non-linear melt intensification, resulting in a four-fold increase in the Antarctic-wide meltwater volume by the end of the 21st century. For some ice shelves, including Larsen C and Wilkins (Antarctic Peninsula), and Shackleton and West (Wilkes Land), spatially averaged end-of-century meltwater production within RCP8.5 approaches or surpasses levels

  5. Capital investment requirements for greenhouse gas emissions mitigation in power generation on near term to century time scales and global to regional spatial scales

    SciTech Connect

    Chaturvedi, Vaibhav; Clarke, Leon E.; Edmonds, James A.; Calvin, Katherine V.; Kyle, G. Page

    2014-11-01

    Electrification plays a crucial role in cost-effective greenhouse gas emissions mitigation strategies. Such strategies in turn carry implications for financial capital markets. This paper explores the implication of climate mitigation policy for capital investment demands by the electric power sector on decade to century time scales. We go further to explore the implications of technology performance and the stringency of climate policy for capital investment demands by the power sector. Finally, we discuss the regional distribution of investment demands. We find that stabilizing GHG emissions will require additional investment in the electricity generation sector over and above investments that would be need in the absence of climate policy, in the range of 16 to 29 Trillion US$ (60-110%) depending on the stringency of climate policy during the period 2015 to 2095 under default technology assumptions. This increase reflects the higher capital intensity of power systems that control emissions. Limits on the penetration of nuclear and carbon capture and storage technology could increase costs substantially. Energy efficiency improvements can reduce the investment requirement by 8 to21 Trillion US$ (default technology assumptions), depending on climate policy scenario with higher savings being obtained under the most stringent climate policy. The heaviest investments in power generation were observed in the China, India, SE Asia and Africa regions with the latter three regions dominating in the second half of the 21st century.

  6. Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century.

    PubMed

    Nicholls, Robert J; Tol, Richard S J

    2006-04-15

    Taking the Special Report on Emission Scenarios (SRES) climate and socio-economic scenarios (A1FI, A2, B1 and B2 'future worlds'), the potential impacts of sea-level rise through the twenty-first century are explored using complementary impact and economic analysis methods at the global scale. These methods have never been explored together previously. In all scenarios, the exposure and hence the impact potential due to increased flooding by sea-level rise increases significantly compared to the base year (1990). While mitigation reduces impacts, due to the lagged response of sea-level rise to atmospheric temperature rise, impacts cannot be avoided during the twenty-first century by this response alone. Cost-benefit analyses suggest that widespread protection will be an economically rational response to land loss due to sea-level rise in the four SRES futures that are considered. The most vulnerable future worlds to sea-level rise appear to be the A2 and B2 scenarios, which primarily reflects differences in the socio-economic situation (coastal population, Gross Domestic Product (GDP) and GDP/capita), rather than the magnitude of sea-level rise. Small islands and deltaic settings stand out as being more vulnerable as shown in many earlier analyses. Collectively, these results suggest that human societies will have more choice in how they respond to sea-level rise than is often assumed. However, this conclusion needs to be tempered by recognition that we still do not understand these choices and significant impacts remain possible. Future worlds which experience larger rises in sea-level than considered here (above 35 cm), more extreme events, a reactive rather than proactive approach to adaptation, and where GDP growth is slower or more unequal than in the SRES futures remain a concern. There is considerable scope for further research to better understand these diverse issues. PMID:16537156

  7. Projecting Changes in Tanzania Rainfall for the 21st century: Scenarios, Downscaling and Analysis"

    NASA Astrophysics Data System (ADS)

    Cioffi, Francesco; Monti, Alessandro; Lall, Upmanu

    2014-05-01

    A Non-Homogeneous hidden Markov Models (NHMM) is developed using a 40-years record (1950-1990) of daily rainfall amount at eleven stations in Tanzania and re-analysis atmospheric fields of Temperature (T) at 1000 hPa, Geo Potential Height (GPH) at 1000 hPa, Meridional Winds (MW) and Zonal Winds (ZW) at 850 hPa, and Zonal Winds along the Equator, and from 10 to 1000 hPa along the vertical. The NHMM fitted is then used for predicting future rainfall patterns under global warming scenario (RCP8.5), using predictors from the CMCC-CMS simulations from 1950-2100. The model directly includes a consideration of seasonality through changes in the driving variables thus addressing the question of how future changes in seasonality of precipitation can also be modeled. The results of the simulations obtained by using the downscaling model NHMM, with predictors derived from the simulations of CMCC-CMS CGM, in the worst conditions of global warming as simulated by RCP8.5 scenario, seems to indicate that, as a consequence of increase of CO2 concentration and temperature, Tanzania should be subjected to a reduction of total annual rainfall; this reduction is concentrated in the wet seasons, both MAM and OND, mainly as a consequence of decreasing of seasonal number of wet days. The tendency towards drier conditions is partially compensated by a slight increasing of precipitation in the dry season JJAS. Frequency and Intensity of extreme events don't show any evident trend during the 21 century. An investigation on the causes of such hydrologic changes, and specifically on the role of Intertropical Convergence Zone ITCZ and Indian Ocean dipole IOD is pursued.

  8. Scenario Analysis on Global Hydropower Development Paths and Their Contribution to GHG Mitigation Utilizing a Dynamic CGE Model

    NASA Astrophysics Data System (ADS)

    Qian, Z.; Hanasaki, N.; Fujimori, S.; Masaki, Y.; Hijioka, Y.

    2015-12-01

    Currently, hydropower accounts for 16% of the worldwide electricity power supply and 86% of the total renewable electricity energy source due to its low cost, low greenhouse gas (GHG) emission, and relatively high reliability. It is well known that the global hydropower has not yet been fully developed, but the future paths of development and corresponding contribution to GHG mitigation in each region combined with socioeconomic activities are less known. Here we investigated following three questions. How much will hydropower generation increase in the future? Will hydropower generation reach the economically exploitable capability (EEC)? If this will be the case, when and where will it occur? How much GHG emission will be reduced by adding new hydropower? In order to address these questions, we used the AIM/CGE model, a dynamic computable general equilibrium model to quantify the global hydropower development paths and corresponding GHG mitigation contribution for 17 regions in the world associated with a socio-economic scenario termed SSP2. We compared two scenarios with different assumptions on EEC. One is BAU which takes EEC from the report of "World Energy Resources", the other is FIX_BAU which fix EEC at the current hydropower generation amount throughout the research period (2005-2100) or no additional installation of hydropower plants. The comparison between two scenarios indicated that promoting hydropower development contributed to GHG emission reduction globally but the magnitude varied by region. For example we found that in North Africa, hydropower development grew fast because of the rapid economic development, but it reached EEC as soon as in 2040 because of limitation in EEC due to its climatic and geographical conditions. Conversely, in Brazil, it grew steadily and did not reach its abundant EEC. Consequently, GHG mitigation contribution of North Africa is far less than Brazil. This research provides important information for policy makers to

  9. Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios

    SciTech Connect

    Kao, Shih-Chieh; Ganguly, Auroop R

    2011-01-01

    Recent research on the projection of precipitation extremes has either focused on conceptual physical mechanisms that generate heavy precipitation or rigorous statistical methods that extrapolate tail behavior. However, informing both climate prediction and impact assessment requires concurrent physically and statistically oriented analysis. A combined examination of climate model simulations and observation-based reanalysis data sets suggests more intense and frequent precipitation extremes under 21st-century warming scenarios. Utilization of statistical extreme value theory and resampling-based uncertainty quantification combined with consideration of the Clausius-Clapeyron relationship reveals consistently intensifying trends for precipitation extremes at a global-average scale. However, regional and decadal analyses reveal specific discrepancies in the physical mechanisms governing precipitation extremes, as well as their statistical trends, especially in the tropics. The intensifying trend of precipitation extremes has quantifiable impacts on intensity-duration-frequency curves, which in turn have direct implications for hydraulic engineering design and water-resources management. The larger uncertainties at regional and decadal scales suggest the need for caution during regional-scale adaptation or preparedness decisions. Future research needs to explore the possibility of uncertainty reduction through higher resolution global climate models, statistical or dynamical downscaling, as well as improved understanding of precipitation extremes processes.

  10. Forest carbon response to management scenarios intended to mitigate GHG emissions and reduce fire impacts in the US West Coast region

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Law, B. E.; Thornton, P. E.; Luyssaert, S.

    2012-12-01

    US West coast forests are among the most carbon dense biomes in the world and the potential for biomass accumulation in mesic coastal forests is the highest recorded (Waring and Franklin 1979, Hudiburg et al. 2009). Greenhouse gas (GHG) mitigation strategies have recently expanded to include forest woody biomass as bioenergy, with the expectation that this will also reduce forest mortality. We examined forest carbon response and life cycle assessment (LCA) of net carbon emissions following varying combinations of bioenergy management scenarios in Pacific Northwest forests for the period from 2010-2100. We use the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP4.5 and RCP 8.5 scenarios. Bioenergy management strategies include a repeated thinning harvest, a repeated clearcut harvest, and a single salvage harvest in areas with projected insect-related mortality. None of the bioenergy management scenarios reduce net emissions to the atmosphere compared to continued business-as-usual harvest (BAU) by the end of the 21st century. Forest regrowth and reduced fire emissions are not large enough to balance the wood removals from harvest. Moreover, the substitution of wood for fossil fuel energy and products is not large enough to offset the wood losses through decomposition and combustion. However, in some ecoregions (Blue Mountains and East Cascades), emissions from the thinning harvests begin to improve over BAU at the end of the century and could lead to net reductions in those ecoregions over a longer time period (> 100 years). For salvage logging, there is no change compared to BAU emissions by the end of the 21st century because the treatment area is minimal compared to the other treatments and only performed once. These results suggest that managing forests for carbon sequestration will need to include a variety of approaches accounting for forest baseline conditions and in some

  11. Planning ahead for asteroid and comet hazard mitigation, phase 1: parameter space exploration and scenario modeling

    SciTech Connect

    Plesko, Catherine S; Clement, R Ryan; Weaver, Robert P; Bradley, Paul A; Huebner, Walter F

    2009-01-01

    The mitigation of impact hazards resulting from Earth-approaching asteroids and comets has received much attention in the popular press. However, many questions remain about the near-term and long-term, feasibility and appropriate application of all proposed methods. Recent and ongoing ground- and space-based observations of small solar-system body composition and dynamics have revolutionized our understanding of these bodies (e.g., Ryan (2000), Fujiwara et al. (2006), and Jedicke et al. (2006)). Ongoing increases in computing power and algorithm sophistication make it possible to calculate the response of these inhomogeneous objects to proposed mitigation techniques. Here we present the first phase of a comprehensive hazard mitigation planning effort undertaken by Southwest Research Institute and Los Alamos National Laboratory. We begin by reviewing the parameter space of the object's physical and chemical composition and trajectory. We then use the radiation hydrocode RAGE (Gittings et al. 2008), Monte Carlo N-Particle (MCNP) radiation transport (see Clement et al., this conference), and N-body dynamics codes to explore the effects these variations in object properties have on the coupling of energy into the object from a variety of mitigation techniques, including deflection and disruption by nuclear and conventional munitions, and a kinetic impactor.

  12. Forecasting the Effects of Land Use Scenarios on Farmland Birds Reveal a Potential Mitigation of Climate Change Impacts

    PubMed Central

    Princé, Karine; Lorrillière, Romain; Barbet-Massin, Morgane; Léger, François; Jiguet, Frédéric

    2015-01-01

    Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES) to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture) showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform sustainable

  13. Assessment of the water supply:demand ratios in a Mediterranean basin under different global change scenarios and mitigation alternatives.

    PubMed

    Boithias, Laurie; Acuña, Vicenç; Vergoñós, Laura; Ziv, Guy; Marcé, Rafael; Sabater, Sergi

    2014-02-01

    Spatial differences in the supply and demand of ecosystem services such as water provisioning often imply that the demand for ecosystem services cannot be fulfilled at the local scale, but it can be fulfilled at larger scales (regional, continental). Differences in the supply:demand (S:D) ratio for a given service result in different values, and these differences might be assessed with monetary or non-monetary metrics. Water scarcity occurs where and when water resources are not enough to meet all the demands, and this affects equally the service of water provisioning and the ecosystem needs. In this study we assess the value of water in a Mediterranean basin under different global change (i.e. both climate and anthropogenic changes) and mitigation scenarios, with a non-monetary metric: the S:D ratio. We computed water balances across the Ebro basin (North-East Spain) with the spatially explicit InVEST model. We highlight the spatial and temporal mismatches existing across a single hydrological basin regarding water provisioning and its consumption, considering or not, the environmental demand (environmental flow). The study shows that water scarcity is commonly a local issue (sub-basin to region), but that all demands are met at the largest considered spatial scale (basin). This was not the case in the worst-case scenario (increasing demands and decreasing supply), as the S:D ratio at the basin scale was near 1, indicating that serious problems of water scarcity might occur in the near future even at the basin scale. The analysis of possible mitigation scenarios reveals that the impact of global change may be counteracted by the decrease of irrigated areas. Furthermore, the comparison between a non-monetary (S:D ratio) and a monetary (water price) valuation metrics reveals that the S:D ratio provides similar values and might be therefore used as a spatially explicit metric to valuate the ecosystem service water provisioning. PMID:24176705

  14. Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models

    SciTech Connect

    McNeil, Michael A.; de la Rue du Can, Stephane; McMahon, James E.

    2009-05-29

    This paper presents efforts to date and prospective goals towards development of a modelling and analysis framework which is comprehensive enough to address the global climate crisis, and detailed enough to provide policymakers with concrete targets and achievable outcomes. In terms of energy efficiency policy, this requires coverage of the entire world, with emphasis on countries and regions with large and/or rapidly growing energy-related emissions, and analysis at the 'technology' level-building end use, transport mode or industrial process. These elements have not been fully addressed by existing modelling efforts, which usually take either a top-down approach, or concentrate on a few fully industrialized countries where energy demand is well-understood. Inclusion of details such as appliance ownership rates, use patterns and efficiency levels throughout the world allows for a deeper understanding of the demand for energy today and, more importantly, over the coming decades. This is a necessary next step for energy analysts and policy makers in assessment of mitigation potentials. The modelling system developed at LBNL over the past 3 years takes advantage of experience in end use demand and in forecasting markets for energy-consuming equipment, in combination with known technology-based efficiency opportunities and policy types. A particular emphasis has been placed on modelling energy growth in developing countries. Experiences to date include analyses covering individual countries (China and India), end uses (refrigerators and air conditioners) and policy types (standards and labelling). Each of these studies required a particular effort in data collection and model refinement--they share, however, a consistent approach and framework which allows comparison, and forms the foundation of a comprehensive analysis system leading to a roadmap to address the greenhouse gas mitigation targetslikely to be set in the coming years.

  15. Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation

    NASA Astrophysics Data System (ADS)

    Friedlingstein, P.; Solomon, S.; Plattner, G.-K.; Knutti, R.; Ciais, P.; Raupach, M. R.

    2011-12-01

    Long-term future warming is primarily constrained by cumulative emissions of carbon dioxide. Previous studies have estimated that humankind has already emitted about 50% of the total amount allowed if warming, relative to pre-industrial, is to stay below 2°C (refs , ). Carbon dioxide emissions will thus need to decrease substantially in the future if this target is to be met. Here we show how links between near-term decisions, long-term behaviour and climate sensitivity uncertainties constrain options for emissions mitigation. Using a model of intermediate complexity, we explore the implications of non-zero long-term global emissions, combined with various near-term mitigation rates or delays in action. For a median climate sensitivity, a long-term 90% emission reduction relative to the present-day level is incompatible with a 2°C target within the coming millennium. Zero or negative emissions can be compatible with the target if medium to high emission-reduction rates begin within the next two decades. For a high climate sensitivity, however, even negative emissions would require a global mitigation rate at least as great as the highest rate considered feasible by economic models to be implemented within the coming decade. Only a low climate sensitivity would allow for a longer delay in mitigation action and a more conservative mitigation rate, and would still require at least 90% phase-out of emissions thereafter.

  16. Climate change impacts on the power generation potential of a European mid-century wind farms scenario

    NASA Astrophysics Data System (ADS)

    Tobin, Isabelle; Jerez, Sonia; Vautard, Robert; Thais, Françoise; van Meijgaard, Erik; Prein, Andreas; Déqué, Michel; Kotlarski, Sven; Fox Maule, Cathrine; Nikulin, Grigory; Noël, Thomas; Teichmann, Claas

    2016-03-01

    Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales.

  17. On the use of Local Sea Level Scenarios for Managing and Mitigating the Impact of Coastal Inundation

    NASA Astrophysics Data System (ADS)

    Plag, H.; Hammond, W. C.

    2007-12-01

    Coastal inundation is increasingly recognized at national and international levels as an issue with potentially extreme societal impact. Consequently, there is an urgent need for decision-support tools that would help to manage and mitigate the impacts of coastal inundation, storm surges, and human activities on coastal communities and ecosystems. Decision making with respect to mitigation in the coastal zone is an extremely complicated issue for various reasons, including but not limited to: (i) The time scales involved are long from a human perspective, with coastal engineering typically dealing with infrastructure with a life time of 50 to 200 years. (ii) The economic scale of the problem is extreme: For example, the costs for increasing the height of the coastal dikes in Germany by 1 m are estimated to be of the order of 300 billion Euro; the flood gates being built in Venice are an estimated 5 billion Euro. The scale of the required investments is often seen as prohibitive for precautionary action without solid scientific basis, and failing to invest where needed may lead to large economic losses as demonstrated in New Orleans. (iii) Coastal zones are a magnet for human activities (one could say that society tends to put its "jewelry" in the coastal zone): the main increase in vulnerability in the coastal zone is not expected to come from increased hazards due to climate change but rather from increased risks due to continuing migration of population into the coastal zone and an associated increase in key infrastructure. Decisions on mitigation and adaptation in the coastal zone are likely to affect the life and prosperity of people in the future. Reliable and precise predictions of coastal inundation risks, for example through local sea level rise, would be invaluable for decision support. However, considering the aleatory and epistemic uncertainties in the processes that contribute to the hazards and risks in coastal zones over the 50 to 100 year time scale

  18. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    SciTech Connect

    Wu, May; Zhang, Zhonglong

    2015-09-01

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat, and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was

  19. Regional scenarios of sea level rise and impacts on Basque (Bay of Biscay) coastal habitats, throughout the 21st century

    NASA Astrophysics Data System (ADS)

    Chust, Guillem; Caballero, Ainhoa; Marcos, Marta; Liria, Pedro; Hernández, Carlos; Borja, Ángel

    2010-03-01

    Global climate models have predicted a rise on mean sea level of between 0.18 m and 0.59 m by the end of the 21st Century, with high regional variability. The objectives of this study are to estimate sea level changes in the Bay of Biscay during this century, and to assess the impacts of any change on Basque coastal habitats and infrastructures. Hence, ocean temperature projections for three climate scenarios, provided by several atmosphere-ocean coupled general climate models, have been extracted for the Bay of Biscay; these are used to estimate thermosteric sea level variations. The results show that, from 2001 to 2099, sea level within the Bay of Biscay will increase by between 28.5 and 48.7 cm, as a result of regional thermal expansion and global ice-melting, under scenarios A1B and A2 of the Intergovernmental Panel on Climate Change. A high-resolution digital terrain model, extracted from LiDAR, data was used to evaluate the potential impact of the estimated sea level rise to 9 coastal and estuarine habitats: sandy beaches and muds, vegetated dunes, shingle beaches, sea cliffs and supralittoral rock, wetlands and saltmarshes, terrestrial habitats, artificial land, piers, and water surfaces. The projected sea level rise of 48.7 cm was added to the high tide level of the coast studied, to generate a flood risk map of the coastal and estuarine areas. The results indicate that 110.8 ha of the supralittoral area will be affected by the end of the 21st Century; these are concentrated within the estuaries, with terrestrial and artificial habitats being the most affected. Sandy beaches are expected to undergo mean shoreline retreats of between 25% and 40%, of their width. The risk assessment of the areas and habitats that will be affected, as a consequence of the sea level rise, is potentially useful for local management to adopt adaptation measures to global climate change.

  20. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    NASA Astrophysics Data System (ADS)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    ) within the program SWAT-CUP (SWAT Calibration and Uncertainty Programs). Model performance is assessed against a variety of statistical measures including the Nash-Sutcliffe efficiency coefficient (NSE) and percentage bias (PBIAS). Various mitigation scenarios are modelled within the catchment, including changes in fertiliser application rates and timing and the introduction of different tillage techniques and cover-crop regimes. The effects of the applied measures on water quality are examined and recommendations made on which measures have the greatest potential to be applied within the catchment to improve water quality. This study reports the findings of that analysis and presents techniques by which diffuse agricultural pollution can be reduced within catchments through the implementation of multiple on-farm measures. The methodology presented has the potential to be applied within other catchments, allowing tailored mitigation strategies to be developed. Ultimately, this research provides 'tested' mitigation options that can be applied within the Wensum and similar catchments to improve water quality and to ensure that certain obligatory water quality standards are achieved.

  1. Regional ocean climate change scenarios for the Mediterranean Sea: assessing the uncertainties along the 21st century.

    NASA Astrophysics Data System (ADS)

    Somot, S.; Sevault, F.; Déqué, M.; Herrmann, M.; Dubois, C.; Aznar, R.; Padorno, E.; Alvarez-Fanjul, E.; Jorda, G.; Marcos, M.; Gomis, D.

    2012-04-01

    Following the IPCC scenarios (Gibelin and Déqué 2003, Giorgi 2006, IPCC 2007, Somot et al. 2008), the climate over the Mediterranean basin is foreseen to become warmer and drier during the 21st century. In terms of density, these two effects may have an opposite impact on the Mediterranean Sea surface waters (warmer and saltier), the winter ocean deep convection, the Mediterranean thermohaline circulation and the local steric sea level change. In this study, we use a suite of regional modeling techniques for the atmosphere-river-ocean regional climate system to assess the possible evolution of the Mediterranean Sea under a changing climate during the 21st century. Following the design described in Somot et al. (2006), seven 140-year long numerical experiments (1961-2100) have been run with a Mediterranean Sea regional ocean models (NEMOMED8) forced by varying the boundary conditions that is to say (i) the air-sea fluxes coming from 50-km regional climate models, (ii) the Mediterranean river runoff fluxes and Black Sea freshwater inputs and (iii) the near-Atlantic water characteristics. After the spin-up period, a control run (1961-2000) have been carried out for checking the model stability under present climate conditions. Then scenario runs (2001-2100) have been done under the SRES-B1, A1B and A2 scenario forcings. The regional ocean model has an horizontal resolution of about 10 km, the regional climate models have a resolution of about 50 km over the Mediterranean Sea. The ocean model is forced daily by momentum, water and heat fluxes at the surface. Explicit river runoff fluxes, Atlantic buffer zone and SST relaxation are the other forcings of the ocean models. For the control run, up to 2000, SST as well as greenhouse gas and aerosol concentration are imposed from observed values. The air-sea fluxes come from the RCM and the other forcings are climatologic. Then, beyond 2000, the SRES scenarios are prescribed and the various forcings are extracted from

  2. Air quality modelling for the mid-21th century in the greater Paris area under 2 climate scenarios

    NASA Astrophysics Data System (ADS)

    Markakis, Konstantinos; Valari, Mytro; Colette, Augustin; Sanchez, Olivier; Perrussel, Olivier

    2013-04-01

    There has been an increasing interest on the impact of climate change on future air quality at both global and regional scales. The largest amount of research up to now used global-scale modelling tools to address the issue, while few recent papers use regional scale models to assess the impact of climate change on large urban agglomerations. The main issues of concern related to a regional scale set-up focusing on a city are the representativeness of the emission estimates of a regional inventory for the city as well as uncertainties in the emission projections. Regional scale projections, may be consistent with global scale climate scenarios but they are not representative of the future trend of a specific city. In this study we modelled air quality in the city of Paris, France at a mid-21st century horizon (2045-2055) under two emission and climate scenarios. The emission scenarios were developed for Europe from the Global Energy Assessment (GEA) to be consistent with the IPCCs recently developed Representative Concentration Pathways (RCPs) which incorporate only climate change actions. The emission scenarios include both climate (RCP consistent) and regional air quality policies. To cope with the aforementioned problems we combined two sources of information to project emissions for the city of Paris to the mid-century horizon. The first stems from a local agency (AIRPARIF) and includes a bottom-up high resolution emission inventory compiled for the year 2008 based on information on local activity and statistics. This inventory is projected by AIRPARIF to the year 2020 based on various air-quality policies already in place or planned for the next years. The second is a set of projection coefficients extracted from the two GEA scenarios for France and applied to the 2020 local inventory in order to obtain an emission inventory for 2050. Global scale concentrations were modelled with the coupled LMDz-INCA system and then downscaled with the regional scale air

  3. Mid-Century Ensemble Regional Climate Change Scenarios for the Western United States

    SciTech Connect

    Leung, Lai R.; Qian, Yun; Bian, Xindi; Washington, Warren M.; Han, Jongil; Roads, John O.

    2004-01-01

    To study the impacts of climate change on water resources in the western U.S., global climate simulations were produced using the National Center for Atmospheric Research/Department of Energy (NCAR/DOE) Parallel Climate Model (PCM). The Penn State/NCAR Mesoscale Model (MM5) was used to downscale the PCM control (1995-2015) and three future (2040-2060) climate simulations to yield ensemble regional climate simulations at 40 km spatial resolution for the western U.S. This paper focuses on analyses of regional simulations in the Columbia River and Sacramento-San Joaquin River Basins. Results based on the regional simulations show that by mid-century, the average regional warming of 1-2.5oC strongly affects snowpack in the western U.S. Along coastal mountains, reduction in annual snowpack is about 70%. Besides changes in mean temperature, precipitation, and snowpack, cold season extreme daily precipitation is found to increase by 5 to 15 mm/day (15-20%) along the Cascades and the Sierra. The warming results in increased rainfall over snowfall and reduced snow accumulation (or earlier snowmelt) during the cold season. In the Columbia River Basin, these changes are accompanied by more frequent rain-on-snow events. Overall, they induce higher likelihood of wintertime flooding and reduced runoff and soil moisture in the summer. Such changes could have serious impacts on water resources and agriculture in the western U.S. Changes in surface water and energy budgets in the Columbia River and Sacramento-San Joaquin basins are driven mainly by changes in surface temperature, which are statistically significant at the 0.95 confidence level. Changes in precipitation, however, are spatially incoherent and not statistically significant except for the drying trend during summer.

  4. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    SciTech Connect

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael; Lai, Judy; Borgeson, Sam; Coffey, Brian; Azevedo, Ines Lima

    2009-09-01

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cut primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.

  5. Regional projections of glacier volume and runoff in response to twenty-first century climate scenarios (Invited)

    NASA Astrophysics Data System (ADS)

    Radic, V.; Bliss, A. K.; Hock, R.

    2013-12-01

    Changes in mass contained by mountain glaciers and ice caps can modify the Earth's hydrological cycle on multiple scales. On a global scale, the mass loss from glaciers contributes to sea level rise. On regional and local scales, glacier melt-water is an important contributor to and modulator of river flow. In this study we use an elevation-dependent glacier mass balance model to project annual volume changes and monthly runoff from all mountain glaciers and ice caps in the world (excluding those in the Antarctic periphery) for the 21st century forced by temperature and precipitation scenarios from 14 global climate models. The largest contributors to projected total volume loss are the glaciers in the Canadian and Russian Arctic, Alaska and glaciers peripheral to Greenland ice sheet. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 75% of their volume by 2100. The magnitude and sign of trends in annual runoff totals differ considerably among regions depending on the balance between enhanced melt and the reduction of the glacier reservoir by glacier retreat and shrinkage. Most regions show strong declines in glacier runoff indicating that the effect of glacier shrinkage is more dominant than increased melting rates. Some high-latitude regions (Arctic Canada North, Russian Arctic and Greenland) exhibit increases in runoff totals. Iceland and Svalbard show an increase in runoff followed by a multi-decadal decrease in annual runoff.

  6. Changing Water and Nitrogen Use Efficiency over Agricultural Lands of the Inland Pacific Northwest During the 21th Century: Implications for Adaptation and Mitigation

    NASA Astrophysics Data System (ADS)

    Liu, M.; Malek, K.; Adam, J. C.; Stockle, C. O.; Rajagopalan, K.; Nelson, R.

    2014-12-01

    As water is the primary resource limitation for cropping systems over the inland Pacific Northwest (PNW), water use efficiency impacts regional water availability, crop yields, and net carbon sequestration. Furthermore, nitrogen (N) use efficiency affects the cost of farming and the total N flux to the environment (including leaching to aquatic ecosystems and greenhouse gas emissions to the atmosphere). Climate change affects water and nitrogen use efficiencies due to the combined effects of warming (reducing snowpack water storage, increasing ET, earlier leaf-on, shortening or lengthening plant growth season, etc.), the CO2 fertilization effects (increasing net primary productivity and leaf-level water and energy use efficiencies for C3 crops), and extreme climate events (drought and flood). Cropland conservation management (rotation, tillage, irrigation, and fertilization) is widely practiced in this region for maintaining high productivity of agricultural lands. To reduce vulnerability to weather extremes and long-term climate change, management regimes will likely need to be adapted for a changing environment. Here, we applied the coupled macro-scale hydrologic and crop growth model (VIC-CropSyst) to study how climate change in the 21st century will change water and nitrogen use efficiencies over the PNW. Simulation experiments with different combinations of management options and climate scenarios are used for attributing effects of climate factors and management options on long-term trends and fluctuations on water and nitrogen use efficiency. Preliminary simulation results indicate that there is a trend of decreasing water and nitrogen use efficiency over the inner PNW domain during the 21th century because of increasing ET, a seasonal shift in water availability, and the intensification of extreme climate events. Effective managements, including no-tillage and conservational tillage and optimized irrigation can eliminate the decrease or even increase water

  7. Rainfall and temperature scenarios for Bangladesh for the middle of 21st century using RegCM

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mizanur; Islam, Md Nazrul; Ahmed, Ahsan Uddin; Georgi, F.

    2012-04-01

    Regional Climate Model of version 3 (RegCM3) was driven with Emissions Scenarios A2 of ECHAM4 at 0.54°×0.54° horizontal grid resolution in two parameterizations: Grell scheme with Arakawa-Schubert (GAS) and Fritch-Chappell (GFC) assumptions. The simulated rainfall and mean surface air temperature were calibrated and validated against ground-based observed data in Bangladesh during the period 1961-1990. The Climate Research Unit (CRU) data is also used for understanding the model performance. Better performance of RegCM3 obtained through validation process, made it confident in utilizing it in rainfall and temperature projection for Bangladesh in the middle of 21st century. Rainfall and mean surface air temperature projection for Bangladesh is experimentally obtained for 2050 and 2060. This work discloses that simulated rainfall and temperature are not directly useful in application-oriented tasks. However, after calibration and validation, reasonable performance can be obtained in estimating seasonal and annual rainfall, and mean surface air temperature in Bangladesh. The projected change of rainfall for Bangladesh is about +35% for monsoon season (JJAS), -67% for pre-monsoon (MAM), -12% for post-monsoon (ON) and 107% for winter (DJF) for 2050. On an average, rainfall may be less by more than 50% for all seasons for the year 2060. Similarly, change of mean surface air temperature in different months is projected about 0.5°-2.1°C and 0.9°-3.5°C for the year 2050 and 2060, respectively.

  8. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation.

    PubMed

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such

  9. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation

    PubMed Central

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such

  10. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  11. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    NASA Astrophysics Data System (ADS)

    Powell, Thomas W. R.; Lenton, Timothy M.

    2013-06-01

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species-energy and species-area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect.

  12. Tsunami mitigation and preparedness activities in California: Chapter L in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Wilson, Rick; Miller, Kevin

    2013-01-01

    scenario-specific, tsunami evacuation “playbook” maps and guidance in-harbor hazard maps and offshore safety zones for potential boat evacuation during future distant source events; “probability-based” products for land-use planning under the California Seismic Hazard Mapping Act; and an expansion of real-time and post-tsunami field reconnaissance teams and information sharing through a state-wide clearinghouse. The state tsunami program has benefitted greatly from participation in the SAFRR tsunami scenario process, and hopes to continue this relationship with the U.S. Geological Survey to help improve tsunami preparedness in California.

  13. Study of the impact of cruise and passenger ships on a Mediterranean port city air quality - Study of future emission mitigation scenarios

    NASA Astrophysics Data System (ADS)

    Liora, Natalia; Poupkou, Anastasia; Kontos, Serafim; Giannaros, Christos; Melas, Dimitrios

    2015-04-01

    An increase of the passenger ships traffic is expected in the Mediterranean Sea as targeted by the EU Blue Growth initiative. This increase is expected to impact the Mediterranean port-cities air quality considering not only the conventional atmospheric pollutants but also the toxic ones that are emitted by the ships (e.g. Nickel). The aim of this study is the estimation of the present and future time pollutant emissions from cruise and passenger maritime transport in the port area of Thessaloniki (Greece) as well as the impact of those emissions on the city air quality. Cruise and passenger ship emissions have been estimated for the year 2013 over a 100m spatial resolution grid which covers the greater port area of Thessaloniki. Emissions have been estimated for the following macro-pollutants; NOx, SO2, NMVOC, CO, CO2 and particulate matter (PM). In addition, the most important micro-pollutants studied in this work are As, Cd, Pb, Ni and Benzo(a)pyrene for which air quality limits have been set by the EU. Emissions have been estimated for three operation modes; cruising, maneuvering and hotelling. For the calculation of the present time maritime emissions, the activity data used were provided by the Thessaloniki Port Authority S.A. Moreover, future pollutant emissions are estimated using the future activity data provided by the Port Authority and the IMO legislation for shipping in the future. In addition, two mitigation emission scenarios are examined; the use of Liquefied Natural Gas (LNG) as a fuel used by ships and the implementation of cold ironing which is the electrification of ships during hotelling mode leading to the elimination of the corresponding emissions. The impact of the present and future passenger ship emissions on the air quality of Thessaloniki is examined with the use of the model CALPUFF applied over the 100m spatial resolution grid using the meteorology of WRF. Simulations of the modeling system are performed for four different emission

  14. Local-scale climate scenarios for impact studies and risk assessments: integration of early 21st century ENSEMBLES projections into the ELPIS database

    NASA Astrophysics Data System (ADS)

    Calanca, Pierluigi; Semenov, Mikhail A.

    2013-08-01

    We present the integration of early 21st century climate projections for Europe based on simulations carried out within the EU-FP6 ENSEMBLES project with the LARS-WG stochastic weather generator. The aim was to upgrade ELPIS, a repository of local-scale climate scenarios for use in impact studies and risk assessments that already included global projections from the CMIP3 ensemble and regional scenarios for Japan. To obtain a more reliable simulation of daily rainfall and extremes, changes in wet and dry series derived from daily ENSEMBLES outputs were taken into account. Kernel average smoothers were used to reduce noise arising from sampling artefacts. Examples of risk analyses based on 25-km climate projections from the ENSEMBLES ensemble of regional climate models illustrate the possibilities offered by the updated version of ELPIS. The results stress the importance of tailored information for local-scale impact assessments at the European level.

  15. Twenty-First Century Police Training: Recruits' Problem-Solving Skills Following Scenario-Based Training

    ERIC Educational Resources Information Center

    Perry, Lee R.

    2012-01-01

    In response to the diverse requirements of 21st-century police work and the increasing emphasis on community-policing philosophy, the Los Angeles Police Department has implemented changes within its academy curricula and methods of instruction, including the use of adult-learning concepts, a community policing problem-solving model known as…

  16. Air-quality in the mid-21st century for the city of Paris under two climate scenarios; from regional to local scale

    NASA Astrophysics Data System (ADS)

    Markakis, K.; Valari, M.; Colette, A.; Sanchez, O.; Perrussel, O.; Honore, C.; Vautard, R.; Klimont, Z.; Rao, S.

    2014-01-01

    Ozone and PM2.5 concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km × 4 km horizontal resolution for two future emission scenarios. High-resolution (1 km × 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional scale emission projections developed by the Global Energy Assessment. Model evaluation is performed based on a 10 yr control simulation. Ozone is in very good agreement with measurements while PM2.5 is underestimated by 20% over the urban area mainly due to a large wet bias in wintertime precipitation. A significant increase of maximum ozone relative to present time levels over Paris is modeled under the "business as usual" scenario (+7 ppb) while a more optimistic mitigation scenario leads to moderate ozone decrease (-3.5 ppb) in year 2050. These results are substantially different to previous regional scale projections where 2050 ozone is found to decrease under both future scenarios. A sensitivity analysis showed that this difference is due to the fact that ozone formation over Paris at the current, urban scale study, is driven by VOC-limited chemistry, whereas at the regional scale ozone formation occurs under NOx-sensitive conditions. This explains why the sharp NOx reductions implemented in the future scenarios have a different effect on ozone projections at different scales. In rural areas projections at both scales yield similar results showing that the longer time-scale processes of emission transport and ozone formation are less sensitive to model resolution. PM2.5 concentrations decrease by 78% and 89% under "business as usual" and "mitigation" scenarios respectively compared to present time period. The reduction is much more prominent over the urban part of the domain due to the effective reductions of road transport and residential emissions resulting in the smoothing of the large urban increment

  17. Air quality in the mid-21st century for the city of Paris under two climate scenarios; from the regional to local scale

    NASA Astrophysics Data System (ADS)

    Markakis, K.; Valari, M.; Colette, A.; Sanchez, O.; Perrussel, O.; Honore, C.; Vautard, R.; Klimont, Z.; Rao, S.

    2014-07-01

    Ozone and PM2.5 concentrations over the city of Paris are modeled with the CHIMERE air-quality model at 4 km × 4 km horizontal resolution for two future emission scenarios. A high-resolution (1 km × 1 km) emission projection until 2020 for the greater Paris region is developed by local experts (AIRPARIF) and is further extended to year 2050 based on regional-scale emission projections developed by the Global Energy Assessment. Model evaluation is performed based on a 10-year control simulation. Ozone is in very good agreement with measurements while PM2.5 is underestimated by 20% over the urban area mainly due to a large wet bias in wintertime precipitation. A significant increase of maximum ozone relative to present-day levels over Paris is modeled under the "business-as-usual" scenario (+7 ppb) while a more optimistic "mitigation" scenario leads to a moderate ozone decrease (-3.5 ppb) in year 2050. These results are substantially different to previous regional-scale projections where 2050 ozone is found to decrease under both future scenarios. A sensitivity analysis showed that this difference is due to the fact that ozone formation over Paris at the current urban-scale study is driven by volatile organic compound (VOC)-limited chemistry, whereas at the regional-scale ozone formation occurs under NOx-sensitive conditions. This explains why the sharp NOx reductions implemented in the future scenarios have a different effect on ozone projections at different scales. In rural areas, projections at both scales yield similar results showing that the longer timescale processes of emission transport and ozone formation are less sensitive to model resolution. PM2.5 concentrations decrease by 78% and 89% under business-as-usual and mitigation scenarios, respectively, compared to the present-day period. The reduction is much more prominent over the urban part of the domain due to the effective reductions of road transport and residential emissions resulting in the

  18. Projected changes of soil organic carbon in agricultural soils of southeast Germany in the 21th century under different carbon input scenarios

    NASA Astrophysics Data System (ADS)

    Wiesmeier, Martin; Poeplau, Christopher; Sierra, Carlos; Maier, Harald; Hübner, Rico; Kühnel, Anna; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2016-04-01

    As climate change may have a distinct effect on soil organic carbon (SOC) stocks, projections of the future SOC development on larger spatial scales on the basis of soil carbon models are needed. In this study we simulated the SOC development in cropland and grassland soils of Bavaria (southeast Germany) between 2000 and 2095 using the RothC model. At 51 sampling locations detailed model input data as C pools derived by soil fractionation, C input, clay content and climate variables were determined to run the model. Projections for each sampling location were performed on the basis of an average climate scenario (A1B) and three C input scenarios as a realistic range of possible crop yield developments: stagnation of the C input (1) increase by 20% (2) and decrease by 20% (3). The results showed a general decline of SOC stocks of 12% during the 21th century under C input scenario 1 and a decrease of 21% under scenario 3. Remarkably, even the optimistic scenario 2 resulted in a noticeable decline of SOC stocks by 5%. Our study indicated that C inputs in agricultural soils of Bavaria have to increase by 30% until 2095 (given the A1B climate scenario) in order to maintain present SOC stocks. However, projected SOC changes largely depended on the soil unit and regional site characteristics. The modeling approach provides the basis for a further evaluation of changes of the land use management and enables a site-specific delineation of measures for a sustainable supply of soil organic matter under climate change.

  19. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    PubMed

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  20. Conservation practices for climate change mitigation and adaptation will be needed for food security in the 21st century

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been documented across the peer-reviewed scientific literature that the challenges that we will have during the XXI century such as climate change, depletion of water resources needed for agricultural production, and higher demand for food and fiber due to a larger global population, will pla...

  1. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0

    NASA Astrophysics Data System (ADS)

    Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.

    2015-05-01

    Because tropospheric ozone is both a greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change (including methane effects) and stratospheric ozone recovery on the tropospheric ozone budget, in a simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0 (a medium-high, and reasonably realistic climate scenario). Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximizes in the early 21st century at 23% compared to 1960. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70-year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally averaged northern midlatitude ozone because of increasing emissions from Asia, together with the long lifetime of ozone in the troposphere. A simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6% increase in global-mean tropospheric ozone by the end of the 21st century, with an 11 % increase at northern midlatitudes. This increase maximizes in the 2080s and is mostly caused by methane, which maximizes in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its

  2. Mass losses from Svalbard land-terminating glaciers by the end of the 21st century under an RCP 8.5 scenario

    NASA Astrophysics Data System (ADS)

    Möller, Marco; Navarro, Francisco; Martín-Español, Alba

    2016-04-01

    The high Arctic archipelagos are among the most strongly glacierized landscapes on earth apart from the Greenland and Antarctic ice sheets. Svalbard, one of these archipelagos, holds about 36,000 km2 of glaciers and ice caps and is the region that has shown the least negative mass balance of all the high Arctic regions. However, future projections suggest that the archipelago will experience an unprecedented -for the Arctic- glacier recession over the 21st century. We here present a high-resolution modelling study of the future ice-mass evolution of 29 individual land-terminating glaciers on the Svalbard archipelago under an RCP 8.5 climate forcing, a rather pessimistic scenario that unfortunately seems to be becoming realistic. Our model calculates glacier mass balance and area/volume changes using a temperature-index approach in combination with a surface elevation change parameterization. The initial glacier topographies and volumes have been assessed from extensive ground-penetrating radar measurements carried out in recent years. The calculations are performed for the 21st century and are forced by statistically downscaled output of ten different global circulation models representing the RCP scenario 8.5. By a topography-based extrapolation of the simulation results to the entire archipelago we show that a complete loss of most of Svalbard's land-terminating glaciers and even a deglaciation of certain subregions of the archipelago might occur by the end of the 21st century. 98% of the land-terminating glaciers will have retreated to less than one tenth of their initial extent by 2100, resulting in a loss of 7392±2481 km2 of ice coverage.

  3. Application of an extreme winter storm scenario to identify vulnerabilities, mitigation options, and science needs in the Sierra Nevada mountains, USA

    USGS Publications Warehouse

    Albano, Christine M.; Dettinger, Michael; McCarthy, Maureen; Schaller, Kevin D.; Wellborn, Toby; Cox, Dale A.

    2016-01-01

    In the Sierra Nevada mountains (USA), and geographically similar areas across the globe where human development is expanding, extreme winter storm and flood risks are expected to increase with changing climate, heightening the need for communities to assess risks and better prepare for such events. In this case study, we demonstrate a novel approach to examining extreme winter storm and flood risks. We incorporated high-resolution atmospheric–hydrologic modeling of the ARkStorm extreme winter storm scenario with multiple modes of engagement with practitioners, including a series of facilitated discussions and a tabletop emergency management exercise, to develop a regional assessment of extreme storm vulnerabilities, mitigation options, and science needs in the greater Lake Tahoe region of Northern Nevada and California, USA. Through this process, practitioners discussed issues of concern across all phases of the emergency management life cycle, including preparation, response, recovery, and mitigation. Interruption of transportation, communications, and interagency coordination were among the most pressing concerns, and specific approaches for addressing these issues were identified, including prepositioning resources, diversifying communications systems, and improving coordination among state, tribal, and public utility practitioners. Science needs included expanding real-time monitoring capabilities to improve the precision of meteorological models and enhance situational awareness, assessing vulnerabilities of critical infrastructure, and conducting cost–benefit analyses to assess opportunities to improve both natural and human-made infrastructure to better withstand extreme storms. Our approach and results can be used to support both land use and emergency planning activities aimed toward increasing community resilience to extreme winter storm hazards in mountainous regions.

  4. Simulation of groundwater flow and chloride transport in the “1,200-foot” sand with scenarios to mitigate saltwater migration in the “2,000-foot” sand in the Baton Rouge area, Louisiana

    USGS Publications Warehouse

    Heywood, Charles E.; Lovelace, John K.; Griffith, Jason M.

    2015-01-01

    Seven hypothetical scenarios predict the effects of different groundwater withdrawal options on groundwater levels and the transport of chloride within the “1,200-foot” sand and the “2,000-foot” sand during 2015–2112. The predicted water levels and concentrations for all scenarios are depicted in maps for the years 2047 and 2112. The first scenario is a base case for comparison to the six other scenarios and simulates continuation of 2012 reported groundwater withdrawals through 2112 (100 years). The second scenario that simulates increased withdrawals from industrial wells in the “1,200-foot” sand predicts that water levels will be 12–25 ft lower by 2047 and that there will be a negligible difference in chloride concentrations within the “1,200-foot” sand. The five other scenarios simulate the effects of various withdrawal schemes on water levels and chloride concentrations within the “2,000-foot” sand. Amongst these five other scenarios, three of the scenarios simulate only various withdrawal reductions, whereas the two others also incorporate withdrawals from a scavenger well that is designed to extract salty water from the base of the “2,000-foot” sand. Two alternative pumping rates (2.5 Mgal/d and 1.25 Mgal/d) are simulated in each of the scavenger-well scenarios. For the “2,000-foot” sand scenarios, comparison of the predicted effects of the scenarios is facilitated by graphs of predicted chloride concentrations through time at selected observation wells, plots of salt mass in the aquifer through time, and a summary of the predicted plume area and average concentration. In all scenarios, water levels essentially equilibrate by 2047, after 30 years of simulated constant withdrawal rates. Although predicted water-level recovery within the “2,000-foot” sand is greatest for the scenario with the greatest reduction in groundwater withdrawal from that aquifer, the scavenger-well scenarios are most effective in mitigating the

  5. Drivers of the tropospheric ozone budget throughout the 21st century under the medium-high climate scenario RCP 6.0

    NASA Astrophysics Data System (ADS)

    Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.

    2015-01-01

    Because tropospheric ozone is both a~greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change and stratospheric ozone recovery on the tropospheric ozone budget, in a~simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0. Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximises in the early 21st century at 23%. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70 year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally-averaged northern midlatitude ozone because of increasing emissions from Asia, together with the longevity of ozone in the troposphere. A~simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6 % increase in global-mean tropospheric ozone, and an 11% increase at northern midlatitudes. This increase maximises in the 2080s, and is mostly caused by methane, which maximises in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its influence on other VOCs and CO. Enhanced flux of ozone from the stratosphere to the troposphere as well as climate change-induced enhancements in

  6. Soil Organic Carbon and Nitrogen in the 21st Century: Projections of the Responses of an Old-Growth Douglas-Fir Forest in the Pacific Northwest under RCP 4.5 and RCP 8.5 Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Dong, Z.; Driscoll, C. T.; Hayhoe, K.; Pourmokhtarian, A.; Stoner, A. M. K.

    2015-12-01

    The biogeochemical model, PnET-BGC, was applied to Watershed 2 in H. J. Andrews Experimental Forest, Oregon, to project ecosystem carbon and nitrogen responses under different future climate change scenarios. Downscaled climate change inputs derived from two IPCC scenarios (RCP 4.5 and RCP 8.5) were interpreted by four Atmosphere-Ocean General Circulation Models (AOGCMs) at Andrews Forest. Model results showed decreases in foliar production under high temperature/CO2 scenarios due to increasing vapor pressure deficit. Projections by PnET-BGC suggest that under future climate changes in primary production coupled with an increasing rate of decomposition may result in decreases in litterfall carbon and nitrogen and soil organic carbon and nitrogen. Such changes in soil organic carbon and nitrogen may cause wide range of changes in ecosystem processing of nitrogen and carbon, such as nitrogen mineralization, plant NH4+ uptake, and stream NH4+ and dissolved organic carbon concentrations depending on climate change scenario considered. Under most high emission scenarios, net nitrogen mineralization and plant NH4+ uptake are projected to increase until the end of this century as result of increasing temperature and associated higher rates of decomposition. An accumulation of nitrogen in plant tissue due to decreasing litterfall decreases plant demand for nitrogen. Such changes in nitrogen mineralization and uptake will result in increase in stream NH4+ concentrations under high emission scenarios. Under low emission scenarios, net nitrogen mineralization and plant NH4+ uptake are projected to increase up to mid-century, then slightly decrease until the end of the century.

  7. LAND USE AS A MITIGATION STRATEGY FOR THE WATER QUALITY IMPACTS OF GLOBAL WARMING: A SCENARIO ANALYSIS ON TWO WATERSHEDS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    This study uses an integrative approach to study the water quality impacts of future global climate and land use changes. In this study, changing land use types were used as a mitigation strategy to reduce the adverse impacts of global climate change on water resources. The Thorn...

  8. LAND USE AS A MITIGATION STRATEGY FOR THE WATER QUALITY IMPACTS OF GLOBAL WARMING: A SCENARIO ANALYSIS ON TWO WATERSHEDS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    This study uses an integrative approach to study the water quality impacts of future global climate and land use changes. In this study, changing land use types was used as a mitigation strategy to reduce the adverse impacts of global climate change on water resources. The climat...

  9. Sea-level rise and impacts projections under a future scenario with large greenhouse gas emission reductions

    NASA Astrophysics Data System (ADS)

    Pardaens, A. K.; Lowe, J. A.; Brown, S.; Nicholls, R. J.; de Gusmão, D.

    2011-06-01

    Using projections from two coupled climate models (HadCM3C and HadGEM2-AO), we consider the effect on 21st century sea-level rise (SLR) of mitigation policies relative to a scenario of business-as-usual (BAU). Around a third of the global-mean SLR over the century is avoided by a mitigation scenario under which global-mean near surface air temperature stabilises close to the Copenhagen Accord limit of a 2°C increase. Under BAU (a variant of the A1B scenario) the model-averaged projected SLR for 2090-2099 relative to 1980-1999 is 0.29 m-0.51 m (5%-95% uncertainties from treatment of land-based ice melt); under mitigation (E1 scenario) it is 0.17 m-0.34 m. This reduction is primarily from reduced thermal expansion. The spatial patterns of regional SLR are fairly dissimilar between the models, but are qualitatively similar across scenarios for a particular model. An impacts model suggests that by the end of the 21st century and without upgrade in defences around 55% of the 84 million additional people flooded per year globally under BAU (from SLR alone) could be avoided under such mitigation. The above projections of SLR follow the methodology of the IPCC Fourth Assessment. We have, however, also conducted a sensitivity study of SLR and its impacts where the possibility of accelerated ice sheet dynamics is accounted for.

  10. Numerical study for beam loss occurring for wide-ranging transverse injection painting and its mitigation scenario in the J-PARC 3-GeV RCS

    NASA Astrophysics Data System (ADS)

    Hotchi, Hideaki; Tani, Norio; Watanabe, Yasuhiro

    2015-04-01

    In the J-PARC 3-GeV Rapid Cycling Synchrotron (RCS), transverse injection painting is utilized to manipulate the transverse beam profile according to the requirements from the downstream facilities as well as to mitigate the space-charge induced beam loss in RCS. Therefore, a flexible control is required for the transverse painting area. But now the available range of transverse painting is limited to small area due to beta function beating caused by the edge focus of injection bump magnets which operate during the beam injection period. This beta function beating additionally excites various random betatron resonances through a distortion of the lattice super-periodicity, causing a shrinkage of the dynamic aperture during the injection period. This decrease of the dynamic aperture leads to extra beam loss at present when applying large transverse painting. For beta function beating caused by the edge focus, we proposed a correction scheme with additional pulse-type quadrupole correctors. In this paper, we will discuss the feasibility and effectiveness of this correction scheme for expanding the transverse injection painting area with no extra beam loss, while considering the beam loss and its mitigation mechanisms, based on numerical simulations.

  11. Scenarios Based on Shared Socioeconomic Pathway Assumptions

    NASA Astrophysics Data System (ADS)

    Edmonds, J.

    2013-12-01

    A set of new scenarios is being developed by the international scientific community as part of a larger program that was articulated in Moss, et al. (2009), published in Nature. A long series of meetings including climate researchers drawn from the climate modeling, impacts, adaptation and vulnerability (IAV) and integrated assessment modeling (IAM) communities have led to the development of a set of five Shared Socioeconomic Pathways (SSPs), which define the state of human and natural societies at a macro scale over the course of the 21st century without regard to climate mitigation or change. SSPs were designed to explore a range of possible futures consistent with greater or lesser challenges to mitigation and challenges to adaptation. They include a narrative storyline and a set of quantified measures--e.g. demographic and economic profiles--that define the high-level state of society as it evolves over the 21st century under the assumption of no significant climate feedback. SSPs can be used to develop quantitative scenarios of human Earth systems using IAMs. IAMs produce information about greenhouse gas emissions, energy systems, the economy, agriculture and land use. Each set of SSPs will have a different human Earth system realization for each IAM. Five groups from the IAM community have begun to explore the implications of SSP assumptions for emissions, energy, economy, agriculture and land use. We report the quantitative results of initial experiments from those groups. A major goal of the Moss, et al. strategy was to enable the use of CMIP5 climate model ensemble products for IAV research. CMIP5 climate scenarios used four Representative Concentration Pathway (RCP) scenarios, defined in terms of radiative forcing in the year 2100: 2.6, 4.5, 6.0, and 8.5 Wm-2. There is no reason to believe that the SSPs will generate year 2100 levels of radiative forcing that correspond to the four RCP levels, though it is important that at least one SSP produce a

  12. Relative outcomes of climate change mitigation related to global temperature versus sea-level rise

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; Hu, Aixue; Tebaldi, Claudia; Arblaster, Julie M.; Washington, Warren M.; Teng, Haiyan; Sanderson, Benjamin M.; Ault, Toby; Strand, Warren G.; White, James B.

    2012-08-01

    There is a common perception that, if human societies make the significant adjustments necessary to substantively cut emissions of greenhouse gases, global temperature increases could be stabilized, and the most dangerous consequences of climate change could be avoided. Here we show results from global coupled climate model simulations with the new representative concentration pathway mitigation scenarios to 2300 to illustrate that, with aggressive mitigation in two of the scenarios, globally averaged temperature increase indeed could be stabilized either below 2 °C or near 3 °C above pre-industrial values. However, even as temperatures stabilize, sea level would continue to rise. With little mitigation, future sea-level rise would be large and continue unabated for centuries. Though sea-level rise cannot be stopped for at least the next several hundred years, with aggressive mitigation it can be slowed down, and this would buy time for adaptation measures to be adopted.

  13. The differential impact of low-carbon technologies on climate change mitigation cost under a range of socioeconomic and climate policy scenarios.

    SciTech Connect

    Barron, Robert W.; McJeon, Haewon C.

    2015-05-01

    This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any. Sensitivity analysis of the results with respect to population, GDP, and CO2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive.

  14. The Nanchang communication about the potential for the implementation of conservation practices for climate change mitigation and adaptation to achieve food security in the 21st century

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several recent peer reviewed manuscripts have reported on the great challenges humanity is confronting during the XXI century, including a changing climate, depletion of water resources from groundwater and/or snow caps sources that are needed for agricultural production, deforestation, desertificat...

  15. Prediction and Mitigation of the Effects of Catastrophic Fire on Water Supplies: Science for Risk Reduction and Planning for Future Scenarios

    NASA Astrophysics Data System (ADS)

    Martin, D. A.; Tindall, J.

    2008-12-01

    Precipitation falling on forests and grasslands provides much of the water to communities across the United States. The U.S. Forest Service estimates that over 3,400 communities are served by water draining land under its jurisdiction alone. Much of this land is subject to wildland fires, which have been increasing in size and severity in the western United States in response to climatic forcing and increased ignitions from human sources. Runoff from burned landscapes can present a significant risk to municipal and agricultural water supplies from ash, sediment, contaminants from burned structures, and fire-fighting chemicals. Several municipalities, including Denver, Colorado, have experienced both short-term and long-term degradation of their water supplies in the aftermath of fires in watersheds upstream from drinking water reservoirs. Scientific efforts to predict and mitigate the effects of catastrophic fire on water supplies have focused on three areas. The first consists of data collection and carefully designed experiments to understand the change of the hydrologic behavior of burned watersheds in response to rain with different intensities, durations, and trajectories as the watersheds recover. Results from these studies are used to validate models that predict watershed response under different initial conditions constrained by remotely-sensed burn severity, topography, rainfall-intensity recurrence probabilities and other factors. These predictions are the basis for rehabilitation measures applied to the landscape to minimize post-fire runoff and erosion. Efforts are under way to incorporate the chemical effects of ash and fire-fighting compounds in decision-support tools. A second area of scientific focus is the characterization of the chemical and physical properties of ash from wildland fire, including ash from structures consumed by fire. The ash chemistry is correlated to remotely- sensed data, type of vegetation that burned, and the underlying

  16. Climate mitigation and the future of tropical landscapes

    PubMed Central

    Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise P.; Hurtt, George; Edmonds, James A.; Bond-Lamberty, Ben; Frolking, Steve; Wise, Marshall A.; Janetos, Anthony C.

    2010-01-01

    Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 W m−2 (approximately 526 ppm CO2) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies. PMID:20921413

  17. Health in the New Scenarios for Climate Change Research

    PubMed Central

    Ebi, Kristie L.

    2013-01-01

    The climate change research community is developing a toolkit for creating new scenarios to explore and evaluate the extensive uncertainties associated with future climate change and development pathways. Components of the toolkit include pathways for greenhouse gas emissions over this century and their associated magnitude and pattern of climate change; descriptions of a range of possible socioeconomic development pathways, including qualitative narratives and quantitative elements; and climate change policies to achieve specific levels of radiative forcing and levels of adaptive capacity. These components are combined within a matrix architecture to create a scenario. Five reference socioeconomic development pathways have been described along axes describing increasing socioeconomic and environmental challenges to adaptation and to mitigation. This paper extends these global pathways to describe their possible consequences for public health and health care, and considers the additional elements that could be added to increase the relevance of the new scenarios to address a wider range of policy relevant questions than previously possible. PMID:24452253

  18. Is worst-case scenario streamflow drought underestimated in British Columbia? A multi-century perspective for the south coast, derived from tree-rings

    NASA Astrophysics Data System (ADS)

    Coulthard, Bethany; Smith, Dan J.; Meko, David M.

    2016-03-01

    Recent streamflow droughts in south coastal British Columbia have had major socioeconomic and ecological impacts. Increasing drought severity under projected climate change poses serious water management challenges, particularly in the small coastal watersheds that serve as primary water sources for most communities in the region. A 332-year dendrohydrological record of regionalized mean summer streamflow for four watersheds is analyzed to place recent drought magnitudes in a long-term perspective. We present a novel approach for optimizing tree-ring based reconstructions in small watersheds in temperate environments, combining winter snow depth and summer drought sensitive proxies as model predictors. The reconstruction model, estimated by regression of observed flows on Tsuga mertensiana ring-width variables and a tree-ring derived paleorecord of the Palmer Drought Severity Index, explains 64% of the regionalized streamflow variance. The model is particularly accurate at estimating lowest flow events, and provides the strongest annually resolved paleohydrological record in British Columbia. The extended record suggests that since 1658 sixteen natural droughts have occurred that were more extreme than any within the instrumental period. Flow-duration curves show more severe worst-case scenario droughts and a higher probability of those droughts in the long-term reconstruction than in the hydrometric data. Such curves also highlight the value of dendrohydrology for probabilistic drought assessment. Our results suggest current water management strategies based on worst-case scenarios from historical gauge data likely underestimate the potential magnitudes of natural droughts. If the low-flow magnitudes anticipated under climate change co-occur with lowest possible natural flows, streamflow drought severities in small watersheds in south coastal British Columbia could exceed any of those experienced in the past ∼350 years.

  19. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-07-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. We analyze strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in strengthening of hydrological cycle in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside the medium-high non-mitigation scenario SRES A1B, we considered a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than SRES A1B till around 2070. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in A1B throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in mid and end 21C. It is only through a very large perturbation of surface fluxes that A1B achieves larger increase of global precipitation in the last

  20. Atmospheric energy and water balance perspective to projection of global-scale precipitation increase: may mitigation policies unexpectedly amplify precipitation?

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P.; Vichi, M.; Zeng, N.

    2012-12-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. From the perspective of changes in whole atmospheric water and energy budgets, we analyze strengthening of the hydrological cycle as measured by the increase in global-scale precipitation. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in precipitation increase in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside medium-high non-mitigation scenario (baseline), we considered an aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than baseline till around 2070, that is a couple of decades after that mitigation of global temperature was already well established in E1. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to baseline. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to baseline. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in baseline compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in baseline throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in

  1. Bioenergy as a Mitigation Measure

    NASA Astrophysics Data System (ADS)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these

  2. A proposal for a new scenario framework to support research and assessment in different climate research communities

    SciTech Connect

    Van Vuuren, Detlef; Riahi, Keywan; Moss, Richard H.; Edmonds, James A.; Thomson, Allison M.; Nakicenovic, Nebojsa; Kram, Tom; Berkhout, Frans; Swart, Robert; Janetos, Anthony C.; Rose, Steven K.; Arnell, Nigel

    2012-02-01

    In this paper, we propose a scenario framework that could provide a scenario thread through the different climate research communities (climate change vulnerability, impact, and adaptation (VIA) and mitigation) in order to provide assessment of mitigation and adaptation strategies and other VIA challenges. The scenario framework is defined across two main axes. One is defined by the radiative forcing levels (climate signal) of the Representative Concentration Pathways (RCPs). The second axis is defined by socio-economic development and comprises elements that affect the capacity for adaptation and mitigation but also exposure to climate impacts. The proposed set of scenarios derived from this framework are limited in number, allow for comparison across various mitigation and adaptation levels, address a range of vulnerability characteristics, provide information across climate forcing and vulnerability states and spans a full century time scale. Scenario assessment based on the proposed framework would strengthen cooperation between integrated-assessment modelers, climate modelers and the VIA research community, and most importantly, facilitate the development of more consistent and comparable research within and across communities.

  3. Inventories and scenarios of nitrous oxide emissions

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.; Kanter, David

    2014-10-01

    Effective mitigation for N2O emissions, now the third most important anthropogenic greenhouse gas and the largest remaining anthropogenic source of stratospheric ozone depleting substances, requires understanding of the sources and how they may increase this century. Here we update estimates and their uncertainties for current anthropogenic and natural N2O emissions and for emissions scenarios to 2050. Although major uncertainties remain, ‘bottom-up’ inventories and ‘top-down’ atmospheric modeling yield estimates that are in broad agreement. Global natural N2O emissions are most likely between 10 and 12 Tg N2O-N yr-1. Net anthropogenic N2O emissions are now about 5.3 Tg N2O-N yr-1. Gross anthropogenic emissions by sector are 66% from agriculture, 15% from energy and transport sectors, 11% from biomass burning, and 8% from other sources. A decrease in natural emissions from tropical soils due to deforestation reduces gross anthropogenic emissions by about 14%. Business-as-usual emission scenarios project almost a doubling of anthropogenic N2O emissions by 2050. In contrast, concerted mitigation scenarios project an average decline of 22% relative to 2005, which would lead to a near stabilization of atmospheric concentration of N2O at about 350 ppb. The impact of growing demand for biofuels on future projections of N2O emissions is highly uncertain; N2O emissions from second and third generation biofuels could remain trivial or could become the most significant source to date. It will not be possible to completely eliminate anthropogenic N2O emissions from agriculture, but better matching of crop N needs and N supply offers significant opportunities for emission reductions.

  4. A more productive, but different, ocean after mitigation

    NASA Astrophysics Data System (ADS)

    John, Jasmin G.; Stock, Charles A.; Dunne, John P.

    2015-11-01

    Reversibility studies suggest a lagged recovery of global mean sea surface temperatures after mitigation, raising the question of whether a similar lag is likely for marine net primary production (NPP). Here we assess NPP reversibility with a mitigation scenario in which projected Representative Concentration Pathway (RCP) 8.5 forcings are applied out to 2100 and then reversed over the course of the following century in a fully coupled carbon-climate Earth System Model. In contrast to the temperature lag, we find a rapid increase in global mean NPP, including an overshoot to values above contemporary means. The enhanced NPP arises from a transient imbalance between the cooling surface ocean and continued warming in subsurface waters, which weakens upper ocean density gradients, resulting in deeper mixing and enhanced surface nitrate. We also find a marine ecosystem regime shift as persistent silicate depletion results in increased prevalence of large, non-diatom phytoplankton.

  5. Overview of a new scenario framework for climate change research

    NASA Astrophysics Data System (ADS)

    Ebi, K. L.

    2013-12-01

    -axis). They include a narrative storyline and a set of quantified measures that define the high-level state of society as it evolves over the 21st century under the assumption of no significant climate feedback. The reality that the development pathways may be affected by climate change will be taken into account when combining SSPs with climate change projections to generate a socioeconomic-climate scenario. The new scenario process, although complex, provides a flexible toolkit to facilitate research and assessment that can characterize the range of uncertainty in mitigation efforts required to achieve particular radiative forcing pathways, in adaptation efforts that could be undertaken to prepare for and respond to the climate change associated with those pathways, and in residual impacts.

  6. On the potential for alternative greenhouse gas equivalence metrics to influence sectoral mitigation patterns

    NASA Astrophysics Data System (ADS)

    Brennan, Mark E.; Zaitchik, Benjamin F.

    2013-03-01

    Equivalence metrics used to quantify the relative climate impacts of different atmospheric forcers serve an essential function in policy and economic discussions about global climate change. The 100-year global warming potential (GWP-100), the most established greenhouse gas (GHG) equivalence metric, is used within the Kyoto Protocol, and in most emissions inventory, trading and offset mechanisms, to assign the mitigation value of non-carbon dioxide greenhouse gases relative to carbon dioxide. In recent literature the GWP-100 and alternative metrics have been used to compare various anthropogenic climate forcers with respect to a wide range of environmental and economic goals. Building on this work, we examine how 16 different static and time-varying CO2-equivalence schemes might influence GHG mitigation across sectors and gases in a perfect and fluid global mitigation regime. This mitigation regime is guided by achieving a global mean radiative forcing (RF) of 5.7 Wm-2 in 2100 from 1765 levels through a mitigation policy of prescribed emissions reductions in each decade. It was found that static metrics defined on 20- instead of 100-year time horizons favor mitigation strategies that maximize the abatement of short-lived gases (e.g. methane), on average resulting in an RF from methane in 2100 of 0.5 Wm-2 instead of 1.1 Wm-2 from 100-year metrics. Similarly, metrics that consider integrated rather than end-point climate impacts imply mitigation strategies that maximize mitigation of shorter-lived GHGs, resulting in higher abatement of agriculture and waste emissions. Comparing extreme scenarios, these mitigation shifts across gases and sectors result in a nearly 30% difference in the representation of methane in global cumulative emissions reductions. This shift across gases and sectors to mitigate shorter-lived GHGs, in lieu of longer-lived GHGs like carbon dioxide, has implications for the long-term warming commitment due to 21st century emissions.

  7. Disentangling the effects of CO2 and short-lived climate forcer mitigation.

    PubMed

    Rogelj, Joeri; Schaeffer, Michiel; Meinshausen, Malte; Shindell, Drew T; Hare, William; Klimont, Zbigniew; Velders, Guus J M; Amann, Markus; Schellnhuber, Hans Joachim

    2014-11-18

    Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2-SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2-SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2-SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change. PMID:25368182

  8. Mitigation of hurricane potential intensity by the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Camargo, S. J.; Polvani, L. M.; Garcia, R. R.

    2014-12-01

    In the last decade, it has become apparent that the regulation ofozone depleting substances (ODS) by the Montreal Protocol has hadprofound impacts on the climate system, affecting not only surfacetemperatures but also the atmospheric circulation and the entirehydrological cycle. In this study we demonstrate that he MontrealProtocol will also be very effective in mitigating the potentialintensity (PI) of hurricanes in the coming half century. We accomplish this by comparing the projections of a standard CMIP5RCP4.5 scenario to those of the so-called "World Avoided" scenario, inwhich ODS grow unabated in the absence of regulations. For thiscomparison, we use ouput from two 3-member ensembles of WholeAtmosphere Community Climate Model (WACCM), integrated between 2005and 2065. WACCM is the most comprehensive member of the CommunityEarth System Models (CESM), and includes interactive stratosphericchemistry, in addition to coupled land, ocean, and sea-ice components, In the World Avoided projections we find that the hurricane PI issubstantially larger that in the standard RCP4.5 case. Specifically,over the decade 2056-2065, the increase in PI is comparable to the onebetween RCP4.5 and RCP8.5 for the entire multi-model mean of the CMIP5models. Similar to what is projected by the CMIP5 models forincreasing CO2, in the World Avoided scenario the increase in hurricanPI is due to a combined increase in sea surface temperature and CAPE,and a decrease in the temperature in upper levels, near 70hPa. Our WACCM simulations indicate that the mitigating effect of theMontreal Protocol is highly significant: without ODSs regulations thePI would be twice as large as currently projected by the middle ofthis century.

  9. Future reef decalcification under a business-as-usual CO2 emission scenario

    PubMed Central

    Dove, Sophie G.; Kline, David I.; Pantos, Olga; Angly, Florent E.; Tyson, Gene W.; Hoegh-Guldberg, Ove

    2013-01-01

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century. PMID:24003127

  10. Future reef decalcification under a business-as-usual CO2 emission scenario.

    PubMed

    Dove, Sophie G; Kline, David I; Pantos, Olga; Angly, Florent E; Tyson, Gene W; Hoegh-Guldberg, Ove

    2013-09-17

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century. PMID:24003127

  11. The SAFRR Tsunami Scenario

    USGS Publications Warehouse

    Porter, K.; Jones, Lucile M.; Ross, Stephanie L.; Borrero, J.; Bwarie, J.; Dykstra, D.; Geist, Eric L.; Johnson, L.; Kirby, Stephen H.; Long, K.; Lynett, P.; Miller, K.; Mortensen, Carl E.; Perry, S.; Plumlee, G.; Real, C.; Ritchie, L.; Scawthorn, C.; Thio, H.K.; Wein, Anne; Whitmore, P.; Wilson, R.; Wood, Nathan J.

    2013-01-01

    The U.S. Geological Survey and several partners operate a program called Science Application for Risk Reduction (SAFRR) that produces (among other things) emergency planning scenarios for natural disasters. The scenarios show how science can be used to enhance community resiliency. The SAFRR Tsunami Scenario describes potential impacts of a hypothetical, but realistic, tsunami affecting California (as well as the west coast of the United States, Alaska, and Hawaii) for the purpose of informing planning and mitigation decisions by a variety of stakeholders. The scenario begins with an Mw 9.1 earthquake off the Alaska Peninsula. With Pacific basin-wide modeling, we estimate up to 5m waves and 10 m/sec currents would strike California 5 hours later. In marinas and harbors, 13,000 small boats are damaged or sunk (1 in 3) at a cost of $350 million, causing navigation and environmental problems. Damage in the Ports of Los Angeles and Long Beach amount to $110 million, half of it water damage to vehicles and containerized cargo. Flooding of coastal communities affects 1800 city blocks, resulting in $640 million in damage. The tsunami damages 12 bridge abutments and 16 lane-miles of coastal roadway, costing $85 million to repair. Fire and business interruption losses will substantially add to direct losses. Flooding affects 170,000 residents and workers. A wide range of environmental impacts could occur. An extensive public education and outreach program is underway, as well as an evaluation of the overall effort.

  12. Delayed detection of climate mitigation benefits due to climate inertia and variability

    PubMed Central

    Tebaldi, Claudia; Friedlingstein, Pierre

    2013-01-01

    Climate change mitigation acts by reducing greenhouse gas emissions, and thus curbing, or even reversing, the increase in their atmospheric concentration. This reduces the associated anthropogenic radiative forcing, and hence the size of the warming. Because of the inertia and internal variability affecting the climate system and the global carbon cycle, it is unlikely that a reduction in warming would be immediately discernible. Here we use 21st century simulations from the latest ensemble of Earth System Model experiments to investigate and quantify when mitigation becomes clearly discernible. We use one of the scenarios as a reference for a strong mitigation strategy, Representative Concentration Pathway (RCP) 2.6 and compare its outcome with either RCP4.5 or RCP8.5, both of which are less severe mitigation pathways. We analyze global mean atmospheric CO2, and changes in annually and seasonally averaged surface temperature at global and regional scales. For global mean surface temperature, the median detection time of mitigation is about 25–30 y after RCP2.6 emissions depart from the higher emission trajectories. This translates into detection of a mitigation signal by 2035 or 2045, depending on whether the comparison is with RCP8.5 or RCP4.5, respectively. The detection of climate benefits of emission mitigation occurs later at regional scales, with a median detection time between 30 and 45 y after emission paths separate. Requiring a 95% confidence level induces a delay of several decades, bringing detection time toward the end of the 21st century. PMID:24101485

  13. Delayed detection of climate mitigation benefits due to climate inertia and variability.

    PubMed

    Tebaldi, Claudia; Friedlingstein, Pierre

    2013-10-22

    Climate change mitigation acts by reducing greenhouse gas emissions, and thus curbing, or even reversing, the increase in their atmospheric concentration. This reduces the associated anthropogenic radiative forcing, and hence the size of the warming. Because of the inertia and internal variability affecting the climate system and the global carbon cycle, it is unlikely that a reduction in warming would be immediately discernible. Here we use 21st century simulations from the latest ensemble of Earth System Model experiments to investigate and quantify when mitigation becomes clearly discernible. We use one of the scenarios as a reference for a strong mitigation strategy, Representative Concentration Pathway (RCP) 2.6 and compare its outcome with either RCP4.5 or RCP8.5, both of which are less severe mitigation pathways. We analyze global mean atmospheric CO2, and changes in annually and seasonally averaged surface temperature at global and regional scales. For global mean surface temperature, the median detection time of mitigation is about 25-30 y after RCP2.6 emissions depart from the higher emission trajectories. This translates into detection of a mitigation signal by 2035 or 2045, depending on whether the comparison is with RCP8.5 or RCP4.5, respectively. The detection of climate benefits of emission mitigation occurs later at regional scales, with a median detection time between 30 and 45 y after emission paths separate. Requiring a 95% confidence level induces a delay of several decades, bringing detection time toward the end of the 21st century. PMID:24101485

  14. Simulation of groundwater flow in the "1,500-foot" sand and "2,000-foot" sand, with scenarios to mitigate saltwater migration in the "2,000-foot" sand of the Baton Rouge area, Louisiana

    USGS Publications Warehouse

    Heywood, Charles E.; Griffith, Jason M.; Lovelace, John K.

    2014-01-01

    Groundwater withdrawals have caused saltwater to encroach into freshwater-bearing aquifers beneath Baton Rouge, Louisiana. Groundwater investigations in the 1960s identified a freshwater-saltwater interface located at the Baton Rouge Fault, across which abrupt changes in water levels occur. Aquifers south of the fault generally contain saltwater, and aquifers north of the fault contain freshwater, though limited saltwater encroachment has been detected within 7 of the 10 aquifers north of the fault. The 10 aquifers beneath the Baton Rouge area, which includes East and West Baton Rouge Parishes, Pointe Coupee Parish, and East and West Feliciana Parishes, provided about 167 million gallons per day (Mgal/d) for public supply and industrial use in 2010. Groundwater withdrawals from the “2,000-foot” sand in East Baton Rouge Parish have caused water-level drawdown as great as 356 feet (ft) and induced saltwater movement northward across the fault. Saltwater encroachment threatens industrial wells that are located about 3 miles north of the fault. Constant and variable-density groundwater models were developed with the MODFLOW and SEAWAT groundwater modeling codes to evaluate strategies to control saltwater migration, including changes in the distribution of groundwater withdrawals and installation of “scavenger” wells to intercept saltwater before it reaches existing production wells. Six hypothetical scenarios simulated the effects of different groundwater withdrawal options on groundwater levels within the “1,500-foot” sand and the “2,000-foot” sand and the transport of saltwater within the “2,000-foot” sand during 2008–47. Scenario 1 is considered a base case for comparison to the other five scenarios and simulates continuation of 2007 reported groundwater withdrawals. Scenario 2 simulates discontinuation of withdrawals from seven selected industrial wells located in the northwest corner of East Baton Rouge Parish and predicts that water levels

  15. BECCS and Sustainable Land-Use in Mitigation Pathways

    NASA Astrophysics Data System (ADS)

    Kato, E.; Yamagata, Y.

    2013-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in the future socio-economic scenarios to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative fossil fuel emissions in the end of the 21st century. Large scale use of BECCS implies certain amount of additional production of biofuels, which could potentially cause substantial carbon emissions from the land-use change. Developing sustainable low carbon scenarios requires careful consideration of the land-use implications involving the large scale BECCS. In this study, we use a global terrestrial biogeochemical cycle model to evaluate effects of land-use change in RCP2.6, which is a scenario with net negative fossil fuel emissions aiming to keep the 2°C temperature target used in CMIP5 future climate change analysis. We also run a global crop model to examine BECCS attainability in the land-use scenario with a consideration of future fertilizer and irrigation use options. In the evaluation, we consider the deployment of bioenergy with both first-generation and second-generation biofuels. Our analysis reveals that first-generation bioenergy crop production would not be sufficient to achieve the required BECCS of RCP2.6 scenario even in the high fertilizer and irrigation use cases. It would require more than doubling the area for bioenergy crops production around 2050 assumed in RCP2.6, however, such scenarios implicitly induce large scale land-use changes that emit significant amount of carbon from deforestation. To reduce the potential land-use change emissions, optimal use of second-generation biofuel crops are discussed.

  16. Medical Scenarios Relevant to Spaceflight

    NASA Technical Reports Server (NTRS)

    Bacal, Kira; Hurs, Victor; Doerr, Harold

    2004-01-01

    The Medical Operational Support Team (MOST) was tasked by the JSC Space Medicine and Life Sciences Directorate (SLSD) to incorporate medical simulation into 1) medical training for astronaut-crew medical officers (CMO) and medical flight control teams and 2) evaluations of procedures and resources required for medical care aboard the International Space Station (ISS). Development of evidence-based medical scenarios that mimic the physiology observed during spaceflight will be needed for the MOST to complete these two tasks. The MOST used a human patient simulator, the ISS-like resources in the Medical Simulation Laboratory (MSL), and evidence from space operations, military operations and medical literature to develop space relevant medical scenarios. These scenarios include conditions concerning airway management, Advanced Cardiac Life Support (ACLS) and mitigating anaphylactic symptoms. The MOST has used these space relevant medical scenarios to develop a preliminary space medical training regimen for NASA flight surgeons, Biomedical Flight Controllers (Biomedical Engineers; BME) and CMO-analogs. This regimen is conducted by the MOST in the MSL. The MOST has the capability to develop evidence-based space-relevant medical scenarios that can help SLSD I) demonstrate the proficiency of medical flight control teams to mitigate space-relevant medical events and 2) validate nextgeneration medical equipment and procedures for space medicine applications.

  17. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-11-01

    Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C). We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES) A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950-2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our results show that radiative cooling is

  18. Projections of Rapidly Rising Temperatures over Africa Under Low Mitigation

    NASA Technical Reports Server (NTRS)

    Engelbrecht, Francois; Adegoke, Jimmy; Bopape, Mary-Jane; Naidoo, Mogesh; Garland, Rebecca; Thatcher, Marcus; McGregor, John; Katzfe, Jack; Werner, Micha; Ichoku, Charles; Gatebe, Charles

    2015-01-01

    An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4-6 C over the subtropics and 3-5 C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional downscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of African

  19. Climate change mitigation policies and poverty in developing countries

    NASA Astrophysics Data System (ADS)

    Hussein, Zekarias; Hertel, Thomas; Golub, Alla

    2013-09-01

    Mitigation of the potential impacts of climate change is one of the leading policy concerns of the 21st century. However, there continues to be heated debate about the nature, the content and, most importantly, the impact of the policy actions needed to limit greenhouse gas emissions. One contributing factor is the lack of systematic evidence on the impact of mitigation policy on the welfare of the poor in developing countries. In this letter we consider two alternative policy scenarios, one in which only the Annex I countries take action, and the second in which the first policy is accompanied by a forest carbon sequestration policy in the non-Annex regions. Using an economic climate policy analysis framework, we assess the poverty impacts of the above policy scenarios on seven socio-economic groups in 14 developing countries. We find that the Annex-I-only policy is poverty friendly, since it enhances the competitiveness of non-Annex countries—particularly in agricultural production. However, once forest carbon sequestration incentives in the non-Annex regions are added to the policy package, the overall effect is to raise poverty in the majority of our sample countries. The reason for this outcome is that the dominant impacts of this policy are to raise returns to land, reduce agricultural output and raise food prices. Since poor households rely primarily on their own labor for income, and generally own little land, and since they also spend a large share of their income on food, they are generally hurt on both the earning and the spending fronts. This result is troubling, since forest carbon sequestration—particularly through avoided deforestation—is a promising, low cost option for climate change mitigation.

  20. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the

  1. Indian methane and nitrous oxide emissions and mitigation flexibility

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Shukla, P. R.; Kapshe, Manmohan; Menon, Deepa

    Methane (CH 4) and nitrous oxide (N 2O) contributed 27% and 7%, respectively, to India's CO 2 equivalent greenhouse gas (GHG) emissions in 2000, the remaining being the carbon dioxide (CO 2) emissions. Presently, agriculture and livestock related emissions contribute above 65% of Indian CH 4 emissions and above 90% of N 2O emissions. Since these activities are widely dispersed, with a considerable portion being sub-sustenance activities, emission mitigation requires considerable efforts. We use geographical information system (GIS) interfaced Asia-Pacific Integrated Model (AIM/Enduse), which employs technology share projections, for estimating future CH 4 and N 2O emissions. The future emissions and mitigation flexibility are analyzed for a reference scenario and two mitigation scenarios (medium and strong). Future CH 4 emissions in 2030 are projected to reach 24.4 Tg (reference scenario), 21.3 Tg (medium mitigation scenario) and 17.6 Tg (strong mitigation scenario). Future CH 4 emission scenarios indicate rising shares of municipal solid waste (MSW) and coal bed methane, where mitigation technologies have good penetration potential. Improved cattle feed and digesters, and better rice paddy cultivation practices that are adopted for higher yields and improved irrigation coverage also offer CH 4 mitigation as ancillary benefits. Future N 2O emissions in 2030 are projected to reach 0.81 Tg (reference scenario), 0.69 Tg (medium mitigation scenario) and 0.6 Tg (strong mitigation scenario). Better utilization of nitrogen fertilizer and increased use of organic fertilizers, partly produced from MSW, offer interesting mitigation opportunities for N 2O emissions. Some of these technology initiatives are already visible in India at different stages of development and appropriate policy thrust may strengthen them in future.

  2. Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment

    NASA Astrophysics Data System (ADS)

    Johns, T. C.; Royer, J.-F.; Höschel, I.; Huebener, H.; Roeckner, E.; Manzini, E.; May, W.; Dufresne, J.-L.; Otterå, O. H.; van Vuuren, D. P.; Salas Y Melia, D.; Giorgetta, M. A.; Denvil, S.; Yang, S.; Fogli, P. G.; Körper, J.; Tjiputra, J. F.; Stehfest, E.; Hewitt, C. D.

    2011-11-01

    We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental design for the forthcoming 5th Intergovernmental Panel on Climate Change assessment. Atmospheric carbon-dioxide concentrations pathways rather than carbon emissions are specified in all models, including five ESMs that contain interactive carbon cycles. Specified forcings also include minor greenhouse gas concentration pathways, ozone concentration, aerosols (via concentrations or precursor emissions) and land use change (in five models). The new aggressive mitigation scenario (E1), constructed using an integrated assessment model (IMAGE 2.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K, is studied alongside the medium-high non-mitigation scenario SRES A1B. Resulting twenty-first century global mean warming and precipitation changes for A1B are broadly consistent with previous studies. In E1 twenty-first century global warming remains below 2 K in most models, but global mean precipitation changes are higher than in A1B up to 2065 and consistently higher per degree of warming. The spread in global temperature and precipitation responses is partly attributable to inter-model variations in aerosol loading and representations of aerosol-related radiative forcing effects. Our study illustrates that the benefits of mitigation will not be realised in temperature terms until several decades after emissions reductions begin, and may vary considerably between regions. A subset of the models containing integrated carbon cycles agree that land and ocean sinks remove roughly half of present day anthropogenic carbon emissions from the atmosphere, and that anthropogenic carbon emissions must decrease by at least 50% by 2050 relative

  3. Tropical peatland carbon dynamics simulated for scenarios of disturbance and restoration and climate change

    NASA Astrophysics Data System (ADS)

    Frolking, S. E.; Warren, M.; Dai, Z.; Kurnianto, S.; Hagen, S. C.

    2015-12-01

    Tropical peatlands contain a globally significant carbon pool. Southeast Asian peatlands are being deforested, drained and burned at very high rates, mostly for conversion to industrial oil palm or pulp and paper plantations. The climate mitigation potential of tropical peatlands has gained increasing attention in recent years as persistent greenhouse gas emissions can be avoided or decreased if peatlands remain intact or are rehabilitated. In addition, peatland conservation or rehabilitation for climate mitigation also includes multiple co-benefits such as maintenance of ecosystem services, biodiversity, and air quality from reduced fire occurrence. Inventory guidelines and methodologies have only recently become available, and are based on few data from a limited number of sites. Few heuristic tools are available to evaluate the impact of management practices on carbon dynamics in tropical peatlands, and the potential climate mitigation benefits of peatland restoration. We used a process based dynamic tropical peatland model to explore the C dynamics of several peatland management trajectories represented by hypothetical scenarios, within the context of simulated 21st century climate change. All scenarios with land use, including those with optimal restoration, simulate C loss over the 21st century, with C losses ranging from 10% to essentially 100% of pre-disturbance values. Fire, either prescribed as part of a crop rotation cycle, or stochastic occurrences in sub-optimally managed degraded land can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. A single 25-year oil palm rotation, with a prescribed initial burn, lost 40-50 kg C/m2, equivalent to accumulation during the previous 500 years, 10-30% of which was restored in 75 years of optimal restoration. Our results indicate that even under the most optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one-third of the carbon

  4. Hydrological projections of climate change scenarios in the Lena and the Mackenzie basins: modeling and uncertainty issues

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander; Gustafsson, David; Motovilov, Yury; Arheimer, Berit; Kalugin, Andrei; Krylenko, Inna; Lavrenov, Alexander

    2016-04-01

    The ECOMAG and the HYPE regional hydrological models were setup to assess possible impacts of climate change on the hydrological regime of two pan-Arctic great drainage basins: the Lena and the Mackenzie rivers. We firstly assessed the reliability of the hydrological models to reproduce the historical streamflow series and analyse the hydrological projections from the climate change scenarios. The impacts were assessed in three 30-year periods: early- (2006-2035), mid- (2036-2065) and end-century (2070-2099) using an ensemble of five GCMs and four Representative Concentration Pathways (RCP) scenarios. Results show, particularly, that the basins react with multi-year delay to changes in the RCP2.6 mitigation (peak-and-decline) scenario, and consequently to the potential mitigation measures. Then we assessed the hydrological projections' uncertainty, which is caused by the GCM's and RCP's variabilities, and indicated that the uncertainty rises with the time horizon of the projection and, generally, the uncertainty interval is wider for Mackenzie than for Lena. We finally compare the potential future hydrological impacts predicted based on the GCM-scenario ensemble approach and the delta-change transformation method of the historical observations. We found that the latter method can produce useful information about the climate change impact in the great Arctic rivers, at least for the nearest decades.

  5. Projecting Mid- and End-of-Century Climate Change in the Los Angeles Mountainous Region by a Combination of Dynamical and Statistical Downscaling Techniques

    NASA Astrophysics Data System (ADS)

    Sun, F.; Hall, A. D.; Walton, D.; Capps, S. B.; Reich, K.

    2013-12-01

    Using a combination of dynamical and statistical downscaling techniques, we produced 2-km-resolution regional climate reconstructions and future projections of surface warming and snowfall changes in the Los Angeles region at the middle and end of the 21st century. Projections for both time periods were compared to a validated simulation of a baseline period (1981-2000). We examined outcomes associated with two IPCC-AR5 greenhouse gas emissions scenarios: a "business-as-usual" scenario (RCP8.5) and a "mitigation" scenario (RCP2.6). Output from all available global climate models in the CMIP5 archive was downscaled. We first statistically downscaled surface warming and then applied a statistical model between the surface temperature and snowfall to project the snowfall change. By mid-century, the mountainous areas in the Los Angeles region are likely to receive substantially less snowfall than in the baseline period. In RCP8.5, about 60% of the snowfall is most likely to persist, while in RCP2.6, the likely amount remaining is somewhat higher (about 70%). By end-of-century, however, the two scenarios diverge significantly. In RCP8.5, snowfall sees a dramatic further reduction, with only about a third of baseline snowfall persisting. For RCP2.6, snowfall sees only a negligible further reduction from mid-century. Due to significant differences in climate change outcomes across the global models, we estimated these numbers associated with uncertainty, in the range of 15-30 percentage points. For both scenarios and both time slices, the snowfall loss is consistently greatest at low elevations, and the lower-lying mountain ranges are somewhat more vulnerable to snowfall loss. The similarity in the two scenarios' most likely snowfall outcomes at mid-century illustrates the inevitability of climate change in the coming decades, no matter what mitigation measures are taken. Their stark contrast at century's end reveals that reduction of greenhouse gas emissions will help

  6. Quantifying the role of Northern Eurasia in global CO2, CH4, and water dynamics during the 21st Century

    NASA Astrophysics Data System (ADS)

    Zhuang, Qianlai; Kicklighter, David; Cai, Yongxia; Tchebakova, Nadja; Melillo, Jerry; Reilly, John; Sokolov, Andrei; Sirin, Andrey

    2015-04-01

    The largest increase of surface air temperature and related climate extremes have occurred in Northern Eurasia in recent decades, and are projected to continue during the 21st century. The changing climate will affect biogeography, land cover and biogeochemical cycles in the region, which in turn, will affect how global land use evolves in the future as humans attempt to mitigate and adapt to climate change. Regional land-use changes, however, also depend on pressures imposed by the global economy and environmental changes. Feedbacks from future land-use change will further modify regional and global biogeochemistry and climate. This study uses a suite of linked biogeography, biogeochemical, economic, and climate models to explore how climate-induced vegetation shifts in Northern Eurasia will influence land-use change and carbon cycling across the globe during the 21st century. We find that, at the global scale, while more land will be allocated towards food and biofuel crops due to increasing population and associated economic development, the climate-induced vegetation shifts in Northern Eurasia also significantly affect global land use and result in a global cumulative carbon sink of about 63 Pg C under the policy scenario that limits CO2-equivelent greenhouse gas concentrations to 480 ppmv by the end of the 21st century. In comparison with the policy scenario, under a no-policy scenario where CO2-equivelent greenhouse gas concentrations reach 870 ppmv by the end of 21st century, the global cumulative carbon sink is 11 Pg C less mainly due to carbon lost from global grasslands. Cumulative evapotranspiration from global terrestrial ecosystems considering global land-use changes with vegetation shifts in northern Eurasia is 8.05 and 8.35 million km3 for the policy and no-policy scenarios, respectively. In the presentation, we will also discuss our analysis on CH4 emissions from northern Eurasia in response to the changes of land cover and climate during this

  7. Protected areas' role in climate-change mitigation.

    PubMed

    Melillo, Jerry M; Lu, Xiaoliang; Kicklighter, David W; Reilly, John M; Cai, Yongxia; Sokolov, Andrei P

    2016-03-01

    Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC's Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km(2) of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100. PMID:26474765

  8. Potential contribution of wind energy to climate change mitigation

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Pryor, S. C.

    2014-08-01

    It is still possible to limit greenhouse gas emissions to avoid the 2 °C warming threshold for dangerous climate change. Here we explore the potential role of expanded wind energy deployment in climate change mitigation efforts. At present, most turbines are located in extra-tropical Asia, Europe and North America, where climate projections indicate continuity of the abundant wind resource during this century. Scenarios from international agencies indicate that this virtually carbon-free source could supply 10-31% of electricity worldwide by 2050 (refs , ). Using these projections within Intergovernmental Panel on Climate Change Representative Concentration Pathway (RCP) climate forcing scenarios, we show that dependent on the precise RCP followed, pursuing a moderate wind energy deployment plan by 2050 delays crossing the 2 °C warming threshold by 1-6 years. Using more aggressive wind turbine deployment strategies delays 2 °C warming by 3-10 years, or in the case of RCP4.5 avoids passing this threshold altogether. To maximize these climate benefits, deployment of non-fossil electricity generation must be coupled with reduced energy use.

  9. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds

    PubMed Central

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-01-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union. PMID:26681982

  10. Interpreting global energy and emission scenarios: Methods for understanding and communicating policy insights

    NASA Astrophysics Data System (ADS)

    Hummel, Leslie

    Energy scenarios for the 21st century powerfully inform perceptions and expectations in the minds of energy investors, consumers, and policy-makers. Scenarios that stabilize global warming call for large-scale energy technology transitions, fueling debates about the relative roles for a range of technologies including nuclear power, carbon sequestration, biofuels, solar power, and efficient end-use devices. In the last decade, hundreds of scenarios have been published by more than a dozen research teams using different models, baselines and mitigation targets. Despite the efforts to summarize findings in a few major assessments, a gap in understanding remains at a critical science-policy juncture between scenario analysts and the audiences their work is designed to serve. Addressing the issue requires an interdisciplinary approach that incorporates knowledge and methods from the fields of energy engineering, economics, climate science, and policy analysis. This research applies two analytical techniques to investigate the effects of an imposed climate policy on the underlying energy system. The first disentangles the effect of a policy intervention on key demographic and technology drivers of fossil fuel use, and the second decomposes reductions in emissions by specific energy technology types. Because the techniques may be applied to any energy scenario with technology detail, this study demonstrates their application to ten sample stabilization scenarios from three leading models. Revealing the importance of data and assumptions overlooked or not well disclosed in the past, the results highlight an implausibly high pressure on energy supply innovations while the potential for energy efficiency improvements is systematically underestimated. The findings are significant to both scenario analysts and the decision-makers in public policy and private investment who are influenced by their work.

  11. The analysis of historical earthquakes of the North Anatolian Fault in the Marmara Region, Turkey for the last 15 centuries based on intensity and continuous Coulomb scenarios: Implications for the fault geometry and the interaction of individual earthqua

    NASA Astrophysics Data System (ADS)

    Yaltırak, Cenk; Şahin, Murat

    2016-04-01

    In this study we evaluated the historical earthquakes of the Marmara Region totally in three-stages. In first stage, historical earthquakes were compiled from the available catalogues and classified according to their spatial distribution, whereas only the ones, related with the active northern branch of the North Anatolian Fault (NAF) were selected. Then, the next phase of classification was made to relate historical data to the ancient and historical settlements, for which a kind of shake map was produced for each event. In the second stage, three different fault models, suggested for the geometry of the NAF in the Marmara Region, were integrated into a GIS database. Mw magnitudes were calculated for each fault segment by using lengths, seismogenic depths, and slip-rates of fault segments. In the third stage, the revised digital geological map of the Marmara Region were compiled based on 1:500k conventional maps and were used to estimate the Vs30 distribution within a grid of 750x750 m. Modified Mercalli Intensity (MMI) maps were produced for each earthquake scenario, depending on the geometry of different fault models, calculated model magnitudes and intensity distributions. Moreover, we tested the surface ruptures of each earthquake scenarios by using the Coulomb stress change model for historical data covering a time era between AD 478 and 2016 in assumption with a constant horizontal slip rate of 19 mma-1 for all fault segments. As conclusion, the horsetail-fault geometry (Yaltırak, 2002) among all 3 fault models yielded the best fit to the distribution of intensities and coulomb models.

  12. Hydrological scenarios for two selected Alpine catchments for the 21st century using a stochastic weather generator and enhanced process understanding for modelling of seasonal snow and glacier melt for improved water resources management

    NASA Astrophysics Data System (ADS)

    Strasser, Ulrich; Schneeberger, Klaus; Dabhi, Hetal; Dubrovsky, Martin; Hanzer, Florian; Marke, Thomas; Oberguggenberger, Michael; Rössler, Ole; Schmieder, Jan; Rotach, Mathias; Stötter, Johann; Weingartner, Rolf

    2016-04-01

    The overall objective of HydroGeM³ is to quantify and assess both water demand and water supply in two coupled human-environment mountain systems, i.e. Lütschine in Switzerland and Ötztaler Ache in Austria. Special emphasis is laid on the analysis of possible future seasonal water scarcity. The hydrological response of high Alpine catchments is characterised by a strong seasonal variability with low runoff in winter and high runoff in spring and summer. Climate change is expected to cause a seasonal shift of the runoff regime and thus it has significant impact on both amount and timing of the release of the available water resources, and thereof, possible future water conflicts. In order to identify and quantify the contribution of snow and ice melt as well as rain to runoff, streamflow composition will be analysed with natural tracers. The results of the field investigations will help to improve the snow and ice melt and runoff modules of two selected hydrological models (i.e. AMUNDSEN and WaSiM) which are used to investigate the seasonal water availability under current and future climate conditions. Together, they comprise improved descriptions of boundary layer and surface melt processes (AMUNDSEN), and of streamflow runoff generation (WaSiM). Future meteorological forcing for the modelling until the end of the century will be provided by both a stochastic multi-site weather generator, and downscaled climate model output. Both approches will use EUROCORDEX data as input. The water demand in the selected study areas is quantified for the relevant societal sectors, e.g. agriculture, hydropower generation and (winter) tourism. The comparison of water availability and water demand under current and future climate conditions will allow the identification of possible seasonal bottlenecks of future water supply and resulting conflicts. Thus these investigations can provide a quantitative basis for the development of strategies for sustainable water management in

  13. The USGS Earthquake Scenario Project

    NASA Astrophysics Data System (ADS)

    Wald, D. J.; Petersen, M. D.; Wald, L. A.; Frankel, A. D.; Quitoriano, V. R.; Lin, K.; Luco, N.; Mathias, S.; Bausch, D.

    2009-12-01

    The U.S. Geological Survey’s (USGS) Earthquake Hazards Program (EHP) is producing a comprehensive suite of earthquake scenarios for planning, mitigation, loss estimation, and scientific investigations. The Earthquake Scenario Project (ESP), though lacking clairvoyance, is a forward-looking project, estimating earthquake hazard and loss outcomes as they may occur one day. For each scenario event, fundamental input includes i) the magnitude and specified fault mechanism and dimensions, ii) regional Vs30 shear velocity values for site amplification, and iii) event metadata. A grid of standard ShakeMap ground motion parameters (PGA, PGV, and three spectral response periods) is then produced using the well-defined, regionally-specific approach developed by the USGS National Seismic Hazard Mapping Project (NHSMP), including recent advances in empirical ground motion predictions (e.g., the NGA relations). The framework also allows for numerical (3D) ground motion computations for specific, detailed scenario analyses. Unlike NSHMP ground motions, for ESP scenarios, local rock and soil site conditions and commensurate shaking amplifications are applied based on detailed Vs30 maps where available or based on topographic slope as a proxy. The scenario event set is comprised primarily by selection from the NSHMP events, though custom events are also allowed based on coordination of the ESP team with regional coordinators, seismic hazard experts, seismic network operators, and response coordinators. The event set will be harmonized with existing and future scenario earthquake events produced regionally or by other researchers. The event list includes approximate 200 earthquakes in CA, 100 in NV, dozens in each of NM, UT, WY, and a smaller number in other regions. Systematic output will include all standard ShakeMap products, including HAZUS input, GIS, KML, and XML files used for visualization, loss estimation, ShakeCast, PAGER, and for other systems. All products will be

  14. GLOBAL WARMING MITIGATION POTENTIAL OF THREE TREE PLANTATION SCENARIOS

    EPA Science Inventory

    The report gives results of an analysis of three alternative uses of forests in the U.S. to reduce atmospheric carbon dioxide (CO2)concentrations: (1) planting trees with no harvesting, (2) traditional forestry, and (3) short-rotation intensive culture of trees for biomass. ncrea...

  15. Scenarios for coastal vulnerability assessment

    USGS Publications Warehouse

    Nicholls, Robert J.; Woodroffe, Colin D.; Burkett, Virginia; Hay, John; Wong, Poh Poh; Nurse, Leonard

    2011-01-01

    Coastal vulnerability assessments tend to focus mainly on climate change and especially on sea-level rise. Assessment of the influence of nonclimatic environmental change or socioeconomic change is less well developed and these drivers are often completely ignored. Given that the most profound coastal changes of the twentieth century due to nonclimate drivers are likely to continue through the twenty-first century, this is a major omission. It may result in not only overstating the importance of climate change but also overlooking significant interactions of climate change and other drivers. To support the development of policies relating to climate change and coastal management, integrated assessments of climatic change in coastal areas are required, including the effects of all the relevant drivers. This chapter explores the development of scenarios (or "plausible futures") of relevant climate and nonclimate drivers that can be used for coastal analysis, with an emphasis on the nonclimate drivers. It shows the importance of analyzing the impacts of climate change and sea-level rise in a broader context of coastal change and all its drivers. This will improve the analysis of impacts, key vulnerabilities, and adaptation needs and, hence, inform climate and coastal policy. Stakeholder engagement is important in the development of scenarios, and the underlying assumptions need to be explicit, transparent, and open to scientific debate concerning their uncertainties/realism and likelihood.

  16. Reduce toxic hazards using passive mitigation

    SciTech Connect

    Flamberg, S.A.; Torti, K.S.; Myers, P.M.

    1998-07-01

    The primary goal of the Risk Management Program Rule promulgated under Section 112(r) of the 1990 US Clean Air Act Amendments is to prevent the accidental release of those chemicals that pose the greatest threat to the public and the environment, and to encourage emergency preparedness to mitigate the severity of such releases. The Rule requires facility owners to identify, evaluate, and communicate to the public any potential worst-case scenarios that could involve accidental releases of toxic and flammable substances. A worst-case scenario is defined by the US Environmental Protection Agency (EPA; Washington, DC) as: {hor_ellipsis}the release of the largest quantity of a regulated substance from a vessel or process line failure that results in the greatest distance to an endpoint. When designing systems to store or process hazardous materials, passive-mitigation methods--those that function without human, mechanical, or energy input--should be considered. Such systems contain or limit a potential release of hazardous materials. And, because they have no mechanical requirements, passive-mitigation techniques are considered more reliable than active methods, such as emergency-shutdown and water-spray systems. Passive mitigation should also be considered when defining potential release scenarios and modeling hazard zones.

  17. The changing nutrition scenario.

    PubMed

    Gopalan, C

    2013-09-01

    The past seven decades have seen remarkable shifts in the nutritional scenario in India. Even up to the 1950s severe forms of malnutrition such as kwashiorkar and pellagra were endemic. As nutritionists were finding home-grown and common-sense solutions for these widespread problems, the population was burgeoning and food was scarce. The threat of widespread household food insecurity and chronic undernutrition was very real. Then came the Green Revolution. Shortages of food grains disappeared within less than a decade and India became self-sufficient in food grain production. But more insidious problems arising from this revolution were looming, and cropping patterns giving low priority to coarse grains and pulses, and monocropping led to depletion of soil nutrients and 'Green Revolution fatigue'. With improved household food security and better access to health care, clinical manifestations of severe malnutrition virtually disappeared. But the decline in chronic undernutrition and "hidden hunger" from micronutrient deficiencies was slow. On the cusp of the new century, an added factor appeared on the nutritional scene in India. With steady urban migration, upward mobility out of poverty, and an increasingly sedentary lifestyle because of improvements in technology and transport, obesity rates began to increase, resulting in a dual burden. Measured in terms of its performance in meeting its Millennium Development Goals, India has fallen short. Despite its continuing high levels of poverty and illiteracy, India has a huge demographic potential in the form of a young population. This advantage must be leveraged by investing in nutrition education, household access to nutritious diets, sanitary environment and a health-promoting lifestyle. This requires co-operation from all the stakeholders, including governments, non government organizations, scientists and the people at large. PMID:24135189

  18. The changing nutrition scenario

    PubMed Central

    Gopalan, C.

    2013-01-01

    The past seven decades have seen remarkable shifts in the nutritional scenario in India. Even up to the 1950s severe forms of malnutrition such as kwashiorkar and pellagra were endemic. As nutritionists were finding home-grown and common-sense solutions for these widespread problems, the population was burgeoning and food was scarce. The threat of widespread household food insecurity and chronic undernutrition was very real. Then came the Green Revolution. Shortages of food grains disappeared within less than a decade and India became self-sufficient in food grain production. But more insidious problems arising from this revolution were looming, and cropping patterns giving low priority to coarse grains and pulses, and monocropping led to depletion of soil nutrients and ‘Green Revolution fatigue’. With improved household food security and better access to health care, clinical manifestations of severe malnutrition virtually disappeared. But the decline in chronic undernutrition and “hidden hunger” from micronutrient deficiencies was slow. On the cusp of the new century, an added factor appeared on the nutritional scene in India. With steady urban migration, upward mobility out of poverty, and an increasingly sedentary lifestyle because of improvements in technology and transport, obesity rates began to increase, resulting in a dual burden. Measured in terms of its performance in meeting its Millennium Development Goals, India has fallen short. Despite its continuing high levels of poverty and illiteracy, India has a huge demographic potential in the form of a young population. This advantage must be leveraged by investing in nutrition education, household access to nutritious diets, sanitary environment and a health-promoting lifestyle. This requires co-operation from all the stakeholders, including governments, non government organizations, scientists and the people at large. PMID:24135189

  19. Probabilistic cost estimates for climate change mitigation.

    PubMed

    Rogelj, Joeri; McCollum, David L; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-01-01

    For more than a decade, the target of keeping global warming below 2 °C has been a key focus of the international climate debate. In response, the scientific community has published a number of scenario studies that estimate the costs of achieving such a target. Producing these estimates remains a challenge, particularly because of relatively well known, but poorly quantified, uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on the one hand, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other hand, has spent years improving its understanding of the geophysical response of the Earth system to emissions of greenhouse gases. This geophysical response remains a key uncertainty in the cost of mitigation scenarios but has been integrated with assessments of other uncertainties in only a rudimentary manner, that is, for equilibrium conditions. Here we bridge this gap between the two research communities by generating distributions of the costs associated with limiting transient global temperature increase to below specific values, taking into account uncertainties in four factors: geophysical, technological, social and political. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by geophysical uncertainties, social factors influencing future energy demand and, lastly, technological uncertainties surrounding the availability of greenhouse gas mitigation options. Our information on temperature risk and mitigation costs provides crucial information for policy-making, because it clarifies the relative importance of mitigation costs, energy demand and the timing of global action in reducing the risk of exceeding a global temperature increase of 2 °C, or other limits such as 3 °C or 1.5

  20. Optimizing Decision Preparedness by Adapting Scenario Complexity and Automating Scenario Generation

    NASA Technical Reports Server (NTRS)

    Dunne, Rob; Schatz, Sae; Flore, Stephen M.; Nicholson, Denise

    2011-01-01

    Klein's recognition-primed decision (RPD) framework proposes that experts make decisions by recognizing similarities between current decision situations and previous decision experiences. Unfortunately, military personnel arQ often presented with situations that they have not experienced before. Scenario-based training (S8T) can help mitigate this gap. However, SBT remains a challenging and inefficient training approach. To address these limitations, the authors present an innovative formulation of scenario complexity that contributes to the larger research goal of developing an automated scenario generation system. This system will enable trainees to effectively advance through a variety of increasingly complex decision situations and experiences. By adapting scenario complexities and automating generation, trainees will be provided with a greater variety of appropriately calibrated training events, thus broadening their repositories of experience. Preliminary results from empirical testing (N=24) of the proof-of-concept formula are presented, and future avenues of scenario complexity research are also discussed.

  1. century drying

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan

    2014-11-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  2. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    worked to bring the experience generated from over four decades of scenario development in other issue domains, including energy and security, to bear on environmental scenarios, and to bring into dialogue scenario practitioners, both producers and users, with social science scholars. The set of contributions to this focus issue of Environmental Research Letters arose out of this workshop and collectively examines key challenges facing the scenario community, synthesizes lessons, and offers recommendations for new research and practice in this field. One theme that emerged in many of the discussions at the workshop revolved around the distinction between two broad perspectives on the goals of scenario exercises: scenarios as products and scenarios as processes. Most global environmental change scenario exercises are product-oriented; the content of the scenarios developed is the main goal of many participants and those who commission or organize the scenario development process. Typically, what is of most interest are the environmental outcomes produced, how they relate to the various factors driving them, and what the results tell us about the prospects for future environmental change, for impacts, and for mitigation. A product-oriented perspective assumes that once produced, scenario products have lives of their own, divorced from the processes that generated them and able to serve multiple, often unspecified purposes. Thus, it is often assumed that the scenario products can be 'taken up' by a variety of users in a variety of fora. A contrasting scenario approach is process-oriented and self-consciously privileges the process of scenario development as the primary goal, for example as a means to motivate organizational learning, find commonalities across different perspectives, achieve consensus on goals, or come to a shared understanding of challenges. Focusing on scenarios as processes highlights the social contexts in which scenarios are created and used. Process

  3. Scenario Planning for Coastal Adaptation

    NASA Astrophysics Data System (ADS)

    Parris, A.; Obeysekera, J.; Knuuti, K.; Moss, R. H.; Horton, R. M.; Weiss, J. L.

    2012-12-01

    Sea level rise (SLR) is a persistent environmental change observed globally for more than a century, and its expected continuation poses significant challenges to the United States (US). We summarize a process associated with the United States National Climate Assessment for identifying four scenarios of global mean sea level rise (SLR). The main finding is that global mean sea level is expected to rise no less than 0.2 meters and no more than 2.0 meters by the end of the century. Recent publications suggest that a 4 C world would result in global mean SLR towards the upper end of that range. Aside from this process, there is currently no coordinated, interagency effort in the US to identify agreed upon global mean sea level rise projections for the purpose of coastal planning, policy, and management. This is an important gap because identifying global mean SLR estimates is a critical step in assessing coastal impacts and vulnerabilities. At present, coastal managers are left to identify global SLR estimates through their own interpretation of the scientific literature or the advice of experts on an ad-hoc basis. Yet, relative SLR at over one hundred tide gages (~80%) along the US coast reflect the global trend (1.7 - 3.2 mm/yr). No widely accepted method is currently available for producing probabilistic projections of SLR at actionable scales (i.e., regional to local). The desire to have a most probable or likely outcome can lead to paralysis or inaction for coastal decision-making. Given the range of uncertainty in future global SLR, scenario planning offers an opportunity to overcome decision-making paralysis and initiate actions now that may reduce future impacts and vulnerabilities. Scenarios do not predict future changes, but describe future potential conditions in a manner that supports decision-making under uncertainty. Using multiple scenarios, none more likely than the other, encourages experts and decision makers to rehearse multiple, plausible futures

  4. Widespread Dieback of Forests in North America under Rapid Global Warming: Response to the VINCERA Future Climate Scenarios Simulated by the MC1 DGVM

    NASA Astrophysics Data System (ADS)

    Lenihan, J.; Neilson, R.; Bachelet, D.; Drapek, R.

    2005-12-01

    The VINCERA project is an intercomparison among three dynamic general vegetation models (DGVMs) simulating the response of North American ecosystems to six new future climate scenarios. The scenarios were produced by three general circulation models, each using two different future trace gas emissions scenarios. All of the scenarios are near the warmer end of the Intergovernmental Panel on Climate Change's projected future temperature range. Here we present results from the MC1 DGVM. All major forested ecosystems in North America exhibit carbon sequestration until the late 20th or early 21st century, followed by a drought induced decline and loss of carbon to levels below those at 1900 in the absence of fire suppression. By the end of the 21st century, the entire continent will have lost from 10 to 30 Pg of carbon, depending on the scenario. However, fire suppression can significantly mitigate carbon losses and ecosystem declines, producing a net change in carbon from a loss of about 5 Pg to a gain of about 8 Pg under the different scenarios. Most of the suppression benefits are obtained by forests in the western U.S. Suppression also mitigates carbon losses and conversions to savanna or grassland in the eastern U.S., but forest decline still occurs in the east under all scenarios. Dieback is triggered by two mechanisms. Reduced regional precipitation, variable among the scenarios, is one. The second more pervasive mechanism is the influence of rising temperatures on evapotranspiration. Even with the benefits of enhanced water use efficiency from elevated CO2 and slight increases in precipitation, dramatic increases in temperature can produce widespread forest dieback, and increases in fire severity. The eastern United States appear to be particularly vulnerable, as does the central Canadian boreal forest because of the relative flatness of climate gradients near ecotones. Under some scenarios, dieback is also driven by both increasing temperatures and decreasing

  5. Space options for tropical cyclone hazard mitigation

    NASA Astrophysics Data System (ADS)

    Dicaire, Isabelle; Nakamura, Ryoko; Arikawa, Yoshihisa; Okada, Kazuyuki; Itahashi, Takamasa; Summerer, Leopold

    2015-02-01

    This paper investigates potential space options for mitigating the impact of tropical cyclones on cities and civilians. Ground-based techniques combined with space-based remote sensing instrumentation are presented together with space-borne concepts employing space solar power technology. Two space-borne mitigation options are considered: atmospheric warming based on microwave irradiation and laser-induced cloud seeding based on laser power transfer. Finally technology roadmaps dedicated to the space-borne options are presented, including a detailed discussion on the technological viability and technology readiness level of our proposed systems. Based on these assessments, the space-borne cyclone mitigation options presented in this paper may be established in a quarter of a century.

  6. Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.

    2011-12-01

    Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This

  7. Mid-Century Warming in the Los Angeles Region and its Uncertainty using Dynamical and Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Sun, F.; Hall, A. D.; Walton, D.; Capps, S. B.; Qu, X.; Huang, H. J.; Berg, N.; Jousse, A.; Schwartz, M.; Nakamura, M.; Cerezo-Mota, R.

    2012-12-01

    Using a combination of dynamical and statistical downscaling techniques, we projected mid-21st century warming in the Los Angeles region at 2-km resolution. To account for uncertainty associated with the trajectory of future greenhouse gas emissions, we examined projections for both "business-as-usual" (RCP8.5) and "mitigation" (RCP2.6) emissions scenarios from the Fifth Coupled Model Intercomparison Project (CMIP5). To account for the considerable uncertainty associated with choice of global climate model, we downscaled results for all available global climate models in CMIP5. For the business-as-usual scenario, we find that by the mid-21st century, the most likely warming is roughly 2.6°C averaged over the region's land areas, with a 95% confidence that the warming lies between 0.9 and 4.2°C. The high resolution of the projections reveals a pronounced spatial pattern in the warming: High elevations and inland areas separated from the coast by at least one mountain complex warm 20 to 50% more than the areas near the coast or within the Los Angeles basin. This warming pattern is especially apparent in summertime. The summertime warming contrast between the inland and coastal zones has a large effect on the most likely expected number of extremely hot days per year. Coastal locations and areas within the Los Angeles basin see roughly two to three times the number of extremely hot days, while high elevations and inland areas typically experience approximately three to five times the number of extremely hot days. Under the mitigation emissions scenario, the most likely warming and increase in heat extremes are somewhat smaller. However, the majority of the warming seen in the business-as-usual scenario still occurs at all locations in the most likely case under the mitigation scenario, and heat extremes still increase significantly. This warming study is the first part of a series studies of our project. More climate change impacts on the Santa Ana wind, rainfall

  8. Using land to mitigate climate change: hitting the target, recognizing the trade-offs.

    PubMed

    Reilly, John; Melillo, Jerry; Cai, Yongxia; Kicklighter, David; Gurgel, Angelo; Paltsev, Sergey; Cronin, Timothy; Sokolov, Andrei; Schlosser, Adam

    2012-06-01

    Land can be used in several ways to mitigate climate change, but especially under changing environmental conditions there may be implications for food prices. Using an integrated global system model, we explore the roles that these land-use options can play in a global mitigation strategy to stabilize Earth's average temperature within 2 °C of the preindustrial level and their impacts on agriculture. We show that an ambitious global Energy-Only climate policy that includes biofuels would likely not achieve the 2 °C target. A thought-experiment where the world ideally prices land carbon fluxes combined with biofuels (Energy+Land policy) gets the world much closer. Land could become a large net carbon sink of about 178 Pg C over the 21st century with price incentives in the Energy+Land scenario. With land carbon pricing but without biofuels (a No-Biofuel scenario) the carbon sink is nearly identical to the case with biofuels, but emissions from energy are somewhat higher, thereby results in more warming. Absent such incentives, land is either a much smaller net carbon sink (+37 Pg C - Energy-Only policy) or a net source (-21 Pg C - No-Policy). The significant trade-off with this integrated land-use approach is that prices for agricultural products rise substantially because of mitigation costs borne by the sector and higher land prices. Share of income spent on food for wealthier regions continues to fall, but for the poorest regions, higher food prices lead to a rising share of income spent on food. PMID:22533690

  9. Climate change scenarios and key climate indices in the Swiss Alpine region

    NASA Astrophysics Data System (ADS)

    Zubler, Elias; Croci-Maspoli, Mischa; Frei, Christoph; Liniger, Mark; Scherrer, Simon; Appenzeller, Christof

    2013-04-01

    For climate adaption and to support climate mitigation policy it is of outermost importance to demonstrate the consequences of climate change on a local level and in user oriented quantities. Here, a framework is presented to apply the Swiss national climate change scenarios CH2011 to climate indices with direct relevance to applications, such as tourism, transportation, agriculture and health. This framework provides results on a high spatial and temporal resolution and can also be applied in mountainous regions such as the Alps. Results are shown for some key indices, such as the number of summer days and tropical nights, growing season length, number of frost days, heating and cooling degree days, and the number of days with fresh snow. Particular focus is given to changes in the vertical distribution for the future periods 2020-2049, 2045-2074 and 2070-2099 relative to the reference period 1980-2009 for the A1B, A2 and RCP3PD scenario. The number of days with fresh snow is approximated using a combination of temperature and precipitation as proxies. Some findings for the latest scenario period are: (1) a doubling of the number of summer days by the end of the century under the business-as-usual scenario A2, (2) tropical nights appear above 1500 m asl, (3) the number of frost days may be reduced by more than 3 months at altitudes higher than 2500 m, (4) an overall reduction of heating degree days of about 30% by the end of the century, but on the other hand an increase in cooling degree days in warm seasons, and (5) the number of days with fresh snow tends to go towards zero at low altitudes. In winter, there is little change in snowfall above 2000 m asl (roughly -3 days) in all scenarios. The largest impact on snowfall is found along the Northern Alpine flank and the Jura (-10 days or roughly -50% in A1B for the winter season). It is also highlighted that the future projections for all indices strongly depend on the chosen scenario and on model uncertainty

  10. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Ruedy, Reto; Lacis, Andrew; Oinas, Valdar

    2000-01-01

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven by non-CO2 greenhouse gases (GHGs), such as CFCs, CH4 and N2O, not by the products of fossil fuel burning, CO2 and aerosols, whose positive and negative climate forcings are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change of climate forcing by non-CO2 GHGs In the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition-specific longterm global monitoring of aerosol properties.

  11. A conceptual framework for hydropeaking mitigation.

    PubMed

    Bruder, Andreas; Tonolla, Diego; Schweizer, Steffen P; Vollenweider, Stefan; Langhans, Simone D; Wüest, Alfred

    2016-10-15

    Hydropower plants are an important source of renewable energy. In the near future, high-head storage hydropower plants will gain further importance as a key element of large-scale electricity production systems. However, these power plants can cause hydropeaking which is characterized by intense unnatural discharge fluctuations in downstream river reaches. Consequences on environmental conditions in these sections are diverse and include changes to the hydrology, hydraulics and sediment regime on very short time scales. These altered conditions affect river ecosystems and biota, for instance due to drift and stranding of fishes and invertebrates. Several structural and operational measures exist to mitigate hydropeaking and the adverse effects on ecosystems, but estimating and predicting their ecological benefit remains challenging. We developed a conceptual framework to support the ecological evaluation of hydropeaking mitigation measures based on current mitigation projects in Switzerland and the scientific literature. We refined this framework with an international panel of hydropeaking experts. The framework is based on a set of indicators, which covers all hydrological phases of hydropeaking and the most important affected abiotic and biotic processes. Effects of mitigation measures on these indicators can be predicted quantitatively using prediction tools such as discharge scenarios and numerical habitat models. Our framework allows a comparison of hydropeaking effects among alternative mitigation measures, to the pre-mitigation situation, and to reference river sections. We further identified key issues that should be addressed to increase the efficiency of current and future projects. They include the spatial and temporal context of mitigation projects, the interactions of river morphology with hydropeaking effects, and the role of appropriate monitoring to evaluate the success of mitigation projects. PMID:27267718

  12. 300 Area Building Retention Evaluation Mitigation Plan

    SciTech Connect

    D. J. McBride

    2007-07-03

    Evaluate the long-term retention of several facilities associated with the PNNL Capability Replacement Laboratory and other Hanfor mission needs. WCH prepared a mitigation plan for three scenarios with different release dates for specific buildings. The evaluations present a proposed plan for providing utility services to retained facilities in support of a long-term (+20 year) lifespan in addition to temporary services to buildings with specified delayed release dates.

  13. Climate model emulation in an integrated assessment framework: a case study for mitigation policies in the electricity sector

    NASA Astrophysics Data System (ADS)

    Foley, A. M.; Holden, P. B.; Edwards, N. R.; Mercure, J.-F.; Salas, P.; Pollitt, H.; Chewpreecha, U.

    2016-02-01

    We present a carbon-cycle-climate modelling framework using model emulation, designed for integrated assessment modelling, which introduces a new emulator of the carbon cycle (GENIEem). We demonstrate that GENIEem successfully reproduces the CO2 concentrations of the Representative Concentration Pathways when forced with the corresponding CO2 emissions and non-CO2 forcing. To demonstrate its application as part of the integrated assessment framework, we use GENIEem along with an emulator of the climate (PLASIM-ENTSem) to evaluate global CO2 concentration levels and spatial temperature and precipitation response patterns resulting from CO2 emission scenarios. These scenarios are modelled using a macroeconometric model (E3MG) coupled to a model of technology substitution dynamics (FTT), and represent different emissions reduction policies applied solely in the electricity sector, without mitigation in the rest of the economy. The effect of cascading uncertainty is apparent, but despite uncertainties, it is clear that in all scenarios, global mean temperatures in excess of 2 °C above pre-industrial levels are projected by the end of the century. Our approach also highlights the regional temperature and precipitation patterns associated with the global mean temperature change occurring in these scenarios, enabling more robust impacts modelling and emphasizing the necessity of focusing on spatial patterns in addition to global mean temperature change.

  14. Effects of climate change adaptation scenarios on perceived spatio-temporal characteristics of drought events

    NASA Astrophysics Data System (ADS)

    Vidal, J.-P.; Martin, E.; Kitova, N.; Najac, J.; Soubeyroux, J.-M.

    2012-04-01

    Drought events develop in both space and time and they are therefore best described through summary joint spatio-temporal characteristics, like mean duration, mean affected area and total magnitude. This study addresses the issue of future projections of such characteristics of drought events over France through three main research questions: (1) Are downscaled climate projections able to reproduce spatio-temporal characteristics of meteorological and agricultural droughts in France over a present-day period? (2) How such characteristics will evolve over the 21st century under different emissions scenarios? (3) How would perceived drought characteristics evolve under theoretical adaptation scenarios? These questions are addressed using the Isba land surface model, downscaled climate projections from the ARPEGE General Circulation Model under three emissions scenarios, as well as results from a previously performed 50-year multilevel and multiscale drought reanalysis over France (Vidal et al., 2010). Spatio-temporal characteristics of meteorological and agricultural drought events are computed using the Standardized Precipitation Index (SPI) and the Standardized Soil Wetness Index (SSWI), respectively, and for time scales of 3 and 12 months. Results first show that the distributions of joint spatio-temporal characteristics of observed events are well reproduced by the downscaled hydroclimate projections over a present-day period. All spatio-temporal characteristics of drought events are then found to dramatically increase over the 21st century under all considered emissions scenarios, with stronger changes for agricultural droughts. Two theoretical adaptation scenarios are eventually built based on hypotheses of adaptation to evolving climate and hydrological normals. The two scenarios differ by the way the transient adaptation is performed for a given date in the future, with reference to the normals over either the previous 30-year window ("retrospective

  15. The impacts of altered tropical cyclone activity on climate mitigation strategies

    NASA Astrophysics Data System (ADS)

    Fisk, J. P.; Hurtt, G. C.; LePage, Y.; Patel, P.; Chini, L. P.; Thomson, A. M.; Clarke, L.; Calvin, K. V.; Wise, M.; Chambers, J. Q.; Negron Juarez, R. I.

    2012-12-01

    There is growing evidence that anthropogenic climate change may alter patterns of tropical cyclone frequency, intensity and spatial distribution, which in turn will alter the carbon balance of terrestrial systems in the large regions impacted by these storms. Recent studies project up to a doubling of major storms (Saffir-Simpson Scale 3-5) over the next century. Single large storms have been shown to be capable of causing committed carbon emissions equivalent to the annual U.S. carbon sink. These changes have the potential to affect climate mitigation strategies, most of which rely on maintaining or enhancing the terrestrial carbon sink to restrain the accumulation of atmospheric greenhouse gases. Altered patterns of disturbances and the resulting changes to the carbon balance of terrestrial systems could impact the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, and thus future land-use patterns, food prices and energy technology. Here we investigate the potential consequences of altered tropical cyclone activity on climate mitigation strategies using a fully integrated model (iED) that links advanced ecological and socio-economic models. The model combines the regional integrated assessment algorithms of the Global Change Assessment Model (GCAM), with the climate- sensitive ecosystem and carbon modeling in the Ecosystem Demography (ED) model, and the land-use mapping algorithms of the Global Land-use Model (GLM). We explore a range of scenarios of altered future tropical cyclone frequency, intensity and spatial pattern, the resulting effects on the terrestrial carbon balance, and the coupled effects on the food and energy sector under a range of future climate mitigation goals.

  16. Industrial research for transmutation scenarios

    NASA Astrophysics Data System (ADS)

    Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel

    2011-04-01

    This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.

  17. Planning for Crew Exercise for Deep Space Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Moore, E. Cherice; Ryder, Jeff

    2015-01-01

    Exercise which is necessary for maintaining crew health on-orbit and preparing the crew for return to 1G can be challenging to incorporate into spaceflight vehicles. Deep space missions will require further understanding of the physiological response to microgravity, understanding appropriate mitigations, and designing the exercise systems to effectively provide mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  18. Higher trends but larger uncertainty and geographic variability in 21st century temperature and heat waves

    SciTech Connect

    Ganguly, Auroop R; Steinhaeuser, Karsten J K; Erickson III, David J; Branstetter, Marcia L; Parish, Esther S; Singh, Nagendra; Drake, John B; Buja, Lawrence

    2009-01-01

    Generating credible climate change and extremes projections remains a high-priority challenge, especially since recent observed emissions are above the worst-case scenario. Bias and uncertainty analyses of ensemble simulations from a global earth systems model show increased warming and more intense heat waves combined with greater uncertainty and large regional variability in the 21st century. Global warming trends are statistically validated across ensembles and investigated at regional scales. Observed heat wave intensities in the current decade are larger than worst-case projections. Model projections are relatively insensitive to initial conditions, while uncertainty bounds obtained by comparison with recent observations are wider than ensemble ranges. Increased trends in temperature and heat waves, concurrent with larger uncertainty and variability, suggest greater urgency and complexity of adaptation or mitigation decisions.

  19. A new scenario framework for Climate Change Research: Scenario matrix architecture

    SciTech Connect

    Van Vuuren, Detlef; Kriegler, Elmar; O'Neill, Brian; Ebi, Kristie L.; Riahi, Keywan; Carter, Tim; Edmonds, James A.; Hallegatte, Stephane; Kram, Tom; Mathur, Ritu; Winkler, Harald

    2014-02-01

    In this paper, we present the scenario matrix architecture as part of the new scenario framework for climate change research. The matrix architecture focuses on a key question of current climate research, namely the identification of trade-offs and synergies (in terms of risks, costs and other consequences) of different adaptation and mitigation strategies. The framework has two main axes: 1) the level of forcing (as represented by the RCPs) and 2) different socio-economic reference pathways. The matrix can be used as a tool to guide new scenario development and analytical analysis. It can also be used as a heuristic tool for classifying new and existing scenarios for assessment. Key elements of the architecture, in particular the shared socio-economic reference pathways and the shared policy assumptions, are elaborated in other papers in this special issue.

  20. Europa Explorer Operational Scenarios Development

    NASA Technical Reports Server (NTRS)

    Lock, Robert E.; Pappalardo, Robert T.; Clark, Karla B.

    2008-01-01

    In 2007, NASA conducted four advanced mission concept studies for outer planets targets: Europa, Ganymede, Titan and Enceladus. The studies were conducted in close cooperation with the planetary science community. Of the four, the Europa Explorer Concept Study focused on refining mission options, science trades and implementation details for a potential flagship mission to Europa in the 2015 timeframe. A science definition team (SDT) was appointed by NASA to guide the study. A JPL-led engineering team worked closely with the science team to address 3 major focus areas: 1) credible cost estimates, 2) rationale and logical discussion of radiation risk and mitigation approaches, and 3) better definition and exploration of science operational scenario trade space. This paper will address the methods and results of the collaborative process used to develop Europa Explorer operations scenarios. Working in concert with the SDT, and in parallel with the SDT's development of a science value matrix, key mission capabilities and constraints were challenged by the science and engineering members of the team. Science goals were advanced and options were considered for observation scenarios. Data collection and return strategies were tested via simulation, and mission performance was estimated and balanced with flight and ground system resources and science priorities. The key to this successful collaboration was a concurrent development environment in which all stakeholders could rapidly assess the feasibility of strategies for their success in the full system context. Issues of science and instrument compatibility, system constraints, and mission opportunities were treated analytically and objectively leading to complementary strategies for observation and data return. Current plans are that this approach, as part of the system engineering process, will continue as the Europa Explorer Concept Study moves toward becoming a development project.

  1. Mitigation Action Plan

    SciTech Connect

    Not Available

    1994-02-01

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  2. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models

    NASA Astrophysics Data System (ADS)

    Bopp, L.; Resplandy, L.; Orr, J. C.; Doney, S. C.; Dunne, J. P.; Gehlen, M.; Halloran, P.; Heinze, C.; Ilyina, T.; Séférian, R.; Tjiputra, J.; Vichi, M.

    2013-02-01

    Ocean ecosystems are increasingly stressed by human-induced changes of their physical, chemical and biological environment. Among these changes, warming, acidification, deoxygenation and changes in primary productivity by marine phytoplankton can be considered as four of the major stressors of open ocean ecosystems. Due to rising atmospheric CO2 in the coming decades, these changes will be amplified. Here, we use the most recent simulations performed in the framework of the Coupled Model Intercomparison Project 5 to assess how these stressors may evolve over the course of the 21st century. The 10 Earth System Models used here project similar trends in ocean warming, acidification, deoxygenation and reduced primary productivity for each of the IPCC's representative concentration parthways (RCP) over the 21st century. For the "business-as-usual" scenario RCP8.5, the model-mean changes in 2090s (compared to 1990s) for sea surface temperature, sea surface pH, global O2 content and integrated primary productivity amount to +2.73 °C, -0.33 pH unit, -3.45% and -8.6%, respectively. For the high mitigation scenario RCP2.6, corresponding changes are +0.71 °C, -0.07 pH unit, -1.81% and -2.0% respectively, illustrating the effectiveness of extreme mitigation strategies. Although these stressors operate globally, they display distinct regional patterns. Large decreases in O2 and in pH are simulated in global ocean intermediate and mode waters, whereas large reductions in primary production are simulated in the tropics and in the North Atlantic. Although temperature and pH projections are robust across models, the same does not hold for projections of sub-surface O2 concentrations in the tropics and global and regional changes in net primary productivity.

  3. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total

  4. Disruption mitigation using high pressure gas jets

    SciTech Connect

    Dennis G. Whyte

    2007-10-11

    The goal of this research is to establish credible disruption mitigation scenarios based on the technique of massive gas injection. Disruption mitigation seeks to minimize or eliminate damage to internal components that can occur due to the rapid dissipation of thermal and magnetic energy during a tokamak disruption. In particular, the focus of present research is extrapolating mitigation techniques to burning plasma experiments such as ITER, where disruption-caused damage poses a serious threat to the lifetime of internal vessel components. A majority of effort has focused on national and international collaborative research with large tokamaks: DIII-D, Alcator C-Mod, JET, and ASDEX Upgrade. The research was oriented towards empirical trials of gas-jet mitigation on several tokamaks, with the goal of developing and applying cohesive models to the data across devices. Disruption mitigation using gas jet injection has proven to be a viable candidate for avoiding or minimizing damage to internal components in burning plasma experiments like ITER. The physics understanding is progress towards a technological design for the required gas injection system in ITER.

  5. Mitigation Monitoring Plan

    SciTech Connect

    Not Available

    1992-09-01

    The Final Supplemental Environmental Impact Report (SEIR) (September 1992) for the Proposed Renewal of the Contract between the United States Department of Energy and The Regents of the University of California for the Operation and Management of the Lawrence Berkeley Laboratory identifies the environmental impacts associated with renewing the contract and specifies a series of measures designed to mitigate adverse impacts to the environment. This Mitigation Monitoring Plan describes the procedures the University will use to implement the mitigation measures adopted in connection with the approval of the Contract.

  6. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    NASA Astrophysics Data System (ADS)

    Humpenöder, Florian; Popp, Alexander; Dietrich, Jan Philip; Klein, David; Lotze-Campen, Hermann; Bonsch, Markus; Bodirsky, Benjamin Leon; Weindl, Isabelle; Stevanovic, Miodrag; Müller, Christoph

    2014-05-01

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

  7. Orbital Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.; Jarkey, D. R.; Stansbery, G.

    2014-01-01

    Policies on limiting orbital debris are found throughout the US Government, many foreign space agencies, and as adopted guidelines in the United Nations. The underlying purpose of these policies is to ensure the environment remains safe for the operation of robotic and human spacecraft in near- Earth orbit. For this reason, it is important to consider orbital debris mitigation during the design of all space vehicles. Documenting compliance with the debris mitigation guidelines occurs after the vehicle has already been designed and fabricated for many CubeSats, whereas larger satellites are evaluated throughout the design process. This paper will provide a brief explanation of the US Government Orbital Debris Mitigation Standard Practices, a discussion of international guidelines, as well as NASA's process for compliance evaluation. In addition, it will discuss the educational value of considering orbital debris mitigation requirements as a part of student built satellite design.

  8. Policy thresholds in mitigation

    NASA Astrophysics Data System (ADS)

    Ricke, Katharine L.; Moreno-Cruz, Juan B.; Schewe, Jacob; Levermann, Anders; Caldeira, Ken

    2016-01-01

    Some climate change impacts rise fast with little warming, and then taper off. To avoid diminishing incentives to reduce emissions and inadvertently slipping into a lower-welfare world, mitigation policy needs to be ambitious early on.

  9. Mitigation win-win

    NASA Astrophysics Data System (ADS)

    Moran, Dominic; Lucas, Amanda; Barnes, Andrew

    2013-07-01

    Win-win messages regarding climate change mitigation policies in agriculture tend to oversimplify farmer motivation. Contributions from psychology, cultural evolution and behavioural economics should help to design more effective policy.

  10. Early Benefits of Mitigation in Risk of Regional Climate Extremes

    NASA Astrophysics Data System (ADS)

    Ciavarella, Andrew; Stott, Peter; Lowe, Jason

    2015-04-01

    Large differences in climate outcomes are projected over the coming century depending on whether greenhouse gas emissions continue on a business as usual path or are substantially reduced following an aggressive mitigation strategy. However, it has previously been claimed that it will take many decades for there to be any significant difference between paths of aggressive mitigation and business as usual with the emergence of differences only seen towards the middle of the century. Here we show that important differences in our exposure to risk of climate extremes in many land regions emerges much more quickly. Without substantial mitigation, in many regions of the world, extreme (one in 20-year) seasonal, regional near surface air temperatures are found to have become more than twice as likely within only 15 years (i.e. by 2030). Therefore our exposure to climate risk is reduced substantially and rapidly with aggressive mitigation. This demonstrates that the benefits of mitigation are realised rapidly and it is not necessary to wait until the middle of the century as has previously been claimed.

  11. Mars base buildup scenarios

    NASA Technical Reports Server (NTRS)

    Blacic, J. D.

    1986-01-01

    Two Mars surface based build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second senario, Earth development of an infrastructure to exploit the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first in this scenario relative to the first, but once begun develops rapidly, aided by the presence of a permanently manned orbital station.

  12. Mars base buildup scenarios

    SciTech Connect

    Blacic, J.D.

    1985-01-01

    Two surface base build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second scenario, early development of an infrastructure to exploite the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first, but once begun develops rapidly aided by the presence of a permanently manned orbital station.

  13. GHG emissions and mitigation potential in Indian agriculture

    NASA Astrophysics Data System (ADS)

    Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare

    2016-04-01

    India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.

  14. Sources of uncertainties in 21st century projections of marine ecosystem drivers

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Rodgers, K. B.; Stock, C. A.; Cheung, W. W. L.

    2015-12-01

    Marine ecosystems are increasingly stressed by human-induced climate change affecting their physical and biogeochemical environment. At present, future projections of marine ecosystem drivers are inherently uncertain, complicating assessments of climate change impacts. Here we evaluate the relative importance of specific sources of uncertainties in projections of marine ecosystem drivers (warming, acidification, nutrient availability and declining oxygen levels) as a function of prediction lead-time and spatial scales. We show that the uncertainty in century-scale global and regional surface pH projections is dominated by scenario uncertainty, highlighting the critical importance of policy decisions on carbon emissions. In contrast, uncertainty in century-scale sea surface temperature projections in polar regions, oxygen levels in low oxygen waters, and regional nutrient availability is dominated by model uncertainty, underscoring that overcoming deficiencies in scientific understanding and improved process representation in Earth system models are critical for making more robust predictions. For smaller spatial and temporal scales, uncertainty associated with internal variability also constitutes an important source of uncertainty, suggesting irreducible uncertainty inherent in these projections. We also show that changes in the combined multiple ecosystem drivers emerges from the noise in 44% of the ocean in the next decade and in 57% of the ocean by the end of the century following a high carbon emissions scenario. Changes in pH and sea surface temperature can be reduced substantially and rapidly with aggressive carbon emissions mitigation, but only marginally for oxygen and net primary productivity. The broader scientific implications, including downscaling of Earth system model output for large marine ecosystem regions and for impact assessment models, will also be discussed.

  15. Integrating uncertainties for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by

  16. GLOBAL ALTERNATIVE FUTURE SCENARIOS

    EPA Science Inventory

    One way to examine possible future outcomes for environmental protection is through the development and analysis of alternative future scenarios. This type of assessment postulates two or more different paths that social and environmental development might take, using correspond...

  17. Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects

    NASA Astrophysics Data System (ADS)

    Kreidenweis, Ulrich; Humpenöder, Florian; Stevanović, Miodrag; Bodirsky, Benjamin Leon; Kriegler, Elmar; Lotze-Campen, Hermann; Popp, Alexander

    2016-08-01

    Ambitious climate targets, such as the 2 °C target, are likely to require the removal of carbon dioxide from the atmosphere. Afforestation is one such mitigation option but could, through the competition for land, also lead to food prices hikes. In addition, afforestation often decreases land-surface albedo and the amount of short-wave radiation reflected back to space, which results in a warming effect. In particular in the boreal zone, such biophysical warming effects following from afforestation are estimated to offset the cooling effect from carbon sequestration. We assessed the food price response of afforestation, and considered the albedo effect with scenarios in which afforestation was restricted to certain latitudinal zones. In our study, afforestation was incentivized by a globally uniform reward for carbon uptake in the terrestrial biosphere. This resulted in large-scale afforestation (2580 Mha globally) and substantial carbon sequestration (860 GtCO2) up to the end of the century. However, it was also associated with an increase in food prices of about 80% by 2050 and a more than fourfold increase by 2100. When afforestation was restricted to the tropics the food price response was substantially reduced, while still almost 60% cumulative carbon sequestration was achieved. In the medium term, the increase in prices was then lower than the increase in income underlying our scenario projections. Moreover, our results indicate that more liberalised trade in agricultural commodities could buffer the food price increases following from afforestation in tropical regions.

  18. Modeled changes in extreme wave climate for US and US-affiliated Pacific Islands during the 21st century

    NASA Astrophysics Data System (ADS)

    Shope, J. B.; Storlazzi, C. D.; Erikson, L. H.; Hegermiller, C.

    2013-12-01

    Changes in future wave climates in the tropical Pacific Ocean from global climate change are not well understood. Waves are the dominant spatially- and temporally-varying processes that influence the coastal morphology and ecosystem structure of the islands throughout the tropical Pacific. Waves also impact the coastal infrastructure, natural and cultural resources, and coastal-related economic activities of these islands. Wave heights, periods, and directions were forecast through 2100 using wind parameter outputs from four coupled atmosphere-ocean global climate models from the Coupled Model Inter-Comparison Project, Phase 5., for Representative Concentration Pathways scenarios 4.5 and 8.5 that correspond to moderately mitigated and unmitigated greenhouse gas emissions, respectively. Wind fields from the global climate models were used to drive the global WAVEWATCH III wave model and generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific. Although the results show some spatial heterogeneity, overall, the December-February extreme significant wave heights increase from present to mid century and then decrease toward the end of the century; June-August extreme wave heights decrease throughout the century. Peak wave periods decrease west of the International Date Line through all seasons, whereas peak periods increase in the eastern half of the study area; these trends are smaller during December-February and greatest during June-August. Extreme wave directions in equatorial Micronesia during June-August undergo an approximate 30 degree counter-clockwise rotation from primarily northwest to west. The spatial patterns and trends are similar between the two different greenhouse gas emission scenarios, with the magnitude of the trends greater for the higher scenario.

  19. Mitigating Climate Change with Earth Orbital Sunshades

    NASA Technical Reports Server (NTRS)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  20. Playing against nature: improving earthquake hazard mitigation

    NASA Astrophysics Data System (ADS)

    Stein, S. A.; Stein, J.

    2012-12-01

    uncertainties and the need to candidly assess them. It can be applied to exploring policies under various hazard scenarios and mitigating other natural hazards.ariation in total cost, the sum of expected loss and mitigation cost, as a function of mitigation level. The optimal level of mitigation, n*, minimizes the total cost. The expected loss depends on the hazard model, so the better the hazard model, the better the mitigation policy (Stein and Stein, 2012).

  1. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, E.; Yamagata, Y.

    2014-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large-scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full post-process combustion CO2 capture is deployed with a high fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required, however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise a conflict of land-use with food production is inevitable.

  2. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, Etsushi; Yamagata, Yoshiki

    2014-09-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socioeconomic scenarios that aim to keep mean global temperature rise below 2°C above preindustrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high-fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full postprocess combustion CO2 capture is deployed with a high-fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required; however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise, a conflict of land use with food production is inevitable.

  3. Possible Scenarios of Impacts of Climatic Change on Potential Evapotranspiration in the Watershed of the Conchos River, Mexico

    NASA Astrophysics Data System (ADS)

    Raynal-Villasenor, J. A.; Rodriguez-Pineda, J. A.

    2007-12-01

    The watershed of the Conchos River is the main watershed of the state of Chihuahua, Mexico, and it is the main source of water of the watershed of the Grande river downstream El Paso, Texas. Such part of the watershed of the Grande River is also the border between Mexico and the United States of America, from El Paso-Ciudad Juarez up to Brownsville-Matamoros. It is very important for the state of Chihuahua and Mexico as a whole, to construct possible scenarios of the effects of the global climatic change in the potential evapotranspiration in such watershed and to construct likely scenarios which results will help to define an integrated watershed management to mitigate those global climate change impacts. The results of a recent study sponsored by the alliance between WWF-Fundacion Gonzalo Rio Arronte, are presented in the paper. The study was conducted to construct possible scenarios on the effects of the global climatic change on the potential evapotranspiration in the watershed of the Conchos River in Mexico. Three watershed characteristic meteorological stations were selected to conduct such study. The predictions of change of the surface air temperature and the change of the rainfall produced by the global climatic change, by the end of the XXI Century, were those published by the Hadley Center. The results show that air temperature increment of one degree centigrade increases evapotranspiration values between 3 and 3.5% with respect current values. As a consequence moisture deficiency increases from 9% to 40%. With an air temperature increment of three degrees centigrades, the potential evapotranspiration increases between 8.8% and 10% increasing moisture deficiency from 27.5% up to 116%. The expected rainfall increment values show a negligible contribution for the potential evapotranspiration reduction in the Rio Conchos watershed. These results conclude that immediate actions need to be taken to mitigate climate change impacts all along the watershed.

  4. Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century

    NASA Astrophysics Data System (ADS)

    Ren, Wei; Tian, Hanqin; Tao, Bo; Yang, Jia; Pan, Shufen; Cai, Wei-Jun; Lohrenz, Steven E.; He, Ruoying; Hopkinson, Charles S.

    2015-04-01

    It is recognized that anthropogenic factors have had a major impact on carbon fluxes from land to the ocean during the past two centuries. However, little is known about how future changes in climate, atmospheric CO2, and land use may affect riverine carbon fluxes over the 21st century. Using a coupled hydrological-biogeochemical model, the Dynamic Land Ecosystem Model, this study examines potential changes in dissolved inorganic carbon (DIC) export from the Mississippi River basin to the Gulf of Mexico during 2010-2099 attributable to climate-related conditions (temperature and precipitation), atmospheric CO2, and land use change. Rates of annual DIC export are projected to increase by 65% under the high emission scenario (A2) and 35% under the low emission scenario (B1) between the 2000s and the 2090s. Climate-related changes along with rising atmospheric CO2 together would account for over 90% of the total increase in DIC export throughout the 21st century. The predicted increase in DIC export from the Mississippi River basin would alter chemistry of the coastal ocean unless appropriate climate mitigation actions are taken in the near future.

  5. Using the New Scenarios Framework to Inform Climate Change Adaptation Policy in Finland

    NASA Astrophysics Data System (ADS)

    Carter, T. R.

    2013-12-01

    In 2005, Finland was among the first countries in the world to develop a national climate change adaptation strategy (Marttila et al., 2005). This included a characterization of future changes in climate and socioeconomic conditions using scenarios based on the IPCC Special Report on Emissions Scenarios (SRES - IPCC, 2000). Following a government evaluation of the strategy, completion of a national adaptation research programme, and in light of the recent European Union adaptation strategy, the Finnish strategy is now under revision. As part of this revision process, the New Scenario Framework (Moss et al., 2010) is being used to guide the mapping of future conditions in Finland out to the end of the 21st century. Future Finnish climate is being analysed using the CMIP5 climate model simulations (Taylor et al., 2012), including downscaled information based on regional climate model projections in the EURO-CORDEX project (Vautard et al., 2013). All projections are forced by the Representative Concentration Pathways (RCPs - van Vuuren et al., 2011). Socioeconomic scenarios are also being developed by outlining alternative pathways that reflect national social, economic, environmental and planning goals. These are designed according to the Shared Socioeconomic Pathway (SSP) framework of challenges to adaptation and mitigation (Kriegler et al., 2012). Work is in progress to characterize these pathways, mainly qualitatively, for different sectors in Finland. Preliminary results of the conceptual scenario development phase will be presented in this session. These initial ideas will be exchanged with representatives of ministries, regional government and key stakeholder groups. The eventual form and number of scenarios that appear in the revised strategy will be determined following a formal review of the draft document to be prepared in 2014. Future work could include quantification of scenarios, possibly mapping them onto the specific SSP worlds. This would then provide

  6. Scenarios for gluino coannihilation

    NASA Astrophysics Data System (ADS)

    Ellis, John; Evans, Jason L.; Luo, Feng; Olive, Keith A.

    2016-02-01

    We study supersymmetric scenarios in which the gluino is the next-to-lightest supersymmetric particle (NLSP), with a mass sufficiently close to that of the lightest supersymmetric particle (LSP) that gluino coannihilation becomes important. One of these scenarios is the MSSM with soft supersymmetry-breaking squark and slepton masses that are universal at an input GUT renormalization scale, but with non-universal gaugino masses. The other scenario is an extension of the MSSM to include vector-like supermultiplets. In both scenarios, we identify the regions of parameter space where gluino coannihilation is important, and discuss their relations to other regions of parameter space where other mechanisms bring the dark matter density into the range allowed by cosmology. In the case of the non-universal MSSM scenario, we find that the allowed range of parameter space is constrained by the requirement of electroweak symmetry breaking, the avoidance of a charged LSP and the measured mass of the Higgs boson, in particular, as well as the appearance of other dark matter (co)annihilation processes. Nevertheless, LSP masses m χ ≲ 8 TeV with the correct dark matter density are quite possible. In the case of pure gravity mediation with additional vector-like supermultiplets, changes to the anomaly- mediated gluino mass and the threshold effects associated with these states can make the gluino almost degenerate with the LSP, and we find a similar upper bound.

  7. BCube Ocean Scenario

    NASA Astrophysics Data System (ADS)

    Santoro, Mattia; Schofield, Oscar; Pearlman, Jay; Nativi, Stefano

    2015-04-01

    To address complex Earth system issues such as climate change and water resources, geoscientists must work across disciplinary boundaries; this requires them to access data outside of their fields. Scientists are being called upon to find, access, and use diverse and voluminous data types that are described with semantics. Within the framework of the NSF EarthCube programme, the BCube project (A Broker Framework for Next Generation Geoscience) is addressing the need for effective and efficient multi-disciplinary collaboration and interoperability through the advancement of brokering technologies. BCube develops science scenarios as key elements in providing an environment for demonstrating capabilities, benefits, and challenges of the developed e-infrastructure. The initial focus is on hydrology, oceans, polar and weather, with the intent to make the technology applicable and available to all the geosciences. This presentation focuses on the BCube ocean scenario. The purpose of this scenario is to increase the understanding of the ocean dynamics through incorporation of a wide range of in-situ and satellite data into ocean models using net primary productivity as the initial variable. The science scenario aims to identify spatial and temporal domains in ocean models, and key ecological variables. Field data sets and remote observations data sets from distributed and heterogeneous systems are accessed through the broker and will be incorporated into the models. In this work we will present the achievements in the development of the BCube ocean scenario.

  8. Mitigation technologies and measures in energy sector of Kazakstan

    SciTech Connect

    Pilifosova, O.; Danchuk, D.; Temertekov, T.

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  9. Satellite Breakup Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Leleux, Darrin P.; Smith, Jason T.

    2006-01-01

    Many satellite breakups occur as a result of an explosion of stored energy on-board spacecraft or rocket-bodies. These breakups generate a cloud of tens or possibly hundreds of thousands of debris fragments which may pose a transient elevated threat to spaceflight crews and vehicles. Satellite breakups pose a unique threat because the majority of the debris fragments are too small to be tracked from the ground. The United States Human Spaceflight Program is currently implementing a risk mitigation strategy that includes modeling breakup events, establishing action thresholds, and prescribing corresponding mitigation actions in response to satellite breakups.

  10. Historical and 21st century projection of ocean acidification, its impacts on aragonite and calcite cycling and subsequent feedbacks in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Dunne, J. P.; John, J. G.

    2011-12-01

    We assess the ocean's present and future ability to take up anthropogenic carbon and the impact of this ocean acidification in the fully coupled biogeochemical context using NOAA/GFDL's earth system model (ESM2M). The ocean biogeochemical component of ESM2M includes representations of pelagic calcite cycling as a function of supersaturation and small phytoplankton grazing, pelagic aragonite cycling as a function of supersaturation and large phytoplankton grazing, and sediment calcite cycling based on a box model representation of bottom water saturation state and the incoming fluxes of calcitic, organic and lithogenic material. The model was forced with historical and future projections of Representative Concentration Pathways (RCPs) of radiatively active gases as part of the fifth Coupled Model Intercomparison Project. Consistent with observations, the ESM2M ocean takes up 2.1 PgC a^-^1 at the end of the 20th century. Under the highest emissions scenario of an 8.5 W m^-^2 targeted radiative forcing with CO2 concentrations of 936 ppm by 2100 (RCP8.5), ESM2M takes up 6.1 PgC a^-^1 at the end of the 21^s^t century. We describe the geographical and vertical extent of ocean acidification and depression of aragonite and calcite saturation states that result in this model. In global comparison with preindustrial conditions, ESM2M suggests severe ecological consequences of acidification under the RCP8.5 scenario with aragonite production being depressed by 17% at the end of the 20^t^h century and 72% at the end of the 21^s^t Century and calcite production being depressed by 16% at the end of the 20^t^h century and 67% at the end of the 21^s^t Century. These results are consistent with previous studies that have similarly assumed linear dependence of aragonite and calcite production with the degree of supersaturation. In terms of acidification mitigation feedbacks, these responses combine to provide additional acid neutralizing capacity in the surface ocean of 0.23 PgC a

  11. Attractive scenario writing.

    PubMed

    Takahashi, Yuzo; Oku, Sachiko Alexandra

    2009-05-01

    This article describes the key steps of scenario writing to facilitate problem-based learning discussion to aid student learning of basic medical science in combination with clinical medicine. The scenario has to amplify and deepen the students' thinking so that they can correlate findings from the case and knowledge from textbooks. This can be achieved in three ways: (1) a comparison of cases; (2) demonstrating a scientific link between symptoms and basic medicine; and (3) introducing a personal and emotional aspect to the scenario. A comparison of two cases enables us to shed light on the pathological differences and think about the underlying biological mechanisms. These include: (a) a comparison of two cases with similar symptoms, but different diseases; (b) a comparison of two cases with different symptoms, but the same cause; and (c) a comparison of two cases, with an easy case, followed by a complicated case. The scenarios may be disclosed in a sequence to show a scientific link between symptoms of the patient and basic medicine, which may help to cultivate a physician with a scientific mind. Examples are given by the relationship between: (a) symptoms, pathology and morphology; and (b) symptoms, pathology and physiology. When the scenario is written in such a way that students are personally and/or emotionally involved in the case, they will be more motivated in learning as if involved in the case themselves. To facilitate this, the scenario can be written in the first-person perspective. Examples include "I had a very bad headache, and vomited several times...", and "I noticed that my father was screaming at night...". The description of the events may be in chronological order with actual time, which makes students feel as if they are really the primary responding person. PMID:19502145

  12. GREENHOUSE GAS MITIGATION POTENTIAL IN U.S. FORESTRY AND AGRICULTURE

    EPA Science Inventory

    This report describes the FASOM-GHG model (Forestry and Agriculture Sector Optimization Model with Greenhouse Gases), the GHG mitigation scenarios for U.S. forestry and agriculture run through the FASOM-GHG model, and the results and insights that are generated. GHG mitigation po...

  13. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    worked to bring the experience generated from over four decades of scenario development in other issue domains, including energy and security, to bear on environmental scenarios, and to bring into dialogue scenario practitioners, both producers and users, with social science scholars. The set of contributions to this focus issue of Environmental Research Letters arose out of this workshop and collectively examines key challenges facing the scenario community, synthesizes lessons, and offers recommendations for new research and practice in this field. One theme that emerged in many of the discussions at the workshop revolved around the distinction between two broad perspectives on the goals of scenario exercises: scenarios as products and scenarios as processes. Most global environmental change scenario exercises are product-oriented; the content of the scenarios developed is the main goal of many participants and those who commission or organize the scenario development process. Typically, what is of most interest are the environmental outcomes produced, how they relate to the various factors driving them, and what the results tell us about the prospects for future environmental change, for impacts, and for mitigation. A product-oriented perspective assumes that once produced, scenario products have lives of their own, divorced from the processes that generated them and able to serve multiple, often unspecified purposes. Thus, it is often assumed that the scenario products can be 'taken up' by a variety of users in a variety of fora. A contrasting scenario approach is process-oriented and self-consciously privileges the process of scenario development as the primary goal, for example as a means to motivate organizational learning, find commonalities across different perspectives, achieve consensus on goals, or come to a shared understanding of challenges. Focusing on scenarios as processes highlights the social contexts in which scenarios are created and used. Process

  14. Financing recreational mitigation

    SciTech Connect

    Hennagir, T.

    1995-07-01

    Recreational resource area mitigation remains an important operational requirement for hydropower project owners, especially in the western United States. Increasingly, producers of electric capacity must accommodate a rapidly growing demand for public recreation, providing opportunities in accordance with Federal Energy Regulatory Commission (FERC) relicensing requirements.

  15. Space Debris Mitigation Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    The purpose of national and international space debris mitigation guides is to promote the preservation of near-Earth space for applications and exploration missions far into the future. To accomplish this objective, the accumulation of objects, particularly in long-lived orbits, must be eliminated or curtailed.

  16. Climate mitigation and the future of tropical landscapes

    SciTech Connect

    Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons; Hurtt, George; Edmonds, James A.; Bond-Lamberty, Benjamin; Frolking, Steve; Wise, Marshall A.; Janetos, Anthony C.

    2010-11-16

    Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve a climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.

  17. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  18. Cascadia Earthquake and Tsunami Scenario for California's North Coast

    NASA Astrophysics Data System (ADS)

    Dengler, L.

    2006-12-01

    In 1995 the California Division of Mines and Geology (now the California Geological Survey) released a planning scenario for an earthquake on the southern portion of the Cascadia subduction zone (CSZ). This scenario was the 8th and last of the Earthquake Planning Scenarios published by CDMG. It was the largest magnitude CDMG scenario, an 8.4 earthquake rupturing the southern 200 km of the CSZ, and it was the only scenario to include tsunami impacts. This scenario event has not occurred in historic times and depicts impacts far more severe than any recent earthquake. The local tsunami hazard is new; there is no written record of significant local tsunami impact in the region. The north coast scenario received considerable attention in Humboldt and Del Norte Counties and contributed to a number of mitigation efforts. The Redwood Coast Tsunami Work Group (RCTWG), an organization of scientists, emergency managers, government agencies, and businesses from Humboldt, Mendocino, and Del Norte Counties, was formed in 1996 to assist local jurisdictions in understanding the implications of the scenario and to promote a coordinated, consistent mitigation program. The group has produced print and video materials and promoted response and evacuation planning. Since 1997 the RCTWG has sponsored an Earthquake Tsunami Education Room at county fairs featuring preparedness information, hands-on exhibits and regional tsunami hazard maps. Since the development of the TsunamiReady Program in 2001, the RCTWG facilitates community TsunamiReady certification. To assess the effectiveness of mitigation efforts, five telephone surveys between 1993 and 2001 were conducted by the Humboldt Earthquake Education Center. A sixth survey is planned for this fall. Each survey includes between 400 and 600 respondents. Over the nine year period covered by the surveys, the percent with houses secured to foundations has increased from 58 to 80 percent, respondents aware of a local tsunami hazard increased

  19. How much climate change can be avoided by mitigation?

    NASA Astrophysics Data System (ADS)

    Washington, Warren M.; Knutti, Reto; Meehl, Gerald A.; Teng, Haiyan; Tebaldi, Claudia; Lawrence, David; Buja, Lawrence; Strand, Warren G.

    2009-04-01

    Avoiding the most serious climate change impacts will require informed policy decisions. This in turn will require information regarding the reduction of greenhouse gas emissions required to stabilize climate in a state not too much warmer than today. A new low emission scenario is simulated in a global climate model to show how some of the impacts from climate change can be averted through mitigation. Compared to a non-intervention reference scenario, emission reductions of about 70% by 2100 are required to prevent roughly half the change in temperature and precipitation that would otherwise occur. By 2100, the resulting stabilized global climate would ensure preservation of considerable Arctic sea ice and permafrost areas. Future heat waves would be 55% less intense, and sea level rise from thermal expansion would be about 57% lower than if a non-mitigation scenario was followed.

  20. Global Projections of 21st Century Land-Use Changes in Regions Adjacent to Protected Areas

    PubMed Central

    Beaumont, Linda J.; Duursma, Daisy

    2012-01-01

    The conservation efficiency of Protected Areas (PA) is influenced by the health and characteristics of the surrounding landscape matrix. Fragmentation of adjacent lands interrupts ecological flows within PAs and will decrease the ability of species to shift their distribution as climate changes. For five periods across the 21st century, we assessed changes to the extent of primary land, secondary land, pasture and crop land projected to occur within 50 km buffers surrounding IUCN-designated PAs. Four scenarios of land-use were obtained from the Land-Use Harmonization Project, developed for the Intergovernmental Panel on Climate Change's Fifth Assessment Report (AR5). The scenarios project the continued decline of primary lands within buffers surrounding PAs. Substantial losses are projected to occur across buffer regions in the tropical forest biomes of Indo-Malayan and the Temperate Broadleaf forests of the Nearctic. A number of buffer regions are projected to have negligible primary land remaining by 2100, including those in the Afrotropic's Tropical/Subtropical Grassland/Savanna/Shrubland. From 2010–2050, secondary land is projected to increase within most buffer regions, although, as with pasture and crops within tropical and temperate forests, projections from the four land-use scenarios may diverge substantially in magnitude and direction of change. These scenarios demonstrate a range of alternate futures, and show that although effective mitigation strategies may reduce pressure on land surrounding PAs, these areas will contain an increasingly heterogeneous matrix of primary and human-modified landscapes. Successful management of buffer regions will be imperative to ensure effectiveness of PAs and to facilitate climate-induced shifts in species ranges. PMID:22952744

  1. SAFRR Tsunami Scenarios and USGS-NTHMP Collaboration

    NASA Astrophysics Data System (ADS)

    Ross, S.; Wood, N. J.; Cox, D. A.; Jones, L.; Cheung, K. F.; Chock, G.; Gately, K.; Jones, J. L.; Lynett, P. J.; Miller, K.; Nicolsky, D.; Richards, K.; Wein, A. M.; Wilson, R. I.

    2015-12-01

    Hazard scenarios provide emergency managers and others with information to help them prepare for future disasters. The SAFRR Tsunami Scenario, published in 2013, modeled a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. It presented the modeled inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the scenario tsunami. The intended users were those responsible for making mitigation decisions before and those who need to make rapid decisions during future tsunamis. It provided the basis for many exercises involving, among others, NOAA, the State of Washington, several counties in California, and the National Institutes of Health. The scenario led to improvements in the warning protocol for southern California and highlighted issues that led to ongoing work on harbor and marina safety. Building on the lessons learned in the SAFRR Tsunami Scenario, another tsunami scenario is being developed with impacts to Hawaii and to the source region in Alaska, focusing on the evacuation issues of remote communities with primarily shore parallel roads, and also on the effects of port closures. Community exposure studies in Hawaii (Ratliff et al., USGS-SIR, 2015) provided background for selecting these foci. One complicated and important aspect of any hazard scenario is defining the source event. The USGS is building collaborations with the National Tsunami Hazard Mitigation Program (NTHMP) to consider issues involved in developing a standardized set of tsunami sources to support hazard mitigation work. Other key USGS-NTHMP collaborations involve population vulnerability and evacuation modeling.

  2. Landslides risk mitigation along lifelines

    NASA Astrophysics Data System (ADS)

    Capparelli, G.; Versace, P.; Artese, G.; Costanzo, S.; Corsonello, P.; Di Massa, G.; Mendicino, G.; Maletta, D.; Leone, S.; Muto, F.; Senatore, A.; Troncone, A.; Conte, E.; Galletta, D.

    2012-04-01

    The paper describes an integrated, innovative and efficient solution to manage risk issues associated to landslides interfering with infrastructures. The research project was submitted for financial support in the framework of the Multi -regional Operational Programme 2007-13: Research and Competitiveness funded by the Ministry of Research (MIUR) and co-funded by the European Regional Development Fund. The project is aimed to developing and demonstrating an integrated system of monitoring, early warning and mitigation of landslides risk. The final goal is to timely identify potentially dangerous landslides, and to activate all needed impact mitigation measures, including the information delivery. The essential components of the system include monitoring arrays, telecommunication networks and scenario simulation models, assisted by a data acquisition and processing centre, and a traffic control centres. Upon integration, the system will be experimentally validated and demonstrated over ca. 200 km of three highway sections, crossing the regions of Campania, Basilicata, Calabria and Sicily. Progress in the state of art is represented by the developments in the field of environmental monitoring and in the mathematical modeling of landslides and by the development of services for traffic management. The approach to the problem corresponds to a "systemic logics" where each developed component foresees different interchangeable technological solutions to maximize the operational flexibility. The final system may be configured as a simple to complex structure, including different configurations to deal with different scenarios. Specifically, six different monitoring systems will be realized: three "point" systems, made up of a network of locally measuring sensors, and three "area" systems to remotely measure the displacements of large areas. Each network will be fully integrated and connected to a unique data transmission system. Standardized and shared procedures for the

  3. Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios

    NASA Astrophysics Data System (ADS)

    Braspenning Radu, Olivia; van den Berg, Maarten; Klimont, Zbigniew; Deetman, Sebastiaan; Janssens-Maenhout, Greet; Muntean, Marilena; Heyes, Chris; Dentener, Frank; van Vuuren, Detlef P.

    2016-09-01

    In this paper, we present ten scenarios developed using the IMAGE2.4 framework (Integrated Model to Assess the Global Environment) to explore how different assumptions on future climate and air pollution policies influence emissions of greenhouse gases and air pollutants. These scenarios describe emission developments in 26 world regions for the 21st century, using a matrix of climate and air pollution policies. For climate policy, the study uses a baseline resulting in forcing levels slightly above RCP6.0 and an ambitious climate policy scenario similar to RCP2.6. For air pollution, the study explores increasingly tight emission standards, ranging from no improvement, current legislation and three variants assuming further improvements. For all pollutants, the results show that more stringent control policies are needed after 2030 to prevent a rise in emissions due to increased activities and further reduce emissions. The results also show that climate mitigation policies have the highest impact on SO2 and NOX emissions, while their impact on BC and OC emissions is relatively low, determined by the overlap between greenhouse gas and air pollutant emission sources. Climate policy can have important co-benefits; a 10% decrease in global CO2 emissions by 2100 leads to a decrease of SO2 and NOX emissions by about 10% and 5%, respectively compared to 2005 levels. In most regions, low levels of air pollutant emissions can also be achieved by solely implementing stringent air pollution policies. The largest differences across the scenarios are found in Asia and other developing regions, where a combination of climate and air pollution policy is needed to bring air pollution levels below those of today.

  4. Mitigating Infectious Disease Outbreaks

    NASA Astrophysics Data System (ADS)

    Davey, Victoria

    The emergence of new, transmissible infections poses a significant threat to human populations. As the 2009 novel influenza A/H1N1 pandemic and the 2014-2015 Ebola epidemic demonstrate, we have observed the effects of rapid spread of illness in non-immune populations and experienced disturbing uncertainty about future potential for human suffering and societal disruption. Clinical and epidemiologic characteristics of a newly emerged infectious organism are usually gathered in retrospect as the outbreak evolves and affects populations. Knowledge of potential effects of outbreaks and epidemics and most importantly, mitigation at community, regional, national and global levels is needed to inform policy that will prepare and protect people. Study of possible outcomes of evolving epidemics and application of mitigation strategies is not possible in observational or experimental research designs, but computational modeling allows conduct of `virtual' experiments. Results of well-designed computer simulations can aid in the selection and implementation of strategies that limit illness and death, and maintain systems of healthcare and other critical resources that are vital to public protection. Mitigating Infectious Disease Outbreaks.

  5. Usability standards meet scenario-based design: challenges and opportunities.

    PubMed

    Vincent, Christopher J; Blandford, Ann

    2015-02-01

    The focus of this paper is on the challenges and opportunities presented by developing scenarios of use for interactive medical devices. Scenarios are integral to the international standard for usability engineering of medical devices (IEC 62366:2007), and are also applied to the development of health software (draft standard IEC 82304-1). The 62366 standard lays out a process for mitigating risk during normal use (i.e. use as per the instructions, or accepted medical practice). However, this begs the question of whether "real use" (that which occurs in practice) matches "normal use". In this paper, we present an overview of the product lifecycle and how it impacts on the type of scenario that can be practically applied. We report on the development and testing of a set of scenarios intended to inform the design of infusion pumps based on "real use". The scenarios were validated by researchers and practitioners experienced in clinical practice, and their utility was assessed by developers and practitioners representing different stages of the product lifecycle. These evaluations highlighted previously unreported challenges and opportunities for the use of scenarios in this context. Challenges include: integrating scenario-based design with usability engineering practice; covering the breadth of uses of infusion devices; and managing contradictory evidence. Opportunities included scenario use beyond design to guide marketing, to inform purchasing and as resources for training staff. This study exemplifies one empirically grounded approach to communicating and negotiating the realities of practice. PMID:25460202

  6. Flying into the future: aviation emissions scenarios to 2050.

    PubMed

    Owen, Bethan; Lee, David S; Lim, Ling

    2010-04-01

    This study describes the methodology and results for calculating future global aviation emissions of carbon dioxide and oxides of nitrogen from air traffic under four of the IPCC/SRES (Intergovernmental Panel on Climate Change/Special Report on Emissions Scenarios) marker scenarios: A1B, A2, B1, and B2. In addition, a mitigation scenario has been calculated for the B1 scenario, requiring rapid and significant technology development and transition. A global model of aircraft movements and emissions (FAST) was used to calculate fuel use and emissions to 2050 with a further outlook to 2100. The aviation emission scenarios presented are designed to interpret the SRES and have been developed to aid in the quantification of the climate change impacts of aviation. Demand projections are made for each scenario, determined by SRES economic growth factors and the SRES storylines. Technology trends are examined in detail and developed for each scenario providing plausible projections for fuel efficiency and emissions control technology appropriate to the individual SRES storylines. The technology trends that are applied are calculated from bottom-up inventory calculations and industry technology trends and targets. Future emissions of carbon dioxide are projected to grow between 2000 and 2050 by a factor in the range of 2.0 and 3.6 depending on the scenario. Emissions of oxides of nitrogen associated with aviation over the same period are projected to grow by between a factor of 1.2 and 2.7. PMID:20225840

  7. Misrepresentation of the IPCC CO2 emission scenarios

    SciTech Connect

    Manning, Martin; Edmonds, James A.; Emori, S.; Grubler, Arnulf; Hibbard, Kathleen A.; Joos, Fortunat; Kainuma, M.; Keeling, Ralph; Kram, Tom; Manning, Andrew; Meinhausen, Malte; Moss, Richard H.; Nakicenovic, Nebojsa; Riahi, Keywan; Rose, Steven K.; Smith, Steven J.; Swart, Robert; Van Vuuren, Detlef

    2010-06-01

    Estimates of recent fossil fuel CO2 emissions have been compared with the IPCC SRES (Special Report on Emission Scenarios) emission scenarios that had been developed for analysis of future climate change, impacts and mitigation. In some cases this comparison uses averages across subgroups of SRES scenarios and for one category of greenhouse gases (industrial sources of CO2). That approach can be misleading and cause confusion as it is inconsistent with many of the papers on future climate change projections that are based on a specific subset of closely scrutinized SRES scenarios, known as illustrative marker scenarios. Here, we show that comparison between recent estimates of fossil fuel emissions trends and the SRES illustrative marker scenarios leads to the conclusion that recent trends are not outside the SRES range. Furthermore, the recent economic downturn appears to have brought actual emission back toward the middle of the SRES illustrative marker scenarios. We also note that SRES emission scenarios are designed to reflect potential alternative long-term trends in a world without climate policy intervention and the trend in the resulting climate change is not sensitive to short-term fluctuations.

  8. Implications of climate mitigation for future agricultural production

    NASA Astrophysics Data System (ADS)

    Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-12-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ∼81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure

  9. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?

    PubMed

    Smith, Pete; Haberl, Helmut; Popp, Alexander; Erb, Karl-Heinz; Lauk, Christian; Harper, Richard; Tubiello, Francesco N; de Siqueira Pinto, Alexandre; Jafari, Mostafa; Sohi, Saran; Masera, Omar; Böttcher, Hannes; Berndes, Göran; Bustamante, Mercedes; Ahammad, Helal; Clark, Harry; Dong, Hongmin; Elsiddig, Elnour A; Mbow, Cheikh; Ravindranath, Nijavalli H; Rice, Charles W; Robledo Abad, Carmenza; Romanovskaya, Anna; Sperling, Frank; Herrero, Mario; House, Joanna I; Rose, Steven

    2013-08-01

    Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6 Gt CO2 -eq. yr(-1) ) in meeting both challenges than do supply-side measures (1.5-4.3 Gt CO2 -eq. yr(-1) at carbon prices between 20 and 100 US$ tCO2 -eq. yr(-1) ), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that

  10. Space debris mitigation measures in India

    NASA Astrophysics Data System (ADS)

    Adimurthy, V.; Ganeshan, A. S.

    2006-02-01

    The Indian Space Research Organization (ISRO) recognizes the importance of the current space debris scenario, and the impact it has on the effective utilization of space technology for the improvement in the quality of life on the Earth. ISRO is committed to effective management of the threats due to space debris. Towards this commitment ISRO works on different aspects of space debris, including the debris mitigation measures. This paper highlights the activities and achievements in the implementation of the mitigation measures. ISRO successfully designed and developed a propellant venting system for implementation in the existing upper stage of India's Polar Satellite Launch Vehicle (PSLV), which uses Earth-storable liquid propellants. GSLV also employs passivation of the Cryogenic Upper Stage at the end of its useful mission. ISRO's communication satellites in GSO are designed with adequate propellant margins for re-orbiting at the end of their useful life to a higher graveyard orbit. A typical successful operation in connection with INSAT-2C is described. ISRO developed its debris environmental models and software to predict the close approach of any of the debris to the functional satellites. The software are regularly used for the debris risk management of the orbiting spacecraft and launch vehicles. ISRO recognizes the role of international cooperation in the debris mitigation measures and actively contributes to the efforts of the Inter-Agency Space Debris Coordination Committee (IADC) and United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS).

  11. Mitigating residential exposure to secondhand tobacco smoke

    NASA Astrophysics Data System (ADS)

    Klepeis, Neil E.; Nazaroff, William W.

    In a companion paper, we used a simulation model to explore secondhand tobacco smoke (SHS) exposures for typical conditions in residences. In the current paper, we extend this analysis to evaluate the effectiveness of physical mitigation approaches in reducing nonsmokers' exposure to airborne SHS particulate matter in a hypothetical 6-zone house. Measures investigated included closing doors or opening windows in response to smoking activity, modifying location patterns to segregate the nonsmoker and the active smoker, and operating particle filtration devices. We first performed 24 scripted simulation trials using hypothetical patterns of occupant location. We then performed cohort simulation trials across 25 mitigation scenarios using over 1000 pairs of nonsmoker and smoker time-location patterns that were selected from a survey of human activity patterns in US homes. We limited cohort pairs to cases where more than 10 cigarettes were smoked indoors at home each day and the nonsmoker was at home for more than two thirds of the day. We evaluated the effectiveness of each mitigation approach by examining its impact on the simulated frequency distribution of residential SHS particle exposure. The two most effective strategies were the isolation of the smoker in a closed room with an open window, and a ban on smoking whenever the nonsmoker was at home. The use of open windows to supply local or cross ventilation, or the operation of portable filtration devices in smoking rooms, provided moderate exposure reductions. Closed doors, by themselves, were not effective.

  12. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st Century: A meta-analysis of the literature

    SciTech Connect

    Dooley, James J.

    2013-08-05

    Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deep geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity – global geologic CO2 storage capacity could be: 35,300 GtCO2 of “theoretical” capacity; 13,500 GtCO2 of “effective” capacity; 3,900 GtCO2, of “practical” capacity; and 290 GtCO2 of “matched” capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a “lack” of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.

  13. Estimating the potential of greenhouse gas mitigation in Kazakhstan

    SciTech Connect

    Monacrovich, E.; Pilifosova, O.; Danchuck, D.

    1996-09-01

    As part of the studies related to the obligations of the UN Framework Convention on Climate Change, the Republic of Kazakhstan started activities to inventory greenhouse gas (GHG) emissions and assess of GHG mitigation options, The objective of this paper is to present an estimate of the possibility of mitigating GHG emissions and determine the mitigation priorities. It presents a compilation of the possible options and their assessment in terms of major criteria and implementation feasibility. Taking into account the structure of GHG emissions in Kazakhstan in 1990, preliminary estimates of the potential for mitigation are presented for eight options for the energy sector and agriculture and forestry sector. The reference scenario prepared by expert assessments assumes a reduction of CO{sub 2} emissions in 1996-1998 by about 26% from the 1990 level due to general economic decline, but then emissions increase. It is estimated that the total potential for the mitigation of CO{sub 2} emissions for the year 2000 is 3% of the CO{sub 2} emissions in the reference scenario. The annual reduction in methane emissions due to the estimated options can amount to 5%-6% of the 1990 level. 10 refs., 1 fig., 4 tabs.

  14. Protected Areas' Role in Climate-change Mitigation in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Kicklighter, David; Lu, Xiaoliang; Monier, Erwan; Sokolov, Andrei; Melillo, Jerry; Reilly, John; Zhuang, Qianlai

    2016-04-01

    In Northern Eurasia, about 2.0 million square kilometers of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. These areas represent about 13% of the protected areas identified across the globe. Combining a global database of protected areas, a reconstruction of global land-use history, and a terrestrial biogeochemistry model, we estimate that protected areas in Northern Eurasia currently sequester 0.05 Pg C annually, which is about one tenth of the carbon sequestered by all land ecosystems annually in this region (0.5 Pg C/yr) and also about one tenth of the carbon sequestered in all protected areas across the globe. Using an integrated earth systems model to generate climate and land-use scenarios for the 21st century, we project that rapid climate change, similar to high-end projections in the 5th Assessment Report of the Intergovernmental Panel on Climate Change, would cause the annual carbon sequestration rate in the protected areas of Northern Eurasia to increase to about 0.07 Pg C/yr by 2100. In contrast, the annual carbon sequestration rate for all protected areas across the globe drops to 0.3 Pg C/yr by the end of the 21st century. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures so that development encroaches upon designated "protected areas", we project that 0.6 million square kilometers of the protected areas in Northern Eurasia would be converted to other uses (10.7% of global protected area losses), and carbon sequestration in the remaining protected areas of Northern Eurasia would drop to 0.03 Pg C/yr by 2100. This small regional carbon sink is compensated by carbon losses in the remaining protected areas outside of the region so that overall no net carbon would be sequestered by global protected areas at the end of the 21st century if these areas are not truly protected.

  15. Evolving practices in environmental scenarios: a new scenario typology

    NASA Astrophysics Data System (ADS)

    Wilkinson, Angela; Eidinow, Esther

    2008-10-01

    A new approach to scenarios focused on environmental concerns, changes and challenges, i.e. so-called 'environmental scenarios', is necessary if global environmental changes are to be more effectively appreciated and addressed through sustained and collaborative action. On the basis of a comparison of previous approaches to global environmental scenarios and a review of existing scenario typologies, we propose a new scenario typology to help guide scenario-based interventions. This typology makes explicit the types of and/or the approaches to knowledge ('the epistemologies') which underpin a scenario approach. Drawing on previous environmental scenario projects, we distinguish and describe two main types in this new typology: 'problem-focused' and 'actor-centric'. This leads in turn to our suggestion for a third type, which we call 'RIMA'—'reflexive interventionist or multi-agent based'. This approach to scenarios emphasizes the importance of the involvement of different epistemologies in a scenario-based process of action learning in the public interest. We suggest that, by combining the epistemologies apparent in the previous two types, this approach can create a more effective bridge between longer-term thinking and more immediate actions. Our description is aimed at scenario practitioners in general, as well as those who work with (environmental) scenarios that address global challenges.

  16. EXAMPLE EXPOSURE SCENARIOS ASSESSMENT TOOL

    EPA Science Inventory

    Exposure scenarios are a tool to help the assessor develop estimates of exposure, dose, and risk. An exposure scenario generally includes facts, data, assumptions, inferences, and sometimes professional judgment about how the exposure takes place. The human physiological and beh...

  17. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  18. Europe's forest management did not mitigate climate warming.

    PubMed

    Naudts, Kim; Chen, Yiying; McGrath, Matthew J; Ryder, James; Valade, Aude; Otto, Juliane; Luyssaert, Sebastiaan

    2016-02-01

    Afforestation and forest management are considered to be key instruments in mitigating climate change. Here we show that since 1750, in spite of considerable afforestation, wood extraction has led to Europe's forests accumulating a carbon debt of 3.1 petagrams of carbon. We found that afforestation is responsible for an increase of 0.12 watts per square meter in the radiative imbalance at the top of the atmosphere, whereas an increase of 0.12 kelvin in summertime atmospheric boundary layer temperature was mainly caused by species conversion. Thus, two and a half centuries of forest management in Europe have not cooled the climate. The political imperative to mitigate climate change through afforestation and forest management therefore risks failure, unless it is recognized that not all forestry contributes to climate change mitigation. PMID:26912701

  19. Scenarios of energy demand and efficiency potential for Bulgaria

    SciTech Connect

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  20. Zebra mussel mitigation; overview

    SciTech Connect

    Claudi, R.

    1995-06-01

    Zebra mussels cause a number of problems to industrial raw water users as well as having serious impact on civil structures exposed to mussel infested waters. The largest volume of water (up to 90% of the total) drawn into most industrial and power generating plants, is for cooling and heat transfer. The rest of the volume is used for other plant processes, such as make-up in steam systems, and service systems used for cleaning, air conditions, fire protection and human consumption. All raw water systems are vulnerable to zebra mussel infestation to greater or lesser degree. To-date, many different chemical and non-chemical techniques for zebra mussel control have been investigated. However, the treatment of choice for most facilities is based on chemical control. This has been the common practice in Europe and so far it has been the case in North America. This is likely to change as the environmental constraints on release of chemicals into natural water bodies continue to increase. This paper deals with the different steps raw water users should take when deciding on a mitigation strategy, the mitigation measures available to-date and those that have been proposed for the control of zebra mussels in industrial systems.

  1. Biomass Scenario Model Scenario Library: Definitions, Construction, and Description

    SciTech Connect

    Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.

    2014-04-01

    Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses. The purpose of this report is to describe the scenarios that comprise the BSM scenario library. At present, we have the following policy-focused scenarios in our library: minimal policies, ethanol-focused policies, equal access to policies, output-focused policies, technological diversity focused, and the point-of-production- focused. This report describes each scenario, its policy settings, and general insights gained through use of the scenarios in analytic studies.

  2. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect

    Hirsch, R.L.; Bezdek, Roger; Wendling, Robert

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  3. Sarin exposure: a simulation case scenario.

    PubMed

    Eason, Martin P

    2013-01-01

    Given the current geopolitical tensions, the risk of a terrorist attack on the United States is constant and increasing. Chemical terrorism, specifically the use of nerve agents, has occurred in other nations. Because of the ease of manufacture, the ability to conceal them, and the lethality of these agents, they pose a potential threat as a weapon of terror. Nerve agent exposure requires prompt recognition, a series of actions to mitigate further exposure to others, and management of the physiological sequelae of exposure. Many civilian healthcare providers are unprepared to manage injuries from nerve exposure. Failure to recognize the signs of nerve agent exposure will increase mortality and morbidity in victims and place healthcare providers at risk. Simulation is an effective methodology to train healthcare personnel in disaster preparedness. This article presents a simulation scenario that reviews the presentation of nerve agent exposure, its management, and a recipe for performing this simulation in a training exercise. PMID:23263315

  4. Preparation of high resolution climate scenarios for agricultural impact analysis in Hungary

    NASA Astrophysics Data System (ADS)

    Dobor, L.; Barcza, Z.; Havasi, Á.; Fodor, N.

    2012-04-01

    Climate change may significantly alter agricultural productivity which could directly affect food security in several parts of the world during the 21st century. In order to mitigate the robust effects of climate change, agriculture related impact studies are needed. Reliable regional climate model (RCM) based scenarios are essential to realistic estimations of the potential effects of the changing climate conditions. Every climate model suffers from systematic errors (e.g. under- or overestimation the amount and frequency of precipitation), which may prevent direct application of the RCM results for agricultural purposes. There are several bias correction strategies to correct those errors in the RCM datasets. Our main aim is to correct the available, state-of-the-art RCM results to prepare complex impact studies for the Carpathian Basin. The overarching aim is to estimate the expected changes of agricultural productivity in Hungary. In this study eight RCM experiments are used that were created and disseminated within the framework of the ENSEMBLES FP6 project. After statistical bias correction the daily data is used to drive the 4Mx crop simulation mode which is a daily-step, deterministic model that simulates the water and nutrient balance of the soil, the soil-plant interactions as well as the plant development and growth. 4Mx was developed in the Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences. In the present study the effect of bias correction on the climate scenarios as well as on selected crop simulation results is demonstrated.

  5. Viral hepatitis: Indian scenario.

    PubMed

    Satsangi, Sandeep; Chawla, Yogesh K

    2016-07-01

    Viral hepatitis is a cause for major health care burden in India and is now equated as a threat comparable to the "big three" communicable diseases - HIV/AIDS, malaria and tuberculosis. Hepatitis A virus and Hepatitis E virus are predominantly enterically transmitted pathogens and are responsible to cause both sporadic infections and epidemics of acute viral hepatitis. Hepatitis B virus and Hepatitis C virus are predominantly spread via parenteral route and are notorious to cause chronic hepatitis which can lead to grave complications including cirrhosis of liver and hepatocellular carcinoma. Around 400 million people all over the world suffer from chronic hepatitis and the Asia-Pacific region constitutes the epicentre of this epidemic. The present article would aim to cover the basic virologic aspects of these viruses and highlight the present scenario of viral hepatitis in India. PMID:27546957

  6. Volcano hazard mitigation program in Indonesia

    USGS Publications Warehouse

    Sudradjat, A.

    1990-01-01

    Volcanological investigations in Indonesia were started in the 18th century, when Valentijn in 1726 prepared a chronological report of the eruption of Banda Api volcno, Maluku. Modern and intensive volcanological studies did not begin until the catastrophic eruption of Kelut volcano, East Java, in 1919. The eruption took 5,011 lives and destroyed thousands of acres of coffee plantation. An eruption lahar generated by the crater lake water mixed with volcanic eruptions products was the cause of death for a high number of victims. An effort to mitigate the danger from volcanic eruption was first initiated in 1921 by constructing a tunnel to drain the crater lake water of Kelut volcano. At the same time a Volcanological Survey was established by the government with the responsibility of seeking every means for minimizing the hazard caused by volcanic eruption. 

  7. CO2 emissions mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine V.; Wada, Kenichi; Van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  8. Economically consistent long-term scenarios for air pollutant emissions

    SciTech Connect

    Smith, Steven J.; West, Jason; Kyle, G. Page

    2011-09-08

    Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant levels as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve agreement between modeled PM2.5 and economic income among world regions through time; agreement for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. The scenario examined here was used as the basis for one of the Representative Concentration Pathway (RCP) scenarios. This analysis methodology could also be used to examine the consistency of other pollutant emission scenarios.

  9. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    SciTech Connect

    Makundi, Willy R.

    1998-06-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

  10. Puerto Rico Tsunami Warning and Mitigation Program

    NASA Astrophysics Data System (ADS)

    Huerfano, V. A.; Mercado, A.; von Hillebrandt, C. G.

    2003-12-01

    tsunami scenarios on the basis of the parameters of potential underwater earthquakes were developed. Secondly, each of these earthquakes source scenarios was simulated. The third step was to determine the worst case scenario for a tectonically generated tsunami throughout Puerto Rico. The runups were drawn on GIS referenced topographic maps and aerial photographs. These products are being used by the local, state and federal emergency managers to educate the public and develop mitigation strategies. Based on these maps tsunami warning signs are being installed throughout the potentially affected zones and are a very important component of the TWS.

  11. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models

    NASA Astrophysics Data System (ADS)

    Bopp, L.; Resplandy, L.; Orr, J. C.; Doney, S. C.; Dunne, J. P.; Gehlen, M.; Halloran, P.; Heinze, C.; Ilyina, T.; Séférian, R.; Tjiputra, J.; Vichi, M.

    2013-10-01

    Ocean ecosystems are increasingly stressed by human-induced changes of their physical, chemical and biological environment. Among these changes, warming, acidification, deoxygenation and changes in primary productivity by marine phytoplankton can be considered as four of the major stressors of open ocean ecosystems. Due to rising atmospheric CO2 in the coming decades, these changes will be amplified. Here, we use the most recent simulations performed in the framework of the Coupled Model Intercomparison Project 5 to assess how these stressors may evolve over the course of the 21st century. The 10 Earth system models used here project similar trends in ocean warming, acidification, deoxygenation and reduced primary productivity for each of the IPCC's representative concentration pathways (RCPs) over the 21st century. For the "business-as-usual" scenario RCP8.5, the model-mean changes in the 2090s (compared to the 1990s) for sea surface temperature, sea surface pH, global O2 content and integrated primary productivity amount to +2.73 (±0.72) °C, -0.33 (±0.003) pH unit, -3.45 (±0.44)% and -8.6 (±7.9)%, respectively. For the high mitigation scenario RCP2.6, corresponding changes are +0.71 (±0.45) °C, -0.07 (±0.001) pH unit, -1.81 (±0.31)% and -2.0 (±4.1)%, respectively, illustrating the effectiveness of extreme mitigation strategies. Although these stressors operate globally, they display distinct regional patterns and thus do not change coincidentally. Large decreases in O2 and in pH are simulated in global ocean intermediate and mode waters, whereas large reductions in primary production are simulated in the tropics and in the North Atlantic. Although temperature and pH projections are robust across models, the same does not hold for projections of subsurface O2 concentrations in the tropics and global and regional changes in net primary productivity. These high uncertainties in projections of primary productivity and subsurface oxygen prompt us to

  12. Climate change and mitigation.

    PubMed

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session "Climate Change and Mitigation" the speakers offered four different views on coal and CO2: the basis for life, but also a major hazard with impact on Earth's climate. A common denominator in the presentations was that more than ever science and technology is required. We need not only understand the mechanisms for climate change and climate variability, we also need to identify means to remedy the anthropogenic influence on Earth's climate. PMID:20873680

  13. RFI Mitigation for FAST

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Nan, Rendong; Gan, Hengqian; Yue, Youling; Wu, Mingchang; Zhang, Zhiwei; Jin, Chengjin; Peng, Bo

    2015-08-01

    Five-hundred-meter Aperture Spherical radio Telescope (FAST) is a Chinese mega-science project to build the largest single dish radio telescope in the world. The construction was officially commenced in March 2011. The first light of FAST is expected in 2016. Due to the high sensitivity of FAST, Radio Frequency Interference (RFI) mitigation for the telescope is required to assure the realization of the scientific goals. In order to protect the radio environment of FAST site, the local government has established a radio quiet zone with 30 km radius. Moreover, Electromagnetic Compatibility (EMC) designs and measurements for FAST have also been carried out, and some examples, such as EMC designs for actuator and focus cabin, have been introduced briefly.

  14. Space Debris & its Mitigation

    NASA Astrophysics Data System (ADS)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  15. Sustainable biochar to mitigate global climate change

    PubMed Central

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen

    2010-01-01

    Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722

  16. Sustainable biochar to mitigate global climate change.

    PubMed

    Woolf, Dominic; Amonette, James E; Street-Perrott, F Alayne; Lehmann, Johannes; Joseph, Stephen

    2010-01-01

    Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO(2)), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO(2)-C equivalent (CO(2)-C(e)) per year (12% of current anthropogenic CO(2)-C(e) emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO(2)-C(e), without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722

  17. Global climate change and the mitigation challenge

    SciTech Connect

    Frank Princiotta

    2009-10-15

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

  18. Intensity earthquake scenario (scenario event - a damaging earthquake with higher probability of occurrence) for the city of Sofia

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Irena; Simeonova, Stela; Solakov, Dimcho; Popova, Maria

    2014-05-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic risk to earthquakes are increasing steadily as urbanization and development occupy more areas that a prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The earthquake scenarios are intended as a basic input for developing detailed earthquake damage scenarios for the cities and can be used in earthquake-safe town and infrastructure planning. The city of Sofia is the capital of Bulgaria. It is situated in the centre of the Sofia area that is the most populated (the population is of more than 1.2 mil. inhabitants), industrial and cultural region of Bulgaria that faces considerable earthquake risk. The available historical documents prove the occurrence of destructive earthquakes during the 15th-18th centuries in the Sofia zone. In 19th century the city of Sofia has experienced two strong earthquakes: the 1818 earthquake with epicentral intensity I0=8-9 MSK and the 1858 earthquake with I0=9-10 MSK. During the 20th century the strongest event occurred in the vicinity of the city of Sofia is the 1917 earthquake with MS=5.3 (I0=7-8 MSK). Almost a century later (95 years) an earthquake of moment magnitude 5.6 (I0=7-8 MSK) hit the city of Sofia, on May 22nd, 2012. In the present study as a deterministic scenario event is considered a damaging earthquake with higher probability of occurrence that could affect the city with intensity less than or equal to VIII

  19. Apparatus and Methods for Mitigating Electromagnetic Emissions

    NASA Technical Reports Server (NTRS)

    Geng, Steven M. (Inventor); Niedra, Janis M. (Inventor)

    2013-01-01

    Apparatus, methods, and other embodiments associated with mitigation of magnetic fields are described herein. In an embodiment, a method for mitigating an electromagnetic field includes positioning a mitigating coil around a linear alternator of linear motor so that the mitigating coil is coaxially located with an alternator coil; arranging the mitigating coil to generate a field to mitigate an electromagnetic field generated by the alternator coil; and passing an induced current from the alternator coil through the mitigating coil.

  20. Apparatus and Methods for Mitigating Electromagnetic Emissions

    NASA Technical Reports Server (NTRS)

    Geng, Steven M. (Inventor); Niedra, Janis M. (Inventor)

    2016-01-01

    Apparatus, methods, and other embodiments associated with mitigation of magnetic fields are described herein. In an embodiment, a method for mitigating an electromagnetic field includes positioning a mitigating coil around a linear alternator of linear motor so that the mitigating coil is coaxially located with an alternator coil; arranging the mitigating coil to generate a field to mitigate an electromagnetic field generated by the alternator coil; and passing an induced current from the alternator coil through the mitigating coil.

  1. Effects and mitigation of multipath on GPS/Galileo

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Wang, Qing; Pan, Shuguo; He, Jun

    2007-11-01

    A conventional method to mitigate multipath errors in GNSS receivers is the strobe correlator, which achieves discriminator function shaping by combining two different narrow-correlator discriminators [1] [2]. The method performs a good performance when the difference in delays of direct and reflected signal is biggish in GPS scenario. Nevertheless, the performance of the method is not so good for Galileo scenario. The advent of the European navigation system Galileo has made it an exigent requirement to develop the receiver that can track Galileo signals as well as GPS signals. So, a better way should be groped for to mitigate both GPS and Galileo multipath errors. In the paper, a novel multipath mitigation scheme, named Early-Late Strobe Correlator (ELSC), was presented for both GPS and Galileo signals. By the Matlab simulation to the method, multipath errors could be mitigated effectively by using ELSC, especially to Galileo signals. The experiment results show that more excellent performances can be obtained by adopting ELSC presented in the paper with respected to the strobe correlator, although this will result in a more complex structure of discriminators.

  2. LONG-TERM GLOBAL WATER USE PROJECTIONS USING SIX SOCIOECONOMIC SCENARIOS IN AN INTEGRATED ASSESSMENT MODELING FRAMEWORK

    SciTech Connect

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.; Moss, Richard H.; Kim, Son H.

    2014-01-19

    In this paper, we assess future water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors, by incorporating water demands into a technologically-detailed global integrated assessment model of energy, agriculture, and climate change – the Global Change Assessment Model (GCAM). Base-year water demands—both gross withdrawals and net consumptive use—are assigned to specific modeled activities in a way that maximizes consistency between bottom-up estimates of water demand intensities of specific technologies and practices, and top-down regional and sectoral estimates of water use. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. We assess future water demands representing six socioeconomic scenarios, with no constraints imposed by future water supplies. The scenarios observe increases in global water withdrawals from 3,578 km3 year-1 in 2005 to 5,987 – 8,374 km3 year-1 in 2050, and to 4,719 – 12,290 km3 year-1 in 2095. Comparing the projected total regional water withdrawals to the historical supply of renewable freshwater, the Middle East exhibits the highest levels of water scarcity throughout the century, followed by India; water scarcity increases over time in both of these regions. In contrast, water scarcity improves in some regions with large base-year electric sector withdrawals, such as the USA and Canada, due to capital stock turnover and the almost complete phase-out of once-through flow cooling systems. The scenarios indicate that: 1) water is likely a limiting factor in climate change mitigation policies, 2) many regions can be expected to increase reliance on non-renewable groundwater, water reuse, and desalinated water, but they also

  3. The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Ross, Stephanie, (Edited By); Jones, Lucile

    2013-01-01

    The Science Application for Risk Reduction (SAFRR) tsunami scenario depicts a hypothetical but plausible tsunami created by an earthquake offshore from the Alaska Peninsula and its impacts on the California coast. The tsunami scenario is a collaboration between the U.S. Geological Survey (USGS), the California Geological Survey (CGS), the California Governor’s Office of Emergency Services (Cal OES), the National Oceanic and Atmospheric Administration (NOAA), other Federal, State, County, and local agencies, private companies, and academic and other institutions. This document presents evidence for past tsunamis, the scientific basis for the source, likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental and ecological impacts, social vulnerability, emergency management and evacuation challenges, and policy implications for California associated with this hypothetical tsunami. We also discuss ongoing mitigation efforts by the State of California and new communication products. The intended users are those who need to make mitigation decisions before future tsunamis, and those who will need to make rapid decisions during tsunami events. The results of the tsunami scenario will help managers understand the context and consequences of their decisions and how they may improve preparedness and response. An evaluation component will assess the effectiveness of the scenario process for target stakeholders in a separate report to improve similar efforts in the future.

  4. Mission Scenario Development Workbench

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Baker, John; Gilbert, John; Hanks, David; Mandutianu, Dan; Hooper, David

    2006-01-01

    The Mission Scenario Development Workbench (MSDW) is a multidisciplinary performance analysis software tool for planning and optimizing space missions. It provides a number of new capabilities that are particularly useful for planning the surface activities on other planets. MSDW enables rapid planning of a space mission and supports flight system and scientific-instrumentation trades. It also provides an estimate of the ability of flight, ground, and science systems to meet high-level mission goals and provides means of evaluating expected mission performance at an early stage of planning in the project life cycle. In MSDW, activity plans and equipment-list spreadsheets are integrated with validated parameterized simulation models of spacecraft systems. In contrast to traditional approaches involving worst-case estimates with large margins, the approach embodied in MSDW affords more flexibility and more credible results early in the lifecycle through the use of validated, variable- fidelity models of spacecraft systems. MSDW is expected to help maximize the scientific return on investment for space missions by understanding early the performance required to have a successful mission while reducing the risk of costly design changes made at late stages in the project life cycle.

  5. Possible climate change over Eurasia under different emission scenarios

    NASA Astrophysics Data System (ADS)

    Sokolov, A. P.; Monier, E.; Scott, J. R.; Forest, C. E.; Schlosser, C. A.

    2011-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  6. Possible climate change over Eurasia under different emission scenarios

    NASA Astrophysics Data System (ADS)

    Sokolov, A. P.; Monier, E.; Gao, X.

    2012-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  7. Surface Buildup Scenarios and Outpost Architectures for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D.; Troutman, Patrick A.; Culbert, Christopher J.; Leonard, Matthew J.; Spexarth, Gary R.

    2009-01-01

    The Constellation Program Architecture Team and the Lunar Surface Systems Project Office have developed an initial set of lunar surface buildup scenarios and associated polar outpost architectures, along with preliminary supporting element and system designs in support of NASA's Exploration Strategy. The surface scenarios are structured in such a way that outpost assembly can be suspended at any time to accommodate delivery contingencies or changes in mission emphasis. The modular nature of the architectures mitigates the impact of the loss of any one element and enhances the ability of international and commercial partners to contribute elements and systems. Additionally, the core lunar surface system technologies and outpost operations concepts are applicable to future Mars exploration. These buildup scenarios provide a point of departure for future trades and assessments of alternative architectures and surface elements.

  8. A Methodology For Flood Vulnerability Analysis In Complex Flood Scenarios

    NASA Astrophysics Data System (ADS)

    Figueiredo, R.; Martina, M. L. V.; Dottori, F.

    2015-12-01

    Nowadays, flood risk management is gaining importance in order to mitigate and prevent flood disasters, and consequently the analysis of flood vulnerability is becoming a key research topic. In this paper, we propose a methodology for large-scale analysis of flood vulnerability. The methodology is based on a GIS-based index, which considers local topography, terrain roughness and basic information about the flood scenario to reproduce the diffusive behaviour of floodplain flow. The methodology synthetizes the spatial distribution of index values into maps and curves, used to represent the vulnerability in the area of interest. Its application allows for considering different levels of complexity of flood scenarios, from localized flood defence failures to complex hazard scenarios involving river reaches. The components of the methodology are applied and tested in two floodplain areas in Northern Italy recently affected by floods. The results show that the methodology can provide an original and valuable insight of flood vulnerability variables and processes.

  9. MITIGATION IMPACT SCREENING TOOL (MIST)

    EPA Science Inventory

    MIST is intended to provide a back of the envelope, qualitative indication of the likely impacts of heat island mitigation strategies averaged at the city-scale. To run MIST, users follow three basic steps: 1. Select the city to model (240 available) 2. Define the mitigation ...

  10. Toward to Disaster Mitigation Science

    NASA Astrophysics Data System (ADS)

    Kaneda, Yoshiyuki; Shiraki, Wataru; Tokozakura, Eiji

    2016-04-01

    Destructive natural disasters such as earthquakes and tsunamis have occurred frequently in the world. For the reduction and mitigation of damages by destructive natural disasters, early detection of natural disasters and speedy and proper evacuations are indispensable. And hardware and software preparations for reduction and mitigation of natural disasters are quite important and significant. Finally, methods on restorations and revivals are necessary after natural disasters. We would like to propose natural disaster mitigation science for early detections, evacuations and restorations against destructive natural disasters. In natural disaster mitigation science, there are lots of research fields such as natural science, engineering, medical treatment, social science and literature/art etc. Especially, natural science, engineering and medical treatment are fundamental research fields for natural disaster mitigation, but social sciences such as sociology, psychology etc. are very important research fields for restorations after natural disasters. We have to progress the natural disaster mitigation science against destructive natural disaster mitigation. in the near future. We will present the details of natural disaster mitigation science.

  11. Turbulence Detection and Mitigation Element

    NASA Technical Reports Server (NTRS)

    Bogue, Rod

    2003-01-01

    This paper presents viewgraphs on turbulence detection and mitigation technologies in weather accident prevention. The topics include: 1) Organization; 2) Scope of Turbulence Effort; 3) Background; 4) Turbulence Detection and Mitigation Program Metrics; 5) Approach; 6) Turbulence Team Relationships; 7) WBS Structure; 8) Deliverables; 9) TDAM Changes; 10) FY-01 Results/Accomplishments; 11) Out-year Plans; and 12) Element Status.

  12. Climate adaptation as mitigation: the case of agricultural investments

    NASA Astrophysics Data System (ADS)

    Lobell, David B.; Baldos, Uris Lantz C.; Hertel, Thomas W.

    2013-03-01

    Successful adaptation of agriculture to ongoing climate changes would help to maintain productivity growth and thereby reduce pressure to bring new lands into agriculture. In this paper we investigate the potential co-benefits of adaptation in terms of the avoided emissions from land use change. A model of global agricultural trade and land use, called SIMPLE, is utilized to link adaptation investments, yield growth rates, land conversion rates, and land use emissions. A scenario of global adaptation to offset negative yield impacts of temperature and precipitation changes to 2050, which requires a cumulative 225 billion USD of additional investment, results in 61 Mha less conversion of cropland and 15 Gt carbon dioxide equivalent (CO2e) fewer emissions by 2050. Thus our estimates imply an annual mitigation co-benefit of 0.35 GtCO2e yr-1 while spending 15 per tonne CO2e of avoided emissions. Uncertainty analysis is used to estimate a 5-95% confidence interval around these numbers of 0.25-0.43 Gt and 11-22 per tonne CO2e. A scenario of adaptation focused only on Sub-Saharan Africa and Latin America, while less costly in aggregate, results in much smaller mitigation potentials and higher per tonne costs. These results indicate that although investing in the least developed areas may be most desirable for the main objectives of adaptation, it has little net effect on mitigation because production gains are offset by greater rates of land clearing in the benefited regions, which are relatively low yielding and land abundant. Adaptation investments in high yielding, land scarce regions such as Asia and North America are more effective for mitigation. To identify data needs, we conduct a sensitivity analysis using the Morris method (Morris 1991 Technometrics 33 161-74). The three most critical parameters for improving estimates of mitigation potential are (in descending order) the emissions factors for converting land to agriculture, the price elasticity of land supply

  13. Investigating the evolution of Shared Socioeconomic Pathways with a large number of scenarios

    NASA Astrophysics Data System (ADS)

    Schweizer, V. J.; Guivarch, C.; Rozenberg, J.

    2013-12-01

    The new scenario framework for climate change research includes alternative possible trends for socioeconomic development called Shared Socioeconomic Pathways (SSPs). The SSPs bear some similarities to other scenarios used for global change research, but they also have important differences. Like the IPCC Special Report on Emissions Scenarios or the Millennium Ecosystem Assessment, SSPs are defined by a scenario logic consisting of two axes. However, these axes define SSPs with respect to their location in an outcome space for challenges to mitigation and to adaptation rather than by their drivers. Open questions for the SSPs include what their drivers are and how the time dimension could be interpreted with the outcomes space. We present a new analytical approach for addressing both questions by studying large numbers of scenarios produced by an integrated assessment model, IMACLIM-R. We systematically generated 432 scenarios and used the SSP framework to classify them by typology. We then analyzed them dynamically, tracing their evolution through the SSP challenges space at annual time steps over the period 2010-2090. Through this approach, we found that many scenarios do not remain fixed to a particular SSP domain; they drift from one domain to another. In papers describing the framework for new scenarios, SSPs are envisioned as hypothetical (counter-factual) reference scenarios that remain fixed in one domain over some time period of interest. However, we conclude that it may be important to also research scenarios that shift across SSP domains. This is relevant for another open question, which is what scenarios are important to explore given their consequences. Through a data mining technique, we uncovered prominent drivers for scenarios that shift across SSP domains. Scenarios with different challenges for adaptation and mitigation (that is, mitigation and adaptation challenges that are not co-varying) were found to be the least stable, and the following

  14. Tethers and debris mitigation

    NASA Astrophysics Data System (ADS)

    van der Heide, Erik Jan; Kruijff, Michiel

    2001-03-01

    In recent years, the use of tethers has been proposed for reduction of space debris either through momentum transfer or use of electrodynamic effects. Tethers have been shown to at least theoretically allow for quick, elegant and cost-effective deorbit of defunct satellites or spent stages. On the other hand, the large risk that tethers themselves may pose to other satellites in orbit has been recognized as well. The large collision area of tethers, combined with operational hazards and meteoroid risk may result in a large orbital exposure. For example, in 1997, the ESA/Dutch 35-km tether deployment of YES from TEAMSAT was inhibited after an analysis of the collision risk for the case the tether operation would fail. The question rises how these two points of view compare to eachother. This paper intends to highlight a representative selection of the proposed tether applications while taking into account the added risks caused by the tethers themselves. Typical applications from recent literature will be briefly described, such as an Ariane 502 spent stage re-entry from GTO and the concept of deboost of defunct satellites by interaction of a conductive tether with the Earth magnetic field. Mass savings of the tethered sytems versus conventional equivalents will be evaluated. Based on a crude risk analysis, involving elements such as mission complexity, dynamic stability, meteoroid risk and orbital life time, a general outline of limiting factors can be given for the various applications. Special attention is reserved for implementation of mechanisms that help reduce this tether risk, such as the DUtether (Tether Degradable by Ultraviolet), utilization of airdrag and solar pressure, the effect of residual current in bare tethers, tether retrieval etc. It is proposed how a net tether-induced mitigation can be compared to that of conventional alternatives, i.e. deboost by rocket engine or a completely passive approach. This comparison is put in the perspective of an

  15. Radar Ionospheric Impact Mitigation

    NASA Astrophysics Data System (ADS)

    Bishop, G.; Decker, D.; Baker, C.

    2006-12-01

    New ionospheric modeling technology is being developed to improve correction of ionospheric impacts on the performance of ground-based space-surveillance radars (SSRs) in near-real-time. These radars, which detect and track space objects, can experience significant target location errors due to ionospheric delay and refraction of the radar signals. Since these radars must detect and track targets essentially to the radar horizon, it is necessary to accurately model the ionosphere as the radar would observe it, down to the local horizon. To correct for spatial and temporal changes in the ionosphere the model must be able to update in near-real-time using ionospheric sensor data. Since many radars are in isolated locations, or may have requirements to operate autonomously, an additional required capability is to provide accurate ionospheric mitigation by exploiting only sensor data from the radar site. However, the model must also be able to update using additional data from other types of sensors that may be available. The original radar ionospheric mitigation approach employed the Bent climatological model. This 35-year-old technology is still the means employed in the many DoD SSRs today. One more recent approach used capabilities from the PRISM model. PRISM technology has today been surpassed by `assimilative models' which employ better physics and Kalman filtering techniques. These models are not necessarily tailored for SSR application which needs to optimize modeling of very small regions using only data from a single sensor, or very few. The goal is to develop and validate the performance of innovative and efficient ionospheric modeling approaches that are optimized for the small regions applicable to ground-based radar coverage (radius of ~2000 km at ionospheric altitudes) and somewhat beyond. These approaches must adapt a continuous modeling scheme in near-real-time to be consistent with all observational data that may become available, and degrade

  16. Higher Education Administration and Globalization in the 21st Century in India

    ERIC Educational Resources Information Center

    Jabbarifar, Taghi

    2008-01-01

    This article deals with the changing scenario and management responsibilities of higher education in the 21st century in India. Of course, for those looking for challenges of management in higher education as a field, the future is not going to be a disappointment. Maybe by the end of the first decade of the 21st century management of higher…

  17. Radiative forcing and climate response to projected 21st century aerosol decreases

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Mauzerall, D. L.

    2015-03-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80% by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m-2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1. Regionally and locally, climate impacts can be much larger, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm d-1 precipitation increase, a 7 g m-2 LWP decrease, and a 2 μm increase in cloud droplet effective radius. Future aerosol decreases could be responsible for 30-40% of total climate warming by 2100 in East Asia, even under the high greenhouse gas emissions scenario (RCP8.5). The expected unmasking of global warming caused by aerosol reductions will

  18. Radiative forcing and climate response to projected 21st century aerosol decreases

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Golaz, J.-C.; Mauzerall, D. L.

    2015-11-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80 % by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Coupled Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m-2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm day-1. However, when using a version of CM3 with reduced present-day aerosol radiative forcing (-1.0 W m-2), the global temperature increase for RCP8.5 is about 0.5 K, with similar magnitude decreases in other climate response parameters as well. Regionally and locally, climate impacts can be much larger than the global mean, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm day-1 precipitation increase, a 7 g m-2 LWP decrease, and a 2 μm increase in

  19. Scenarios of climate change

    NASA Astrophysics Data System (ADS)

    Graßl, H.

    2009-09-01

    This article provides an overview of current and prospected climate changes, their causes and implied threats, and of a possible route to keep the changes within a tolerable level. The global mean temperature has up to 2005 risen by almost 0.8°C, and the change expected by 2100 is as large as glacial-interglacial changes in the past, which were commonly spread out over 10000 years. As is well known, the principle actor is man-made CO2, which, together with other anthropogenic gases, enhances the atmosphere’s greenhouse effect. The only man-made cooling agent appears to be atmospheric aerosols. Atmospheric CO2 has now reached levels unprecedented during the past several million years. Principal threats are a greatly reduced biodiversity (species extinction), changes in the atmospheric precipitation pattern, more frequent weather extremes, and not the least, sea level rise. The expected precipitation pattern will enhance water scarcity in and around regions that suffer from water shortage already, affecting many countries. Sea level rise will act on a longer time scale. It is expected to amount to more than 50 cm by 2100, and over the coming centuries the potential rise is of the order of 10 m. A global-mean temperature increase of 2°C is often quoted as a safe limit, beyond which irreversible effects must be expected. To achieve that limit, a major, rapid, and coordinated international effort will be needed. Up to the year 2050, the man-made CO2 releases must be reduced by at least 50%. This must be accompanied by a complete overhaul of the global energy supply toward depending increasingly on the Sun’s supply of energy, both directly and in converted form, such as wind energy. Much of the information and insight available today has been generated by the Intergovernmental Panel on Climate Change (IPCC), in particular its Fourth Assessment Report of 2007, which greatly advanced both public attention and political action.

  20. Mitigation analysis for Estonia

    SciTech Connect

    Martins, A.; Roos, J.; Pesur, A.

    1996-09-01

    The present report provides data on the mitigation analysis of Estonia. The results for energy, forest and agricultural sectors and macro-economic analysis are given. The Government of Estonia has identified the development of energy production as the main strategical means in the movement towards market economy. Now 99% of electricity generation and about 25% of heat production in Estonia is based on oil shale combustion. To increase the efficiency of oil shale-fired power plants and decrease CO{sub 2} emissions, the State Enterprise (SE) Eesti Energia (Estonian Energy) is planning to reconstruct these power plants and introduce the Circulating Fluidized Bed (CFB) combustion technology for oil shale burning to replace the Pulverized Combustion (PC). According to the Estonian Forest Policy, two general objectives are of importance: sustainability in forestry and efficiency in forest management. For the reduction of greenhouse gases (GHG) emissions from agriculture, it is necessary to increase the efficiency of production resource usage. The growth of the GDP in 1995 was 2.9% as a result of large-scale privatization activities in Estonia and re-introduction of the available, but unused production capacities with the help of foreign and domestic investments. It is assumed that the medium growth rate of GDP reaches 6% in 1998.

  1. Translation readthrough mitigation.

    PubMed

    Arribere, Joshua A; Cenik, Elif S; Jain, Nimit; Hess, Gaelen T; Lee, Cameron H; Bassik, Michael C; Fire, Andrew Z

    2016-06-30

    A fraction of ribosomes engaged in translation will fail to terminate when reaching a stop codon, yielding nascent proteins inappropriately extended on their C termini. Although such extended proteins can interfere with normal cellular processes, known mechanisms of translational surveillance are insufficient to protect cells from potential dominant consequences. Here, through a combination of transgenics and CRISPR–Cas9 gene editing in Caenorhabditis elegans, we demonstrate a consistent ability of cells to block accumulation of C-terminal-extended proteins that result from failure to terminate at stop codons. Sequences encoded by the 3′ untranslated region (UTR) were sufficient to lower protein levels. Measurements of mRNA levels and translation suggested a co- or post-translational mechanism of action for these sequences in C. elegans. Similar mechanisms evidently operate in human cells, in which we observed a comparable tendency for translated human 3′ UTR sequences to reduce mature protein expression in tissue culture assays, including 3′ UTR sequences from the hypomorphic ‘Constant Spring’ haemoglobin stop codon variant. We suggest that 3′ UTRs may encode peptide sequences that destabilize the attached protein, providing mitigation of unwelcome and varied translation errors. PMID:27281202

  2. Ultrasonic mitigation investigation

    SciTech Connect

    Hildebrand, B.P.; Shepard, C.L.

    1993-04-01

    The suggestion was made that the introduction of ultrasound into Tank 101-SY might serve to release the hydrogen bubbles trapped in the slurry. This would cause a continuous release of bubbles and thereby prevent the turnover phenomenon. Two major considerations were (1) the method for delivering the energy into the slurry and (2) the effective volume of action. In this study, we attached the former by designing and testing a liquid-filled waveguide and radiator, and the latter by making ultrasonic property measurements on synthetic waste. Our conclusion is that ultrasonic mitigation may not be feasible, primarily because of the very high attenuation (1000 to 50000 dB/m) factor to 10 to 30 kHz. Such a high attenuation would restrict the action volume to such a low value as to make the method impractical. Further investigations are recommended to identify the cause of this effect and determine if this same effect will be seen in real 101-SY waste.

  3. Consequence of climate mitigation on the risk of hunger.

    PubMed

    Hasegawa, Tomoko; Fujimori, Shinichiro; Shin, Yonghee; Tanaka, Akemi; Takahashi, Kiyoshi; Masui, Toshihiko

    2015-06-16

    Climate change and mitigation measures have three major impacts on food consumption and the risk of hunger: (1) changes in crop yields caused by climate change; (2) competition for land between food crops and energy crops driven by the use of bioenergy; and (3) costs associated with mitigation measures taken to meet an emissions reduction target that keeps the global average temperature increase to 2 °C. In this study, we combined a global computable general equilibrium model and a crop model (M-GAEZ), and we quantified the three impacts on risk of hunger through 2050 based on the uncertainty range associated with 12 climate models and one economic and demographic scenario. The strong mitigation measures aimed at attaining the 2 °C target reduce the negative effects of climate change on yields but have large negative impacts on the risk of hunger due to mitigation costs in the low-income countries. We also found that in a strongly carbon-constrained world, the change in food consumption resulting from mitigation measures depends more strongly on the change in incomes than the change in food prices. PMID:25982947

  4. Turbulence degradation and mitigation performance for handheld weapon ID

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Aghera, Sameer; Thompson, Roger; Miller, Jason

    2012-06-01

    Atmospheric turbulence can severely limit the range performance of state-of-the-art large aperture imaging sensor systems, specifically those intended for long range ground to ground target identification. Simple and cost-effective mitigation solutions which operate in real-time are desired. Software-based post-processing techniques are attractive as they lend themselves to easy implementation and integration into the back-end of existing sensor systems. Recently, various post-processing algorithms to mitigate turbulence have been developed and implemented in real-time hardware. To determine their utility in Army-relevant tactical scenarios, an assessment of the impact of the post processing on observer performance is required. In this paper, we test a set of representative turbulence mitigation algorithms on field collected data of human targets carrying various handheld objects in varying turbulence conditions. We use a controlled human perception test to assess handheld weapon identification performance before and after turbulence mitigation post-processing. In addition, novel image analysis tools are implemented to estimate turbulence strength from the scene. Results of this assessment will lead to recommendations on cost-effective turbulence mitigation strategies suitable for future sensor systems.

  5. Complex Spatiotemporal Responses of Global Terrestrial Primary Production to Climate Change and Increasing Atmospheric CO2 in the 21st Century

    PubMed Central

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R. S.; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8–56.4) PgC yr−1 as a result of multiple factors during 2000–2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010–2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5°C (until the 2030s) and then level-off or decline after it increases by more than 1.5°C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2°C may not be sufficient and the need to potentially aim for staying below 1.5°C. The CO2 fertilization effect would result in a 12%–13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and

  6. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century.

    PubMed

    Pan, Shufen; Tian, Hanqin; Dangal, Shree R S; Zhang, Chi; Yang, Jia; Tao, Bo; Ouyang, Zhiyun; Wang, Xiaoke; Lu, Chaoqun; Ren, Wei; Banger, Kamaljit; Yang, Qichun; Zhang, Bowen; Li, Xia

    2014-01-01

    Quantitative information on the response of global terrestrial net primary production (NPP) to climate change and increasing atmospheric CO2 is essential for climate change adaptation and mitigation in the 21st century. Using a process-based ecosystem model (the Dynamic Land Ecosystem Model, DLEM), we quantified the magnitude and spatiotemporal variations of contemporary (2000s) global NPP, and projected its potential responses to climate and CO2 changes in the 21st century under the Special Report on Emission Scenarios (SRES) A2 and B1 of Intergovernmental Panel on Climate Change (IPCC). We estimated a global terrestrial NPP of 54.6 (52.8-56.4) PgC yr(-1) as a result of multiple factors during 2000-2009. Climate change would either reduce global NPP (4.6%) under the A2 scenario or slightly enhance NPP (2.2%) under the B1 scenario during 2010-2099. In response to climate change, global NPP would first increase until surface air temperature increases by 1.5 °C (until the 2030s) and then level-off or decline after it increases by more than 1.5 °C (after the 2030s). This result supports the Copenhagen Accord Acknowledgement, which states that staying below 2 °C may not be sufficient and the need to potentially aim for staying below 1.5 °C. The CO2 fertilization effect would result in a 12%-13.9% increase in global NPP during the 21st century. The relative CO2 fertilization effect, i.e. change in NPP on per CO2 (ppm) bases, is projected to first increase quickly then level off in the 2070s and even decline by the end of the 2080s, possibly due to CO2 saturation and nutrient limitation. Terrestrial NPP responses to climate change and elevated atmospheric CO2 largely varied among biomes, with the largest increases in the tundra and boreal needleleaf deciduous forest. Compared to the low emission scenario (B1), the high emission scenario (A2) would lead to larger spatiotemporal variations in NPP, and more dramatic and counteracting impacts from climate and increasing

  7. Environmental mitigation at hydroelectric projects

    SciTech Connect

    Sale, M.J.; Cada, G.F.; Chang, L.H.; Christensen, S.W.; Railsback, S.F. ); Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. )

    1991-12-01

    Current environmental mitigation practices at nonfederal hydropower projects were analyzed. Information about instream flows, dissolved oxygen (DO) mitigation, and upstream and downstream fish passage facilities was obtained from project operators, regulatory and resource agencies, and literature reviews. Information provided by the operators includes the specific mitigation requirements imposed on each project, specific objectives or purposes of mitigation, mitigation measures chosen to meet the requirement, the kinds of post-project monitoring conducted, and the costs of mitigation. Costs are examined for each of the four mitigation methods, segmented by capital, study, operations and maintenance, and annual reporting costs. Major findings of the study include: the dominant role of the Instream Flow Incremental Methodology, in conjunction with professional judgment by agency biologists, to set instream flow requirements; reliance on spill flows for DO enhancement; and the widespread use of angled bar racks for downstream fish protection. All of these measures can have high costs and, with few exceptions, there are few data available from nonfederal hydropower projects with which to judge their effectiveness. 100 refs.

  8. Albeni Falls Wildlife Mitigation Project : Annual Report of Mitigation Activities.

    SciTech Connect

    Entz, Ray D.

    2001-04-01

    The Albeni Falls Interagency Work Group was actively involved in implementing wildlife mitigation activities in 2000. The Work Group met each quarter to discuss management and budget issues affecting Albeni Falls wildlife mitigation. Members of the Work Group protected a total of 1,242 acres of wetland habitat in 2000. The total amount of wildlife habitat protected for Albeni Falls mitigation is approximately 4,190 acres (4,630 Habitat Units). Approximately 16% of the total wildlife habitat lost has been mitigated. Land management activities were limited in 2000 as protection opportunities took up most staff time. Administrative activities increased in 2000 as funding was more evenly distributed among Work Group members. As a result, implementation is expected to continue to increase in the coming year. Land management and monitoring and evaluation activities will increase in 2001 as site-specific management plans are completed and implemented.

  9. Scenario Planning in Higher Education.

    ERIC Educational Resources Information Center

    Rieley, James

    Scenario planning can help institutions change the mental models used in planning to achieve a focus on the long-term future, rather than on the immediate future. While institutional survival depends upon the ability to detect and adapt to critical changes in the environment, all institutions face a wide range of potential future scenarios. By…

  10. Platform Support for Pedagogical Scenarios

    ERIC Educational Resources Information Center

    Peter, Yvan; Vantroys, Thomas

    2005-01-01

    This article deals with providing support for the execution of pedagogical scenarios in Learning Management Systems. It takes an engineering point of view to identifies actors, design and use processes. Next it defines the necessary capabilities of a platform so that actors can manage or use pedagogical scenarios. The second part of the article is…

  11. Futures Scenario in Science Learning

    ERIC Educational Resources Information Center

    Lloyd, David; Vanderhout, Annastasia; Lloyd, Lisa; Atkins, David

    2010-01-01

    In this article we describe our experiences in developing futures scenarios in two science contexts, space science and atmospheric science/climate change. Futures scenario writing can develop scientific literacy by connecting science learning to students' lifeworlds--past, present and future. They also provide a synthesising mechanism for…

  12. Student Rights and Responsibilities Scenarios.

    ERIC Educational Resources Information Center

    Peterson, Ludwig A.; And Others

    To stimulate interest in student's rights and responsibilities, this resource contains incomplete scenarios dealing with the consequences of knowing and not knowing the law, as it is applied to modern practical situations. The scenarios can be used in high school courses such as government, social problems, history, psychology, and business law.…

  13. Lunar Dust Mitigation Screens

    NASA Astrophysics Data System (ADS)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  14. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    NASA Astrophysics Data System (ADS)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed

  15. Projection of snow cover changes over China under RCP scenarios

    NASA Astrophysics Data System (ADS)

    Ji, Z.; Kang, S.

    2012-12-01

    Snow cover changes in the middle (2040-2059) and end (2080-2099) of the 21st century over China were investigated with a regional climate model, nested within the global model BCC_CSM1.1. The simulations had been conducted for the period of 1950 to 2099 under the RCP4.5 and RCP8.5 scenarios. Results show that the model perform well in representing contemporary (1986-2005) spatial distributions of snow cover days (SCDs) and snow water equivalent (SWE). However, some differences between observation and simulation were detected. Under the RCP4.5 scenarios, SCDs are shortened by 10~20 and 20~40 days during the middle and end of the 21st century, respectively. Whereas simulated SWE is lowered by 0.1~10 mm in most areas over the Tibetan Plateau (TP). On the other hand, the spatial distributions of SWE are reversed between the middle and end terms in the northeast China. Furthermore, compared with the changes of RCP4.5 scenario, SCDs are reduced by 5~20 days in the middle period under RCP8.5 scenario with even larger decreasing amplitude in the end term. SWE was lowered by 0.1~2.5 mm in most areas except the northeast of China in middle term under RCP8.5 scenario. The great center of SCDs and SWE changes are always located over TP. The regional mean of SCDs and SWE for the TP and for China display a declining trend from 2006 to 2099 with more pronounced changes in the TP than in China as a whole. Under the RCP8.5 scenario, the changes are enhanced compared to those under RCP4.5.

  16. Projection of snow cover changes over China under RCP scenarios

    NASA Astrophysics Data System (ADS)

    Ji, Zhenming; Kang, Shichang

    2013-08-01

    Snow cover changes in the middle (2040-2059) and end (2080-2099) of the twenty-first century over China were investigated with a regional climate model, nested within the global model BCC_CSM1.1. The simulations had been conducted for the period of 1950-2099 under the RCP4.5 and RCP8.5 scenarios. Results show that the model perform well in representing contemporary (1986-2005) spatial distributions of snow cover days (SCDs) and snow water equivalent (SWE). However, some differences between observation and simulation were detected. Under the RCP4.5 scenarios, SCDs are shortened by 10-20 and 20-40 days during the middle and end of the twenty-first century, respectively. Whereas simulated SWE is lowered by 0.1-10 mm in most areas over the Tibetan Plateau (TP). On the other hand, the spatial distributions of SWE are reversed between the middle and end terms in the northeast China. Furthermore, compared with the changes of RCP4.5 scenario, SCDs are reduced by 5-20 days in the middle period under RCP8.5 scenario with even larger decreasing amplitude in the end term. SWE was lowered by 0.1-2.5 mm in most areas except the northeast of China in middle term under RCP8.5 scenario. The great center of SCDs and SWE changes are always located over TP. The regional mean of SCDs and SWE for the TP and for China display a declining trend from 2006 to 2099 with more pronounced changes in the TP than in China as a whole. Under the RCP8.5 scenario, the changes are enhanced compared to those under RCP4.5.

  17. Science for decision making: Transmitting hazard science using catastrophic scenarios

    NASA Astrophysics Data System (ADS)

    Wein, A.

    2010-12-01

    The ShakeOut and ARkStorm scenarios are scientifically-based, multi-disciplinary efforts to describe the damages and consequences of large, but plausible, natural disasters for use in emergency management and other planning. The ShakeOut earthquake scenario, completed in 2008, posits the occurrence of a major earthquake on the southern San Andreas Fault. It was used by more than 5,000 emergency personnel in a California statewide exercise, and it underpins the Federal Emergency Management Agency’s (FEMA) Catastrophic Plan for Southern California. The ARkStorm winter storm scenario, to be completed in 2010, posits the occurrence of a statewide disaster like the storm that occurred during 1861-1862. The ARkStorm scenario will culminate with two planning summits comprised of federal and state agencies, because such an event would exceed local response and recovery capabilities. This talk will address the following questions that are critical to transmitting science for decision making with examples and observations from the two scenarios: 1) Who are the end users of the scenarios, what types of decisions can scenarios inform, and how are stakeholders engaged? 2) What forms of information and processes work best to communicate and apply the hazard science? 3) What are the challenges of using science in decision making? 4) What future directions shall we pursue? From my perspective as coordinator of economic consequences analyses for the two scenarios, I will share insights to these questions. Framing stakeholder decisions in terms of scale (e.g., household to State) and disaster phase (e.g., emergency response, recovery, and mitigation) allows us to align methods of stakeholder engagement with stakeholder decision making. For these regional-scale scenarios, the methods of engagement included stakeholder participation in project vision, scenario construction workshops, presentations, conferences, and emergency response and recovery exercises. Champions (self

  18. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe.

    PubMed

    Liu-Helmersson, Jing; Quam, Mikkel; Wilder-Smith, Annelies; Stenlund, Hans; Ebi, Kristie; Massad, Eduardo; Rocklöv, Joacim

    2016-05-01

    Warming temperatures may increase the geographic spread of vector-borne diseases into temperate areas. Although a tropical mosquito-borne viral disease, a dengue outbreak occurred in Madeira, Portugal, in 2012; the first in Europe since 1920s. This outbreak emphasizes the potential for dengue re-emergence in Europe given changing climates. We present estimates of dengue epidemic potential using vectorial capacity (VC) based on historic and projected temperature (1901-2099). VC indicates the vectors' ability to spread disease among humans. We calculated temperature-dependent VC for Europe, highlighting 10 European cities and three non-European reference cities. Compared with the tropics, Europe shows pronounced seasonality and geographical heterogeneity. Although low, VC during summer is currently sufficient for dengue outbreaks in Southern Europe to commence-if sufficient vector populations (either Ae. aegypti and Ae. albopictus) were active and virus were introduced. Under various climate change scenarios, the seasonal peak and time window for dengue epidemic potential increases during the 21st century. Our study maps dengue epidemic potential in Europe and identifies seasonal time windows when major cities are most conducive for dengue transmission from 1901 to 2099. Our findings illustrate, that besides vector control, mitigating greenhouse gas emissions crucially reduces the future epidemic potential of dengue in Europe. PMID:27322480

  19. Robust dynamic mitigation of instabilities

    SciTech Connect

    Kawata, S.; Karino, T.

    2015-04-15

    A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [S. Kawata, Phys. Plasmas 19, 024503 (2012)]. In the present paper, the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude, and the wavelength of the wobbling perturbation applied. Generally, instability would emerge from the perturbation of the physical quantity. Normally, the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can be controlled by a superposition of perturbations imposed actively: If the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled, and the instability growth is mitigated by the superposition of the growing perturbations.

  20. The Human Capital Century.

    ERIC Educational Resources Information Center

    Goldin, Claudia

    2003-01-01

    Reviews public education in the United States during the 20th century through an exploration of the "virtues" of mass education, such as public funding, a practical curriculum, and secular control of schools. Argues that many of these virtues were situational and may now be considered vices. (Contains three graphs.) (WFA)

  1. The Chemical Century

    ERIC Educational Resources Information Center

    Lapp, Ralph E.

    1973-01-01

    Discusses present and future problems of producing clean energy. Graphically presents the changing patterns of fuel use in the United States over the past century, and predicts population growth and energy sources and consumption up to the year 2100 for the United States and the world. (JR)

  2. Suidas (tenth century)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Greek encyclopedist. In the course of reading Suidas's Lexicon, EDMOND HALLEY mistakenly connected the naming of the Saros cycle of 223 synodic months by the tenth century Greek lexicographer Suidas with the eclipse cycle of the same period. The solar eclipse cycle is thus now known by the name that Suidas used for another phenomenon. Halley's mistake accounts for the historical confusion that th...

  3. The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China

    SciTech Connect

    Zhou, Yuyu; Eom, Jiyong; Clarke, Leon E.

    2013-08-01

    A changing climate will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate on heating and cooling demands must take into account not only the manner in which the building sector might evolve over time - including, for example, movements from rural to urban environments in developing countries - but also important uncertainty about the nature of climate change itself and the growth and movements of populations over time. In this study, we explored the uncertainty in climate change impacts on heating and cooling by constructing estimates of heating and cooling degree days for both a reference (no-policy) scenario and a climate mitigation scenario built from 0.5 degree latitude by 0.5 degree longitude resolution output from three different Global Climate Models (GCMs) and three gridded scenarios of population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China were then explored by using the heating and cooling degree days results as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). Across the climate models and population distribution scenarios, the results indicate that unabated climate change would cause total final energy consumption to decrease modestly in both U.S. and China buildings by the end of the century, as decreased heating consumption is more than balanced by increased cooling using primarily electricity. However, the results also indicate that when indirect emissions from the power sector are also taken into account, climate change may have negligible effect on building sector CO2 emissions in the two countries. The variation in results due to variation of population distribution is noticeably smaller than variation due to the use of different

  4. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes

    PubMed Central

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-01-01

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for. PMID:27067389

  5. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes.

    PubMed

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-01-01

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for. PMID:27067389

  6. Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes

    NASA Astrophysics Data System (ADS)

    Sandri, Laura; Costa, Antonio; Selva, Jacopo; Tonini, Roberto; Macedonio, Giovanni; Folch, Arnau; Sulpizio, Roberto

    2016-04-01

    Assessment of volcanic hazards is necessary for risk mitigation. Typically, hazard assessment is based on one or a few, subjectively chosen representative eruptive scenarios, which use a specific combination of eruptive sizes and intensities to represent a particular size class of eruption. While such eruptive scenarios use a range of representative members to capture a range of eruptive sizes and intensities in order to reflect a wider size class, a scenario approach neglects to account for the intrinsic variability of volcanic eruptions, and implicitly assumes that inter-class size variability (i.e. size difference between different eruptive size classes) dominates over intra-class size variability (i.e. size difference within an eruptive size class), the latter of which is treated as negligible. So far, no quantitative study has been undertaken to verify such an assumption. Here, we adopt a novel Probabilistic Volcanic Hazard Analysis (PVHA) strategy, which accounts for intrinsic eruptive variabilities, to quantify the tephra fallout hazard in the Campania area. We compare the results of the new probabilistic approach with the classical scenario approach. The results allow for determining whether a simplified scenario approach can be considered valid, and for quantifying the bias which arises when full variability is not accounted for.

  7. Projections of 21st Century African Climate: Implications for African Savanna Fire Dynamics, Human Health and Food Security

    NASA Astrophysics Data System (ADS)

    Adegoke, J. O.

    2015-12-01

    Fire is a key agent of change in the African savannas, which are shaped through the complex interactions between trees, C4 grasses, rainfall, temperature, CO2 and fire. These fires and their emitted smoke can have numerous direct and indirect effects on the environment, water resources, air quality, and climate. For instance, veld fires in southern Africa cause large financial losses to agriculture, livestock production and forestry on an annual basis. This study contributes to our understanding of the implications of projected surface temperature evolution in Africa for fire risk, human health and agriculture over the coming decades. We use an ensemble of high-resolution regional climate model simulations of African climate for the 21st century. Regional dowscalings and recent global circulation model projections obtained for Africa indicate that African temperatures are likely to rise at 1.5 times the global rate of temperature increase in the tropics, and at almost twice the global rate of increase in the subtropics. Warming is projected to occur during the 21st century, with increases of 4-6 °C over the subtropics and 3-5 °C over the tropics plausible by the end of the century relative to present-day climate under the A2 (low mitigation) scenario. We explore the significance of the projected warming by documenting increases in projected high fire danger days and heat-wave days. General drying is projected across the continent, even for areas (e.g. tropical Africa) where an increase in rainfall is plausible. This is due to the drastic increases in temperature that are projected, which leads to drier soils (through enhanced evaporation) despite the rainfall increases. This will likely impact negatively on crop yield, particularly on the maize crop that is of crucial importance in terms of African food security.

  8. Scenario forecasting changes in the water balance components of the Olenek and Iindigirka river basins due to possible climate change

    NASA Astrophysics Data System (ADS)

    Gusev, Ye. M.; Nasonova, O. N.; Dzhogan, L. Ya.; Kovalev, E. E.

    2015-06-01

    Scenario projections of the dynamics of meteorological characteristics for the basins of the Olenek and Indigirka rivers (the Republic of Sakha) in the XXI century have been obtained for four IPCC global climate change scenarios of SRES family which correspond to specified scenarios of economic, technological, political, and demographic development of human civilization. The projections have been used to calculate scenarios of possible changes in water balance components for the basins under consideration up to the year of 2063. The calculation procedure involves a physically-based model for heat and mass exchange between the land surface and the atmosphere SWAP and climate scenario generator MAGICC/SCENGEN.

  9. Mitigating Climate Change Through Green Buildings and Smart Growth

    SciTech Connect

    Brown, Marilyn A; Southworth, Frank

    2008-01-01

    Energy-efficient buildings are seen by climate change experts as one of the least-cost approaches to mitigating greenhouse gas emissions. This paper summarizes a study done for the Pew Center on Global Climate Change that takes a broader look at the potential role of a climate-friendly built environment including not only considerations of how buildings are constructed and used, but also how they interface with the electric grid and where they are located in terms of urban densities and access to employment and services. In addition to summarizing mechanisms of change (barriers and drivers), the paper reviews a set of policies that could bring carbon emissions in the building sector in 2025 back almost to 2004 levels. By mid-century, the combination of green buildings and smart growth could deliver the deeper reductions that many believe are needed to mitigate climate change.

  10. Mitigating Climate Change Through Green Buildings and Smart Growth

    SciTech Connect

    Brown, Marilyn A; Southworth, Frank

    2006-01-01

    Energy-efficient buildings are seen by climate change experts as one of the least-cost approaches to mitigating greenhouse gas emissions. This paper summarizes a study done for the Pew Center on Global Climate Change that takes a broader look at the potential role of a climate-friendly built environment including not only considerations of how buildings are constructed and used, but also how they interface with the electric grid and where they are located in terms of urban densities and access to employment and services. In addition to summarizing mechanisms of change (barriers and drivers), the paper reviews a set of policies that could bring carbon emissions in the building sector in 2025 back almost to 2004 levels. By mid-century, the combination of green buildings and smart growth could deliver the deeper reductions that many believe are needed to mitigate climate change.

  11. Drought assessment and trends analysis from 20th century to 21st century over China

    NASA Astrophysics Data System (ADS)

    Yang, X. L.; Ren, L. L.; Tong, R.; Liu, Y.; Cheng, X. R.; Jiang, S. H.; Yuan, F.

    2015-06-01

    Droughts are becoming the most expensive natural disasters in China and have exerted serious impacts on local economic development and ecological environment. The fifth phase of the Coupled Model Intercomparison Project (CMIP5) provides a unique opportunity to assess scientific understanding of climate variability and change over a range of historical and future period. In this study, fine-resolution multimodel climate projections over China are developed based on 7 CMIP5 climate models under RCP8.5 emissions scenarios by means of Bilinear Interpolation and Bias Correction. The results of downscaled CMIP5 models are evaluated over China by comparing the model outputs with the England Reanalysis CRU3.1 from 1951 to 2000. Accordingly, the results from the output of downscaled models are used to calculate the Standardized Precipitation Index (SPI). Time series of SPI has been used to identify drought from 20th century to 21st century over China. The results show that, most areas of China are projected to become wetter as a consequence of increasing precipitation under RCP8.5 scenarios. Detailed examination shows that the SPI show a slightly increasing trend in the future period for the most parts of China, but drought in Southwest region of China will become the norm in the future RCP8.5 scenarios.

  12. Earth system commitments due to delayed mitigation

    NASA Astrophysics Data System (ADS)

    Pfister, Patrik L.; Stocker, Thomas F.

    2016-01-01

    As long as global CO2 emissions continue to increase annually, long-term committed Earth system changes grow much faster than current observations. A novel metric linking this future growth to policy decisions today is the mitigation delay sensitivity (MDS), but MDS estimates for Earth system variables other than peak temperature (ΔT max) are missing. Using an Earth System Model of Intermediate Complexity, we show that the current emission increase rate causes a ΔT max increase roughly 3-7.5 times as fast as observed warming, and a millenial steric sea level rise (SSLR) 7-25 times as fast as observed SSLR, depending on the achievable rate of emission reductions after the peak of emissions. These ranges are only slightly affected by the uncertainty range in equilibrium climate sensitivity, which is included in the above values. The extent of ocean acidification at the end of the century is also strongly dependent on the starting time and rate of emission reductions. The preservable surface ocean area with sufficient aragonite supersaturation for coral reef growth is diminished globally at an MDS of roughly 25%-80% per decade. A near-complete loss of this area becomes unavoidable if mitigation is delayed for a few years to decades. Also with respect to aragonite, 12%-18% of the Southern Ocean surface become undersaturated per decade, if emission reductions are delayed beyond 2015-2040. We conclude that the consequences of delaying global emission reductions are much better captured if the MDS of relevant Earth system variables is communicated in addition to current trends and total projected future changes.

  13. Alternative scenarios utilizing nonterrestrial resources

    NASA Technical Reports Server (NTRS)

    Eldred, Charles H.; Roberts, Barney B.

    1992-01-01

    A collection of alternative scenarios that are enabled or substantially enhanced by the utilization of nonterrestrial resources is provided. We take a generalized approach to scenario building so that our report will have value in the context of whatever goals are eventually chosen. Some of the topics covered include the following: lunar materials processing; asteroid mining; lunar resources; construction of a large solar power station; solar dynamic power for the space station; reduced gravity; mission characteristics and options; and tourism.

  14. Security message exchange interoperability scenarios

    SciTech Connect

    Tarman, Thomas

    1998-07-01

    This contribution describes three interoperability scenarios for the ATM Security Message Exchange (SME) protocol. These scenarios include network-wide signaling support for the Security Services Information Element, partial signaling support wherethe SSIE is only supported in private or workgroup ATM networks, and the case where the SSIE is nonsupported by any network elements (exceptthosethat implement security services). Explanatory text is proposed for inclusion infection 2.3 of the ATM Security Specification, Version 1.0.

  15. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... wetland mitigation sites and other mitigation banks is governed by 23 CFR part 777. (b) Environmental... 23 Highways 1 2013-04-01 2013-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a)...

  16. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... wetland mitigation sites and other mitigation banks is governed by 23 CFR part 777. (b) Environmental... 23 Highways 1 2012-04-01 2012-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a)...

  17. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... wetland mitigation sites and other mitigation banks is governed by 23 CFR part 777. (b) Environmental... 23 Highways 1 2010-04-01 2010-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a)...

  18. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... wetland mitigation sites and other mitigation banks is governed by 23 CFR part 777. (b) Environmental... 23 Highways 1 2011-04-01 2011-04-01 false Environmental mitigation. 710.513 Section 710.513...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a)...

  19. Impact of uncertainty in economic projections for stabilization scenarios

    NASA Astrophysics Data System (ADS)

    Krakauer, N. Y.

    2008-12-01

    Scenarios for the stabilization of greenhouse gas emissions and/or atmospheric concentrations typically take economic and technological growth, and thus the 'background', no-controls emissions trajectory, as essentially given, most commonly based on one or more of the IPCC SRES scenarios. One limitation of this set of scenarios is that they postulate a rather small range of future economic growth rates, based on extrapolation from recent experience as well as assumed tendencies such as international 'convergence'. Because there is no validated theoretical or empirical method to reliably predict long-term (decade to century) changes in the size and composition of the world economy, the uncertainty in economic path is large and likely understated by any measure derived from the ensemble of SRES scenarios. Considering a wider range of economic trajectories complicates stabilization scenarios. In particular, slow economic growth would imply that future generations will be relatively less able to invest in emissions controls or adapt to detrimental impacts of climate change. I show with a simple integrated assessment model that taking into consideration the possibility of economic slowdown generally heightens the urgency of reducing greenhouse gas emissions now, rather than in future decades, for stabilizing radiative forcing or welfare damage at a given target.

  20. Sustainable biochar to mitigate global climate change

    SciTech Connect

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. A.; Lehmann, Johannes C.; Joseph, Stephen

    2010-08-10

    Production of biochar (the carbon-rich solid formed by pyrolysis of biomass), in combination with its storage in soils, has been suggested as a means to abate anthropogenic climate change, while simultaneously increasing crop yields. The climate mitigation potential stems primarily from the highly recalcitrant nature of biochar, which slows the rate at which photosynthetically fixed carbon is returned to the atmosphere. Significant uncertainties exist, however, regarding the impact, capacity, and sustainability of biochar for carbon capture and storage when scaled to the global level. Previous estimates, based on simple assumptions, vary widely. Here we show that, subject to strict environmental and modest economic constraints on biomass procurement and biochar production methods, annual net emissions of CO2, CH4 and N2O could be reduced by 1.1 - 1.9 Pg CO2-C equivalent (CO2-Ce)/yr (7 - 13% of current anthropogenic CO2-Ce emissions; 1Pg = 1 Gt). Over one century, cumulative net emissions of these gases could be reduced by 72-140 Pg CO2-Ce. The lower end of this range uses currently untapped residues and wastes; the upper end requires substantial alteration to global biomass management, but would not endanger food security, habitat or soil conservation. Half the avoided emissions are due to the net C sequestered as biochar, one-quarter to replacement of fossil-fuel energy by pyrolysis energy, and one-quarter to avoided emissions of CH4 and N2O. The total mitigation potential is 18-30% greater than if the same biomass were combusted to produce energy. Despite limited data for the decomposition rate of biochar in soils and the effects of biochar additions on soil greenhouse-gas fluxes, sensitivity within realistic ranges of these parameters is small, resulting in an uncertainty of ±8% (±1 s.d.) in our estimates. Achieving these mitigation results requires, however, that biochar production be performed using only low-emissions technologies and feedstocks obtained

  1. Industry initiatives in impact mitigation

    SciTech Connect

    Metz, W.C.

    1982-08-01

    The author concludes that mitigation is the focus of conflicting opinions regarding responsibility, strategy, and effort. There are no hard, fast, or tried and true rules for company involvement in mitigation efforts. Each mitigation effort must be tailored and negotiated to match the unique characteristics of individual projects and circumstances of specific locales. Companies must assume financial responsibility for the temporary impacts and area needs created by their projects. They must also offer financial and technical assistance to impact areas, not just the host political jurisdiction, when local, state, federal, and special fund sources of revenue or technical assistance are not available or insufficient. But, local, state, and federal governments must also recognize their responsibilities and make adjustments in tax jurisdiction boundaries and disbursement formulas so that impacted areas are properly defined and receive an adequate share of lease, royalty, severance tax, permit fee, special use and service charges, and sales tax payments. Laws need to allow innovative uses of tax pre-payments, housing mortgage bonds, changeable debt and bounding limits, industrial loans with delayed prepayment, and revised revenue assistance formulas. Enabling legislation is required in most states to allow impact areas to negotiate the mitigation efforts. A review of 7 types of mitigation effort is presented: transportation; housing; public utilities; health, public safety and recreation; miscellaneous; and company-community interaction. (PBS)

  2. Identifying 21st Century Capabilities

    ERIC Educational Resources Information Center

    Stevens, Robert

    2012-01-01

    What are the capabilities necessary to meet 21st century challenges? Much of the literature on 21st century skills focuses on skills necessary to meet those challenges associated with future work in a globalised world. The result is a limited characterisation of those capabilities necessary to address 21st century social, health and particularly…

  3. An Exploration of Scenarios to Support Sustainable Land Management Using Integrated Environmental Socio-economic Models

    NASA Astrophysics Data System (ADS)

    Fleskens, L.; Nainggolan, D.; Stringer, L. C.

    2014-11-01

    Scenario analysis constitutes a valuable deployment method for scientific models to inform environmental decision-making, particularly for evaluating land degradation mitigation options, which are rarely based on formal analysis. In this paper we demonstrate such an assessment using the PESERA-DESMICE modeling framework with various scenarios for 13 global land degradation hotspots. Starting with an initial assessment representing land degradation and productivity under current conditions, options to combat instances of land degradation are explored by determining: (1) Which technologies are most biophysically appropriate and most financially viable in which locations; we term these the "technology scenarios"; (2) how policy instruments such as subsidies influence upfront investment requirements and financial viability and how they lead to reduced levels of land degradation; we term these the "policy scenarios"; and (3) how technology adoption affects development issues such as food production and livelihoods; we term these the "global scenarios". Technology scenarios help choose the best technology for a given area in biophysical and financial terms, thereby outlining where policy support may be needed to promote adoption; policy scenarios assess whether a policy alternative leads to a greater extent of technology adoption; while global scenarios demonstrate how implementing technologies may serve wider sustainable development goals. Scenarios are applied to assess spatial variation within study sites as well as to compare across different sites. Our results show significant scope to combat land degradation and raise agricultural productivity at moderate cost. We conclude that scenario assessment can provide informative input to multi-level land management decision-making processes.

  4. Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask.

    SciTech Connect

    Wente, William Baker

    2005-06-01

    The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

  5. Climate change and coastal vulnerability assessment: Scenarios for integrated assessment

    USGS Publications Warehouse

    Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J.

    2008-01-01

    Coastal vulnerability assessments still focus mainly on sea-level rise, with less attention paid to other dimensions of climate change. The influence of non-climatic environmental change or socio-economic change is even less considered, and is often completely ignored. Given that the profound coastal changes of the twentieth century are likely to continue through the twenty-first century, this is a major omission, which may overstate the importance of climate change, and may also miss significant interactions of climate change with other non-climate drivers. To better support climate and coastal management policy development, more integrated assessments of climatic change in coastal areas are required, including the significant non-climatic changes. This paper explores the development of relevant climate and non-climate drivers, with an emphasis on the non-climate drivers. While these issues are applicable within any scenario framework, our ideas are illustrated using the widely used SRES scenarios, with both impacts and adaptation being considered. Importantly, scenario development is a process, and the assumptions that are made about future conditions concerning the coast need to be explicit, transparent and open to scientific debate concerning their realism and likelihood. These issues are generic across other sectors. ?? Integrated Research System for Sustainability Science and Springer 2008.

  6. Coping with Commitment: Projected Thermal Stress on Coral Reefs under Different Future Scenarios

    PubMed Central

    Donner, Simon D.

    2009-01-01

    Background Periods of anomalously warm ocean temperatures can lead to mass coral bleaching. Past studies have concluded that anthropogenic climate change may rapidly increase the frequency of these thermal stress events, leading to declines in coral cover, shifts in the composition of corals and other reef-dwelling organisms, and stress on the human populations who depend on coral reef ecosystems for food, income and shoreline protection. The ability of greenhouse gas mitigation to alter the near-term forecast for coral reefs is limited by the time lag between greenhouse gas emissions and the physical climate response. Methodology/Principal Findings This study uses observed sea surface temperatures and the results of global climate model forced with five different future emissions scenarios to evaluate the “committed warming” for coral reefs worldwide. The results show that the physical warming commitment from current accumulation of greenhouse gases in the atmosphere could cause over half of the world's coral reefs to experience harmfully frequent (p≥0.2 year−1) thermal stress by 2080. An additional “societal” warming commitment, caused by the time required to shift from a business-as-usual emissions trajectory to a 550 ppm CO2 stabilization trajectory, may cause over 80% of the world's coral reefs to experience harmfully frequent events by 2030. Thermal adaptation of 1.5°C would delay the thermal stress forecast by 50–80 years. Conclusions/Significance The results suggest that adaptation – via biological mechanisms, coral community shifts and/or management interventions – could provide time to change the trajectory of greenhouse gas emissions and possibly avoid the recurrence of harmfully frequent events at the majority (97%) of the world's coral reefs this century. Without any thermal adaptation, atmospheric CO2 concentrations may need to be stabilized below current levels to avoid the degradation of coral reef ecosystems from frequent thermal

  7. The SAFRR Tsunami Scenario: from Publication to Implementation

    NASA Astrophysics Data System (ADS)

    Ross, S.; Jones, L.; Miller, K.; Wilson, R. I.; Burkett, E. R.; Bwarie, J.; Campbell, N. M.; Johnson, L. A.; Long, K.; Lynett, P. J.; Perry, S. C.; Plumlee, G. S.; Porter, K.; Real, C. R.; Ritchie, L. A.; Wein, A. M.; Whitmore, P.; Wood, N. J.

    2014-12-01

    The SAFRR Tsunami Scenario modeled a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. We presented the likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the scenario tsunami. The intended users were those responsible for making mitigation decisions before and those who need to make rapid decisions during future tsunamis. The Tsunami Scenario process is being evaluated by the University of Colorado's Natural Hazards Center; this is the first time that a USGS scenario of this scale has been formally and systematically evaluated by an external party. The SAFRR Tsunami Scenario was publicly introduced in September, 2013, through a series of regional workshops in California that brought together emergency managers, maritime authorities, first responders, elected officials and staffers, the business sector, state agencies, local media, scientific partners, and special districts such as utilities (http://pubs.usgs.gov/of/2013/1170/). In March, 2014, NOAA's annual tsunami warning exercise, PACIFEX, was based on the SAFRR Tsunami Scenario. Many groups conducted exercises associated with PACIFEX including the State of Washington and several counties in California. San Francisco had the most comprehensive exercise with a 3-day functional exercise based on the SAFRR Tsunami Scenario. In addition, the National Institutes of Health ran an exercise at the Ports of Los Angeles and Long Beach in April, 2014, building on the Tsunami Scenario, focusing on the recovery phase and adding a refinery fire. The benefits and lessons learned include: 1) stimulating dialogue among practitioners to solve problems; 2) seeing groups add extra components to their exercises that best address their

  8. The role of renewable energy in climate stabilization: results from the EMF 27 scenarios

    SciTech Connect

    Luderer, Gunnar; Krey, Volker; Calvin, Katherine V.; Merrick, James; Mima, Silvana; Pietzcker, Robert; Van Vliet, Jasper; Wada, Kenichi

    2013-10-15

    This paper uses the EMF27 scenarios to explore the role of renewable energy (RE) in climate change mitigation. Currently RE supplies almost 20 % of global electricity demand. Almost all EMF27 mitigation scenarios show a strong increase in renewable power production, with a substantial ramp-up of wind and solar power deployment. In many scenarios, renewables are the most important long-term mitigation option for power supply. Wind energy is competitive even without climate policy, whereas the prospects of solar photovoltaics (PV) are highly contingent on the ambitiousness of climate policy. Bioenergy is an important and versatile energy carrier; however—with the exception of low temperature heat—there is less scope for renewables other than biomass for non-electric energy supply. Despite the important role of wind and solar power in climate change mitigation scenarios with full technology availability, limiting their deployment has a relatively small effect on mitigation costs, if nuclear and carbon capture and storage (CCS)—which can serve as substitutes in low-carbon power supply—are available. Limited bioenergy availability in combination with limited wind and solar power by contrast, results in a more substantial increase in mitigation costs. While a number of robust insights emerge, the results on renewable energy deployment levels vary considerably across the models. An in-depth analysis of a subset of EMF27 reveals substantial differences in modeling approaches and parameter assumptions. To a certain degree, differences in model results can be attributed to different assumptions about technology costs, resource potentials and systems integration.

  9. A course in disaster mitigation.

    PubMed

    Bundy, Sarah J

    2016-01-01

    While endeavors are underway within the emergency management discipline to develop a unique body of foundational knowledge, widespread acknowledgement and agreement within the emergency management scholarly community of the existence of theoretical foundations and the consistent incorporation of these elements into emergency management research and teaching are still lacking. This article offers an outline of a US-based undergraduate course in mitigation theory and practice that is based on a synthesis of the academic literature related to disaster mitigation as a means to advance the discourse on foundational knowledge and curriculum development. The course outline proposes a set of concepts, theories, propositions, and empirical data that would arguably be fundamental for students in gaining a comprehensive understanding of mitigation in the United States and suggests how that information can be organized and presented in a meaningful way. PMID:26963230

  10. Mitigation technologies for hydrogen storage systems based on reactive solids.

    SciTech Connect

    Kanouff, Michael P.; Dedrick, Daniel E.; Khalil, Y. F.; Pratt, Joseph William; Reeder, Craig; Cordaro, Joseph Gabriel

    2010-11-01

    This paper describes mitigation technologies that are intended to enable the deployment of advanced hydrogen storage technologies for early market and automotive fuel cell applications. Solid State hydrogen storage materials provide an opportunity for a dramatic increase in gravimetric and volumetric energy storage density. Systems and technologies based on the advanced materials have been developed and demonstrated within the laboratory [1,2], and in some cases, integrated with fuel cell systems. The R&D community will continue to develop these technologies for an ever increasing market of fuel cell technologies, including, forklift, light-cart, APU, and automotive systems. Solid state hydrogen storage materials are designed and developed to readily release, and in some cases, react with diatomic hydrogen. This favorable behavior is often accomplished with morphology design (high surface area), catalytic additives (titanium for example), and high purity metals (such as aluminum, Lanthanum, or alkali metals). These favorable hydrogen reaction characteristics often have a related, yet less-desirable effect: sensitivity and reactivity during exposure to ambient contamination and out-of-design environmental conditions. Accident scenarios resulting in this less-favorable reaction behavior must also be managed by the system developer to enable technology deployment and market acceptance. Two important accident scenarios are identified through hazards and risk analysis methods. The first involves a breach in plumbing or tank resulting from a collision. The possible consequence of this scenario is analyzed though experimentally based chemical kinetic and transport modeling of metal hydride beds. An advancing reaction front between the metal hydride and ambient air is observed to proceed throughout the bed. This exothermic reaction front can result in loss of structural integrity of the containing vessel and lead to un-favorable overheating events. The second important

  11. A new scenario framework for climate change research: The concept of Shared Climate Policy Assumptions

    SciTech Connect

    Kriegler, Elmar; Edmonds, James A.; Hallegatte, Stephane; Ebi, Kristie L.; Kram, Tom; Riahi, Keywan; Winkler, Harald; Van Vuuren, Detlef

    2014-04-01

    The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key climate policy dimensions such as the type and scale of mitigation and adaptation measures. They are not specified in the socio-economic reference pathways, and therefore introduce an important third dimension to the scenario matrix architecture. Climate policy assumptions will have to be made in any climate policy scenario, and can have a significant impact on the scenario description. We conclude that a meaningful set of shared climate policy assumptions is useful for grouping individual climate policy analyses and facilitating their comparison. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.

  12. Impact of explosive eruption scenarios at Vesuvius

    NASA Astrophysics Data System (ADS)

    Zuccaro, G.; Cacace, F.; Spence, R. J. S.; Baxter, P. J.

    2008-12-01

    scenario are highlighted. The results show the high sensitivity of hazard combinations in time and space distribution and address how to mitigate building vulnerability to subsequent eruptive phenomena [Baxter, P., Spence, R., Zuccaro, G., 2008-this issue. Risk mitigation and emergency measures at Vesuvius]. The first part of the work describes the numerical modelling and the methodology adopted to evaluate the resistance of buildings under the combined action of volcanic phenomena. Those considered here for this multi-hazard approach are limited to the following: earthquakes, pyroclastic flows and ash falls. Because of the lack of a systematic and extensive database of building damages observed after eruptions of such intensity of the past, approaches to this work must take a hybrid form of stochastic and deterministic analyses, taking into account written histories of volcanic eruptions and expertise from field geologists to build up a semi-deterministic model of the possible combinations of the above hazards that are situated both in time and space. Once a range of possible scenarios has been determined, a full stochastic method can be applied to find a sub-set of permutations and combinations of possible effects. This preliminary study of identification of the possible combination of the phenomena, subdividing them into those which are discrete and those which are continuous in time and space, enables consideration the vulnerability functions of the combinations to be feasible. In previous works [Spence, R., Brichieri-Colombi, N., Holdsworth, F., Baxter, P., Zuccaro, G., 2004a. Vesuvius: building vulnerability and human casualty estimation for a pyroclastic flow (25 pages). J. Volcanol. Geotherm. Res. 133, 321-343. ISSN 0377-0273; Spence, R., Zuccaro, G., Petrazzuoli, S., Baxter, P.J., 2004b. The resistance of buildings to pyroclastic flows: theoretical and experimental studies in relation to Vesuvius, ASCE Nat. Hazards Rev. 5, 48-50. ISSN 1527-6988; Spence, R., Kelman

  13. Managing U.S. climate risk through mitigation: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Kopp, R. E., III; Hsiang, S. M.; Houser, T.; Larsen, K.; Rasmussen, D. M., Jr.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Muir-Wood, R.; Wilson, P. S.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the economic risks posed to the United States by six categories of climate change impacts: crop yield, energy demand, coastal storm damage, criminal activity, labor productivity, and mortality [1]. At a national level, measured by impact on gross domestic product, increased mortality and decreased labor productivity pose the large risks, followed by increased energy demand and coastal damages. Changes in crop yield and crime have smaller impacts. The ACP was not intended to conduct a benefit-cost analysis of climate change mitigation. It assessed the economic consequences of future impacts on an economy with a structure equivalent to that of the current economy, not accounting for socio-economic development and adaptation, and did not assess the cost of mitigation. One of its primary goals was to inform adaptation decisions that are conventionally considered 'endogenous' in economic analyses of climate change. Nonetheless, its results provide insight into the potential of mitigation to manage climate risk. Differences between RCP 8.5 (moderately-high business-as-usual emissions), RCP 4.5 (moderate mitigation) and RCP 2.6 (extremely strong mitigation) are not apparent until mid-century and become significant only late in the century. For all impacts except coastal damages, mitigation significantly reduces uncertainty in late-century impact estimates. Nationally, mitigation significantly and monotonically reduces median projected labor productivity losses and violent crime. Switching from RCP 8.5 to RCP 4.5 also significantly reduces median projections of mortality and energy demand, but the domestic value to the U.S. of further mitigation to RCP 2.6 is less clear. The marginal benefits decline in part because some regions of the country (especially the Northwest) may experience increased crop yields, reduced mortality, and reduced energy

  14. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  15. Predicting the Arctic Ocean Environment in the 21st century

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Popova, Ekaterina; Yool, Andrew; Nurser, George

    2015-04-01

    Recent environmental changes in the Arctic have clearly demonstrated that climate change is faster and more vigorously in the Polar Regions than anywhere else. Significantly, change in the Arctic Ocean (AO) environment presents a variety of impacts, from ecological to social-economic and political. Mitigation of this change and adaptation to it requires detailed and robust environmental predictions. Here we present a detailed projection of ocean circulation and sea ice from the present until 2099, based on an eddy-permitting high-resolution global simulation of the NEMO ¼ degree ocean model. The model is forced at the surface with HadGEM2-ES atmosphere model output from the UK Met. Office IPCC Assessment Report 5 (AR5) Representative Concentration Pathways 8.5 (RCP8.5) scenario. The HadGEM2-ES simulations span 1860-2099 and are one of an ensemble of runs performed for the Coupled Model Intercomparison Project 5 (CMIP5) and IPCC AR5. Between 2000-2009 and 2090-2099 the AO experiences a significant warming, with sea surface temperature increasing on average by about 4° C, particularly in the Barents and Kara Seas, and in the Greenland Sea and Hudson Bay. By the end of the simulation, Arctic sea ice has an average annual thickness of less than 10 cm in the central AO, and less than 0.5 m in the East-Siberian Sea and Canadian Archipelago, and disappears entirely during the Arctic summer. In summer, opening of large areas of the Arctic Ocean to the wind and surface waves leads to the Arctic pack ice cover evolving into the Marginal Ice Zone (MIZ). In winter, sea ice persists until the 2030s; then it sharply declines and disappears from the Central Arctic Ocean by the end of the 21st century, with MIZ provinces remaining in winter along the Siberian, Alaskan coasts and in the Canadian Arctic Archipelago. Analysis of the AO circulation reveals evidence of (i) the reversal of the Arctic boundary currents in the Canadian Basin, from a weak cyclonic current in 2040-2049 to

  16. Passive Thrust Oscillation Mitigation for the CEV Crew Pallet System

    NASA Technical Reports Server (NTRS)

    Sammons, Matthew; Powell, Cory; Pellicciotti, Joseph; Buehrle, Ralph; Johnson, Keith

    2012-01-01

    The Crew Exploration Vehicle (CEV) was intended to be the next-generation human spacecraft for the Constellation Program. The CEV Isolator Strut mechanism was designed to mitigate loads imparted to the CEV crew caused by the Thrust Oscillation (TO) phenomenon of the proposed Ares I Launch Vehicle (LV). The Isolator Strut was also designed to be compatible with Launch Abort (LA) contingencies and landing scenarios. Prototype struts were designed, built, and tested in component, sub-system, and system-level testing. The design of the strut, the results of the tests, and the conclusions and lessons learned from the program will be explored in this paper.

  17. Greenhouse gas mitigation in agriculture.

    PubMed

    Smith, Pete; Martino, Daniel; Cai, Zucong; Gwary, Daniel; Janzen, Henry; Kumar, Pushpam; McCarl, Bruce; Ogle, Stephen; O'Mara, Frank; Rice, Charles; Scholes, Bob; Sirotenko, Oleg; Howden, Mark; McAllister, Tim; Pan, Genxing; Romanenkov, Vladimir; Schneider, Uwe; Towprayoon, Sirintornthep; Wattenbach, Martin; Smith, Jo

    2008-02-27

    Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500-6000Mt CO2-eq.yr-1, with economic potentials of approximately 1500-1600, 2500-2700 and 4000-4300Mt CO2-eq.yr-1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO2-eq.-1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000Mt CO2-eq.yr-1 at 0-20, 0-50 and 0-100 US$ t CO2-eq.-1, respectively. PMID:17827109

  18. Remote Sensing Technologies Mitigate Drought

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Ames Research Center has partnered with the California Department of Water Resources to develop satellite-based technologies to mitigate drought conditions. One project aims to help water managers adjust their irrigation to match the biological needs of each crop, and another involves monitoring areas where land is fallow so emergency relief can more quickly aid affected communities.

  19. RADON MITIGATION STUDIES: NASHVILLE DEMONSTRATION

    EPA Science Inventory

    The report gives results of an EPA radon mitigation demonstration project involving 14 houses in the Nashville, TN, area with indoor radon levels of 5.6-47.6 pCi/L, using a variety of techniques, designed to be the most cost effective methods possible to implement, and yet adequa...

  20. Lunar Dust: Characterization and Mitigation

    NASA Technical Reports Server (NTRS)

    Hyatt. Mark J.; Feighery, John

    2007-01-01

    Lunar dust is a ubiquitous phenomenon which must be explicitly addressed during upcoming human lunar exploration missions. Near term plans to revisit the moon as a stepping stone for further exploration of Mars, and beyond, places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it's potentially harmful effects on exploration systems. The same hold true for assessing the risk it may pose for toxicological health problems if inhaled. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA's Exploration Technology Development Program. This work is presented within the context of the Constellation Program's Integrated Lunar Dust Management Strategy. This work further outlines the scientific basis for lunar dust behavior, it's characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost. The paper also presents a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware.

  1. Space debris detection and mitigation

    SciTech Connect

    Allahdadi, F.

    1993-01-01

    Space debris is defined as all useless man-made objects in space. This conference covers the following areas: debris detection, tracking, and surveillance; orbital debris analytical modeling; debris environment and safety issues; and orbital debris mitigation. Separate abstracts were prepared for 26 papers in this conference.

  2. Scenario of Architectural Education in India

    NASA Astrophysics Data System (ADS)

    Dua, S.; Chahal, K. S.

    2014-09-01

    The dictionary meaning of education is to develop mentally and morally. A good holistic architectural education, therefore, is a combination of skills, information, as well as values. It is somewhat unique. The evaluation process is continuous in nature and in addition to the traditional means of assessment, the training in architectural education consists of varied interrelated parts-theory, field visit and studio/workshop. To certain extent the subjective nature of the design studio projects provides challenges and opportunities for both students and faculty members, in terms of acquiring necessary skills at the part of the students, and, necessity to update and upgrade continually with the changing pace at the part of the teachers. Technology continues to grow at a rapid pace; equipping the students to meet the complex demands of the profession; the curriculum structure and focus and value system must facilitate the relationship between general education and specialized study. Architects must acquire and understand the required information and find ways to put it in order and apply it to particular settings especially in this era of MNCs and BPOs. The paper discusses the current scenario of architectural education in India and affirms the need for change in this education from generalized study which had been in practice in twentieth century to a more relevant, specialised, and value-based education addressing technical and humanistic challenges more objectively in these vastly changing, socio-economic and political trends at global and regional levels.

  3. Hospitals in the year 2000: a scenario.

    PubMed

    Foster, J T

    1989-01-01

    Hospitals came into the twentieth century as creations of local, usually altruistic, interests and wrestled with accelerating change throughout the decades. Their success brought third-party financing, employee health plans, and government guarantees for charity care. Success seemed to breed success, and they raced ahead with capital investment in bricks, mortar, and high technology, only to find themselves in increasing trouble as 1990 approached. Writing from the precarious perch of the year 2000, the author views the worsening hospital situation and raises questions about the contradictions of federal interventions, the efforts to create "systems," the plight of small hospitals, and the love-hate role of medical staffs. Offered for consideration is a scenario of a health care crisis in the early 1990s comparable to the savings and loan crisis of 1988. However, this time the federal intervention is not simply in dollars, but, instead, brings on a "health for all" program with national financing and decentralized "district health" management. As in other nations of the world, hospitals become an integral part of the commitment to attack the root causes of ill health. PMID:10296999

  4. Likely changes in growing season indices under a climate change scenario for crop production in South Africa

    NASA Astrophysics Data System (ADS)

    Ambrosino, C.; Chandler, R. E.; Todd, M. C.

    2011-12-01

    Agriculture is still the major source of income and livelihood for most of South Africa's population, and cereals and grains are among the country's most important crops. In particular, the largest locally produced field crop and the most important source of carbohydrates in South Africa is maize (Zea mays L.). As well as extensive monoculture, maize production also dominates the smallholder farming system in areas such as the Limpopo District in north-east South Africa. It is therefore critical to understand the year-to-year changes in the planting season and rainfall characteristics in order to introduce management decision and mitigation measures in the agricultural sector (e.g. planting of drought-resistant crops or the choice between long and short-season cultivars). Indeed, one of the strategies that may be easily introduced by farmers is shifting the crop planting dates to adjust to changes in the rainfall regimes. The study presented here aims to characterise the inter-annual growing season variability through the use of 7 indices derived from daily precipitation, considered the most critical factor in rain-fed agriculture, having an impact on maize production. A statistical model is developed to generate daily rainfall sequences for the study area driven by large scale climate controls. An independent validation period is chosen to evaluate the performance of the statistical model in the rainfall generation process. Onset, length and cessation of the growing season, as well as indices representing the length of the mean and maximum dry spell during the season are derived from the area average daily simulated precipitation values. The fraction of rainy days and total precipitation during the growing season are also calculated. Finally, the projected change of the growing season indices between two investigated periods in the 20th and 21st centuries is investigated under a climate change scenario (a1b; e.g.: Fig.1). The outputs of this study may be used to

  5. The Impact of New Estimates of Mixing Ratio and Flux-based Halogen Scenarios on Ozone Evolution

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.; Liang, Qing; Strahan, Susan E.

    2014-01-01

    The evolution of ozone in the 21st century has been shown to be mainly impacted by the halogen emissions scenario and predicted changes in the circulation of the stratosphere. New estimates of mixing ratio and flux-based emission scenarios have been produced from the SPARC Lifetime Assessment 2013. Simulations using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) are conducted using this new A1 2014 halogen scenario and compared to ones using the A1 2010 scenario. This updated version of GEOSCCM includes a realistic representation of the Quasi-Biennial Oscillation and improvements related to the break up of the Antarctic polar vortex. We will present results of the ozone evolution over the recent past and 21st century to the A1 2010, A1 2014 mixing ratio, and an A1 2014 flux-based halogen scenario. Implications of the uncertainties in these estimates as well as those from possible circulation changes will be discussed.

  6. Lunar Dust Mitigation Technology Development

    NASA Technical Reports Server (NTRS)

    Hyatt, Mark J.; Deluane, Paul B.

    2008-01-01

    NASA s plans for implementing the Vision for Space Exploration include returning to the moon as a stepping stone for further exploration of Mars, and beyond. Dust on the lunar surface has a ubiquitous presence which must be explicitly addressed during upcoming human lunar exploration missions. While the operational challenges attributable to dust during the Apollo missions did not prove critical, the comparatively long duration of impending missions presents a different challenge. Near term plans to revisit the moon places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA s Exploration Technology Development Program. This work is presented within the context of the Constellation Program s Integrated Lunar Dust Management Strategy. The Lunar Dust Mitigation Technology Development project has been implemented within the ETDP. Project scope and plans will be presented, along with a a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware. This paper further outlines the scientific basis for lunar dust behavior, it s characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost.

  7. The Olympia Proceedings. Section V: Synthesis of the Scenarios. The Future: A Context for Present Planning.

    ERIC Educational Resources Information Center

    Cardon, Bartell W.

    1982-01-01

    As structures for effective future planning in school psychology, Olympia conference participants built scenarios of world, national, societal, and educational conditions for the 1980s, 1990s and the first decade of the twenty-first century. Possible changes in school psychology's role and nature are projected for each decade. (CM)

  8. Long-term prospects for developments in space: A scenario approach

    NASA Technical Reports Server (NTRS)

    Brown, W. M.; Kahn, H. D.

    1977-01-01

    Long-term plans for future NASA programs are reported, and some of the following topics are discussed in detail: (1) systematic formulation of space scenarios; (2) the basic international context; (3) potential 21st century space developments; (4) space vehicle developments; and (5) future exploration.

  9. Policy trade-offs between climate mitigation and clean cook-stove access in South Asia

    NASA Astrophysics Data System (ADS)

    Cameron, Colin; Pachauri, Shonali; Rao, Narasimha D.; McCollum, David; Rogelj, Joeri; Riahi, Keywan

    2016-01-01

    Household air pollution from traditional cook stoves presents a greater health hazard than any other environmental factor. Despite government efforts to support clean-burning cooking fuels, over 700 million people in South Asia could still rely on traditional stoves in 2030. This number could rise if climate change mitigation efforts increase energy costs. Here we quantify the costs of support policies to make clean cooking affordable to all South Asians under four increasingly stringent climate policy scenarios. Our most stringent mitigation scenario increases clean fuel costs 38% in 2030 relative to the baseline, keeping 21% more South Asians on traditional stoves or increasing the minimum support policy cost to achieve universal clean cooking by up to 44%. The extent of this increase depends on how policymakers allocate subsidies between clean fuels and stoves. These additional costs are within the range of financial transfers to South Asia estimated in efforts-sharing scenarios of international climate agreements.

  10. The management century.

    PubMed

    Kiechel, Walter

    2012-11-01

    In 1886, addressing the nascent American Society of Mechanical Engineers, Henry R. Towne proposed that "the management of works" be considered a modern art--thereby heralding the Management Century, when management as we know it came into being and shaped the world in which we work. Kiechel, a past editorial director of Harvard Business Publishing, elucidates the three eras that punctuate this period: the years leading up to World War II, during which scientific exactitude gave wings to a new managerial elite; the early postwar decades, managerialism's apogee of self-confidence and a time when wartime principles of strategy were adapted, sometimes ruthlessly, to the running of companies; and the 1980s to the present, years that saw fast-moving changes, disequilibrium, and a servitude to market forces but also ushered in globalism, unprecedented innovation, and heightened expectations about how workers are to be treated. Along the way he examines the contributions of thinkers such as Frederick Taylor, Elton Mayo, Peter Drucker, and Michael Porter. What lies ahead? Perhaps the biggest challenge facing the 21st-century company, Kiechel posits, is to truly free the spark of human imagination from the organization's tidal pull toward the status quo. There's almost always a better way, he concludes--and management will continue to seek it. PMID:23155998

  11. Ultra-Perfect Sorting Scenarios

    NASA Astrophysics Data System (ADS)

    Ouangraoua, Aïda; Bergeron, Anne; Swenson, Krister M.

    Perfection has been used as a criteria to select rearrangement scenarios since 2004. However, there is a fundamental bias towards extant species in the original definition: ancestral species are not bound to perfection. Here we develop a new theory of perfection that takes an egalitarian view of species, and apply it to the complex evolution of mammal chromosome X.

  12. Future Scenarios and Environmental Education

    ERIC Educational Resources Information Center

    Kopnina, Helen

    2014-01-01

    This article explores a number of questions about visions of the future and their implications for environmental education (EE). If the future were known, what kind of actions would be needed to maintain the positive aspects and reverse the negative ones? How could these actions be translated into the aims of EE? Three future scenarios are…

  13. Space resources. Volume 1: Scenarios

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    A number of possible future paths for space exploration and development are presented. The topics covered include the following: (1) the baseline program; (2) alternative scenarios utilizing nonterrestrial resources; (3) impacts of sociopolitical conditions; (4) common technologies; and issues for further study.

  14. Designing Scenarios for Human Action.

    ERIC Educational Resources Information Center

    Carroll, John M.

    1994-01-01

    An approach to the design of computer systems and applications in which scenarios of human-system interaction are a central working design representation are described and illustrated by examples from the design of a multimedia information system. (Contains 21 references.) (KRN)

  15. Scenario Writing: A Therapeutic Application.

    ERIC Educational Resources Information Center

    Haddock, Billy D.

    1989-01-01

    Introduces scenario writing as useful therapeutic technique. Presents case study of woman in midst of divorce and custody fight to illustrate context in which technique was applied. Suggests additional applications. Concludes that good response is more likely for clients who possess good writing skills although other clients may use their own…

  16. Conceptual Study on Air Ingress Mitigation for VHTRs

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2012-09-01

    An air-ingress accident followed by a pipe break is considered as a critical event for a very high temperature gas-cooled reactor (VHTR) safety. Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break leading to oxidation of the in-core graphite structure. Thus, without mitigation features, this accident might lead to severe exothermic chemical reactions of graphite and oxygen depending on the accident scenario and the design. Under extreme circumstances, a loss of core structural integrity may occur and lead to a detrimental situation for the VHTR safety. This paper discusses various air-ingress mitigation concepts applicable for the VHTRs. The study begins with identifying important factors (or phenomena) associated with the air-ingress accident using a root-cause analysis. By preventing main causes of the important events identified in the root-cause diagram, the basic air-ingress mitigation ideas were conceptually developed. Among them, two concepts were finally evaluated as effective candidates. One concept is to inject helium into the lower plenum which is a direct in-vessel helium injection. The other concept is to enclose the reactor with a non-pressure boundary consisting of an opening at the bottom, which is an ex-vessel enclosure boundary. Computational fluid dynamics (CFD) methods were used to validate these concepts. As a result, it was shown that both concepts can effectively mitigate the air-ingress process. In the first concept, the injected helium replaces the air in the core and the lower plenum upper part by buoyancy force because of its low density. It prevented air from moving into the reactor core showing great potential for mitigating graphite oxidation in the core. In the second concept, the air-ingress rate is controlled by molecular diffusion through the opening at the enclosure bottom after depressurization. Some modified reactor cavity design is expected to

  17. Application of multi-agent coordination methods to the design of space debris mitigation tours

    NASA Astrophysics Data System (ADS)

    Stuart, Jeffrey; Howell, Kathleen; Wilson, Roby

    2016-04-01

    The growth in the number of defunct and fragmented objects near to the Earth poses a growing hazard to launch operations as well as existing on-orbit assets. Numerous studies have demonstrated the positive impact of active debris mitigation campaigns upon the growth of debris populations, but comparatively fewer investigations incorporate specific mission scenarios. Furthermore, while many active mitigation methods have been proposed, certain classes of debris objects are amenable to mitigation campaigns employing chaser spacecraft with existing chemical and low-thrust propulsive technologies. This investigation incorporates an ant colony optimization routing algorithm and multi-agent coordination via auctions into a debris mitigation tour scheme suitable for preliminary mission design and analysis as well as spacecraft flight operations.

  18. Forest fire scenario and challenges of mitigation during fire season in North East India

    NASA Astrophysics Data System (ADS)

    Chakraborty, K.; Mondal, P. P.; Chabukdhara, M.; Sudhakar, S.

    2014-11-01

    Forest fires are a major environmental problem in North East Region (NER) with large tracts of forest areas being affected in every season. Forest fires have become a major threat to the forest ecosystems in the region, leading to loss of timber, biodiversity, wildlife habitat and loss to other natural resources. Studies on forest fire have reported that about 50% of forest fire in the country takes place in NE region. The forest fire in NER is anthropogenic in nature. The forest fire hazard map generated based on appropriate weightage given to the factors affecting fire behavior like topography, fuel characteristic and proximity to roads, settlements and also historical fire locations helped to demarcate the fire prone zones. Whereas, during fire season the weather pattern also governs the fire spread in the given area. Therefore, various data on fuel characteristics (land use/land cover, forest type map, forest density map), topography (DEM, slope, aspect) proximity to settlement, road, waterbodies, meteorological data from AWS on wind speed, wind direction, dew point have been used for each fire point to rank its possible hazard level. Near real time fire location data obtained from MODIS/FIRMSwere used to generate the fire alerts. This work demonstrates dissemination of information in the form of maps and tables containing information of latitude and longitude of fire location, fire occurrence date, state and district name, LULC, road connectivity, slope and aspect, settlements/water bodies and meteorological data and the corresponding rating of possibility of fire spread to the respective fire control authorities during fire season.

  19. Beyond 'dangerous' climate change: emission scenarios for a new world.

    PubMed

    Anderson, Kevin; Bows, Alice

    2011-01-13

    The Copenhagen Accord reiterates the international community's commitment to 'hold the increase in global temperature below 2 degrees Celsius'. Yet its preferred focus on global emission peak dates and longer-term reduction targets, without recourse to cumulative emission budgets, belies seriously the scale and scope of mitigation necessary to meet such a commitment. Moreover, the pivotal importance of emissions from non-Annex 1 nations in shaping available space for Annex 1 emission pathways received, and continues to receive, little attention. Building on previous studies, this paper uses a cumulative emissions framing, broken down to Annex 1 and non-Annex 1 nations, to understand the implications of rapid emission growth in nations such as China and India, for mitigation rates elsewhere. The analysis suggests that despite high-level statements to the contrary, there is now little to no chance of maintaining the global mean surface temperature at or below 2°C. Moreover, the impacts associated with 2°C have been revised upwards, sufficiently so that 2°C now more appropriately represents the threshold between 'dangerous' and 'extremely dangerous' climate change. Ultimately, the science of climate change allied with the emission scenarios for Annex 1 and non-Annex 1 nations suggests a radically different framing of the mitigation and adaptation challenge from that accompanying many other analyses, particularly those directly informing policy. PMID:21115511

  20. Demographic aspects of climate change mitigation and adaptation.

    PubMed

    Lutz, Wolfgang; Striessnig, Erich

    2015-01-01

    This paper addresses the contribution of changes in population size and structures to greenhouse gas emissions and to the capacity to adapt to climate change. The paper goes beyond the conventional focus on the changing composition by age and sex. It does so by addressing explicitly the changing composition of the population by level of educational attainment, taking into account new evidence about the effect of educational attainment in reducing significantly the vulnerability of populations to climatic challenges. This evidence, which has inspired a new generation of socio-economic climate change scenarios, is summarized. While the earlier IPCC-SRES (Intergovernmental Panel on Climate Change-Special Report on Emissions Scenarios) scenarios only included alternative trajectories for total population size (treating population essentially as a scaling parameter), the Shared Socio-economic Pathways (SSPs) in the new scenarios were designed to capture the socio-economic challenges to climate change mitigation and adaptation, and include full age, sex, and education details for all countries. PMID:25912918

  1. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production

    NASA Astrophysics Data System (ADS)

    Teshager, Awoke D.; Gassman, Philip W.; Schoof, Justin T.; Secchi, Silvia

    2016-08-01

    Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists that describes the combined impacts of agricultural land use change and climate change on future bioenergy crop yields and watershed hydrology. In this study, the soil and water assessment tool (SWAT) eco-hydrological model was used to model the combined impacts of five agricultural land use change scenarios and three downscaled climate pathways (representative concentration pathways, RCPs) that were created from an ensemble of eight atmosphere-ocean general circulation models (AOGCMs). These scenarios were implemented in a well-calibrated SWAT model for the intensively farmed and tiled Raccoon River watershed (RRW) located in western Iowa. The scenarios were executed for the historical baseline, early century, mid-century and late century periods. The results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid- and late 21st century.

  2. Future tendencies of climate indicators important for adaptation and mitigation strategies in forestry

    NASA Astrophysics Data System (ADS)

    Galos, Borbala; Hänsler, Andreas; Gulyas, Krisztina; Bidlo, Andras; Czimber, Kornel

    2014-05-01

    Climate change is expected to have severe impacts in the forestry sector, especially in low-elevation regions in Southeast Europe, where forests are vulnerable and sensitive to the increasing probability and severity of climatic extremes, especially to droughts. For providing information about the most important regional and local risks and mitigation options for the Carpathian basin, a GIS-supported Decision Support System is under development. This study focuses on the future tendencies of climate indicators that determine the distribution, growth, health status and production of forests as well as the potential pests and diseases. For the analyses the climate database of the Decision Support System has been applied, which contains daily time series for precipitation and temperature means and extremes as well as derived climate indices for 1961-2100. For the future time period, simulation results of 12 regional climate models are included (www.ensembles-eu.org) based on the A1B emission scenario. The main results can be summarized as follows: · The projected change of the climate indices (e.g. total number of hot days, frost days, dry days, consecutive dry periods) and forestry indices (e.g. Ellenberg climate quotient, Forestry aridity index; Tolerance index for beech) indicates the warming and drying of the growing season towards the end of the 21st century. These can have severe consequences on the ecosystem services of forests. · The climatic suitable area of the native tree species is projected to move northwards and upwards in the mountains, respectively. For beech (Fagus sylvatica L.) this shift would mean the drastic shrink of the distribution area in the analyzed region. · The characteristic climate conditions that are expected in the Carpathian basin in the second half of the century, are now located southeastern from the case study region. In this way, the potential future provenance regions can be determined. Results provide input for the climate

  3. Exploring NASA Human Spaceflight and Pioneering Scenarios

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Wilhite, Alan

    2015-01-01

    The life cycle cost analysis of space exploration scenarios is explored via a merger of (1) scenario planning, separating context and (2) modeling and analysis of specific content. Numerous scenarios are presented, leading to cross-cutting recommendations addressing life cycle costs, productivity, and approaches applicable to any scenarios. Approaches address technical and non-technical factors.

  4. 7 CFR 1794.17 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 1794.17 Mitigation. (a) General. In addition to complying with the requirements of 40 CFR 1502.14(f... (FONSI) and the Record of Decision (ROD). (b) Water and waste program. (1) Mitigation measures...

  5. 7 CFR 1794.17 - Mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 1794.17 Mitigation. (a) General. In addition to complying with the requirements of 40 CFR 1502.14(f... (FONSI) and the Record of Decision (ROD). (b) Water and waste program. (1) Mitigation measures...

  6. 7 CFR 1794.17 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 1794.17 Mitigation. (a) General. In addition to complying with the requirements of 40 CFR 1502.14(f... (FONSI) and the Record of Decision (ROD). (b) Water and waste program. (1) Mitigation measures...

  7. 7 CFR 1794.17 - Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 1794.17 Mitigation. (a) General. In addition to complying with the requirements of 40 CFR 1502.14(f... (FONSI) and the Record of Decision (ROD). (b) Water and waste program. (1) Mitigation measures...

  8. Integrated assessment of global water scarcity over the 21st century - Part 1: Global water supply and demand under extreme radiative forcing

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.

    2013-03-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model - namely, the Global Water Availability Model (GWAM) - is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5° × 0.5° resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) and a global population of 14 billion by 2095, global annual water demand grows from about 9-10% of total annual renewable freshwater in 2005 to about 32-37% by 2095. This results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demand for water exceeds the amount of water availability in two GCAM regions, the Middle East and India. Additionally, in years 2050 and 2095 36% (28%) and 44% (39%) of the global population, respectively is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). This study implies an increasingly prominent role for water in future human decisions, and highlights the importance of including water in integrated assessment of global change.

  9. ITER Disruption Mitigation System Design

    NASA Astrophysics Data System (ADS)

    Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.

    2015-11-01

    The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.

  10. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  11. Climate engineering of vegetated land for hot extremes mitigation: an ESM sensitivity study

    NASA Astrophysics Data System (ADS)

    Wilhelm, Micah; Davin, Edouard; Seneviratne, Sonia

    2014-05-01

    Mitigation efforts to reduce anthropogenic climate forcing have thus far proven inadequate, as evident from accelerating greenhouse gas emissions. Many subtropical and mid-latitude regions are expected to experience longer and more frequent heat waves and droughts within the next century. This increased occurrence of weather extremes has important implications for human health, mortality and for socio-economic factors including forest fires, water availability and agricultural production. Various solar radiation management (SRM) schemes that attempt to homogeneously counter the anthropogenic forcing have been examined with different Earth System Models (ESM). Land climate engineering schemes have also been investigated which reduces the amount of solar radiation that is absorbed at the surface. However, few studies have investigated their effects on extremes but rather on mean climate response. Here we present the results of a series of climate engineering sensitivity experiments performed with the Community Earth System Model (CESM) version 1.0.2 at 2°-resolution. This configuration entails 5 fully coupled model components responsible for simulating the Earth's atmosphere, land, land-ice, ocean and sea-ice that interact through a central coupler. Historical and RCP8.5 scenarios were performed with transient land-cover changes and prognostic terrestrial Carbon/Nitrogen cycles. Four sets of experiments are performed in which surface albedo over snow-free vegetated grid points is increased by 0.5, 0.10, 0.15 and 0.20. The simulations show a strong preferential cooling of hot extremes throughout the Northern mid-latitudes during boreal summer. A strong linear scaling between the cooling of extremes and additional surface albedo applied to the land model is observed. The strongest preferential cooling is found in southeastern Europe and the central United States, where increases of soil moisture and evaporative fraction are the largest relative to the control

  12. Mitigating hyperventilation during cardiopulmonary resuscitation.

    PubMed

    Nikolla, Dhimitri; Lewandowski, Tyler; Carlson, Jestin

    2016-03-01

    Although multiple airway management and ventilation strategies have been proposed during cardiac arrest, the ideal strategy is unknown. Current strategies call for advanced airways, such as endotracheal intubation and supraglottic airways. These may facilitate hyperventilation which is known to adversely affect cardiopulmonary physiology. We provide a summary of conceptual models linking hyperventilation to patient outcomes and identify methods for mitigating hyperventilation during cardiac arrest. PMID:26740418

  13. 7 CFR 1794.17 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Mitigation. 1794.17 Section 1794.17 Agriculture... § 1794.17 Mitigation. (a) General. In addition to complying with the requirements of 40 CFR 1502.14(f... (FONSI) and the Record of Decision (ROD). (b) Water and waste program. (1) Mitigation measures...

  14. 43 CFR 10005.8 - Mitigation obligations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mitigation obligations. 10005.8 Section 10005.8 Public Lands: Interior Regulations Relating to Public Lands (Continued) UTAH RECLAMATION MITIGATION AND CONSERVATION COMMISSION POLICIES AND PROCEDURES FOR DEVELOPING AND IMPLEMENTING THE COMMISSION'S MITIGATION AND CONSERVATION PLAN §...

  15. 7 CFR 652.39 - Mitigating factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Mitigating factors. 652.39 Section 652.39 Agriculture... AGRICULTURE SUPPORT ACTIVITIES TECHNICAL SERVICE PROVIDER ASSISTANCE Decertification § 652.39 Mitigating..., the deciding official will take into consideration any mitigating factors. Examples of...

  16. 34 CFR 81.33 - Mitigating circumstances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Mitigating circumstances. 81.33 Section 81.33 Education... for Recovery of Funds § 81.33 Mitigating circumstances. (a) A recipient that is a State or local... funds is not required to return any amount that is attributable to the mitigating...

  17. 23 CFR 710.513 - Environmental mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... wetland mitigation sites and other mitigation banks is governed by 23 CFR part 777. (b) Environmental...-WAY AND REAL ESTATE Property Acquisition Alternatives § 710.513 Environmental mitigation. (a) The... financial assistance. This includes real property acquired for a wetland bank, or other...

  18. A Native American exposure scenario.

    PubMed

    Harris, S G; Harper, B L

    1997-12-01

    EPA's Risk Assessment Guidance for Superfund (RAGS) and later documents provide guidance for estimating exposures received from suburban and agricultural activity patterns and lifestyles. However, these methods are not suitable for typical tribal communities whose members pursue, at least in part, traditional lifestyles. These lifestyles are derived from a long association with all of the resources in a particular region. We interviewed 35 members of a Columbia River Basin tribe to develop a lifestyle-based subsistence exposure scenario that represents a midrange exposure that a traditional tribal member would receive. This scenario provides a way to partially satisfy Executive Order 12,898 on environmental justice, which requires a specific evaluation of impacts from federal actions to peoples with subsistence diets. Because a subsistence diet is only a portion of what is important to a traditional lifestyle, we also used information obtained from the interviews to identify parameters for evaluating impacts to environmental and sociocultural quality of life. PMID:9463932

  19. Mitigation alternatives for L Lake

    SciTech Connect

    Moore, D.B.

    1988-11-03

    The current condition of L Lake/Steel Creek was summarized in a report to SCDHEC in June 1988 which reported that the L Lake and Steel Creek ecosystems were adequately developing towards balanced biological communities. If mitigation for L Lake inputs, specifically temperature and nutrients, are required, several viable alternatives are available. A report prepared by Spencer in 1986 discusses the various options available for cooling L-Reactor discharges. In effect, a small cooling tower is the only realistic solution to reducing effluent temperatures. Nutrient mitigation can take several approaches including upstream sewage treatment, hypolimnetic withdrawal, dilution of input water by Par Pond water, precipitation of nutrients, and sediment oxidation. None of these systems would influence the thermal regime, but would significantly reduce nutrient input into the system. One beneficial use of L-Lake thermal effluents is algaculture, the production of useful algae. A document prepared in 1988 concludes that algaculture is a technically and economically feasible mitigation alternative for L Lake and could allow L Lake to be handled under Section 318 of the Clean Water Act.

  20. Residential radon mitigations at Kitigan Zibi Anishinabeg: comparison of above ground level (RIM JOIST) and above roof line discharge of radon mitigation SUB-SLAB depressurization systems.

    PubMed

    Brossard, Mathieu; Brascoupé, Marcel; Ottawa, Celine Brazeau; Falcomer, Renato; Ottawa, William; Scott, Arthur; Whyte, Jeff

    2012-05-01

    Radon mitigations in nine houses were conducted by installing sub-slab depressurization systems (SSDS) with two types of discharge and fan locations: Ground level discharge with the fan located in the basement or roof-discharge with the fan located in the attic. This paper presents a detailed comparative analysis of the radon reduction efficiency, condensation problems, and the cost-effectiveness of both SSDS installation scenarios in nine houses. The mitigations from both SSDS scenarios were successful in reducing radon. The results of rim-joist installations discharging above ground level with the fans located in the basement show that a sealed radon fan with proper fittings and sealed piping were able to reduce the radon to acceptable levels in a cost-effective manner. PMID:22469999

  1. Calculation of the Siberian subarctic rivers runoff in the XXI century

    NASA Astrophysics Data System (ADS)

    Kuzin, Viktor I.; Lapteva, Natalya A.

    2015-11-01

    The paper discusses the results of calculations by the linear reservoir model of the climatic river runoff for the subarctic Eastern Siberia region. For the verification of the model the measurements data as well as the MERRA reanalysis data for the XX century were used. For the XXI century calculations by the data of the INM, CRNM, GFDL, HadGEM, MIROC5, MPI models of the scenario RCP 8.5 of the Project CMIP5 IPCC were done.

  2. Nutrient pollution mitigation measures across Europe are resilient under future climate

    NASA Astrophysics Data System (ADS)

    Wade, Andrew; Skeffington, Richard; Couture, Raoul; Erlandsson, Martin; Groot, Simon; Halliday, Sarah; Harezlak, Valesca; Hejzlar, Joseph; Jackson-Blake, Leah; Lepistö, Ahti; Papastergiadou, Eva; Psaltopoulos, Demetrios; Riera, Joan; Rankinen, Katri; Skuras, Dimitris; Trolle, Dennis; Whitehead, Paul; Dunn, Sarah; Bucak, Tuba

    2016-04-01

    The key results from the application of catchment-scale biophysical models to assess the likely effectiveness of nutrient pollution mitigation measures set in the context of projected land management and climate change are presented. The assessment is based on the synthesis of modelled outputs of daily river flow, river and lake nitrogen and phosphorus concentrations, and lake chlorophyll-a, for baseline (1981-2010) and scenario (2031-2060) periods for nine study sites across Europe. Together the nine sites represent a sample of key climate and land management types. The robustness and uncertainty in the daily, seasonal and long-term modelled outputs was assessed prior to the scenario runs. Credible scenarios of land-management changes were provided by social scientists and economists familiar with each study site, whilst likely mitigation measures were derived from local stakeholder consultations and cost-effectiveness assessments. Modelled mitigation options were able to reduce nutrient concentrations, and there was no evidence here that they were less effective under future climate. With less certainty, mitigation options could affect the ecological status of waters at these sites in a positive manner, leading to improvement in Water Framework Directive status at some sites. However, modelled outcomes for sites in southern Europe highlighted that increased evaporation and decreased precipitation will cause much lower flows leading to adverse impacts of river and lake ecology. Uncertainties in the climate models, as represented by three GCM-RCM combinations, did not affect this overall picture much.

  3. On Recovery of the Ozone Layer in the Northern Hemisphere in the 21st Century

    NASA Astrophysics Data System (ADS)

    Larin, Igor

    2014-05-01

    Time recovery of the ozone layer in the latitudinal zones of 0°-85° N, 0°-30° N, 30°-60° N and 60°-85° N in the 21st century has been evaluated. Evaluations have been made using an interactive chemical dynamical radiative two-dimensional (2-D) model of the middle atmosphere Socrates (height 0-120 km). As initial data for calculations for the first time the greenhouse gas concentration scenarios of Intergovernmental Panel on Climate Change (IPCC) RCP 4.5 and RCP 6.0 have been used. According to the scenario RCP 4.5 a stabilization of the radiative forcing must occur before the end of the twenty-first century, and according to the scenario RCP 6.0 - in the 22nd century. It has been shown that under both scenarios, the recovery of the ozone layer in the northern hemisphere (0°-85° N) can take place in 2035, and in zones of 0°-30° N, 30°-60° N and 60°-85° N does in 2020, 2030 and 2035, respectively. It has been also shown that after recovery the ozone layer will continue to grow and by the end of the 21st century will reach the stationary level exceeding undisturbed level of 1960 at 2.7% (scenario RCP 4.5) and 3.6% (scenario RCP 6.0) in zone 0°-85° N. It seems to be not smaller ecological threat than depletion of the ozone layer at the end of the twentieth century. The results obtained are in good agreement with the known literary data (see, for example, Table 3-3 in "Scientific Assessment of Ozone Depletion: 2010"), indicating that the model Socrates and "concentration" scenarios of IPCC can successfully be used for such calculations.

  4. Automatic parameter estimation for atmospheric turbulence mitigation techniques

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen; Paolini, Aaron; Kelmelis, Eric

    2015-05-01

    Several image processing techniques for turbulence mitigation have been shown to be effective under a wide range of long-range capture conditions; however, complex, dynamic scenes have often required manual interaction with the algorithm's underlying parameters to achieve optimal results. While this level of interaction is sustainable in some workflows, in-field determination of ideal processing parameters greatly diminishes usefulness for many operators. Additionally, some use cases, such as those that rely on unmanned collection, lack human-in-the-loop usage. To address this shortcoming, we have extended a well-known turbulence mitigation algorithm based on bispectral averaging with a number of techniques to greatly reduce (and often eliminate) the need for operator interaction. Automations were made in the areas of turbulence strength estimation (Fried's parameter), as well as the determination of optimal local averaging windows to balance turbulence mitigation and the preservation of dynamic scene content (non-turbulent motions). These modifications deliver a level of enhancement quality that approaches that of manual interaction, without the need for operator interaction. As a consequence, the range of operational scenarios where this technology is of benefit has been significantly expanded.

  5. The economics of mitigation and remediation measures - preliminary results

    NASA Astrophysics Data System (ADS)

    Wiedemann, Carsten; Flegel, Sven Kevin; Vörsmann, Peter; Gelhaus, Johannes; Moeckel, Marek; Braun, Vitali; Kebschull, Christopher; Metz, Manuel

    2012-07-01

    Today there exists a high spatial density of orbital debris objects at about 800 km altitude. The control of the debris population in this region is important for the long-term evolution of the debris environment. The future debris population is investigated by simulations using the software tool LUCA (Long-Term Orbit Utilization Collision Analysis). It is likely that in the future there will occur more catastrophic collisions. Debris objects generated during such events may again trigger further catastrophic collisions. Current simulations have revealed that the number of debris objects will increase in the future. In a long-term perspective, catastrophic collisions may become the dominating mechanism in generating orbital debris. In this study it is investigated, when the situation will become unstable. To prevent this instability it is necessary to implement mitigation and maybe even remediation measures. It is investigated how these measures affect the future debris environment. It is simulated if the growth of the number of debris objects can be interrupted and how much this may cost. Different mitigation scenarios are considered. Furthermore also one remediation measure, the active removal of high-risk objects, is simulated. Cost drivers for the different measures are identified. It is investigated how selected measures are associated with costs. The goal is to find out which economic benefits may result from mitigation or remediation. First results of a cost benefit analyses are presented.

  6. Distributed Trajectory Flexibility Preservation for Traffic Complexity Mitigation

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Wing, David; Delahaye, Daniel

    2009-01-01

    The growing demand for air travel is increasing the need for mitigation of air traffic congestion and complexity problems, which are already at high levels. At the same time new information and automation technologies are enabling the distribution of tasks and decisions from the service providers to the users of the air traffic system, with potential capacity and cost benefits. This distribution of tasks and decisions raises the concern that independent user actions will decrease the predictability and increase the complexity of the traffic system, hence inhibiting and possibly reversing any potential benefits. In answer to this concern, the authors propose the introduction of decision-making metrics for preserving user trajectory flexibility. The hypothesis is that such metrics will make user actions naturally mitigate traffic complexity. In this paper, the impact of using these metrics on traffic complexity is investigated. The scenarios analyzed include aircraft in en route airspace with each aircraft meeting a required time of arrival in a one-hour time horizon while mitigating the risk of loss of separation with the other aircraft, thus preserving its trajectory flexibility. The experiments showed promising results in that the individual trajectory flexibility preservation induced self-separation and self-organization effects in the overall traffic situation. The effects were quantified using traffic complexity metrics based on Lyapunov exponents and traffic proximity.

  7. Designing Asteroid Impact Scenario Trajectories

    NASA Astrophysics Data System (ADS)

    Chodas, Paul

    2016-05-01

    In order to study some of the technical and geopolitical issues of dealing with an asteroid on impact trajectory, a number of hypothetical impact scenarios have been presented over the last ten years or so. These have been used, for example, at several of the Planetary Defense Conferences (PDCs), as well as in tabletop exercises with the Federal Emergency Management Agency (FEMA), along with other government agencies. The exercise at the 2015 PDC involved most of the attendees, consisted of seven distinct steps (“injects”), and with all the presentations and discussions, took up nearly 10 hours of conference time. The trajectory for the PDC15 scenario was entirely realistic, and was posted ahead of the meeting. It was made available in the NEO Program’s Horizons ephemeris service so that users could , for example, design their own deflection missions. The simulated asteroid and trajectory had to meet numerous very exacting requirements: becoming observable on the very first day of the conference, yet remaining very difficult to observe for the following 7 years, and far enough away from Earth that it was out of reach of radar until just before impact. It had to be undetectable in the past, and yet provide multiple perihelion opportunities for deflection in the future. It had to impact in a very specific region of the Earth, a specific number of years after discovery. When observations of the asteroid are simulated to generate an uncertainty region, that entire region must impact the Earth along an axis that cuts across specific regions of the Earth, the “risk corridor”. This is important because asteroid deflections generally move an asteroid impact point along this corridor. One scenario had a requirement that the asteroid pass through a keyhole several years before impact. The PDC15 scenario had an additional constraint that multiple simulated kinetic impactor missions altered the trajectory at a deflection point midway between discovery and impact

  8. A century of antenna development

    NASA Astrophysics Data System (ADS)

    Olver, A. D.

    The paper describes a century of antenna development as part of a century of radio communications. This historical review examines, chronologically, the pre-Hertz period, Hertz antennas, the microwave optics period, the Marconi era, short waves, theoretical design before and after computers, and radar. Consideration is also given to mobile antennas, microwave comunications, radio astronomy, and satellite comunications.

  9. 21st Century Skills Map

    ERIC Educational Resources Information Center

    Partnership for 21st Century Skills, 2011

    2011-01-01

    The Partnership for 21st Century Skills (P21) has forged alliances with key national organizations representing the core academic subjects, including Social Studies, English, Math, Science, Geography, World Languages and the Arts. These collaborations have resulted in the development of 21st Century Skills Maps that illustrate the essential…

  10. Fueling the 21st century

    SciTech Connect

    Sheindlin, A.E. ); Zaleski, P. )

    1989-01-01

    This book discusses fueling of the 21st century. Topics include: Basic World Energy Problems at the Turn of the 21st Century, Natural Gas at the Present Stage of Development of Power Engineering, and Biomass-Powered Ice- Making Machine.

  11. Future Scenarios for Fission Based Reactors

    NASA Astrophysics Data System (ADS)

    David, S.

    2005-04-01

    The coming century will see the exhaustion of standard fossil fuels, coal, gas and oil, which today represent 75% of the world energy production. Moreover, their use will have caused large-scale emission of greenhouse gases (GEG), and induced global climate change. This problem is exacerbated by a growing world energy demand. In this context, nuclear power is the only GEG-free energy source available today capable of responding significantly to this demand. Some scenarios consider a nuclear energy production of around 5 Gtoe in 2050, wich would represent a 20% share of the world energy supply. Present reactors generate energy from the fission of U-235 and require around 200 tons of natural Uranium to produce 1GWe.y of energy, equivalent to the fission of one ton of fissile material. In a scenario of a significant increase in nuclear energy generation, these standard reactors will consume the whole of the world's estimated Uranium reserves in a few decades. However, natural Uranium or Thorium ore, wich are not themselves fissile, can produce a fissile material after a neutron capture ( 239Pu and 233U respectively). In a breeder reactor, the mass of fissile material remains constant, and the fertile ore is the only material to be consumed. In this case, only 1 ton of natural ore is needed to produce 1GWe.y. Thus, the breeding concept allows optimal use of fertile ore and development of sustainable nuclear energy production for several thousand years into the future. Different sustainable nuclear reactor concepts are studied in the international forum "generation IV". Different types of coolant (Na, Pb and He) are studied for fast breeder reactors based on the Uranium cycle. The thermal Thorium cycle requires the use of a liquid fuel, which can be reprocessed online in order to extract the neutron poisons. This paper presents these different sustainable reactors, based on the Uranium or Thorium fuel cycles and will compare the different options in term of fissile

  12. Catchment scale afforestation for mitigating flooding

    NASA Astrophysics Data System (ADS)

    Barnes, Mhari; Quinn, Paul; Bathurst, James; Birkinshaw, Stephen

    2016-04-01

    After the 2013-14 floods in the UK there were calls to 'forest the uplands' as a solution to reducing flood risk across the nation. At present, 1 in 6 homes in Britain are at risk of flooding and current EU legislation demands a sustainable, 'nature-based solution'. However, the role of forests as a natural flood management technique remains highly controversial, due to a distinct lack of robust evidence into its effectiveness in reducing flood risk during extreme events. SHETRAN, physically-based spatially-distributed hydrological models of the Irthing catchment and Wark forest sub-catchments (northern England) have been developed in order to test the hypothesis of the effect trees have on flood magnitude. The advanced physically-based models have been designed to model scale-related responses from 1, through 10, to 100km2, a first study of the extent to which afforestation and woody debris runoff attenuation features (RAFs) may help to mitigate floods at the full catchment scale (100-1000 km2) and on a national basis. Furthermore, there is a need to analyse the extent to which land management practices, and the installation of nature-based RAFs, such as woody debris dams, in headwater catchments can attenuate flood-wave movement, and potentially reduce downstream flood risk. The impacts of riparian planting and the benefits of adding large woody debris of several designs and on differing sizes of channels has also been simulated using advanced hydrodynamic (HiPIMS) and hydrological modelling (SHETRAN). With the aim of determining the effect forestry may have on flood frequency, 1000 years of generated rainfall data representative of current conditions has been used to determine the difference between current land-cover, different distributions of forest cover and the defining scenarios - complete forest removal and complete afforestation of the catchment. The simulations show the percentage of forestry required to have a significant impact on mitigating

  13. Freshwater Availability in the Brahmaputra River Basin Under Projected Climate and Land Use Land Cover Change Scenarios

    NASA Astrophysics Data System (ADS)

    Pervez, M. S.; Henebry, G. M.

    2014-12-01

    We used the Soil and Water Assessment Tool to evaluate sensitivities and patterns in freshwater availability due to projected climate and land use changes in the Brahmaputra basin. The daily observed discharge at Bahadurabad station in Bangladesh was used to calibrate the model and analyze uncertainties with SUFI-II algorithm for 1988-1997, and to validate the model for 1998-2004. The R2, NS, and biases were, respectively, 0.85, 0.85, and -3.2% during calibration, and 0.89, 0.88, and -4.4% during validation for basinwide simulations of monthly streamflow. The sensitivities and impacts of projected climate and land use changes on basin hydrological components were simulated and analyzed relative to a baseline scenario of 1988-2004. Sensitivity analysis identified a doubling of CO2 concentration to 660 ppm caused average annual evapotranspiration (ET) to decrease by 12%, resulting in increases in water yield by 5%, streamflow by 6%, and groundwater recharge by 8%. With an increase in temperature, annual average ET was predicted to increase, while responses of water yield and streamflow varied by season. An increase in precipitation caused proportional increases in water yield, streamflow, and groundwater recharge, but led to only minor impacts on ET. Annual average water yield, soil water content, ET, streamflow, and groundwater recharge were predicted to increase with higher seasonal variability in response to climate and land use change projections for the A1B and A2 scenarios generated from downscaled CGCM3.1 and IMAGE, respectively. Water yield, soil water content, streamflow, and groundwater recharge were predicted to increase with a strong increasing trend during August to October, indicating exacerbated flood potential, while during May to July, the hydrological components-except soil water content-were predicted to decrease with a strong decreasing trend, indicating enhanced drought potential throughout the 21st century. Overall, results indicated that the

  14. Drought mitigation using operative indicators in complex water systems

    NASA Astrophysics Data System (ADS)

    Sechi, G. M.; Sulis, A.

    The definition of an effective link between drought indicators and drought mitigation measures in a regional water supply systems is a complex problem involving environmental, social and economical factors. The gap between research and practice in this field still limits the application of mathematical modelling tools more than institutional or technological features. In this paper, a methodology is developed to support the decision making process of water authorities facing droughts in complex water systems. The methodology is based on a full integration of optimization and simulation tools. The exploratory power of the optimization allows the rapid estimation of subsets of flow variables related to forecasted demands supplies and shortages that are used as operative indicators of the drought risk in future hydrological scenarios. The simulation model uses these indicators as triggers of mitigation measures in a proactive approach to drought. In the case of an overly optimistic forecast of the hydrological scenario, the proactive approach does not completely eliminate the risk of shortages. In this case, further measures have to be implemented in the water system simulation in a reactive approach to drought. These can include more expensive and higher impact measures to be taken later, after the severity of the drought event has been highlighted. In collaboration with the regional water authorities in southern Italy, the proposed methodology is currently being tested in the Agri-Sinni water system. Early applications to the Agri-Sinni water system are presented in the paper, showing the usefulness of the proposed methodology in mitigating the impacts of drought and selecting an economically efficient combination of proactive and reactive measures.

  15. Mitigation Approaches to Combat the Flu Pandemic

    PubMed Central

    Chawla, Raman; Sharma, Rakesh Kumar; Madaan, Deepali; Dubey, Neha; Arora, Rajesh; Goel, Rajeev; Singh, Shefali; Kaushik, Vinod; Singh, Pankaj Kumar; Chabbra, Vivek; Bhardwaj, Janak Raj

    2009-01-01

    Management of flu pandemic is a perpetual challenge for the medical fraternity since time immemorial. Animal to human transmission has been observed thrice in the last century within an average range of 11-39 years of antigenic recycling. The recent outbreak of influenza A (H1N1, also termed as swine flu), first reported in Mexico on April 26, 2009, occurred in the forty first year since last reported flu pandemic (July 1968). Within less than 50 days, it has assumed pandemic proportions (phase VI) affecting over 76 countries with 163 deaths/35,928 cases (as on 15th June 2009). It indicated the re-emergence of genetically reassorted virus having strains endemic to humans, swine and avian (H5N1). The World Health Organisation (WHO) member states have already pulled up their socks and geared up to combat such criticalities. Earlier outbreaks of avian flu (H5N1) in different countries led WHO to develop pandemic preparedness strategies with national/regional plans on pandemic preparedness. Numerous factors related to climatic conditions, socio-economic strata, governance and sharing of information/logistics at all levels have been considered critical indicators in monitoring the dynamics of escalation towards a pandemic situation. The National Disaster Management Authority (NDMA), Government of India, with the active cooperation of UN agencies and other stakeholders/experts has formulated a concept paper on role of nonhealth service providers during pandemics in April 2008 and released national guidelines - management of biological disasters in July 2008. These guidelines enumerate that the success of medical management endeavors like pharmaceutical (anti-viral Oseltamivir and Zanamivir therapies), nonpharmaceutical interventions and vaccination development etc., largely depends on level of resistance offered by mutagenic viral strain and rationale use of pharmaco therapeutic interventions. This article describes the mitigation approach to combat flu pandemic with its

  16. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies.

    PubMed

    DeRolph, Christopher R; Schramm, Michael P; Bevelhimer, Mark S

    2016-10-01

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multi-faceted explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, we were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements are functions of a range of factors, from biophysical to socio-political. Project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation. PMID:27280379

  17. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies

    DOE PAGESBeta

    Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.

    2016-06-06

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less

  18. Water footprint scenarios for 2050: a global analysis.

    PubMed

    Ercin, A Ertug; Hoekstra, Arjen Y

    2014-03-01

    This study develops water footprint scenarios for 2050 based on a number of drivers of change: population growth, economic growth, production/trade pattern, consumption pattern (dietary change, bioenergy use) and technological development. The objective the study is to understand the changes in the water footprint (WF) of production and consumption for possible futures by region and to elaborate the main drivers of this change. In addition, we assess virtual water flows between the regions of the world to show dependencies of regions on water resources in other regions under different possible futures. We constructed four scenarios, along two axes, representing two key dimensions of uncertainty: globalization versus regional selfsufficiency, and economy-driven development versus development driven by social and environmental objectives. The study shows how different drivers will change the level of water consumption and pollution globally in 2050. The presented scenarios can form a basis for a further assessment of how humanity can mitigate future freshwater scarcity. We showed with this study that reducing humanity's water footprint to sustainable levels is possible even with increasing populations, provided that consumption patterns change. This study can help to guide corrective policies at both national and international levels, and to set priorities for the years ahead in order to achieve sustainable and equitable use of the world's fresh water resources. PMID:24374780

  19. Watershed Planning within a Quantitative Scenario Analysis Framework.

    PubMed

    Merriam, Eric R; Petty, J Todd; Strager, Michael P

    2016-01-01

    There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework. Sites are first selected for inclusion within the watershed assessment by identifying sites that fall along independent gradients and combinations of known stressors. Field and laboratory techniques are then used to obtain data on the physical, chemical, and biological effects of multiple land use activities. Multiple linear regression analysis is then used to produce landscape-based cumulative effects models for predicting aquatic conditions. Lastly, methods for incorporating cumulative effects models within a scenario analysis framework for guiding management and regulatory decisions (e.g., permitting and mitigation) within actively developing watersheds are discussed and demonstrated for 2 sub-watersheds within the mountaintop mining region of central Appalachia. The watershed assessment and management approach provided herein enables resource managers to facilitate economic and development activity while protecting aquatic resources and producing opportunity for net ecological benefits through targeted remediation. PMID:27501287

  20. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2013-04-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  1. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2006-06-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  2. Interference Mitigation Schemes for Wireless Body Area Sensor Networks: A Comparative Survey

    PubMed Central

    Le, Thien T.T.; Moh, Sangman

    2015-01-01

    A wireless body area sensor network (WBASN) consists of a coordinator and multiple sensors to monitor the biological signals and functions of the human body. This exciting area has motivated new research and standardization processes, especially in the area of WBASN performance and reliability. In scenarios of mobility or overlapped WBASNs, system performance will be significantly degraded because of unstable signal integrity. Hence, it is necessary to consider interference mitigation in the design. This survey presents a comparative review of interference mitigation schemes in WBASNs. Further, we show that current solutions are limited in reaching satisfactory performance, and thus, more advanced solutions should be developed in the future. PMID:26110407

  3. Interference Mitigation Schemes for Wireless Body Area Sensor Networks: A Comparative Survey.

    PubMed

    Le, Thien T T; Moh, Sangman

    2015-01-01

    A wireless body area sensor network (WBASN) consists of a coordinator and multiple sensors to monitor the biological signals and functions of the human body. This exciting area has motivated new research and standardization processes, especially in the area of WBASN performance and reliability. In scenarios of mobility or overlapped WBASNs, system performance will be significantly degraded because of unstable signal integrity. Hence, it is necessary to consider interference mitigation in the design. This survey presents a comparative review of interference mitigation schemes in WBASNs. Further, we show that current solutions are limited in reaching satisfactory performance, and thus, more advanced solutions should be developed in the future. PMID:26110407

  4. SAFRR (Science Application for Risk Reduction) Tsunami Scenario--Executive Summary and Introduction: Chapter A in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Ross, Stephanie L.; Jones, Lucile M.; Miller, Kevin; Porter, Keith A.; Wein, Anne; Wilson, Rick I.; Bahng, Bohyun; Barberopoulou, Aggeliki; Borrero, Jose C.; Brosnan, Deborah M.; Bwarie, John T.; Geist, Eric L.; Johnson, Laurie A.; Kirby, Stephen H.; Knight, William R.; Long, Kate; Lynett, Patrick; Mortensen, Carl E.; Nicolsky, Dmitry J.; Perry, Suzanne C.; Plumlee, Geoffrey S.; Real, Charles R.; Ryan, Kenneth; Suleimani, Elena; Thio, Hong Kie; Titov, Vasily V.; Whitmore, Paul M.; Wood, Nathan J.

    2013-01-01

    The Science Application for Risk Reduction (SAFRR) tsunami scenario depicts a hypothetical but plausible tsunami created by an earthquake offshore from the Alaska Peninsula and its impacts on the California coast. The tsunami scenario is a collaboration between the U.S. Geological Survey (USGS), the California Geological Survey, the California Governor’s Office of Emergency Services (Cal OES), the National Oceanic and Atmospheric Administration (NOAA), other Federal, State, County, and local agencies, private companies, and academic and other institutions. This document presents evidence for past tsunamis, the scientific basis for the source, likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental and ecological impacts, social vulnerability, emergency management and evacuation challenges, and policy implications for California associated with this hypothetical tsunami. We also discuss ongoing mitigation efforts by the State of California and new communication products. The intended users are those who need to make mitigation decisions before future tsunamis, and those who will need to make rapid decisions during tsunami events. The results of the tsunami scenario will help managers understand the context and consequences of their decisions and how they may improve preparedness and response. An evaluation component will assess the effectiveness of the scenario process for target stakeholders in a separate report to improve similar efforts in the future.

  5. The Century-Long Challenge of Global Carbon Management

    NASA Astrophysics Data System (ADS)

    Socolow, R.

    2002-05-01

    The time scale of the global carbon management is a century, not a decade and not a millennium. A century is the ratio of 1000 billion metric tons of carbon [Gt(C)] to 10 Gt(C)/yr. 1000 Gt(C) is the future emissions that will lead to approximately a doubling of the pre-industrial atmospheric CO2 concentration, 280 ppm, assuming the total net ocean plus terrestrial sink remains at half the strength of this source - since 2.1 Gt (C) = 1 ppm, and the concentration today is already 370 ppm. Doubling is the most widely used boundary between acceptable and unacceptable Greenhouse-related environmental disruption, or, in the language of the Framework Convention on Climate Change, the onset of "dangerous anthropogenic interference with the climate system." And 10 Gt(C)/yr is a conservative estimate of the average annual fossil-fuel carbon source over the century; it is now between 6 and 7 Gt(C). Conventional oil and gas are not sufficiently abundant to generate a serious Greenhouse problem on their own. Well before their cumulative carbon emissions reach 1000 Gt(C), both are expected to become non-competitive as a result of growing costs of access (costs related to resources being very deep underground, or below very deep water, or very remote, or very small.) But several times 1000 Gt(C) of coal resources will probably be competitive with non-fossil fuel alternatives, as will "unconventional" oil and gas resources, such as tar sands. The world will not be saved from a serious Greenhouse problem by fossil fuel depletion. There are four mitigation strategies for avoiding dangerous interference with the climate system. Fossil fuels can cease to dominate the global energy system well before the end of the century, yielding large market share to some combination of renewable energy and nuclear (fission and fusion) energy sources. Fossil fuels can continue to dominate, but most of the carbon in the century's fossil fuels can be prevented from reaching the atmosphere (fossil

  6. Deterministic and Nondeterministic Behavior of Earthquakes and Hazard Mitigation Strategy

    NASA Astrophysics Data System (ADS)

    Kanamori, H.

    2014-12-01

    Earthquakes exhibit both deterministic and nondeterministic behavior. Deterministic behavior is controlled by length and time scales such as the dimension of seismogenic zones and plate-motion speed. Nondeterministic behavior is controlled by the interaction of many elements, such as asperities, in the system. Some subduction zones have strong deterministic elements which allow forecasts of future seismicity. For example, the forecasts of the 2010 Mw=8.8 Maule, Chile, earthquake and the 2012 Mw=7.6, Costa Rica, earthquake are good examples in which useful forecasts were made within a solid scientific framework using GPS. However, even in these cases, because of the nondeterministic elements uncertainties are difficult to quantify. In some subduction zones, nondeterministic behavior dominates because of complex plate boundary structures and defies useful forecasts. The 2011 Mw=9.0 Tohoku-Oki earthquake may be an example in which the physical framework was reasonably well understood, but complex interactions of asperities and insufficient knowledge about the subduction-zone structures led to the unexpected tragic consequence. Despite these difficulties, broadband seismology, GPS, and rapid data processing-telemetry technology can contribute to effective hazard mitigation through scenario earthquake approach and real-time warning. A scale-independent relation between M0 (seismic moment) and the source duration, t, can be used for the design of average scenario earthquakes. However, outliers caused by the variation of stress drop, radiation efficiency, and aspect ratio of the rupture plane are often the most hazardous and need to be included in scenario earthquakes. The recent development in real-time technology would help seismologists to cope with, and prepare for, devastating tsunamis and earthquakes. Combining a better understanding of earthquake diversity and modern technology is the key to effective and comprehensive hazard mitigation practices.

  7. Spent fuel receipt scenarios study

    SciTech Connect

    Ballou, L.B.; Montan, D.N.; Revelli, M.A.

    1990-09-01

    This study reports on the results of an assignment from the DOE Office of Civilian Radioactive Waste Management to evaluate of the effects of different scenarios for receipt of spent fuel on the potential performance of the waste packages in the proposed Yucca Mountain high-level waste repository. The initial evaluations were performed and an interim letter report was prepared during the fall of 1988. Subsequently, the scope of work was expanded and additional analyses were conducted in 1989. This report combines the results of the two phases of the activity. This study is a part of a broader effort to investigate the options available to the DOE and the nuclear utilities for selection of spent fuel for acceptance into the Federal Waste Management System for disposal. Each major element of the system has evaluated the effects of various options on its own operations, with the objective of providing the basis for performing system-wide trade-offs and determining an optimum acceptance scenario. Therefore, this study considers different scenarios for receipt of spent fuel by the repository only from the narrow perspective of their effect on the very-near-field temperatures in the repository following permanent closure. This report is organized into three main sections. The balance of this section is devoted to a statement of the study objective, a summary of the assumptions. The second section of the report contains a discussion of the major elements of the study. The third section summarizes the results of the study and draws some conclusions from them. The appendices include copies of the waste acceptance schedule and the existing and projected spent fuel inventory that were used in the study. 10 refs., 27 figs.

  8. Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss

    NASA Astrophysics Data System (ADS)

    Warren, R.; Vanderwal, J.; Price, J.; Welbergen, J.; Atkinson, I. M.; Ramirez-Villegas, J.; Osborn, T.; Shoo, L.; Jarvis, A.; Williams, S.; Lowe, J. A.

    2014-12-01

    Quantitative simulations of the global-scale benefits of climate change mitigation in avoiding biodiversity loss are presented. Previous studies have projected widespread global and regional impacts of climate change on biodiversity. However, these have focused on analysis of business-as-usual scenarios, with no explicit mitigation policy included. This study finds that early, stringent mitigation would avoid a large proportion of the impacts of climate change induced biodiversity loss projected for the 2080s. Furthermore, despite the large number of studies addressing extinction risks in particular species groups, few studies have explored the issue of potential range loss in common and widespread species. Our study is a comprehensive global scale analysis of 48,786 common and widespread species. We show that without climate change mitigation, 57+/-6% of the plants and 34+/-7% of the animals studied are likely to lose over 50% of their present climatic range by the 2080s. This estimate incorporates realistic, taxon-specific dispersal rates. With stringent mitigation, in which emissions peak in 2016 and are reduced by 5% annually thereafter, these losses are reduced by 60%. Furthermore, with stringent mitigation, global temperature rises more slowly, allowing an additional three decades for biodiversity to adapt to a temperature rise of 2C above pre-industrial levels. The work also shows that even with mitigation not all the impacts can now be avoided, and ecosystems and biodiversity generally has a very limited capacity to adapt. Delay in mitigation substantially reduces the percentage of impacts that can be avoided, for example if emissions do not peak until 2030, the percentage of losses that can be avoided declines to 40%. Since even small declines in common and widespread species can disrupt ecosystem function and services, these results indicate that without mitigation, globally widespread losses in ecosystem service provision are to be expected.

  9. Program Simulates Spacecraft Communication Scenarios

    NASA Technical Reports Server (NTRS)

    Land, Kenneth P.; Best, Robert E.; Steel, Douglas J.; Gadd, William C.

    1994-01-01

    Dynamic Environment Communications Alalysis Testbed (DECAT) computer program is modular simulation program. Computes effects of motion, antenna radiation patterns, noise, interference, and other phenomena. Flexibility enables users to analyze many communications scenarios quickly and easily, eliminating need for users to create specific computer programs. Users create simulations involving any number of vehicles, receivers, transmitters, and antennas via graphical user interface (GUI). DECAT GUI implemented by use of software tool called "Transportable Applications Environment Plus" (TAE Plus). Written in C language. Graphical user interface requires TAE Plus, Version 5.1 package available from COSMIC (GSC-13463).

  10. The minimal scenario of leptogenesis

    NASA Astrophysics Data System (ADS)

    Blanchet, Steve; Di Bari, Pasquale

    2012-12-01

    We review the main features and results of thermal leptogenesis within the type I seesaw mechanism, the minimal extension of the Standard Model explaining neutrino masses and mixing. After presenting the simplest approach, the vanilla scenario, we discuss various important developments of recent years, such as the inclusion of lepton and heavy neutrino flavour effects, a description beyond a hierarchical heavy neutrino mass spectrum and an improved kinetic description within the density matrix and the closed-time-path formalisms. We also discuss how leptogenesis can ultimately represent an important phenomenological tool to test the seesaw mechanism and the underlying model of new physics.

  11. Mitigation of structureborne noise nuisance

    NASA Astrophysics Data System (ADS)

    Ko, Wing P.

    2005-09-01

    This paper presents a noise complaint case which was solved by me a few years ago in Hong Kong. A newlywed couple in the residential unit complained to the Government that the noise emitted from the pump room directly beneath their unit was very annoying, especially in the night-time period. The owner of the building was then required by the Government to mitigate the noise to the night-time statutory noise requirement within 30 days, otherwise he would be prosecuted. Ideally, the structureborne noise from the pump room could be effectively mitigated by installation of floating slab and vibration isolators under the pumps. Also, the water tanks and water pipes were required to be isolated from the walls and floor. However, this work was impossible to be completed within 30 days to stop the prosecution. Water supply to the above residents would be seriously interrupted during the construction period. As the only noise parameter of the statutory requirement was 30 minute A-weighted Leq, the most effective and practical way in this exigent situation was to reduce the pump operation time within any 30 minute period to decrease the Leq values. In addition, the water pipes and pumps were also required to be isolated from the walls and floor with resilient materials to break the vibration channels. These noise mitigation measures were successfully applied to the pump room before the end of the 30 days. Finally, the noise levels inside the complainant's unit were found to meet the statutory requirement. The noise complaint case was then closed by the Government.

  12. Smart disaster mitigation in Thailand

    NASA Astrophysics Data System (ADS)

    Aimmanee, S.; Ekkawatpanit, C.; Asanuma, H.

    2016-04-01

    Thailand is notoriously exposed to several natural disasters, from heavy thunder storms to earthquakes and tsunamis, since it is located in the tropical area and has tectonic cracks underneath the ground. Besides these hazards flooding, despite being less severe, occurs frequently, stays longer than the other disasters, and affects a large part of the national territory. Recently in 2011 have also been recorded the devastating effects of major flooding causing the economic damages and losses around 50 billion dollars. Since Thailand is particularly exposed to such hazards, research institutions are involved in campaigns about monitoring, prevention and mitigation of the effects of such phenomena, with the aim to secure and protect human lives, and secondly, the remarkable cultural heritage. The present paper will first make a brief excursus on the main Thailand projects aimed at the mitigation of natural disasters, referring to projects of national and international relevance, being implemented, such as the ESCAP1999 (flow regime regulation and water conservation). Adaptable devices such as foldable flood barriers and hydrodynamically supported temporary banks have been utilized when flooding. In the second part of the paper, will be described some new ideas concerning the use of smart and biomimicking column structures capable of high-velocity water interception and velocity detection in the case of tsunami. The pole configuration is composite cylindrical shell structure embedded with piezoceramic sensor. The vortex shedding of the flow around the pole induces the vibration and periodically strains the piezoelectric element, which in turn generates the electrical sensorial signal. The internal space of the shell is filled with elastic foam to enhance the load carrying capability due to hydrodynamic application. This more rigid outer shell inserted with soft core material resemble lotus stem in nature in order to prolong local buckling and ovalization of column

  13. Energy strategy and mitigation potential in energy sector of the Russian federation

    SciTech Connect

    Yakovlev, A.F.; Petrov, V.N.; Chupyatov, V.P.

    1996-12-31

    This paper describes the mitigation potential in the Russian energy sector and presents CO{sub 2} - emission scenarios. Based on the Russian energy strategy, energy conservation potential has been estimated and three groups of energy conservation measures have been pointed out. Taking into account the economic development scenarios and the scenarios of energy consumption and energy conservation, future CO{sub 2} emission scenarios for 2000 and 2010 have been prepared. Some important characteristics of these scenarios have been presented and discussed. For the period 2000-2010 annual growth rates for CO{sub 2} emission in the Russian energy sector will not exceed 0.9-1.3 %, and emission levels in 2000 make up - 75-78 %, and in 2010 - 81-88 % of the 1990 level. For the probable scenario the CO{sub 2} emission reducing will make up about 6% and 25% (for the optimistic scenario about 16% and 31%) of CO{sub 2} emission for reference scenario in 2000 and 2010 respectively. Additional CO{sub 2} emission reducing (3-5% of domestic CO{sub 2} emission) will result from increasing share of natural gas consumption.

  14. Passive mitigation of mode instabilities

    NASA Astrophysics Data System (ADS)

    Jauregui, C.; Otto, H.-J.; Stutzki, F.; Jansen, F.; Limpert, J.; Tünnermann, A.

    2014-03-01

    The phenomenon of mode instabilities has quickly become the most limiting effect for a further scaling of the average power of fiber laser systems. Consequently it is of great importance to find solutions for this problem. In this work we propose two concrete possible passive mitigation strategies: the first one is based on the reduction of the heat load in the fiber, whereas the second one is based on the reduction of the pump absorption. In both cases a significant increase of the threshold is expected.

  15. Efficacy of geoengineering to limit 21st century sea-level rise

    PubMed Central

    Moore, J. C.; Jevrejeva, S.; Grinsted, A.

    2010-01-01

    Geoengineering has been proposed as a feasible way of mitigating anthropogenic climate change, especially increasing global temperatures in the 21st century. The two main geoengineering options are limiting incoming solar radiation, or modifying the carbon cycle. Here we examine the impact of five geoengineering approaches on sea level; SO2 aerosol injection into the stratosphere, mirrors in space, afforestation, biochar, and bioenergy with carbon sequestration. Sea level responds mainly at centennial time scales to temperature change, and has been largely driven by anthropogenic forcing since 1850. Making use a model of sea-level rise as a function of time-varying climate forcing factors (solar radiation, volcanism, and greenhouse gas emissions) we find that sea-level rise by 2100 will likely be 30 cm higher than 2000 levels despite all but the most aggressive geoengineering under all except the most stringent greenhouse gas emissions scenarios. The least risky and most desirable way of limiting sea-level rise is bioenergy with carbon sequestration. However aerosol injection or a space mirror system reducing insolation at an accelerating rate of 1 W m-2 per decade from now to 2100 could limit or reduce sea levels. Aerosol injection delivering a constant 4 W m-2 reduction in radiative forcing (similar to a 1991 Pinatubo eruption every 18 months) could delay sea-level rise by 40–80 years. Aerosol injection appears to fail cost-benefit analysis unless it can be maintained continuously, and damage caused by the climate response to the aerosols is less than about 0.6% Global World Product. PMID:20798055

  16. Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; O'Neill, B. C.

    2014-12-01

    Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S

  17. Potentials to mitigate climate change using biochar - the Austrian perspective

    NASA Astrophysics Data System (ADS)

    Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.

    2015-04-01

    Biomass utilization is seen as one of various promising strategies to reduce additional carbon emissions. A recent project on potentials of biochar to mitigate climate change (FOREBIOM) goes even a step further towards bioenergy in combination of CCS or "BECS" and tries to assess the current potentials, from sustainable biomass availability to biochar amendment in soils, including the identification of potential disadvantages and current research needs. The current report represents an outcome of the 1st FOREBIOM Workshop held in Vienna in April, 2013 and tries to characterize the Austrian perspective of biochar for climate change mitigation. The survey shows that for a widespread utilization of biochar in climate change mitigation strategies, still a number of obstacles have to be overcome. There are concerns regarding production and application costs, contamination and health issues for both producers and customers besides a fragmentary knowledge about biochar-soil interactions specifically in terms of long-term behavior, biochar stability and the effects on nutrient cycles. However, there are a number of positive examples showing that biochar indeed has the potential to sequester large amounts of carbon while improving soil properties and subsequently leading to a secondary carbon sink via rising soil productivity. Diversification, cascadic utilization and purpose designed biochar production are key strategies overcoming initial concerns, especially regarding economic aspects. A theoretical scenario calculation showed that relatively small amounts of biomass that is currently utilized for energy can reduce the gap between Austria's current GHG emissions and the Kyoto target by about 30% if biomass residues are pyrolized and biochar subsequently used as soil amendment. However, by using a more conservative approach that is representing the aims of the underlying FOREBIOM project (assuming that 10% of the annual biomass increment from forests is used for biochar

  18. Earthquake scenarios based on lessons from the past

    NASA Astrophysics Data System (ADS)

    Solakov, Dimcho; Simeonova, Stella; Aleksandrova, Irena; Popova, Iliana

    2010-05-01

    Earthquakes are the most deadly of the natural disasters affecting the human environment; indeed catastrophic earthquakes have marked the whole human history. Global seismic hazard and vulnerability to earthquakes are increasing steadily as urbanization and development occupy more areas that are prone to effects of strong earthquakes. Additionally, the uncontrolled growth of mega cities in highly seismic areas around the world is often associated with the construction of seismically unsafe buildings and infrastructures, and undertaken with an insufficient knowledge of the regional seismicity peculiarities and seismic hazard. The assessment of seismic hazard and generation of earthquake scenarios is the first link in the prevention chain and the first step in the evaluation of the seismic risk. The implementation of the earthquake scenarios into the policies for seismic risk reduction will allow focusing on the prevention of earthquake effects rather than on intervention following the disasters. The territory of Bulgaria (situated in the eastern part of the Balkan Peninsula) represents a typical example of high seismic risk area. Over the centuries, Bulgaria has experienced strong earthquakes. At the beginning of the 20-the century (from 1901 to 1928) five earthquakes with magnitude larger than or equal to MS=7.0 occurred in Bulgaria. However, no such large earthquakes occurred in Bulgaria since 1928, which may induce non-professionals to underestimate the earthquake risk. The 1986 earthquake of magnitude MS=5.7 occurred in the central northern Bulgaria (near the town of Strazhitsa) is the strongest quake after 1928. Moreover, the seismicity of the neighboring countries, like Greece, Turkey, former Yugoslavia and Romania (especially Vrancea-Romania intermediate earthquakes), influences the seismic hazard in Bulgaria. In the present study deterministic scenarios (expressed in seismic intensity) for two Bulgarian cities (Rouse and Plovdiv) are presented. The work on

  19. Sixteenth Century Astronomical Telescopy

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    2001-12-01

    Ophelia in Shakespeare's Hamlet is named for the ``moist star" which in mythology is the partner of Hamlet's royal Sun. Together the couple seem destined to rule on earth just as their celestial counterparts rule the heavens, but the tragedy is that they are afflicted, just as the Sun and Moon are blemished. In 1.3 Laertes lectures Ophelia on love and chastity, describing first Cytherean phases (crescent to gibbous) and then Lunar craters. Spots mar the Sun (1.1, 3.1). Also reported are Jupiter's Red Spot (3.4) and the resolution of the Milky Way into stars (2.2). These interpretations are well-founded and support the cosmic allegory. Observations must have been made with optical aid, probably the perspective glass of Leonard Digges, father of Thomas Digges. Notably absent from Hamlet is mention of the Galilean moons, owing perhaps to the narrow field-of-view of the telescope. That discovery is later celebrated in Cymbeline, published soon after Galileo's Siderius Nuncius in 1610. In 5.4 of Cymbeline the four ghosts dance ``in imitation of planetary motions" and at Jupiter's behest place a book on the chest of Posthumus Leonatus. His name identifies the Digges father and son as the source of data in Hamlet since Jupiter's moons were discovered after the deaths of Leonard (``leon+hart") and Thomas (the ``lion's whelp"). Lines in 5.4 urge us not to read more into the book than is contained between its covers; this is understandable because Hamlet had already reported the other data in support of heliocentricism and the cosmic model discussed and depicted by Thomas Digges in 1576. I conclude therefore that astronomical telescopy began in England before the last quarter of the sixteenth century.

  20. Evaluation of turbulence mitigation methods

    NASA Astrophysics Data System (ADS)

    van Eekeren, Adam W. M.; Huebner, Claudia S.; Dijk, Judith; Schutte, Klamer; Schwering, Piet B. W.

    2014-05-01

    Atmospheric turbulence is a well-known phenomenon that diminishes the recognition range in visual and infrared image sequences. There exist many different methods to compensate for the effects of turbulence. This paper focuses on the performance of two software-based methods to mitigate the effects of low- and medium turbulence conditions. Both methods are capable of processing static and dynamic scenes. The first method consists of local registration, frame selection, blur estimation and deconvolution. The second method consists of local motion compensation, fore- /background segmentation and weighted iterative blind deconvolution. A comparative evaluation using quantitative measures is done on some representative sequences captured during a NATO SET 165 trial in Dayton. The amount of blurring and tilt in the imagery seem to be relevant measures for such an evaluation. It is shown that both methods improve the imagery by reducing the blurring and tilt and therefore enlarge the recognition range. Furthermore, results of a recognition experiment using simulated data are presented that show that turbulence mitigation using the first method improves the recognition range up to 25% for an operational optical system.

  1. Scenario Development for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Mahmoud, M.; Gupta, H.; Stewart, S.; Liu, Y.; Hartmann, H.; Wagener, T.

    2006-12-01

    The primary goal of employing a scenario development approach for the U.S. southwest is to inform regional policy by examining future possibilities related to regional vegetation change, water-leasing, and riparian restoration. This approach is necessary due to a lack of existing explicit water resources application of scenarios to the entire southwest region. A formal approach for scenario development is adopted and applied towards water resources issues within the arid and semi-arid regions of the U.S. southwest following five progressive and reiterative phases: scenario definition, scenario construction, scenario analysis, scenario assessment, and risk management. In the scenario definition phase, the inputs of scientists, modelers, and stakeholders were collected in order to define and construct relevant scenarios to the southwest and its water sustainability needs. From stakeholder-driven scenario workshops and breakout sessions, the three main axes of principal change were identified to be climate change, population development patterns, and quality of information monitoring technology. Based on the extreme and varying conditions of these three main axes, eight scenario narratives were drafted to describe the state of each scenario's respective future and the events which led to it. Events and situations are described within each scenario narrative with respect to key variables; variables that are both important to regional water resources (as distinguished by scientists and modelers), and are good tracking and monitoring indicators of change. The current phase consists of scenario construction, where the drafted scenarios are re-presented to regional scientists and modelers to verify that proper key variables are included (or excluded) from the eight narratives. The next step is to construct the data sets necessary to implement the eight scenarios on the respective computational models of modelers investigating vegetation change, water-leasing, and riparian

  2. Twenty-Five Years of HIV: Lessons for Low Prevalence Scenarios

    PubMed Central

    Sawires, Sharif; Birnbaum, Nina; Abu-Raddad, Laith; Szekeres, Greg; Gayle, Jacob

    2012-01-01

    During the initial quarter century since the discovery of HIV, international response has focused on high prevalence scenarios and concentrated epidemics. Until recently, the theoretical underpinnings of HIV prevention were largely based on these responses—the assumption that inadequate responses to concentrated epidemics within low prevalence populations could rapidly lead to generalized epidemics. The limits of these assumptions for HIV prevention in low prevalence scenarios have become evident. While examples of rapid HIV diffusion in once low prevalence scenarios exist, emergence of generalized epidemics are less likely for much of the world. This paper reviews several key issues and advances in biomedical and behavioural HIV prevention to date and highlights relevance to low prevalence scenarios. PMID:19553782

  3. The role of death qualification in venirepersons' evaluations of aggravating and mitigating circumstances in capital trials.

    PubMed

    Butler, Brooke M; Moran, Gary

    2002-04-01

    Previous research has found that death qualification impacts jurors' receptiveness to aggravating and mitigating circumstances (e.g., J. Luginbuhl & K. Middendorf, 1988). However, the purpose of this study was to investigate whether death qualification affects jurors' endorsements of aggravating and mitigating circumstances when Witt, rather than Witherspoon, is the legal standard for death qualification. Four hundred and fifty venirepersons from the 11th Judicial Circuit in Miami, Florida completed a booklet of stimulus materials that contained the following: two death qualification questions; a case scenario that included a summary of the guilt and penalty phases of a capital case; a 26-item measure that required participants to endorse aggravators, nonstatutory mitigators, and statutory mitigators on a 6-point Likert scale; and standard demographic questions. Results indicated that death-qualified venirepersons, when compared to excludables, were more likely to endorse aggravating circumstances. Excludable participants, when compared to death-qualified venirepersons, were more likely to endorse nonstatutory mitigators. There was no significant difference between death-qualified and excludable venirepersons with respect to their endorsement of 6 out of 7 statutory mitigators. It would appear that the Gregg v. Georgia (1976) decision to declare the death penalty unconstitutional is frustrated by the Lockhart v. McCree (1986) affirmation of death qualification. PMID:11985297

  4. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    USGS Publications Warehouse

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, D.C.; Marcot, B.G.; Durner, G.M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  5. DEVELOPMENT OF IMPACT ORIENTED CLIMATE SCENARIOS

    EPA Science Inventory

    Appropriate scenarios of future climate must be developed prior to any assessment of the impacts of climate change. he information needed by impact assessors was examined in consultation with those having experience in scenario use. ost assessors require regional scenarios with a...

  6. Viability of the Matter Bounce Scenario

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Amorós, Jaume

    2015-04-01

    It is shown that teleparallel F(T) theories of gravity combined with Loop Quantum Cosmology support a Matter Bounce Scenario which is an alternative to the inflation scenario in the Big Bang paradigm. It is checked that these bouncing models provide theoretical data that fits well with the current observational data, allowing the viability of the Matter Bounce Scenario.

  7. Scenario Writing: A Vision of the Future.

    ERIC Educational Resources Information Center

    Shewach, Dawn L.

    1991-01-01

    The Scenario Writing component of the Future Problem Solving Program calls for students to write a short-short story exploring variables in the future. This article describes the scenario writing process, presents samples of award-winning scenarios, and offers tips for student-authors and for coaches. (JDD)

  8. Development and Change through Scenario Planning

    ERIC Educational Resources Information Center

    Chermack, Thomas J.; Walton, John S.

    2004-01-01

    This paper examines the role of scenario planning as a development and change intervention. To do so, this article provides an overview of scenario planning and an overview of development and change in organizations. The article then builds on the philosophical orientations of development and change through scenario planning introducing the…

  9. Global Warming in the Twenty-First Century: An Alternative Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lacis, Andrew; Oinas, Valdar; Travis, Larry (Technical Monitor)

    2000-01-01

    A common view is that the current global warming rate will continue or accelerate. But we argue that rapid warming in recent decades has been driven mainly by non-CO2 greenhouse gases (GHGs), such as chlorofluorocarbons, CH4, and N2O, not by the products of fossil fuel burning, CO2 and aerosols, the positive and negative climate forcings of which are partially offsetting. The growth rate of non-CO2 GHGs has declined in the past decade. If sources of CH4 and O3 precursors were reduced in the future, the change in climate forcing by non-CO2 GHGs in the next 50 years could be near zero. Combined with a reduction of black carbon emissions and plausible success in slowing CO2 emissions, this reduction of non-CO2 GHGs could lead to a decline in the rate of global warming, reducing the danger of dramatic climate change. Such a focus on air pollution has practical benefits that unite the interests of developed and developing countries. However, assessment of ongoing and future climate change requires composition specific long-term global monitoring of aerosol properties.

  10. VEMAP vs VINCERA: A DGVM sensitivity to differences in climate scenarios

    NASA Astrophysics Data System (ADS)

    Bachelet, D.; Lenihan, J.; Drapek, R.; Neilson, R.

    2008-11-01

    The MC1 DGVM has been used in two international model comparison projects, VEMAP (Vegetation Ecosystem Modeling and Analysis Project) and VINCERA (Vulnerability and Impacts of North American forests to Climate Change: Ecosystem Responses and Adaptation). The latest version of MC1 was run on both VINCERA and VEMAP climate and soil input data to document how a change in the inputs can affect model outcome. We compared simulation results under the two sets of future climate scenarios and reported on how the different inputs can affect vegetation distribution and carbon budget projections. Under all future scenarios, the interior West becomes woodier as warmer temperatures and available moisture allow trees to get established in grasslands areas. Concurrently, warmer and drier weather causes the eastern deciduous and mixed forests to shift to a more open canopy woodland or savanna type while boreal forests disappear almost entirely from the Great Lakes area by the end of the 21st century. While under VEMAP scenarios the model simulated large increases in carbon storage in a future woodier West, the drier VINCERA scenarios accounted for large carbon losses in the east and only moderate gains in the West. But under all future climate scenarios, the total area burned by wildfires increased especially in C4 grasslands under all scenarios and in dry woodlands under VINCERA scenarios. The model simulated non-agricultural lands in the conterminous United States as a source of carbon in the 21st century under the VINCERA future climate scenarios but not VEMAP. However, the magnitude of this carbon source to the atmosphere could be greatly reduced if the CO 2 growth enhancement factor built in the model was enhanced but evidence that all mature forests across the entire country will respond positively to increased atmospheric CO2 is still lacking.

  11. NEOShield - A global approach to NEO Impact Threat Mitigation

    NASA Astrophysics Data System (ADS)

    Michel, Patrick

    2015-03-01

    asteroid regolith analog materials. The gas-gun investigations enable state-of-the-art numerical models to be verified at small scales. Computer simulations at realistic NEO scales are used to investigate how NEOs with a range of properties would respond to a pulse of energy applied in a deflection attempt. The technical work includes the development of crucial technologies, such as the autonomous guidance of a kinetic impactor to a precise point on the surface of the target, and the detailed design of realistic missions for the purpose of demonstrating the applicability and feasibility of one or more of the techniques investigated. Theoretical work on the blast deflection method of mitigation is designed to probe the circumstances in which this last line of defense may be the only viable option and the issues relating to its deployment. A global response campaign roadmap will be developed based on realistic scenarios presented, for example, by the discovery of an object such as 99942 Apophis or 2011 AG5 on a threatening orbit. The work will include considerations of the timeline of orbit knowledge and impact probability development, reconnaissance observations and fly-by or rendezvous missions, the political decision to mount a mitigation attempt, and the design, development, and launch of the mitigation mission. Collaboration with colleagues outside the NEOShield Consortium involved in complementary activities (e.g. under the auspices of the UN, NASA, or ESA) is being sought in order to establish a broad international strategy. We present a brief overview of the history and planned scope of the project, and progress made to date. The NEOShield project (http://www.neoshield.net) has received funding from the European Union Seventh Framework Program (FP7/2007-2013) under Grant Agreement no. 282703.

  12. An exploration of scenarios to support sustainable land management using integrated environmental socio-economic models.

    PubMed

    Fleskens, L; Nainggolan, D; Stringer, L C

    2014-11-01

    Scenario analysis constitutes a valuable deployment method for scientific models to inform environmental decision-making, particularly for evaluating land degradation mitigation options, which are rarely based on formal analysis. In this paper we demonstrate such an assessment using the PESERA-DESMICE modeling framework with various scenarios for 13 global land degradation hotspots. Starting with an initial assessment representing land degradation and productivity under current conditions, options to combat instances of land degradation are explored by determining: (1) Which technologies are most biophysically appropriate and most financially viable in which locations; we term these the "technology scenarios"; (2) how policy instruments such as subsidies influence upfront investment requirements and financial viability and how they lead to reduced levels of land degradation; we term these the "policy scenarios"; and (3) how technology adoption affects development issues such as food production and livelihoods; we term these the "global scenarios". Technology scenarios help choose the best technology for a given area in biophysical and financial terms, thereby outlining where policy support may be needed to promote adoption; policy scenarios assess whether a policy alternative leads to a greater extent of technology adoption; while global scenarios demonstrate how implementing technologies may serve wider sustainable development goals. Scenarios are applied to assess spatial variation within study sites as well as to compare across different sites. Our results show significant scope to combat land degradation and raise agricultural productivity at moderate cost. We conclude that scenario assessment can provide informative input to multi-level land management decision-making processes. PMID:24263675

  13. Cancer care scenario in Bangladesh

    PubMed Central

    Uddin, A. F. M. Kamal; Khan, Zohora Jameela; Islam, Johirul; Mahmud, AM

    2013-01-01

    Bangladesh is a developing country that is facing many challenges, especially in the health sector. Cancer management is a priority due to the current trend of increased incidence in this region. In this article, the current scenario of cancer in Bangladesh and its management with brief history is outlined. The combined effort of government and private sector is highlighted with the gradual progress in cancer management. Recent introduction of the state-of-the-art facilities and the training facilities for human resource development are also outlined. The existing challenges and cooperation from local NGOs and other overseas sources are also highlighted to provide an insight regarding possible ways to tackle these challenges to ensure a better future. PMID:24455570

  14. SAPPHIRE: scenarios, architecture, and process.

    PubMed

    Kay, S; Redman, R; McWilliams, A; Bradley, P; Daniels, A

    1994-06-01

    General Medical Practice (GMP) information systems within the UK are becoming more sophisticated and more complex and are widely available from numerous suppliers. Although such systems are viewed as being important, they are problematic in terms of interpreting and assessing their usefulness, and their impact upon work and the organisation (G. Walsham, Interpreting Information Systems in Organizations (Wiley, Chichester, 1993)). In particular, it is difficult for any who have an interest in these systems to apply existing technical specifications to a specific situation, and to match individual requirements with the supplier's products. The research project SAPPHIRE seeks to inform the decision making of stakeholders, e.g. GPs, facilitators and suppliers, with respect to procurement, update, design and supply of GMP systems by developing the means of evaluating such systems, and by facilitating an accreditation process through that evaluation. This extended paper introduces the multi-faceted approach, scenarios, architecture and process of SAPPHIRE. PMID:7956163

  15. The ShakeOut Scenario

    USGS Publications Warehouse

    Jones, Lucile M.; Bernknopf, Richard; Cox, Dale; Goltz, James; Hudnut, Kenneth; Mileti, Dennis; Perry, Suzanne; Ponti, Daniel; Porter, Keith; Reichle, Michael; Seligson, Hope; Shoaf, Kimberley; Treiman, Jerry; Wein, Anne

    2008-01-01

    This is the initial publication of the results of a cooperative project to examine the implications of a major earthquake in southern California. The study comprised eight counties: Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura. Its results will be used as the basis of an emergency response and preparedness exercise, the Great Southern California ShakeOut, and for this purpose we defined our earthquake as occurring at 10:00 a.m. on November 13, 2008. As members of the southern California community use the ShakeOut Scenario to plan and execute the exercise, we anticipate discussion and feedback. This community input will be used to refine our assessment and will lead to a formal publication in early 2009. Our goal in the ShakeOut Scenario is to identify the physical, social and economic consequences of a major earthquake in southern California and in so doing, enable the users of our results to identify what they can change now?before the earthquake?to avoid catastrophic impact after the inevitable earthquake occurs. To do so, we had to determine the physical damages (casualties and losses) caused by the earthquake and the impact of those damages on the region?s social and economic systems. To do this, we needed to know about the earthquake ground shaking and fault rupture. So we first constructed an earthquake, taking all available earthquake research information, from trenching and exposed evidence of prehistoric earthquakes, to analysis of instrumental recordings of large earthquakes and the latest theory in earthquake source physics. We modeled a magnitude (M) 7.8 earthquake on the southern San Andreas Fault, a plausible event on the fault most likely to produce a major earthquake. This information was then fed forward into the rest of the ShakeOut Scenario. The damage impacts of the scenario earthquake were estimated using both HAZUS-MH and expert opinion through 13 special studies and 6 expert panels, and fall into four

  16. Radiation Detection Computational Benchmark Scenarios

    SciTech Connect

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for

  17. Low carbon and clean energy scenarios for India: Analysis of targets approach

    SciTech Connect

    Shukla, Priyadarshi R.; Chaturvedi, Vaibhav

    2012-12-01

    Low carbon energy technologies are gaining increasing importance in India for reducing emissions as well as diversifying its energy supply mix. The present paper presents and analyses a targeted approach for pushing solar, wind and nuclear technologies in the Indian energy market. Targets for these technologies have been constructed on the basis of Indian government documents, policy announcements and expert opinion. Different targets have been set for the reference scenario and the carbon price scenario. In the reference scenario it is found that in the long run all solar, wind and nuclear will achieve their targets without any subsidy push. In the short run however, nuclear and solar energy require significant subsidy push. Nuclear energy requires a much higher subsidy allocation as compared to solar because the targets assumed are also higher for nuclear energy. Under a carbon price scenario, the carbon price drives the penetration of these technologies significantly. Still subsidy is required especially in the short run when the carbon price is low. It is also found that pushing solar, wind and nuclear technologies might lead to decrease in share of CCS under the price scenario and biomass under both BAU and price scenario, which implies that one set of low carbon technologies is substituted by other set of low carbon technologies. Thus the objective of emission mitigation might not be achieved due to this substitution. Moreover sensitivity on nuclear energy cost was done to represent risk mitigation for this technology and it was found that higher cost can significantly decrease the share of this technology under both the BAU and carbon price scenario.

  18. Acoustic metamaterials for sound mitigation

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved. xml:lang="fr"

  19. Drought processes, modeling, and mitigation

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok K.; Sivakumar, Bellie; Singh, Vijay P.

    2015-07-01

    Accurate assessment of droughts is crucial for proper planning and management of our water resources, environment, and ecosystems. The combined influence of increasing water demands and the anticipated impacts of global climate change has already raised serious concerns about worsening drought conditions in the future and their social, economic, and environmental impacts. As a result, studies on droughts are currently a major focal point for a broad range of research communities, including civil engineers, hydrologists, environmentalists, ecologists, meteorologists, geologists, agricultural scientists, economists, policy makers, and water managers. There is, therefore, an urgent need for enhancing our understanding of droughts (e.g. occurrence, modeling), making more reliable assessments of their impacts on various sectors of our society (e.g. domestic, agricultural, industrial), and undertaking appropriate adaptation and mitigation measures, especially in the face of global climate change.

  20. The cost effectiveness of radon mitigation in existing German dwellings--a decision theoretic analysis.

    PubMed

    Haucke, Florian

    2010-11-01

    Radon is a naturally occurring inert radioactive gas found in soils and rocks that can accumulate in dwellings, and is associated with an increased risk of lung cancer. This study aims to analyze the cost effectiveness of different intervention strategies to reduce radon concentrations in existing German dwellings. The cost effectiveness analysis (CEA) was conducted as a scenario analysis, where each scenario represents a specific regulatory regime. A decision theoretic model was developed, which reflects accepted recommendations for radon screening and mitigation and uses most up-to-date data on radon distribution and relative risks. The model was programmed to account for compliance with respect to the single steps of radon intervention, as well as data on the sensitivity/specificity of radon tests. A societal perspective was adopted to calculate costs and effects. All scenarios were calculated for different action levels. Cost effectiveness was measured in costs per averted case of lung cancer, costs per life year gained and costs per quality adjusted life year (QALY) gained. Univariate and multivariate deterministic and probabilistic sensitivity analyses (SA) were performed. Probabilistic sensitivity analyses were based on Monte Carlo simulations with 5000 model runs. The results show that legal regulations with mandatory screening and mitigation for indoor radon levels >100 Bq/m(3) are most cost effective. Incremental cost effectiveness compared to the no mitigation base case is 25,181 euro (95% CI: 7371 euro-90,593 euro) per QALY gained. Other intervention strategies focussing primarily on the personal responsibility for screening and/or mitigative actions show considerably worse cost effectiveness ratios. However, targeting radon intervention to radon-prone areas is significantly more cost effective. Most of the uncertainty that surrounds the results can be ascribed to the relative risk of radon exposure. It can be concluded that in the light of

  1. Northern Hemisphere hydroclimate variability over the past twelve centuries.

    PubMed

    Ljungqvist, Fredrik Charpentier; Krusic, Paul J; Sundqvist, Hanna S; Zorita, Eduardo; Brattström, Gudrun; Frank, David

    2016-04-01

    Accurate modelling and prediction of the local to continental-scale hydroclimate response to global warming is essential given the strong impact of hydroclimate on ecosystem functioning, crop yields, water resources, and economic security. However, uncertainty in hydroclimate projections remains large, in part due to the short length of instrumental measurements available with which to assess climate models. Here we present a spatial reconstruction of hydroclimate variability over the past twelve centuries across the Northern Hemisphere derived from a network of 196 at least millennium-long proxy records. We use this reconstruction to place recent hydrological changes and future precipitation scenarios in a long-term context of spatially resolved and temporally persistent hydroclimate patterns. We find a larger percentage of land area with relatively wetter conditions in the ninth to eleventh and the twentieth centuries, whereas drier conditions are more widespread between the twelfth and nineteenth centuries. Our reconstruction reveals that prominent seesaw patterns of alternating moisture regimes observed in instrumental data across the Mediterranean, western USA, and China have operated consistently over the past twelve centuries. Using an updated compilation of 128 temperature proxy records, we assess the relationship between the reconstructed centennial-scale Northern Hemisphere hydroclimate and temperature variability. Even though dry and wet conditions occurred over extensive areas under both warm and cold climate regimes, a statistically significant co-variability of hydroclimate and temperature is evident for particular regions. We compare the reconstructed hydroclimate anomalies with coupled atmosphere-ocean general circulation model simulations and find reasonable agreement during pre-industrial times. However, the intensification of the twentieth-century-mean hydroclimate anomalies in the simulations, as compared to previous centuries, is not supported

  2. Economic resilience lessons from the ShakeOut earthquake scenario

    USGS Publications Warehouse

    Wein, A.; Rose, A.

    2011-01-01

    Following a damaging earthquake, “business interruption” (BI)—reduced production of goods and services—begins and continues long after the ground shaking stops. Economic resilience reduces BI losses by making the best use of the resources available at a given point in time (static resilience) or by speeding recovery through repair and reconstruction (dynamic resilience), in contrast to mitigation that prevents damage in the first place. Economic resilience is an important concept to incorporate into economic loss modeling and in recovery and contingency planning. Economic resilience framework includes the applicability of resilience strategies to production inputs and output, demand- and supply-side effects, inherent and adaptive abilities, and levels of the economy. We use our resilience framework to organize and share strategies that enhance economic resilience, identify overlooked resilience strategies, and present evidence and structure of resilience strategies for economic loss modelers. Numerous resilience strategies are compiled from stakeholder discussions about the ShakeOut Scenario (Jones et. al. 2008). Modeled results of ShakeOut BI sector losses reveal variable effectiveness of resilience strategies for lengthy disruptions caused by fire-damaged buildings and water service outages. Resilience is a complement to mitigation and may, in fact, have cost and all-hazards advantages.

  3. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  4. Analysing the external supply chain risk driver competitiveness: a risk mitigation framework and business continuity plan.

    PubMed

    Blos, Mauricio F; Wee, Hui-Ming; Yang, Joshua

    2010-11-01

    Innovation challenges for handling supply chain risks have become one of the most important drivers in business competitiveness and differentiation. This study analyses competitiveness at the external supply chain level as a driver of risks and provides a framework for mitigating these risks. The mitigation framework, also called the supply chain continuity framework, provides insight into six stages of the business continuity planning (BCP) process life cycle (risk mitigation management, business impact analysis, supply continuity strategy development, supply continuity plan development, supply continuity plan testing and supply continuity plan maintenance), together with the operational constructs: customer service, inventory management, flexibility, time to market, ordering cycle time and quality. The purpose of the BCP process life cycle and operational constructs working together is to emphasise the way in which a supply chain can deal with disruption risks and, consequently, bring competitive advantage. Future research will consider the new risk scenarios and analyse the consequences to promote the improvement of supply chain resilience. PMID:21177223

  5. Load Mitigation Control Design for a Wind Turbine Operating in the Path of Vortices

    SciTech Connect

    Hand, M. M.; Balas, M. J.

    2004-08-01

    Turbulence generated in the stable atmospheric boundary layer can contain vorticity that adversely affects wind turbine blade fatigue life. We investigated advanced control algorithms that mitigate the vortex/wind turbine interaction. State space control designs can meet multiple control objectives such as maintaining power regulation while mitigating blade flap bending moment amplitude. We implemented disturbance accommodating control (DAC) methods in a structural dynamics code to mitigate blade loads and maintain constant power production in above-rated wind speeds. As a best-case scenario, we implemented a disturbance model that incorporated very detailed vortex characteristics in full-state feedback. This reduced equivalent fatigue load as much as 30% compared to a standard proportional-integral (PI) controller. A realizable DAC controller that incorporates only the vertical shear component of the vortex reduced loads by 9% compared to a PI controller, and as much as 29% when the vortex was superimposed over normal turbulence.

  6. Overview of the ARkStorm scenario

    USGS Publications Warehouse

    Porter, Keith; Wein, Anne; Alpers, Charles; Baez, Allan; Barnard, Patrick L.; Carter, James; Corsi, Alessandra; Costner, James; Cox, Dale; Das, Tapash; Dettinger, Mike; Done, James; Eadie, Charles; Eymann, Marcia; Ferris, Justin; Gunturi, Prasad; Hughes, Mimi; Jarrett, Robert; Johnson, Laurie; Le-Griffin, Hanh Dam; Mitchell, David; Morman, Suzette; Neiman, Paul; Olsen, Anna; Perry, Suzanne; Plumlee, Geoffrey; Ralph, Martin; Reynolds, David; Rose, Adam; Schaefer, Kathleen; Serakos, Julie; Siembieda, William; Stock, Jonathan; Strong, David; Wing, Ian Sue; Tang, Alex; Thomas, Pete; Topping, Ken; Wills, Chris; Jones, Lucile

    2011-01-01

    The U.S. Geological Survey, Multi Hazards Demonstration Project (MHDP) uses hazards science to improve resiliency of communities to natural disasters including earthquakes, tsunamis, wildfires, landslides, floods and coastal erosion. The project engages emergency planners, businesses, universities, government agencies, and others in preparing for major natural disasters. The project also helps to set research goals and provides decision-making information for loss reduction and improved resiliency. The first public product of the MHDP was the ShakeOut Earthquake Scenario published in May 2008. This detailed depiction of a hypothetical magnitude 7.8 earthquake on the San Andreas Fault in southern California served as the centerpiece of the largest earthquake drill in United States history, involving over 5,000 emergency responders and the participation of over 5.5 million citizens. This document summarizes the next major public project for MHDP, a winter storm scenario called ARkStorm (for Atmospheric River 1,000). Experts have designed a large, scientifically realistic meteorological event followed by an examination of the secondary hazards (for example, landslides and flooding), physical damages to the built environment, and social and economic consequences. The hypothetical storm depicted here would strike the U.S. West Coast and be similar to the intense California winter storms of 1861 and 1862 that left the central valley of California impassible. The storm is estimated to produce precipitation that in many places exceeds levels only experienced on average once every 500 to 1,000 years. Extensive flooding results. In many cases flooding overwhelms the state's flood-protection system, which is typically designed to resist 100- to 200-year runoffs. The Central Valley experiences hypothetical flooding 300 miles long and 20 or more miles wide. Serious flooding also occurs in Orange County, Los Angeles County, San Diego, the San Francisco Bay area, and other

  7. 3(omega) Damage: Growth Mitigation

    SciTech Connect

    Kozlowski, M; Demos, S; Wu, Z-L; Wong, J; Penetrante, B; Hrubesh, L

    2001-02-22

    The design of high power UV laser systems is limited to a large extent by the laser-initiated damage performance of transmissive fused silica optical components. The 3{omega} (i.e., the third harmonic of the primary laser frequency) damage growth mitigation LDRD effort focused on understanding and reducing the rapid growth of laser-initiated surface damage on fused silica optics. Laser-initiated damage can be discussed in terms of two key issues: damage initiated at some type of precursor and rapid damage growth of the damage due to subsequent laser pulses. The objective of the LDRD effort has been the elucidation of laser-induced damage processes in order to quantify and potentially reduce the risk of damage to fused silica surfaces. The emphasis of the first two years of this effort was the characterization and reduction of damage initiation. In spite of significant reductions in the density of damage sites on polished surfaces, statistically some amount of damage initiation should always be expected. The early effort therefore emphasized the development of testing techniques that quantified the statistical nature of damage initiation on optical surfaces. This work led to the development of an optics lifetime modeling strategy that has been adopted by the NIF project to address damage-risk issues. During FY99 interest shifted to the damage growth issue which was the focus of the final year of this project. The impact of the remaining damage sites on laser performance can be minimized if the damage sites did not continue to grow following subsequent illumination. The objectives of the final year of the LDRD effort were to apply a suite of state-of-the-art characterization tools to elucidate the nature of the initiated damage sites, and to identify a method that effectively mitigates further damage growth. Our specific goal is to understand the cause for the rapid growth of damage sites so that we can develop and apply an effective means to mitigate it. The

  8. Listeria monocytogenes in Retail Delicatessens: An Interagency Risk Assessment-Risk Mitigations.

    PubMed

    Gallagher, Daniel; Pouillot, Régis; Hoelzer, Karin; Tang, Jia; Dennis, Sherri B; Kause, Janell R

    2016-07-01

    Cross-contamination, improper holding temperatures, and insufficient sanitary practices are known retail practices that may lead to product contamination and growth of Listeria monocytogenes. However, the relative importance of control options to mitigate the risk of invasive listeriosis from ready-to-eat (RTE) products sliced or prepared at retail is not well understood. This study illustrates the utility of a quantitative risk assessment model described in a first article of this series (Pouillot, R., D. Gallagher, J. Tang, K. Hoelzer, J. Kause, and S. B. Dennis, J. Food Prot. 78:134-145, 2015) to evaluate the public health impact associated with changes in retail deli practices and interventions. Twenty-two mitigation scenarios were modeled and evaluated under six different baseline conditions. These scenarios were related to sanitation, worker behavior, use of growth inhibitors, cross-contamination, storage temperature control, and reduction of the level of L. monocytogenes on incoming RTE food products. The mean risk per serving of RTE products obtained under these scenarios was then compared with the risk estimated in the baseline condition. Some risk mitigations had a consistent impact on the predicted listeriosis risk in all baseline conditions (e.g. presence or absence of growth inhibitor), whereas others were greatly dependent on the initial baseline conditions or practices in the deli (e.g. preslicing of products). Overall, the control of the bacterial growth and the control of contamination at its source were major factors of listeriosis risk in these settings. Although control of cross-contamination and continued sanitation were also important, the decrease in the predicted risk was not amenable to a simple solution. Findings from these predictive scenario analyses are intended to encourage improvements to retail food safety practices and mitigation strategies to control L. monocytogenes in RTE foods more effectively and to demonstrate the utility of

  9. Costs of mitigating CO2 emissions from passenger aircraft

    NASA Astrophysics Data System (ADS)

    Schäfer, Andreas W.; Evans, Antony D.; Reynolds, Tom G.; Dray, Lynnette

    2016-04-01

    In response to strong growth in air transportation CO2 emissions, governments and industry began to explore and implement mitigation measures and targets in the early 2000s. However, in the absence of rigorous analyses assessing the costs for mitigating CO2 emissions, these policies could be economically wasteful. Here we identify the cost-effectiveness of CO2 emission reductions from narrow-body aircraft, the workhorse of passenger air transportation. We find that in the US, a combination of fuel burn reduction strategies could reduce the 2012 level of life cycle CO2 emissions per passenger kilometre by around 2% per year to mid-century. These intensity reductions would occur at zero marginal costs for oil prices between US$50-100 per barrel. Even larger reductions are possible, but could impose extra costs and require the adoption of biomass-based synthetic fuels. The extent to which these intensity reductions will translate into absolute emissions reductions will depend on fleet growth.

  10. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    PubMed Central

    Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC’s Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation

  11. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    PubMed

    Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation

  12. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?

    NASA Astrophysics Data System (ADS)

    Levas, Stephen; Grottoli, Andréa G.; Schoepf, Verena; Aschaffenburg, Matthew; Baumann, Justin; Bauer, James E.; Warner, Mark E.

    2016-06-01

    Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral— Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11-36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling.

  13. Web Based Tool for Mission Operations Scenarios

    NASA Technical Reports Server (NTRS)

    Boyles, Carole A.; Bindschadler, Duane L.

    2008-01-01

    A conventional practice for spaceflight projects is to document scenarios in a monolithic Operations Concept document. Such documents can be hundreds of pages long and may require laborious updates. Software development practice utilizes scenarios in the form of smaller, individual use cases, which are often structured and managed using UML. We have developed a process and a web-based scenario tool that utilizes a similar philosophy of smaller, more compact scenarios (but avoids the formality of UML). The need for a scenario process and tool became apparent during the authors' work on a large astrophysics mission. It was noted that every phase of the Mission (e.g., formulation, design, verification and validation, and operations) looked back to scenarios to assess completeness of requirements and design. It was also noted that terminology needed to be clarified and structured to assure communication across all levels of the project. Attempts to manage, communicate, and evolve scenarios at all levels of a project using conventional tools (e.g., Excel) and methods (Scenario Working Group meetings) were not effective given limitations on budget and staffing. The objective of this paper is to document the scenario process and tool created to offer projects a low-cost capability to create, communicate, manage, and evolve scenarios throughout project development. The process and tool have the further benefit of allowing the association of requirements with particular scenarios, establishing and viewing relationships between higher- and lower-level scenarios, and the ability to place all scenarios in a shared context. The resulting structured set of scenarios is widely visible (using a web browser), easily updated, and can be searched according to various criteria including the level (e.g., Project, System, and Team) and Mission Phase. Scenarios are maintained in a web-accessible environment that provides a structured set of scenario fields and allows for maximum

  14. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss

    NASA Astrophysics Data System (ADS)

    Warren, R.; Vanderwal, J.; Price, J.; Welbergen, J. A.; Atkinson, I.; Ramirez-Villegas, J.; Osborn, T. J.; Jarvis, A.; Shoo, L. P.; Williams, S. E.; Lowe, J.

    2013-07-01

    Climate change is expected to have significant influences on terrestrial biodiversity at all system levels, including species-level reductions in range size and abundance, especially amongst endemic species. However, little is known about how mitigation of greenhouse gas emissions could reduce biodiversity impacts, particularly amongst common and widespread species. Our global analysis of future climatic range change of common and widespread species shows that without mitigation, 57+/-6% of plants and 34+/-7% of animals are likely to lose >=50% of their present climatic range by the 2080s. With mitigation, however, losses are reduced by 60% if emissions peak in 2016 or 40% if emissions peak in 2030. Thus, our analyses indicate that without mitigation, large range contractions can be expected even amongst common and widespread species, amounting to a substantial global reduction in biodiversity and ecosystem services by the end of this century. Prompt and stringent mitigation, on the other hand, could substantially reduce range losses and buy up to four decades for climate change adaptation.

  15. Innovations in science and scenarios for assessment

    SciTech Connect

    Kunkel, Kenneth E.; Moss, Richard; Parris, Adam

    2015-08-29

    Scenarios for the Third National Climate Assessment (NCA3) were produced for physical climate and sea level rise with substantial input from disciplinary and regional experts. These scenarios underwent extensive review and were published as NOAA Technical Reports. For land use/cover and socioeconomic conditions, scenarios already developed by other agencies were specified for use in the NCA3. Efforts to enhance participatory scenario planning as an assessment activity were pursued, but with limited success. Issues and challenges included the timing of availability of scenarios, the need for guidance in use of scenarios, the need for approaches to nest information within multiple scales and sectors, engagement and collaboration of end users in scenario development, and development of integrated scenarios. Future assessments would benefit from an earlier start to scenarios development, the provision of training in addition to guidance documents, new and flexible approaches for nesting information, ongoing engagement and advice from both scientific and end user communities, and the development of consistent and integrated scenarios.

  16. Beyond Pattern Scaling: Statistical Emulation and its Implications for ScenarioMIP

    NASA Astrophysics Data System (ADS)

    Challenor, P. G.; Williamson, D.

    2014-12-01

    One of the crucial aspects of climate policy in the near future is the design of mitigation strategies. However, we can only get information from state of the art climate models at a handful of mitigation scenarios (e.g. the SRES and RCP scenarios). In order to compare alternative strategies and their impacts using models, we need to consider the climate effects of the corresponding emission/concentration pathways for which we don't have climate model output. Currently this is mainly done by pattern-scaling - multiplying the mean pattern of climate change by the change in the mean of the variable (e.g. temperature or precipitation) over time. A generalised alternative to pattern scaling is statistical emulation. A statistical emulator is a more sophisticated way of interpolating climates between a limited number of model runs. Although widely used in science for the modelling of computer experiments, the use of statistical emulators in climate science has been limited and mainly used for perturbed physics ensembles. However emulators are perfectly well suited for use with forcing conditions instead of (or as well as) model parameters. Pattern scaling is a special (very simple) case of an emulator. We will show how by parameterising the forcing functions and building emulators we can predict the climate for any reasonable set of forcings (including overshoot scenarios and other 'odd' forcing pathways). We also set out how a ScenarioMIP type experiment would have to be configured to achieve this.

  17. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested

  18. Modelling interactions between mitigation, adaptation and sustainable development

    NASA Astrophysics Data System (ADS)

    Reusser, D. E.; Siabatto, F. A. P.; Garcia Cantu Ros, A.; Pape, C.; Lissner, T.; Kropp, J. P.

    2012-04-01

    Managing the interdependence of climate mitigation, adaptation and sustainable development requires a good understanding of the dominant socioecological processes that have determined the pathways in the past. Key variables include water and food availability which depend on climate and overall ecosystem services, as well as energy supply and social, political and economic conditions. We present our initial steps to build a system dynamic model of nations that represents a minimal set of relevant variables of the socio- ecological development. The ultimate goal of the modelling exercise is to derive possible future scenarios and test those for their compatibility with sustainability boundaries. Where dynamics go beyond sustainability boundaries intervention points in the dynamics can be searched.

  19. Near-Term Climate Mitigation by Short-Lived Forcers

    SciTech Connect

    Smith, Steven J.; Mizrahi, Andrew H.

    2013-08-12

    Emissions reductions focused on anthropogenic climate forcing agents with relatively short atmospheric lifetimes such as methane (CH4) and black carbon (BC) have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and BC would likely have only a modest impact on near-term climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 are reduced by 0.16 °C, with an uncertainty range of 0.04-0.36°C, with the high end of this range only possible if total historical aerosol forcing is small. More realistic mitigation scenarios would likely provide a smaller climate benefit. The climate benefits from targeted reductions in short-lived forcing agents are smaller than previously estimated and are not substantially different in magnitude from the benefits due to a comprehensive climate policy.

  20. Water supply risk on the Colorado River: Can management mitigate?

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Balaji; Nowak, Kenneth; Prairie, James; Hoerling, Martin; Harding, Benjamin; Barsugli, Joseph; Ray, Andrea; Udall, Bradley

    2009-08-01

    Population growth and a changing climate will tax the future reliability of the Colorado River water supply. Using a heuristic model, we assess the annual risk to the Colorado River water supply for 2008-2057. Projected demand growth superimposed upon historical climate variability results in only a small probability of annual reservoir depletion through 2057. In contrast, a scenario of 20% reduction in the annual Colorado River flow due to climate change by 2057 results in a near tenfold increase in the probability of annual reservoir depletion by 2057. However, our analysis suggests that flexibility in current management practices could mitigate some of the increased risk due to climate change-induced reductions in flows.

  1. Identifiability in biobanks: models, measures, and mitigation strategies

    PubMed Central

    Loukides, Grigorios; Benitez, Kathleen; Clayton, Ellen Wright

    2013-01-01

    The collection and sharing of person-specific biospecimens has raised significant questions regarding privacy. In particular, the question of identifiability, or the degree to which materials stored in biobanks can be linked to the name of the individuals from which they were derived, is under scrutiny. The goal of this paper is to review the extent to which biospecimens and affiliated data can be designated as identifiable. To achieve this goal, we summarize recent research in identifiability assessment for DNA sequence data, as well as associated demographic and clinical data, shared via biobanks. We demonstrate the variability of the degree of risk, the factors that contribute to this variation, and potential ways to mitigate and manage such risk. Finally, we discuss the policy implications of these findings, particularly as they pertain to biobank security and access policies. We situate our review in the context of real data sharing scenarios and biorepositories. PMID:21739176

  2. The importance of mangrove forest in tsunami disaster mitigation.

    PubMed

    Osti, Rabindra; Tanaka, Shigenobu; Tokioka, Toshikazu

    2009-04-01

    Tsunamis and storm surges have killed more than one million people and some three billion people currently live with a high risk of these disasters, which are becoming more frequent and devastating worldwide. Effective mitigation of such disasters is possible via healthy coastal forests, which can reduce the energy of tsunamis. In recent years, these natural barriers have declined due to adverse human and natural activities. In the past 20 years, the world has lost almost 50 per cent of its mangrove forests, making them one of the most endangered landscapes. It is essential to recover them and to use them as a shield against a tsunami and as a resource to secure optimal socio-economic, ecological and environmental benefits. This paper examines the emerging scenario facing mangrove forests, discusses protection from tsunamis, and proposes a way to improve the current situation. We hope that practical tips will help communities and agencies to work collectively to achieve a common goal. PMID:18699857

  3. 40 CFR 1508.20 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Mitigation. 1508.20 Section 1508.20 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.20 Mitigation... eliminating the impact over time by preservation and maintenance operations during the life of the action....

  4. 34 CFR 81.33 - Mitigating circumstances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 1 2011-07-01 2011-07-01 false Mitigating circumstances. 81.33 Section 81.33 Education Office of the Secretary, Department of Education GENERAL EDUCATION PROVISIONS ACT-ENFORCEMENT Hearings for Recovery of Funds § 81.33 Mitigating circumstances. (a) A recipient that is a State or...

  5. Wake Turbulence Mitigation for Arrivals (WTMA)

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Lohr, Gary W.; Trujillo, Anna C.

    2008-01-01

    The preliminary Wake Turbulence Mitigation for Arrivals (WTMA) concept of operations is described in this paper. The WTMA concept provides further detail to work initiated by the Wake Vortex Avoidance System Concept Evaluation Team and is an evolution of the Wake Turbulence Mitigation for Departure concept. Anticipated benefits about reducing wake turbulence separation standards in crosswind conditions, and candidate WTMA system considerations are discussed.

  6. 40 CFR 1508.20 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Mitigation. 1508.20 Section 1508.20 Protection of Environment COUNCIL ON ENVIRONMENTAL QUALITY TERMINOLOGY AND INDEX § 1508.20 Mitigation... eliminating the impact over time by preservation and maintenance operations during the life of the action....

  7. Economic outcomes of greenhouse gas mitigation options

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic outcomes of greenhouse gas (GHG) mitigation options are reviewed including reductions in tillage intensity, diversifying crop rotation, and N fertilizer management. The review indicates that, while reducing tillage can be a cost effective GHG mitigation practice, results vary by region and ...

  8. CO2 mitigation via accelerated limestone weathering

    USGS Publications Warehouse

    Rau, G.H.; Knauss, K.G.; Langer, W.H.; Caldeira, K.

    2004-01-01

    The climate and environmental impacts of the current, carbon-intensive energy usage demands that effective and practical energy alternatives and CO2 mitigation strategies be found. A discussion on CO2 mitigation via accelerated limestone weathering covers limestone and seawater availability and cost; reaction rates and densities; effectiveness in CO2 sequestration; and environmental impacts and benefits.

  9. Mitigation assessment results and priorities in China

    SciTech Connect

    Wu Zongxin; Wei Zhihong

    1996-12-31

    In this paper energy related CO2 emission projections of China by 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the AHP approach is used for helping assessment of priority technologies.

  10. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... clearly whether mitigation measures (40 CFR 1508.20) must be implemented for the alternative selected. If... EPF informed of the mitigation status. The EPF reports its status, through the MAJCOM, to HQ USAF/A7CI... forwarded, through the MAJCOM EPF to HQ USAF/A7CI for review within 90 days from the date of signature...

  11. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... clearly whether mitigation measures (40 CFR 1508.20) must be implemented for the alternative selected. If... EPF informed of the mitigation status. The EPF reports its status, through the MAJCOM, to HQ USAF/A7CI... forwarded, through the MAJCOM EPF to HQ USAF/A7CI for review within 90 days from the date of signature...

  12. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... clearly whether mitigation measures (40 CFR 1508.20) must be implemented for the alternative selected. If... EPF informed of the mitigation status. The EPF reports its status, through the MAJCOM, to HQ USAF/A7CI... forwarded, through the MAJCOM EPF to HQ USAF/A7CI for review within 90 days from the date of signature...

  13. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... clearly whether mitigation measures (40 CFR 1508.20) must be implemented for the alternative selected. If... EPF informed of the mitigation status. The EPF reports its status, through the MAJCOM, to HQ USAF/A7CI... forwarded, through the MAJCOM EPF to HQ USAF/A7CI for review within 90 days from the date of signature...

  14. 32 CFR 989.22 - Mitigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... clearly whether mitigation measures (40 CFR 1508.20) must be implemented for the alternative selected. If... EPF informed of the mitigation status. The EPF reports its status, through the MAJCOM, to HQ USAF/A7CI... forwarded, through the MAJCOM EPF to HQ USAF/A7CI for review within 90 days from the date of signature...

  15. Extreme solar particle events: The worst case scenario

    NASA Astrophysics Data System (ADS)

    Usoskin, Ilya; Kovaltsov, Gennady

    2016-04-01

    Sporadic eruptive energetic events on the Sun may occur during periods of high solar activity. Sometimes such events can be strong or even extreme posing serious hazards for the modern technology and communication dependent society. It is important to asses the worst case scenario for an extreme solar particle event and what the probability of its occurrence. The era of direct scientific exploration of the Sun is short - from few decades to a century, and yet several strong harmful events took place during that time. Can we expect even greater events? How often? What shall we prepare for? In order to answer these questions, one has to rely upon indirect methods by analyzing natural proxy archives. Here we present an overview of the history of extreme solar events in the past, from hundreds to millions of year, based on an analysis of cosmogenic isotopes in terrestrial archives (polar ice cores and tree rings) and in lunar rocks.

  16. Potential acidification impacts on zooplankton in CCS leakage scenarios.

    PubMed

    Halsband, Claudia; Kurihara, Haruko

    2013-08-30

    Carbon capture and storage (CCS) technologies involve localized acidification of significant volumes of seawater, inhabited mainly by planktonic species. Knowledge on potential impacts of these techniques on the survival and physiology of zooplankton, and subsequent consequences for ecosystem health in targeted areas, is scarce. The recent literature has a focus on anthropogenic greenhouse gas emissions into the atmosphere, leading to enhanced absorption of CO2 by the oceans and a lowered seawater pH, termed ocean acidification. These studies explore the effects of changes in seawater chemistry, as predicted by climate models for the end of this century, on marine biota. Early studies have used unrealistically severe CO2/pH values in this context, but are relevant for CCS leakage scenarios. Little studied meso- and bathypelagic species of the deep sea may be especially vulnerable, as well as vertically migrating zooplankton, which require significant residence times at great depths as part of their life cycle. PMID:23632089

  17. Accelerator Disaster Scenarios, the Unabomber, and Scientific Risks

    NASA Astrophysics Data System (ADS)

    Kapusta, Joseph I.

    2008-06-01

    The possibility that experiments at high-energy accelerators could create new forms of matter that would ultimately destroy the Earth has been considered several times in the past quarter century. One consequence of the earliest of these disaster scenarios was that the authors of a 1993 article in "Physics Today" who reviewed the experiments that had been carried out at the Bevalac at Lawrence Berkeley Laboratory were placed on the FBI's Unabomber watch list. Later, concerns that experiments at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory might create mini black holes or nuggets of stable strange quark matter resulted in a flurry of articles in the popular press. I discuss this history, as well as Richard A. Posner's provocative analysis and recommendations on how to deal with such scientific risks. I conclude that better communication between scientists and nonscientists would serve to assuage unreasonable fears and focus attention on truly serious potential threats to humankind.

  18. Longer and More Frequent Mid-Atlantic Heat Waves by Mid-Century

    NASA Astrophysics Data System (ADS)

    Sewall, J. O.

    2011-12-01

    Changes in extreme weather events are an area of concern in the face of changing climate. Heat waves (periods of sustained, above normal temperature) are of particular interest given the heavy costs, not only in strain on infrastructure and utilities but also in loss of human life, they can engender (e.g. in the United States, 1995, 2001, 2010; in Europe, 2003, 2006, 2010). In many instances, the costs of heat waves are associated with insufficient local preparedness and infrastructure. With the Earth predicted to warm, future heat waves could be more frequent, sustained, or intense; therefore, preparation for such events might greatly reduce their societal impacts. This study focuses on potential heat wave changes in the highly populous (greater than 96 people/km2) mid-Atlantic region of the Eastern United States from Alexandria, VA through Washington, DC, Baltimore, MD, Philadelphia, PA, the entire state of New Jersey, New York, NY, Long Island, NY, and the entire state of Connecticut. A nested regional climate model (RegCM3) simulated future climate over this region at a 10 km horizontal resolution for two future emissions scenarios (SRES B1 and A1FI). Output from the NCAR CCSM3 drove the regional simulations for two fifteen-year windows from 2050 - 2064 and 2085 - 2099. The final decade of each simulation was averaged for analyses and compared to a 1990 - 1999 simulation. Under both future forcing scenarios, heat waves in the study region increase compared to the twentieth century. In the B1 simulation, the number of summer (June, July, and August average) days exceeding 37.8° C increased by up to 600% at mid-century and up to 200% at the end of the century; the duration of the longest summer heat wave (consecutive days exceeding 37.8° C) increased by up to 26 days at mid-century and up to 10 days by the end of the century. For the A1FI scenario, the number of summer days exceeding 37.8° C increased by up to 250% at mid-century and up to 1300% at the end of

  19. An optimization model for regional air pollutants mitigation based on the economic structure adjustment and multiple measures: A case study in Urumqi city, China.

    PubMed

    Sun, Xiaowei; Li, Wei; Xie, Yulei; Huang, Guohe; Dong, Changjuan; Yin, Jianguang

    2016-11-01

    A model based on economic structure adjustment and pollutants mitigation was proposed and applied in Urumqi. Best-worst case analysis and scenarios analysis were performed in the model to guarantee the parameters accuracy, and to analyze the effect of changes of emission reduction styles. Results indicated that pollutant-mitigations of electric power industry, iron and steel industry, and traffic relied mainly on technological transformation measures, engineering transformation measures and structure emission reduction measures, respectively; Pollutant-mitigations of cement industry relied mainly on structure emission reduction measures and technological transformation measures; Pollutant-mitigations of thermal industry relied mainly on the four mitigation measures. They also indicated that structure emission reduction was a better measure for pollutants mitigation of Urumqi. Iron and steel industry contributed greatly in SO2, NOx and PM (particulate matters) emission reduction and should be given special attention in pollutants emission reduction. In addition, the scales of iron and steel industry should be reduced with the decrease of SO2 mitigation amounts. The scales of traffic and electric power industry should be reduced with the decrease of NOx mitigation amounts, and the scales of cement industry and iron and steel industry should be reduced with the decrease of PM mitigation amounts. The study can provide references of pollutants mitigation schemes to decision-makers for regional economic and environmental development in the 12th Five-Year Plan on National Economic and Social Development of Urumqi. PMID:27454097

  20. Structural master plan of flood mitigation measures

    NASA Astrophysics Data System (ADS)

    Heidari, A.

    2009-01-01

    Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.

  1. Long term performance of radon mitigation systems

    SciTech Connect

    Prill, R.; Fisk, W.J.

    2002-03-01

    Researchers installed radon mitigation systems in 12 houses in Spokane, Washington and Coeur d'Alene, Idaho during the heating season 1985--1986 and continued to monitor indoor radon quarterly and annually for ten years. The mitigation systems included active sub-slab ventilation, basement over-pressurization, and crawlspace isolation and ventilation. The occupants reported various operational problems with these early mitigation systems. The long-term radon measurements were essential to track the effectiveness of the mitigation systems over time. All 12 homes were visited during the second year of the study, while a second set 5 homes was visited during the fifth year to determine the cause(s) of increased radon in the homes. During these visits, the mitigation systems were inspected and measurements of system performance were made. Maintenance and modifications were performed to improve system performance in these homes.

  2. The Next Generation of Scenarios for Climate Change Research and Assessment

    SciTech Connect

    Wilbanks, Thomas J; Edmonds, Dr. Jae A; Hibbard, Kathy; Manning, Dr. Martin R.; Rose, Steven K.; Moss, Dr. Richard; Van Vuuren, Dr. Detlef; Carter, Dr. Timothy; Emori, Dr. Seita; Kainuma, Dr. Mikiko; Kram, Dr. Tom; Meehl, Dr. Gerald A.; Mitchell, Dr. John F. B.; Nakicenovic, Nebojsa; Riahi, Dr. Keywan; Smith, Dr. Steven J.; Stouffer, Dr. Ronald J.; Thomson, Dr. Allison; Weyant, Dr. John P.

    2010-01-01

    Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth s climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.

  3. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-10-18

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  4. Development of Burning Plasma and Advanced Scenarios in the DIII-D Tokamak

    SciTech Connect

    Luce, T C

    2004-12-01

    Significant progress in the development of burning plasma scenarios, steady-state scenarios at high fusion performance, and basic tokamak physics has been made by the DIII-D Team. Discharges similar to the ITER baseline scenario have demonstrated normalized fusion performance nearly 50% higher than required for Q = 10 in ITER, under stationary conditions. Discharges that extrapolate to Q {approx} 10 for longer than one hour in ITER at reduced current have also been demonstrated in DIII-D under stationary conditions. Proof of high fusion performance with full noninductive operation has been obtained. Underlying this work are studies validating approaches to confinement extrapolation, disruption avoidance and mitigation, tritium retention, ELM avoidance, and operation above the no-wall pressure limit. In addition, the unique capabilities of the DIII-D facility have advanced studies of the sawtooth instability with unprecedented time and space resolution, threshold behavior in the electron heat transport, and rotation in plasmas in the absence of external torque.

  5. Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Xu, Liyi; Snyder, Richard

    2016-05-01

    Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios, climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations—although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications

  6. Assessment of a French scenario with the INPRO methodology

    SciTech Connect

    Vasile, A.; Fiorini, G.L.; Cazalet, J.; Linet, F.L.; Moulin, V.; Greneche, D.

    2006-07-01

    This paper presents the French contribution to the Joint Study of the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). It concerns the application of the INPRO methodology to a French scenario, on the transition from present LWRs to EPRs in a first phase and to 4. generation fast reactors in a second phase during the 21. century. The scenario also considers the renewal of the present fuel cycle facilities by the third and the fourth generation ones. Present practice of plutonium recycling in PWR is replaced by the middle of the century by a global recycling of actinides, uranium, plutonium and minor actinides in fast reactors. The status and the evolution of the INPRO criteria and the corresponding indicators during the studied period are analyzed for each of the six considered areas: economics, safety, environment, waste management, proliferation resistance and infrastructure. Improvements on economic and safety are expected for both the EPR and the 4. generation systems having these improvements among their basic goals. The use of fast reactors and global recycling of actinides leads to a significant improvement on environment indicators and in particular on the natural resources utilization. The envisaged waste management policy results in significant reductions on mass, thermal loads and radiotoxicity of the final waste which only contains fission products. The use of fuels that do not relay on enriched uranium and separated plutonium increases the proliferation resistance characteristics of the future fuel cycle. The paper summarizes also some recommendations on the data, codes and methods used to support the continuous improvement of the INPRO methodology and help future assessors. (authors)

  7. An integrated assessment of energy-water nexus at the state level in the United States: Projections and analyses under different scenarios through 2095

    NASA Astrophysics Data System (ADS)

    Liu, L.; Patel, P. L.; Hejazi, M. I.; Kyle, P.; Davies, E. G.; Zhou, Y.; Clarke, L.; Edmonds, J.

    2013-12-01

    , while U.S. electric-sector water withdrawals are projected to decline by 8.6% - 89% by 2095 and water consumptions are projected to increase by 14% - 101%. Some regional patterns could be observed when analyzing the state-level results spatially. Under the climate mitigation policy (RCP4.5) scenario, nuclear power plants contribute heavily to total electric-sector water withdrawal and consumption in Eastern U.S., while under the reference scenario, coal power plants are the primary water users in Eastern U.S. In the reference scenario, Eastern U.S. is projected to experience substantial drops in water withdrawals, while the Western U.S. will likely endure a moderate increase over the century. The highly-resolved nature of this study both geographically and technologically provides a useful platform to address scientific and policy relevant and emerging issues at the heart of the water-energy nexus in the U.S. Although this study is focused on the U.S., it is performed in the context of the global framework of GCAM where local changes can propagate to influence decisions in other regions outside of the U.S. and vice versa.

  8. Transient scenarios for robust climate change adaptation illustrated for water management in The Netherlands

    NASA Astrophysics Data System (ADS)

    Haasnoot, M.; Schellekens, J.; Beersma, J. J.; Middelkoop, H.; Kwadijk, J. C. J.

    2015-10-01

    Climate scenarios are used to explore impacts of possible future climates and to assess the robustness of adaptation actions across a range of futures. Time-dependent climate scenarios are commonly used in mitigation studies. However, despite the dynamic nature of adaptation, most scenarios for local or regional decision making on climate adaptation are static ‘endpoint’ projections. This paper describes the development and use of transient (time-dependent) scenarios by means of a case on water management in the Netherlands. Relevant boundary conditions (sea level, precipitation and evaporation) were constructed by generating an ensemble of synthetic time-series with a rainfall generator and a transient delta change method. Climate change impacted river flows were then generated with a hydrological simulation model for the Rhine basin. The transient scenarios were applied in model simulations and game experiments. We argue that there are at least three important assets of using transient scenarios for supporting robust climate adaptation: (1) raise awareness about (a) the implications of climate variability and climate change for decision making and (b) the difficulty of finding proof of climate change in relevant variables for water management; (2) assessment of when to adapt by identifying adaptation tipping points which can then be used to explore adaptation pathways, and (3) identification of triggers for climate adaptation.

  9. Temperature impacts on economic growth warrant stringent mitigation policy

    NASA Astrophysics Data System (ADS)

    Moore, Frances C.; Diaz, Delavane B.

    2015-02-01

    Integrated assessment models compare the costs of greenhouse gas mitigation with damages from climate change to evaluate the social welfare implications of climate policy proposals and inform optimal emissions reduction trajectories. However, these models have been criticized for lacking a strong empirical basis for their damage functions, which do little to alter assumptions of sustained gross domestic product (GDP) growth, even under extreme temperature scenarios. We implement empirical estimates of temperature effects on GDP growth rates in the DICE model through two pathways, total factor productivity growth and capital depreciation. This damage specification, even under optimistic adaptation assumptions, substantially slows GDP growth in poor regions but has more modest effects in rich countries. Optimal climate policy in this model stabilizes global temperature change below 2 °C by eliminating emissions in the near future and implies a social cost of carbon several times larger than previous estimates. A sensitivity analysis shows that the magnitude of climate change impacts on economic growth, the rate of adaptation, and the dynamic interaction between damages and GDP are three critical uncertainties requiring further research. In particular, optimal mitigation rates are much lower if countries become less sensitive to climate change impacts as they develop, making this a major source of uncertainty and an important subject for future research.

  10. Economics of nuclear power and climate change mitigation policies.

    PubMed

    Bauer, Nico; Brecha, Robert J; Luderer, Gunnar

    2012-10-16

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy. PMID:23027963

  11. Stereo image motion monitor for atmospheric mitigation and estimation

    NASA Astrophysics Data System (ADS)

    Gibson, Kristofor B.

    2015-09-01

    The knowledge of the turbulence strength in the atmosphere is important for many applications. Imagery in the atmosphere experience significant blur when the turbulence is strong. This can be automatically improved (without user intervention) if the turbulence strength is known. The performance of a high-power laser emitting in the atmosphere can be predicted if the statistics of the turbulence strength is known. If not predicted correctly, the laser may unintentionally destroy a target or fail to be able to disable a target. In this article, we review existing methods that estimate turbulence strength, provide a more in depth error analysis, and propose a new method for estimating and mitigating turbulence in the atmosphere. We focus on methods that are passive in design in order to prevent detection in surveillance scenarios and tactical situations. We also propose a new method, stereo image motion monitor (SIMM) which is a system containing two independent apertures. Our goal in this approach is threefold: 1) We can measure r0 using the DIMM method 2) We can simultaneously estimate r0 individually for each aperture and 3) We have multiple views of the same scene thus can increase the number of frames used in turbulence mitigation methods.

  12. Forest environmental investments and implications for climate change mitigation.

    PubMed

    Alig, Ralph J; Bair, Lucas S

    2006-01-01

    Forest environmental conditions are affected by climate change, but investments in forest environmental quality can be used as part of the climate change mitigation strategy. A key question involving the potential use of forests to store more carbon as part of climate change mitigation is the impact of forest investments on the timing and quantity of forest volumes that affect carbon storage. Using an economic optimization model, we project levels of U.S. forest volumes as indicators of carbon storage for a wide range of private forest investment scenarios. Results show that economic opportunities exist to further intensify timber management on some hectares and reduce the average timber rotation length such that the national volume of standing timber stocks could be reduced relative to projections reflecting historical trends. The national amount of timber volume is projected to increase over the next 50 yr, but then is projected to decline if private owners follow an economic optimization path, such as with more forest type conversions and shorter timber rotations. With perfect foresight, future forest investments can affect current timber harvest levels, with intertemporal linkages based on adjustments through markets. Forest investments that boost regenerated timber yields per hectare would act to enhance ecosystem services (e.g., forest carbon storage) if they are related to the rate of growth and extent of growing stock inventory. PMID:16825459

  13. Economics of nuclear power and climate change mitigation policies

    PubMed Central

    Bauer, Nico; Brecha, Robert J.; Luderer, Gunnar

    2012-01-01

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy. PMID:23027963

  14. Wake Mitigation Strategies for Optimizing Wind Farm Power Production

    NASA Astrophysics Data System (ADS)

    Dilip, Deepu; Porté-Agel, Fernando

    2016-04-01

    Although wind turbines are designed individually for optimum power production, they are often arranged into groups of closely spaced turbines in a wind farm rather than in isolation. Consequently, most turbines in a wind farm do not operate in unobstructed wind flows, but are affected by the wakes of turbines in front of them. Such wake interference significantly reduces the overall power generation from wind farms and hence, development of effective wake mitigation strategies is critical for improving wind farm efficiency. One approach towards this end is based on the notion that the operation of each turbine in a wind farm at its optimum efficiency might not lead to optimum power generation from the wind farm as a whole. This entails a down regulation of individual turbines from its optimum operating point, which can be achieved through different methods such as pitching the turbine blades, changing the turbine tip speed ratio or yawing of the turbine, to name a few. In this study, large-eddy simulations of a two-turbine arrangement with the second turbine fully in the wake of the first are performed. Different wake mitigation techniques are applied to the upstream turbine, and the effects of these on its wake characteristics are investigated. Results for the combined power from the two turbines for each of these methods are compared to a baseline scenario where no wake mitigation strategies are employed. Analysis of the results shows the potential for improved power production from such wake control methods. It should be noted, however, that the magnitude of the improvement is strongly affected by the level of turbulence in the incoming atmospheric flow.

  15. Assessment of GHG mitigation technology measures in Ukraine

    SciTech Connect

    Raptsoun, N.; Parasiouk, N.

    1996-12-31

    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.

  16. 44 CFR 78.5 - Flood Mitigation Plan development.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate...

  17. 44 CFR 78.5 - Flood Mitigation Plan development.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood Mitigation Plan..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.5 Flood Mitigation Plan development. A Flood Mitigation Plan will articulate...

  18. 44 CFR 78.5 - F